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Abstract

High energy laser sysroms with highly accurate measurements as target
tracking sensors use a conical scan process to obtain a target capture and
tracking within the narrow beamwidth. This searching process and the target
tracking algorithm are major factors in the performance of the laser radar/
target tracking system. Previous research results use information-theoretic
concepts in establishing a laser radar/target tracking performance bound inde-
pendent of the filtering algorithm. A computer program was developed to cal-
culate the lower bound of the estimation error due to the non-linear gaussian
glint measurement process.

Applying the Extended Kalman Filter to the angle estimation problem for a
gaussian glint measurement process, the resulting filter is found to have a
structure consisting of a series of demodulations with gains adaptively de-
termined by the resulting angle estimate. The optimal performance of this
estimation process is shown to be dependent on the angle and a bound on the
performance as well as a numerical algorithm is presented.
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I I. Introduction

A. Mathematicaj Model

The beam control of a highly accurate, high gain laser radar system involves
an amplitude modulation/glinting/demodulation in the angle measurement process.
The laser beam is controlled by a mirror to minimi7- the angular error between
the steered (or iaser pointing) angle and the target angle referenced to the
laser system. Te laser radar/target tracking system 11-3] is illustrated -y

The block diagram of Figure I (one dimensional). The angular measurements
are developed by a glinting process created by the target and a dithered laser
beam described by the following mathentatical expressions.

1. Dither Signal

7o generate target tracking measurements, the beam center is dithered and
the returned signal if coherently correlated with that transmitted. In parti--
cular, the target/laker beam angular difference with applied dithei signal
is modelled b-i

y(t) = eb + A sin(wdt)

where

Ob is the target/beam center offset bias, and

A sin(wdjt) is the applied dither signal.

2. Gaussian Glint

The glint measurement process can be modeled by the deterministic gaussian
function with additive noise

z(t) = g(y,t) + n(, )

where
g(t) = Io exp(-y 2 /2o 2 )

and

y(t) is the target/beam center angular error,
ag is a parameter of the glint return,
Io is the reflected intensity for zero error, and 2

4 • (t) is a zero mean, white noise process with variance

It is to be noted that the term "gaussian" above refers to the input/output

I - process g(y,t) and is not stochastic. The additive noise term, n(t), itself

can be a gaussian process but it is not to be confused with the term "gaussianSglint" which is the input/output functional relationship.

V i
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3. Signal Demodulation

The output of the gaussian glint process contains the information as to
the magnitude and direction of the target/beam bias. One component of the

Q output measurements, z(t), contains this angle bias, 6b, as the coefficient

of the bsse Githered signal. Hence, to recover the bias, a simple demodulation
process, commonly used in Communication Systems [4], illustrated by Figure Z,
includes multiplying the output by the dither signal and passing the product
through a low pass filter.

Zi X Passz(t)

Ss n(wdt)

Figure 2. Glint Bias Demodulation Process

B. Statement of the Problem

The laser radar target tracking system is a stocbastic control system
whose objective is to track a target using noisy meabuiements. The performance
criterion or measure of goodness of the system is given by both the closeness
of the laser steered beam to the target being tracked (deterministic measure)
and the variation or jitter of the stetred beam (-.tochastic measure). In
many stochastic control systems, the optimal design, choice of parameters, or
operating point is usually a compromise between a set of conditions which
yields the best deterministic response with that which yields the best stochastic
estimates. Although the central problem addressed by this investigation is
that of the stochastic design, the deterministic nature of the control system
must be understood and considered. To this extent, the original [3] and current
investigation centers on the problem:

Given a laser/target tracking system with a dithered
signal/gaussian glint measurement process, evaluate
the Information-Theoretic estimation performance bound
of the system.

The primary use of an estimation periformance bound is in comparison with:

1. the performance of what is being observed with an existing filter/
control system.

2. the per'frmance of an implementable, maan-squared-error (MSE) nptimal
stochastic control whi.ch includes an Extended Kalman Filter.

-3-



C. Proposed and Redirected Investigation

Reference [51 contains the initial proposed research investigation of
the estimation problem of the laser radar tracking system. Section II of this
report contains the investigation results of tasks 1, 3, and 5. During a
meeting [6] at the Air Force Weapons Laboratory, preliminary results were
discussed and the investigation was redirected into the noise transfers both
in the Glinting and Demodulation processes. Section III of this report contains
the results of this redirected investigation.

There are two key questions on which this research investigation is centered:'

i• 1 1. What is the ultimate performance of the laser tracking system ?
2. What is the performance of the present process (is it bufficient,

can it be made better) ?

These two areas were further investigated by considering the extended Kalman
Filter described in the initial research investigation 13] and decomposing it
into a Fourier Series representation. These results (Section IV) illustrate

several fundamental concepts regarding the present filtering process and the

performance achievable compared to the ultimate obtained through the Information-
Theoretic approach.

II. Information-Theoretic Approach

A. Bounded Estimation Performance

The initial investigacion [51 developed an Information-Theoretic performance
bound and corresponding numerical algorithm used to evaluate an estimation
performance bound for the gaussian glint measurement process which will now be
summarized.

The estimation error entropy H(x) of any process is bounded by the system
equivocation H(xlz) with conditional probability density function p(xlz), i.e.,

"H(x) ; H(xlz) = E(-in (p(xlz)))

which is only a function of the system and independent of the implemented esti-
mation process [7-11].

An important design concept is that the mean-square-error (MSE) estimate
is a minimax error entropy estimate [10,111, i.e.,

min max <(x) <> mmin Iv(x)llIwhere V(x') is the error covariance matrix.
For the normal estimation problem [1i], the derived optimal error entropy esti-
nation process is the Kalman Filter and the error cnvariance matrix is identical
to the system conditional covariance mattix, i.e.,

V(x) V(xlz).

--4-



This is very important for understanding the Information-Theoretic approach
based on prior understanding of minimal variance/Katman Filtering concepts.

For the gaussian glint measurement process with the dither signal on the
steered laser beam, the lower bound [3, 12, 131 to the error in angle estimation is

a 1 exp(2H(8))exp(2Nl(t))/exp(2N 2 (t))

where H(9) is the initial angle uncertainty,

1 ab t

and the above integrand can be expressed

whoere :c: I2+t(t) .[ Ec f exp(=(0b+A sin(wr)) 2 ,(2a 2+a))dTr

0n2 ý- 6f0 0x((bbO

a wae ( e = 6cg -k.

-:•i ; : f =300 Hz

N- tr f 10 V 2kT

S~For a signal-to-noise ratio of unity, Figures 3a to 3d are the resultiag
: error variance lower bound for 0b = { 0, 2.5, 5.0, 10}. Doubling the signal-

S1° o-niseresuts n afaster responding lower bound as illustrated by Figure 4a
to 4d, rb = {0, 2.5, 5.0, 101. Notice that as the bias eb becomes much larger
than the glint 0g, the performance deteriorates.

• I B. Parametric Studies

•i Th follwinglower bound performance response evaluations we.re made •o

:i " study th fet fvarying the system parameters. Figure 5 illust'ates the
Sperormace rspone asthe signal-to-noise ratio varies S/N = {I.0, 100 and_ 10,0001 which considered a unity dither amplitude and null bias angle. It isS "" response.°bvious that increasing the signal-to-noise ratio improves the p-rfotmance bound

IJ! --5--
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r! Figure 6 illustrates the case when the dither amplitude varies A = {1.0,
5.0, and 10.0} with a null bias angle and a signal-to-noise ratio of 100. The

C results illustrated by the figure shows that by increasing the amplitude, the
performance response is slightly slower, i.e. approximately .005 seconds slower
for an increase of 10 times in dither amplitude.I Figure 7 illustrates the performance found response as the bias angle

• 4 change eb = {0.0, 5.0, 10.0} for signal-to-noise ratio of 100 and the dither
amplitude uniLy. This illustration shows that as the angle bias varies from
zero to 10, the performance bound response is approximately 10% slower.

In summary, the above parametric studies show that the "best" (fastest
performance bound) response occurs as:

i) signal-ra-noise increase
ii) bi s angle is zero

S1ii) small dither amplitude

C. Information Flow Due To Demodulation

For the Laser Tracking Control system, the demodulation process illustrated by
Figure 2 consists of:

1. multiplying the measurements z(t) by the fundamental frequency
sin(wdt), and

2. passing the results through a low pass filter to obtain an estimate
of the tracking bias.

It is desired to determine if information is lost during this demodulation
process. The measure of information between the unkncwn bias e and the measure-
ment z is given by

I(z;B) H 1(z) - H(zl6)

Vnere

z(t)= I exp(-y 2 /2c•) + n(t)

y(t) f 0 + A sin(wdt).

Consider a new measurement

zl(t) = z(t) sin(wdt),

which is the first step in the demodulation estimation process.
The measure of information between zj and B is given by

I(zl;6) = H(z 1) - H(zlIO).

Using eq. (T2.4) of reference [7 or 11l, the entropy of z1(t) is

.H(zl) H(z) + E{lnjazl/azj

1H(zl) = H(z) + E~lnlsin(wdt)}- .([i 9
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For the conditional uncertainty term,

S1(z i0) H(z 0) + E{ilnIsin( t)I e1}.

Since the process sin(wdt) is independent of the unknown 8, then

H(ziIe) = H(zlO) + E{lnlsin(wdt)I}.

j Combining the above two main results, it is obvious that

I(z,;a) = I(z;e)

and no information is lost by the first step of the demodulation process.

However, the second step which involves low pass filtering, removes the
information contained in the high frequency components. This point will be
further explained when the extended Kalman Filter is decomposed into its Fourier
Series components in Section IV. By eliminating the higher frequencies in
the measurement process, information about the target is lost.

1Il. Glint/Filter/Control Syste.m

A. Deterministic Stability

The process of generating target angle measurements and estimates involves
a dithe- signal/glint/demodulation process is similar to the amplitude modula-
tion communication technique 14] as shown earlier by Figure 1. Depending on
the operating or glint bias point, the received signal contains the information
on the direction and magnitude of the angle pointing bias. The nature of the
filter/control/mirror deterministic portion of the feedback system can be
analyzed using classical techniques. The modulation/glint/demodulation process
can be iinearized using the first order approximations of the glint output with
respect to the angle bias (neglecting the dither signal carrier) as shown in
Figure 8

Figure 8. Linearization Model of the Gaussian Glint Process

where

Effective Gain: K0 = -G

i DC Level: Go =T exp(-(12

Average Bias: 6bJ (operating point) -12-

iJ!



Another method to determine the -ffective system gain of the glint4ag process

is to use the Fundamental Describing Function [141. In either case, it is
obviously a function of the bias operating point. The standard modulation
technique consists of using a sinusoidal signal to carry the intormation, and
in our case, it contains bias error. The bias error can be obtained by a
coherent detection process which consists of multiplying the glint output
(measurement) bv the same sinusoidal signal and sending the resultant signal
through a low pass filter. This process is essentially the mathem°.ic'al process
used to determine the basic Fourier Series harmonic in a periodic signal.
This concept will be used in Section IV when the Extended Kalman Filter is decom-
posed into its basic components. The overall effective system gain will be
maximum when the signal is at tho gaussian glint point ag and vanished at
zero, hence, the system gain varies according to the bias point.

Table 1 lists the various tra'nsfer functions [6,151 of the feedback path.
The transfer function H(jw) of Figure 9 illustrates tne general nazure of
the filter/control/mirror path

Gf(s) = F(s) C(s) M(s)

F(s) = G2 (s) G4 (s) (without the notch filter G3 (s))

C(s) - 1/s (without compensator)

The effect of the notch filter G3(s) adds zeros at the dither and twice the
dither frequency (300 and 600 Hz) and is intended to remove frequency modes
which are caused by non-linearities and/or a non-perfect demodulation process.
However, by observing Figure 9, the feedback system G(s) is basically a Type
II low pass filter with an essential triple break at 150 Hz. The suppression
effect of this filter on a signal at the dither frequency is large enough so
that, for analysis purposes, the notch filter G3 (s) will not be included. For
example, there is an approximate 30 dB transfer function decreased froma fre-
quency increase of 150 tc 300 Hz which represents a 1/25 relative signal change.

The effect of the compensator Gc(s) essentially stabilizes the system.
Figures 10a and lOb show that Bode Plots (amplitude and phase) of the feedback
system with and without the compensator which is used to provide positive gain
and phase margins (gain margin of 75 dB at 35 Hz),

3. Stochastic Analysis

The demodulation process consists of multiplying the measurements with the
initial dithered signal and passing the product through a low-pass system which
consist2 of a Filter/Control subsystem. In particular, consider the process of
the demodulation process as shown in Figure 2 where the noisy measurements is
multiplied by sin(wdt) and then passed through a low pass filter to regain the
D.C. level which contains the glint bias. The noise analysis of this demodula-
tion process cosiders the input noise ni(t) applied to the demodulation
process is characterized by its spectral density of Figure 11.

-13-
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-21 Si(f)

-f3 -f 2 -f 1 fl f2 f3

Figure h i . Spectral Density of the Input Noise to the Demodulation Process

SThe autocorrelation of this spectrum is

*~ }
2N-cos(WIT) cos((wy3r) - cos(w2 T)

(27rr) 2  f f3 - f2

Its variance is Ri(O) = A[f 3 + f2 - f1] which is the same value obtained when
the spectrum Si(f) is integrated over all f

2 = Ri(O) = f Si(f) df.
nj

Now, the output noise process can be modeled by

S II no(t) = ni(t) sin(wdt + 6)

where ni has Ri(t), Si(f) general characteristics, in particular, that
specified above. Since the input noise is purely random in nature, it is
uncorrelated with the modulation term sin(wdt) or when it begins. Therefore,
we can assume that the modulation term has an arbitrary phase which is uniformly
distributed between 0 and 2w. The output correlation function is

Re()-- E[no(t) no(t+T)]

S= E[ni(t) sin((dt+,p) ni(t+T) sin(wd(t+T)+*)]

i' l =E[ni(t) ni(t+,r)] E[sin(wdt+ý) .3in(wd(t+-r)+ý)]

Ri(T) E[cos(W T) - cos(wd(2t+T)+24,)1/2

-o() = Ri(T) cos(WdT)/2.

The spectral density of tne output SO(f) is the Fourier Transform of RO(T),

-18-



So(f) /2 f Ri(T) coM.-IdT) e-j d

= 1/4 fSa Ri(T) [e-j(ur-wd )T+ e-J (O+•d )T ldT

So(f) = [Si(f-fd) + Si(f+fd)]/4.

Hence, the output spectral density, So(f), is 1/4 the sum of two densities;
one of which is the input density shifted left fd, and one shifted to the
right fd

Depending on the value of fd relative to fl, f 2 and f 3 ; the shape of the output
spectrum will have different characteristics. For example, Figure 12a shows tho
output spectrum, So(f) for [ ldd2f+f2< fd< f2

!• I So(r)i

N/4

0

fA fB fc fd fE fF f3+

Figure 12a. Spectral Density of the Noise After Multiplication

With the Dithered Signal - Large fd

"fA = f2-fd fE - fl+fd

fB = f3-fd fF - f2+fd

S" fC - fd-f I

11;7 -19-
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SSo(f) 1/2f Ri(T) Co(WdT) e-jwT dT

1/4 -(uwdw)T -J w+wd) Td= 1/4 f Ri(T) [e + e-Id)

So(f) = [Si(f-fd) + Si(f+fd)]/4.

Hence, the output spectral density, So(f), is 1/4 the sum of two densities;
•.•one of which is the input density shifted left fd, and one shifted to the

S~right fd •

i I
Depending on the value of fd relative to fl, f 2 and f 3 ; the shape of the output

spectrum will have different characteristics. For example, Figure 12a shows the

output spectrum, So(f) for f +f d I
1 < f < f

SI ~So( •.)

22

S/N/

* I0 ' ' ' '

"fA fB fc fd fE fF f3+fd

Figure 12a. Spectral Density of the Noise After Multiplication

j t•With the Dithered Signal - Large fd

fA f2-fd fE fl+fd

fB - f3-fd fF =f2+fd

f AS"" fc C - fd-f I
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The variance of the output is the area under So(f) which is

aout = 2{ Nif 2 - fd]/ 2 
- Nfj/4 + N[f 3 + Ed - 2 -fd)]/41

- N[f 2 - Ed - f1 /2 + (f 3 - f 2 + 2fd)/2]

= N[f 3 + f2 - f1]/2

Oaut o~n/2.

The output variance is 1/2 the input variance, but its spectrum has s'kifted
with a flat spectrum about f=O whereas the input has a 'V" about f=O.

Figure 12b. shows the output spectrum, So(f), for fl < fd < 2
2

Som(f)

4N_ 2

,l /
S. /

N/4

I 0 0 I t

S-fd fA Ed fB fc fE fF f3+fd

Figure 12b. Spectral Density of the Output Noise After Multiplication Witt
the Dithered Signal - Small Ed

' fA fd-fl fE=f3-fd

SfB fl+fd fF f2+fd

f f2-fd

The variance of the output is, again, the area under So(f):

- ut 2 I {(f2+fd) + (fz-fd) + (fd-f-0 + (f 3 -f 2 ) + fE}

-20
232
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SOout• =in/2

Again, the spectrum is flat about f=0 whereas the input has a "V" about f=0.

This output spectrum is then passed through a low pass filter. The noise
spectrum of the feedback output is

fo(f) = IH(jw)1 2 S O(f)

where H(jw) is the combined transfer function of the filter/control/mirror feed-

back subsystem. There are two types of feedback systems, Type I and Type II
systems to be considered. With a Type II system,

H11(s) = KHo(S)

where Ho(s) is the Type 0 portion of the subsystems. Assuming that K = I
and since the effects of HO(S) is negligible at low frequencies, then the

spectrum of the output filter/control is

S°(f)
Stt(f)= 0

(2 i)4f4

Approximating So(f) to be uniform between t f 2 , then

Sfo(f) N ; -f2 < f < f2

0 2(2,r) 4 f 4

The autocorrelation function of the feedback output is the inverse Fourier
i• j transform which is

Rfo(T) = 1/27r f Sfo(f) ejwT dw

1 1/21 f N/2w4 ejWT d.
2-w

The noise variance at the feedback output is Rfo(0)which is the area under
the spectrum

2 f?2d

a 2 N___ _
2fo 2 1  N df

2(21r) 4 f4

-- _ N f2

3(27r) 4 f 3  0

and a limiting process must be applied

-21-



2= N 3 3[lim 1/a - I/f 2]fo 3( 27)4 a~o2

the above becomes unbounded as a + 0. This implies that the realization of
the noise may be any value.
Consider the case where we have a type I system

Hi(s) = KHo(S)/s.

As before, assume K = I and since the effects of Ho(s) is negligible at low
frequencies, then the output spectrum is

Sfo(f) = SoMf)

(2 r)2f 2

Again, as before, if So(f) is uniform in the region -f 2 < f < f 2 , then

Sfo(f) = ; -fN f 4 f2( 21)2f2 2

The noise variance is the area under this spectrum

020 2 ff2 N df
f o 0 2(2 ) 2  f2

(2,) 2 f 0

Again, as before, the above is evaluated using a limiting process;

2 N
0fo {rim 1/a - 1/f 2 }

(27r) 2  a-)o

which becomes unbounded and the same results hold.

C. Signal and Noise Transfer for the Gaussjqn Glint Process (about y = 0, og).

The signal and noise transfer characteristics of the gaussian glint process can
be seen by the following approximation process. Consider a Taylor series ex-
"pansion of the gaussian glint process about some point yo = 6 due to a small
signal and noise

y(t) = 6 + A sin(wdt)

' 2 i0 _if~y I (y-- 9)
f(y) exp(-y 2 /2ai) = i ( - )

i=O 3y1  i
y=8

-22-
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The various (first 4) derivatives of the function f(y) are

f(y) = exp(-y 2/2a2)
g

f'(y) = (-y/o2g)exp(-y 2 /2a 2 )
2_2 2 2) a4

f,(y) (y2 a)exp(-y /2ag)/ag

f"'(y) = (3ya2- y3 )exp(-y 2 /2a 2 )/0 6

f....(y) (y 4 _ 6y 2 a2  + 3a4)erp(_y2/2 2)/o8
"i g "g g

There are two operating points of special interest

zero slope f'= 0 => y = 0

maximum slope f" = 0 ==> y = tag

Evaluation of the various derivatives under zero and maximum slope

y -- 0 ; f(y) = e° 1

f'(y) = 0

f"(y) = -

gf"*(y) 3 =0

.•, f ....(y) -- 3/1

y = Og; f(y) = 1/Ve

f'(Y) = - 1/ag Fe

f"(Y) =0

I3 f",(y) = 2a3 ýe

4f."(y) = - 2/a Ve

In Tabular form

y=0 ya g

f(y) 1 1/,e

f'(y) 0 -l/ag/

- f"(y) -i/02  0

g3
f (y) 0 2/a1

f"(y) 31 3/a -2/agV'e

-23-
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Maximum Slope:

Consider the maximum slope bias point. Using the first 4 terms of the series

expansion about yo = ag with y = ag + A sin(wdt) + ni(t) where

ni(t) is the input ioise, the output is

z(t) = I/Ve {1 - (A sin(wt) + ni(t))/ag + 0/2!

+ 2(A sin(wt) + ni(t)) 3 / 3 3! + .... }

The most significant terms of the expansion are:

signal 11- A sin(wt)/ag}/Fe

noise ni(t)/agF4

Hence, both the signal and noise process are preserved with a change in amplitude.

At the maximum slope, the expected signal and noise terms are easy to understand

and observe using the above simple example as illustrated by the frequency spectrum

of Figures 13a and 13b.

Minimum Slope:

Using the first 4 terms of the series about 0 =0 the output is
l i2og ni) 4 /o 4 ' .

z(t) = 1 + 0/1! - (A sin(wt) + ni 2 2! + 0/3! + 3(A sin(wt) + g 4! +

[A2 sin2 (wt) + 2A sin(wt) ni(t) + ni 2  2
= I -- As n'( 1 2

+ [A4 sin4 W) + ... + ni 4 (t)0/8O1 +

The most significant terms of the output are:

signal 1 - A2 sin 2 (wt) /2o2

noise [2 ni(t) A sin(.,%t) + n 2(01/2 2

Hence, both the signal and noise process change at the zero glint bias point.

Due to the extreme non-linearity at this point, both the output signal and noise

change characteristics the modulation signal amplitude is now at twice the

original frequency. The output noise has two components, one modulated by the

dither frequency and one modulatnd by itself. These two modulated noise terms

will give rise to spectrum components not present at the input as illustrated

by Figure 13c.

I-24 -24-
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S~SY

S0 f
-fd fd

Figure 13a. Frequency Spectrum of a Signal and Noise at the ITnput of the
Gaussian Glint

i • Sz

0 0•. •-fd fd

Figure 13b. Frequency Spectrum of the Output of the Gaussian Glint Process
with the Operating Point 8b =

zSz

0 f
f -2fd fd fd 2fd

J Figure 13c. Frequency Spectrum of the Output of the Gaussian Glint Process witt

the Operating Point 6b 0

j
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SIV. Extended Kalman Filter for Laser Tracking

A. Extended Kalman Filter
A straight-forward application of an Extended Kalman Filter [3] for the

bias angle estimation yields the following set of equations to be implemented.

6b = K(t)(z(t) - g(j,t)]

y(t) = 8b + A sin(wt)

g(y,t) = Io exp(-y 2 /2a 2 )

K(t) =- g(9,t)

2

an Og

Note that: K2(t) 2

Figure 14. is a block diagram for the above filtering process.

B. Fourier Series Decomposition of the Extended Kalman Filter

The following will be a decomposition of this filter into the Fourier
Series representation of the filtering process. As shown earlier, the Taylor

Series expansion of the gaussian glint process about a point e is

f(y) _if (y- e)
i=0 o • y=6 'I

With the input

y = 6 + A sin(wdt),

then

8 /22 2 22- a2

f(y) = e g1 - 2 A sin(wdt) + 4 A2 sin2(wdt)

36a2 - 83 6 4 682a2 + 3a 4

+ g A3sin3(wdt) + 9- A4sin4(wdt) . }
ag 3: ag 4!

-26-
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7V-

The Kalman filtering gain is

-y
K(t) g(y)

where V; is the error variance

g(y) = lof(y), and y = 0 + A sin(udt),

then

-Vý 
-62/2G2

K(t) = [6 + A sin(wdt)] Io e g

Let
! _~~V;Ioe-022¢

•, then
L(V-, 6) =v~~0/O , he

2 22
6 J a a2

K(t) L [6 + A sin(Wt)] i - A sin(,,dt) + _ A sin d

30a~-~ 304 - 662(y2 + 3a4
+ A3sin3(wdt) + -4!

"16 3! 4
g

L= {CO + C1 sin(wdt) + C2 sin2 'WdL) + C3 sin 3 (wdt) + C4 sin 4 (wdt) + "'" }

"where

C1  i [ =-
2 - 62

2!]a2 A C3 A2

2!

AL- 3 - 02 21 !
3 a0 2a!

-A33 3 ag

43 3 
3 ! 0'

A3 -84 + 62 -
4

A4 5 60"a +C64 36a -+ - -

-4! 4!

Ii .
-C 4 8 6

Aý 9g



SUsing the various identities for sinn(a), i.e.

sin2 (a) = [1 - cos(2a)]/2

sin3 (a) [3sin(c) - sin(3a)]/4

sin4 (a) = I - 2cos(2a) + Icos(4c)]/4,
2 2

the firs- few terms of taie Fourier series representation of the Kalman gain are

4 4
K(t) = L{ao + I ai C0s(iwdt) + I bi sin(iwdt)l

1 =1 i=1

a = Co +I 2- +• C4 +

i a1 = 0

a 2 = IC 2 - C4 +

a 3 = 0

a4 = IC 4 +

b=C1 + .1C +b1 = 1 4 3•

b2 =0
b3 = 3 +

S~4

b4 =0

The Kalman gain is used to develop the time derivative of the tias estimate by
multiplying it witb the measurement residual

z(t) =z(t) -Z(t)

and

6(t) = K(t) z(t)

Figure 15a illustrates the process of obtaining the estimate of the glint bias
and Figure 15b is the process now being used to generate the estimate. It is
obvious that the present process is a simplification of the optimum process in
that:

1. only the information in the fundamental harmonic is used, and
2. the transfer gain is constant instead of the time varying

optimum process.
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The second term of •he Kalman Process illustrated on Figure 15a is similar to
the present proc'ss of Figure 15b. In fact, the gain is an adaptive process
of the glint bias

- - 2/202
L bI = (C +3

Normalizing this bias term using d = V/ag

-d 2 /2 A3  4
Lb Ve 2 0e A(I - d 2 ) + A3- d4d+ 6d 2 

- 3)]

V*- I
0 O f(d)

where the following section describes the normalized gain function f(d)/ag.

C. Coefficient Evaluations for the Fourier Series {ai, bi}

The Fourier Series Coefficients {ai, bil for the Kalman gain can be
evaluated using a glint bias to standard deviation normalized variable

d = e/ag.

This process will show the relative imp-'rtance of each coefficient. The various
coefficients are

=dog + A d3 -3d) + (d 5 -10d 3 + 15d)

4 ag 64a3

I•~a 1 = -A2A

2a2  -- (d 3 -3d) -A 4- (d5 - 10d 3 + 15d)

2 40g 48a3

a3 =0

a4  --A4 (d 5 - 10d3 + 15d)
192a

b = A(O - d 2 ) +A3 d4 + 6d 2 
- 3)

b2 =0

i b3 = - A(-d 4 + 6d 2 - 3)3 24a2

b4 =-0

Figure 16a and 16b lists normalized values for these coefficients for various
operating points d = {-1 to 1} which corresponds to a variecy of glint

Sbias eb points and for values of dither amplitude A = 1/2ag, and ag.
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D. Optimal Estimation Error Variance (Bound)

The following will be a bounded closed form solution for the error variance.
The error variance (using V for V-) differential equation is

e

- V y2 g 2(y,t)

wherejy(t) = e + A sin(wdt), and g(y,t) = Io exp(-y 2 /2oa),

then V -cV2 [0 + A sin(wdt)]2 exp(-y 2 a).

2
where c 0 (constant).

Separating variables, the above can be expressed as

d -dV cy 2 (t)exp(_y 2 /o 2 )dt.
V2 --

Upon integrating,

S1 f y2(T)exp(_y2 T)/ )dTV(t) Vo 0oa

where Vo is the initial condition on V. Since the exponential function can be
bounded

exp[-(181 + IAI) 2/o exp(y2(t)/2) < 1,

the above integral can be bounded by
t

exp-(IeI + Al) ] F(t) 4 c ( 2()exp(-y )d- <F(t),a• 2 ol
g 0

where F(t) is a monotonically increasing function of time
t

F(t) - c f [e + A sin(wdT)] 2 dT
0

= c {(O2 + A 2/2)t + 2Ae(l-cos(wdt))/wd-A 2sin(2wdt)/4wd}.

The error variance can now be bounded
V V

0 v(t) V0
S+ VoF('t) F(t)exp[-(11+IAI) 2 /1 2]
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IZ. Optimal Estimation Error Variance (Numerical Evaluation)

1. Numerical Solution

The differential equaLion of error variance for the Extended Kalman Filter
[4] can be expressed as

- c V2 y2 (t) exp(-y 2 (t)/o0)

where
T2

C = 0

and

y(t) = eb + A sir((wdt).

Separating variables and integrating yields

dV = c y 2 (t) exp(-y 2 (t)/o2)dt

IjV 2  g

c Y2(T) exp(-y 2 (T)/V2) dT +

V(t) o g V0

and upon simplification, the error variance become

VSI ~ ~v(t)- r

1 + c Vo {.}

where V0 is the initial error variance. Since the integrand is

~~~ I- . _y2(t) exp(_y2(t)/a2)

is a periodic function, then the integral can be evaluated at specific times

which are integer multiples of Td, the period of the dithered signal,

InTd Td

f ('= n {.f
'0 0
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The above one-period numerical integration process is easily obtained with U-e

use of a sufficiently small integration step size (AT).

2. Parametric Studies

Similar to the performance studies from the Information-Theoretic Bound
(part lI.B.), Figure 17 illustrates the numerical evaluation of the error
variance, V(t), for signal-to-noise ratios of S/N = {1.0, 100, and 10,000O

for a unity dithered amplitude and a null bias angle. The strong, direct in-
fluence of the S/N is apparent from the response illustrations of Figure 17

and the integral solution of V(t) where the multiplicative parameter "c'
contains the signal-to-noise ratio.

Figure 13 illustrates the error variance response for various l½els of
dither amplitude with S/N = 100 and Ob = 0. The response, V(t), is shown to
improve (decreases faster) as the dither amplitude increases, however, the
rate of improvement decreases when at large values (i.e. from A = 5 to A = 10).

Varying the bias operating point, Figure 19 illustrates an improvement in
the response V(t) as eb increases with a limiting effect at higher levels of
bias (i.e. from 8 b = 5 to Ob = 10).

3. Comparison of the Kalman Error Variance and the Information-Theoretic Bound

Two approaches have been used to evaluate the performance of the optimal

angle estimation for the gaussian glint process. Although the Information-
Theoretic and the Extended Kalman results are related to the same quantity,
their interpertation and the assumptions made for their evaluations are dif-
ferent. However, they both give some measure as to the overall performance of

the optimal angle estimation process as illustrated by Figure 20 which is noth-
ing more than combining Figures 5 and 17. The results illustrate the lower

bound attribute of the Information-Theoretic evaluation and the expected re-
sponse when the Extended Kalman Filter is used.

-
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V. Conclusion

A. Summary of Results

An Information-Theoretic Bound was found for the Laser Radar Tracking
Problem. It was shown that the signal-to-noise ratio strongly affects the
performance. There is also a slight variation in performance as a function
of angle bias and signal amplitude but not a significant one.

An Informatic -Theoretical Analysis of the demodulation process showed
that there was no loss of information due to the first step of the process,
multiplication of the gaussian glint returned by the transmitted dithered signal.

f{ However, the suppression of the higher frequency components by the second step
of the demodulation process, low pass filtering, destroys information contained
the glint return.

The type II feedback transfer function is shown to be stabilized by the
compensator where a deterministic positive gain margin is given. The first
step of the demodulation process was shown to redistribute the noise spectrum
contained in the output gaussian glint to significant levels at the low fre-
quencies (D.C. region). Coupling this with the type II (or type I) feedback
transfer function causes an unbounded stochastic variation.

The bias operating point has a strong effect on the spectral transfer
function of the non-linear gaussian glint process. In particular, a small signal
analysis showed that the zero bias operating point changes the deterministic
and stochastic spectral response significantly. When the operating point is at
the maximum slope, the output spectrum reflects the input spectrum.

The Extended Kalman Filter was applied to the open loop angle estimation
problem involving a gaussian glint measurement with a dithered applied signal.
Decomposing the filter formulation into a Fourier Series representation, it was
shown:

i) the angle estimation process consists of a series of demodula-
tion processes corresponding to various frequencies of the
applied dither,

ii) the gains are chosen adaptively according to the bias angle, and

iii) the overall optimal error variance decreases monotonically as
time increases.

The optimal adaptive filtering process presented is in the form similar to

the present system and improvements can be made by using additional elements.
Bounds on the optimal error variance were established in closed form and a
numerical technique was also presented.

The error variance for the angle estimation is shown to be bounded and a
numeric process is also presented. Evaluating the error variance for various
parametric cases show a strong dependence on signal-to-noise. It is also shown

that :he dither amplitude and bias operating point has an effect on the estima-
tion performance.

-42-



B. Extension

There are a number of natural extensions to the material presented in this
paper:

i) Spectrum Analysis of the System

Items in this investigation would include both signal and noise
transfers through the non-linear elements of the gaussian glint
and the demodulation processes. The spectrum analysis of the
closed loop controller and the Extended Kalman Filter will also
be included.

ii) Parameter Variations of the Stochastic Control

There are various operating points and system parameters that
yield optimum performance. A sensitivity study of these design
parameters and operating points will be included.

iii) Adaptive Filter Implementation

There are two forms of the Extended Kalman Filter to be imple-
mented. Each of these forms should be investigated as to their
complexity of implementation. Also included in this investigation
should be a sub-optimal filter which consists of the main element
of the Optimal Filter. A performance analysis of this design will
indicate the effects of the sub-optimal design.

iv) Optimal Controlling Process

The control process of the present system consists of a simple
integrator on the bias error. An optimal design based on modern
techniques which includes performance criterion of minimum
settling time, control energy, jitter, etc. would be included.
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