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An Information-Theoretic Approach
To Target Estimation of a Laser Radar Tracking SysCem

Dr. Paul R. Kalata
Department of Electrical and Computer Engineering
Drexel University
Philadelphia, Pennsylvania
19104

\ ' Abstract

High energy laser systoms with highly accurate measurements as target
tracking sensors use a conical scan process to obtain a target capture and
tracking within the narrow beamwidth. Thig searching process and the target
tracking algorithm are major factors in the performance of the laser radar/
target tracking system. Previous research results use information-theoretic
concepts in establishing a laser radar/target tracking performance bound inde-
pendent of the filtering algorithm. A computer program was developed to cal-
culate the lower bound of the estimation error due to the non-linear gaussian
glint measurement process.

Applying the Extended Kalman Filter to the angle estimation problem for a
gaussian glint measurement process, the rasulting filter is found to have a
structure consisting of a series of demodulations with gains adaptively de-
termined by the resulting angle estimate. The optimal performance of this
estimation process is shown to be dependent on the angle and a bound on the
performance as well as a numerical algorithm is presented.

v
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7 _ I. 1Introduction
A. Mathematical Model

The beam contrcl of a highly accurate, high gain laser radar system involves
an amplitude modulation/glinting/demodulation in the angle measurement process.
The laser beam 1is controlled by a mirror to minimiz: the angular ervor between
the steered (or iaser pointing) angle and the target angle referenced to the
laser system. The laser radar/target tracking system {1-3] is illustrated .y
“he block diagram of Figure 1 (one dimensional). The angular measurements
are developed ty a glinting procass created by the target and a dithered laser
heam described by the following mathematical expressions.

A e gt 10

1. Dither Signal

ke

. it
i i
L arenmtreieaai et T

To generate targef tracking measurements, the beam center is dithered and
the returned signal is coherently correlated with that transmitted. In parti-
cular, the target/la:er beam angular difference with applied dither signal
is modelled by

y(t) = 6p + A sin(ugt)

where

8y is the target/beam center offset bias, and
A sin(uwgt) is the applied dither signal.

2. Gaussian Glint

The glint measurement process can be modeled by the determinisf.ic gaussian
function with additive roise

Co z(t) = g(y,t) + n(v)

where

; g(t) = 1, exp(-y2/20§)

FE and

y(t) is the target/beam center angular error,
og is a parameter of the glint return,

e I, is the reflected intensity for zero error, and
W a(t) is a zero mean, white noise process with variance 02.

N It is to be noted that the term "gaussian” above refers tn the input/output

« B - process g{y,t) and is not stochastic. The additive noise term, n(t), itself
’.f; : can be a gaussian process but it is vnot to be confused with the term "gaussian
. . glint” which is the input/output fuuctional relatioaship.
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3. Signal Demodulation

The output of the gaussian glint process contains the lnformation as to
the magnitude and direction of the target/beam bias., One component of the
output measurements, z(t), contains this angle bias, 8y, as the coefficient
of the base cithered signal. Hence, to recover the bias, a simple demodulation
process, commonly used in Communication Systems [4], illustrated by Figure .,
includes multiplying the output by the dither signal and passing the product
through a low pass filter.

Low « By
z(t) x # Pass [————r
Filter

sin(uwgt)

Figure 2. Glint Bias Demodulation Process

B. Statement of the Problenm

The laser radar target tracking system is a stocbhastic control system
whose objective is to track a target using noisy measv:ements. The performance
criterion or mzeasure of goodness of the system is given by both the closeress
of the laser steered beam to the target being tracked (deterministic measure)
and the variation or jitter of the ste«cred beam (.tochastic measure). In
many stochastic ccntrol systems. the optimal design, choice of parameters, or
operating point is usually a compromise between a set of conditions which

yields the best deterministic response with that which yields the best stochastic

estimates. Although the central problem addressed by this investigation 1is

that of the stochastic design, the deterministic nature of the control system
must be understood and congidered. To this extent, the original {[3] and current
investigation centers or the problem:

Given a laser/target tracking system with a dithered
signal/gaussian glint measurement process, evaluate
the Information-Theoretic estimation performance bound
of the system.

The primary use of an estimation periormance bound is in comparison with:

1. the performance of what is being observed with an existing filter/
controel system,

2. the pexformance of un implementahle, m2an-gquared-error (MSE) nptimal
stochastic control which includes an Extended Kalman Filter.

Lm-.mmrmwmwr DI
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C. Proposed and Redirected Investigation

Reference [5] contains the initial proposed research investigation of
the estimation problem of the laser radar tracking system. Section II of this
report contains the investigation results of tasks 1, 3, and 5. During a
meeting [6] at the Air Force Weapons Laboratory, preliminary results were
discussed and the investigaticn was redirected into the noise transfers both
in the Glinting and Nemodulation procegses. Section III of this report contains
the results of this redirected investigation.

There are two key questions on which this research investigation is centered.?

l. What is the ultimate performance of the laser tracking system ?
2. What is the performance of the present process (is it sufficient,
can it be made better) ?

These two areas were further investigated by considering the extended Kalman
Filter described in the initial research investigation [3] and decomposing it
into a Fourier Series representation. These results (Section IV) illustrate
several fundamental concepts regarding the present filtering process and the
performance achievable compared to the ultimate obtained through the Information-
Theoretic approach.

I1. Information-Theoretic Approach

A. Bounded Estimation Performance

The initial investigecion [5] developed an Information-Theoretic performance
bound and corresponding numerical algorithm used to evaluate an estimation
performance Sound for the gaussian glint measurement process which will now be

summarized.

The estimation error entropy H(x) of any process is bounded by the system
equivocation H(x|z) with conditionzl probability density function p(x|z), i.e.,

~ A
H(x) > H(x|z) = E(-In (p(x|2)))

which is only a function of the system and independent of the implemented esti-
mation process [7-11].

An important design concept is that the mean-square-error (MSE) estimate
is a minimax error entropy estimate [10,l1], i.e.,

min max H(x) <=> min |!v(x)]]|
whera V(i) is the error covariance matrix.
For the normal estimation problem [11], the derived optimal error entropy esti-
nation process is the Kalman Filter and the error cnvariance matrix is identical

to the system conditional covariance wmatrix, i.=.,

V(;) = V(x|z).
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This is very important for understanding the Information-Theoretic approach
based on prior understanding of minimal variance/Kalman Filtering concepte.

For the gaussian glint measurement process with the dither signal on the
steered laser beam, the lower bound {3, 12, 13] to the error in angle estimation is

2 l

g » —— exp(ZH(e))exp(ZNl(t))/exp(ZNz(t))

¥ 2ne

where H(9) is the initial angle uncertainty,

t

exp(~(8,*A sin(wr))?/(26f+a}))dx,

[

N
O'g/ ’

o~

12 o}
8, () =——‘2’- z—b
9h %
2 2 2 2
op = Og og/(Zoe +
0
Ny(t) = ]

and the above integrand can be expressed

2

t
[ (o} = [3%
0 On

where g. = og/fi.

For the initial example, a stationary target with perameters:

A = 5 normalized units
w: £ = 300 Hz
og = 10
g
Oe=10

1o/ 0n : variable
8y : variable

For a signal-to-noise ratio of unity, Figures 3a to 3d are the resultiag
o= {0, 2.5, 5.0, 10}.
to-noise results in a faster responding lower bound as illustrated by Figure 4a
Notice that as the bias 8p becomes much larger
than the glint Og>» the performance deteriorates.

error variance lower bound for

to 4d, 6y = {0, 2.5, 5.0, 10}.

B. Parametric Studies

The following lower bound performance response evaluations were made (o
study the effects of varying the system paramecers.

performance response as the signal-to-noise ratio varies S/N = (1,0, 100 and
10,000} which considered a unity dither amplitude and null bias angle.

obvious that increasing the signal-to-noise ratio improves the performance bound
response,

99

0

t

k-1

t

— | E(gz(r)/oﬁ)kdr,

L k
r=0,2... n=r (r/2)!1(n-r)12¥ 0

k
Zey [ exp(-~(8,+A sin(wr))2/(202+o§))dt

Figure 5 illust-ates the

Doubling the signal-
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Figure 6 illustrates the case when the dither amplitude varies A = {1.0,
5.0, and 10.0} with a null bias angle and a signal-to-~noice ratio of 100. The
results illustrated by the figure shows that by increasing the amplitude, the
performance response is slightly slower, i.e. approximately .005 seconds slower
for an increase of 10 times in dither amplitude.

Figure 7 illustrates the performance found response as the bias angle
change 6y = {0.9, 5.0, 10.0} for signal-to-noise ratio of 100 and the dither
amplitude unity. This illustration shows that as the angle bias varies from
zero to 10, the performance bound response is approximately 10% slower.

In summary, the above parametric studies show that the "best™ (fastest
performance bound) response occurs 2s:

i) signal-to-~noise increase
ii) bi s angle is zero
iii) small dither amplitude

C. Information Flow Due To Demodulation

For the Laser Tracking Control system, the demodulation process illustrated by
Figure 2 consists of:

1. multiplying the measurements z(t) by the fundamental frequency
sin(ugt), and

2. passing the results through a low pass filter to obtain an estimate
of the tracking bias.

It is desired to determine if information is lost during this demodulation
process, The measure of information between the unkncwn bias § and the measure-
ment z is given by

1(z;8) = H(z) - H(z|6)

whera

2(t) = 1, exp(~y?/203) + n(t)

y{t) = 8 + A sin(uwgt).
Consider a new measurement
z1(t) = z(t) sin(ugt),

wnich 1s the first step in the demodulation estimation process,
The measuve of information between zj and 6 is given by

1(z1;0) = H(z)) - H(ZIIG).
Using eq. (T2.4) of reference [7 or 11], the entropy of z;(t) is
H(z)) = H(z) + E{ln|3z{/3z|}

H(zy) = H(z) + E{ln|sin(ugt)|}.
-9~
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For the conditional uncertainty term,
H(z1{9) = H(z, 8) + E{ln|sin(uyt)|]e}.
Since the process sin(wgt) is independent of the unknown 6, then
B(zy|8) = H(z|8) + E{ln|sin(ugt)|}.
Combining the above two main results, it is obvious that
I(z3;3) = 1(z;6)
and no information is lost by the first step of the demodulation process.

However, the second step which involves low pass filtering, removes the
information contained in the high frequency components. This point will be
further explained when the extended Kalman Filter is decomposed into its Fourier
Series components irn Section IV. By eliminating the higher frequencies in
the measurement process, information about the target is lost.

II1. Glint/Filter/Control System
A. Deternministic Stability

The process of generating target angle measurements and estimates involves
a dither signal/glint/demodulation process is similar to the amplitude modula-
tion comamunication technique [4] as shown earlier by Figure 1. Depending on
the operating or glint bias point, the received signal contains the information
on the dir=ction and magnitude of the angle pointing bias. The nature of the
filter/control/mirror deterministic portion of the feedback svstem can be
analyzed using classical techniques. The modulation/glint/demodulation process
can be lipearized using the first order approximations of the glint output with
respect to the angle bias (neglecting the dither signal carrier) as shown in
Figure 8

Go

Figure 8. Linearization Model of the Gaussian Glint Process
where

Effective Gain: X, = - G, 35/0@

NC Level: Go = 1o exp(;E%/20§)

Average Bias: 3$
(operating point) -19-
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Another method to determine the ~ffective system gain of the glint®ag process

is to use the Fundamental TCescribing Functiom [14]. 1In either cave, it is
obviousiy a function of the bias operating point. The standard modulation
technique consists of using a sinusoidal signal to carry the intormation, and

1 in our case, it contains bias error. The bias error can be obtalned by a
coherent detection process which consists of nmultiplying the glint output
(measurement) bv the same sinusoidal signal and sending the resultant signal
through a low pass filter. This process is essentially the mathem:.ical process
used to determine the basic Fourier Series harmonic in a periodic signal.

This concept will be used in Section IV when the Extended Kalman Filcer is decom-
1 posed into its basic components. The overall effective system gain will be
maximum when the signal is at the gaussian glint point ¢, and vanished at

zero, hence, the system gain varies according to the bias point.

Table 1 lists the various transfer functions [6,15] of the feedback path.
The transfer function H(jw) of Figure 9 illustrates tne general nature of
the filter/control/mirror path

Gg(s) = F(s) C(s) M(s)
F(s) = Gp(s) G4(s) (without the notch filter G3(s))
C(s) = 1/s (without compensator)

The effect of the notch filter G3(s) adds zeros at the dither and twice the
dither frequency (300 and 600 Hz) and is intended to remove frequency modes
which are caused by non-linearities and/or a non-perfect demodulation proc=zss.
However, by observing Figure 9, the feedback system G(g) is basically a Type

ITI low pass filter with an essential triple break at 150 Hz. The suppression
effect of this filter on a signal at the dither frequency is large enough so
that, for analysis purposes, the notch filter G3(s) will not be included. For
example, there is an approximate 30 dB transfer function decreased froma fre-
gquency lacrease of 150 tc 300 Hz which repr=sents a 1/25 relative signal change.

The =ffect of the compensator G.(s) essentially stabilizes the system.
Figures 10a and 10b show that Bode Plots (amplitude and phase) of the feedback
syster with and without the compensator which is used to provide positive gain
and phase margins (gain margin of 75 4B at 35 Hz).

3. Stochastic Analysis

The demodulation process consists of multiplying the measurements with the
initizl dithered signal and passing the product through a low-pass system which
consistz of a Filter/Control subsystem. In particular, consider the process of
the demodulation process as shown in Figure 2 where the noisy measurements is
multiplied by sin(wgt) and then passed through a low pass filter to regain the
D.C. level which contains the glint bias. The noise analysis of this demodula-
tion process co.siders the input noise nj(t) applied to the demodulation
process is characterized by its spectral density of Figure 11.

~13-
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Figure 11. Spectral Density of the Input Noise to the Demodulation Process

The autocorrelation of this spectrum is

1 - cos(wlf) ] COS(wBT) - cos(sz)

Ry(1) = - 2 | : I
(271) £ f5 - £,
E- Its variance is Rj(0) = A[f3 + f9 - f}] which is the same value obtained when
?} ‘ the spectrum Sy(f) is integrated over all f
- -
o§i= Ri(0) = [ S4(f) df.

Now, the output noise process can be modeled by
no(t) = nj(t) sin(ugt + 6)

§ where nj has Riy(t), Sj(f) general characteristics, in particular, that

’ specified above, Since the input noise is purely random in nature, it is
uncorrelated with the modulation term sin(wgt) or when it begins. Therefore,
we can assume that the modulation term has an arbitrary phase which is uniformly
distributed between 0 and 2x. The output correlation function is

e s w1 oo ——

Ro(T) = E[no(t) no(t+T)]

Elng(t) sin(uwgt+y) ny(t+1) sin(uwg(t+od+y)]

Elng(t) ny(t+1)] Elsin(ugt+y) sin(wg(t+t)+y)]

Ri(1) Elcos(wat) - cos(ug(2t+1)+2¢)]1/2

Ro(1) = Ri(1) cos(uyt)/2.

The spectral density of the output Ss(f) is the Fourier Transform of Ry(t).

-18-
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1/2 Ri(1) cox(uwyt) e~ Wt 4o

So(£)

-4 T - T
JCurwg) ‘e 3 Cutuwg) Jdt

1/4 [ »(1) [e

So(f) = [Si(f-fd) + Si(f+fd)]/4.

Hence, the output spectral demsity, S,(f), is 1/4 the sum of two densities;
one of which is the input density shifted left f4, and one shifted to the

right fg4

Depending on the value of f4 relative to f;, f; and f3; the shape of the output
spectrum will have different characteristics. For example, Figure 12a shows th

output spectrum, Sy,(f) for £ +f
L2 ceg<t,
2
So(2)

V 2

1 N/4
/
,/
4 7 L * ' v 0 t t t [] 1 ' []
fA fB fc fd EE fF f3+

Figure 12a. Spectral Density of the Noise After Multiplication
With the Dithered Signal -~ Large fy4

fA = fz-fd fE = f1+fd
fg = f3-fd fp = fo+fy
fc = fg-f)

~19-
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So(f) = 1/2 f Ri(r) cos(wdr) e'ij dr

® -3 T - T
s [ Ry (O, g,

So(f) = [sy(f-f4) + Sy(f+£4)1/4.

Hence, the output spectral demsity, So(f), is 1/4 the sum of two densities;
one of which is the input density shifted left f4, and oune shifted to the

right £4

Depending on the value of f4 relative to fj, fo and f3; the shape of the output
spectrum will have different characteristics. For example, Figure 12a shows the }

output spectrum, So(f) for £ +f
12 ¢f,<f
d 2
So( <)
IP 2
/___\ 1 N/4
/
I/'
7 T T v ¥ T 0 [] [} ' t ' t '
fA fB fC fd fE fF f3+f'.

Figure ]2a. Spectral Density of the Noise After Multiplication
With the Dithered Signal - Large fg4

fA = f2‘fd fE = f1+fd
fB = f3—fd fF = f2+fd
fo = f4-f}
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The variance of the output is the area under So(f) which is

02ge = 2{ NIEy = £41/2 = NE /4 + N[fq + £4 = (£ = £4)1/4)

N[fy - £q = £;/2 + (f53 - £ + 2£4)/2)

[}

[}

N[f3 + f2 - EI]/Z

2 2
Oout = %in/2-
The output variance is 1/2 the ianpul variance, but its spectrum has sifted

with a flat spectrum about f=0 whereas the input has a "V" about f=0.

f,.f
Figure 12b. shows the output spectrum, So(f), for £ < fd < 1*2
Sol £)
el N2
/o 7 - —\
AN
\ﬂ /’
\ /
, wa 7
\\
- 1 1 T 0 t ' t [ [] t \X'_
-fd fA fd fB EC fE fF f3+fd

Spectral Density of the Qutput Noise After Multiplication With

Figure 12bh.
the Dithered Signal - Small f4

fo = f4-f1 fp = f4-fy4
fg = fi1+fy4 fr = fo+fy
fc = £9-fy

The variance of the output is, again, the area under 5,(f):

Shur = 2 N {(Ereg) + (£p~61-26) + (£4-£;) + (£376p) + £1]

= N -
E.{f:,,+f2 EI}
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Again, the spectrum is flat about f=0 whereas the input has a "V" about f=0.

This output spectrum is then passed through a low pass filter. The noise
spectrum of the feedback output is

Seo(f) = |H(IW | 25,(£)

where H(jw) is the combined transfer function of the filter/control/mirror feed-
back subsystem. There are two types of feedback systems, Type I and Type II
systems to be considered. With a Type II system,

KH_ (s)
H (S)=—2—'

11 2
s
where H,(s) is the Type O portion of the subsystems. Assuming that K = |
and since the effects of Hy(s) is negligible at low frequencies, then the
spectrum of the output filter/control is

s (£)
S (f) =__9° .
t

¢ (2m)4£4

Approximating So(f) to be uniform between + fy, then

N
Se (£f) = —N . ~fn < F < £y .
f ’ 2 2
° 2(2m)4£4

The autocorrelation function of the feedback output is the inverse Fourier

transform which is

Reg(1) = 1/27 [ Sgo(£) 30T du

w2 :
1/2n [ "N/2u% eJUT 4y .
-w2

The noise variance at the feedback output is Rgo(0)which is the area under
the spectrum

£9
R
2(2m)% £4

_N fz
3(2m4€3 o

and a limiting process must be applied

-21-
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the above becomes unbounded as a + Q. This implies that the realization of

the noise wmay be any value.
Consider the case where we have a type I system

Hy(s) = KHy(s)/s.

As before, assume K = 1 and since the effects of H,{s) is negligible at low
frequencies, then the output spectrum is

S .(£)
Sgo(f) = o . .
(2m)2£2

Again, as before, if Sy(f) is uniform in the region -f, < f < f5, then

Sfo(f) = —-——N——————- M —fl < f < f2-

The noise variance is the area under this spectrum

£
2 =2 N af
fo o) 2 2
2(27) f
2
(2m“f 0

Again, as before, the above is evaluated using a limiting process;

o%o = N {lim 1/a - 1/£,5}
2mn2  aso

which becomes unbounded and the same results hold.

C. Signal and Noise Transfer for the Gaussian Glint Process (about y = 0, og).

The signal and noise transfer characteristics of the gaussian glint procass can
be seen by the following approximation process. Consider a Taylor series ex-
pansion of the gaussian glint process about some point y, = 6 due to a small

signal and noise
y(t) = 8 + A sin(ugt)
2,2y .5 o | (y - 9t
£(y) = exp(-y“/205) = | &= L9 Mhulit:7 A

& 120 ayl 1!
y=0




R . PTTRT
L Ao et AR R

S B gy gy SR

The various (first 4) derivatives of the function f(y) are

£(y)

£'(y)

£ (y)

exp(~y2/20§)

~ 2702
( y/oé)exp( y /Zog)

(y% - oé)exv(-yz/zoé)/og

£*' (y) = (3y0§ - y3)exp(-y2/20§)/og

£ (y) = (y*

There are two operating points of special interest

zero slope f'=

2.2 by ¢ 2,0 2\, 8
6y<os + 3og)e.;P( y /2°g)/°g

g

0 ==>y=20

maximum slope f" = 0 ==>y = fgp

Evaluation of the various derivatives under zero and maximum slope

y=0; f(y)=e%=1
f'(y) =0
ooy o 2
£°(y) = 1/0g
£ (y) =0
£""(y) = 3/og
£'(y) = = 1/og Ve
£°(y) = 0
£ (y) = z/og Je
£ (y) = - z/og je
In Tabular form
Y=O y=0g
£(y) 1 1//e
£'(y) 0 ~1/gg/e
" 2
£"(y) -llog 0
£ (y) 0 zlogiz
£"(y) 3oy -2/64/e

=23~




Maximum Slope:

Consider the maximum slope bias point. Jsing the first 4 terms of the series
expansiorn about y5 = og with y = og + A sin(ugt) + nj(t) where
ny(t) is the input noise, the output is

5 2(t) = 1/Ve {1 - (A sin(ut) + nj(t))/ag + 0/2!

+ 2(A sin(wt) + ni(t))a/og 31+ eeee }

ALY bRtV RO AR A
i

The most significant terms of the expansion are:

i signal {1-a sin(wt)/og}/fg

S _

g noise ny(t)/ogve

i Hence, both the signal and noise process are preserved with a change in amplitude.
i At the maximum slope, the expected signal and noise terms are easy to understand

7 and observe using the above simple example as illustrated by the frequency spectrum
= of Figures 13a and i3b.

5

fi Minimum Slope:

§ Using the first 4 terms of the series about 6 = O the output is

3 2(t) = 1 + 0/1! - (A sin(ut) + ni)z/oé 2! + 0/3! + 3(A sin(ut) + ni)A/ag 41 + van
é =1 - [Azsinz(wt) + 2A sin(et) nj(t) + niz(t)]/zoé

| + [A%sin®(ur) + o0 + nia(t)]/ch + e

i The most significant terms of the output are:
signal 1 - a2 sin?(ut) /20
| noise [2 ng(t) A sin(t) + niz(t)]/Zoé

Hence, both the signal and noise process change at the zero glint bias point.
Due to the extreme non-linearity at this point, both the output signal and noise
change characteristics the modulation signal amplitude is now at twice the

, original frequemcy. Tbe output noise has two components, one modulated by the

| ; dither frequency and oue modulat :d by itself. These two modulated noise terms

’ R will give rise to spectrum components not present at the input as illustrated

by Figure 1l3c.
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Figure 13a. Frequency Spectrum of a Signal and Noise at the Input of the
Gaussian Glint
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Figure 13b. Frequency Spectrum of the Output of the Gaussian Glint Process
with the Operating Point 6y = og
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Figure 1l3c. Frequency Spectrum of the Output of the Gaussian Glint Process witt
the Operating Point 6y = O
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IV. Extended Kalman Filter for Laser Tracking
A. Extended Kalman Filter

A straight-forward application of an Extended Kalman filter [3] for the
bias angle estimation yields the following set of equations to be implemented.

3 ~

6y = K(t){z(t) - g(y,t)]
y(t) = 8p + A sin(ut)
g(y,t) = I, exP(~§2/2c§)

~

Vx .
R(t) = - .glz. g(y,t)
On Og
2
. Vx 32 R
iy = - 2L g2G,0
O’z <‘J4
n g

Note that: .
Uy = - K¥(t)ad

Figure 14, is a block diagram for the above filtering process.

B. Fourier Series Decomposition of the Extended Kalman Filter

The following will be a decomposition of this filter into the Fourier
Series repvesentation of the filtering process. As shown earlier, the Taylor
Series expansion of the gaussian glint process about a point § is

f(y) = J o't ‘ & - e)i.
i=0 syl y=g 1!

With the input
y =68 + A sin(uwgt),

then

'62/20'; 8 62 - 0'2 2 2
f(y) = e {1 -2, A sin(ugt) +.__:_E?& A®sin“(uyt)

360° - 6° s 3 o -~ 6022 + 3g" .y
+ ___%__T—— Avsin’(uwyt) + - ,Ag g A%sin (wgt) * oo }
g 3! g 41

-26~
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The Kalman fiitering gain is

-V~ y )
R(t) = 8 g(y)

of o

where Vs is the error variance

g(y) = I,f(y), and y = 6 + A sin(uyt),

then
-vy -92/202
R(L) = —2 (6 + A sin(uyt)] I, e 8 (] .
ok of
Let
v~I 3-92/2 a2
L(V~,8) = —82° g , then
6 o3 o2
Y 2

k(t) = L [8 + A sinugt)] {1

3802 - 63

+ --Ji-—-—— A sin3(mdc) +

’Jg 3

g% - 662¢ 2 + 3cg
A sin

-8 a sin(mdt) +
02
g

8
og na

>

G 2,52
m 2% A¢sin (mdt)

A(wdt)+...}

-1 [c, + ¢, sin(ugt) + Cp sinfiugl) + Cg sind(uyt) + C; sin*Cugt) + oot ]

where
Co = 8
02_92
o
g
22 g3 - po2 2!6
C2 =57 m )
2! og o5
» 83 - 3802
A [ 8]
2' Og
3 302¢2 - &“
Cq = A g
3! o8
g
—a4 + 2~2 -
- éi [ 9 69 cg 3ug |
3! cg
5 - 342 L
. ﬂi 8 66 og + 366g7+
S = { 2
H O'g
! S . 342 2 Qett
. éi ( 108 6g7+ 1560
A ]
41 Og

3!

2]

2 - 42
L30T %
2! c§

~ g3
6

g
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Using the various identities for sinM(q), i.e.

sin2(a) = [1 - cos(2a)]/2
sind(a) = [3sin(a) ~ sin(3a)]/4
sin“(a) = L% - 2cos(2q) +.%cos(4a)]/4,

the first few terms of tue Fourier series representation of the Kalman gain are

4 4
K(t) = L{ag + J aj cos(iwgt) + § bj sin(iwgt)}
i=1 i=]
= 1 3
ao—Co+-2—C2 +§'C[‘+ooa
al = ()
= - 1 _1
a, = -2 C,y E.ca + ees
a3=0
=1
34—§C4+o-0
' b, = Cy +3Cy + ..
1749+ %
by = 0
- -1
b3-' ZC3+‘I.
b, =0

The Kalman gain is used to develop the time derivative of the tias estimate by
multiplying it with the measurement residual

2(t) = z(t) - z(t)
and

é(c) = K(£) 2(t)
Figure 15a illustrates the process of obtaining the estimate of the glint bias
and Figure !5b is the process now being used to generate the estimate, Iz 1is

obvious that the present process is a simplification of the optimum process in
that:

1. only the information in the fundamental harmonic is used, and
2. the transfer gain is cunstant instead of the time varying
o optimum process.
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The second term of .he Kalman Process illustrated on Figure 15a is similar to
the present proc:ss of Figure 15b. In fact, the gain is an adaptive process
of the glint bias

T -02/202
e
Lb, =22 (c; + 3¢y
2 42 4
Un O'g

Normalizing this bias term using d = /gy

2
vy Ige”d7/2

3
Lby = L [AC1 - %) + &2 (- ¢* + 6d® - 3))

of o 8o
vy I

=_9 0 f£(q)

of of

where the following section describes the normalized gain function f(d)/og.

C. Coefficient Evaluations for the Fourier Series {aj, bj}

The Fourier Series Coefficients {aj, bj} for the Kalman gain can be
evaluated using a glint bias to standard deviation normalized variable

d = elog.

e

This process will show the relative importance of each coefficient. The various

coefficients are

2 4
a_ = dg +i-(d3-3d)+-6%— (d° - 10d3 + 15d)

o & 4o o3
31 = ()
a2 .3 A4 s 3
ay = = 2~ (d7 - 3d) - =—; (d° - 10d” + 15d)
4o 4803
4 g
a3 =0
4
a, = -2 (& - 10d% + 150)
19203
3
by = AL - 4% + & (- a4+ 6d? - 3)
SUg
b2 = 0

3
by = - A (- a4 + 642 - 3)
240§

by =0
Figure 16a and 16b lists normalized values for these coefficients for various

operating points d = {-1 to 1} which corresponds to a variecy of glint
bias 6p points and for values of dither amplitude A = 1/20g, and og.
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D. Optimal Estimation Error Variance (Bound)

‘The following will be a bounded closed form solution for the error variance.
The error variance (using V for Vs) differential equation is

2 2 2
v=-Vyg (y,t)
of o

where

y(t) = 6 + A sin(uwgt), and g(y,t) = I, exp(—yz/zoé),

. 2 2 2
then V=-cVis+A sin(mdt)] exp(—yz/cg).

IZ
where c=___° (constant).
of of

Separating variables, the above can be expressed as

-dv _ .2 _e2/.2
5z (t)exp(-y /og)dt-

Upon integrating,

t
1 1 2 2 2

——— e = - d
0 A c£ y (T)EXD( y (T)/Og) T

where V, is the initial condition on V. Since the exponential function can be
bounded

exp[-(| 6! + |aA])%/a%] < exp(-y(£)/a}) < 1,

the above integral can be bounded by

t
exp['(ggl + |aD ] F(e) <c | yz(r)exp(-yz/cg)dr < F(t),
z o
where F(t) is a monotonically increasing function of time

t
F(e) =c [ [6+A sin(wdr)lzdr
(o]

=c {(e2 + A% 2A9(l-COS(wdt))/wd-Azsin(det)/Amd}.

The error variance can now be bounded

v v
° < v(t) < 0
I+ V,F(t) 1 + VoF(t)expl~C(lo|+|aD)?/ol)

-35-




Bl

R SE

et vy

Nptimal Estimation Error Variance (Numerical Evaluation)

[ <]
.

1. Numerical Solution

The differential equaiion of error variance for the Extended Kalman Filter
[4] can be expressed as

V= -c v2 yz(t) exp(-yz(t)/oé)
where
12
c = 0
0§ o
and

y(t) = 8y + A sir(ugt).

Separating variatles and integrating yields

- 4V o ¢ y2(t) exp(-y2(t)/o2)dt
v2 g
1 t 2 2 1
- - 2y ar + L.
e c foy (1) exp(-y (T)/Og) T+ v,

and upon simplification, the error variance become

vit) = Yo
L+ eV, 5l

where V, is the initial error variance. Since the integrand is
= vl 2 2
(«} = yo(t) exp(-y“(t)/og)

is a periodic function, then the integral can be evaluated at specific times
which are integer multiples of T4, the period of the dithered signal,
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The above one-period numerical integration process is easily obtained with (*e
use of a sufficiently small integration step size (AT).

2. Parametric Studies

Similar to the performance studies from the Information-Theoretic Bound
(part IT.B.), Figure 17 illustrates the numerical evaluation of the error
variance, V(t), for signal~to-noise ratios of §/N = {1.0, 100, and 10,0007
for a unity dithered amplitude and a null bias angle. The strong, direct in-
fluence of the $/N is apparent from the response illustrations of Figure 17
and the integral solution of V(t) where the multiplicative parameter "c¢"
contains the signal-to-noise ratio.

Figure 13 illustrates the error variance response for various levels of
dither amplitude with S/N = 100 and 8y = Q. The response, V(t), is shown to
improve (decreases faster) as the dither amplitude increases, however, the
rate of improvement decreases when at large values (i.e. from A =5 to A = 10).

Varying the bias operating point, Figure 19 illustrates an .mprovement in
the response V(t) as 6y increases with a limiting effect at higher levels of
bias (i.2. from 6y = 5 to 6y = 10).

3. Comparison of the Kalman Error Variance and the Information-Theoretic Bound

Two approaches have been used to evaluate the performance of the optimal
angle estimation for the gaussian glint process. Although the Information-
Theoretic and the Extended Kalman results are related to the same quantity,
their interpertation and the assumptions made for their evaluations are dif-
ferent. However, they both give some measure as to the overall performance of
the optimal angle estimation process as illustrated by Figure 20 which is noth-
ing more than combining Figures 5 and 17. The results illustrate the lower
bound attribute of the Information-Theoretic evaluation and the expected re-
sponse when the Extended Kalman Filter is used.
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V. Conclusion

A, Summary of Results

An Information-Theoretic Bound was found for the Laser Radar Tracking
Problem. It was shown that the signal-to-~noise ratio strongly affects the
performance. There is also a slight variation in performance as a function
of angle bias and signal amplitude but not a significant one.

An Informatic ~Theoretical Analysis of tne demodulation process showed
that there was no loss of information due to the first step of the process,
multiplication of the gaussian glint returned by the transmitted dithered signal.
However, the suppression of the higher frequency components by the second step
of the demodulation process, low pass filtering, destroys informaticn contained

the glint return,

The type II feedback transfer function is shown to be stabilized by the
compensator where a deterministic positive gain margin 1s given. The first
step of the demodulation process was shown to redistribute the noise spectrum
contained in the output gaussian glint to significant levels at the low fre-
quencies (D.C. region). Coupling this with the type II (or type I) feedback
transfer function causes an unbounded stochastic variation.

The bias operating point has a strong effect on the spectral transfer
function of the non-linear gaussian glint process. In particular, a small signal
analysis showed that the zero bias operating point changes the deterministic
and stochastic spectral response significantly. When the operating point is at
the maximum slope, the output spectrum reflects the input spectrum.

The Extended Kalman Filter was applied to the open loop angle estimation
problem involving a gaussian glint measurement with a dithered applied signal.
Decomposing the filter formulation into a Fourier Series representation, it was

shown:

i) the angle estimation process consists of a series of demodula-
tion processes corresponding to varicus frequencies of the

applied dither,

ii) the gains are chosen adaptively according to the bias angle, and

iii) the overall optimal error variance decreases monotonically as
time increases.

The optimal adaptive filtering process presented is in the form similar to
the nresent system and improvements can be made by using additional elements.
Bounds on the optimal error variance were established in closed form and a

numerical technique was also presented.

The error variance for the angle estimation is shown to be bounded aad a
numeric process is also presented. Evaluating the error variance for various
parametric cases show a strong dependence on signal-to-noise. It is also shown
that :he dither amplitude and bias operating point has an effect on the estima-

tion performance.
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B. Extension

There are a number of natural extensions to the material presented in this
paper:

PRI o ey e o o
R o I B e T

1) Spectrum Analysis of the System

A
St

Items in this investigation would include both signal and noise
transfers through the non-linear elements of the gaussian glint
and the demodulation processes. The spectrum analysis of the

i

it

A

bs

| closed loop controller and the Extended Kalman Filter will also
<l be included.

:g ii) Parameter Variations of the Stochastic Control

S% ’ There are various operating points and system parameters that
& yield optimum performance. A sensitivity study of these design
,% parameters and operating points will be included.

?’ g iii) Adapcive Filter Implementation

There are two forms of the Extended Kalman Filter to be imple-
mented., Each of these forms should be investigated as to their

t complexity of implementation. Also included in this investigation
should be a sub-optimal filter which consists of the main element
of the Optimal Filter. A performance analysis of this design will
indicate the effects of the sub-optimal design,

iv) Optimal Controlling Process

2 The control process of the present system consists of a simple

. integrator on the bias error. An optimal design based on modern
b techniques which includes performance criterion of minimum
settling time, control energy, jitter, etc. would be included.

g K g >
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