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Abstract 

A runtime monitoring system for detecting and describing tasking errors in Ada programs is presented. 
Basic concepts for classifying tasking errors, called deadness errors, arc defined.   These concepts indicate 
which aspects of an Ada computation must be monitored in order to detect deadness errors resulting from 
attempts to rendezvous or terminate.   They also provide a basis for the definition and proof of correct 
detection. Descriptions of deadness errors arc given in terms of the basic concepts. 
The monitoring system has two pans: (1) a separately compiled runtime monitor that is added to any Ada 
source text to be monitored, and (2) a prc-processor that transforms the Ada source text so that necessary 
descriptive data is communicated to the monitor at runtime. Some basic preprocessing transformations and 
an abstract monitoring for a limited class of errors were previously presented in [2]. Here an Ada 
implementation of a monitor and a more extensive set of pre-processing transformatisTOsarc described. This 
system provides an experimental automated tool for detecting deadness errors in Ada83 talking and supplies 
useful diagnostics. The use of the runtime monitor for debugging and for programming evasive actions to 
avoid imminent errors is described and examples of experiments are given. 
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deadlocks, Ada tasking, program reliability, multiproccssing/multi-tasking, fault-tolerance, modeli 
prediction. 

recovery, 
modeling and 

AIR FORCE OFFICE OF SCIOTTIFIC tSSSW* ' If*' 
•NOTICEO? WAITS 'T7TAL TO DTIC 

«pprovC 1«P.1*MI U1AWM0-Ä 
Dlstrlbutio.  I I wiillmited. 
Kxmnrj. KEEPER 
Chief. Teotinloal Inf oraatlon Division 



1. INTRODUCTION 

1. INTRODUCTION 

Errors caused by failure in communication between parallel threads of control in a computational 
system are called deadness errors. As a consequence of such failures, certain threads of control (or 
sometimes all threads in an entire system) cannot proceed with their computations and hence 
become "dead". Deadness errors in general occur unpredictably. Whether or not a possible 
deadness error in a system will occur during system operation may depend on a multitude of external 
factors, e.g. compilation techniques, run-time scheduling, I/O processing times and external 
interrupts. They are often extremely difficult to reproduce and locate using current testing methods. 

Deadness errors have been described in the past by concepts such as deadlock, blocking, and 
starvation. These early concepts provided meaningful classification of certain kinds of errors that 
could occur in 1960s vintage parallel (or pseudo parallel) systems such as simple operating systems. 
However they are too vague for describing the kinds of deadness error t .at can occur in a parallel 
system implemented using the multi-tasking facilities of Ada. For example, problems involving 
dependent tasks may prevent a Master from terminating [Ada 83, section 9.4]. Such errors could 
sometimes be described either as deadlock or blocking, but either terminology is essentially 
inaccurate. The need to develop new descriptive terminology becomes even more obvious in systems 
using dynamic activation of tasks. The description must not only indicate the cause of the error but 
must also relate the dynamically generated names of the tasks involved with the origin of those tasks 
in the source text. Before we can expect to develop an ability to deal with deadness in future parallel 
systems, we must first provide adequate methods of classification and description. 

When dealing with deadness in Ada or other languages of similar complexity, it is useful to divide the 
problem into three sub-problems: (1) detection, (2) description, and (3) avoidance. Detection 
involves recognizing a dead state, and usually requires less information than description. Description 
involves providing sufficient information to locate the source of an error in Ada text. Avoidance 
involves both style guidelines for constructing error-free systems, and programming techniques for 
evasion of imminent errors at run-time. 

In this paper we investigate the application of run-time monitoring methods to these three sub- 
problems. Alternative methods of eliminating deadness errors based on static analysis at compile 
time are not addressed in this paper. So far, the known static analysis methods are very difficult and 
time-consuming in the general case [5], 

In Chapter 2, concepts for classifying deadness errors in Ada tasking are defined. These concepts 
are derived from the informal semantics of Ada tasking given in [1]. They form a complete set in the 
sense that an operational description of Ada tasking can be given using only these concepts. Our 
monitor implementation is based on these concepts. However, we feel that our present set of 
concepts should be treated as tentative. It is possible to define other complete sets of concepts. 
Alternative concepts with advantages over the present set may emerge as experience in this area 
accumulates. 

Our monitor system has two parts: (1) a separately compiled run-time monitor written in Ada, and (2) 
a preprocessor that transforms Ada source text so that necessary descriptive data is communicated 
to the monitor at run time. The result of applying the preprocessor to any legal Ada program is a 
modified program which is again a legal Ada program and contains the monitor. When this modified 
program is run, sufficient information about tasking activities in the original program will be passed to 
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1. INTRODUCTION 

the monitor, enabling it to detect imminent dead states and provide descriptive information. The 
transformations currently implemented in our present preprocessor extend the set of transformations 
previously given in [2] in two ways: (1) the set of deadness errors detected by the monitor is extended 
to include errors involving the inability to terminate, (2) the monitored data is extended to include data 
necessary to give an adequate description of a deadness error for the purpose of debugging and 
evasive action. Also the previous paper lacked discussion of many important implementation details 
upon which the correctness of an actual implementation depends. 

The present monitor has a number of deficiencies. It does not work correctly on programs that use 
task abortion or priorities or execute tasking statements during elaboration of declarative parts. It will 
not detect deadness errors due to task communication by means other than rendezvous (e.g. by 
shared variables). The implementation is described here in sufficient detail to indicate how run-time 
monitoring techniques can be extended beyond the capabilities of our present monitor to detect and 
diagnose a wider class of deadness errors. 

An Ada implementation of the run-time monitoring system is described in Chapter 3. This description 
encompasses (1) the descriptive data about tasking states that is monitored, (2) representation of the 
descriptions and processing to detect errors, and (3) structural design of the monitor. The monitored 
data must be sufficient both for detection of deadness and for providing diagnostics. The actual 
monitor data structures and procedures must correctly implement representations of scheduling 
states (as defined in Chapter 2); any monitor procedure must always terminate, preferably as quickly 
as possible. The actual design (structure) of the monitor is an important consideration both for run- 
time efficiency and to reduce recompilation if the monitor system is altered for a special application. 
The design of the present monitor is simple and conservative to ensure correctness; more efficient 
distributed designs are currently being developed. 

Chapter 4 describes the preprocessing transformations applied to Ada source text. The description 
deals with the complete set of transformations that are currently implemented. The details are 
complex; our description is therefore presented informally and relies on illustrative examples. The 
preprocessor is implemented in SNOBOL; relmplementation in Ada is planned. 

The monitoring system may be used not only for recognition of errors but also for evasive action 
programming. Essentially, the monitor "knows" a deadness error is certain to happen (if the 
computation continues normally) before it occurs. Warnings (e.g. Ada exceptions) may therefore be 
propagated to the monitored program before the error occurs, thus enabling it to evade the error by 
taking some abnormal course of action. Such evasion may be temporary in that the error may 
become imminent again, but the program can continue useful operation for a time. It may then have 
to evade again, and so on. These evasive action techniques need to be investigated and developed 
since they may be a very useful method of keeping large multi-tasking systems in operation in the 
presence of deadness errors. Eventually one would hope to be able to determine at compile time that 
such systems are free of deadness errors, but until the necessary theory of static detection is 
developed, evasive action may become just as important a way of dealing with deadness errors as 
testing methods are for most other kinds of errors today. Indeed, if a system has to deal with 
unreliable elements, as happens in many practical applications, proofs of freedom from deadness 
cannot be given and evasive action techniques based on run-time monitoring could become a 
standard programming practice. 

Some techniques for evasive action programming are given in Chapter 5. These are very modest and 
represent just a beginning. Examples of monitoring experiments for debugging and evasive action 
are given in Chapter 6. 

 ___  • 



1. INTRODUCTION 

The current experimental monitor is programmed in Ada and compiled using the Adam compiler at 
Stanford [4]. Since Adam does not support all of Ada83, some parts of the monitor implementation 
have used circuitous techniques. This is especially evident in our implementation of evasive action; 
warnings are implemented by means of extra parameters of the monitor entries instead of exceptions 
because Adam does not support exception propagation during task rendezvous. 

Our run-time monitor implemented in Ada is an independent source level tool. One can argue that the 
monitor should be a part of the underlying run-time supervisor. Incorporating the monitor into the 
supervisor has several advantages, including: (1) Most of the preprocessing can be omitted, since 
the monitor can make use of calls to the supervisor inserted by the compiler, and the supervisor's 
representation of task IDs. (2) The monitor's representation of the state of task interactions will be 
more accurate since it is able to observe the program's actual scheduling state (however this may not 
be true in the case of a supervisor distributed over a multiple CPU system). (3) The monitor and the 
supervisor can share a single data structure, rather than maintaining two copies of almost identical 
data. Conversely, separating the monitor from the run-time supervisor also has advantages. (1) It 
allows us to focus on deadness monitoring independent of specific supervisors and scheduling 
algorithms. Since both run-time monitors and supervisors depend on currently active research areas 
(deadness error detection and description techniques on one hand, and implementation of Ada 
tasking semantics on the other), the divide and conquer approach of separating out the monitor 
makes the development of both tools easier. If the run-time supervisor is also implemented in Ada, it 
should be relatively easy to integrate the two packages at an appropriate time in the future. (2) 
Portability: a separate run-time monitor in Ada is completely portable, being processable by any 
compiler and executable in any Ada environment; a monitoring system integrated into a particular 
supervisor will almost certainly be dependent on the underlying machine and implementation of 
tasking. (3) Source level monitoring could be particularly advantageous in integrating compile-time 
and run-time deadness error detection techniques as advocated in [6] where the choice of monitor 
may depend on features of the source program. 
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2. DEFINITIONS 

This chapter presents a set of concepts that are the basis for defining deadness errors and 
implementing the monitoring system. These concepts are also used to define a notion of "correct 
monitoring". 

2.1 TASK STATUSES 

According to the semantics of tasking [1] a task may be in any one of the following statuses; a status 
has information associated with it 

1. Running: a task in this status may be run. This is the only status in which a task may run. 

2. Calling: task t has issued an entry call, s.e, to task s, which is neither conditional nor 
timed. The task s and the entry e are associated with the Calling status of t. 

3. Accepting: a task t is waiting for an entry call at an accept statement or at a selective 
wait statement that does not have an else clause, open terminate alternative, or an open 
delay alternative. The set of entries being waited for (i.e., the entry of the accept or those 
entries corresponding to open accept alternatives of the select) is associated with the 
Accepting status of t. 

4. Select_Terminate: a task t is at a selective wait statement with an open terminate 
alternative; the set of entries corresponding to open accept alternatives and the set of 
tasks dependent on t are associated with the Select_Terminate status of t. 

5. Select_Dependents_Completed: task t is at a selective wait statement with an open 
terminate alternative and all dependent tasks have reached either Terminated status or 
Select_Dependents_Completed status. The set of entries corresponding to open 
alternatives of the select statement is associated with this status. 

6. Block_Waiting: task t has reached the end of an inner block or subprogram and is 
waiting for the tasks dependent on the inner scope to terminate; the set of tasks 
dependent on the block or subprogram is associated with the Block_Waiting status of t. 

7. Completed: task t has completed. The set of tasks dependent on t is associated with 
the Completed status of t. 

8. Terminated: task t is terminated. No additional information is associated with this 
status. 

Notes: 
A task executing a delay or else part of a selective wait statement is considered to be in status 
Running 

Blocked: A task in any of the statuses 2 - 8 is said to be blocked. 

Finished: A task is finished if it has status Terminated or Select_Dependents_Completed. (Wore.- as 
a consequence, if a task is finished then all its dependents are finished.) 
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This set of statuses and associated information is sufficient to describe that part of the Ada semantics 
of task rendezvous that determines the schedulability of a task. Such a description may be given by 
means of a status change diagram indicating how the semantics of rendezvous determines the status 
changes of a task. Some status changes of task t are direct in the sense that the action of t itself 
causes the change. Other status changes of t are indirect in the sense that they are a consequence 
of the state of the tasking system and are not caused by an action of t itself. 

Simple entry call issued. 
Accept statement or set of accept 
alternatives reached. 
Selective wait with open terminate 
alternative reached. 
End of inner block or subprogram reached. 
End of task body reached. 

Direct Status Changes: 
Running  -* Calling 
Running  -+ Accepting 

Running -* Select_Terminate 

Running  -* Block_Waiting 
Running  -* Completed 

Indirect Changes: 
Calling 
Running 

Accepting 
Select_Terminate 
Select_Terminate 

Seiect_Dependents_Completed 
Select_Dependents_Completed 
Block_Waiting 
Completed 

Notes: 
A task executing a delay statement is in status Running. The indirect status change from Accepting 
to Running occurs when the entry call is issued rather than when the rendezvous is initiated. A task 
changes status from Running to Calling after having issued a conditional or timed entry call only if the 
call is accepted (this status change is- therefore indirect).   A task which executes a selective wait 
statement will usually change from Running to Accepting.  A task which executes the else part (or 
delay alternative) of a select statement remains in status Running. 
Our indirect status change algorithm for the terminate alternative differs from Ada83.   The two 
algorithms are equivalent. When a subtree of finished tasks can be terminated, our status changes 
terminate from the top down.  The Ada LRM terminates tasks from bottom up.   In both cases, the 
whole subtree can be terminated (see Section 3.3). 

Running — Rendezvous completed. 
Calling - - Conditional or timed entry call 

— accepted. 
Running — Open entry is called. 
Running — Open entry is called. 
Se1ect_Dependents_Completed 

- - All dependents of task finish. 
Terminated -- Master terminates. 
Running — Open entry is called. 
Running — All dependents of block finish. 
Terminated — All dependents of task finish. 

2.2 SCHEDULING STATES AND DEADNESS ERRORS 

For a given input, a program P may have many different possible computations. Each possible 
computation is the result of a legal Ada scheduling of the runnable tasks. Here, the word 
"scheduling" is used in a very broad sense to reflect simply the order in which changes of status 
occur among the individual tasks of P. Different orders may result from different scheduling 
algorithms for multiplexing tasks on a single CPU, or from differing speeds of CPU's in a 
multiprocessor system. The details of the underlying scheduling do not concern us in this paper. We 
are concerned only with observable differences in the sequence of status changes. It should be 
noted that different schedulings may result in different outputs from the computation, e.g. in the case 
where P is monitoring its own status changes. 
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Task Identifiers. Each task that is activated during a computation of a program is assigned a unique 
name called its identifier. It is assumed that a task can access its own identifier and the identifier of 
any task that is visible to it. 

Execution. An execution of P is a sequence of pairs consisting of a task identifier and a simple 
statement such that: 

1. the task identifier of the first pair identifies the main program; 
2. the task identifier of the nth pair Cl , cn> has status Running after the execution of the 

statements in the previous pairs by the named threads of control; 
3. as a consequence of the completed execution of the statements in the previous pairs in 

the sequence by the named threads of control, tn may legally complete execution of the 
simple statement, c . 

Executions correspond to computations of P on a single CPU. An execution can be constructed from 
an actual computation. When a simple statement completes normally, a pair consisting of the 
identifier of the executing thread of control followed by the simple statement is added to the execution 
sequence. Conversely any execution corresponds to an actual computation on a single CPU under 
some scheduling. Since the semantics of Ada are independent of the number of CPU's, definitions 
based on this imposed linearization of tasking computations are equivalent to computations under 
any scheduling. 

Notes: 
It is convenient to consider begin and end as simple statements in the definition of execution. 
Statements appear in executions in positions corresponding to their completion (i.e., normal 
termination). Completion of a subprogram call follows completion of the subprogram body. For 
example, if task t calls procedure p, then the simple statements executed during p's execution will 
appear in an execution pair for t before the procedure call appears. An entry call completes when the 
calling task is placed on the corresponding entry queue or the call is accepted; the calling task does 
not return to status Running until completion of the rendezvous. If a task t makes an entry call, s.e, 
then the pair <t, s.e> will appear before any pairs containing statements in an appropriate accept 
body, and pairs representing completion of an accept body must appear before any further pair 
containing t. 
The concept of execution described here can be given a formal definition in terms of transition rules 
similar to the operational semantics for Ada in [3]. We may therefore use the notions "computation" 
and "execution" interchangeably in the following discussion. 

Scheduling. A scheduling is an activity which may change the execution sequence of P given a fixed 
input. 

Task-Status Pairs. A task-status pair is an ordered pair consisting of a task identifier as the first 
element and a status as the second element (notation: <t, s>). 

Scheduling State. A scheduling state is a set of task-status pairs such that no two pairs have the 
same task identifier. 

A scheduling state is. associated with every position in an execution of P. A scheduling state at a 
point is a set of task-status pairs such that each k A activated up to that point in the execution is the 
first element of exactly one pair and has its status as the second element. If <t,s> is a member of state 
S, then task t has status s in S. 
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Sequences of Scheduling States. A computation of program P has an associated linear sequence 
of scheduling states. Each new state in the sequence results from the previous state by a status 
change by (or activation of) one task. Simultaneous status changes are ordered arbitrarily; an 
indirect status change follows the status change of the task causing it. All tasks are activated in 
Running status. 

Deadness Error. A deadness error is a scheduling state occurring in a computation of P in which 
some task t is blocked but not terminated, and there can be no possible continuation of that 
computation of P in which the status of t has changed. When such an error occurs, task t is said to 
be dead. 

Potential Deadness Error. Program P has a potential deadness error if there is an input and a 
possible computation of P such that the associated sequence of scheduling states contains a 
deadness error. 

Some deadness errors can be described as follows: 

Global Blocking is a scheduling state in which no task has status Running, no (indirect) status 
changes are possible, and not every task has status Terminated. 

Circular Deadlock. A circular deadlock is a deadness error in which a subset of tasks are all in 
status Calling and the calls are to entries of members of the subset. 

Example 1: Deadness involving inability to terminate. 

task Tl is 
entry El; 

end Tl; 

task body Tl is 
task T2; 
task body T2 is 
begin 

Tl.El; 
end T2; 

begin 
null; 

end Tl; 

A dead state will occur in which T2 has status Calling (Tl. E) and Tl has status Completed. These 
statuses can never change. Since T2 is dependent on Tl, Tl cannot terminate; and T2 can never 
leave Calling status. Our monitor will detect this error. 

Example 2: Deadness occurring during elaboration. 

declare 
j task Tl is 

entry El; 
end Tl; 

• •A,.. 
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function  F  return  INTEGER is 
begin 

T1.E1; 

end  F; 

X   :   INTEGER   :=«   F; 

begin 

Initialization of X requires the completion of an entry call to Tl; Tl will not be activated until the 
elaboration of the declarative part is completed. This elaboration leads to a dead state in which the 
elaborating task has status Calling (T1. E1). Our monitor will not detect this error. 

Notes: 
Deadness does not include many situations commonly referred to as starvation which result from the 
underlying scheduling (in the broad sense used above). Whether or not a task is dead will often 
depend on properties of the program P. Our run-time monitoring techniques detect dead states that 
can be recognized using only the syntax and tasking semantics of the programming language, Ada. 

2.3 MONITORED PROGRAMS 

Run-time monitoring for deadness errors involves modifying a given program P and adding a 
monitoring system M. The program P is modified so that any activated task will have a unique 
identifier, and tasks may identify each other and communicate status changes to M. The resulting 
program, P', is called a monitored program. It is important to establish that the original program P 
and the transformed program P' have the "same" set of potential deadness errors in some sense. 
The next set of definitions establish when P and P' can be said to possess the same potential 
deadness errors. These definitions are very general because they must take account of the possible 
dynamic creation of tasks in Ada and corresponding dynamic allocation of task identifiers. 

Correspondence: We assume there is a textual correspondence between P and P' such that: 

1. every declarative region in P corresponds to a declarative region in P', 
2. every declaration in P of a type or program unit (in the Ada sense) corresponds to a 

declaration in P' of the same kind, 
3. every object in P corresponds to an object or component object in P' of the same kind, 
4. every statement in P corresponds to a statement in P' of the same kind, 
5. declarations, objects, and statements in a region R in P correspond to declarations, 

objects, and statements in the corresponding region R' in P'. 

Notes: 
Any object declared in P corresponds to an object (or component) declared in P' of the same kind, in 
particular tasks correspond to tasks. However, not every declaration or statement in P need have a 
correspondence in P. 

Corresponding Executions. Let E and E' be executions of P and P' respectively. Assume there is a 
textual correspondence between P and P'. Then E and E' correspond if all task-statement pairs of E 

' 

'•••• 
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can be placed in a correspondence with task-statement pairs in E' according to the following 
inductive test: Suppose that the first n pairs of E correspond to pairs (in the same order) among the 
first m pairs of E' (m > n), and that there is a one — one correspondence between all the task 
identifiers that have occurred so far in E and a subset of those in E'. Let the nth. and mth. pairs be 
<t . c > in E and <t , c > in E'. n    n mm 

1. if statements cm and cn are in correspondence (under the textual correspondence 
between P and P'), then both the pairs and the tasks must correspond. If tn and tm 

already correspond, then the pairs are said to correspond and the test proceeds to the 
next pairs in E and E'. If neither task yet corresponds to a task, the pairs and the tasks are 
placed in correspondence and the test proceeds to the next pairs in E and E'; 

cn> is compared with the next 2. if cm does not correspond to any statement in P then <tn, 
pair in E'; 

3. if neither of the first two cases holds, then the correspondence test fails. 

Notes: 
If two executions E and E' correspond then the task identifiers in E are in one-one correspondence 
with a subset of the task identifiers in E'. If t in E corresponds with t' in E' then t executes code 
corresponding to some of the code executed by t', possibly interspersed with code in E' which has no 
correspondence in E. Thus, in a general sense corresponding task identifiers are names for threads 
of control that execute the same subcomputations (restricted to statements of P). E' may have tasks 
that do not correspond to any task in E; this is a consequence of the assumption that the textual 
correspondence between P and P' is "into", i.e., P' may be "bigger" than P. 

Equivalent Schedu..<ig States. If E and E' are corresponding executions of P and P' then 
scheduling state S of E is equivalent to a scheduling state S' of E' if for every task-status pair <t, s> 
in S the task-status pair <t\ s> is in S' where t and t' correspond in E and E', and all other tasks of S' 
are blocked. 

Equivalent Potential Errors. P and P' have equivalent potential deadness errors if for every 
potential deadness error of P occurring in execution E, say, there is a corresponding execution E' of 
P' in which an equivalent deadness error occurs, and conversely. 

Wore; 
"Conversely" means the following: if a deadness error S' occurs in execution E' of P' then there is an 
execution E of P such that E and E' correspond and a deadness error S equivalent to S' occurs in E. 

Correct Monitoring: Correctness is taken to mean: (1) for any potential deadness error of the 
original program P there is an equivalent potential deadness error in the monitored program P' and 
conversely, (2) in any computation of P', if the monitor detects a deadness error it will do so before 
that error occurs and that error will occur if the computation continues normally, (3) certain kinds of 
deadness errors, including global blocking and circular deadlock will always be detected. 

Notes: 
(1) means that addition of the monitor does not change the set of potential deadness errors of the 
monitored program. (2) does not imply that the monitor will detect every deadness error, as defined 
in Section 2.2, but that any error it does detect will be a future scheduling state of P'. (3) is a 
completeness requirement. 

A formal treatment of correctness with detailed proofs is beyond the scope of this paper.  Proof of 

- 
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correct monitoring can be based on properties of the monitor implementation (Chapter 3) and the 
preprocessing (Chapter 4). The monitor implementation ensures that (1) all monitor entry calls 
terminate; (2) the monitor correctly represents the scheduling state implied by any legal sequence of 
monitor entry calls; (3) the monitor will detect any instances of global blocking or circular deadlock 
arising in its representation. The preprocessing transforms P into P' such that (1) there is a textual 
correspondence between P and P\ (2) the monitor will be able to predict the occurrence of deadness 
errors in P' correctly (Section 3.5), and (3) P and P' have equivalent potential deadness errors. 

( 

  zs: 
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3. DEADNESS MONITOR. 

The monitor detects deadness errors and provides diagnostic descriptions based on information 
received from the preprocessed program. In our implementation this information consists of changes 
of statuses and associated information (see Chapter 2). The monitor maintains, throughout the 
execution of the modified program, a "picture" of the program's scheduling state. This picture is 
updated and checked for deadness errors when information is received from the program. In addition 
to detection and diagnostics, the monitor also provides facilities for tracing status changes, querying 
the current "picture" and undertaking evasive action to avoid a deadness error. 

3.1 THE MONITOR STRUCTURE 

The monitor is implemented in two units, a task and a package. The task is inserted into the program 
by the preprocessor. The package is designed to be compiled separately; it contains the monitor's 
data structure and the procedures that act upon it. It is compiled only once, and then linked to each 
program to be monitored. The monitor task's main purpose is to protect the monitor package. The 
preprocessed program communicates status change information to the task by means of entry call 
parameters. The monitor task then calls the appropriate procedure of the monitor package. 
Buffering the information through a task in this way ensures that only one thread of control (the 
monitor task) can update the monitor's data structure at a time. The monitor task also provides a 
convenient place to encapsulate facilities that may need to be modified for specific applications; e.g. 
an interactive version of the monitor has been implemented by modifying only the monitor task. 

Outline of the Monitor Structure: 

— Separately compiled package: 

package MONITOR_DATA_PACKAGE is 
• •  • 

procedure  INIT; 
procedure A; 
procedure B; 

end MONITOR_DATA_PACKAGE; 

— Preprocessed Ada Program: 

with MONITOR_DATA_PACKAGE; 

task  MONITOR  is 
entry A; 
entry B; 

end MONITOR; 

Data structures for the monitor's picture. 

Subprograms for updating the 
monitor's picture. 

• - Outermost declarative part. 

•- Entries match monitor data package 
•- procedures. 

— Declarations of program to be monitored. 
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task body MONITOR is 

begin 
MONITOR_DATA_PACKAGE.INIT: 
while not MONITOR_DATA_PACKAGE.DONE  loop 

select 
accept A do 

MONITOR_DATA_PACKAGE.A; 
end accept; 

. 

or 

or 

accept B do 
MONITOR_DATA_PACKAGE.B; 

end accept; 

end select; 
end loop; 

end MONITOR; 
— Bodies of units in monitored program. 

Note: 
All rendezvous with the monitor task are assumed to terminate and not to nest (i.e., contain) other 
rendezvous. 

3.2 THE MONITOR PICTURE 

The monitor maintains, at run-time, a picture of the program's scheduling state. The picture is in the 
body of the monitor data package. This picture consists of: status and associated information for 
each task, lengths of entry queues, task dependencies, and several global (to the monitor package) 
counters. This picture is incomplete in that it does not reflect any interactions with the monitor task 
itself. More important, at some points, this picture may not correspond exactly with the actual 
scheduling state of the monitored program (see Section 3.5 for a discussion of how this can occur, 
and why it is not critical). 

3.2.1 TASK INFORMATION 

Each activated task of the monitored program (except the monitor itself) is represented by a record in 
the monitor's data structure. This record contains status and other information pertaining to the task. 

type TASK_STATUS_RECORD I» 

record 
TASK_NAME 
STATUS 
CALLED.TASK 

CALLED_ENTRY 
PARENT_TASK 
DEPENDENTS 

NAME_STRING: 
TASK_STATUS; 
TASK_ID; 

NAME.STRING; 
TASK.ID; 
ID_PTR; 

Each task will have a record of 
this type to hold information 
associated with the task. 

The user-defined source text name. 
The status of this task. 
The task that this task has issued an 
entry call to. 
The entry being called. 
The task that this one depends on. 
A list of tasks depending on this task. 

t^taäm 
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NUM_WAIT_FOR : INTEGER; 

LIST_PTR 
TRACE 

end record; 

ENTRY_LIST; 
BOOLEAN; 

The number of tasks that need to finish 
before this one can proceed. 
A pointer to the list of entries in this task 
True IFF trace information 
on this task is to be printed 

The first component contains the task name. This string is used only to relate the task to its 
declaration in the Ada source text of the monitored program; it is not used in detecting errors. The 
second component contains the task's status (see Section 2.1). The next two components contain 
associated information for status Calling: the task and entry called. Following these are components 
containing dependency information: a list of dependent tasks that this task is waiting on; the number 
of those tasks that have not terminated; and this task's parent (see Section 3.2.3). An additional 
component holds a pointer to the list of entries of the task. The last component contains a flag 
indicating whether or not the task's status changes should be traced. These records are stored in an 
array in the monitor data package body and indexed by task IDs. 

Note: 
Some task status record components will be irrelevant, e.g. if a task has status Running then the 
CALLED_TASK and CALLED_ENTRY components are irrelevant 

3.2.2 ENTRY INFORMATION 

The monitor creates an entry record for each entry of a task just before that entry is First referenced at 
a call, accept or select statement. These records contain the unique string name for the entry 
(created by the preprocessor, see 4.4), the number of tasks calling the entry, and a HERE_FLAG, 
indicating if the task is currently waiting for (ready to accept) a call to the entry. All of the records for 
a task's entries are stored in an unordered linked list referenced from the task's status record. 

type  ENTRY_DATA_RECORD; 
type  ENTRY_LIST  is access  ENTRY_DATA_RECORD; 
type  ENTRY_DATA_RECORD is 

record 
NAME :   NAME_STRIN6;   --  Unique string identifier. 
QUEUE.SIZE   :   INTEGER — Number of tasks calling. 
HERE_FLAG     :   BOOLEAN —   Waiting at entry. 
NEXT :   ENTRYJ.IST;     — Rest of the entries. 

end record; 

3.2.3 DEPENDENCY USTS 

Keeping track of dependencies poses special problems for the monitor implementation. If the 
monitor were to hold all task dependency information, then it would have to maintain stacks of 
masters for each task, and masters would have to be assigned unique IDs. To avoid this, lists of 
dependent tasks are maintained in the monitored program itself. In each potential master of the 
original program, the preprocessor inserts a list containing all of the tasks directly dependent on that 
master (Section 4:1). The preprocessor inserts an additional list in each task body (and main 
program) containing all the sons of that task (Section 3.4). These dependency lists can only be 
operated on by monitor procedures and are thereby protected from simultaneous access. Whenever 
the monitor is required to have access to a dependency list (e.g. if that list contains information 
associated with the current status of a task — Section 2.1) it is passed a pointer to that list. 

• - ^- - - T-Z 
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3.2.4 GLOBAL BLOCKING 

Three variables are used to enable the monitor to efficiently detect global blocking. The monitor 
maintains counts of: 

1. the number of tasks that have been activated, NUM_TASKS; 
2. the number that are blocked, NUM_BLOCKED; and 
3. the number that have terminated, NUM_TERMI NAT ED. 

If the number of tasks that are terminated is equal to the number of tasks that have been activated 
then the program has terminated. Otherwise, if the number of tasks that are blocked and terminated 
is equal to the number of tasks that have been activated, then global blocking has occurred. These 
checks are done every time a task becomes blocked (for any reason) in the monitor's picture. 

An additional boolean variable, DONE, is used to inform the monitor task that all of the other tasks 
have terminated. This variable is declared in the visible part of the monitor package so it can be 
examined by the monitor task. 

3.3 TASK TERMINATION IN THE MONITOR'S PICTURE 

The monitor must be able to distinguish between a global blocking situation and a program's normal 
completion. This requires that the monitor recognize when tasks may be terminated. The monitor's 
algorithm for changing a task's status to Terminated is complex, involving several different monitor 
entries. This section describes the algorithm in its entirety. The contribution of each monitor entry is 
described in Section 3.4. 

We define the sons of task t (or the main program) to be those tasks which: 
j 

1. directly depend on t; 
2. directly depend on one of t's inner blocks; or 
3. directly depend on a subprogram (or subprogram inner block) elaborated by t. 

If task s is the son of task t, then task t is the parent of task s. This parent-son relationship forms a 
tree structure. All tasks dependent on t will be located in the subtree rooted at t. 

If task t has finished (section 2.1), then so have all the sons of t. Thus, by induction, all tasks in the 
subtree rooted at t have finished. 

When task t is ready to complete, it passes the list of all its sons to the monitor and then reaches 
i Completed status. The monitor sets the PARENT_TASK component of the task status record for each 

task on the list to t's ID. The monitor stores the number of sons that have not yet finished in t's 
NUM_WAIT_FOR component. As the sons of t finish, the NUM_WAIT_FOR count in t's status record will 
be decremented; thus this component contains the number of t's sons which have not yet finished. 
By checking to see if task t's NUM_WAIT_FOR component is 0, the monitor can determine if all the 
sons of t have finished. When this occurs, task t Is terminated, along with all of its dependents (direct 
and indirect) that are at select statements with open terminate alternatives. Since t has now 
terminated, we may have to decrement the NUM_WAIT_F0R component of t's parent. The monitor 
checks the PARENT_TASK component of t's status record. If it is non-empty (contains a valid task ID) 
then the PARENT_TASK's NUM_WAIT_FOR count is decremented. 

.I '». 
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A similar algorithm is used when a task t is ready to leave an inner block (or subprogram). The list of 
dependents passed to the monitor will contain only those sons of t dependent on the inner block; only 
these dependents affect t's NUM_WAIT_FOR count. When the count reaches 0, t is placed back into 
status Running. 

A task, t, reaching a select statement with an open terminate alternative (i.e, status Select_Terminate) 
cannot terminate until all of its dependents have finished.  Using the above algorithm, the monitor 
changes t's status from Select_Terminate to Select Dependents_Completed when all of t's 
dependents have finished. The dependents of t are not terminated yet. After t's master terminates, t 
will be terminated, then t's sons will be terminated, and so on. This order of termination is top-down 
instead of the bottom-up order specified in the Ada LRM, but since all such terminations are done 
immediately (within a single monitor call), the order does not effect the correctness of the monitors' 
picture. 

Notes: 
It is important to set the PARENT_TASK component of a status record only when the parent is waiting 
on that task. Otherwise, the task may decrement its parent's NUM_WAIT_FOR count before the parent 
is waiting for it (this could lead to incorrect results if the parent were waiting on an inner block). 
It is also important to have the monitor modify the lists of dependents. When a task is attempting to 
terminate, it passes the monitor a list of its dependents. If some other task creates a new dependent 
of the first task, then the change in the list of dependents must be communicated to the monitor. The 
monitor checks for this situation whenever it updates a dependency list. The monitor's mutual 
exclusion property ensures that two tasks are never simultaneously updating a dependency list. 
It is possible for a task to "un-finish." If a task at a select statement with a terminate alternative has 
already decremented its parent's NUM_WAIT_FOR count, and then it accepts an entry call, the 
NUM_WAIT_FOR count must be incremented; this action takes place when a son changes status from 
Select_Dependents_Completed to Running. 

3.4 MONITOR PROCEDURES 

Calls to the monitor task entries (which simply call the monitor data package procedures) are placed 
in the original program by either the preprocessor or the programmer. The preprocessor inserts all 
calls needed to inform the monitor or impending status changes. Diagnostic output from the monitor 
and evasive action are controlled by monitor calls inserted by the programmer. 

Evasive action in this implementation must make use of the DEAD LK_F LAG formal parameter of 
monitor entries. An entry call returns the value TRUE for this parameter if and only if a deadness error 
is detected in the monitor's picture as a result of the call. For details on evasive action see Chapter 5, 
the DEADLK_FLAG parameter will be ignored for the remainder of this section. 

Below is the visible part of the monitor package and the specification for the monitor task. These 
specifications define the visible data types used in monitoring tasking activity, and the set of entries 
(and their parameters) provided to inform the monitor of tasking action. 

J— 
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Data structures used by the monitor. (Compiled separately from the program to be monitored.) 

with DTTY_I0 -- Adam I/O package. 
package MONITOR_DATA_PACKAGE is 

Bounds and data structures used by the monitor. 
MAX_NUM_TASKS   :   constant  INTEGER   :=   100; 
TASK_LIMIT :   constant  INTEGER   :=   (MAX_NUM_TASKS  -1); 

subtype TASK_ID is  INTEGER  range -1   ..   TASK_LIMIT; 
Special ID's used for initialization of task IDs and for tracing. 

ALL_TASKS :   constant TASK_ID   :«  -1; 
NULL_TASK :   constant TASK_ID   :=  -1; 

subtype NAME_STRING is  STRING(1   ..   STRING_SIZE); 
type ENTRY_REC; -- ENTRY_PTRs are used to pass lists of 

— entries to the monitor. 
type  ENTRY_PTR  is  access  ENTRY_REC; 
type ENTRY_REC  is 

record 
NAME   :   NAME.STRING; 
NEXT   :   ENTRY_PTR; 

end record; 

type ID_REC; 
type ID_PTR is access ID_REC; 
type ID.REC is 

record 
ID       :   TASK_ID; 
NEXT   :   ID_PTR; 

end record; 

Used to pass the monitor lists of task ID's 

— Monitor package procedures are omitted since they correspond one — one with 
— monitor task entries described below. 

DONE   :   BOOLEAN   :=   FALSE; 
end MONITOR_DATA_PACKAGE; 

— The DEADLOCK MONITOR TASK. (This is inserted into the program to be monitored.) 

use MONIT0R_DATA_PACKAGE; 
task MONITOR* Is 

— Group 1 entries are called to notify the monitor of status changes that are about 
— to take place, activation of new tasks, and task dependencies. 

entry NEWTASK(TASK.NAME   :   in  NAME.STRING; 
NEW_ID :   out TASK_ID); 

entry ADD_DEPENDENT(PARENT 
SON 
BLOCK_DEPENDENTS_LIST 
S0N_LIST 

entry CALLING(CONSUMER :   in TASK_ID; 
SERVER :  in TASK_ID; 

in TASK.ID; 
in  TASK_ID); 
in out  ID_PTR; 
in out  ID_PTR); 
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ENTRY_NAME        :   in NAME_STRING; 
DEADLK_FLAG     :   out  BOOLEAN); 

entry ACCEPTING(SERVER                :   in TASK_ID; 
ENTRY_NAME        :   in  NAME_STRING; 

entry 
DEADLK_FLAG     : 

SELECTING(SERVER 
ENTRY_LIST 

out BOOLEAN); 
:   in  TASK_ID; 
:   in out ENTRY_PTR; 

TERMINATE_FLAG :   in BOOLEAN; 
DEPENDENTS :   in  ID_PTR; 

entry 
DEADLK_FLAG         :   out  BOOLEAN); 

START_RENDEZVOUS(CONSUMER        :   in  TASK_ID; 
SERVER           :   in TASK  ID; 

entry END. 
ENTRY  NAME   :   in  NAME   STRING); 

_RENDEZVOUS(CONSUMER   :   in  TASK_ID; 
SERVER       :   in  TASK_ID; 

entry END. 
ENTRY_NAME   :   in  NAME_STRING); 

_BLOCK(CONSUMER           :   in  TASK_ID; 
DEPENDENTS       :   in  ID_PTR; 

entry END. 
DEADLK_FLAG     : 

.TASK(CONSUMER       :   in 
DEPENDENTS   :   in 

out BOOLEAN); 
TASK_ID; 
ID_PTR; 

DEADLK_FLAG :   out BOOLEAN); 

•- Group 2 provides some facilities for tracing statuses and scheduling states. 

entry PRINT; 
entry TRACE(SUBJECT   :   In TASK_ID; 

FLAG :   in BOOLEAN); 

-- Group 3 is used to facilitate evasive action. 

entry QUERY(SUBJECT :   in TASK_ID; 
CALLED_TASK.   ENTRY_CALLED   :   out NAME_STRING; 
WAITING_AT   :   out  ENTRY_PTR); 

entry UNBLOCK(SUBJECT   :   in TASK_ID); 

end MONITOR; 

3.4.1 GROUP ONE ENTRIES 

Calls to group one monitor entries are placed in the original program by the preprocessor (see 
Section 4). These calls notify the monitor of impending status changes, and any associated 
information. Such calls typically involve modifying the monitor's picture. 

The NEWTASK entry informs the monitor that a task has been created. The monitor creates a new 
task status record, initializing it with the TASK_NAME and status Running. The remaining components 
are set to null values. The record is stored in the next available position in the array of task records. 
The index of its position is returned as the NEW_ID. 

Notes: 
Task IDs cannot be implemented by access type objects accessing task objects because of the 
strong typing of Ada.   The monitor type declarations would have to be changed (and the monitor 

' 
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recompiled) for each monitored program P. The task type declarations of P would have to be placed 
in the most global declarative part; and still the problem of a task being able to find its own name 
would remain. 

The A DD_ DE PEN DENT entry is used to put task IDs on dependency lists. When the monitor 
receives this call, it places SON on the two lists If either of the LISTs is a part of the PARENT'S 
associated information, then the DEPENDENT'S list and the NUM_WAIT_FOR count in the PARENT'S 
status record are updated accordingly. 

The CALLING entry is used to tell the monitor that a task is about to .ssue an entry call. When the 
monitor accepts this entry it undertakes the following actions: 

1. change the CONSUMER'S status in the monitor's picture from Running to Calling. 
2. the task and entry called are stored in the CONSUMER'S status record. 
3. increment the queue size (in the monitor's picture) associated with the called entry. 
4. if, in the monitor's picture, the SERVER is in status Accepting, Select_Terminate, or 

Select_Dependents_Completed, and it is waiting on the called entry then the SERVER'S 
status is changed to Running and the NUM_BLOCKED count is decremented. 

5. the NUM_BLOCKED count is incremented due to the consumer becoming blocked. 
6. the picture is checked for circular deadlock involving the CONSUMER. 

The ACCEPTING entry is used to inform the monitor that a task is aboi-t to execute an accept 
statement. Upon receiving this call the monitor examines the queue-size .or this °ntry. If it is zero, 
then the SERVER'S status is changed to Accepting, the HERE_FLAG for the <*ntry is set, and 
NUM_BLOCKED is incremented. 

SELECTING is called when a task is about to execute a select statement, which may contain a 
terminate alternative, as well a number of open accept alternatives (see Section 4.4.3). The 
ENTRY_LIST parameter contains a list of all the entries that can be accepted. The DEPENDENTS 
parameter holds a list of all the task's sons. The TERMINATE_FLAG parameter will be true only if there 
is an open terminate alternative. If some of the entries on ENTRY_LIST have non-empty queues (in 
the monitor's picture), then the SERVER remains in status Running. Otherwise, the HERE_FLA6s for 
all the entries on the list are set and the TERMINATE_FLAG is checked. If it is true, then: 

1. the SERVER is placed in status Select_Terminate. 
2. the SERVER'S DEPENDENTS component is set to the DEPENDENTS list. 
3. if the PARENT_TASK component of the SERVER'S status record contains a valid ID, then 

the PARENT_TASK's NUM_WAIT_FOR count is decremented and checked for 0. 

If the TERMINATE_FLAG is false, then the SERVER is put into status Accepting. 

If the SERVER is now blocked, NUM_BL0CKED is incremented. 

The START_RENDEZVOUS entry is called at the start of all the original accept bodies of P. Upon 
receiving this call the monitor does the following: 

1. if the CONSUMER is not in status Calling (e.g. because it issued a conditional or timed entry 
call) then the actions for entry CALLING are taken. This may cause the SERVER to 
change status from Accepting to Running. 

f 
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2. the queue size associated with the entry point is decremented. 
3. all of the HERE_FLAGs for the SERVER'S entries are cleared, as the server is no longer 

waiting at any entry. 

When receiving the END_RENDEZVOUS entry the monitor simply changes the status of CONSUMER 
back to Running and decrements the NUM_BLOCKED counter. The SERVER and ENTRY_NAME 
parameters are included for tracing purposes. 

The END_BLOCK entry has parameters CONSUMER (the task leaving the block) and DEPENDENTS, a 
list of tasks which are dependent on the scope being left. If some of the DEPENDENTS have not yet 
terminated, the monitor: 

1. for each task on the DEPENDENTS list, sets the PARENT_TASK component of that task's 
status record to the CONSUMER. 

2. sets the CONSUMER'S NUM_WAIT_FOR component to the number of tasks on the 
DEPENDENTS list that have not finished, 

3. sets the CONSUMER'S status to Block.Waiting 
4. increments the NUM_BLOCKED counter. 

The END_TASK entry is similar to the END_BL0CK entry, except the CONSUMER is placed in status 
Completed rather than Block_Waiting. If all the dependents have terminated, then the CONSUMER is 
terminated as well. 

3.4.2 GROUP TWO ENTRIES 

These entries are used to control diagnostic output from the monitor. Calls to them are placed by the 
programmer in either the original or transformed Ada source text. 

PRINT has no parameters. When the monitor accepts this entry, it prints out its internal picture. 
Using this, a programmer can get "snapshots" of scheduling states during a computation. 

A call to the monitor entry TRACE enables (if FLAG is true) or disables (if FLAG is false) trace output 
for the SUBJECT. When the monitor receives an entry call whose CONSUMER or SERVER parameter is 
a task with tracing enabled, then the monitor will display the call and its parameters. It is possible to 
trace ail calls to the monitor by using entry TRACE with parameters ALL_TASKS and TRUE. Normal 
tracing is restored by calling TRACE with ALL.TASKS and FALSE. 

3.4.3 GROUP THREE ENTRIES 

A deadness error is imminent whenever the DEAOLK_FLAG parameter has the value TRUE on 
completion of a monitor call. Evasive action based on testing this parameter value may be 
programmed in the original source text (see Chapter 5). The two entries UNBLOCK and QUERY are 
provided to assist this. 

UNBLOCK has a single TASK_ID parameter, SUBJECT. The monitor assumes that the SUBJECT task 
will not proceed with the originally intended action, and updates its picture accordingly, thus 
"unblocking" the task.  UNBLOCK can be severely misused.  It should only be called from the task 
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SUBJECT when the DEADLK_FLAG parameter has been returned true, and SUBJECT is not going to 
proceed with the tasking statement that has just been indicated by a monitor call. 

The entry QUERY may be used to help control evasive action routines. A task passes the monitor the 
SUBJECT, a TASK_ID, and receives information about how that task is blocked. Specifically, the task 
and entry that the SUBJECT is calling (if any) and the entries that the SUBJECT is accepting (if any) are 
returned. This entry is intended to allow more intelligent evasive action by giving the task undertaking 
the evasive action more information about the error. 

3.5 ACCURACY OF THE MONITOR PICTURE 

The monitor picture may differ from the actual scheduling state of the monitored program. The picture 
is constructed on the basis of entry calls notifying the monitor of intended task status changes. These 
entry calls are placed in the monitored program by the preprocessor (Chapter 4). In most cases a 
notification will be executed before the intended status change (early notification). In some cases, 
when conditional or timed entry calls are present in the monitored program, the status change may be 
executed before the monitor is notified (late notification). Also, the underlying scheduling may have 
the effect that the tasks actually execute status changes in a different order from the notifications. 
Each of these cases can result in the picture differing from the actual sch3duling state. 

Example: 

T1: 

MONITOR.CALLING(tl.   t2.   "E"); — A 
t2.E; — 8 

T2: 

MONITOR.ACCEPTING(t2, "EH);       — C 
accept E; — 0 

Before either monitor call, both tasks are in status Running. After 12 has executed statement C, it has 
status Accepting in the picture (but it is actually Running). If tl now executes statements A and B 
then tl will be Calling in the monitor's picture as well as in the actual scheduling state. This causes 
t2 to make an indirect status change to Running in the picture. When t2 finally executes D, it will 
remain in status Running since there is a call queued up at the entry. In this example, t2 always had 
status Running even though it was blocked (Accepting) in the monitor's picture. It is important to 
show that these temporary inaccuracies do not interfere with the monitor's ability to detect deadness 
errors. 

Here we outline a proof that the monitor correctly detects global blocking situations despite 
differences between the picture and the actual scheduling state. The proof is based on the following 
simplifying assumptions, A, about the monitored program: 

1. no timed or conditional entry calls are executed. 

- '— 
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2. no tasks are aborted. 
3. all tasks have the same priority (or all tasks are running on separate CPUs). 
4. all tasks in the computation being monitored have already been activated and assigned 

their IDs. 

A task interaction is the execution (or partial execution) of a statement that may cause a task to 
change status (directly or indirectly). 

Lemma 1: Under A, all tasks notify the monitor immediately before undertaking a task interaction 
(i.e., if a task notifies the monitor of an impending task interaction, then that interaction will be the 
next one executed by that task). 

Proof: The preprocessor places calls to the monitor immediately before each task interaction except 
timed/conditional entry calls and selective waits with delay or else parts (see chapter 4). In the 
absence of timed and conditional entry calls, the execution of a selective wait with a delay or else part 
is not a task interaction. The task executing the selective wait stays in status Running and any calling 
task will remain in status Calling. Thus no status changes are caused by a selective wait (under 
assumptions A) so its execution is not a task interaction. 

Lemma 2a: If two task interactions can legally (according to the semantics of the Ada program) be 
executed in either order, then the same monitor picture results after both notifications are given, 
regardless of the order. 

Lemma 2b: The monitor picture represents the scheduling state of the monitored program if exactly 
those task interactions that have been signaled to the monitor have taken place. 

Lemmas 2a and 2b are implied by the monitor implementation and can be proved by case analysis. 
However the analysis is tedious and thus is omitted. 

Lemma 3: At any point in the execution of a monitored program, there is an actual scheduling state, 
S, and a monitor picture, P. There is always a legal scheduling under which the execution may 
continue such that a new scheduling state S' results which is equivalent to the scheduling state that 
appears in P. 

Proof: The actual scheduling state, S, differs from the picture, P, because some tasks have notified 
the monitor of interactions which they have have not yet executed. By scheduling each of these tasks 
to run until the notified task interactions have been completed, the resulting scheduling state will 
agree with the picture. Lemma 1 implies that these tasks can be run and that there will be no 
additional task interactions. Lemma 2 implies that the resulting picture will agree with the scheduling 
state. Assumption 3 implies that scheduling (running) only certain tasks is legal. 

Lemma 4: Any notification of an impending task interaction is given by a task which has status 
Running in the monitor picture. 

i 

Proof: Tasks can become blocked only by making direct status changes. Any task which is blocked in 
the monitor picture is either blocked in the actual program or has already notified the monitor of a 
task interaction that will block it (Lemmas 1 and 2). In either case, it is impossible for the task to issue 
another notification to the monitor before actually blocking. 



24 3. DEADNESS MONITOR. 

Lemma 5: Any global blocking state is present in the picture before it occurs in the actual 
computation. 

Proof (by contradiction): Assume a global blocking situation is present in the computation but not the 
picture. Then by lemma 3, there is a continuation of the computation which causes the scheduling 
state to agree with the picture, and thus be unblocked. 

Lemma 6: If the monitor picture shows a global blocking situation, B, ihen the same global blocking 
situation will occur in a scheduling state of the computation. 

Proof: All tasks in the computation (assumption 4) have issued notification of an interaction by which 
they unaergo a direct change to a blocked status. By Lemma 1 every te3k that is run must execute 
that interaction before any other interaction (that might unblock a task). Therefore, under any 
scheduling the global blocking situation will occur. 

These arguments can be extended to cover the presence of task activation and timed or conditional 
entry calls. Similar arguments showing that the picture correctly reflects circular deadlock situations 
can also be given. 

/  
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4. PREPROCESSOR 

This chapter describes the preprocessor. The purpose of the preprocessor is to introduce 
communication between the tasks of P and the monitor so that the monitor is informed of any task 
status change in P. The resulting monitored program is denoted by P'. 

The preprocessor applies a sequence of textual transformations. Each transformation introduces 
new declarations or statements. The transformations can be broken down into atomic steps 
describable in a formalism similar to the presentation in [2]. However formal description of many 
details (e.g. transformations for composite data structures containing tasks, and for expressions 
invoking tasking) is complex. Therefore we have chosen to give an informal description. We describe 
the preprocessor as a sequence of five passes. First the monitor declaration and body are placed at 
the beginning of the declarative part of the main program of P. Following this, each succeeding pass 
is then assumed to take its input from the output of the preceding pass. Each section of this chapter 
describes a pass (4.1 - first pass, 4.2 - second pass, etc.). We will use Pfc to designate the output from 
the fcth pass, thus P2 is the output from the transformations described in Section 4.2. 

The transformations set up a correspondence (Section 2.3) between P and P' which is also described 
informally below. 

Notes: 
Only the original rendezvous attempts between tasks in P are monitored; rendezvous with the monitor 
itself are not monitored. All identifiers introduced by the preprocessor, e.g. type names and vai lables, 
are assumed not to clash with the identifiers in P. 

4.1 INTRODUCTION OF TASK ID'S 

Passes 1 and 2 introduce task IDs into the monitored program. Pass 1 introduces data structures to 
store IDs and also new parameters, entry procedures, and accept statements to communicate IDs. 
Pass 2 introduces code to initialize IDs. The resulting program after passes 1 and 2 has the following 
properties: (i) every active task has a unique ID, (2) a calling task can always access the called 
task's ID, (3) a task can access its own ID, (4) within every scope the ID of the currently executing 
task can be accessed, (5) whenever an entry is called the ID of the caller is passed to the called task, 
and (6) the monitor associates an identifier in the source text with each task ID which identifies the 
task object having that ID. 

Pass 1 performs the following seven transformations: 

1. a new variable, MY_ID of type TASK_ID is declared at the beginning of the main program 
and initialized to 0. 

2. each task type (Ada 83, 9.1) t, is modified to form a new task type renamed t_TASK, 
followed by a record type with the original name, t. 

a. the simple name t at the beginning and end of the task unit is changed to t.TASK; 
within the task unit all occurrences of t that designate the task currently executing 
the body are changed to t_TASK. 

b. a new entry declaration, "entry SET_ID(N : In TASK_ID);" is inserted into the 
task type specification. 

-1— ..«UMkiftfc 
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c. two new declarations, "MY_ID    :    TASK_ID    :-   NULL_TASK; t_TASK_ID 
renames MY_ID;" are added at the beginning of the task body. 

d. the statement "accept SET_ID(N   :  in TASK_ID) do MY_ID   :•   N; end 
SET_ID;" is inserted as the first statement in the task body. 

e. a new record type, 
type t is record 

TASK_OBJ   :  t_TASK; 
ID :  TASK_ID   :=  NULL_TASK; 

end record; 
is declared immediately following the modified task specification. 

3. each task declaration, t, in P is replaced by a task type declaration t_TASK, a record type, 
t_REC0RD, and a record of that type with the name, t. The task type t_TASK is obtained 
from the original task declaration by modifications similar to those stated in step 1; 
t.RECORD has two components as above. 

4. each occurrence of an untransformed task name, t, is replaced by the corresponding 
record component, t.TASK_0BJ. Thus, for example, entry calls to a task, t.E say, are 
replaced by entry calls to the task component of the new record, t.TASK_0B J. E. 

5. a new formal parameter called MY_ID of type TASK_ID is added to every subprogram 
specification. 

6. a new formal parameter called CALLER_ID of type TASK_ID is added to every entry 
specification. 

7. all calls to entries and subprograms are modified appropriately as follows: the TASK_ID 
parameter of every entry and subprogram call is bound to the value of MY_ID. This is 
either the value of the local MY_ID variable (if the call is in a task) or the value of the 
formal TASK.IO parameter, MY_ID (if the call is in a subprogram). 

As a result of step 2, all task object declarations of a task type in P will become declarations of objects 
of a record type in P1. 

As a result of steps 2 and 3 all task objects occur as components of records which also contain a 
TASK_ID component. We will call these task records. If the original tasks were components of a data 
structure, the new task records take their place in the structure as a result of using the names of the 
original task types or tasks as names for the task record types (step 2) or task records (step 3). 

When t_TASK is used within a task body to designate the task currently executing the body, the local 
t_TASK_ID variable will contain the associated ID. Wherever a task was visible in P, now both the 
task and its ID are visible. 

Notes: 
The SET_ID entry and the local MY_ID variable are used to "inform" a task of its own ID when it is 
activated, and to store that ID. 
The Ada semantics do not specify the order of task activation. Therefore at steps 2 and 3 "accept 
SET_ID ..." is inserted as the first statement of every task body; in pass 2 task ID components of all 
task records are initialized before any task is informed of its ID by a SET_ID entry call. This "holds 
up" every task until all ID components are initialized, thus avoiding the possibility that tasks in P' 
might attempt to access task ID components that are uninitialized. 

. . *   • 
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'« The purpose of steps 4 - 6 is to ensure that the actual value of the CALLER_ID parameter of any entry 
call is the ID of the task issuing that call. This in turn requires that a subprogram must be able to 
access the ID of the task that called it so that if it issues an entry call it can pass this 10 to the called 
task. (Note that a subprogram can be visible to, and thus called by, more than one task.) Hence the 
TASK_ID parameter must be added to both subprograms and entries. 

Correspondence: After pass 1, correspondences between text of P and new or modified text of P1 
is as follows (text in P that is not affected by the transformations corresponds to the same text in P1): 

A task object t in P corresponds to the task object component of the record with the same name, t, in 
P1; i.e., t corresponds to t.TASK_0BJ. A task type t in P corresponds to a task type in P1 (called 
t_T ASK) obtained by modifying the declaration of t at step 1 above. The old and new subprogram and 
entry declarations and calls correspond. The new variables MY_ID, entries SET_ID, and new accept 
SET_ID statements have no correspondence in p. 

EXAMPLES OF PASS 1 TRANSFORMATIONS 

1. A task type declaration is transformed into a task type followed by a record type: 
Note: TT1 corresponds to TT1_TASK. 

ORIGINAL TEXT, P: 

task type TT1 is 
entry El; 
entry  E2(I   :   in  INTEGER;   ...); 

end TT1; 

task body TT1 is 

begin 

end TT1; 

TRANSFORMED TEXT, PI: 

task type TT1JTASK is 
entry SET_ID(N 
entry E1(CALLER_ID 
entry E2(CALLER_ID 

end TT1_TASK; 

in TASK_ID); 
in TASK_ID); 
In TASK_ID   ;   I in INTEGER;   ...)'• 

type TT1 is 
record 

TASK  OBJ 
ID 

end record; 

TTl.TASK; 
TASK_ID   :-  NULL_TASK; 

task body TT1.TASK is 
MY_ID   :   TASK.ID   :-  NULL_TASK; 

begin 
accept SET_I0(N 

MY ID   :» N; 
in TASK_ID)  do 
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end; 

end TT1_TASK; 

2. All task object declarations become task record object declarations: 
Note: A_TASK corresponds to A_TASK. TASK_0B J. 

ORIGINALTEXT, P: 

A_TASK   :   TT1; 

TRANSFORMED TEXT, P1: 

A_TASK   :   TT1; 

3. Declarations of single tasks are transformed into a task type and record type declaration, followed 
by a record declaration: 
Note: T1 corresponds to Tl. TASK_0BJ. 

ORIGINALTEXT, P: 

task Tl is 
entry El; 
entry E2(N 

end Tl; 

task body Tl is 

end Tl; 

in  INTEGER;   ...): 

TRANSFORMED TEXT, P1: 

task type T1_TASK is 
entry SET_ID (N 
entry El (CALLER_ID 
entry  E2 (CALLER_ID 

N 
end Tl TASK: 

task body T1_TASK is 
MY_ID   :   TASK_ID 
a   •   • 

begin 
accept SET_ID(N 

MY ID :- N; 
end SET_ID; 

end TIITASK; 

type T1_REC0RD is 
record 

TASK_0BJ   :   Tl.TASK; 
ID :   TASK  ID 

in  TASK_ID); 
in TASK_ID); 
in  TASK_ID; 
in  INTEGER; 

•  NULL_TASK; 

in TASK_ID)  do 

): 

NULL_TASK; 

_.        -  -   
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end  record; 

Tl   :   T1_REC0RD; 

4. Pass 1 transformations modify subprogram and entry declarations and calls: 

ORIGINALTEXT, P: 

/'.     procedure PR0C1 is 

end PROCl; 

ft function Fl(I   s   in  INTEGER) 
return S0ME_TYPE is 

end Fl; 

///. PROCl; 

h. K:«  F1(J); 

v. T1.E2(N); 

TRANSFORMED TEXT, P1: 

/. procedure PROCl(MY_ID  :  in TASK_ID) is 
•  •  • 

end PROCl; 

ft function F1(MY_ID   :   in TASK_ID;   I   :  in  INTEGER) 
return S0ME_TYPE is 

end  Fl; 

///. PR0C1(MY_ID); 

iv. K   :=  F1(MY_ID.   J); 

v. T1.TASK_0BJ.E2(MY_ID,   N); 

4.2 INITIALIZATION OF TASK ID'S 

Pass 2 accepts as input the result of pass 1 and inserts statements to initialize TASK_ID components 
and variables. When a task record is declared, the declaring scope must call the monitor to obtain a 
new ID, initialize the ID field of the task record, and inform the task of its ID. If several tasks are 
declared in the same declarative part then all of the ID record components must be initialized before 
letting any task proceed, otherwise one of the tasks could access an ID component before it has 
been initialized. 

_L_ 
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The pass 2 transformations for initializing the IDs of statically declared tasks in each declarative part 
are: 

I.For each task record declaration a call to MONITOR.NEWTASK is inserted; the string 
parameter of this call is bound to the task record name and the TASK_ID parameter is the 
task record 10 component. If the declaration is in the declarative part of a subprogram or 
block the call is placed in the first statement position of that subprogram body or block; if 
the declaration is in the declarative part of a task body, the call is placed immediately 
following the accept SET_ID statement of the task body. 

2. Immediately following all MONITOR. NEWTASK calls inserted at step 1, calls to the SET_ID 
entry of the task component of each task record are inserted. The TASK_ID parameter of 
each SET_ID call is bound to the ID component of the same task record. 

If tasks are declared as part of a complex structure (built out of arrays, records, and access types) 
then pass 2 uses iterative techniques to construct the initialization code for objects of that complex 
type. For example, task IDs occuring as components of arrays are initialized by for loops iterated 
over the array index type. Details of these techniques are omitted. 

Notes: 
Calls inserted by step 1 inform the monitor of the identifier in the source text to be associated with 
each task (for tracing and debugging); TASK_ID values returned by these calls initialize all task 
record ID components. The monitor can then associate its own ID for a task with a name for the task 
in the source text. If a task occurs as a value in a data structure, the name of the global data structure 
is used, so in general many IDs may be associated with a source text name. As a result of calls 
inserted at step 2, all tasks now "know" their IDs, and have been "held up" until ail visible ID 
components are initialized. 
The task ID initialization presented here initializes all IDs immediately after elaboration of a 
declarative part. This has the drawback that uninitialized IDs can be accessed if task entry calls are 
executed during elaboration (such accesses may often indicate a blocked elaboration, but not 
always). This is the reason why our monitoring method is not correct for programs using tasking 
during elaboration. An alternative scheme is to initialize TASK_ID components and MY_ID variables 
at the point of declaration via functions which call the monitor entry NEWTASK. These initializations 
would be placed in the type declarations (of task record types and task type bodies). This would 
avoid the above drawback. However, a meaningful source text name for the TASK_NAME parameter 
cannot usually be given in such default positions. 

Correspondence: Text to initialize task IDs added by pass 2, steps 1 and 2 does not correspond to 
any text in P. 

EXAMPLES OF PASS 2 TRANSFORMATIONS 

P1 DECLARATIVE PART: 

Tl   :   SOME_TASK_RECORD_TYPE; 

TASK_ARRAY   :   array (1   ..   5)  of SOME_TASK_RECORD_TYPE; 

type TWO_TASKS_TYPE  is 
record 

FIRST     :   SOME_TASK_RECORD_TYPE; 
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SECOND 
N 

end record; 
TWO_TASKS   :   TWO_TASKS_TYPE; 

SOME_TASK_RECORD_TYPE; 
INTEGER; 

P2 IMMEDIATELY FOLLOWING THE BEGIN OF THE DECLARATIVE REGION: 

— Texf to initialize all task ID components. 

MONITOR.NEWTASK("T1".   Tl.ID); 

for  I in  1   ..   5 loop 
MONITOR.NEWTASK(MTASK_ARRAY",   TASK_ARRAY(I).ID); 

end loop; 

MONITOR.NEWTASK("TWO_TASKS.FIRST",   TWO.TASKS.FIRST.ID); 
MONITOR.NEWTASK("TWO_TASKS.SECOND",   TWO_TASKS.SECOND.ID); 

— Text to inform all tasks of their ID's. 

T1.TASK_0BJ.SET_ID(Tl.ID); 

for I in  (1   ..   5)  loop 
TASK_ARRAY(I).TASK_OBJ.SET_ID(TASK_ARRAY(I).ID); 

end loop; 

TWO_TASKS.FIRST.TASK_OBJ.SET_ID(TWO_TASKS.FIRST.ID); 
TWO_TASKS.SECOND.TASK_0BJ.SET_ID(TWO_TASKS.SECOND.ID); 

The situation in which a new task is created and activated by an allocator requires special handling in 
pass 2. If P contains an access type designating a type T with task type components, then P1 will 
contain an access type designating T which now has task record components. Allocation of an object 
of type T must not be permitted to make an ID component visible before it is initialized. Our approach 
is to "hide" such allocators in function calls. 

Pass 2 contains a third step: 

3. Whenever an access type which designates a type containing task components is declared, pass 2 
inserts a new function declaration to be associated with the access type. This function will take as 
parameter a value of the access type and return the same value. It initializes all task IDs in the 
object designated by its parameter. Wherever an allocator is called in P1 to create a new object 
containing task components, pass 2 will substitute a call to this new function in P2 with the value of 
the allocator call as its actual parameter. 

Correspondence: The new functions and calls to them have no correspondence in P1. 
allocator calls in P1 correspond to the allocator call parameters of the new function calls in P2. 

The 

Example: 

P1: 

type TWO_TASKS_TYPE  is 
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P2: 

record 
FIRST 
SECOND 
N 

end record; 

SOME_TASK_RECORD_TYPE; 
SOME_TASK_RECORD_TYPE; 
INTEGER; 

type TWO_TASKS_REF  is access TWO_TASKS_TYPE; 

TWO_TASKS_PTR   :   TWO_TASKS_REF; 

TWO_TASKS_PTR   :=  new  TWO_TASKS_TYPE; 

type  TWO_TASKS_TYPE   is 
record 

FIRST 
SECOND 
N 

end record; 

SOME_TASK_RECORD_TYPE; 
SOME_TASK_RECORO_TYPE; 
INTEGER; 

type TWO_TASKS_REF  is access TWO_TASKS_TYPE; 

in  TWO_TASKS_REF)   return  TWC_TASKS_REF  is 

— Initialize TASK IDs in TEMP. 

function  NEW_TWO_TASKS(TEMP 

begin 
MONITOR.NEWTASK(...): 
MONITOR.NEWTASK(...); 
TEMP.FIRST.SET_ID(...); 
TEMP.SECOND.SET_ID(...) 
return TEMP; 

end NEW_TWO_TASKS; 

TWO_TASKS_PTR   :   TWO_TASKS_REF; 

TWO_TASKS_PTR   :»  NEW_TWO_TASKS   (new  TWO_TASKS_TYPE); 

Wore on Example: 
The call to NEW_TWO_TASKS "hides" the newly allocated value (of type TWO_TASKS_TYPE) until all 
task IDs in it have been initialized; thus when TWO_TASKS_PTR can be referenced in P2, the IDs in 
the designated value will have been initialized. 

4.3 MONITORING OF DEPENDENT TASKS 

Detection of dead states which include the inability of tasks to terminate usually requires dependency 
information. For example, a task moves from status Block_Waiting to status Running only when all of 
its dependents declared in the block have terminated. Consequently, a task may be dead as a result 
of a deadness among its dependents. 

_1_ 
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In order to deal with such situations, the preprocessor declares a variable accessing a list of 
(dependent) task IDs in each block (i.e., each block in P' that corresponds to a block in P now has a 
list containing all tasks dependent on that block). At run-time this list is passed to the monitor by the 
executing task when a new dependent task is activated, or when the executing task has reached the 
end of that block. Thus, in this present monitor design, updating of dependents lists and checking for 
termination is done by the monitor itself, but the lists of dependents are stored in the monitored 
program (see Section 3.3). 

Pass 3 of the preprocessor has the following steps: 

1. Add the declaration, "DEPENDENT_IDS : MONITOR_DATA_PACKAGE. ID_PTR" at the 
beginning of each declarative part of P2, except for the new subprograms whose 
declarations were inserted by pass 2. 

2. Add the declaration "ALL_DEPENDENTS : MONITOR_DATA_PACKAGE. ID_PTRM at the 
beginning of the outermost declarative part of each task body and the main program. 

3. Insert a call to MONITOR. ADD_DEPENDENT after each call to the monitor entry NEWTASK. 
The parameters of each call are: PARENT => MY_ID, SON => out parameter of 
preceding NEWTASK call, BLOCK_DEPENDENT_LIST => DEPENDENTS_IDS, S0N_LIST 
= >ALL_DEPENDENTS. 

Notes: 
Tasks created by an allocator depend on the block where the access type was declared, so their IDs 
must be added to the DEPENDENT_IDS list corresponding to that block. In P2 these allocator calls 
are replaced by calls to a new function associated with the access type. This function is declared 
immediately following the access type by pass 2. It contains the appropriate NEW_TASK calls. Since 
pass 3 does not insert a declaration of a local DEPENDENT_IDS in these function bodies, the 
immediately global DEPENDENTS_IDS variable is visible. This will be the DEPENDENTS_IDS variable 
associated with the declarative part containing the access type declaration. Therefore, the pass 3 
monitor calls to ADD_DEPENDENT placed in the function will pass the DEPENDENTS_IDS variable for 
the block in which the access type is declared to the monitor. 
If a select statement, say, in task Tl, has a terminate alternative, then the IDs of all tasks directly 
dependent on Tl, or one of its inner blocks, must be passed to the monitor. The variable 
ALL_DE PENDENTS designates a list of exactly these IDs. 

Correspondence: The text added to P3 in pass 3 does not correspond to text in P2. 

4.4 STATUS MONITORING 

Pass 4 inserts calls to the monitor entries CALLING, ACCEPTING, SELECTING, START_RENDEZVOUS, 
END_RENDEZVOUS, END.BLOCK, and END.TASK. These calls inform the monitor of direct and indirect 
status changes, and associated information arising from rendezvous attempts. 

The transformation uses strings derived from source text identifiers as names of task entries. These 
names are used to notify the monitor which entry of a task is being called and are crucial in the 
monitor's internal representation of rendezvous statuses. These entry name strings must name 
exactly one entry in any given task:   no entry can be represented by two different strings, and no 
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string can represent two different entries of the same task. A string could represent several entries, 
as long as they are all in different tasks. An entry family requires a different string for each member of 
the family. Finally, the transformation introduces arrays for storing and accessing the names 
associated with entry families; details of these entry family name arrays are omitted. 

4.4.1 THE CALLING ENTRY 

Calls to this entry are inserted in a task immediately before an unconditional, untimed entry call. 
When a call to CALL ING is executed, the monitor will change the status of the task to Calling. As soon 
as this monitor call finishes and the next statement is executed, the task's actual status will be Calling 
(Section 3.4). Timed and conditional entry calls are not monitored because they do not result in the 
task changing status (unless the call has actually been accepted). The CONSUMER parameter is the 
ID of the task making the call, i.e., the value of MY_ID. For calls of the form, t. TASK_0B J. E, the 
SERVER parameter is the ID component of the called task's task record. The ENTRY_NAME parameter 
is the string, created by the preprocessor, naming the called entry. The DEADLK_FLAG parameter 
indicates whether evasive action should be taken to avoid a blocked state. 

Note: 
For calls of the form, t_TASK. E, the SERVER parameter is given the t_TASK_ID value (recall that as a 
result of pass 1 such calls will always be within the task body of t_T ASK see 4.1, pass 1, step 2a). 

Correspondence: The CALLING monitor call does not correspond to code in P3. 

Examples: 

ENTRY CALLS IN P3: 

Tl.TASK_0BJ.E2(MY_ID,   PARAMETER); 

T1,TASK_0BJ.ENTRY_FAMILY(EXP)(MY_ID); 

ASSOCIATED MONITOR CALLS INSERTED BY P4: 

MONITOR.CALLING(MY_ID,   TI.ID,   "E2";   DEADLK_FLAG): 
T1.TASK_0BJ.E2(MY_ID,   PARAMETER); 

MONITOR.CALLING(MY_ID,   TI.ID,   ENTRY_FAMILY_STR(EXP),   DEADLK_FLAG); 
Tl.TASK_OBJ.ENTRY_FAMILY(EXP)(MY_ID); 

4.4.2 THE ACCEPTING ENTRY 

Pass 4 inserts a call to ACCEPTING immediately before each "simple" accept statement that is not a 
select alternative (preprocessing of select alternatives is described in 4.4.3). The parameters are: 
MY_ID (server name), the preprocessor string naming the entry being accepted, and DEADLK_FLAG. 

Correspondence: The ACCEPTING monitor call does not correspond to code in P3. 

Example: 
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P3: 

accept  E1(CALLER_ID)  do 

P4: 

Müh,XT0R.ACCEPTING(MY_ID,   "El".   DEADLK_FLAG); 
accept E1(CALLER_ID)  do 

4.4.3 THE SELECTING ENTRY 

Before executing a selective wait statement a (server) task must inform the monitor of those entries 
that can be accepted by that select statement. It must therefore evaluate the guards of the select 
alternatives, including any delay or terminate alternatives. This evaluation must be done only once. 
The resulting values are used both to determine the information associated with the new Accepting 
status (or Select_Terminate status) and to execute the select statement. Pass 4 inserts declarations 
of new variables to hold the values of the guards, and text to evaluate the select guards and construct 
the status information for the monitor. 

Pass 4 executes the following text transformations for each select statement in P3: 

1. the select statement is enclosed in the body of a new block statement. 

2. boolean variables TEMPI, TEMP2, ... are declared locally in the new block, one for each 
select alternative, and Initialized to the guard expression of that alternative, or to TRUE if 
there is no guard. 

3. boolean variables TEMP_DELAY and TEMP_TERMINATE are declared locally after the 
previous variables. TEMP_DELAY is initialized to TRUE if there is an else part, to the 
disjunction of the TEMP variables corresponding to delay alternatives, or to FALSE if there 
is no else part or delay alternatives. TEMP_TERMINATE is initialized to the TEMP variable 
corresponding to the terminate alternative if there is one and to FALSE otherwise. 

4. a variable ENTRY_LIST of type ENTRY_PTR is declared locally and initialized to null. 

5. ada text to construct the list of entry names corresponding to open accept alternatives is 
inserted at the beginning of the local block body (i.e., before the select statement). This 
text is instantiated from a single text template and performs a computation as follows: if 
TEMP_DELAY is TRUE it does nothing, (including not calling the monitor); otherwise it 
builds a list of entry name strings corresponding to the open accept alternatives and then 
calls the monitor entry, SELECTING, with parameters: MY_ID, ENTRY_LIST, 
TEMP_TERMINATE, ALL.DEPENDENTS, and DEADLK_FLAG. 

6. the boolean conditions in the select alternatives are replaced by the corresponding TEMP 
variables. 

Correspondence: The select statement in P4 corresponds to the original select statement in P3. 
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The new local block, declarations, and text in P4 has no correspondence in P3, except that calls to 
functions in the new text correspond to the original calls in guards in P3. 

Notes: 
If TEMP_DELAY is TRUE the server task cannot enter a blocked state and will remain in status Running. 
TEMP_TERMINATE is declared even if there is no terminate alternative so that the preprocessor can 
use a single text template for computing the list of open entries. 
TEMP_DELAY and TEMP_TERMINATE cannot both be true due to Ada rules for select statements. 
Construction of the list of entries proceeds as follows:   ENTRY_LIST is initialized to null; then for 
each accept alternative with a true guard condition a new ENTRY_REC record containing the string 
representing the entry is allocated.   If the entry is part of an entry family, its index expression is 
evaluated at this point (to correspond with the order of evaluation in the Ada semantics). This record 
is inserted into the list designated by ENTRY_LIST. 

Examples: 

P3: 

select 

or 

accept E1(CALLER_ID 

end El; 

accept  E2(CALLER_ID 
I 

In  TASK_ID)  do 

In  TASK_ID): 
in INTEGER)  do 

end E2; 
end select; 

select 
when FLAG1  »> 

accept  E1(CALLER_ID in  TASK_ID)   do 

end El; 
or 

when  F(X)  •> delay 10; 
end select; 

P4: 

;• TRUE; 
!• TRUE; 
BOOLEAN :» FALSE; 
BOOLEAN :» FALSE; 
ENTRY_PTR :» null; 

declare 
TEMPI   :   BOOLEAN 
TEMP2   :   BOOLEAN 
TEMP_DELAY 
TEMP_TERMINATE 
ENTRY_LIST 

begin 
if not TEMP_DELAY then 

if TEMPI then 
ENTRYJ.IST   :»  new  ENTRY_REC(NAME  »>  "El", 

NEXT  »>  ENTRYJ.IST); 
end if; 
if TEMP2 then 

ENTRY_LIST   :»  new  ENTRY_REC(NAME  ->  "E2", 
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NEXT   =>   ENTRY_LIST); 
end if; 
MONITOR.SELECTING(MY_ID,   ENTRYJ.IST,   TEMP_TERMINATE, 

ALL_DEPENDENTS,   DEADLK_FLAG); 
end if; 
select 

accept E1(CALLER_ID in TASK_ID)  do 

end El; 
or 

accept E2(CALLER_ID   :   in TASK_ID; 
I                     :   in  INTEGER)  do 

end E2; 
end select; 

end; 

declare 
TEMPI BOOLEAN =   FLAG1; 
TEMP2 BOOLEAN •  F(X); 
TEMP  DELAY BOOLEAN =   TEMP2; 
TEMP_TERMINATE BOOLEAN =   FALSE; 
ENTRYJ.IST ENTRY_PTR   :=   null; 

begin 
if not TEMP_DELAY then 

if TEMPI then 
ENTRY  LIST   := new  ENTRY  REC(NAME =>   "El", 

NEXT =>   ENTRY_LIST); 
end if; 

MONITOR.SELECTING(MY_ID,   ENTRY_LIST,   TEMP_TERMINATE. 
ALL_DEPENOENTS,   DEADLK_FLAG); 

end if; 

select 
when TEMPI  »> 

accept  E1(CALLER_ID)   do 

end El; 
or 

when TEMP2  => delay 10; 
end select; 

end; 

Note: 
Often text inserted by pass 4 can be omitted. In the first example above, none of the TEMP variables 
for accept alternatives, nor the corresponding conditional tests on them, are needed. The 
preprocessor does in fact make some optimizations on the use of the TEMP variables. 
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4.4.4 THE START_RENDEZVOUS ENTRY 

Pass 4 inserts a call'to this monitor entry at the beginning of every accept body, including those inside 
of select statements. The parameters of the call are: CONSUMER •> CALLER_ID (a parameter of the 
entry call), SERVER *> MY_ID, ENTRY_NAME => the string associated with the entry being 
accepted. 

Correspondence: This entry call has no corresponding code in P. 

4.4.S THE END_RENDEZVOUS ENTRY 

A call to this entry is placed at the end of every accept body (including those in selective wait 
statements). The parameters of this call are: CALLER_ID, MY_ID, and the string associated with the 
entry accepted. 

Correspondence: This entry call does not correspond to any code in P3. 

Examples: 

P3: 

accept E1(CALLER_ID 

accept E2(CALLER_ID 

end E2; 

in TASK_ID); 

in TASK_ID;   I in  INTEGER; )  do 

P4: 

accept E1(CALLER_ID   :   in TASK_I0) do 
MONITOR.START_RENDEZVOUS(MY_ID, CALLER_ID. "El"); 
MONITOR.END_RENDEZVOUS(MY_ID, CALLER_ID, "El"); 

end El; 

accept E2(CALLER_ID : in TASK.ID ; I : in INTEGER; ...) do 
MONITOR.START_RENDEZVOUS(MY_ID. CALLER_ID, "E2"); 

MONITOR.ENO_RENOEZVOUS(MY_ID, CALLER.ID, "E2"); 
end E2; 

4.4.6 THE END.TASK ENTRY 

A call to this entry is inserted at the end of every task body. The parameters are MY_ID (the ID of the 
task that is completing), ALL_DEPENDENTS (the IDs of all tasks dependent on the completing task), 
and DEADLK_FLAG. The value returned for DEADLK_FLAG will indicate whether or not the task will 
cause a blocked state by completing. 

Correspondence: This entry call does not correspond to any code in P. 
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4.4.7 THE END_BLOCK ENTRY 

Calls to this entry are inserted in each inner block and subprogram which has a declarative part. The 
calls are inserted at: the end of the sequence of statements of the block or subprogram; immediately 
before each return statement; and immediately before each goto statement transferring control out of 
the block. In addition, to allow for exceptions raised in the handler itself, each exception handler is 
modified as follows: 

P3: 

P4: 

when EXCEPTIONNAME  -> 
-- Sequence of statements. 

when EXCEPTION.NAME  •> 
begin 

— Sequence of statements. 
MONITOR.END_BL0CK(...); 

exception 
when others => 

MONITOR.END_BL0CK(...): 
raise; 

end; 

Finally, if there is no handler with an others exception choice, then the following exception handler is 
placed in the block (or subprogram); 

exception 
when others =>  MONITOR. END_BL0CK(...) ;   raise; 

The parameters of this call are the same as for END_TASK, except that the local DEPENDENT_IDS 
variable takes the place of ALL.DEPENOENTS. 

Correspondence: The added text does not correspond to any code in P3. 

Notes: 
These transformations ensure that the END_BL0CK entry is called before the block is left, even if 
exceptions are raised or propagated in exception handlers. Not all of these transformations are done 
by the current pre-processor. 

4.5 FUNCTION CALLS IN TASKING STATEMENTS 

The transformations in pass 4 are inadequate when parameters of tasking statements contain 
function calis since evaluation of these parameters might also involve tasking. 

Example of inadequacy: 

ft 

- - 
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P4: 

function  F1(ARG   :   in  INTEGER)   return   INTEGER  is 
T3   :   SOME_TASK_RECORD_TYPE; 

begin 
-- Body of F1. 

end Fl; 

T1.E2(F1(X)); 

function  F1(MY_ID   :   in  TASK_ID;   ARG 
T3   :   SOME_TASK_RECORD_TYPE: 
DEPENOENT_IDS   :   ID_PTR; 

in  INTEGER)   return  INTEGER is 

begin 
MONITOR.NEW.TASK(...); 
MONITOR.A0D_DEPEN0ENT(...); 
T3.TASK._OBJ.SET_ID(...); 
... — Previous body of Fl. 
MONITOR.END_BLOCK(MY_ID,   DEPENDENT_IDS.   DEADLK_FLAG); 

end Fl; 

MONITOR.CALLING(MY_IO.   Tl.ID,   "E2"); 
— A 

T1.TASK_0BJ.E2(MY_ID,   F1(MY_ID,   X)); 

At point A in the above example, the executing task is in status Calling in the monitor's picture (calling 
T1). However, when the call to F1 is executed, this executing task could also be put into status 
Block_Waiting waiting for tasks dependent on F1 to terminate. Currently, this will confuse the 
monitor and may lead it to falsely detect a global blocking situation, or not detect an actual one. The 
preprocessor therefore moves all function calls out of tasking statements. This requires additional 
temporary variables to hold the values of parameter expressions and intermediate values. 

Example: 

P4: 

MONITOR.CALLING(MY ID. Tl.ID, "E2"); 
T1.TASK_0BJ.E2(MY_ID. F1(MY_ID, X)); 

PS: 

TEMPI :« F1(MY_ID, X); 
MONITOR.CALLING(MY_ID. Tl.ID, 
T1.TASK_0BJ.E2(MY_ID, TEMPI); 

•E2"); 

Correspondence: The added assignment statements do not correspond to code in PA. However, 
code of the function bodies executed during the evaluation of the right sides of these statements will 
correspond to code in PA. 
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5. EVASIVE ACTION 

A task may be programmed to take evasive action to avoid a deadness error detected by a monitor. In 
this chapter, we outline three techniques for programming evasive action in Ada. These techniques 
rely on Ada exception propagation and implementation defined pragmas. The implementation 
defined pragmas are used solely to facilitate the preprocessing of evasive action text. Exception 
propagation is assumed to be the method used by a monitor to trigger evasive action (see note 
below). Exceptions signifying the detection of different kinds of dead states are assumed to be 
declared in the visible part of the MONITOR_DATA_PACKAGE. 

Example: 

GLOBAL_BLOCKING, CIRCULAR_DEADLOCK, 
DEPENDENTS.BLOCKED, LOCAL_BLOCKING : exception; 

The monitor will propagate an exception to the task whose intended direct status change completes a 
dead state. The task receiving the exception may be no more responsible for the dead state than any 
other task in the system, however its communication to the monitor caused a dead state to appear in 
the monitor's picture. In more sophisticated monitoring systems, exceptions may be propagated to 
other tasks as well as the "final" one. 

The three evasive action paradigms are simply templates. The programmer must predict what dead 
states are possible and include exceptions handlers to take appropriate action. We expect that 
different applications will require radically different evasion strategies. 

Note: 
Due to deficiencies in the Adam compiler, our present monitor uses parameters, DEADLK_FLAG, 
ir.ötead of exceptions to indicate dead states. However it is a straightforward exercise to replace the 
present parameter-based implementation by the (preferred) exception propagation techniques 
outlined here. Somewhat more sophisticated query facilities than are implemented in our present 
monitor may be needed. An un-preprocessed evasive action program must use the 
MONITOR_DATA_PACKAGE if it is to be a legal Ada83 program so that the new exceptions are visible. 

5.1 PASSIVE EVASION 

Passive evasion is appropriate when a dead state arises because of a scarcity of resources. A task 
undertaking passive evasion "backs up" its computation and releases recently acquired resources. 
This allows other tasks to obtain the resources and (hopefully) complete their computations. 

Programming passive evasion simply requires placing a suspect tasking statement in a local block 
with an exception handler containing the evasive action; resources are released and control is 
returned to an appropriate previous point. The pragma, PASSIVE_EVASION results in insertion of the 
correct monitor call during preprocessing. 
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Example 

ORIGINAL PROGRAM P BEFORE PREPROCESSING: 

<<CHECK_POINT» 

RES0URCE1.REQUEST; 
•   •   • 
begin 

RES0URCE2.REQUEST; 
exception 

when GLOBAL_BLOCKING  => 
pragma PASSIVE_EVASION; 

end; 

RESOURCE 1.RELEASE; 
goto CHECKPOINT; 

Save computation state here in order to retry if 
evasive action is taken. 

Local block surrounding suspect statement. 
This call is suspect and may 
lead to GLOBAL_BLOCKING 

The pragma is recognized by 
the preprocessor; a monitor call to 
UNBLOCK will be inserted. 
Restore saved computation prior 
to evasive action. 
evasive action: release resource 1. 
Try again. 

RESULTING PREPROCESSED PROGRAM P': 

«CHECK  POINT» 
— Save computation. 

MONITOR.CALLING(MY_ID, RES0URCE1.ID, "REQUEST"); 
RES0URCE1.TASK.OBJ.REQUEST(MY_ID); 

begin 
MONITOR.CALLING(MY_ID,   RES0URCE2.ID,   "REQUEST"); 
RES0URCE2.TASK_0BJ.REQUEST(MY_ID); 

exception 
when GL0BAL_BL0CKING  •> 

MONITOR. UNBLOCK(MY_ID);        —  "Take back" intended call to RESOURCE2. 
... — Restore saved computation. 
MONITOR.CALLING(MY_ID.   RES0RCE1.ID,   "RELEASE"); 
RES0RCE1.TASK_OBJ.RELEASE(MY_ID); 
goto CHECKPOINT; 

end; 

5.2 ACTIVE EVASION 

A task taking active evasion continues with its execution after interacting with another task. This 
interaction is intended to free up the other task, thus avoiding the dead state. 

The task receiving the exception will issue an entry call, accept an entry, or abort another task based 
on information received from the monitor (Section 3.4.3). If the dead state is a circular deadlock, then 
accepting an entry call may be appropriate action. If the dead state involves the inability to leave an 
inner block, then aborting a dependent task may be necessary. 
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Example of Evasion of Circular Deadlock: 

ORIGINAL PROGRAM P BEFORE PREPROCESSING: 

«L» 
begin 

T1.E(...) 
exception 

when CIRCULAR_DEADLOCK  •> 
pragma ACTIVE.EVASION; 

• - This call may complete a dead state. 

--  This pragma inserts a call to UNBLOCK. 
pragma CIRCULAR_DEADLOCK_QUERY(MY_ID,   CALLED_ENTRY); 
— This pragma inserts a call to a monitor query entry for circular deadlock; as a 
— result, CALLED_ENTRY is bound to the entry of MYJD called in the circular 
— deadlock. 
select 

when CALLED_ENTRY  -   "El"  »> 
accept E1(...) do 

or 

or 

end El; 

when CALLED_EMTRY  «  "E2"  •> 
accept E2(...) do 

end E2; 

end; 

end select: 
end; 
goto «L»; — Resume attempted computation. 

Note: 
The monitor query facility used in the example could easily be provided in our current monitor 
implementation. The resumed computation may have to repeat the evasion since the task in the circle 
of calling tasks may not be the first task in the entry queue. 

5.3 CATASTROPHE 

In a catastrophe there is no hope of "the offending task(s)" continuing to function usefully. If this 
kind of error is signalled the offender will simply report diagnostics and possibly transmit warnings to 
other tasks in the program. The reporting can be directed by "querying" the monitor. 

Example: 

task body T is 

begin 

MONITOR.CALLING(MY_ID,   S_ID,   "E"); 
S.E; 
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exception 
when GLOBAL BLOCKING  => 

end T; 

-- Report local conditions and then die 
— gracefully; do not continue. 
— The monitor will automatically give a 
-- descriptionof the globally blocked state. 

^k~4 
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6. EXAMPLES 

In this chapter we give examples of the preprocessing transformation, of the monitor's diagnostic 
output describing deadness errors, and of evasive action. 

6.1 A DINING PHILOSOPHERS PROGRAM 

The following example is the version of the dining philosophers problem with a potential blocking 
error given by Hoare in his paper on Communicating Sequential Processes. The example gives the 
original Ada text, the preprocessed text, and diagnostics from the monitor describing the blocking 
error when it occurred. 

Blocking can occur as follows. 

All five philosophers can enter the room, sit down at the table and pickup one fork. All 
forks will then be in Accepting status waiting for a PUTOOWN, while all philosophers will be 
in Calling status having called PICKUP for their second fork. The table will be waiting for 
either of its entries to be called. 

Whether or not this situation will happen depends on the underlying scheduling. The error may never 
occur or may occur almost immediately, depending on the run-time task supervisor. This is illustrated 
by the delay statements in the Philosopher task body. If the delay before picking up the second fork is 
removed, the blocked state will never occur when the program is run with the task supervisor package 
in the standard Adam environment [4]; with this delay, the tasks block before any philosopher eats. 

with DTTY_IO; 
use    DTTY_IO; 

procedure ROOM is 
pragma MAIN; 

task type FORK is 
entry PICKUP; 
entry PUTOOWN; 

end  FORK; 

task TABLE is 
entry SITDOWN(I 
entry GETUP(I   : 

end TABLE; 

•- The cast of actors: FORKS, 
-  PHILOSOPHERS, and TABLE. 

:   out  INTEGER); 
in  INTEGER); 

• • 

task type PHILOSOPHER; 

type SET_OF_FORKS is array (0   ..  4) of FORK; 
FORKS   :   SET_0F_F0RKS; 

— The scripts: the bodies of the actors. 

task body FORK is 
begin 

loop 
accept PICKUP; 
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accept PUTOOWN; 
end loop; 

end FORK; 

task body TABLE  is 

type SEAT_ARRAY is array  (0   ..   4)  of BOOLEAN; 
SEATS   :   SEAT_ARRAY   :=   (others  =>  TRUE); 

- - True means unoccupied. 
begin 

loop 
select 

accept SITDOWN(I   :   out  INTEGER)  do 
for J  in 0. .4 loop 

I   :» J; 
exit when SEATS(J); 

end loop; 
SEATS(I)   :=«   FALSE; 

end; 
or 

accept GETUP(I   :   in   INTEGER)  do 
SEATS(I)   :=•  TRUE; 

end; 
end select; 

end loop; 

end TABLE; 

task body PHILOSOPHER is 
SEAT : INTEGER; 

begin 
loop 

delay 1; 
TABLE.SITDOWN(SEAT); 
FORKS(SEAT).PICKUP; 
delay 2; 

-- Delays are for thought. If a large enough 
— - delay is placed between picking up the 
-- two forks then the blocked state occurs; 
— // not, the philosophers don't block. 

FORKS((SEAT+l)   mod  5).PICKUP; 
— This illustrates the dependence of 
— the error on the run-time supervision. 

delay  1; 
FORKS(SEAT).PUTDOWN; 
FORKS((SEAT+l) mod 5).PUTOOWN; 
TABLE.GETUP(SEAT); 

end loop; 
end PHILOSOPHER; 

SOCRATES, PLATO. ARISTOTLE. MARX. RUSSELL : PHILOSOPHER; 

begin 
null; 

end ROOM; 

— The five forks, five philosophers, and the 
•- table are all activated at this point. 
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6.1.1 THE PREPROCESSED AIO MONITORED DINING PHILOSOPHERS 

The source code of the Dining Philosophers program after preprocessing is given. The reader should 
compare this version with the original text in Section 6.1 and with the descriptions of preprocessing in 
Chapter 4. The number of statements inserted by preprocessing is a function jf the number of 
original tasking statements. Here, since the dining philosophers example consists mainly of tasking 
statements, the output program is significantly longer. 

with MONITOR_DATA_PACKAGE; use M0NITOR_DATA PACKAGE; 
with DTTY 10: 
use DTTY_I0; 
—  The cast of actors: FORKS, PHILOSOPHERS, and TABLE. 
procedure    R00H    is 

task MONITOR is 

end; 
task body MONITOR is 

end MONITOR; 
The MONITOR task described in Section 3. 

pragma MAIN; 
— Variables and new type declarations are inserted by pass 1, (Section 4.1) 
— to introduce task ids; compare with declarations in Section 6.1. 
MY_ID 
DEPENDENT_IDS 
ALL_DEPENDENTS 
DEADLOCK FLAG 

constant TASK_ID 
ID_PTR; 
ID_PTR; 
BOOLEAN; 

0; 

task type F0RK_TASK is 
entry SET_ID      (N 
entry  PICKUP       (CALLER_ID 
entry  PUTDOWN     (CALLER_ID 

end F0RK_TASK; 

in TASK_ID); 
in TASK_ID); 
in  TASK_ID); 

type FORK is 
record 

TASK.OBJ 
ID 

end record: 

F0RK_TASK; 
TASK_ID :* NULL_TASK; 

task type TABLE_TASK is 
entry SET_ID      (N 
entry  SITDOWN     (CALLER_ID 
entry GETUP (CALLER  ID 

end TABLE TASK; 

in  TASK_ID); 
in  TASK_ID;   I 
in  TASK.ID;   I 

out  INTEGER); 
in   INTEGER): 

type TABLE.RECORO is 
record 

TASK_0BJ   :   TABLE.TASK; 
ID :   TASK_ID   :-  NULL_TASK; 

end record; 

TABLE   :   TABLE.RECORO; 
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task type PHILOSOPHER_TASK is 
entry SET_ID(N   :   in TASK_ID); 

end; 

type PHILOSOPHER is 
record 

TASK_OBJ   :   PHILOSOPHER_TASK; 
10 :   TASK_ID   :»  NULL_TASK; 

end record; 

type SET_0F_F0RKS is array (0  .. 
FORKS   :   SET_OF_FORKS; 

—  The scripts: the bodies of the actors. 

4)  of  FORK; 

task body F0R«_TASK is 
MY_ID 
DEPENDENT_ID 
ALLJDEPENDENTS 
OEAOLOCK.FLAG 

begin 
accept SET_ID(N 

MY_ID   :»  N; 
end; 

loop 

TASK_ID   :=  NULL_TASK; 
ID_PTR; 
ID_PTR; 
BOOLEAN; 

in TASK_ID) do 
— Task waits until its ID is initialized 
— (Section 4.1) 

MONITOR.ACCEPTING(MY_ID, "PICKU", DEADL0CK_FLAG); 
accept PICKUP(CALLER_IO : \n  TASK_ID) do 

MONITOR.START_RENDEZVOUS(CALLER_ID, MY ID, "PICKU"); 
MONITOR.END_RENDEZVOUS(CALLER_ID, MY_ID, "PICKU"); 

end; 

MONITOR.ACCEPTIMG(MY_ID, "PUTDO", DEADLOCK_FLAG); 
accept PUTDOWN(CALLER_ID : in TASK_ID) do 

MONITOR.START_RENDEZVOUS(CALLER_ID, MY_ID. "PUTDO"); 
MONITOR.END_REN0EZV0US(CALLER_I0, MY_lÖ. "PUTDO"); 

end; 

end loop; 

MONITOR.END_TASK(MY_ID. ALL DEPENDENTS, DEADLOCK FLAG); 
end F0RK_TASK; 

task body TABLE.TASK Is 
MY_ID 
DEPENDENT^IDS 
ALL_DEPENDENTS 
DEADLOCKFLAG 

TASK_ID :« NULL.TASK; 
ID_PTR; 
ID_PTR; 
BOOLEAN; 

type SEAT.ARRAY is array (0   ..  4) of BOOLEAN; 
SEATS   :   SEAT.ARRAY   :«  (others «>  TRUE); 

begin 
accept SET_ID(N  :   in TASK_ID)  do 

MY_ID   :•  N; 
end; 

--*•-• 
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declare 
TEMP_1 BOOLEAN = TRUE; 
TEMP_2 BOOLEAN = TRUE; 
TEMPJJELAY BOOLEAN = FALSE; 
TEMP_TERMINATE BOOLEAN = FALSE; 
ENTRY_LIST ENTRY   PTR = null; 

end 
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If not TEMP_OELAY then 
if TEMP_1  then 

ENTRYJ.IST   :*  new  ENTRY_REC(NAME   »>   "SITDO", 
NEXT   =>   ENTRY_LIST); 

end if; 
if TRUE then 

ENTRYJ.IST   :»  new  ENTRY_REC(NAME   =>"GETUP", 
NEXT   »>   ENTRYJ.IST); 

end if; 
MONITOR.SELECTING(MY_ID,   ENTRY_LIST,   TEMP_TERMINATE; 

ALL_DEPENDENTS.   DEADLOCK_FLAG); 
end if; 
select 

when TEMP_1  »> 
accept SITDOWN(CALLER_ID   :   in  TASK_ID; 

I :  out  INTEGER)  do 
MONITOR.START_RENDEZVOUS(CALLER_ID,   MY_ID."SITDO"); 
for J in 0   ..   4 loop 

I  :» J: 

exit when SEATS(J); 

end loop; 
SEATS(I)   :»  FALSE; 
MONITOR.END_RENDEZVOUS(CALLER_ID,   MY_I0,   "SITDO"); 

end; 

or 
when TEMP_2 -> 
accept GETUP(CALLER_ID   :   in  TASK_ID; 

I       :   in  INTEGER)  do 
MONITOR.START_RENDEZVOUS(CALLER_ID,   MY_ID,"GETUP"); 
SEATS(I)   :»  TRUE; 
MONITOR.END_RENDEZVOUS(CALLER_ID.   MY_ID,"SITDO"); 

end; 

end select; 

end loop; 

MONITOR.END_TASK(MY_ID,   ALL.DEPENDENTS.   DEADLOCK.FLAG); 
end TABLETTASK; 

task body PHILOSOPHER.TASK is 
MY_ID :   TASK.ID   :«  NULL_TASK; 
DEPENOENT_IDS       :   ID_PTR; 
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ID_PTR; 
BOOLEAN; 
INTEGER; 

in TASK_ID) do 

ALL_DEPENOENTS 
DEADLOCK_FLAG 
SEAT  • 

begin 
accept SET_ID(N 

MY_ID := N; 
end; 
loop 

delay 1; 

MONITOR.CALLING(MY_ID, TABLE.ID. "SITDO". DEADLOCK_FLAG); 
TABLE.TASK_OBJ.SITDOWN(MY_ID,SEAT); 

MONITOR.CALLING(MY_ID, FORKS(SEAT).ID, "PICKU",DEADLOCK_FLAG); 
FORKS(SEAT).TASK_OBJ.PICKUP(MY_ID); 
delay 2; 

MONITOR.CALLING(MY_ID, F0RKS((SEAT+1) mod 5).ID, "PICKU", 
DEADLOCK_FLAG); 

F0RKS((SEAT+1) mod 5).TASK_OBJ.PICKUP(MY_ID); 
delay 1; 

MONITOR.CALLING(MY_ID. FORKS(SEAT).ID, "PUTDO", DEADLOCK_FLAG); 
FORKS(SEAT).TASK_OBJ.PUTDOWN(MY_ID); 

MONITOR.CALLING(MY_ID, FORKS((SEAT+1) mod 5).ID, "PUTDO". 
DEADLOCK_FLAG); 

FORKS((SEAT+1) mod 5).TASK_OBJ.PUTDOWN(MY_ID); 

MONITOR.CALLING(MY_ID, TABLE.ID, "GETUP", DEADLOCK_FLAG); 
TABLE.TASK_OBJ.GETUP(MY_ID, SEAT); 

end loop; 

MONITOR.END_TASK(MY_ID, ALL_DEPENDENTS, DEADLOCK_FLAG); 
end PHILOSOPHER_TASK; 

SOCRATES PHILOSOPHER 
PLATO PHILOSOPHER 
ARISTOTLE PHILOSOPHER 
MARX PHILOSOPHER 
RUSSELL PHILOSOPHER 

begin 

— Monitor calls inserted by pass 2 (Section 4.2) to initialize all task ids in task records, 
— and track task dependencies (Section 4.3) 

MONITOR.NEWTASK("TABLE",   TABLE.ID); 
MONITOR.ADD_DEPENDENT(MY_ID.   TABLE.ID,   DEPENDENT_IDS.   ALL_DEPENDENTS); 
for MON_ll  in 0  ..  4 loop 

MONITOR.NEWTASK("FORKS". F0RKS(M0N_I1).ID); 
MONITOR.ADD_DEPENDENT(MY_ID, DEPENDENT_IDS. r0RKS(M0N_Il).ID); 

end loop; 
MONITOR.NEWTASK("SOCRA", SOCRATES.ID); 
MONITOR.ADD_DEPENDENT(MY_ID,SOCRATES.ID,DEPENDENT_IDS,ALL_DEPENDENTS); 
MONITOR.NEWTASK("PLATO", PLATO.ID); 

 •• *• - ' 
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MONITOR.ADD_DEPENDENT(MY_ID, PLATO.ID, DEPENDENT_IDS. ALL_DEPENDENTS); 
MONITOR.NEWTASK("ARIST", ARISTOTLE.ID); 
MONITOR.ADD_DEPENDENT(MY_ID,ARISTOTLE.ID,DEPENDENT_IDS,ALL_DEPENDENTS); 
MONITOR.NEWTASK("MARX », MARX.ID); 
MONITOR.ADD_DEPENDENT(MY_ID, MARX.ID, DEPENDENT_IDS, ALL_DEPENDENTS); 
MONITOR.NEWTASK("RUSSE", RUSSELL.ID); 
MONITOR.ADD_DEPENDENT(MY_ID, RUSSELL.ID. DEPENDENT_IDS, ALL_DEPENDENTS); 

— SETJD calls to inform each task of its ID inserted by pass 2 (Section 4.2). 

TABLE.TASK_OBJ.SET_ID(TABLE.ID); 
for MON_11 in 0   . .   4 loop 

FORKS(MON_Il).TASK_OBJ.SET_ID(FORKS(MON_Il).ID); 
end loop; 
SOCRATES.TASK_0BJ.SET_ID(SOCRATES.ID); 
PLATO.TASK OBJ.SET_ID(PLATO.ID); 
ARISTOTLE.TASK_OBJ.SET_ID(ARISTOTLE.ID); 
MARX.TASK_0BJ.SET_ID(MARX.ID); 
RUSSELL.TASK_OBJ.SET_ID(RUSSELL.ID); 

null; 

MONITOR.END_TASK(MY_ID, ALL_DEPENDENTS, DEADLOCK_FLAG); 
end ROOM; 

6.1.2 DIAGNOSTIC DESCRIPTION OF THE DINING PHILOSOPHER'S DEAD STATE 

Below is the description of a global blocking state given by the monitor. 

Key: In descriptions of Accepting status, each entry name is followed by it's queue size (an integer) 
and a " *" if the task is in a status accepting that entry. 

••MON»*  GLOBAL DEADNESS HAS BEEN DETECTED 
••MON»*   TASK INFORMATION 

0 MAIN is Block_Waiting on 11 tasks. 
Its entries are: 

<N0NE> 
Its father is: -1 

— This description indicates that the table task is in Accepting status, 
— - accepting either entry, and neither entry has been called. 

1 TABLE   is accepting 
Its entries are: 

SITDO(0*) GETUP(0«) 
Its father 1s: 0 

-- Fork indicated as task 2 is in status accepting PUTDOWN which has no callers, 
— while some task has called PICKUP. 

2 FORKS  1s accepting 
Its entries  are: 

iat£n   _1—   
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PUTDO(0»)      PICKU(l) 
Its  father  is:  0 

3 FORKS is accepting 
Its entries are: 

PUTDO(0») PICKU(l) 
Its father 1s: 0 

4 FORKS is accepting 
Its entries are: 

PUTOO(O') PICKU(l) 
Its father is: 0 

5 FORKS is accepting 
Its entries are: 

PUTDO(0») PICKU(l) 
Its father 1s: 0 

6 FORKS Is accepting 
Its entries are: 

PUTDO(0») PICKU(l) 
Its father Is: 0 

-- SOCRATES is task 7; it has called task 3 (a fork) entry PICKUP; 
— we can see above that task 3 is accepting PUTDOWN. 

7 SOCRA 1s calling task number 3 at entry PICKU 
Its entries are: 

<NONE> 
Its father Is: 0 

8 PLATO 1s calling task number 4 at entry PICKU 
Its entries are: 

<NONE> 
Its father 1s: 0 

9 ARIST 1s calling task number 5 at entry PICKU 
Its entries are: 

<NONE> 
Its father is: 0 

10 MARX ft calling task number 6 at entry PICKU 
Its entries are: 

<NONE> 
Its father Is: 0 

11 RUSSE 1s calling task number 2 at entry PICKU 
Its entries are: 

<NONE> 
Its father 1s: 0 

••MON** end of dead state description. 

A-L 
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6.2 THE EVASIVE ACTION PHILOSOPHER TASK 

The following is an example of a philosopher task with additional evasive action capability. If the task 
receives a warning from the monitor after informing it that the next action is to pickup its right hand 
fork, the evasive action will be to putdown the lefthand fork. It will then attempt to eat again as before. 

This can be programmed using Paradigm 1, Section 5. It is assumed that this source text will be 
preprocessed and monitor calls placed as usual, including the evasive action text. 

task body PHILOSOPHER is 
SEAT   :   INTEGER; 

begin 
loop 

delay 1; 
TABLE.SITDOWN(SEAT); 
FORKS(SEAT).PICKUP; 
delay 1; 
begin 

- - This call might propagate GLOBAL_BLOCKING. — see Note below. 
F0RKS((SEAT+1)  mod 5).PICKUP; 

exception 
when GLOBAL_BLOCKING •> 

FORKS(SEAT).PUTDOWN;   -- Evasive action: put down left 
— hand fork. 

FORKS(SEAT) .PICKUP;     —  Try to pick up both forks again. 
F0RKS((SEAT+1)  mod 6).PICKUP; 

— May get same error again here. 
end; 
delay 1; 
FORKS(SEAT).PUTDOWN; 
F0RKS((SEAT+1) mod 5).PUTDOWN; 
TABLE.GETUP(SEAT); 

end loop; 
exception 

— The evasive action did not solve the problem, so give diagnostics and terminate. 
when GLOBAL.BLOCKING  >> 

end PHILOSOPHER; 

Note on Example: 
When this text is preprocessed, all tasking statements including those in the exception handler will be 
monitored. Thus the exceptional behavior may also result in a monitor error message. In this case, 
the outermost exception handler will be executed. This handler would probably contain calls to the 
monitor to print diagnostics. 

Since the Adam compiler does not implement exception propagation during task rendezvous (e.g. 
rendezvous with the monitor task), evasive action in our experiments is programmed using monitor 
calls and the value of a parameter, MON_DEAD_FLAG. The evasive action has to be inserted after the 
program has been preprocessed since we do not want the evasive action monitor calls to be 
monitored. 
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8.2.1 TEXT OF AN EVASIVE ACTION PHILOSOPHER AFTER PREPROCESSING. 

task  body PHIL0S0PHER_TASK is 
MY_ID 
DEPENDENT_IDS 
ALL_DEPENDENTS 
SEAT 

begin 
accept SET_ID(N 

MY_ID   :»  N; 
end; 
loop 

delay 1; 

TASK_ID := NULL_TASK; 
MONITOR_DATA_PACKAGE.ID_PTR; 
MONITOR_DATA_PACKAGE.ID_PTR; 
INTEGER; 

in TASK_ID) do 

MONITOR.CALLING(MY_ID, TABLE.ID, "SITDO". DEADLOCK_FLAG); 
TABLE.TASK_OBJ.SITDOWN(MY_ID,SEAT); 

MONITOR.CALLING(MY_ID,   FORKS(SEAT).ID,"PICKU".   DEADLOCK_FLAG); 
FORKS(SEAT).TASK_OBJ.PICKUP(MY_ID); 
delay 1; 
— This call is suspect and may require evasive action. 

MONITOR.CALLING(MY_ID,   F0RKS((SEAT+1)  mod  5).ID,   "PICKU". 
DEADLOCK_FLAG); 

— Passive evasive action: release resources and then retry. 
if DEADLOCK.FLAG then 

MONITOR.TRACE(ALL^TASKS,   TRUE); 
— Inform monitor of intended evasion. 
MONITOR.UNBLOCK(MY_ID); 

MONITOR.CALLING(MY_ID,FORKS(SEAT).ID,"PUTDO",DEADLOCK_FLAG); 
FORKS(SEAT).TASK_0BJ.PUTDOWN(MY_ID); 

MONITOR.CALLING(MY_ID,FORKS(SEAT).ID,"PICKU".DEADLOCK_FLAG); 
FORKS(SEAT).TASK_OBJ.PICKUP(MY_ID); 

MONITOR.CALLING(MY_ID.   F0RKS((SEAT+1)  mod  5).ID,"PICKU", 
DEADLOCK_FLAG); 

end if; 

F0RKS((SEAT+1)  mod  6) .TASK_OBJ".PICKUP(MY_ID); 
delay 1; 

MONITOR.CALLING(MY_ID,   FORKS(SEAT).ID."PUTDO".   DEADLOCK_FLAG); 
FORKS(SEAT).TASK_OBJ.PUTDOWN(MY_ID); 

MONITOR.CALLING(MY   ID.   F0RKS((SEAT+1)  mod  6).ID.   "PUTDO". 
DEADLOCK_FLAG); 

F0RKS((SEAT+1)  mod 5),TASK_OBJ.PUTDOWN(MY_ID); 

MONITOR.CALLING(MY_ID.   TABLE.ID,   "GETUP".   DEAOLOCK.FLAG); 
TABLE.TASK_0BJ.GETU>(MY_ID.SEAT); 

end loop; 

*•-' 
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MONITOR.END_TASK(MY_ID,   MON_DEPEND_ID.   DEADLOCK_FLAG); 
end  PHILOSOPHER_TASK; 

6.2.2 ACTION OF DINING PHILOSOPHERS WITH EVASIVE ACTION 

Below is a trace of activity by the evasive version of the dining philosophers. First the monitor 
description of an imminent dead state is given. A philosopher task is warned, and a trace of its 
evasive action and subsequent "normal" activity then follows. 

Key: See Example 6.1. 

••MON« GLOBAL DEADLOCK HAS BEEN DETECTED 
••MON"   TASK INFORMATION 
0 MAIN is Block_Waiting on 11 tasks. 

Its entries are: 
<NONE> 

Its father is: -1 

1 TABLE 1s accepting 
Its entries are: 

SITDO(0*)  GETUP(0*) 
Its father is: 0 

•      2 FORKS is accepting 
Its entries are: 

PUTDO(0") PICKU(l) 
Its father 1s: 0 

3 FORKS Is accepting 
Its entries are: 

PUTDO(0»)  PICKU(l) 
Its father is: 0 

4 FORKS Is accepting 
Its entries' are: 

PUTDO(0»)  PICKU(l) 
Its father 1s: 0 

5 FORKS Is accepting 
Its entries are: 

PUTDO(0") PICKU(l) 
Its father is: 0 

6 FORKS 1s accepting 
Its entries are: 

PUTDO(0*) PICKU(l) 
Its father Is: 0 

7 SOCRA is calling task number 3 at entry PICKU 
Its entries are: 

(MR) 
Its father is: 0 
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8 PLATO is calling task number 4 at entry PICKU 
Its entries are: 

<NONE> 
Its father is: 0 

9 ARIST is calling task number 5 at entry PICKU 
Its entries are: 

<NONE> 
Its father is: 0 

10 MARX is calling task number 6 at entry PICKU 
Its entries are: 

<NONE> 
Its father is: 0 

— RUSSELL will be the philosopher task receiving the monitor warning. 

11 RUSSE is calling task number 2 at entry PICKU 
Its entries are: 

<NONE> 
Its father is: 0 

**MON*" end of dead state description. 

••TRC** call of monitor entry CALLING. 

The consumer is 11[RUSSE]. The server is 6[FORKS]. The entry is [PUTDO], 

— This indicates that RUSSELL is taking evasive action and is putting down the lefthand fork 
— instead of attempting to pick up the righthand fork. Note that the monitor call to UNBLOCK 
— indicating evasive action, is not traced, but must already have been called so that the 
— monitor's "picture" is correct. 

••TRC** call of monitor entry START_REMDEZVOUS. 
The consumer is 11[RUSSE]. The server is 6[FORKS], The entry is [PUTDO], 

••TRC** call of monitor entry ENO_RENDEZVOUS. 
The consumer is 11[RUSSE]. The server is 6[FORKS]. 

— RUSSELL has now put down his left fork. 

••TRC** call of monitor entry CALLING. 
The consumer is 11[RUSSE]. The server is 6[FORKS]. The entry is [PICKU], 

— RUSSELL now attempts to pickup the lefthand fork againl 
— However he will be behind MARX on the entry queue. 

••TRC" call   of monitor entry ACCEPTING. 
The server  is 6[F0RKS].   The entry  is[PICKU]. 

— A FORK, task 6, is the only unblocked task. 

••TRC** call of monitor entry START_RENDEZVOUS. 
The consumer is 10[MARX ]. The server is 6[FORKS]. The entry is [PICKU], 
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— Now MARX can pickup his righthand fork, which was RUSSELL's lefthand fork. 

••TRC** call of monitor entry END_REN0EZV0US. 
The consumer is 10[MARX ]. The server is 6[F0RKS]. 

••TRC»* call of monitor entry ACCEPTING. 
The server is 6[F0RKS]. The entry is [PUTDO]. 

••TRC** call of monitor entry CALLING. 
The consumer is 10[MARX], The server is 5[F0RKS]. The entry is [PUTDO]. 

— Now MARX is finished eating and prepares to put down his forks. 

••TRC** call of monitor entry START_RENDEZVOUS. 
The consumer is 10[MARX]. The server is 5[F0RKS]. The entry is [PUTDO]. 

••TRC** call of monitor entry END_RENDEZVOUS. 
The consumer is 10[MARX]. The server is 5[F0RKS]. 

••TRC** call of monitor entry CALLING. 
The consumer is 10[MARX]. The server is 8[F0RKS]. The entry is [PUTDO]. 

••TRC** call of monitor entry ACCEPTING. 
The server is 5[F0RKS]. The entry is [PICKU]. 

••TRC** call of monitor entry START_RENDEZVOUS. 
The consumer is 10[MARX]. The server is 6[FORKS]. The entry is [PUTDO]. 

••TRC** call of monitor entry END_RENDEZVOUS. 
The consumer is 10[HARX]. The server is 6[FORKS]. 

••TRC** call of monitor entry CALLING. 
The consumer is 10[HARX]. The server is 1[TABLE]. The entry is [GETUP]. 

••TRC** call of monitor entry ACCEPTING. 
The server is 6[F0RKS]. The entry is [PICKU]. 

••TRC** call of monitor entry START_RENDEZVOUS. 
The consumer is 9[ARIST]. The server is 5[F0RKS]. The entry is [PICKU], 

— ARISTOTLE gets his righthand fork and starts eating. 

••TRC** call of monitor entry START_RENDEZVOUS. 
The consumer is 10[MARX]. The server is l[TABLE]. The entry is [GETUP], 

— Now MARX has left the table. 

The trace output continues on indefinitely. 

dM 
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7. CONCLUSIONS AND FURTHER RESEARCH 

Implementation of this experimental deadness monitor required half a man-year effort after the basic 
principles had been formulated. During implementation, many of our initial ideas were extended or 
modified in order to detect different kinds of errors, to account for complexities in the Ada language 
and its tasking semantics, that had been overlooked initially, and to provide useful diagnostics. An 
initial implementation as part of a run-time task supervisor package would have been a formidable 
project. 

Experiments with the monitor indicate that these run-time techniques are indeed practical. A wide 
class of common tasking errors are detected and the diagnostic descriptions are useful. The monitor 
can be used simply as a debugging aid or it can be integrated permanently into a tasking system to 
support evasive action and reconfiguration of threads of control. 

For use in debugging, it was easy to implement a version of the monitor with interactive facilities. 
Using this monitor, a programmer can "single step" through his program's task interactions. He can 
interactively request snapshots of the monitor's current picture, in addition to controlling output 
tracing the task rendezvous. This version, together with the present preprocessor, could be 
reimplemented to production quality standards; providing a useful additional component to Ada 
programming environments. 

Software reconfiguration (e.g. evasive action) provides an important alternative to expensive proofs of 
correctness for the construction of highly reliable tasking systems. Software reconfiguration is likely 
to be useful for purposes other than avoiding deadness errors, such as recovering from hardware 
failures and efficient run-time utilization of resources. For these applications the run-time overhead 
of monitoring should be studied. In the single CPU case, the overhead seems to be linear in the 
number of task interactions in most cases. However mathematical analysis is very much an open 
question especially in the multiple CPU case. 

Integration with run-time supervisors (also written in Ada) at some future time is clearly possible and 
not difficult. 

There are a number of areas where this work needs to be extended:' 

1. Detection of a wider range of deadness errors. Specifically, in future monitors these 
should include errors whereby some proper subset of tasks in a system becomes dead, 
and errors due to operations on shared global variables. (This last case will involve 
formal annotations recognizable by the monitor preprocessor.) 

2. Improvement of diagnostic descriptions, especially to pinpoint the source of errors 
in systems of dynamically allocated tasks. For example, the monitor currently describes a 
dynamically allocated task in terms of the accessed type. It would be far better to give the 
proper context when describing such tasks. For example, a binary tree of tasks could be 
described as: ROOT, ROOT. LEFT, ROOT .RIGHT, ROOT. LEFT. LEFT, etc. 

3. Improved user interface. Currently the programmer has no way to formally annotate 
the intended task interactions. Consequently, the monitor detects only those deadness 
errors that may be recognized on the basis of the syntax and semantics of Ada itself; no 
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knowledge about the program is used. Formal annotations at the task specification level, 
(e.g. path expressions) for describing which tasks are able to interact, and the order of 
their interactions, should be developed to enable the monitor to detect a wider class of 
errors. 

The debugging facilities of the monitor should be expanded to include command 
scheduling, where the programmer controls the order in which tasking statements are 
executed. Since deadness errors are often difficult to reproduce (especially on loosely 
coupled processors), this facility is expected to be very useful. Perhaps log files may be 
fed directly into future monitors, allowing the events leading to a deadness error to be 
replaced. 

4. Efficient run-time monitoring. The monitor system outlined here executes as a single 
task. This task may become a bottleneck when monitored programs are run on multi- 
processor systems. A distributed monitor design, where the monitor consists of multiple 
tasks, could alleviate the bottleneck. However, a distributed monitor would have more 
overhead due to inter-monitor communication and redundancy of data. These tradeoffs 
need to be examined further. Distributed monitor designs are currently under 
development 

'•"*—•*- 
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