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a~au~sian to & shrinking operation and dilation is an
expanding operation. Sronton and dilation are

4This paper presents a preliminary study on dual operations w.r. to amplmentationt Eroding
using Mathematical Morphology to represent and X is equivalent to taking the complement of the
code a binary or a grey-tone Image by parts of dilation of ]&. If we erode I by 3 and then
its skeleton, a thinned version of the Image. An dilate the set XE93 by 3, we do not romer X.
image can be uniquely decomposed into skeleton fe reconstitute only a part of X which is simpler
components, and then reconstructed by dilating and baa eons details. It my be considered as
the"e components. Since, for a certain category that part which is most essntial morphological-
of imagery, the skeleton components possess a ly. We call this new set the opening of X w.r.
lower entropy than the original image. a run- to s
length or entropy coding whose can be used to
achieve representation or transmission of the L (u E293) E)b (3)
Image at a lower information rate than originally
required. The opening is the domain swept out by all the

translates of 'i which are included In 1. This
20O nnu MA2110C NOU operation smooths the onutours of 1, cuts the

narrow istbauses, suppresses the small islands
Mathematical Morphology, as a method for and the sharp capes of 1.

image analysis, was introduced by Matberon and
Sorr& 1i). Its purpose Is the quantitative des- Although the above aorations appear super-
cription of geometrical structures. To extract ficially simple, we can perform an enormous
Information from an iage object, Morphology variety of Image processing and image understand-
'hits' It first with a 'structuring element.0 Ing tasks just by comining erosions and
The interaction with the structuring element dilations, as is well developed in Ill.
transform the object and reduces It to a sort of
caricature which is more expressive than the 3TEIN Wr Blm u
actual initial phenomenon.

The skeleton is a topologically equivalent
The most fundamental morphological transfo:- thinned version of the Image. It can be obtained

nat ions are erosion and dilations Let I denote a from morphological transformations which aa-
set in the continuous or digital 2-D Euclidean ase features of the object associated with Its
space represeting a binary analog or digital connectivity. In the 2-0l continuous spsce It is
Image object. Ten 3& (complement of 1) denates defined as follows lat CS, denote the disk of
the Image background. Let 3 he the structuring radius r centered at the point a. Let a (Z)
element, which is another set with a simple goo- denote the met of the centers of the disk r
me8trical sape, and denote by OX the translate of such that. i ) rE is the maxim disk et5
3 whoee Center Is situated at the point x. at I and containel in the object R. and ii) the
Sranion of I by a is the set of all points x suft disk rb intersects the boundary of I at two or
that 3x Is included in I (see rig. 1), Bymboli- more dilferent planes. Men. the skeleton S(2)
cally, of XIis defined an the set of the centers of the

maximum disks inactihable In X. and is a eariga-
x®3m12 a, XCI) (1) tare containing information about the shape, siun

and orientation of 3L $ome emples of skeletons
Diainof X by 3 is the set of all points s ar showm In Fig. 2. 2he skeleton 53(2) an be

suh that N~ 'hits' Ii I.e. has a non-empty obtained from the set anio. of or11 3 (Lantuejoul
JnterseoticO With 1. Symbolically, 2)

I®3m9z: 3 11 R 4o) (2) 3()- s(I) -U[(Izr)/(IEr)d9S](

Fig. I shown the erosion and dilation of a set X 000 r r0
by a disk S. This figure Illustrates that *o-

8-4 06 18 19Apoetib xs'
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where *PO (0/) represents set union (dif- Consecutive pixelS X1#X2#...,ZV, whereO X Can be
ference) * and dr is the infinitesimal mall either I or 0 asccording to whether Zj belongs to
radius. the image object X or its backgrouni K0 respec-

Altoug th skletn i no a elldigtatively. lest P(z1 .m2 1 .. #Nz) be the Uth-order
Althughtheskeeto innota wll-igi&;, joint probability of these 9 pixels. ften the

lizabie notion, Serra 11) gives an algorithm for Uth-order joint entropy (in bits/pixel) of the
the skeleton of digital binary images sampled an binary Image We11 is define

4 a hexagonal grid.

Our research was focused an three areamis%:xV..SN
obtaining algorithms for ekeletonizing digital * . 1px1 .. x 1
binary Images on a rectangular gridy using parts1 3
of the skeleton to code the issigei and extending
the above ideas to grey-tone Images. *log 2 p(x 1 9 ....xS) (7)

4 ~Let R denote the mnit-eisa square of a rec-
tangular grid (see rig. 3) which is a square of
3 x3 pixels, and let DR denote the square R magni- As is well known, %~ is a nonincreasing function
fled a times which gives a square of (2o+1) x of 9 and the limit as 9 + - is the entropy pf the
(2n4+1) pixels. Them a digital algorithm for 8(1) stochastic source. If we consider the 2 dif-
of a rectangularly sampled Image object I Is fereant blocks of X pixels each as our messages,

noax "Maxwe can employ Buffuan coding or other suboptimum
coding procedures 141 to achieve transmission

3 (Z) - onM a [Z G)nR) /(I ( git ] (5) rates very close to these Nth-order entropies.
111010 11-0Thus, hereafter .we will be referring to these

Uth-orider joint entropies of binary images as
Mg. (S) says that the skeleton subsets a n (1) form their achievable transmission rates.
a partition of 3(X). Thus, 5(X) is obtained by
successively eroding X by nfl, and then keeping Since every skeleton subset sn (z) is a much
from every eroded set (X Ona) those parts only thinner binary image than R, than Its Mthi-order
which consist of angular points and lines without entropy. denoted by%(a ), will be muchb lower
thicknea these parts are the only ones ramsin- than SSX) * And rhat m;%t be cases where
ing after the set difference between (X ~ nl) eNd
Its opening (IG'wia* The maximum .912 ft. Mae
indicates the square of maximum isise after ublil I yyn <<%Z (8)
a further erosion erodes X ow to the empty set. 11-0

now, the Image I an be exactly reconstruct- Thus, to transmit sn (I) we need appromimately
ed by dilating the subsets of its skeleton by %( 111 bits/pixel. In addition to the am of all
squareis of corresponding aine and taking their Yn:s w need Information about 611A. , which
unions ca taken Into account with the tr Li~al mouit,

Of log2 0S/2) bits, for a binary Image of UdW

X - 0 [a n(Z) esnu]()
800 Mhen (6) holds, we can transmit all the

skeleton subsets of* I independently at a total
ops. (5) and (6) Imply that the Gatum of the gate lesi than the entropy of the original Image,
Image (set X) is equivalent to that of Its skele- and fully reconstruct X without error as Sq. (6)
ton S (X) together with the aize On of the Indicates.
maximum square associated with eso point of
3(I). I n rig. 4, proceeding from left to right A further reduction In Information rate cam
colns, we show en eample of en imaige object I be achieved by using not all but only some of the
end Its erosions (I Gna), the Openings of these skeleton subsets to reconstruct Openings (mmooth-
erosions, the skelto s -sts en(Z' th dilated ad versions) of the original Images
subsets, the omposition of the skeleton S(S) ims
tbe union of the skeleton subsets, sand finially nun
the reconstruction of I an the union of the di- I It a a [ag n @* DO] (9)
lated skeleton subsets. ask

'What is, If in the iion of the skeleton subsets
we OMit the first k subsets ne,.,k we

According to Uhannn' a theory of discrete reconstrucat the Opening of I w.r * to kL. The
source coding 131 we consider the 6igitised larger the k, the fewer subsets we transmmit, the
images as ample functions of a 2-D stchbastic nore we reduce the information rate, hut the
process charecterised by joint probability die- smoother is the version X that we reconstruct.
trihations of all orders. Zn practice we measure As shown in the exmple of Fig 4. for 3.04. the
histograms Instead of probability ditibu- original Image X has en entropy of 0.34 bits/pin-
tions. Comeaier a 1-D or 2-0l block of el. If we use all the skeleton subsets we



reconstruct I perfectly at a rate of approxi- of (11) vill be nonnegative functions. Similarly
nately 0.11 bits/pixel. If we desire to as In Sq. (6) a (9), the function f or Its

4 reconstruct only the openings XR Or XU' We Omit openings can be reconstructed by ming alge-
the first one or two skeleton subsets and thm we braically all o some of the skeleton
need approximately 0.16 or 0.14 bits/pixel to- subfunctione sz(f) dilated by WL
spectively. Table 1 illustrates that aoe infao-
natively. The mplications and the coding efficiency

of the skeleton of the Image function f in terms
of entropy considerations are still under inves-

U I tigation.
Nth-Onder ntropies (bits/piel) of a keletm

secommtrunted haw and its Openings. O I Si M

2 4 The results of this study Indicate that a
Image digital binary image can be uniquely decmpoeed

into its skeleton and the maximom InsrLbable
X 0.47 0.22 0.18 0.15 squares, and uniquely reconstructed from its

0.22 0.19 0.16 0.13 skeleton. The skeleton provides useful informs-
zR 0.20 0.17 0.14 0.10 tion about the shape, size and orientation of an

t  0.07 0.06 0.05 0.03 Image. For certain categories of Images the
total entropy of the skeleton subsets is lower
than the entropy of the original Images. OrLgi-

The first-, second-, fourth- and eighth-order nal I bit/piel test images of irregularly and
entropies of the original binary image vithout regularly shaped objects were reconstructed with-
skeleton encoding are 0.79, 0.50. 0.34 and 0.23 out eror by their full skeleton at information
respectively. Thus, as show in Table 1, the sU rates of 0.20 bits/pIxel. Smoothed versiom of
of the entropies of all or mae of the skeleton these Images required rates of only -0.15
subsets is smaler than the entropies of the bLts/pixel. Finally, by using Ln/max operations
original unenooded image. instead of binary erosLons/dlUatIons, these Ideas

O Mcan be extended to grey-tone images.

In grey-tone Morphology [1] the binary ero-
sions and dilations are replaced by mLn' and [11) . Serra, 0*mage Analysis and Nath natical
8max operators respectively. Consider a ane- orpbology, head. Press, te1w York, 1M2.
gative bounded function f(i,j) representing the
intensity of a smpled grey-tone Image. Let [21 Ch. Lantuejol, Skeletontzation in Qsmati-
0(2t,j)Qs for every integer pair (ij) in the tative Netallograpby, In Issues of Digital
Image support. All the nero-valued image samples Image Proc. (R. K. Earaliok and J. C. Simon.
vill belong by convention to the background of ads.) eries 31 Applied Science, o. 34.
the Image object. Zrosion or dilation of the 1980.
function f by the 2-D structuring element R i
defined I1 as 131 R. G. 0-alager, Information Thoory and

Reliable Ciumnication.0 2. Wiley A Sons,
Inc., New York, 1368.

4j T. 3. uang, OCoding of Too-lone Images,6

IM Trans. on Commun., Vol. CCM-25, 3b. 11,
[f()r]ij)-ax[fcr,,), (rs) C(IO)] (lOb) Now. 1077, pp. 1406-1424.

what,, denotes the square R centered at the
pxel ( . The opening a of f v.r. to ie/
defined as an erosion folluted by dilation.

We provide now a digital algorithm for the
skeleton 5(f) of f which will be the nonnegative
f9notions

sq. (11) is a direct transpoSition of i. (5)
where we replased the binary set unin/differaoe
by an algebraic iddition/sutration. 1casme
the opening ts an anti-extensive opeation
ffxf)P the Skeleton MebfIumoin In the brackets
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EROSION DILATION

Figure 1- Erosion and Dilation -f a set X by B (after [2] ).

Figure 2 - Examples of Skeletons (after 11).

Figure 3- The 3 x 3 pixels square R
on v rectngular grid.
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2 - C : , 0.14 Figure 4 -St p by step dmomposition and2- 00 
r0 C3 0.14 of an iwnp object X by the
-omponont5 of its skeleton S(X)

S • . '*. "" i - " (a) size- n- of the structuring square nR
3 - 0.06 (b) eroded sets (X(DnR)

() opeinp of the eroded e (X( Rn)R

.. . • . .(d) skeleton subsets sn(X)
0.03 le) dilated skeleton subsets s(X)(@)nR

ze - -I!i (f) set union of sIeton subsets Sk(X) for
k-7,6 ..... .n-1, n

5 -,* 0.01 (g) set union of dilated subaets sk(X)()kR- for k7 6. .... n-1,n. which giv the
4----- o,,, . Xn

0.01 ) sam of the t H4(sk ) of the
" ! 1a1s Sk(X), k-7..... n, which are

"reqired to reeo t he opening XnR
7 of he orilie object X
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