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Under the first period of the grant support, mathematical

developments were performed on algebraic, adaptive, surface, and

orthogonal transformations. Algebraic transformations were

extended by forming Boolean sums of multisurface transformations

and, by appropriate compositions, lifting the results to curved

2-D surfaces. The basic formulation was reported upon in [1]

and [2]. In [1), it is viewed from the perspective of an

eventual insertion into the automatic algebraic grid generation

code that was developed for NASA. In [2], the mathematical

formulation was given for arbitrary 2-D surfaces on which an

orthogonal grid was to be constructed by means of orthogonal

trajectories.

Orthogonal trajectories were a major part of the general

development of orthogonal transformations under the grant support.

Additional parts included field methods. As reported in [2), the

Boolean sum of multisurface transformations permitted a

specification of geometry on all four boundaries and a pointwise

distribution on three out of four of them. The desire to

arbitrarily put distributions on all four boundaries was the

primary reason for field methods. The results, however, for field

methods are inconclusive. With orthogonal trajectories a unifying

theoretical framework was derived, a new leap-frog method was

created, and the earlier method of Graves and McNally was extended

with various refinements. Both methods were inserted into the

automatic algebraic grid code [1] and tested in planar regions.

The details on the theoretical
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given in [2].

Of the methods, the leap-frog method resulted from an

investigation into the orthogonality of a discrete grid as compared

to that of a continuous coordinate transformation. The potential

utility of each viewpoint depends upon whether or not coordinate

derivatives are to be estimated with central finite differences;

thereby, giving a metric based only on relative grid point locations

rather than analytic evaluations. Since central finite

differences are commonly used for the estimation of metric data in

order to preserve conservation properties, the leap-frog method is

attractive because exact central difference orthogonality is

obtained on the grid. Other methods such as the original version

of the Graves-McNally approach have been severely criticized for

orthogonality errors which ironically were measured with finite

differences. The measurement, however, should be based upon the

use. If, for example, metric data arises from the continuous

coordinate transformation; thereby, approaching the analytic

evaluation of derivatives in the formation; then it is more

important to use the transformation itself as a basis of reference

rather than the specific grid of points that results from a fixed

discretization. In contrast, when the metric comes from only the

specific grid, the appropriate measure comes from central

differences and in that sense the leap-frog method produces an

optimal orthogonal grid since orthogonality is exactly given

up to machine accuracy at each internal grid point. While smooth

exactly orthogonal grids are produced for a significant number of

• 't
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problems, there are occasions where smoothness is sacrificed.

This occurs because the leap-frog method produces an even-odd

decoupling which can result in trajectories with wiggles. In such

instances, there then is a trade off between the desired exact

orthogonality and the undesired wiggles. The smoothing of wiggles

would destroy the exact orthogonality, the preservation of which

lead to the wxggles. If orthogonality is considered to be less

important than smoothness, then it would seem reasonable to post-

process the exactly orthogonal grid from the leap-frog method in

order to supply smoothness on those cases where wiggles appeared

in certain locations. In comparison, the refined version of the

Graves-McNally approach did not produce wiggles and certainly was

not optimal in a finite difference sense. Rather, it was

constructed to be nearly optimal in an analytic sense. This was

accomplished by using a succession of finer grids than the actual

one employed for numerical simulations. The finer resolution

gave a substantially better approximation to the derivatives than

would have been computed by analytically differentiating the

basic coordinate transformation. The theory for both of the above

orthogonal trajectory methods was developed to produce orthogonal

grids on arbitrary surfaces which were then specialized to planar

cases within the automatic algebraic grid generation code. The

further application to 2-D surfaces remains to be done and will

be useful when coordinate orthogonality is desired at the

boundaries of a 3-D region.



The general 2-D surface problem was undertaken simultaneously

with the development of adaptive grid strategies. Each strategy

was based upon the formation of an abstractly defined surface

which contains all of the pertinent solution properties that are

in need of resolution for an accurate numerical simulation of the

phenomena under study. With the pertinent properties expressed

in the form of a single abstract surface over physical space,

the primary adaptive objective is to put or push the points into

positions which most accurately represent the surface. This same

objective also appears when arbitrary 2-D surfaces are used as

boundaries for 3-D regions. Although the abstract surfaces for

adaptive purposes are defined over physical space, the various

adaptive strategies that were developed are readily applicable

to the arbitrary surfaces required to bound 3-D regions. The

strategies are mean value relaxation [3], alternating direction

[4], and triangular [5]-[8]. The development for mean value

relaxation [31 was done entirely under this grant. The

theoretical basis for the alternating direction approach [4]

was established under this grant and continued under NASA

sponsorship (NAG1-355) culminating in a code at NASA Langley.

The adaptive triangular methodology was developed with my

doctoral student, Gordon Erlebacher, for his thesis research.

The primary portion of this work was supported by the AFOSR grant

with the remainder by grants from NASA and DOE. Upon completion

of his doctoral requirements in December 1983, Gordon Erlebacher

joined NASA Langley Research Center where joint work is still

41 '



continuing on the adaptive triangular mesh code.

In the adaptive context, the surface is represented by a

grid of points and by local multilinear interpolation in between

those points. In all cases grid points are moved into positions

which give a better rendition of the surface. Point addition and

subtraction is considered only in the triangular mesh case because

of its general connectivity structure. With movement as the

primary adaptive mechanism, a weight function is established to

attract points when it is large.

In the mean value relation technique a geometrically

constructed local difference molecule is developed in a manner

where weighted surface volumes are used to nonsingularly pull

points along surface coordinate curves in a mean value sense. With

mean value pulls for each coordinate direction coupled into a

multilinear interpolation, the surface grid is moved in a

pointwise iterative sense until it relaxes to a final

configuration for the given surface. The mean value relaxation

procedure was formulated both on the surface and in the

parameter space for the surface. When movement is required for

parametricaly defined boundaries of 3-D regions, the parameter

space formulation is preferred in order to exactly preserve the

prescribed boundary geometry which would otherwise suffer

somewhat due to successive bilinear interpolation in 3-D.

In the alternating direction algorithm, the weights are used

to move points along the coordinate curves of a direction in a

cycle which alternates directions. The algorithm converges
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rapidly, is applied both on the surface and in parameter space,

and represents a substantial extension and synthesis of many

previous studies.

The adaptive triangular mesh study brings the previous

Lagrangian triangular mesh developments typified by the NRL work

pioneered by M.J. Fritts and J.P. Boris into the full adaptive

context. Principally, adaptive movement is supplied with

weighted surface areas to form a center of gravity type of

molecule which is then iterated in a pointwise sense.

In all of the techniques, curvature is the primary mechanism

which is used to get a better resolution of a surface. The

main building block is normal curvature. In the triangular mesh

case, mean curvature is used because of the mesh structure. The

better resolution comprises both an increased number of points

in regions where the surface changes direction and an alignment

with those regions. In addition, geodesic curvature is

considered for nontrivial surface boundaries.
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