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SECTION 1

INTRODUCTION AND SUMMARY

Phased arrays are attractive for troposcatter applications
because of their ECCM potential. In a non-hostile environment

these capabilities may be used to improve the system performance

(i.e., decrease the bit-error-rate or transmitter power) through

adaptive combining of the array element outputs. This report

examines the potential diversity gains which may be derived from

phased array antennas through adaptive combining. The perfor-

mance of phased arrays is compared with traditional diversity

types, such as space, frequency and polarization diversity.

Section 1 contains a summary of the key new results ob-

tained in this study. More details and additional results are

contained in the individual subsections. Section 2 describes the

basic propagation model used to determine the diversity perfor-

mance. Different diversity systems are discussed in Section 3,

where the equivalence between space and angle diversity is estab-

lished and a suitable measure of performance selected. Section 4

compares different orders of elevation and azimuth diversity.

Section 5 derives the performance of some suboptimum combiners,

including a new technique where only the K strongest diversity

ports are combined. Section 6 describes the effect of fading,

namely that only a finite time is available to measure the

channel for optimal combining. Section 7 briefly treats the

wideband case where additional diversity is derived from the

frequency selective fading of the channel. In Section 8 an

experiment is proposed to verify the results. The experiment is

configured so that it could be used as a transportable remote

Bsensing tool to get details about the atmospheric reflection and

scattering structure. Section 9 describes the computer program

used to obtain the troposcatter diversity results presented in

this report.
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1.1 TROPOSCATTER MODEL

Transhorizon propagation of microwave signals results from

turbulent scatter in the troposphere. In our analysis we assume

that turbulent scatter is the only mechanism present. The re-

ceived signals are assumed to be free of diffraction or partial

layer reflection components. The scattering is assumed iso-

tropic, so the strength of the scatter in a given direction

depends only on the scattering angle. The region of scatterers

which are illuminated by the receive and transmit antennas is

called the common volume. The signals scattered from various

sections of the common volume are assumed independent. The

received signal is the sum of a large number of scattered signals

which have different amplitudes, phases, and relative delays.

For a narrowband system the relative delays of the signals have

no effect and the signal experiences Rayleigh fading. To combat

this fading diversity is generally employed. In this case a

number of signals are present at the receiver. These signals are

*i correlated in general and the system performance depends on the

correlations as well as the powers of the various signals.

1.2 COMPUTATION OF TROPOSCATTER SYSTEM PERFORMANCE

The theoretical results we present were generated by a com-

puter program which performs a three-dimensional integration over

the common volume. The program determines the power received at

various relative delays and the correlation between diversity

ports. It includes the effect of the transmit and receive an-

tenna patterns, scatter angle and link geometry. The correla-

tions between diversity ports include the effect of antenna

'1 spacing and beam oatterns.

S{I1
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1.3 PERFORMANCE MEASURE

If the transmitted signal is narrowband then the received

signal on each diversity port is Rayleigh distributed. The

signals on various ports are correlated in general. The short-

term statistics of the N-diversity ports are determined by the

covariance matrix of the signal levels. Further, the system per-

formance under any performance measure is entirely determined by

the eigenvalues of the covariance matrix. The eigenvalues cor-
respond to independent fading components of the channel.

The performance measure we use is the Chernoff bound on the

average bit-error-rate (BER) of a digital communications system.

if i = 1, ... , n} are the eigenvalues then the Chernoff

bound is

N 1

The exact average BER for DPSK modulation is 40/2. Although we

use this performance measure throughout, the conclusions drawn

depend on the eigenvalues and so would remain valid for other

performance measures.

Systems are generally specified with a desired average

BER. To compare different systems we compare the required SNR

(i.e., transmit power required) for a given average error rate.

1.4 DIVERSITY PERFORMANCE BOUND

The best possible diversity system has equal-power indepen-

dent signals on its diversity ports. The Chernoff bound on the

BER for such a system is

01 N
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where X is the power on one port of the system. A graph of the

I required SNR (i.e., X required) to set 0 = 10-4 10-6 and 10 - 8

is given in Figure 1-1 for various orders of diversity. Note

that the initial SNR gains are large but that diminishing returns

are seen with higher order diversity. The magnitude of the gains

increases as the SNR gains from the diversity increase. For

00 = 10-8 the SNR gains are roughly doubled.

This bound may be achieved by adding receive apertures of

the same size which are spaced far enough apart.

1.5 DIVERSITY FROM ARRAY ANTENNAS

Diversity may be derived from phased arrays by dividing the

array into subapertures. The element outputs in each subaperture
are simply added together, and the subarray outputs may be com-

bined adaptively. We assume throughout that the receive and

transmit apertures are the same size. If the receive aperture is

subdivided, then the beamwidth of each subaperture is greater

than the entire array beamwidth, and the boresight gain of the

subapertures is less. The larger beamwidth decreases the

1 aperture-to-medium coupling loss, but the boresight gain also

decreases. In addition the subaperture signals are correlated.

These effects may be examined in terms of the correlation dis-

tance of the received signal.

The signals incident on different parts of the receive

aperture are correlated. For a given transmitter beamwidth, we

may define correlation lengths in the horizontal and vertical

directions, Lh and Lv. The correlation length is roughly the

distance by ,hich points must be separated to be uncorrelated.

(Lh and L. are given by the integral of the respective correla-

'"On functions divided by their maximum values.) If the array

dimensions are ah by av then the antenna gain is nominally

4 = 
4 ahaV

1-4
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However the receive coupling loss is roughly

a h  a vL c Lh  Lv

C h v

so the effective gain is

G 4 TrLhLv

L 2Lc  X2

ri j Hence subapertures of a large array may have the same effective

gain as the entire array. In addition the maximum order of

diversity achievable with a given size array is the number of

subarrays of dimension Lv x Lh.

It is helpful to examine these effects in terms of differ-

ent beams formed from the subarrays via a Butler matrix transfor-

mation.

1.5.1 Beam Transformation

A Butler matrix transformation of the subarray output

yields a set of beams. Each beam has the same beamwidth as the

entire array. The direction of boresight gain is different for
each beam, so the common volume of each beam is different. The
boresight of adjacent beams differ by one half the null beam-

ji width. Because the beams are orthogonal the signals on each beam

are effectively uncorrelated, and the power on each beam gives

_I one eigenva1ue of the system:

When subdivision of the array is examined in terms of cor-

relation distance, the maximum orde of diversity is known

approximately. However, it is difficult to see the benefit of

1-6



additional subdivisions near this maximum order. Under a beam

transformation additional beams receive less power because they

have larger scatter angles or do not intersect the transmit

antenna beam. So it is relatively easy to estimate the power
which would be received on additional beams.

1.6 ELEVATION ANGLE DIVERSITY
If a square array is subdivided into subsections which are

long in the horizontal dimension and short in the vertical direc-

tion, the vertical beamwidth of each subarray is greater than its
horizontal beamwidth. A beam transformation of these subarray

outputs yields a set of beams with different elevation angles.

As previously mentioned the beams are orthogonal and the bore-

sight of each beam falls at a null of all other beams.

The array is oriented such that the boresight of the lowest

beam is above the horizon. This beam has the lowest scatter

angle and so receives the most power. Higher elevation beams

receive progressively less power since the scattering angle

increases. So the additional eigenvalues from the upper beams

are less than the first eigenvalue and the diversity bound may

not in general be achieved. However, if the minimum scatter

angle is large relative to the beamwidth then the higher beams

receive almost the same power as the lowest beam and the bound

may be approached.

Calculations of the required SNR to achieve *0=i0 - 4 for

elevation diversity systems of orders 1 to 5 appear in Figure

1-2. The diversity bound is included for comparison. The

minimum scatter angle is 1.20 and the beamwidth of the array is

10 (3m x 3m at 5 GHz). The upper elevation beams receive little

power so little benefit is derived from them.

1-7



I 0 0
II - I

'4 4 -
r7II |oo

Li 0 n£

F::- 0 '0 4J 4)

r.r

I-ri

00
TO o 04-)

! 4-)I o

r i I- I .d

:3 9 0

L U OUI 0

E-4 P4O

r: a l r.P

,I1,,d k ,, ,

p U 0 W44-

GP) 0NS PaJlnb. I

= 1-.8



1.6.1 Elevation Diversity Approximation

If the beams are narrow relative to the scatter angle then

a simple approximation may be derived. This approximation leads

to new general expressions for elevation diversity performance.

For narrow beams the power on each beam depends on the

scatter angle at boresight. If 0 is the beamwidth and Omin is

the minimum scatter angle then the i-th beam boresight is

I1

= m + + (i-l)

i min 2 1

The received power goes as O- 1 1/3 so

'1' ] [ + -/3

1 1

where Xi is the power on the i-th beam. The resulting perfor-

mance from these eigenvalues is compared with those values

generated by the numerical common volume integration in Figure

1-2. The approximation agrees closely.

To continue the comparison Figure 1-3 contains curves of

diversity performance vs y where

1

is the ratio of the beamwidth to the boresight scatter angle of
the lowest beam. The curves were computed with various minimum

scatter angles and beamwidths. The approximation leads to the

following simple expression for 0O,

1-9
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n 1

Note that the average BER for DPSK is 0/2.

The results agree ve:y closely for small y, which is to be

expected since the beams were assumed narrow. If the receiver

and transmitter beamwidths are not narrow, then the -11/3 expon-

ent tends toward -5/3. Similar expressions can be derived in

this case but will not be considered here. Thus, the power

decreases less rapidly than the approximation would predict and

the actual performance is somewhat better (lower required SNR)

than the approximation. This is in fact the behavior observed in

Figure 1-3. The limiting performance with y=O achieves the

diversity bound. Section 4.1 contains the details of the eleva-

tion diversity results. Table 4-3 shows how good the simple

SJ approximation can be.

1.7 AZIMUTH ANGLE DIVER3ITY

If the array is divided into long vertical strips, then the

subarray beam patterns are broad in azimuth and narrow in eleva-

tion. The beams which result from a beam transformation thus

have different boresight azimuth angles. This interpretation
makes one key difference betwen azimuth and elevation diversity

very clear. Since the transmit and receive arrays have the same

beamwidths then some of the azimuth diversity beams do not inter-

W sect the transmit antenna beam. In contrast higher elevation

angle beams always intersect the transmit beam. Any beams not

intersecting the transmit antenna beam receive very little power

and so are of little benefit.

I-i



1.7.1 Azimi-th Diversity Performance Bound

One possible method to improve azimuth diversity perform-

ance is to broaden the transmit seam in azimuth. This may be

accomplished by transmitting with a subsection of the array. The

boresight gain of the transmitter decreases, but the receive

beams are illuminated more evenly. Because the boresight gain

must decrease in order to illuminate more receive beams, the

diversity bound of Section 1.4 cannot, in general, be achieved

with fixed size transmit and receive apertures. (An azimuth

space diversity system may achieve the bound, but only by using

additional apertures.)

Another bound may be derived as follows. If we assume that

the scatter angle is large, so that additional azimuth beams have

the same scatter angle, then the common volume integration

reduces to a one-dimensiona' integration of the transmit and

receive antenna patterns, integration in elevation is

required. The same effect is seen at all elevation angles since

the scatter angle is assumed large.) Thus, for a given set of

receive beams, the optimum transmit beamwidth may be determnined.

Table 1-1 gives the average SNR required for *0=10 -4 when

the optimum transmit antenna beamwidth (l/a) is used. The loss

when the transmit antenna beamwidth is not optimized (a=l) is

also given for comparison purposes. Beam broadening can improve

azimuth diversity performance somewhat, but even with the optimum

transmitter beamwidth the azimuth diversity bound is far from the

elevation diversity bound.

1.7.2 Computed Azimuth Diversity Performance

F'igure 1-4 compares elevation andA azimuth diversity per-

formance with their respective bounds. The minimum scatter angle

is 1.2° and the beamwidths are 10 (except that the transmit beam

is broadened optimally in azimuth for each order of diversity).
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The conclusion is that in general elevation diversity is

more effective than azimuth diversity. In some cases, however,

I dual azimuth diversity may perform slightly better than dual

elevation diversity. For instance, if the minimum scatter angle

is 0.71 and the beamwidth is 20, then a dual azimuth diversity
system requires 24.3 dB whereas the elevation system requires

24.5. Because dual azimuth diversity performs reasonably close

to dual elevation diversity, a combination of the two is

generally the best for high order diversity.

1.8 COMBINED ELEVATION AND AZIMUTH DIVERSITY

If an array is subdivided both vertically and horizontally,

a beam transformation yields a rectangular set of beams in eleva-

tion and azimuth. That is, the total number of beams is the

product of the number in elevation and the number in azimuth.

A number of different orders of diversity are compared in

Table 1-2. Different beam selections -,hich result in the same

I order of diversity are compared. For high order diversity, sys-

tems with two azimuth beams and a number of elevation beams per-

form best. With fourth order diversity, this is especially

evident as a 2x2 set of beams is 2.7 dB better than a 4xl eleva-

tion diversity system and 5dB better than a Ix4 azimuth diversity

system.

Figure 1-5 presents results for differeht scatter angles

and beamwidths. The 4, 6, and 8 beam systems are formed with 2

azimuth beams and 2, 3, and 4 elevation beams respectively.

The performance of combined elevation and azimuth diversity

systems is significantly better than either type alone. So for

1any angle diversity system of order 4 or higher, a combined

azimuth elevation system should be employed.
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*1 Table 1-2

Diversity performance by subdividing a given square aperture
(Minimum Scattering Angle 1.20, Antennas 3m by 3m.

'W'eamwidth 1b, Square Aperture)

Lower Bound on
order of No. of Beams No. of Beams Required' Required SNR

4Diversity in Elevation in Azimuth SNR (cf. Table 2-1)

1*1 1 40.0 40.0

2*2 1 23.3 20.0
2 1 2 23.5 20.0
3* 3 1 19.3 13.1

3 1 3 20.4 13.1

4 4 1 18.1 9.5
4* 2 2 15.4 9.5

4 1 4 20.0 9.5

6* 3 2 13.6 5.6

6 2 3 14.3 5.6
8* 4 2 13.0 3.4
9* 3 3 12.5 2.5

12* 4 3 12.0 .6

*Optimum Diversity Configuration
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1.9 SPACE-ANGLE DIVERSITY EQUIVALENCE

The spaced antennas of a conventional space diversity sys-

tem may also be considered an array. A beam transformation of

the output of two widely separated antennas yields two orthogonal

gain patterns with a large number of grating lobes inside the

envelope determined by the beamwidth of each antenna. The two

voltage patterns vary roughly as sin x and cos x near boresight.

If the antennas are brought closer together, then the width of

the grating lobes increases. If the antennas have no space

between them, then only one grating lobe of each pattern occurs

within the main lobe of the individual antenna patterns. This

last situation results in beam patterns which are the same as

those from a rectangular array divided into square subsections.

Similarly if more antennas are placed between the two space

diversity antennas, then the width of the grating lobes stays the

same but the number of them decreases. If a continuous linear

array is formed, then each gain pattern (in a beam transforma-

tion) has a single lobe within the envelope defined by the

individual antenna patterns.

1.10 APERTURE SHAPE

Thus far, we have considered subdivision of square antenna

arrays only. We now consider rectangular arrays with different

vertical and horizontal dimensions. Each antenna is defined by

an asymmetry parameter

= log,-
ah

where av is the vertical dimension and ah the horizontal. The

results are given in Figure 1-6 for fixed area apertures. The

1-18
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diversity systems are specified in terms of two integers (nena)

corresponding to the number of elevation and azimuth diversity

beams, or equivalently, the number of horizontal and vertical

divisions of the array. Since practical links are duplex, the

transmit and receive apertures are assumed to have the same
shape.

For systems with many elevation beams, tall antennas are

better, and for azimuth beams wide arrays are better. The basic

conclusion is that the subarrays are approximately square. The

aperture shape for a given order diversity system should be

formed by arranging a number of square subapertures.

1.11 IMPLICIT DIVERSITY FOR WIDEBAND SYSTEMS

The systems considered thus far have been narrow band sys-

tems; that is, systems whose signaling interval is long compared

to the channel delay spread. For such systems, the troposcatter

channel gives Rayleigh fading statistics. For wideband systems,

the channel delay spread distorts the transmitted waveform, and

jequalization may be required. This delay spread may also be used

advantageously, since the signals which arrive at different

delays fade independently. If it is possible to add these

delayed signals coherently, then improved performance is pos-

I isible. This is called implicit frequency diversity because

different frequency components of the transmitted signal fade

independently.

The number of independent delayed versions of the signal

which are weighted and summed is the order of the implicit diver-

sity system. One implementation of implicit diversity is a

tapped-delay line equalizer. The signal is passed through a

delay-line and is tapped of' at various points to be summed.

The signaling interval and channel delay spread play

roughly the same role in implicit diversity as beamwidth and

1-20
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scatter angle play in angle diversity. If the signaling interval

is short compared to the channel delay spread, then large diver-

sity gains are possible.

One major difference between implicit and angle diversity

is that if the channel delay spread is long relative to the

signaling interval then adjacent symbols are smeared into each

other. This is known as intersymbol interference or ISI. Theo-

retically the effects of ISI may be removed by maximum likelihood

Udecoding, but this process becomes impractical as the delay

spread increases.

Despite this consideration, the initial gains from implicit

diversity are significant. They taper off more rapidly than the

gains from angle diversity, but for most wideband systems 2 or 3

tap equalization (i.e., 2nd or 3rd order diversity) has an

important effect.

Figure 1-7 summarizes the major results on implicit diver-

sity. It plots the improvement in SNR (i.e., reduction in

required SNR) vs. a/T, the ratio of channel delay spread to the

signaling interval, for various numbers of taps. Note that as

o/T increases, the SNR gains increase initially but then fall or

level out. The reason for this behavior is that as the channe!

delay spread increases the energy in the transmitted pulse is

spread out further, and more taps are required to collect this

energy. For a fixed number of taps, the delayed signals become

less correlated as o increases (for fixed T), but beyond some

level the power on each tap decreases. This contrasts with angle

diversity gains, where increasing the scatter-angle-to-beamwidth

ratio improves diversity gains for any order of diversity.
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1.12 SUB-OPTIMAL COMBINING

The optimal combiner of the signals from N diversity ports

is a maximal-ratio combiner which scales each signal by a complex

constant and sums them. Maximal-ratio combining may be expensive

so sub-optimal techniques are of interest. One possible method

is phase-only combining, where the signals are multiplied by a

complex constant with magnitude 1. Another possible method is to

choose a subset of K of the N signals and combine these opti-

mally. (This subset of K changes as the signals fade.) If the

subset consists of a single signal (K=l) then the system is

selection diversity, and K=N corresponds to maximal-ratio com-

bining.

For DPSK we have derived a new expression for the average

BER of an optimal K of N combiner:

BER = [l+p]-K(l 1 2K (1 , where

S p = SNR per diversity branch

Analysis of these methods is done in Section 6. The major

results are summarized in Table 1-3. Phase-only combining is at

most 1.2 dB worse than maximal ratio combining. In contrast,

Ix selection diversity is significantly worse than the optimum

method, e.g., it is 3.4 dB worse than the optimum for fourth
I 1-41 T-- 0-4

ordr.dverity( .-. ..Ite ate values of K yield

fairly good performance. For instance, if the best 4 of 8 sig-

nals are combined then the performance is only 1dB from optimum.
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Thus, if a cost is associated with N, the number of ports,

and a comparable cost for K, the number of signals combined, then

K should be greater than one but less than N. If the cost of

downconversion and combining signals is small relative to the

cost of ports then maximal-ratio combining should be used. Con-

versely, if the cost of additional ports is small, then selection

diversity is optimum.

1.13 MEASUREMENT INACCURACIES

The channel is assumed frozen, i.e., we assume that the

channel may be measured exactly and thus use the optimum combiner

weights. However, the addition of measurement errors result in

only very slight changes in required SNR for the order diversity

systems considered here. For instance, measurement errors for a

6th order system under fairly pessimistic assumptions (one

measurement receiver, rapid fading) costs only .5 dB. These

L ]effects are discussed in more detail in Section 5.

1.14 PROPOSED MEASUREMENT

Section 8 describes a measurement system which could not

only verify the analytical results in this report but also be

used to measure the atmospheric structure. It would measure

layer reflection at X-band, including height and reflection

coefficient of the layer, and turbulent scattering as a function

of height. In fact, all parameters necessary to evaluate tropo-

scatter performance with diversity, wideband equalization and

advanced modem designs would be determined. The measurement

system would be transportable so that geographical and seasonal

variations could be measured.
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SECTION 2

TROPOSCATTER MODEL

2.1 TROPOSCATTER SIGNAL CHARACTERISTICS

The troposcatter medium may be thought of as cotsisting of

a large number of randomly distributed 'scatterers'. Physically

the 'scatterers' are random spatial and temporal fluctuations in

the refractive index, or equivalently, the temperature, humidity,

and pressu_. of the atmosphere. Energy incident on a region of

the atmosphere containing a number of these scatterers or 'blobs'

will be scattered in all directions. In particular if the trans-

,! mitted signal from a point on the surface of the earth is purely

sinusoidal, i.e., a single tone exp(j2wft) , then the scattered

signal received at some other location on the surface of the

earth consists of the sum of the energy scattered by each blob in

the scattering volume. Mathematically it can be expressed as

r = ) Aie

where the Ai and *i are the amplitudes and relative phases of

the signals scattered by each blob.

Since the location and 'size' of the blobs varies randomly

4 with time, the amplitudes and phases also vary randomly so thac

r ~the signal received by a single antenna port can be expressed as

r(t) = A(t)eJ 2 7tft + (t)]
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where
i~jA(t)ej t) A e

is; the time varying modulation imposed by the scattering med-

ium. The received signal r(t) is a fading signal.

If the scattered signal is received by more than one an-

tenna then the received waveforms [rn(t) , n = 1, 2, ... , N]

are all of the above form,

J n ( t )

r nr (t) =A n(t)e

It is convenient to express all of the received waveforms in

vector form, i.e.,

r(r(t)

Each of the components of this vector represents a fading sig-

nal. All of the signals have similar statistics, and since they

" 1 all are a result of scattering from the same medium they will be

correlated in general. In adaptive troposcatter several received

waveforms are combined adaptively to improve performance.

1
2.1.1 Fading Statistics

I -

' if the scattering volume containing the blobs is large in

V relation to the wavelength, X = c/f where c is the speed of
.1 light and f is the frequency of the incident signal, then the

[ Central Limit Theorem can be applied to characterize the statis-

2-2
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tics of the received signal. In this case it is simple to show

[1] that the amplitude of the received signal A(t) is Rayleigh

distributed and its relative phase C(t) is uniformly dis-

tributed, i.e.,

2-A /P
p(A) = -A , A 0

r

p - , 0 < 4 < 2r

where Pr = E(A2) is the average received power. In practice

the average received power exhibits long term (seasonal) varia-

tions which can also be described statistically.

An equivalent statistical description is that te received

I signal r(t) has a complex Gaussian distribution with zero mean

and variance P ,

Elr(t)1 2 =p

This is easily generalized to the case of multiple received wave-

forms represented by a vector r(t), where r is a complex Gaus-*1 V ian vector with zero mean and covariance matrix P:

E~r r'} = P

The prime denotes the complex conjugate transposed vector. The

covariance matrix P is Hermitian. The eigenvalues of this ma-

trix play an important role in the performance evaluation of ad-

aptive troposcatter techniques.
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2.1.2 Frequency Selective Fading

The description of the received signal given abo',e applies

as long as the transmitted signal is a pure tone, exp.(j2rft)

or a narrowband signal, i.e., a signal whose frequency spectrum

contains a narrow band of frequencies centered around the fre-

quency f

When we turn to questions concerning the transmission of

wideband signals, however, the mathematical description of the

received troposcatter signal must explicitly take into account

the fact that differences in path lengths of the signals scat-

tered from different blobs give rise to different propagation

time delays, causing a spread in the time of arrival of the re-

ceived energy. This can be done by expressing the transmitted

and received signals, s(t) and r(t) , in terms of their fre-

quency spectra, S(f) and R(f) , as

s(t) = f S(fej27ftdf

* 00

r(t) = f R(f)e 2 ftdf
-00* I

The received signal at each frequency component of r(t)

can be written as

M Nm j(4n-27rf T M)
R(f) S(f) I I A e 

m=l n=l

I where Nm  is the number of scattered signals arriving in the

. time interval (Tm' Tm+ 6 T) and 1n is the relative phase of

each of these signals. The random amplitude coefficients Amn

2-4
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represent the power associated with each individual scattered

signal arriving at different delays and at different angles.

They are usually assumed to be independent (uncorrelated scatter)

and thus satisfy:

E(AmnApq) = mp 6nq E(Amn)

If the total average received power is Pr then

Pr = E J IR(f) 12df = m S (f ) d f
-00 m=l -00

where

Qm - E(A )

m n=l

Thus Qm represents the total relaLve average power ar-

riving in the delay interval (Tm , Tm+ 6T) where 6 T = Tm+ I - Tm

= Tm- Tm_1  and thus is referred to as the delay power impulse

j response in the limit as 6r + 0.

The fact that most of the total received signal power

arrives over a finite delay interval 0 < T < TM causes the

statistical properties of two frequency components of the

received signal to be -n.dpnAnt- if the frequency separation is

large enough. The maximum frequency separation for which the two

frequencies are strongly correlated is called the coherence band-

width. If the bandwidth of the transmitted signal is greater

than the coherence bandwidth then the fading is said to be fre-

quency selective. On the other hand if the transmitted bandwidth

2-5



is smaller than the coherence bandwidth, the fading is said to be

flat, i.e., frequency independent, and we can ignore delay spread

effects. In order to understand this last point it is necessaiy

to establish the relationship between coherence bandwidth and
delay spread.

The coherence bandwidth can be determined from the correla-
tion properties of the received signal at two frequencies fl

and f2 , i.e.,

E{R~f 1)R(f2)} s(fl) s*(f 2 ) B(fl-f 2 )

where

M Nm -j2nifl-f2 )
B 'f = I I E (A*mn )e m2 m=l n=l

AM -j 2 7t(f 1 -f 2
* = mei m=l

The function B(Q) is called the two-frequency correlation of

the channel and its 'width' is the coherence bandwidth Bc . The
product S(fI ) S*(f 2 ) can be assumed to be unity when the dif-

ference fl-f 2  is smaller than the bandwidth W of the trans-

mitted signal. Thus if the width of B(R) is greater than the

bandwidth, then E{R(fi ) R*(f 2 )} is really equal to unity for
all fl-f 2 4W and the fading at the two frequencies is highly

correlated (flat fading). On the other hand, if the width BC of
B(SI) is smaller than the bandwidth, W, then frequency components

jsuch that BC < fl- f2 < W will fade independently since E{R(fI )
" R (f2 )}=0.

2-6
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From the definition of B() it can be seen that in the

limit as we let the delay interval ST + 0 , that

-B) =f Q(T)e- dT
0

where a = fl-f 2 , and Q(T)dt = Qm is the delay power impulse

response. Thus B(S) and Q(T) are related by a Fourier trans-
formation. Hence the width of B(Q) is approximately equal to

the inverse of the width of Q(T) , i.e., the delay spread.

The simplest definition of the width of Q(T) is

5 = ~f Q(t)dT/maxQ(T)

i!! =maxB(sl)/maxQ( T

n T

Similarly, the width of B(a) may be defined by

8B maxQ( T)/maxB(SI).

1Clearly, we then have exactly
" Q = 1/ B .

Let us call 6Q the rectangle width of Q(T). Other commonly used

definitions are

1. 2a delay spread: ft2Q(T)dT/fO(T)dT-[fTOT)d/Q(T)dT]
2
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2 0

2. 99% delay spread: T2 -T, where f Q(T)dT = 0.99 f Q(T)dT
Ti 0

Table 2-1 compares the definitions for several analytical shapes

of O(r).
The multipath effects generalize to the case of multiple

antenna ports. If we assume a single transmitted waveform

s(t) we have

r(t) f h(T,t) s(t-T)dT

0

where hk(T,t) = Ake nt6IC-(-T) is the impulse response for
k n k

the channel between the transmitter por' and k'th receiving an-

tenna port and h( T,t) is the vector of impulse responses. For

a time invariant channel the impulse response is independent of

t . The delay power impulse response for a time invariant set of

channels is a matrix with elements Qk (T), where

*

Q (T) 6( -V) = E[hk(T) h (v)

Since the impulse responses for different receiving ports are

correlated it is necessary to specify all the N 2  function

Qk (T) , k, = 1, 2, ... , N . The definitions of multipathI spread and coherence band,.,t for a single channel do not gen-

eralize to the multichannel case. However, for any linear com-

bination of the receiving ports, e.g.,
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TABLE 2-

COMPARISON OF DELAY SPREAD DEFINITIONS

0(Tr) RECTANGLE 2a 99%
*WIDTH WIDTH WIDTH

ifrO<TTT T//3 0.99 T

0 otherwise

tne- ar/T 2T n=0:+ 4.6r

T

n=: T n=1: 2.4 T

n=2: 0.94 T

n+-: 0.80 T n+-: 2.1 T

T I- 40.5 T
1+ (_IT)2
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Nr(t) w r nr(t)

n=l

the multipath spread and coherence bandwidth can be defined as

before.

2.1.3 Doppler Smear

The fading of the received signal is caused by the wind

moving the scatterers, thus changing the relative phase of the
different scattered signal components. The time varying channel

is characterized by the correlation function

i , E{h(,t 1 l) h*v,t2} = Q(T,tl-t 2 ) 6(T-V)

' where Q( T,0) is the delay impulse response defined earlier.

This definition assumes both uncorrelated scattering and wide

sense stationary channel fading. For multiple channels 0 is a

matrix as before. It is generally reasonable to assume that the

troposcatter channel is Wide Sense Stationary and Oncorrelated

Scatterer (WSSUS). Stationarity is a particularly good assump-
tion while the uncorrelated scatterer assumption can break down

for systems with extremely wide bandwidth. This question will be

discussed later.

For a single channel, or a linear combination of several

channels, we can define the coherence time, Tc , and Doppler
spread, Bd . The coherence time is the width of the temporal

= correlation function defined as

2-10
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/ b(tl-t 2 ) = f Q(t,tl-t 2 )d •

The Doppler spread Bd is the width of the Fourier transform of

b(tl-t2), so

B
- c

t Another common characterization of the troposcatter channel is

the scattering function:

S(T'f) = dt O(Tt)eJ 2 ft

The width of the scattering function in the T direction is the

multipath spread, while the f-dependence displays the Doppler

spread. The convenience of using the scattering function is a

result of the two basic assumptions: uncorrelated scattering,

and stationary fading.

1 L 2.2 PHYSICAL MODEL OF TROPOSCATTER EFFECTS

The previous section dealt with a mathematical description

! Lof the received troposcatter signal, In this section we discuss

4 V the relationship between the various parameters which character-

ize the received signal and the physics of the troposcatter

medium. This is important because any investigation of adaptive

troposcatter techniques must incorporate the effects of the tro-

"4 1 2-11



poscatter medium in a realistic manner. In particular we must

establish a relationship between the average received signal.7 power of the output of each receiving antenna element and their

correlations as well as the matrix delay power impulse response

Q(T) (or its width - the delay spread) and the parameters which

describe the physics of the troposcatter medium. The average

received signal power is needed to determine the average signal-

to-noise ratio of the system whose performance is to be evaluated

while the delay power impulse response is needed if we are

dealing with wideband systems. In addition, when the receiving

system consists of an array of receiving apertures we also need

to determine the correlation between the signals received at each

aperture.

2.2.1 Average Received Signal Level

- !The average received signal level in a troposcatter link

I depends on the path geometry as well as the distribution and

'strength' of turbulence of scatterers in the atmosphere. A

measure of the distribution and strength of the turbulent scatter

is given by the wavenumber spectrum O(K) where the wavenumber

Kc is related to the size of the scatterer, £ , by K = 27r/.

The functional dependence of P on K can be found either by

measurement or from theoretical considerations. The dependence

of the average received power on the wavenumber spectrum depends

4 I on the scattering mechanism. Tatarskii [2] has shown that tropo-

scatter is of the Bragg scatter type so that the average received

power is given by

P GG =k2  d IgT(r) 2 IgR(r)1 2 -(r)R = PTGGR f d~ r  -- - (2k sin(-@-)) (2.1)

R =T T R 2 V RT2(r) RR2(r)2

2-12
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where

P are the received and transmitted power
levels.

GT,GR are the transmitter and receiver antenna

gains.

gT,gR are the voltage gains relative to boresight
of the transmitter and receiver antennas, in
the direction of the point r of scattering
volume.

RT,RR are the distances from the point r in the

common volume V to the transmitter and re-
ceiver antennas.

k=2/X=2f/c is the wavenumber.

0 is the scattering angle, i.e., the angle be-
tween the lines from the transmitter and re-
ceiver terminals to the point r in the
common volume.

' ( ) is the wavenumber spectrum of the tur-
bulence, or the three dimensional Fourier
transform of the spatial correlation func-

-: tion.

The common scattering volume V is determined by the antenna

patterns gTIgR.

The above expression is valid in most cases of interest.

The assumptions made in arriving at it are

S 1. the scattering volume must be large compared to the

correlation distance of the turbulence L0 . This

limits the antenna gain that is practical. The condi-

tion is

P RR' RTT >
where

Ter R = beamwidths of transmitter and receiver,

respectively
and

L0  outer scale of turbulence.

2-13



2. The Fresnel zone condition

2L /X < R, RR

Both of these conditions put an upper limit on usable frequencies

for troposcatter. The condition in 2. (derived by Parl and

Malaga [3]) represents an improvement on the condition derived by

Tatarskii.

Assuming a worst case situation where RT = RR = 25 km and

L0 = 100 meters (pessimistic), then condition 2. states that

X > .0032 meters

I: or

f < 93 GHz.

Equation (2. 1) is generally accepted as the basis of all

models of scatter from turbulence. However, many different

models for the turbulence spectrum have been proposed. Booker

and Gordon [4] based their model on an exponential correlation

function, leading to the scattering cross section dependency on 0

as 0- 4 . Other models proposed in the 1950's showed a scattering

angle dependence of 0- 5  [5,6] or 0- 1 3/3 [7]. Based on approx-

imate agreement with troposcatter experiments in the 40-1000

MHz range the 0- was selected as the basis for the NBS method

[8]. However, the model originally developed by Obukhov [9] and

Kolmogorov [10] is the model which is now generally accepted by

atmospheric physicists. It predicts a scattering angle depend-

ence of -11/3. The main reason that this theory was not

adopted for tropospheric scatter is that many measurements at

frequencies below 1GHz revealed layer or feuillet reflections

in addition to the scatter from turbulence, and the 0- 5  depen-

dence was selected by NBS as the best overall fit to the data

base.

2-14



J -

Ile

The Kolmogorov-Obukhov theory considers the turbulence as

the result of breaking up of eddies into progressively smaller

and smaller eddies. The size of the largest eddies contributing

to the turbulence is the outer scale Lo of the turbulence.

L0  is also a good measure of the correlation distance. The

smallest eddy size, £0 is called the inner scale. Turbulence

of a scale smaller than to is dissipated rapidly. The range of

turbulence

2n/L 0 -4 k - 2 /x 0

is called the inertial subrange. In this range the Kolmogorov-

Obukhov theory predicts a wavenumber spectrum of the form

D( = 0.033C2 K- 1 1 / 3  (2.2)

I where C2 is a measure of the strength of the turbuience.

Based on this, and the approximate behavior in the equili-

ii brium range (k < 2i/L 0 ) and in the dissipative range (k >

2 / 2/o 0 )  the following expression is often used to represent the

entire spectrum:

2 2 2]-1/6 ,urf)2] (2.3)() =(r,K) =0.033C (r) [ 2 + ( 2 /L 0 )] exp[-(- ] .- 0- i

_ I 2
where Cn, L0 and £0 are functions of climate, time, and height
above gro.. The problem of precIng the performance of a

troposcatter link is therefore reduced to predicting these param-

I eters. Typical values of L0  are in the range of 1-100 meters

while to is typically 1 mm. Most troposcatter links can be as-

sumed to interact with turbulence in the inertial subrange.
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Take, for instance, a typical scatter angle of 2* and inner and

outer scales of 0.001 and 10 meters , respectively. Then the

condition for being in the inertial subrange is

1 < -2 <
1 0

or

0.9 GHz < f < 900 GHz

Hence it is realistic to use the simpler form (2.2) at the higher

microwave frequencies.

The model used in SIGNATRON's troposcatter computer program

[11, 121 assumes a general spectrum of the Von Karman type,

a 2 r 3

I i  $( ) = r(m/2) n 0U}i3/2 r m_)(i + C2 r 2)m/2

where a2 is the measure of the refractive index variance,~n
r0 = L0/2w and m is called the spectrum slope. It reduces to

(2.3) when m = 11/3. The gererality of the form above is con-

venient since it allows the inclusion of the NBS model by simply

setting m=5

The structure constant C2  will be used extensively in-
2 n

stead of the variance an The two parameters are related by

In
__ I C2 = 2a2 r(5-,m) / [r(MiI) (2r0)m3]
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or, for m=ll/3

C 2 = 1.911 2 r -2/3n n

2.2.2 Spatial Correlation

In order to evaluate the performance of troposcatter sys-
tems employing an array of receiving apertures one must be able

to calculate the correlation between the signals received by each

aperture. If the spacing between each aperture is small compared

to the distance from the receiving array to the scattering

volume, then all apertures in the receiving array have the same

common volume. Decorrelation between the signals received by

each aperture results then strictly from the difference in path

length from each scatterer to each of the receiving apertures.

The correlation between the signals received by any two apertures

is then obtained as follows.

Let rI  and r2  be the signals received by apertures 1

and 2. If the apertures have equal dimensions, then the average

power received by each aperture is the same and given by

P r : (Ir 112) = E(jr 212)
4: where P. was defined in equation (2.1).

Since the received signal is Rayleigh fading, it has zero

-; ~mean, and therefore the correlation coefficient between the sig-

nals received by the two apertures is given by

E(r r2)- r 2) (2.4)
PI2 P

r

2-17



where

E(rr C fff Ig-l IgRI2 exp[-j.6(r)]d3 r (2.5)
1~rl2) :CfV R (r) RR(r)R -2T R

where 6(r) is the difference in path length from a point r in

the scattering volume to the two receiving apertures, and

C = PTGTGRinK2/2

2.2.3 Angle Diversity Correlation

In an angle diversity system the apertures are in the same

location so 6(r) is zero. However, the gain patterns, gRl(O, )
and gR2 (0,4), arc different. So the correlation is given by

(2.5) with 6(r)=O and IgR1 2 replaced by gRl(,) gR2(0,) where
* denotes complex conjugate.

2.2.4 Delay Power Impulse Response

The delay power impulse Y:esponse Q(t) which characterizes

the received power per unit delay can be calculated by subdivid-

ing the common volume into smell cells. The power received in

the delay interval. (T, T + 6T) can then be calculated by adding

the contributions from all these cells for which the relationship

R + R
- c R (2.6)

is satisfied, where "c is the speed of light and RT and RR

are the distances from the cell to the transmitting and receiving

apertures, respectively. The 2o delay spread of the channel

which is inversely proportional to the coherence bandwidth

(maximum frequency separation for which the fading is correlated)

is then found from the second central moment of the power impulse

response, i.e.,
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4 f (- Av) 2 Q(dT
2 -0

~r

where

f T Q( T)dT

TAV = P
r

2.2.5 Condition for Uncorrelated Scatterers

iThe validity of the uncorrelated scatter model presumes

that resolvable Aelay cells are small compared to the correlation

distance of the turbulence. Consider a link with slant range

d o  and the angles a,O as defined in Figure 2-1. The scatter-

ing angle is 00 . For this link it can be shown [Monsen et al,

1981] that the relative delay is

a
=.1 d o  sin f sin 22- ,"r - (r I  + r 2  do )  = 2 -

Cos

Differentiating this expression yields

S d 0 sin B
Aa 2 U+O

2c cos

L The chantie n eight, ^ with f -hng. 4, t-h, annIe by

Ac is given by

d sin 2
Aa 2in( 9+) J
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Hence if At = L0 , the vertical correlation distance of Lhe tur-

bulence, we get

L0 sin 2 (a+O) L 0 2
A T = __(+)

2c sin 2c a

The condition for uncorrelated scatter is

AT << 1/W

where W is the bandwidth. Since 0/20 is on the order of one

we get the condition

WL0 O/c << 1

This condition is almost always satisfied. As an example take

L0 = 70 m and 0 = 12 mrad (corresponding to a 100 km

link). Then the condition is

W << 350 MHz

2.2.6 Doppler Spread

The Doppler spread, i.e., the inverse of the coherence

time, is another important parameter, particularly for a realis-

tic evaluation of adaptive troposcatter techniques. In order for

the adaptive loops to opera i the channel coherence time must be
longer than the time consta of the loops. In other words, the

channel must be essentially time invariant long enough to allow a

reliable measurement of the channel.

The Doppler spread is found from the refractive index spec-

trum using Taylor's hypothesis of frozen turbulence. The re-

ceived spectrum is then
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I SR(f) f / d3r H(r) ST(f - - R u/A)
V

where

-2R direction vectors of the incident and scat-
tered fields

ST(f) spectrum of the transmitted waveform, nor-
malized to unit power,

u wind velocity vector,

H(r) integrand in (2.1)

22

PTGTGR '0.0518 k- 5/ 3 C2 gTgR 8-11/3
n -2
R RR T

The £'th moment pX of the Doppler spectrum is then found from

= d3r H(r) ((T-R) .
v

The Doppler spread is defined from

SDopple r  (P012 - 0
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2.3 THE CONCEPT OF APERTURE-TO-MEDIUM COUPLING LOSS

2.3.1 Introduction

It was recognized early that troposcatter links do not

realize the full. antenna gain for very large apertures. The dif-

ference between the total terminal antenna gains and the actually

realized gains is called the aperture-to-medium coupling loss.

The physical basis for the loss can be explained either in terms

of antenna beamwidth or in terms of spatial decorrelation. Since

the concept of the aperture-to-medium coupling loss is often

misunderstood it may be helpful to view this concept from both

the spatial and angular viewpoint. It must first be pointed out,

however, that the coupling loss discussed here pertains to a

specific model of the scattering mechanism. Part of the

confusion about coupling loss is caused by the comparison of

coupling loss for different scattering models. Different models

may yield different values for the coupling loss but still be

correct. The concept of coupling loss is only to be considered

as a tool in the evaluation of the total path loss and as long as

the path loss is correct, differences in coupling loss

predictions are immaterial. The theoretically calculated

coupling loss is again different from the coupling loss that is

measured by adding a small aperture (wide beamwidth) to an

existing high gain aperture system. In this case the coupling

loss depends not only on the atmospheric structure inside the

"" common volume of the high gain antennas, but also on the atmos-

phere outside that common volume. It can therefore experience

0 large long-term variations which are completely independent of

what happens in the common volume, i.e., what affects the total

path loss. The fact that the measured coupling loss can vary,

even if the measured path loss does not, indicates tha3 t he

concept of aperture-to-medium coupling loss should be used with

caution. We now discuss the coupling loss concept from two

points of view in order to clarify these ideas.
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2.3.2 The Definition of Coupling Loss in Beam Space

A heuristic explanation is simplified by assuming

(1) Ideal beam shape (zero gain outside the beam, constant

inside)

(2) A volume of scatterers of finite extent.

Figure 2-2 illustrazes the situation where the antenna

beams are so large that the common volume illuminated by the an-

tennas encompasses all the scatterers. With the idealized as-

sumptions above it is convenient to define

Common Volume: The volume in space which is illum-

inated by both the transmitter beam

and the receiver beam.

Scattering Volume: The part of the common volume which

contains scatterers.

Volume of Scatterers: The total volume containing scat-

terers.

When the common volume is larger than the volume of scat-

terers then all scatterers contribute to the received field and

there is no coupling loss., This is illustrated in Figure 2-2.

When the beams are narrower (Figure 2-3) only a fraction of the

scatterers are illuminated by both apertures and the received

field does not include contributions from all scatterers. This
lack of scattering contribution reduces the total realized anten-

na gain. This is the coupling loss. We now see how the coupling

loss arises naturally from the integration formulas developed

earlier.
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Commnon Volume of
Volume Scatterers

Transmitter Receiver beam

Transmitter Receiver

Figure 2-2 Link With No Coupling Loss:
The common volume contains all
scatterers.
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Connon Volume of
- Volumecatterers

Transmitter Receiver Beam
Beam

Transmitter Reciever

~* I Figure 2-3 Link With Significant Coupling Loss:
The common volume contains only a

fraction of the scatterers.
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The aperture-to-medium coupling loss is the loss incurred
due to the fact antennas with non-isotropic radiation patterns do

not illuminate all of the turbulent atmosphere and hence do not

receive all of the scattered energy. Thus if we define the path

loss L as

1 - 0.0518 k5 f dr C(r) (r)
V - - R TRR

where use of the Kolmogorov wavenumber spectrum has been substi-

tuted for P( ) in (2.1), then the basic path loss Lb is defined

as the loss when the radiation patterns gT and gR are iso-

tropic. If C2  is constant (i.e., not a function of r), then
n 

'-(2.7) can be integrated analytically for the case of isotropic

radiation patterns. The basic path loss is then given by [131,

P, R 0.0196C 2(kOs) 5 3/D (2.8)

where OS is the minimum scattering angle in the common volume.

The aperture-to-medium coupling loss is then the difference

L (in dB) between the actual path loss and the basic path loss,

I i.e.,

10 Log LC =0 log L- 10 log Lb  (2.9)
L

From (2.7) and the definition of basic path loss it should
be clear that one can reduce.the aperture-to-medium coupling loss

by reducing the aperture size of the transmitting and receiving

antennas since their radiation patterns would then become
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'fatter' approaching the radiation pattern of isotropic radia-

tors. This can be seen from Figure 2-4 (solid line) where we

have plotted the asymptotic aperture-to-medium coupling loss as a

function of antenna diameter (transmit and receive) for narrow

beamwidths. However a reduction in antenna size also results in

a reduction in antenna gain GTGR , as seen from the dashed line

in Figure 2-4. In fact if we double the transmit and receive

antenna diameter, GT and GR increase by 6 dB each while the

aperture-to-medium coupling loss increases by 9 dB which is less

than the 12 dB increase in antenna gain. The net result is a

higher received signal level and hence a larger system signal-to-

noise ratio (.NR).

Let us see what happens asymptotically as one or both beams

become narrower. If the transmitter beam is fixed and the re-

ceiver beam is much smaller, the receiver beam will cut out a

narrow cone segment from the volume of scatterers. The length of

the segment is determined by the transmitter beamwidth and there-

fore fixed. As the receiver beam is narrowed by a factor of two

the receiver antenna gain is increased by 6 dB. However, the

common volume is reduced by a factor of two. Asymptotically for

small beamwidths the scatterers are uniformly distributed in the

scattering volume so the scattered power is also reduced by

6 dB. The net effect is then that the path loss is the same, but

the received signal is composed of fewer independently scattered

signals. If the transmitter beam is then narrowed by a factor of
two the antenna gain increases by 6 dB while scattered power is

reduced by 3 dB since the scattering volume is reduced by a

factor of two. Hence the path loss is always reduced by using

narrower beams at both ends of the link.

Suppose that the receiver beam is replaced by two beams il-

luminating separate halves of the original scattering volume.

The two received signals have different amplitudes and phases.
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The sum of these two complex signals is equivalent to the signal
received on the original single beam. The phases are random and

therefore the amplitudes can add destructively. The key feature

of adaptive troposcatter is that the received signals can be ad-

ded in phase and with optimal amplitude weightings. This advan-

tage is achieved by splitting a boam, which may represent no

coupling loss, into two beams each of which have a significant

coupling loss. The adaptive combining not only overcomes the

coupling loss of each beam, but actually improves on the perfor-

mance of the single beam system with no coupling loss.

2.3.3 Coupling Loss in Terms of Spatial Correlation

* Assume a relatively wide-beam transmitter. At the site of

the receiver, the field received at different points of a given

aperture will not be perfectly correlated since the signal is ar-

2) Iriving from many directions. In other words, the wavefront at

the receiver exhibits random fluctuations. A correlation func-

tion can be defined in the plane of the aperture. If u and

v are coordinates in this aperture the correlation function is

P(u l-u 2, v-v 2 ) = E[z(u 1 ,vl)z *(u 2 1 v 2 )]

where z(u,v) is the field at the point u,v . The total re-

ceived field over the aperture A is

r = f du dv z(u,v)A-3
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and the received power is

P E[rj2 ] k2 i duldv I If du2dv2 P(U1-U2 ,vl-v 2 )
A A A

5 For small apertures p is constant for any pair of points and

I P = 0,0)

In, this case there is no coupling loss. If the aperture is lar-

ger the decorrelation between widely spaced points on the aper-

' I : ture results in a lower received power. This is the coupling

loss, which can therefore be defined also as

SI ,L = pO.O)/[ ff dUldV1 If du 2 dv 2 P(U-u2, vl-V2)]I 2 A A A

It is not difficult to show directly that the two coupling lossA I definitions are identical, but we shall not do so here. Previous
SIGNATRON reports [11,12,131 have presented analytical expres-

4i '4 sions for the coupling loss as well as the horizontal and verti-

cal correlation distances.
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SECTION 3

THE USE OF DIVERSITY

I 3.1 DIVERSITY TECHNIQUES

In the previous section it was shown that the system SNR

can be improved by increasing the size of the transmitting and

receiving apertures. However this is often impractical. A sub-

stantial improvement in system SNR can be achieved if we use mul-

tiple smaller apertures and combine the signals received with

each aperture in an optimum manner. This is commonly referred to

as space diversity and the order of diversity is determined by

the number of apertures. Thus a system employing one transmit

antenna and four receiving apertures is said to employ quadruple

space diversity. A multi-element receiving array whose outputs

:4 are weighted and combined in an optimum manner is a particular

implementation of a space diversity system.

Space diversity improves the effective SNR of the system

because the multiple scattered waves which make up the received

troposcatter signal combine in a different manner at two spaced

receiving locations and therefore fade in an uncorrelated man-

ner. Given N uncorrelated fading signals, the diversity re-fceiver combines them in some manner designed to improve the sys-

tem SNR and hence system performance.

In addition to space diversity, multiple uncorrelated fad-

4 ing signals can be obtained by other means: namely

(a) Frequency diversity, i.e., a system which employs mul-

tiple frequencies (channels) Lo Lransmit the same in-

formation. The fading at two frequencies is uncor-

related if the frequency separation is greater than

the coherence bandwidth of the channel.

H-
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(b) Space/Polarization diversity, i e., a system which

transmits the same signal on two orthogonal polariza-

tions and uses multiple spaced antennas to receive

both polarizations. A fourth order diversity system

which uses two transmitting antennas, one for each

polarization, and which receives both polarizations on

two spaced antennas is shown in Figure 3-1. Decor-

relation between the four signals (4 different paths)

is achieved solely from the spacing between the two

transmit and two receive antennas and not from the use

of orthogonal polarizations.

(c) Angle diversity, i.e., a system which employs a single

receiving aperture and multiple feeds to generate mul-

tiple beams which illuminate different portions of the

scattering volume and hence fade in an uncorrelated

manner. One specific example of an angle diversity

system is one which employs a single dish receiving

antenna with two offset feed-horns. Another example

is a receiving array, the outputs of which are fed by

means of a Butler matrix which generates the multiple

beams to scan different parts of the common volume.

Another type of diversity available on broadband systems is

implicit diversity. When the bandwidth is wide enough to permit

resolution of different segments of the power impulse response,

then a tapped delay line? equalizer can exploit the independent

fading on the different segments.

i
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3.2 PERFORMANCE MEASURE

Any of the diversity systems described can be analyzed by
considering a general N-port diversity combiner. The receiver
combines the N diversity outputs to form an estimate of the
transmitted signal. The optimum combiner is a maximal ratio

combiner, which scales each output by its conjugate (i.e., the
conjugate of the channel gain) and then sums them. We define a

performance criterion for diversity systems in terms of this
optimum combiner. In this way the potential gains from diversity
may be examined directly without regard to the actual implemen-

tation.

The transmitter sends a sequence of pulses of the form

z(t) = bkPk(t)

where bk = -I , is the polarity of each pulse and Pk is the
shape of the pulse.[ It is assumed that a small percentage of these pulses are

transmitted with a polarity that is known to the receiver so that
they can be used to measure the channel. Appendix C derives the
performance including the effect of errors in the channel
measurements. These effects are also discussed further in Sec-
tion 7. For simplicity we assume here that the measurement

errors are negligible.

At the recciving arrky output we have available a number of
noisy replicas of the transmitted signal, which can be modelled

as

__ Z,(t) = Gz(t) + vn(tl

where Gn is the complex fading introduced by the troposcatter
channel and vn is the n'th receiver thermal noise. We have re-
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moved the explicit dependence of Gn on t because we are in-

terested in observation intervals short enough so that the chan-

nel gains can be assumed to be essentially constant. The values

of Gn in this expression can arise from individual elements of

the array, from beamformer outputs, or from subarrays that are

nonadaptively steered. In any case, the receiver then samples

each Zn(t) by correlating it with every Pk(t) to produce the

sampled-data outputs

Zn,k Gnbk + vn,k

These samples are weighted by the complex conjugate of

the Gn and a linear combination of them (sum over n = 1, N) is

used to determine the polarity bk of the transmitted pulses

* according to some decision rule. The error rate, i.e., fraction

of pulses whose polarity is not determined correctly, is a

measure of the performance of the array as a diversity combiner.

t I The error rate depends on the correlation between the gains Gn

and the receiver noise power in a 1 Hz bandwidth (noise spectral

density) No , assumed to be identical for all N output ports. We

assume that the channel is 'Frozen' so that Gn is known to the

receiver.

Let j be the cross correlation between the channel

gains for the i'th and j'th output ports, i.e., mij = E(GiGj),

and define MG as the covariance matrix whose elements are the

mij . Note that the diagonal elements of MG represent the

average received power at each array output port while the off-

diagonal elements represent the correlation between the signal

1components at two different ports.

An upper bound 0 to the error rate (Chernoff bound) can

be written as (See Appendix C)
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I N +N M0-G I

where

IN  (NxN) identity matrix,

i or as

e, Nf -l+X I
Sn=1 -

where {Xn } are the eigenvalues of the covariance matrix MG.

The smaller the error bound *0 is, the better the array
perform.s. Since 0 decreases as the eigenvalues increase, the

problem of evaluating the performance of a receiving array then

consists of determining the eigenvalues of the array and the con-

ditions under which these eigenvalues result in a small error

rate. With DPSK the error rate is BER = , 0/2

The performance measure we use in comparing the different

I diversity configurations is the signal-to-noise ratio (SNR) re-

quired at tha receiver to set the Chernoff bound on the bit error

rate equal to 10- 4  The SNR is not clearly defined for a system

with a number of receiver ports since in general each port sees a

different sign. power. So we define the SNR to be that which

would be present oni a system without diversity. Because of this

I normalization the SNR required by the system without divevsity is

-1 detormined entirely by the desired BSR bound For instanr.e,

2 if 10-4 then the SNR required by a no diversity system is 40

I idB.

3-6
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I A simple bound on the benefit of various orders of diver-

sity may be derived as follows. If {Xn: i = 1,...,N} are the
eigenvalues of the covariance matrix MG (normalized to the noise

power), then the BER bound is

N 1

= 11~ 110 +n=l 1 n

Suppose A is the eigenvalue for a single diversity system with a

given aperture size. (For a single diversity system A is also

the SNR.) The power received by each of the n ports of a diver-

sity system consisting of n single diversity systems equals A.

reThe eigenvalues cannot exceed A so the BER bound for an n-th

order system is bounded by

9 IThis implies

A (1)1/n- 1

This final inequality bounds the SNR required to achieve a given

BER bound. Note that A is the SNR derived from a single diver-

sity system as previously defined. Table 3-1 contains values of

this bound for various n.

If the various diversity ports have equal power and are

-independent then this bound may be achieved. This is the case

i:! 3-7
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TABLE 3-1
Lower Bounds on the Required SNR to Achieve BER Bound 00=10 - 4

for Various Orders of Diversity

SNR Bound
Order of Diversity Fixed Element Aperture

1 40.0

2 20.0

3 12.1

4 9.5

5 7.3
6 5.6

-- 7 4.4

I8 
3.4

1 9 2.5

10 1.8
11 1.2

12 .62
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with space (and polarization) diversity if the antennas are suf-

ficiently separated and for frequency diversity if the two

frequencieF -9 far enough apart. For angle diversity, however,

the bound is )t generally achievable because the extent of the

common volume is limited and so additional beams receive less

power than the first. If the beams are narrow and the scatter

angle is large then the bound may be approached.

The bound clearly demonstrates that diminishing returns are

seen with increasing diversity. This conclusion does not depend

on any particular geometry or diversity type.

3.3 DIVERSITY FROM ARRAY ANTENNAS

3.3.1 Phased Array

High order diversity systems are of interest because of the

great diversity gains possible. The cost of high order diversity

systems using traditional diversity types, such as space, polari-

zation, and frequency, is prohibitive. Phased arrays offer

potentially high diversity at reasonable cost; hence it is of

interest to examine how much diversity may be derived from a

given phase array.

A general discussion of phased arrays and their gain pat-

terns is given in Appendix D.

3.3.2 Beam Transformation

Different diversity ports may be formed by dividing the

I _array into subarrays. The outputs of these subarrays may then be

combined adaptively. Increases in diversity may then be

accomplished by subdividing the array further.

If the array is divided into equal subsections then each

section has the same gain pattern and common volume and so each

section receives the same power. The effective order of diver-

3-9
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sity (i.e., the number of significant eigenvalues in the signal

covariance matrix) is determined by the correlations between sub-

sections. The degree of correlation between subarrays is not

I Jintuitively obvious and so it is difficult to see the effect on

performance of further subdivision of the array. It is much

easier to see the possible diversity gains from a phased array

through a beam transformation.

A beam transformation takes the outputs from a uniform

array of antennas which have the same gain pattern (i.e., same

gain for each pair of elevation and azimuth angles), and forms a

set of beams which point in different directions. The beams are

orthogonal and the maximum gain for each beam is at a null of all

other beams. The transformation is invertible and lossless,

hence the system performance is not affected by it. The total
number of beams formed is the same as the number of antennas in

the array. The performance of various orders of diversity for

this array may then be evaluated simply by combining different

subsets of these beams. (In an actual system not all of the

beams would be formed.)

Since the beams point in different directions they have

different common volumes, and so the signals on the beams are
largely uncorrelated. In addition the power received by the
various beams is different, so it is easy to estimate how much a

given beam may affect the system performance. A beam which

points away from the atmospheric volume illuminated by the trans-

mitter receives very little power, hence it cannot greatly affect

performance.

Another advantage to the beam transformation is that the

correlations between ports are real. This simplifies the compu-

tation of the eigenvalues of the covariance matrix.

If the phased array is rectangular then the beams from a

rectangular set, so there are a number of beams in azimuth and a

'~ 3-10



r number of beams in elevation. The total number of beams is the

product of these two numbers. In azimuth the common volume is
chiefly limited by the transmitter beamwidth. A dual azimuth

diversity system is not greatly affected by broadening the trans-

mitter beam, but higher order azimuth diversity systems generally

improve when the transmit beam is broadened even though this

reduces the boresight gain of the array. These effects are con-

sidered in greater detail in Section 5.

The number of elevation beams which may be used is

determined by the minimum scattering angle and the spacing

between beams. Higher elevation beams receive less power and

eventually their contribution becomes negligible. The trans-

mitter beamwidth does not limit elevation diversity since

different elevation beams always intersect the transmitter beam.

Consider a linear array with N elements. If the outputs

are summed using equal gains and with linear phasing (i.e., the

n-th element is phase-shifted by na) then the one-dimensional

amplitude pattern which results is

sin[ -- sine - a)]

A(O) = [1L 2,, ge ( e)
sin[ 2 -d sinO - a)]

where ge(O) is the element gain pattern, d is the element

spacing, 0 is the off-boresight angle, and a is the phase shift

between adjacent elements. For the derivation of this equation

see Appendix D. A Butler matrix transformation forms a set of N

beams where the m-th beam has

*(2m-l)iT
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These beams are orthogonal, and the peak (or peaks) of each beam

falls at nulls of all other beams.

If the number of elements is large and the element spacing

small then each beam has a single mainlobe and the beams cover

all of visible space. For our purposes only the beams which are

relatively near boresight are of any consequence.

An example of the beams which results from a Butler matrix

transformation is given in Figure 3-2a. The array is linear and

consists of four elements. The element gain pattern is the

envelope of the four beam patterns.

A slight modification to the beam transformation is neces-

sary to allow an odd number of beams to be used when the number

of array elements along a given dimension is even (or an even

number of beams when the number of elements is odd). Ccnsider a
I linear phased array. If the number of elements in the array is

even then none of the beams formed by a beam transformation has a

boresight which is perpendicular to the array. However, if we

wish to use an odd number of these beams in a system then the set

of beams should be symmetric about a line perpendicular to the

array, hence the center beam of the set should be perpendicular

to the array. This difficulty may be overcome by modifying the

definition of the beam transformation so that the beams are

shifted by 1/2 the separation between adjacent beams. The last

beam in the set then becomes a "difference beam". For this beam

the phase shifts applied to the outputs of adjacent ele)ments

differ by 1800, so its gain pattern has two lobes with equal gain

which occur outside the other beams. This is illustrated in

Figure 3-2 for a linear array of four elements. If two beams are

'.' 4.1.GJ 4IA L.11,3- l.I .I. .T l..Jte £Jt1ZI. 7111.1. w h-c re.. ~ from, th. 1..1AI L1~ usua

beam transformation may be used (Figure 3-2a). If one or three
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beams are desired the transformation of Figure 3-2b is used.4 lEither set of beams may be derived from the other so no loss of

information is involved. This idea may be applied for both di-

mensions of a two-dimensional array to allow even or odd numbers

of beams to be selected in either direction.

4

i3

ii

I.
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SECTION 4

COMPUTED PERFORMANCE OF A PHASED ARRAY

The short-term performance of a number of different orders

of diversity has been evaluated using the TROPO program for a few

typical troposcatter links. The transmit and receive antennas

are single phased arrays. The arrays are rectangular and are

oriented with one axis horizontal. The boresight of bot'i arrays

lie in the great circle plane (i.e., the azimuth angle is zero

for both arrays). No polarization diversity is employei. The

transmit beam is generated from the entire array with no phasing

of the elements. For most of the results the receiver ports con-

sist of sets of beams which are derived from the element outputs

through a beam transformation. The elements are assumed to be

small enough that their gain is tile same over the entire common

volume. This assumption is made to prevent the gain pattern of

the elements from affecting the diversity performance. The beams

form a rectangular set; that is, the number of receiver ports is

the product of the number of beams in azimuth and the number of

beams in elevation.

For a given minimum scattering angle, the link distance has

j no effect on diversity gains. The link distance does affect the

path loss. The path losses which are presented in this sec'on

assume a 100 km path length. The chanSes in path loss due to

scatter angle and antenna beamwidth are also unaffected by link

distance. So the results which follow apply to any link with the

given minimum scatter angles.

The carrier frequency affects the diversity gains only

through the antenna beamwidths. So the results apply to any

combination of carrier frequency and antenna size which give the

specified beamwidth. For path loss calculations the beamwidth is

assumed to be 5GHz, but as with link distance this has no bearing

on changes in path loss.

4-1



Thus, the diversity results derived in this section are

generally applicable to any link with the specified beamwidth and

scatter angle, and are not limited to the specific link distance

and carrier frequency which are used to determine the path loss.

4.1 ELEVATION DIVERSITY

We first examine diversity systems with a number of beams

which differ only in elevation. All of the beams have zero

azimuth angles, i.e., they are pointed directly toward the trans-

mitter beam. The lowest elevation beam has its lower 3 dB point

at the horizon, so its boresight is roughly one-half the 3 dB

beamwidth above the horizon. The other beams have boresights at

increments of half the null beamwidth above the first beam.

Adjacent beams cross over at the 2/n level (-3.9 dB).

The first link we consider has horizon angles of .250 at

both the transmitter and the receiver. This results in a minimum

scattering angle of 1.200. The antenna apertures are square and

measure 3 meters along each side, so the half-power beamwidth of

the arrays is 1.00. Table 4-1 presents the SNR's required to

make the BER bound 0 = 10-4 for various orders of elevation

diversity.

The bound on diversity gain derived in Section 3.2 is

included for comparison. The dual elevation diversity system is

1 only 3. 3 dB above the bound, but after third order diversity,

additional elevation beams improve performance very little. The

basic reason for this effect is that the power on the upper

elevation beams is very low due to the large scatter angle. To

further investigate this effect we have examined the performance

of one, two, and three beam elevation diversity systents for dif-

__... I n i= c a' and beamiwidU.3 * The dperture sizes

are 1.5m x 1.5m, 3m x 3m, and 6m x 6m which result in beamwidths

A of 20, 10, and .50 respectively. fhe minimumn scatter angles

I considered are .70, 1.20, and 1.70, The results are presented in

Table 4-2.
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Table 4-1

Elevation Diversity Performance --

Required SNR for Chernoff bound on BER .0001

(1.20 Minimum Scatter Angle, 10 Beamwidth, Square Array)

J T

j Required SNR (dB)
Number of Elevation Lower Bound

Elevation Beams* - Diversity (Equal Power, Independent)

1 40.0 40.0

2 23.3 20.0

3 19.3 13.1

4 18.1 9.5

5 17.5 7.3

* NOTE: The elevation beams are formed by phasing the elpments

of the array as described in Section 3.3.

i



Table 4-2

Comparison of elevation diversity gain for different antenna
b sizes and minimum scattering angles. (Antenna sizes 1.5m, 3m1,

6m. Minimum scattering anales .70, 1.20, 1.70.)[ a. l.5m by 1.5m Antennas

RequiredSNR ____

Order of.Diversity .70 1.20 1.70

1 40.0 40.0 40.0

2 25.6 M45 23.9
13 23.2 21.5 20.4

Kb. 3m by 3m Antennas

ReqiredSNR
Order of Diversity .70 1.2 1.70

1 40.0 40.0 40.0

2 24.3 23.3 22.6

3 21.1 19.3 18.3

C. 6m by 6m Antennas

I_________ Required SNR ______

Order of Diversity j.70 1.20 1.70

1 40.0 40.0 40.0

223.1 22.3 21.8
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Increasing the beamwidth and decreasing the scatter angle

both decrease the diversity gains. The boresight of the first

beam is usually at about Omin+ 10 where 0 is the minimummn28 min
-t scatter angle and a is the beam separation (1/2 the null beam-

1' width). Additional beams have boresights at increments of

above the first. If we define a parameter

%in+ 2

then we may compare results for different beamwidths and scatter

angles on a single plot. The result is given in Figure 4-1.

Note that ordering using a leads to fairly smooth curves.

An approximation to the performance of el-"ntion diversity

systems may be derived as follows. Assume that the signals on

each port are independent and that the losses in power on the

upper elevation beams are determined solely by the scatter angle

at their respective boresights. This determines a sequence of

sigenvalues, which may be used to find the required SMR for a

given bit-error-rate.

The scatter angle of the boresight of the i-th beam is

10i= 0rain +  8 + (io-l)

where i=l,2,...,N, mi is the minimum scattering angle and 8 is

the beam spacing. For relatively narrow beams, the power on the

I i i-th beam is proportional to

FZ
4 4-5
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~11/

0. -11/3

-1/

where

Is t is he ratio of '-he beam spacing to the scatter angle of the
loetelevation b- am boresinht. The Chernoff bound on the bit-

where cr is the required SNR.

In Figivre 4-2 the required SMR from the approximation

(dashed lines) is vompared with actual computed valueb for 2 and
3 beams. The ctirves agree to within about .5 dB in all cases.

* The mtir source of~ oe.ror here is the effect of horizon blockage,

which- is greatest w2.th dual diversity and large beamwidths.

V Table 4-3 compares the actual performance of 2,3,4, and 5 be'am

systems (from Table 4-1) with the approximation. Note that the

vaiLues fu the four and five beaim systems agree very well.
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Table 4-3

Comparison of Elevation Diversity Performance
With the Approximation

(Min. Scat. Angle 1.20, 3m x 3m Antennas, 100 km link, 5 GHz)

Required SNR (for BER = .0001
Order of Diversity Actual (dB) Approximation (dB)

1 40 40

2 23.3 123.6

3 19.3 j19.6
4 18.1 18.1
5 17.5 17.5
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Figure 4-3 presents more approximate results for 2nd

through 6th order diversity. With very narrow beams (y = 0) the

performance approaches the bound derived in Section 3.2 under the

assumption of equal power and independent ports. These curves,

although not exact, give a rough idea of the beamwidths and

scatter angles necessary to make third or fourth order 9levation

diversity worth while. For instance at mi= = 10 the gain

from adding a fourth beam to a three beam system is only 1.4 dB

whereas the gain with independent equal power divarsities (a = 0)

is 3.6 dB.

Thus far we have been concerned only with the effect of

scatter angle and beamwidth on diversity gain. These factors

also change the antenna gain and aperture-to-medium coupling

loss, generally by more than they affect the diversity gains. So

the diversity gains alone cannot be used to determine the antenna

dimensions, for example, since the dimensions also affect the

required transmiter power. Path loss calculations are always

necessary to determine these factors.

4.2 AZIMUTH DIVERSITY

Under the assumption that the receiver and transmitter

antennas have the same dimensions, an azimuth diversity system

cannot achieve the bound on diversity gains of the previous

section. The reason is that if we transmit with the entire

aperture then the common volume is limited in azimuth by the

transmitter beamwidth. Since the receiver beams have the same

beamwidth, additional azimuth beams (that is, beams with non-zero

azimuth angles) receive power through sidelobes even if the beam-

widths are very narrow. In order to illuminate a number of

azimuth beams with the mainbeam of the transmitter the aperture

must be under-illuminated, which decreases the boresight gain of

4-10
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the antenna. So additional azimuth beams cannot have the same

power as the first beam. Either power is lost on the outside

beams due to the transmitter beam pattern or power is lost on all

beams due to a decrease i" boresight gain.

A bound on azimuth diversity performance may be derived as

follows. Assume that the scatter angle is large relative to the

beamwidth so that additional azimuth beams are not affected by

increasing scatter angle. Under this assumption only a one-

dimensional integration (in azimuth) is necessary since all beams
have the same elevation behavior. The covariance matrix is thus

determined by the transmitter and receiver beam patterns. So

with rectangular apertures the transmitter gain pattern is

gT(a~x) = , -; sin ax

where a is varied to change the boresight gain and the beamwidth,

and the receiver beam patterns are

- sin[x-(i-n/2 + 1/2)w]
gR(x) x-(i-n/2 + 1/2)7

LB
H

where x = sine and LH is the width of the array. The i -th

element of the signal covariance matrix is

) 2 1 JJ ~~ ~ i C. .() I (ax)gR.Jx)gR.x)d

t"41
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r The results o this procedure are given in Figure

4-4. HeiE we graph the SNR required to achieve a BER of 10- 4

versus the parameter a. (a is proportional to the boresight gain

at the transmitter antenna, and 1/a is proportional to the trans-

mit beamwidth.) As the order of diversity increases the optimum

transmit beamwidfh also increases. In Table 4-4 we give the

required SNR f'r the best transmitter beamwidth along with the

value of a which gives this beamwidth (a = .5 means that the

transmitter beamwidth is double the receiver beamwidth), and the

* dB loss incurred if full illumination is employed.

Note that a dual azimuth diversity system loses only .2 dB

if the transmit beamwidth is not increased, but that higher order

diversity systems lose 2 or 3 dB. The potential gains from

azimuth diversity are much lower than those possible with eleva-

tion diversity (cf. Table 4-3). With third order diversity the

difference between the bounds is 4.3 dB, and with fourth order

diversity the difference is 5.5 dB.

We next present computed results for various azimuth diver-

*sity systems. The link used is 100 km with 3m x 3m antennas (10

beamwidth) and a minimum scatter angle of 1.2*. The carrier fre-
quency is 5 GHz. The optimum transmit beamwidth is used with

each order of diversity. In Table 4-5 we compare the azimuth

diversity performance with elevation diversity performance. Also

included for reference is the transmitter azimuth beamwidth (for

the azimuth diversity systems). Elevation diversity is always

better than azimuth diversity for this link.

If the scatter angle is small and the beamwidth is large,

then a dual azimuth diversity system may perform slightly better

than a dual elevation diversity system. For example, if the

antenna dimensions are 1.5m x 1.5m instead of 3m x 3m for the

L
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Table 4-5

Comparison of Azimuth and Elevation Diversity
100 km Link, 3m x 3m Antenna, 1.20 Scattering Angle

Transmit Azimuth Beamwidth
Order of Required SNR (Azimuth Diversity Systems
Diversity Azimuth Elevation (Elevation Beamwidth 1.00)

1 40.0 40.0 1.00

2 23.5 23.3 1.00

3 20.2 19.3 1.40

4 19.5 18.1 1.70

5 19.2 17.5 2.00

i - 4I
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.1 1 above link, then the required SNR is 24.5 dB with elevation

diversity and 24.3 dB with azimuth diversity. With higher order

diversity this almost never occurs since the transmitter beam-
width must be increased significantly, causing a loss in antenna

gain.

We may conclude that in general azimuth diversity is not as

effective as other diversity types. Dual azimuth diversity, how-

ever, is often almost as good as elevation diversity and some-

times slightly better. Further, dual azimuth diversity may be

combined with elevation diversity for higher order angle diver-

sity systems.

4.3 COMBINED AZIMUTH AND ELEVATION DIVERSITY

We next consider combined elevation and azimuth diversity

systems of various orders. As before the Link we consider has

horizon angles of .250 at both the transmitter and the

receiver. This results in a minimum scattering angle of 1.200.

The antenna apertures are square and measure 3 meters along each

side, so the half-power beamwidth of the Prrays is 1.00. Table

4-6 presents the SNR's required to make the BER bound 10

for various orders of diversity. The diversity systems are spec-

ified by the number of beams in azimuth and the number in eleva-

S1tion. The bound derived in Section 3.2 is included for compari-

I tson. Note that the gains achieved by the system are within a few

I / dB of the bound for small n. The larger the aperture the closer

the results will approach the bound.

Different systems which have the same order of diversity

are compared. For example, if four beams are desired then a

L - square set (two beams in azimuth and two in elevation) or a set

of four beams with different elevations but the same azimuth may

be used. In general more than two beams in azimuth result in

little gain. For instance a 6th order system with three beams in

4-17



Table 4-6
Required SNR for BER Bound 0= 10

(Minimum Scattering Angle 1.20, Antennas 3m by 3m.
Beamwidth 10, Square Aperture)

Lower Bound on
Order of No. of Beams No. of Beams Required Required SNR
Diversity in Elevation in Azimuth SNR I (cf. Table 2-1)

1* 1 1 40.0 40.0

*2* 2 1 23.3 20.0
2 1 2 23.5 20.0

3* 3 1 19.3 13.1

3 1 3 20,4 13.1

4 1 18.1 9.5
4* 2 2 15.4 9.5

4 1 4 20.0 9.5

6* 3 2 13.6 5.6
6 2 3 14.3 5.6

8* 4 2 13.0 3.49* 3 3 12.5 2.5

12* I 4 3 12.0 .6

*Optimum Diversity Configuration
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aziriuth and two in elevation is only 1.1 dB better than a 4th

order system with two beams in both azimuth and elevation.

We next consider the effect of antenna aperture size on

diversity gains. Table 4-7 contains the SNR required for the

same link as above for square arrays with dimensions 1.5 m or 6m.

In all cases the transmit and receive antennas are the same size.
\' The values for 3m arrays are included for comparison. The di-

versity gains are not greatly affected. In general the larger

antenna has better diversity gain but only by one or two dB.

These differences are much smaller than the changes in path loss

and antenna gain. The path loss is smaller for small antennas

due to a decrease in the aperture-to-medium coupling loss, but

this is more than offset by the decrease in antenna gain. (These

values are also presented in Table 2-4.)

The transmitter and receiver horizon angles also affect

j diversity gains. In general diversity gain decreases as the

horizon angle decreases. This effect is due to the scattered

power dependence on the scatter angle 0. As 0 decreases, a

4 larger fraction of the received power comes from the lowest sec-

tion of the common volume. This effect is illustrated in Table

4-8. Minimum scattering angles of .70 and 1.70 are compared with

the original case of 1.20 for 3m antennas. The diversity gain is

less for small horizon angles, but this effect is small compared

to the decrease in path loss. Figure 4-5 graphs these points

with values computed for 1.5m and 6m antennas.

4.4 DECREASED COMPLEXITY USING SUBARRAYS

A diversity system with beams derived from the element out-

A_ puts may be too complex. If the -.rraV has N elements and m beams

are desired then mN phase shifts are required if m is less than

log 2N. (All N beams may be formed with Nlog 2N phase shifts.) A

great reduction in the number of phase shifts may be achieved by

4-19
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ii Table 4-7

Comparison of systems which employ square antennas
of different sizes (l.5m, 3m, 6m)

a. Half Power Beamwidths and Path Losses

Antenna Size
1.5m 3m 6m

Half Power Beamwidth 20 10 0.50

Boresight Antenna Gain 39.0 dB 45.0 dB 51.0 dB

Path Loss 259.1 dB 262.6 dB 267.4 dB

b. Diversity GainsJ ' I
Order of Elevation Azimuth Re uired SNR
Diversity Beams Beams 1.5m 3m 6m

1 1 1 40.0 40.0 40.0

2 2 1 24.5 23.3 22.3

, 2 1 2 24.3 23.5 23.0

3 3 1 21.5 19.3 17.5

4 2 2 17.2 15.4 14.2

6 3 2 15.9 13.6 11.8

8 4 2 15.5 13.0 10.8
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Table 4-8

Comparison of system performance on links with different minimum
scattering angles. (100 km Link, Minimum Scattering Angles *7

°,

1.2c, 1.7*, A.itenna Size 3m).

a. Path Losses

Scattering A qle
.70 1.20 1.70

Path Loss 254.6 dB 262.6 dB 268.1 dB

b. Diversity Performance

Order of Elevation Azimuth Required SNR
Diversity Beams Beams .70 1.20 1.70

j 1 1 1 40.0 40.0 40.0

2 2 1 24.3 23.3 22.6

2 1 2 24.1 23.5 23.2

3 3 1 21.1 19.3 18.3

4 2 2 16.8 15.4 14.6

6 3 2 15.4 13.6 12.5

8 4 2 15.0 13.0 11.9

--
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subdivision of the array. The element outputs within each sub-

array are summed and phase shifts applied to each subarray. The

number of subdivisions in a given dimension must be at least as
T large as the number of beams desired. For instance, if three

beams with different boresight elevations are desired then the

if ~ array must be divided into three sections which are spaced ye!.-
tically.

Subdivision of the array causes performance to degrade

because the element outputs within each subarray are not exactly

1 in phase. Hence when they are summed some loss in power occurs.

This decreases the boresight gain of the beams which are not per-

pendicular to the array. In Figure 4-6 this effect is illus-

trated for a 3 beam system. Note that the main lobes of the
beams formed by subarrays have lower gain than those formed by

the array elements. The sidelobes of the gain patterns formedU
from subarrays are much higher than- those formed by the elements.

This effect is due to the small number of subarrays. These side-Llobes may make a svtem employing subarrays more susceptible to
jamming. So greater subdivision of the array or tapering of the

subarrays may be important to improve ECCM capabilities.

For most of the results here we consider the diversity per-

formance of arrays which are not subdivided, In this way the

benefit of diversity alone is determined without effects due to

implementation.

ceiver array has been evaluated for 3m x 3m antennas with trans-
mitter and receiver horizon angles of .250. For each system the

arrays are divided into the minimum number of subarrays permis-

sible for the beams desired.- The results are presented in Table

4-9 along with the values for undivided arrays. The path loss is

determined by the case without diversity so it is the same for

divided and undivided array systems. As expected the subdivided
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arrays do not perform as well. However the performance loss isI very small relative to the reduztion in complexity. If a more

complex system is permissible then a greater improvement in re-

quired SNR results from increasing the order of diversity rather

than increasing the number of subarrays.

4.5 EFFECTS OF ELEVATION ANGLES

The results of previous sections are derived under the as-

sumption that the antenna elevation angles above the horizon are

chosen optimally. This is not possible in practice since atmos-

pheric changes affect the radio horizon, and in addition small

pertubations are present due to wind and other factors. The ro-

bustness of a system against these problems may be examined by

varying the elevation angle. Figure 4-7 is a graph of required

SNR vs. elevation angle for some different diversity systems.

(The SNR is that which would be observed by a single diversity

system with the optimum elevation.) The elevation angles of the

transmitter and receiver antennas vary together. This data is

for a 100 km link, 6m by 6m antennas and 1.70 scattering angle.

The systems degrade in roughly the same manner as the ele-

vation angle varies about its optimum point. Systems with more

elevation beams are affected somewhat less, e.g., a pertubation

of 1 .20 degrades a system with three azimuth beams by 1.5 dB and

the degradation for three elevation beams is only idB. Overall

this effect is small compared to the diversity gains.

4.6 EFFECT OF APERTURE SHAPE

The common volume is affected by the shapes of the antenna

beams, and these are determined by the shapes of the antenna

apertures. To determine the significance of this effect we have

determined the performance of a number of rectangular apertures

4-26
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witn different horizontal and vertical dimensions. The area of

the arrays is fixed, so the boresight gain is the same for all

cases. We define an asymmetry parameter

L
= log(LV)

h

where Lv and Lh are the vertical and horizontal array dimensions

of the transmit and receive antennas. (The area, LvLh, is
fixed.)

As Lv increases the antenna beams become narrow in eleva-

tion and broad in azimuth. The two factors which determine the

best ratio of Lv to Lh are the scattering angle and the size of

i Ithe common volume. As the beam becomes narrow the common volume
i increases. For example if Lh is doubied and Lv halved for both

4;I antennas then the area of the common volume which intersects the

4 great circle plane increases by a factor of four. The extent of

the common volume in azimuth (i.e., perpendicular to the great

circle plane) is only halved so the common volume increases by a

factor of two. This effect is offset because the additional

common volume elements have larger scattering angles and the com-

mon volume integral includes a factor of 0-11/3 where 0 is the

scattering angle. The scattering angle does not increase as

rapidly with increasing azimuth angles.

Figure 4-8 illustrates the effect of asymmetry on the re-

I quired SNR (for 0 = 10-4) for a number of diversity systems.
The link distance is 100 km, the antennas have areas of 36 m2,
and the scattering angle is 1.70. The receiver and transmitter
antennas have the same shape. The SNR here is that which would

i .be measured by a single diversity system employing a square

I array. The effect of asymmetry is relatively small compared with
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ii
diversity gains. Systems with many elevation beams tend to per-
form better with wide azimuth beams (positive asymmetry), whereas

azimuth diversity systems are better with narrow azimuth beams.
In both cases the atmospheric volume illuminated by the various
receiver beams is roughly square.

If we consider the systems in terms of the largest sub-
arrays which give the same basic beam patterns (under a Butler
matrix transformation) then the resultant subarrays are nearly
square. Thus, an optimum diversity system should be formed by

• arranging the desired number of square subarrays.

I

I -
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SECTION 5

COMPARISON OF DIVERSITY COMBINERS

5.1 INTRODUCTION

Thus far we have compared diversity systems under the

assumption that the signals on the diversity branches are com-

bined optimally using a maximal-ratio combiner. It is of

interest to examine the effect of sub-optimal combining tech-

niques on diversity gains both to allow comparison with existing

systems and also to see if less complex combiners may be used

wi.th little loss in performance. We assume that the signals on

the diversity branches are independent and have equal power.

This assumption is conservative since with unequal powers on

diversity ports the difference between various combining tech-

niques is generally less.

141) As previously mentioned the optimal combiner is a maximal-

ratio combiner. This combiner multiplies each fading signal by

its complex conjugate so the signals are added in-phase and the

larger ones have bigger weights. One sub-optimal combiner is

selection diversity where the strongest of the N fading signals

is selected. Another sub-optimal combiner selects the strongest

K of the N signals and combines these using a maximal-ratio com-

biner. The final method which we consider is the equal-gain com-

biner where the signals are added in-phase but with the same

- i gains.

I For the first three combiners we, compute the exact prob-

ability of error expression (DPSK modulation). Note that selec-

tion diversity and maximal ratio combining are special cases of

"K of N" combinina, with K=l and K=N, The exact Pr-formance of

the equal gain combiner is difficult to compute. However, a

i i simple approximation may be derived for low error rates.

Vw5-i
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The results of these calculations are presented in Table

5-1 for a bit-error rate of 10 - . Selection (or switch) diver-

sity is 1.5 dB worse than maximal-ratio combining for dual diver-

sity and is 4.5 dB worse at sixth order. This is a significant

loss since the difference between an optimal fourth order system

and an optimal sixth order system is only 3.7 dB. Choosing the

best 2 of N is about 2 or 2.5 dB better than selection diversity

so for a fourth order system choosing the best 2 is only 1.0 dB

worse than combining all four. Similarly if the best 4 of 8

ports are combined the required SNR is only 1 dB above the

optimum. Equal gain combining performs almost as well as maximal

ratio combinina. Even at 12th order diversity the difference is

only 1.2 dB. This is an important result since phased arrays

already have variable phase shifters in order to steer the

beam. So an equal gain combiner might be significantly simpler

i Ito implement with a phased array.
U 5.2 MAXIMAL RATIO DIVERSITY COMBINING

The output of any combiner is a linear combination of the N

diversity signals, so that the signal-to-noise ratio at the out-

put of the combiner is of the form

N WiAie ij2

P N -2
Wt n

where Ai is the amplitude of the i'th signal, Oi is its phase,

n. is the average noise power in the i'th diversity branch and

Wi is a proportionality constant (weight) to be determined so as

to maximize p. It should be clear that for any choice of the
A magnitude of the Wi t $ nill be maximum when all N signals are

combined in phase. Furthermore from the Schwartz inequality we

know that
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U Wi Ai) A
j 2.

i i ni
2

with equality occurring when W= k A./n. where k is an arbitrary
1 3.

constant. Therefore the signal-to-noise ratio at the output of

the combiner is maximum when the W i are chosen as indicated above

and the optimum signal-to-noise ratio popt is given by

2A. N
Opt = __L - I Piop i 2  i=l

n.~i

i.e., it is the sum of the SNR in each diversity branch. Since

the pi are independent and exponentially distributed, the prob-

ability density of popt is given by

(Popt) = ( N-1) e-1'p , 0  Popt

5.3 TRADEOFFS BETWEEN MAXIMAL-RATIO COMBINING AND SWITCH

DIVERSITY

Consider a system with N diversity ports. The optimum

receiver does maximal-ratio combining of all of the N outputs.

One suboptimal combining method is to take the best K (K<N) of

the diversity ports and combine these optimally. The best subset

of the N ports changes as the channel fades. We assume here that

the fading process is slow relative to the time necessary to

select the best K ports. In an actual implementation theI receiver might consist of K receivers which may he connected to

any of the N ports using RF switching, and a measurement receiver

5-4



S.which examines the power on the other ports. When the power on

one of the unused ports becomes greater than the smallest of the

K currently being combined, the receiver on the lowest power port

is switched over to the new port. The weight used for the new

port in the maximal-ratio combiner is initially zero so that it

adapts slowly without affecting the system performance.

In this subsection we compare the performance of systems

for various N and K. We assume that the N diversity ports have
equal power and fade independently. The delay spread of the

channel is assumed to be small relative to the system signaling

. interval so that the signals are well described by a Rayleigh

fading model.

The modulation is assumed to be DPSK so the error rate is

P' Pe e-

where a is the signal-to-noise ratio. The distribution of the

SNR thus determines the average bit-error-rate and the outage

probability for any given theshold. The SNR distribution may be
o : derived as follows.

The system SNR is simply the sum of the K largest powers of
the N diversity branches (maximal-ratio combining). The power on

V each diversity branch is exponentially distributed. Let {Zi ,
i=l, ..., N} be the powers on the N branches. The (N-K)th smal-

I lest of the Zi is denoted Z(NK) (that is, the largest one not

combined). It has the density function [141
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N I! (le-x)N-K- e-X)K+

qN-K(x) - K!(N-K-I)!( (e

and the cumulative distribution function

N

QNKCX) = e- (l-eX)i(eX)n-i.
iN--

This is the (N-K)th order statistic. (For simplicity we assume

that the Zi have unit power. They may be scaled later by their

actual power.) Since the Zi are exponentially distributed the

difference between one of the K largest and Z(NK) is also ex-

ponentially distributed with unit variance and is independent of

i.. ' Z(N._K). Thus, the sum of the K largest has the same distribution

as

K
Z KZ + Yi(N-K) __

where the Yi are independent unit-variance exponentially distri-

buted random variables. The probability density function of

A K
= Y- isIi~li

K-i

py(X) = (K-I)! e

so the density of Z is the convolution of qN-K and py; that is

S5-6



a

fNKa) f~ qN (o)~(t-x') dx.

5.3.1. Average Bit-Error-Rate

0iiABER= fP [SNR=cx]P [ErrorjISNR=*] da.

For DPSK, we have

P[ErrorlSNR=a] = p

- !where a is the average SNR per diversity branch, and

|II

PNSNRKK] f -NK a)

So

4ABER(N,K,r) =. f fNK(a)eaa" dct

0
N, K (-g)pv a-x) dx e dq

1x eO-au

f qN,K (R) f e p (a-x)da dx

0-x

5-7



where the last step follows by interchanging the order of inte-

gration. These integrals may be computed directly. The result

is

ABER(NK, ) 1 K i i2 (0+l)K I K " Ko +Ka1 K1

The loss due to combining the best K of N ports relative to

combining all N ports may be seen directly from this formula.

The slope of the BER for large a is the same since the denomin-

ator increases as aN The first K factors in the expression are

the same as those for maximal-ratio-combining (N=K). The factors

after these K have their SNRs reduced by increasing amounts. The

(K+l)st one is reduced by K the next by K etc. For large
K+l 'K+2

SNR the required increase in SNR for the same BER if we combine

only K of the ports is approximately

0K,N (N! KN-K)/N
'MRC K

We have computed the required input SNR (i.e., the required a) to

give an ABER of 10- 4 for a number of different N and K. The

results are presented in Table 5-2 and Figure 5-1. The results

show that a significant reduction in complexity may be realized

with only a small loss in performance. For instance, the re-

quired SNR for 8th order ,naximal-ratio combining (N=8, K=8) is

2.8 dB. If the best 4 of the 8 ports are used (N=8, K=4) then

the required SNR increases by only 1 dB. These factors are

almost exactly the same as those given by the asymptotic formula

above for large SNR.
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LI .1 The resul-s also show that maximal ratio combining of a few
of the ports is significantly better than switch diversity. A

4th order system with K=2 performs as well as a 6th order switch

diversity system (K=1). Also, a 5th order system with K=2 per-

forms better than a 4th order maximal-ratio combining system.

If the cost ot a system is proportional to (N+K) then a
combination of switch diversity and maximal-ratio combining is

the most economical solution. If, on the other hand, the cost of
diversity branches (antennas, etc.) is significantly greater than

the down converters and combiner, i.e., cost proportional to

N+yK, where y is small, then maximal-ratio combining should be
used. If the cost imbalance is reversed then switch diversity is

the most economical solution. In general, if the cost goes as

N+Ky then the best system may be chosen by comparing the required

SNR's for various N and K which have the same cost. For example,
I if the cost is N+K, then for cost=6, we may choose [N=5, K=1],

[N=4, K=2], or [N=3, K=3]. Since the required SNR's are 10.6,

9.7, and 12.1 respectively (from Table 5-2), we see that [N=4,

K=2] is best.

5.3.2 Outage Probability Calculation

The outage probability, that is, the probability that the

I: SNR falls below a threshold, is determined by the cumulative dis-
i( ttribution of the SNR. This cumulative distribution is most

easily derived by convolving the cumulative distribution of

Z(NK) with the density of Y. That is,

FN,K(a) P[Z ]

f QN Kx)P(a-x)dx.
0 -
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The result of this integral is

N N -ai

F (a) (i- I
N,K i=N-K j0

where K- K--

e ay YK a - ; y*O1=0 (K-l-9)ly1; *

G'(N,K,i,j,c*) A
1K! . ; Y=0

and

A K-N+i-i
Y = K

This expression may be used directly to calculate outage

probabilities for any given threshold. If the threshold is X and

the average SNR on each diversity branch is a then the outage

probability is FNK(1). The threshold is divided by a because

FNK is derived assuming unit variance exponential random vari-

ables.

5.4 EQUAL GAIN DIVERSITY COMBINING

The SNR at the output of an equal gain combiner is

N

N n

5-12



where Ai is the amplitude of the i-th signal and n is the

average noise power. The amplitude A i is Rayleigh distributed,

i.e., its density is

22
P.()-2x e-X2 /a

PAI(X) -e

where a/n 2 is the SNR on each diversity branch. If

NA ZAI i=l 1

then for small arguments the density of Z is

V, N 2N-1
2 x

(2N-1)! a

Similarly if W is the output of a maximal ratio combiner we have

IN-I

Pw(x) = N Nex/-
(N-l)! a

xN-1

(N-l)! a

for small x.

The outage probability, i.e., the probability hat the gain

falls below a fixed level p0 ) for the equal gain combiner is

5-13



~I Pu P[P ' P0]

P[Z ( N n2P0 ]

N n2p NSP(X)dx
0

(2N (N n2 PO )N

=! 2N ) !1 aN

' i Similarly, for the maximal-ratio combiner

(n po ) N

Pout - aN N

So the ratio of the equal-gain combiner input SNR's (a/n2) to

that of the maximal-ratio combiner is

aEGC 2N 1/N

MRC (2N)! 1/N (N!)

Since this ratio does not depend on the threshold p0 the same
ratio applies if the performance criterion is the average bit-

error rate.

1As a check on the accuracy of this approximation the same
- procedure may be applied to selection diversity. With selection

* diversity the output SNR is
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A.
p = max -

i 2
n

and

AE P[P <Po]

.4= l~- P0o/ c)
-(1-e 

)

so we have

USEL - (N!)l/N

aMRC

[ Table 5-3 presents the approximate increase in required SNR

for both equal-gain and selection combiners at low error rates

and the actual increase for selection combiners at BER = 10- 4

from the previous section. The equal-gain combiner performs only

slightly worse than the maximal-ratio combiner. Selection diver-h. sity is significantly worse than equal-gain combining. Although

these results are for asymptotically low error rates the actual
values for BER = .0001 are within .2 dB for N c 5 and within

.5 dB for N 4 12. So even at an error rate of .0001 the approxi-

U mation is good.
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SECTION 6

EFFECTS OF TIME-VARYING PARAMETERS

We show in this section that wideband systems are not

severely limited by typical troposcatter fade rates. The loss

caused by inaccurate channel measurements can be held to less

than 0.5 dB for a I Mbps system. In Section 6.3, the optimum use

of diversity on a fading channel is derived and it is shown that

diversities with SNR below a critical value, A, are not used by

the optimum combiner; A depends on data rate, char-l fade rate,

and SNR.

6.1 FADE RATE LIMITATION ON CHANNEL GAIN MEASUREMENT

Thus far we have assumed that the channel gains vary so

I slowly that they may be measured exactly by the receiver. In

this section we instead assume that estimates of the channel

gains are made by averaging K reference pulses. The number K is

deteriined by the channel coherence time, the data rate, and the

percentage of reference pulses.

We consider a combiner which weights each of the diversity

branch outputs by the conjugate of its estimated channel gain.

This combiner is not optimum, since the channel gains are not

known exactly, but as K becomes large its performance approaches

4 that of a maximal-ratio combiner.

In Appendix C, an upper bound 0 on the error rate for this

combiner is shown to be

0 = if(K)IN + g(K)MG/NI 1
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where MG is the covariance matrix of the channel gains,

f(K) =K+1+/K
K+2+I/K

1
g(K) -

1+1/K

I = (NxN) identity matrix,

and No is the noise spectral density.

Equivalently we may write

N
00 R I [f(K) + g(K)Xi/No -

i=1

where Jli} are the eigenvalues of MG. As K increases f(K) andi I g(K) approach 1, and the BER bound is the same as that for maxi-

4 'mal-ratio combining.

6.2 PERFORMANCE DEGRADATION

Since the formulas for the performance criterion include
the effective number of reference pulses K used in the measure-
ment, it is helpful to have quantitative estimates of this

number.

Typical troposcatter circuits can be assumed to communicate
at least 1 Megabit/second in the absence of AJ protection. Data
rates as high as 12 Mbit/sec are seen on some circuits. A trans-
mission using 10% of the transmitted bits for reference is a
plausible value, although possibly slightly excessive. This

yields a rate of transmission of reference pulses of at least
105 bits/second for a 1 Mbit/sec data rate.
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The number of reference pulses must be equivalent to the

coherence time of the channel, i.e., the time interval over which

the gains Gn (fading) remain constant. With typical tropo-

scatter fade rates of a few Hz, a measurement bandwidth of a few

tens of Hz is more than adequate to track the fading. A measure-

ment duration of 10- 2 seconds is therefore reasonable in the ab-

sence of airplane flutter or other high fluctuation rate ef-

fects. We conclude that if measurements can be made continuously

on each port of the antenna system, then

!i I  K = 103

is reasonable for a 1 Mbit/sec system.

The value K = 103 in the formulas for the performance

criterion will obviously give superb performance even with a very

large number of adaptively controlled ports. We can overbound

@, by

N N
S(1+1/K) H 1+ I0n n, n=1

For K=1000 a value of N=100 only results in a 10% increase in

the error probability bound, and this is negligibly small. The

weakness in this line of argument, however, lies in the implicit

assumption that it is possible to measure the reference signal on

each antenna port continuously and with the full SNR available

1 Vfrom that port. This implicit assumption is only valid if there

U is separate RF amplification for every antenna port.

If it is dcsired to achieve adaptation on a large number of

antenna ports, it is probably necessary to assume that a singleI"measurement receiver" is time-multiplexed among the outputs of

directional couplers connected to the ports. If we make a real-
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istic assumption that 10 dB couplers are used in this configura-
tion, then the effective value of K is reduced by 10 because of
the coupler loss. The multiplexing of the measurement among N
ports then results in a further division of K by N, and the
result is that we must use the value

K =100/N

for the multiplexed measurement. If we then rewrite the bound
N 

-

0 4 (1+1/K) H (i+Xn/N 0 )-i
n=l

to display its dependence on N, we have

N No< (i+N/i°) H (1+Xn/N0) -

0 n=l

Let a be the factor by which the eigenvalues must beincreased to maintain the same error rate bound. Then we have

N N
H (i+X/No) )1 = (I+N/aoo)N N (i+aXn/N 0)- 1

n=l n=l

If An/No is the same for all n, then

a l+(N/Z0)(+N 0 /A) .

6-4



r7f-

If A/N0=l (0 dB input SNR per diversity branch) then with 6th

order diversity this is a loss of .5 dB, and even with 25th order

diversity the loss is only 1.8 dB. These losses are small

compared to the diversity gains. If An/N 0 is larger then the

losses are even less. Significant losses occur only for

N > min(, 00) 0 B

where

W data rate

B = Doppler spread

6 = duty factor for reference and measurement

We have assumed that all eigenvalues are the same, but if some

are very small then the effective order of diversity is smaller

than N and so the order of the system should be reduced. We

conclude that channel measurement inaccuracy need not be a severe

problem on most troposcatter systems. The next section shows

that advanced processing can further reduce the limitations

imposed by the channel fading.

6.3 OPTIMUM COMBINING WITH MEASUREMENT INACCURACIES

It is now shown with an optimum orthogonalizing transforma-

tion that only some of the diversity branches (eigenvalue) should

be used by the optimum combiner. An example of the number of re-

quired measurements is evaluated.

6.3.1 Accessibility of Independent Fading Components

The following discussion is in the nature of determining

theoretical limitations rather than defining practical implemen-

tj C.- o 
L at6ons.
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The basic scheme assumes that we have access to noisy fad-

ing replicas of the transmitted signal in the form

Sn(t) = Gn(t)z(t) + Vn(t)

either from the original array ports or from the output ports of

a fixed linear transformation on the array ports. From these

replicas we form the diversity-combined output

C(t) = E Wn(t) Sn(t)

where the {Wn(t)} are adaptively computed from known reference

pulses imbedded in z(t)

In the previous section it was assumed that the measure-

ments were performed on the individual {Sn(t)} , possibly by a

multiplexed measurement. We also assumed that this might be done

using an auxiliary measurement receiver that was connected to,

say, directional couplers on each of the ports. We now describe

a way in which the entire measurement procedure can theoretically

be improved, and a consequent improvement that can be achieved in

the diversity combining.

First of all, we observe that even with a fairly noisy mea-

surement it is possible to "measure" the covariance matrix of the

fading, which we recall was defined as

MG = E(GG'): MG

Although this covariance matrix is not fixed for all time, its

variations will tend to be at the slow rate associated with

changing atmospheric conditions rather than the several Hz fluc-

...t.ing rate of G . We therefore can theoretically compute the

unitary matrix Q which diagonalizes MG
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Q' MG Q= A

We next observe that since the diversity combining network

can form C(t) as a weighted combination of the Sn(t) , it can

theoretically use different weights during the reference pulses,

and form a linear combination

C(t) = 7 wn Sn(t)
n

In fact, it can use N different sets of weights and

form N different linear combinations during N successive mea-

surements to create a set of measurable signals

Sm(t) = PS n(t)
n

which can be expressed more compactly in matrix form as

s(t) = P S(t)

where P is the (NxN) matrix with entries {Pmn1 . Now, the

covariance matrix of s is

Ms  E(-s')

= E(P S'P')

ti - s E(SS I

= P(MG+ IN)P'
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Fix

I

t, I

Consequently, if we choose P to be the previously calculated

unitary matrix 0

P = Q, P' = Q, = ,

we have

M = A + IN

so that we can display the independently fading components of

S(t) in the measurement.

We note that this structure also implies that it is un-

necessary to use an auxiliary receiver for measurement with its

directional coupler loss. [Nevertheless it might be desirable to

use such an app-cach from practical considerations.]

1

6.3.2 Improved Diversity Combining for Finite Measurement Time

Appendix D defines the performance criterion

0= Minimum (t)
t >0

j where

*(t) = 1/n Dn(t)
n

with

Dn (t) =1 + 2X 11 t-N,[., (1+1/K) + N,/K]t2-- I n n -n

* We pointed out that, in general, the maximum of each Dn(t)

occurs at a different value of t and therefore it is not pos-

sible to evaluate the minimum explicitly.
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This difficulty is a reflection of the fact that with noisy

measurements, the fading components with very low SNR should be

partially or completely suppressed in the combining algorithm.

In the original problem formulation this was not possible because

we didn't have access to these components. With the conceptual

modification used here this restriction no longer applies, and it

can be assumed that an additional (optimum) weighting is applied

to the coherently weighted components before combining them.

With that change, we can write the performance criterion as

1= / [Maximum Dn(t)]
n Ot

to obtain

0+ 1+1/K + I/ (KPn' 1

where

Pn n 0 " 

I
The expression can also be written as

1 + (l+K)Pn
0= I 2

n 1 + (l+K)Pn + Kpn

6.3.3 Apportionment of Measurement Times

The preceding results assume that the same measurement time

is used for tracking each independently fading component. That
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is, a fixed value of K is used for all components. The next

level of generalization is to allow different values of K for

I each fading component. This leads to the performance criterion

S1 + (l+Kn)p n

n 1+ (l+Kn)P + KnP

This immediately suggests the variational problem of choosing

the Kn to minimize 0 given a constraint on the total mea-

surement time. The solution to this problem is

1/ f PA -/ n > P

0! otherwise

where the value of PA is determined by the constraint. With

this dependence of Kn on Pn we then have

K TOTAL = [1
n Pn>  FA Pn

which implicitly defines PA' and the diversity branches that

should be included. The error bound is

S1 + P
0 = 1+ Pn

n:p n> PA n

1 '6-10
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'6.3.4 Error Probability in Terms of the Performance Criterion

The performance criterion we are using is a bound on the

saddle-point integral that defines the error probability. Al-

though there is not a one-to-one relation between the values of

the bound and the exact error probability, it is possible to ar-

rive at approximate relations that are sufficiently accurate for

most system performance predictions. The most useful approxima-

tion of this sort is

Prob(error) 
1/

/ [4+b ]1/2

, !where

b - 1s2 L"

and

so = value of s that minimizes O(s) ,

4 L(s) = log[(s)].

Now, in many circumstances it is sufficiently accurate to approx-

imate the logarithm of the moment-generating function by a para-

bola:

6-11
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2

L(s) -2C s + C 2 S

The minimum of this is at

so = Cl/C 2

where

L(s0 ) = -C 1
2 /c 2

Since

K L"(s 0 ) = 2C 2

we then have

12

b (-c)/C 2 ) 2 )

2/ = C12/C2

i t  
- -t.so)

- -log( o)

This leads to the approximation

e [4 -i g 0 /2 + [ - og ( 0 )]-/2
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It must be cautioned that this formula tends to underestimate theerror probability at veylarge SRwe th nubrof eigen-values is small.
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SECTION 7

DIVERSITY PERFORMANCE OF WIDEBAND SYSTEMS

INTRODUCTION

Angle diversity improves troposcatter system performance

because the signals from different sections of the common volume

fade independently. The difference in angle of arrival of these

signals makes different beams of an angle diversity antenna some-

[ what uncorrelated.

Similarly, the spatial separation of scatterers leads to

I delay differences in signals received from the common volume. If

the signals at different delays could be added coherently, then

great gains in SNR could be achieved. Hence there is a potential

for diversity to improve system performance. Such diversity is

often called implicit since it is implicit in the received wave-

form. The delay spreads seen on most troposcatter links

typically range from 30 to 200 nsec. This corresponds to coher-

ence bandwidths of 5 to 3(0 MHz. Frequencies separated by more

than the coherence bandwidth fade independently while frequencies

separated by an amount less than the coherence bandwidth fade in

phase (correlated fading). That is, the implicit diversity in

the channel may not be exploited if the signal bandwidth is much

less than the channel coherence bandwidth because all frequency

components in the signal will fade in a correlated manner. This

is analogous to angle diversity systems, where very little diver-

sity gain is possible if the antenna beamwidth is very large.

If the transmitted signal is wideband then it is possible

to improve performance by utilization of 4h implicit channel

diversity. A tapped delay line combiner may be used to ac-

complish this task. It forms the weighted sum of signals at

various delays. The weights are chosen adaptively in the same
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manner as the weights of a maximal-ratio combiner are adjusted to

combine the outputs of different antenna ports.

Because of the implicit diversity, a wideband system with

equalization may perform better than a narrowband system. How-

ever, the channel also introduces distortion (intersymbol inter-

ference) which degrades the SNR relative to that of a narrowband

system. Hence equalization is necessary in many cases to remove

distortion. Since we are chiefly interested in diversity gains,

we do not consider the problem of removing distortion. In par-;: Iticular, for the digital systems considered here we do not con-

sider intersymbol interference (ISI). Although it may be diffi-

cult to remove ISI, it is possible via Viterbi decoding so this

assumption is not unreasonable. All of the results which are

presented here are for the one-shot case; that is, only a single

pulse is transmitted.

One key difference between combining the signals from dif-

ferent antenna ports and combining delayed versions of the same

signal is that in the former case the noise components are in-

dependent whereas in the latter case noise is correlated. The

autocorrelation function of the noise is determined by the

receiver filter. This generally reduces the effectiveness of

delay combining since it is likely that the noise on two delay

taps can be large at the same time.

To illustrate the effectiveness of implicit diversity, we

present in Figure 7-1 the SNR gains of implicit diversity for

various signal bandwidths and delay combiners. The results are

graphed vs. o/T for various numbers of taps, where a is the

channel delay spread, and T is the duration of the transmitted

symbol. The SNR gain is relative to a narrowband system on the

same link.

As a/T increases the implicit diversity gains increase

initially, but then decrease. The initial benefit is due to

Ji 7-2
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increased diversity. Eventually, however, the loss of signal

power due to the spreading of the transmitted symbol offsets the

diversity gain and the SNR gain decreases. The gain begins to

decrease at higher o/T as the number of taps increases.

The link used as an example is 100 km long and has a min-

imum scatter angle of 1.70. The receiver and transmitter antenna

apertures are 3 m. square and are aimed one quarter beamwidth
above the horizon. This results in a delay profile with a 2a

delay spread of 56 nsec. The shape of the channel delay profile

is insensitive to variations in the link parameters. The major

effect of changing link distance or scatter angle is to change

the delay spread. If the pulse durations are changed in a sim-

ilar manner then the same results are observed. So a/T, the

ratio of the pulse duration to the channel delay spread deter-

mines the benefit of diversity for a particular system and link.

In Section 7.1 we discuss the wideband troposcatter channel

model. In Section 7.2, the wideband system model and the perfor-

j mance measure are considered. Section 7.3 contains calculated

results for delay combining of systems with and without explicit

diversity.

The results may be summarized as follows: Equalization

yields significant gains for wideband systems without diversity.

(We call a system "wideband" if the pulse duration is not much

greater than the channel delay spread.) For wideband systems

with diversity a two-tap delay combiner (i.e., "dual implicit-

diversity") can improve performance significantly. In fact a

dual angle diversity system with two delay taps on each port per-

forms nearly as well as a fourth-order angle diversity system.

In general, more than two taps are of little help for wideband
-i I .. 1 Uv eLty. While implicit diversity is

S I helpful in many situations, the gains are not as large as those

for angle diversity.
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7.1 TROPOSCATTER CHANNEL MODEL FOR WIDEBAND SIGNALS

In a troposcatter system the received signal is the sum of

a large number of scattered signals. These scattered signals

arrive at the receiver with small relative delays, so the channel

impulse response is spread over some time interval. For a nar-

rowband system the transmitted waveform changes very little over

this interval so the channel statistics are given by Rayleigh

fading. The transmitted waveform changes slowly enough that the
channel impulse response does not affect the shape of the wave-

form but only its amplitude. With wideband signals, however, the

relative delays of the scattered signals must be taken into

account. The symbol duration is short enough that the channel

causes significant distortion.

Ccosider a system without explicit diversity. If s(t) is

the transmitted signal then the received signal r(t) is

r(t) =f s( r)h(t-T)d
-00

where the channel impulse response, h(t), is a zero-mean random

process with complex Gaussian statistics. The impulse response

at two different times is independent, and it is non-zero only in

4 an interval [0,Tm], where Tm is the maximum difference in delays

of signals from the common volume. So the channel statistics are

completely determined by the second moment of h(t)

i =
Ii L' Ef%1hI*  = '5t1)QJ)
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(The real and imaginary parts of h(t) are independent and iden-

tically distributed.) The function Q(t) specifies the incremen-

tal power which arrives in the time interval [t,t+dt], hence it

is called the delay-power profile. The TROPO computer program

computes a discrete approximation to Q(t) by determining the

relative delay of each element of the common volume and adding

the signal from the element to a particular delay cell of the

profile.

In Figure 7-2a an example of a delay-power profile is

given. This profile is for a 100 km link with a 1.70 scattering

angle and has 2o delay spread of 56 nsec. Figure 7-2b and 7-2c

are possible impulse responses which correspond to this delay

[ profile. These curves are actually discrete approximations to

the channel impulse response, but for transmitted signals which

vary little from sample to sample the approximation is adequate

to characterize the channel. Each point of the impulse response

curves is a Gaussian random variable with variance given by the

1value of the delay profile.

Next, consider systems with N explicit diversity ports. If

rk(t) is the k-th received signal, then

Srk(t) = f s(t)hk(t-T)dt

where hthe impulse response of the channel between the

transmitter and the k-th receiver, is a complex Gaussian process.

The impulse responses hk() and h£(T) are correlated for all k

-. and £ since they are derived from the same scatterers, whereas

hk(t) and hk() are independent for t*t. So the channel statis-

tics are specified by the second order sta tistics of
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Figure 7-2 Troposcatter Channel Response; (a) delay-power profile,(b) and (c) Possible impulse Responses

7-7

I -



E[hk( T)h(t) ] = 6 (t-T)Qkz(t)

If k=A we refer to Qk as a delay-power profile, for k*Z it is
called a cross correlation profile. Note that

Q k T) = * O k T)

where x* denotes the conjugate of a complex number x.
On space diversity paths the crosscorrelation Q~k(T) can

depend on frequency. This dependence can be ignored for most
practical systems where the fractional bandwidth is significantly
smaller than the ratio of aperture size to aperture separation.

7.2 WIDEBAND SYSTEM DESCRIPTION

The system is digital and employs a linear modulation tech-
nique, so the baseband-equivalent transmitted signal is

s(t) = aip(t-iT) (7.1)

I where p(t) is the transmitted pulse shape, T is the signaling in-
terval and ai = 11 is te i-th data sample. (The actual trans-

mitted signal is the RF carrier f, modulated by s(t).) The
system transmits one data sample each T seconds. The transmitted
pulse shape is determined by the transmitter filter response.
(The transmitter filter serves to limit the bandwidth of the

Itrasmitted signal.) The receiver consists of a filter and a

I 7-



tapped delay line equalizer. The filter is matched to the trans-

mitted waveform (i.e., the filter impulse response is the trans-

mitted pulse shape) and the equalizer compensates for channel-

introduced distortion.

In a narrowband system p(t) changes very little in time Tc,

where Tc is the interval over which the chainel impulse response

h(t) is non-zero. Figure 7-3 illustrates the effect of a tropo-

scatter channel on a narrowband system where the transmitted

pulse is rectangular. Figure 7-3a is a discrete approximation to

a possible channel impulse response. The impulse response is

random, so this function is one of the random ensemble of func-

tions with a given delay-power profile Q(t). Figure 7-3b and

[ 7-3c show the transmitted and received pulse shapes. The re-

ceived pulse shape is somewhat distorted, but after the receiver

filter, the shape is nearly triangular (Figure 7-3d). (The

matched filter output for a rectangular pulse is triangular.)

Now consider a wideband system with a rectangular pulse

shape. Figure 7-4 illustrates the effect of the same impulse

response on a wideband signal. Note that the received pulse

shape differs greatly from the transmitted pulse shape. After

filtering the pulse bears no resemblence to the triangular wave-

form of Figure 7-3d. In systems without delay combining the

receiver is simply matched to the transmitted waveform. Such a

system may be severely degraded by channel distortion. However,

the received waveform actually has more energy in the wideband

case than in the narrowband case (assuming the same energy per

pulse). So if the system were matched to the received waveform,

the wideband system would perform better.
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(a)

(b)

I (c)

I (d)

Figure 7-3 Troposcatter Channel Effect on Narrowband System:
(a) Channel Impulse Response, (b) Transmitted
Pulse, (c) Received Pulse, (d) Received Pulse
After Filtering.
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(c) -

(d)

Figre -4 ropscaterChannel Effect on Wideband System:
(a) Channel Impulse Response, (b) Transmitted
Pulse, (c) and (d) Received Pulse Before and

After Filtering. 71
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Just as the spatial separation of the scatterers allows

angle diversity to be used, the relative delays of the signals
from different scatterers allows implicit diversity to improve
performance. If the receiver were matched to the received wave-

form, then the maximum possible gain from implicit diversity

would be achieved. (This corresponds to infinite subdivision of

the receiver aperture in angle diversity.) A tapped delay-line

combiner, whose weights adapt as.the channel changes, may be used

to approximate this optimum system. The number of taps corres-

ponds roughly to the order of diversity. As the number of taps

increases the complexity of the system increases, and as with the

angle diversity systems, the decrease in the required SNR becomes

less.

In addition to the delay combiner a filter is necessary in

the receiver in order to limit the thermal noise. The thermal

noise on different taps of the combiner is correlated because of

this receiver filter, and the correlation between the noise on

t different taps is given by the autocorrelation function of the

receiver filter. That is, if we define

00

R(T) f fR(t)fR(t+T)dt, (7.2)

where fR is the RX filter impulse response, then the correla-

tion between the noise on two taps separated by T seconds is

E[n(t)n(t+T)] = NoR(T)
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where No is the noise variance and f is normalized to unit

energy, i.e., R(0)=I. This is a key difference between angle or

space diversity and implicit diversity. In the former case the

noise on different diversities is uncorrelated, whereas in the

latter case this is not true.

Figure 7-5 illustrates the wideband system model which

incorporates the above-mentioned features. The transmitted

signal is s(t) as defined in (7.1). The received signal is

C A

y(t) f s(t-t)h(T)dt + n(t) (7.3)0

where h() is the channel impulse response (non-zero only on an

interval [0,Tc]) and n(t) is a white Gaussian noise process.
After the receiver filter the waveform is

r(t) = x(t) + n(t) (7.4)

1 °
where

x(t) = f y( T-t)fR( )d, (7.5)

I and n(t) is a Gaussian process whose autocorrelation is given by

(7.2). The combiner forms an estimate of the i-th transmitted"- iT+ iT+,rM ,
symbol by sampling r(t) at times iT+T I, iT+ 2 , • T

weighting these and summing. That is, the estimate of the i-th

0 = symbol is

7-13
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M

b M .r(iT+t.) (7.6)
j=lj

where the weights 8j are selected adaptively to maximize the SNR.

In vector form we may write (7.6) as

* b. = _8tb O 
( 7 . 7 )

+ n)

where 8 = {81,...,8M1 is the vector of tap weights, r= r(iT+Tl),

r(iT+t 2 ),..., r(iT+ M) is the vector of tap outputs and x and n

$ are the signal and noise components of r.

The system performance depends on the distribution of bi .

Without loss of generality we assume i=O. From Equations (7.3)-

(7.5) we see that both the signal and noise components of the

sampled signal, r, are random. The thermal noise is a stationary

Gaussian process with autocorrelation given by RX filter autocor-

f relation R(T), so n is a zero-mean Gaussian vector with covar-

iance matrix Rn={Yk-;k=l,...,M,Ij=l...M), where Ykj is the cor-

relation between the k-th and l-th taps, that is,

Ykj R( k- j) " (7.8)

_7il1
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The signal component is a non-stationary Gaussian process whose

autocorrelation is determined by the delay power profile Q(t) and

the TX and RX Filters, fT(t) and fR(t). The signal vector x has

covariance matrix RS={Xkj;k=,l...iM,j=l,...,MI where

Xkj = E[x(Tj)x(Tk)]

CI C

E[ f f h (u)sC (-,V+ T.)fRCv)dud v
-00 0

T c

x f h(u)s(u--Tk)fR(v)dudv]
-0 0

T00 o0 C
=-f f f Q(u)fR lf(2su lT C-2T)dud ld 2v

(7.9)

We assume that no intersymbol interference (ISI) is present so

that the tap outputs for the zero-th symbol depend only on a0 .

This assumption is made because we wish to examine the gains
which are theoretically possible through time diversity and ISI

may be removed by Viterbi decoding (although at some cost in com-

plexity). Under this assumption s(t) in (7.9) may be replaced by

aOfT(t). The signal covariance matrix may thus be computed. The

signal and noise components are independent so the system perfor-

mance is determined by the two covariance matrices RN and Rs .

Again the only difference between the implicit-diversity and

angle diversity cases is that in the angle diversity case theImatrix Rn is diagonal since the noise components are independent.
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This analysis generalizes trivially to include a combina-

tion of explicit and implicit diversity. In this case we have

one received waveform for each of N antenna ports, so we have

rl(t),r 2 (t),...,rN(t). These are defined as in (7.3)-(7.5) ex-

cept that each port sees a different channel so h(t) in (7.3)

becomes hi(t),i=l,...,N. The properties of hi(t) are given by

E[hi(t)h(.0)] =Q.(t)S(t-T) (7.10)

where Qij(t) is the ij-th cross-correlation profile. If each

port has an M-tap delay line then the total number of samples to

be combined is NM, so (7.6) is replaced by

N M
b b0 =1 1O r k

k=l jl (7.11)

= Or

where a 12,...,lMa21,22,...,BNMI and r is defined sim-

ilarly. The signal covariance matrix is also NMxNM and consists

of N2 blocks of size MxM, each of which is determined by Equation

(7.9) with Q(.) replaced by Qk(.), k=l,...,N,j=l,...,N. Each

port sees an independent noise process nj(t),j=l1 ,2,...,N, so the

noise covariance matrix Rn is block diagonal. Each MxM diagonal

block corresponds to the taps of one equalizer.
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r IThe performance criterion used for narrowband systems is

E_ the Chernoff bound on the bit-error-rate. This criterion also

applies to the wideband system of Figure 7-5. So we have

PIError) 0 where 40 is given by [15],

1

'AI i L + RSR nj

L=MN is the order of the system, IL is the LxL identity matrix,

and Rs and Rn are the signal and noise covariance matrices. Note

that if Rn is replaced by NOIL (No is the noise variance), which

corresponds to independent noise components, then this is exactly

the same as the narrowband performance measure.

7.3 COMPUTED PERFORMANCE OF WIDEBAND SYSTEMS

The tapped delay-line combiners are assumed to have uniform

tap spacing. The spacing of the taps and the first tap position

are chosen optimally by numerical means. In general, as the num-

ber of taps increases the tap spacing decreases, but the spacing

between the first and last taps increases.

The receiver filter is assumed to be matched to the trans-

mitted waveform. Thus, if the transmitted pulse is rectangular,

the receiver filter impulse response is also rectangular and of

the same duration. In this way the combiner compensates for the

channel and not the transmitted waveform.

We consider two types of transmitted pulses; rectangular

pulses and sinc ((sinut)/wt) pulses. Rectangular pulses have no

inLersybDol inLerference (ISI) I"nju ave to 'Lare a .. ndwid ... to

be used in a practical system. Sinc pulses are completely band-

limited, but have unbounded ISI if any perturbation occurs. So

although neither of these pulses would be used in an actual sys-
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tern, they are limiting cases and the behaviour of actual pulses

will be similar. Sections 7.3.1 - 7.3.3 consider rectangular

pulses. Section 7.3.4 contains similar results for sinc pulses.

The noise autocorrelation function for the rectangular

pulse case is triangular. The autocorrelation for the sinc pulse

is also a sinc pulse.

The link used as an example is 100 km long with a scatter-

ing angle of 1.70 (as previously mentioned). The transmitter and

receiver antennas are 3m square and the channel 2o delay spread

on a system without explicit diversity is 56 nsec. For clarity

we use the pulse duration to characterize the different sys-

tems. However, if we instead used the ratio of the pulse dura-

tion to the delay spread then the results would apply to links

with different delay spreads as well.

7.3.1 Effect of Pulse Duration

We first examine the effect of equalization for different

pulse durations. The pulses are rectangular, and the system has

only a single antenna port (no explicit diversity). Figure 7-6

contains results for pulse widths of 2000, 500, 100, and 20 nsec

with equalizers of up to 8 taps. The SNR's are those required

for a bit error rate of 10 - , and they are normalized such that

40 dB is the required SNR for a system with a very long pulse

duration.

For narrow pulse widths (wideband systems) the channel

lengthens the pulse considerably so that a single tap system per-

forms poorly. The wideband system benefits most from large num-

bers of taps, however, since the implicit diversity of the chan-

,I may Lw LIS= ad L *T -1i.ou. f the narrowband 5ystems is
the opposite. The performance of a single tap system is better

because the channel spreads the transmitted pulses only a little,

but the gains from additional taps are less.
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As with angle and space diversity the gains from delay com-

bining decrease as the number of taps increase.

The comparison of various pulse durations is not a compari-

son of alternative systems, since the system bandwidth is fixed

by other considerations. Rather the results illustrate what

improvement may be provided by dive':sity for various bandwidth

systems.

7.3.2 Equalization of Diversity Systems

We next consider the use of delay combining on systems

which have a number of antenna beams. Since the antenna beams

are not orthogonal the combiner weights for a given antenna beam

depend on the other beams. Due to the complexity of having a

number of tapped delay lines, an explicit function is used to

determine the tap positions for each profile. These tap posi-

J :tions are not optimal, but are close enough so that there is

little effect in required SNR.It
Figure 7-7 graphs the required SNR (for BER=10- 4 ) vs.

number of taps for a single beam system (1) and for systems with

two azimuth beams (1,2), two elevation beams (2,1), three eleva-

tion beams (3,1), and four beams with two elevation and two azi-

muth (2,2). The pulses are rectangular and of duration 100 nsec.
(The 2a delay spread of the channel is 56 nsec.) The benefit of

delay combining is much less for higher order diversity systems,

even for relatively high bandwidth systems. (Equalization to

remove ISI would still be necessary for these systems even though

delay combining is of little benefit.) Figure 7-8 presents the

same results for 2000 nsec rectangular pulses. These results

show that for the narrowband case, very little is to be gained
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I0L11i
7.3.3 Tradeoffs in Implicit and Angle Diversity

The number of weights which must be adaptively adjusted in

an angle diversity system which also has time diversity is the

number of delay taps times the number of antenna ports. The

tradeoffs between the number of antenna ports and the number of

taps is an important consideration.

Figures 7-9 and 7-10 graph the same data as Figures 7-7 and

7-8 but with the order of diversity (i.e., number of weights) as

the x-axis. For the short pulse duration, 100 nsec, a single

beam system with a 2-tap delay combiner performs only 0.5 dB

worse than a dual angle diversity system. Similarly, a dual

elevation diversity system with two delay taps on each port is

only idB worse than the quad angle diversity system.

For the narrowband system, (2000 nsec pulse duration), the

angle diversity systems perform significantly better than

implicit diversity systems of the same order of diversity.

7.3.4 Results for Sinc Pulses

Sinc pulses are entirely band-limited and so they are not

time-limited. For this reason we consider systems by various
1A bandwidths rather than pulse durations. A sinc pulse of band-

width W is given by sinc(2Wt) = sin(2ffWt) To allow comparison

with the results for rectangular pulses the bandwidths used give

filtered waveforms which are similar to those for rectangular
pulses (in the absence of channel delay spread). The bandwidths

I which correspond to 2000, 500, 100, and 20 nsec pulse durations
are 500 kIz, 2 MHz, 10 MHz, and 50 MHz. In Figure 7-11 we com-pulse (in, th absnc ofcannldea spea) Th7bndidh

pare a duration T rectangular pulse (after filtering) and a l/TI bandwidth sinc pulse. The mainlobe of the sinc pulse coincides
with the triangular waveform which results when the rectangular

pulse passes through a matched filter.
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(a)

(b)

(c)

Figure 7 -11 '%tXiaariwon of Sinc and Rectangular Pulse.s:
(a) -Rectangular Pulse Duration T, (b) Filt-ered
aectaiguJlar Pulse, (c) Sine Pulse of Bandwidth
l/T. (Sinc Pulse is the Same Before an4
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The required SNR for BER=10 4 is given in Figure 7-12 for

the various bandwidth pulses. As with rectangular pulses (Figure

7-6) the gains from delay combining decrease as the number of

taps increase. For narrowband systems the curves saturate more

rapidly than the corresponding curves for rectangular pulses.

This occurs because the rectangular pulses have energy over a

i:der band in frequency. For very wideband systems this is no

longer a factor, and so the two types of pulses perform about the

same.

Figures 7-13 and 7-14 present the effect of implicit diver-

sxty on higher order diversity systems. As with rectangular

pulses, even with a 10 MHz bandwidth higher order systems gain

relatively little from implicit diversity. The narrowband sys-

tems gain practically nothing.

Figures 7-15 and 7-16 contain the same points graphed vs.

order of diversity. Wideband systems with 2-tap delay combiners

perform nearly as well as systems with twice as many angle diver-

sity ports, however, additional taps are not very beneficial.
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SECTION 8

A PROPOSED ADAPTIVE TROPOSCATTER EXPERIMENT

8.1 OBJECTIVES

The diversity results defined in this report rely on a few

simplifying assumptions: 1) no diffraction or layer ref±ection;

and 2) specific Cn2 profile. An experiment verifying the diver-I sity gains must also be able to determine to what degree these

assumptions are satisfied. The experiment should cover several

diversity configurations, diversity combining techniques, and

performance measures. This high degree of flexibility requires

recording of the received signals so that the same measured data

can be used for different applications.

The basic requirements of the experiment are:

1. distinguish between troposcatter and diffraction

2. performance evaluation of the key arrays considered in

Section 4

3. Determine diversity gain

4. evaluate fade rate limitation

5. resolve long term atmospheric layering.

Only narrowband diversity performance will be considered here,

i.e., the results in Section 7 cannot be validated with the pro-

posed experiment. However the proposed system can probe the

channel accurately enough to permit analytical estimates of the

wideband performance.

8.2 EXPERIMENT CONFIGURATIONS

A reasonable experiment would consist of seven separate

antennas with downconverters, as shown in Figure 8-1. A study of

the cost complexity tradeoffs has shown that an X-band experiment

11 8-1
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with 2'-3' parabolic antennas is the most cost effective con-

figuration. At lower frequencies, the larger antennas, wave-

guide, masts, etc. increase the cost while at high frequencies

the component cost is excessive. From the point of view of

mobility it is desirable to use a high frequency so that the
resolution can be achieved with smaller antennas.

The transmitter will be a separate aperture, either small

(21-3') to test the diversity effects of broad transmitter beams,

or large (10'-151) to evaluate the effect of a narrow transmitter

beam with horizontal or vertical diversity. Only a CW tone need

to be transmitted.
The narrowband receivers convert to baseband and either

record the analog signals or sample at a rate of approximately
200 Hz and perform near real time processing.

The least costly system uses the analog tape recording with

off-site, non-real-time data processing. This approach is also

very flexible, the same tape can be used over and over to cal-

culate different system parameters.

A more sophisticated approach is on-site, real-time pro-

cessing, recording only the pertinent data such as periodic co-

variance matrix estimates, coherence time. Real time processing

is then possible using an array processor such as the Floating

Point Systems Model AP-120B with an analog interface. Such a

system is shown in Figurt: 8-2. This approach is more expensive
but is actually cost effective in the long run when a lot of dif-

ferent data (arrays, technical sites, etc.) are to be evalu-

ated. It obviates the need for the enormous task of processinl

the large amount of analog tapes.

The proposed configuration is similar in many respects to
i the experiment of Waterman, et al. [17). They use 12 antennas on

a tower at 3 GHz while we propose 7 antennas at 8 GHz that can be

reconfigured to several types, e.g., linear array, sparse array,

8-3
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and rectangular array. They use an LOS reference to compensate

for array motion, and the proposed system would do that as

well. The key new features of the proposed system are:

1. flexible array configuration and portability

2. Rice/Rayleigh discrimination

3. diversity performance.

This is achieved by the signal processing shown in Figure 8-3.

This processing can be done in real-time with the system in

Figure 8-2, but requires later computer processing with the

system in Figure 8-1 (doubling the required man-hours for the

experiment). The diversity performance in the presence of

specular components, although not considered in this report, can

be calculated as well.

8.3 ARRAY CONFIGURATIONS

The antenna elements can be arranged in a number of con-

figurations. A very interesting configuration is a sparse linear

array in elevation which would allow a much better resolution

than previous measurements. It would be possible to study

details of the structure of the atmosphere that are not presentlyI ~known, even though it is known that such effects, e.g., turbul-

ence layers, strongly affect the long term performance of tropo-

scatter systems. By estimating the turbulence (C 2 profile) t

would be possible to estimate the delay spread as well by using

the computer program described in Section 9. Thus, we would be

t4 able to get wideband performance estimates even though only

probing the channel with a CW signal. The profile measurements

I +would be made with either the linear array of the sparse array

shown in Figure 8-4.
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iLinear Array (Horizontal or Vertical on Tower)

Diversity Performance For:

Sparse Array (Vertical only of Interest)

Diversity Performance For: (1,18),(1,17),...(1,2)

L-shaped Array

(4 4 , 4, ) ( ,2 , 4 1

13-



Most of the diversity results in this report can be veri-

fied by measurement on the L-shaped array shown in Figure 8-4.

Instead of a 4x4 array as shown, a 3x3 or a 6x2 array can be

used. Note how the flexible rearrangement of the array allows us

to calculate a large number of different systems,

8.4 TYPICAL PRINTOUT RESULTS

For each link where the measurement system is set-up an

initial receiver calibration is performed and then the system is

started. Assuming real time processing as in Figure 8-2, we can

get the following results printed out once a minute.

Mean (Diffraction/Reflection) and Variance (Scatter):

BEAM NO. SPECULAR COMPONENT SCATTER

2

Diversity Confiquration (AZ, EL):

Eigenvalues: ...

Tropo Only Total RIcian Signal

Required SNR ......

Maximum Data Rate ...

The last part would be tepeated for eaoh diversity configuration

.y the ope'atoL. The only iitf.~Lion cuuld be the
-speed of the printing terminal. This systz could be used to
assess the potential digital performance of -ll -isting DCS

lil troposcatter links, for instance.

1 8-8
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SECTION 9

DESCRIPTION OF TROPOSCATTER PROPAGATION PARAMETER COMPUTA110N

X J 9.1 INTRODUCTION

The computer program determines the pr.opagaltion parameters
of a troposcatter link for general antenna conf igurat ions. The

inputs to the program are:

- linK parameters (distance,, elevationis, etc.)

-system parameters '%freq,.Acncy, power)

- diversity antenna configuration parixmeters

- antenn~a parameters.

The program allows arbitrary diversity confi'guration (no parti-
cular symmetry is required) and three basic types of anternnas.
The antenna types are

1) parabolic- reflectors,

2) phased arrays of parabolic reflectors, and

3) phased arrays of sub arrays,

where each subarray is a phased array of parabolic reflec tors.

A diagram qi a troposcatter "kink is given in Figure 9-1.
The parameters which are necessary to deftine the link a~re the

link distance, the antenna elevations (above sea level), aiid thle
horizon elevatton angles. These parameters are used (along with

the atmospheric parameters which determine the earth radiLus
transformation) to determine the distance D' ai~d the angles a(
and Oo (which detecmine the lower bouindary of the common volume)
in Figure 9-2. Faca scatterer ii,- the coimmon volurrce is specified
by a vector v- = (a, 6S, y) which onsi,,ts of the transmitter and
receiver elevation anqle~s and the distance y perppendicular to the
great circle plane (i~e., the plane of the paper).

9-1)
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j The program determines the correlation between signals at
the various receiver ports. In the narrowband case this correla-

tion is given by an integral over the common volume. Specifical-

ly, the correlation between receiver ports 1 and 2 is

1g R 1 -- R2 - m

12= f RI(r) R2 2 0- dr

TRr

where RT(r) and RR(r) are the distances to the scattering point r

from the receiver and transmitter respectively, 0 is the scatter-

ing angle, gT(r) is the transmitter antenna gain in direction r,

and gRl (r) and gR2 (r) are the (complex) receiver antenna gains.

The integral is performed numerically, so the common volume is

divided into cells which are small enough that the integrand may

be approximated by a constant over the cell. In the wideband

case for each delay the integral is performed over all cells with

that delay (delay is proportional to RT(r)+RR(r)). The outputs of

the program are the power vs. delay profiles and the cross-colre-

lation profiles which are defined in what follows.

- The value of the channel impulse response at a given tibue
! is a zero-mean Gaussian random variable. The scattecers arc

4assumed independent so the values of impulse response at two dif-

ferent times are independent. A power vs. delay profile iG the

variance of the channel impulse response for a giver, antenna.

The cross-correlation profiles determine the correlation between

different antennas as a function of time. Different antennas are

correlated in general because for a given delay the scatterers

are the same for all antennas. (This assumption iz not valid if

the antennas are very far apart, but it represents a good approx-

- imation in practical systems.)

H '9-4
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These profiles give all the necessary propagation informa-

tion to compute the performance of a combiner or modem. If the

symbol duration is long compared to the delay spread of the chan-

nel (i.e., narrowband), then only the integrals of the profiles

are necessary. The intersymbol interference due to "smearing" of

the source symbols by the channel is not significant. For the

wideband case the entire profile is necessary to determine the

system performance. Intersymbol interference is important here,

and equalization may be necessary.

The major steps involved in the computation of the propaga-

tion parameters are given in Figure 9-3.

9.2 BRIEF DESCRIPTION OF STEPS IN PROPAGATION CALCULATIONS

-' - We next describe the function of the modules in the flow-

chart of Figure 8-3.

I I 9.2.1 2r;rth Radius Transformation

A modified form of the effective Earth's radius transforma-

tion is performed in subroutine TRANSF. When the surface refrac-

tivity is not specified (SURFN = 0), the effective radius factor

ERFAC in the input data is used; otherwise ERFAC is calculated
from the surface reff'activity SURFN and this value of ERFAC is

dsed instead of the value in the input file. This accounts for

the mean curvature of rhe bea-us due to atmospheric refraction,

In the transformed coordinate system, the beams follow straight

lines, simlDifying the calculation of various distances and

angles which are necessary to determine the profiles.

9.2.2 Antenna Gains and Parameters

i As previously mentioned the program allows antennas of

three types; parabolic reflectors, phased arrays of parabolic

reflectors, and phased arrays whose elements are also phased

T9-5
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arrays. To implement these antennas we note that the f irst two

- |types are special cases of the third. That is, if a phased array

has only a single element then it is a simple antenna. So the

parameters in the program are set up for the most general type.

~The phased arrays are rectangular planar arrays of elemen-

tary antennas as shown in Figure 9-4. The parametersnesar

;, :to define such a phased array include the gain of the elements,
Sthe number of elements along each axis, and their spacing. In

I "  addition a relative phase shift is applied between adjacent

~elements which changes the direction of maximum gain of the an-

~tenna. Two phase shifts are specified; one between vertically

adjacent elements and one between horizontally adjacent elements.
The elemients of the array are identical and have boresight normal_ to the plane of the array.

The gain patterns of the receiver and transmitter arrays
; Iare given b-, functions RGAIN and TGAIN respectively. The argu-I rments of these functions are the antenna index, the off-boresight

angle, and the azimuth angle. (The boresight of a phased arrayis perpendicular toahe plane of the array, not necessarily thedirection of maximum gain.) Two angles are necessary because the

gain patterns of the arrays are not radially symmetric. The

azimuth angle must be measured relative to some reference vector
in the plane of the aray, For this reason an antenna coordinate

r stem is defined (in subroutine ANTPAR). One unit vector of the
system is the boresight. The other two vectors are roughly ver-

etical and horizontal. See Figure 9-5. A detailed description of

the defintio of the arrayaes idntil an hAenboresghtanodma.

Subroutine ANTPAR computes the horizontal and vertical

Thalf-power beamwidths of the receiver and transmitter arrays and

.. me ts ... The Aths are t ompted wth no phase shifts be-

tween elements of the arrays, so that the direction of maximum

gain of the antenna is normal to the array plane. The boresight

9-,
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Figure 9-4 A Planar Array Antenna
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gains of the antennas are also computed (with no phase shifts).

The functions RGAIN and TGAIN give the antenna gain patterns

relative to these values.

9.2.3 Common Volume Integration Limits

Subroutine INTLIM determines lower bounds on the limits of

integration for the common volume. The beamwidths of the subar-

rays and the scattering parameter are used to determine these

bounds. The actual region of integration may be larger than the

region determined by INTLIM as the integration does not terminate

until the contributions to the delay profiles become small.

These bounds ensure that the integration does not terminate

before a sufficient volume has been integrated. In addition the

estimate of the common volume is used to determine the size and

number of delay cells to be used in the profiles. An input

parameter ERR is used in determining the limits. Small values of

ERR increase the size of the region.

) I
9.2.4 Common Volume Integration

Subroutine LOOPS performs a numerical integration over the

common volume to determine the power vs. delay and cross-correla-

tion profiles. Each scattering point in the common volume is

specified by the transmit and receive elevation angles a, a

(measured relative to a straight line between the receiver and

transmitter in transformed earth coordinates) and the distance y

perpendicular to the great circle plane, The great circle plane

contains the nominal receiver and transmitter locations and the

center of the earth.

For each scattering point r, the program computes the dis-

tances from the transmitter to r and from r to the receiver

(slightly different for each receiver location), the angles of r

relative to the transmitter and receiver antenna patterns, and

9 -10
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the scattering angle. The net received power from this single

scattering element at vector location r for transmitter " and

receiver R is

T(r) 2 2gT___ )
_ _gR__

)  -m
P(r)= PTC dV 2 2 0T RT(r) RR(r)

where

PT= transmitted power

gT(r) = gain of the transmit antenna in the
direction of r

R(r)= gain for the receive antenna

RR(r),RT(r) = distances from r to receiver and trans-
mitter, respectively.

C = a factor depending on wavelength and
height above sea level

dV = Volume of infinitesimal scatterer at r.

0 = scattering angle, i.e. angle by which
waves from transmitting antenna must be
deflected at the scattering point r to
reach the receiver antennas.

Sm spectrum slope of refractive index (m
controls rate of fall-off of scattering
coefficient with scattering angle).

The antenna gain patterns in this equation are, of course,

expressed as dimensionless ratios (not dB).

The delay profiles are generated by computing the delay for

each scatterer and ,ading the value of the power P(r) for that

scatterer to the corresponding delay all in the profile. The in-

tegral of the profile determines the total path loss.

9-11
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The cross correlation profiles between different receiver

ports are obtained similarly, except that the receiver antenna

powe gain (ol'is replaced by gRl(r)g*R2(r), the product of

one receiver voltage gain with the conjugate of the other. Each

voltage gain s a complex quantity wit%-h a phase angle determined

by the RF phase shift from the scatterer to the receiver. if

receivers R, and R2 have the same location (i.e., angle diver-

sity) then these phase shifts are the same and gRl()*,( _ is

real. So the phase shift has an effect only when the rezeivers

are in different locations. In addition if the receivers are for

different polarizations then the RF phase shifts from the trans-

mitters to the scattering point are included. The different

phase shifts for scatterers over the common volume cause decor-
relation of the signals at two space diversity receivers.

9.2.5 Step Size Parameters

ii iSubroutine STPPAR determines a number oil parameters which

oare used to determine imilaly sexep t the integration over the

gcommon volume. The step sizes must be selected such that the

contribution of scatterers to the profiles does not change too

Ramuch from one scatterer to the next. To accomplish this, the

variations of all of the parameters which determine this contri-

bution are considered. The dominant effects are given by the

gain patterns of the receiver and transmitter antennas, the scat-

tering angle, and the phase shifts for space diversity antennas.

9.3 VARIABLE DIMENSIONING PARAMETERS IN TROPO

Many of the arrays used in TROPO have variable dimensions.

These distances are specified in parameter statements. These

-.. teS are:

I Sbrotin STPARdetrmies nuberof araetes wic



NTMX Maximum number of distinct transmitter ports

NRMX Maximum number of distinct receiver portsSNRLMX Maximum number of distinct receiver locations

NRAMX Maximum number of distinct receiver beais

NRBMX Maximum number of distinct receiver beams

NRAMX Maximum number of distinct receiver physical
anterinas

NSTMX Maximum number of different subarray types

NPOWMX Maximum number of receiver ports for which the
power may be computed

NCORMX Maximum number of cross-correlations between
receiver ports which may be computed

NQMX Total number of samples in all delay profiles

2
SNCN2 Maximum number of samples in Cn profile.

9.4 INPUT FILE FORMAT

The inputs for the TROPO program are taken from a file

called TROPO.INP. In the input file the line before a data line

begins with * Any number of comment lines beginning with 'C'

h may be included before the line which begins with '*

The inputs are divided into five basic sections:

1. Unit specifications

2. System parameters

3. Path geometry

4. Propagation and control parameters

5. Diversity input.

I9 •
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[I f9.4.1 Parameters Which Determine Units

DISTU Distance units specification, (FORTRAN A4 for-
mat, left justified): SMI, KM, or NMI. All
parameters designated below as having units in
smi/nmi/km will be interpreted according to
the setting of DISTU, as follows:

SMI Statute Miles
NMI Nautical Miles
KM Kilometers

HDU Height and diameter units specification (FOR-
TRAN A4 format, left justified): FT or M,
standing for feet or meters, respecti\ 'y.
All parameters designated below as bein( in
units of ft/m will be interpreted according to
the setting of HDU.

ANGU Angle units specification, (FORTRAN A4 format,
left justified): DEG or MRAD. All parameters
representing angles will be interpreted ac-
cording to the setting of ANGU, as follows:

DEG all angles are in degrees
MRAD all angles are in milliradians,

i.e. 1000 mrad = 1 radian.

FRU Frequency units specification, (FORTRAN A4
format, left justified): MHZ or GHZ. All
frequency units will be interpreted according

-, Ito the setting of FRU, unless otherwise noted.

9.4.2 Transmitter and Receiver Parameters

PXMIT Rated transmitter power in dBm. (Default = 70
dBm). If PXMIT is input as 0, it is computed
from WLT as 10 LogI 0 (WLT) + 30.

WLT Rated transmitter power in Watts. If WLT is
zero then WLT is computed as 10(PXMIT -
30)/10. The input value of WLT is ignored in
this case.

F Carrier Frequency

TLL Transmitter line loss in dB. Default %0dB.

RLL Receiver line loss in dB. Default = 0dB.

PNOISE Noise power in dBm.

9-14



F" ".9.4.3 Path Geometry

D Great circle distance (measured at sea level)
'K jbetween transmitter and receiver (km, smi,nmi)

HTN,HRN Elevation of transmit and receiver nominalantenna locations above sea level (meters or

feet)

ITOFF control indicator for entry or calculation of
transmit/receive radio horizon angles THET,
THER. Use as follows:

0 = user specifies radio horizon angles
THET,THER.

2 = radio horizon angles THET,THER are
calculated in program using the horizon
distance (DLT,DLR) and horizon elevations
(HLT,HLR).

THET,THER radio horizon elevation angles at transmit and
ieceiver sites in degrees or mrad. (Ignored if
ITOFF*0.)

DLT,DLR distance to radio horizon from transmitter and
receiver respectively (km, smi, nmi). (Ignored
if ITOFF=O.)

HLT,HLR transmit and receive radio horizon elevation
above sea level (meters or feet). (Ignored if
ITOFF=O.)

9.4.4 Propagation and Control Parameters

IHFLG profile type: 0 for delay, 1 for height
(default = 0)

SEAN surface refractivity at sea level (default
0)

ERFAC effective earth radius factor (default =
1.333)

S,. 'RM wanmer specLrumi slope patanmeLee mn (default

NACCU integration accuracy parameter (default 40)
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ERR termination parameter (default = .001)

KPROF number of C2 samplesn

DELH distance between samples

CN2(I:KPROF) C 2 profile
n

9.4.5 Diversity Input

9.4.5.1 Transmitter Parameters

NT Number of transmit ports (NT < 2)

PSITEO(NT) Antenna boresight elevation above the hori--
zontal (deg/mrad). (Boresight is defined as
perpendicular to the plane of a phased array.)

PSITAO(NT) Transmit antenna boresight azimuth, relative

to the great circle plane containing the re-
celve and transmit sites. Positive counter-
clockwise (deg/mrad).

IPOLT(NT) Transmit antenna polarizations. The integer
values 0 and 1 represent any two orthogonal
polarizations. These may, for example, rep-
resent horizontal and vertical polarization.

UTH(iT) Horizontal, vertical, and longitudinal
UTV(iT) location of transmitting antenna iT
UTL(iT) relative to the nominal position where iT=l,

... , NT (ft/m)

NRLOC Number of distinct receiver locations

Note: For these coordinates, the longitudinal axis
is taken to be horizontal and in the great
circle plane containing the transmit and
receive sites. The positive longitudinal
direction is from the transmitter to the
receiver site. Up is positive in the vertical
direction and left is positive in the horizon-
tal direction, as seen looking from transmit-

-ter to receiver.

ITSAT(!:NT) index of the subarri y type for each ntenna

NTVPA(l:NT) # of subarrays in vertical direction

NTHPA(:NT) # of subarrays in horizontal direction
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DTVPA(l:NT) distance between vertically adjacent subarrays

DTHPA(1:NT) distance between horizontally adjacent sub-
arrays

PTVPA(I:NT) phase shift between vertically adjacent sub-
arrays

PTHPA(ltNT) phase shift between horizontally adjacent sub-
arrays

GDBTX(1:NT) boresight gain of transmit antenna (computed
if entered as 0).

9.4.5.2 Receiver Parameters

Due to space limitations a number of pointers are used in

specifying the receiver ports. These pointers are illustrated in

Figure %-6. For each of the NR ports, IRLOC specifies the loca-

' tion index (i.e., the i-th port has horizontal offset

URH(IRLOC(i)), IRBEAM specifies the beam (which phasing of which

array), and IRPOL specifies the polarization (0 or 1).

Similarly, IRANT(') is the physical antenna index for the

i-th beam. So, for example, the elevation angle of the i-th beam

is PSIREO(IRANT(i)).

Definition of Variables

NR number of ports

NRLOC number of locations

I NRBEAM number of beams

NRANT number of antennas

NSAT number of subarray types

.9i 1
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PORTS[PARAMETERS:
IRLOC (1,NR) IjRBEAM W1:NR)

;f~ '1LOATIONS BEAMS
PARAMETERS: PARAMETERS:
URH, URV, URL PRVPAIPRHPA

IRN (1 IEM

PHYSICAL ANTENNAS

PARAMETERS :PSIRF-O, PSIRAO, ANGR,
1NRHA , NRVPA DRH1PA, DrRVP.A, gain

SIR$AT (1; NRANT)

ASUBARRAY -TYPES
PARAMETERS: ELDTAM,NHELT, NVELTIDHE LT, DVELT, PHELT, PVELT

I Figure 9-6 Receiver Port Definition.
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Port Parameters (arrays with NR elements)

IRPOL( ) polarization

IRLOC( ) location index

IRBEAM( ) number of subarray types

Location Parameters (NRLOC elements)

URV( ) horizontal offset

URV( ) vertical offset

I URI-( ) longitudinal offset (positive towards trans-
mitter)

Beam Parameters (NRBEAM elements)

IPRHPA ( ) phase shift between horizontally adjacent
~elements

PRVPA( ) phase shift between vertically adjacent
elements

IRANT( ) index of physical antenna type

Physical Antenna Parameters (NRANT elements)

PSITEO( ) elevation angle above horizon

PSITAO( ) azimuth angle (= 0 if pointed at transmitter)

ANGR( ) rotation of array with respect to horizontal

NRHPA( number of subarrays in horizontal direction

NRVPA( ) number of subarrays in vertical direction
(NRVPA(i)*NRHPA(i) = total number of subar-

S •rays)

DRHPA( ) distance between horizontally adjacent subar-
rays

DRVPAJ ) distance between vertically adjacent subarrays

GDBRX( ) boresight gain (computed if input as 0)

IRSAT( ) index of subarray type.

9-19
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9.4.5.3 Subarray Parameters

NSAT # of subarray types (default 1)

ELDIAM(1:NSAT) element dimension for each subarray type
(elements assumed to be circular)

NVELT(l:NSAT) # of elements in vertical direction for each
subarray

NHELT(l:NSAT) # of elements in horizontal direction for
each subarray

DVELT(I:NSAT) distance between vertically adjacent
elements (Default: element dimension)

DHELT(I:NSAT) distance between horizontally adjacent G.'e-
ments (Default: element dimension)

PVELT(I:NSAT) phase shift between vertically adjacent ele-
ments (Default 0)

PHELT(I:NSAT) phase shift between horizontally adjacent
elements (Default 0)

9.4.5.4 Selection of Correlations Desired

IPROF 1 if profiles desired, 0 if not

- NPOW number of power profiles

( IPOW(1:NPOW) indices of power profiles (i.e., which
ports)

(IICORR(1:NCORR), pairs of indices for correlation profiles
12CORR(1:NCORR))

9-20
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APPENDIX A

DEFINITION OF MATHEMATICAL AND COMPUTER PROGRAM SYMBOLS
USED IN TROPOSCATTER PROPAGATION MODEL

This appendix contains the mathematical symbols used and

the corresponding computer program parameters. The symbols are

described in the context of the COMMON statement in which they

appear in the computer program. In what follows, the symbols

used in the computer code are listed in square brackets.

A.1 PATH GEOMETRY

Figure A-i shows the geometry of the path as seen in the

plane of the great circle through the nominal antenna locations.

Figure A-2 shows a top view of a path with horizontally spaced

antennas. The parameters in Figuro A-I are those used in most

troposcatter calculations. In addition to these parameters we

must also consider:

1. location of space diversity antennas relative to the
nominal terminal location,

1 2. angle diversity beams,

f 3. phased array parameters.
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The key TROPO program parameters including the effective

earth radius transformation are listed below.

NBS TECH.
NOTE SYMBOL TROPO SYMBOL

a0  [AO] Earth radius.

a [A] Effective earth radius.

d [D] Distance between nominal ter-
minal locations.

dLt [DLT] Distance to horizon from the
transmitter, measured at sea
level.

dLr [DLR] Distance to horizon from the
[3 receiver (measured at sea

level).

-' dt [DT] Sea level distance to the scat-
tering point from the nominal
transmitter location.

dr [DR] Sea level distance to the scat-
tering point from the nominalr receiver location.

htn [HTNI Height above the sea level of
the nominal transmitter loca-
tion.

hrn [HRN] Height above the sea level of
the nominal receiver location.

U th,U v, [UTH(I), Horizontal, vertical, and longi-
u thi t  UTV(I) tudinal location of transmittingJ t I4NTMX] antenna number i relative to

= the nominal position (site
ground level mid way between
antennas) (counted positive up,I into the paper, and from the

etra)smitter to receiver respec-
tively).



urhI UYv [URH(I), Horizontal, vertical and longi-
Ur (ir URV(I), tudinal location of receiving

URL(I), antenna no. i relative to the
I<NRMX] nominal position (site ground

level mid way between antennas).

ht(it) [HT] Height above the sea level of
the center of transmit antenna
no. it, (=htn + Uth(it)).

hr(ir) [HR] Height above the sea level of
the center of receive antenna
no. ir, (hrn + Urh(ir)) .

S [S] Asymmetry parameter a0/00 .

S1  [Si] Asymmetry parameter (a00)/00
= (I-S)/(!+S).

- hLtfhLr [HLT,HLR] Height above the sea level of
the transmit (receive) horizon

obstacle.

h [HCOMI Height of lowest scattering
point above sea level.

CI [ALFA0] Angle at the nominal transmitter

between the hor4 zon ray and the
ray to the receiver.

0 [BETA0] Angle at the nominal receiver00 between the horizon ray and the
ray to the nominal transmitter.

00  [THETA0] Scattering angle of horizon
Irays.

[PHIT] dt/a.
[PHIR] dr/a.

Oat [THET] Transmitter horizon elevation
angle.

Oar [THERI Receiver horizon elevation
angle.
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A.2 ANTENNA PARAMETERS

Parameters relating to the transmitter and receiver an-

tennas are defined. Antenna location parameters are described in

A.l.

gt(i t ,O, P) [TGAIN] Directive gain pattern of the
transmitting aperture no. it. a
is the off-boresight angle,
is the azimuth angle.
TGAIN is a function subroutine.

gr(i r , 1 ) [RGAIN] Receiver gain patterns.

Gt(it) [GDBTX(I)], Boresight transmitter antenna
, gains.

Gr(ir) [GDBRX(I), Boresight receiver antenna
I4NR] gains.

t teO(it) [PSITEO(I) Antenna boresight elevation
I<NT] above the horizon for each

transmit antenna.

! re0(it) [PSIRE0(I) Same for receive antennas.
~IrNR]

ta0( it) [PSITAO(I) Transmit antenna boresight
I<NTI azimuth, defines the angle to

the great-circle plane. Posi-
tive counter clockwise.

*raO(ir, [PSIRAO(I) Same for receiver, but positive
I<NR] clockwise.

Nt  ENT] No. of distinct transmit ports.

Nr [NRI No. of distinct receive ports.

PROPAGATION PARAMETERS

AA [AA] Atmospheric dB attenuation.

K [ERFAC] Effective earth radius factor.

M [SCPARM] Wavenumber spectrum slope param-
eter.
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sea level surface refractivity.

C(ih) [CN2(I), Atmospheric structure constant
nIONPROF] profile.2

AhIEH Interval of sampled C 2

SYSTEM TRANSM4ISSION PARAMETERS

IWLT1 Transmitted power.

[WT] Radiated power.

Wr [WR] Available power at rcie

input.

f [ F] Frequency.

[WAVLENJ Wavelength.
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APPENDIX B

DESCRIPTION OF MATHEMATICAL RESULTS USED IN

THE TROPOSCATTER PREDICTION PROGRAM

This appendix contains the mathematical results used in the

coding of the common volume integration routine. The correspon-

dence of symbols to the variable names in the computer program

are found in Appendix A.

B.1 THE EARTH RADIUS TRANSFORMATION

We use the well known effective earth radius concept in a

I way that allows an exact transformation.

Let a0 be the actual earth radius (measured at sea level)

and let r0 be the distance from the center of the earth to any

point on or above the surface of the earth. Propagation in a

spherically stratified atmosphere is guided by the following

equation

r0 n(r 0 )sin e0(r 0 )= a0 n(a0 )sin e0(a 0 ) (Snell's Law) (B.I)

and

r 0 d4 0  = tan 0 ( r 0 ) d r 0  (B.2)
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where (see Figure B-i)

0 (r zenith angle of ray at distance r

0 (r 0 ) = angle from start of path (at r0  a)

to a variable point on the path.

We now assume a ;pecial form of height variation of the refrac-

tive index,

n(r0 ) = n0 (a 0 !r 0 ) . (B.3)

The refractive index varies according to a power law. Near the

surface of the earth the gradient is nearly constant. The re-

fractive index varies with height in a way similar to that of the

exponential model although the fall-off with increasing height is

slower than fir the exponential model. However the model in

(B.3) is a better approximation than the linear gradient often

assumed. The parameter y is related to the gradient of the coef-

ficient of refraction (expressed in N-units) by

N- 1 9 n(a0 )
AN 0-Y 10 (B.4)

N-units/km a0/flmI

-14

B- 2



0(r
0 (ao

[II

Sea Level

Jrr

I arth Center

Fig. B-I Path Geometry for Refractive Path

B-3

: -0

L~ia



For the standard atmosphere we have y = 0.25. The form of the

refractive index in (B.3) allows us to transform the coordinates

so that the electromagnetic waves propagate in straight lines in

the transformed coordinate cystem. Define in the great cir;!e

plane

1 y r01-Yr = rr 0 ") = -a 0  0

d = d o  . (B.5)

This transformation preserves distance along the surface of the

earth, but the new earth center distance r is different. In par-

ticular the new effective earth radius is

a = r(a 0 ) = a 0 /(l-y) (B.6)

The angular distance 40 is transformed into

= t0 (1-y) . (B.7)

The angles 0 are preserved 'n the transformation,

(( 0 0 r0 , 0  . (B.o8)
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The transformation (B.5) when inserted into (B.1) and (B.2) shows

that a path in the transformed coordinates satisfies
!;j
Ii

r sin 0(r) = a sin 0(a) (B.la)

i
r d 4 = tan 0(r)dr (B.2a)

which represents the equations for a straight line. Heights

above the nominal sea level are transformed according to
P

a1-- Y (a. + h0
) I - Y

or

2 3
S 0  + y(Yi-l) h0hh 3 (B.9)S-h0 2a 0  3! a 2 ...

0a 0

This formula describes the height reduction effect in a near
linear profile of the refractive index. In practice only the

first two terms are needed.

B.2 CALCULATION OF SCATTERING POINT

The geometry for calculating the distances to and the

- height of the scattering point is shown in Figure B-2. The dis-

tances at is given by a + hte, where hte is the effective trans-

mitter height. Let us place a coordinate system with origin at

the center C and with X-axis along the line CR. Express in

vector coordinates the equation
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CT + TS = CR + RS

(at cos ', a t sin 4) + Xl(cos({ -90
0+ t), sin(4-90 0+O ))t et et

(ar,O) + x2 (cos(90 0-o ), sin(90 0 -0er))

where X1 and X2 are unknowns. Solving for X, and X2 we get

XI = [ar cos oer - a t cos(+O er )]/sin e

x 2 = [at cos 0et - a r cos( +Oet)]/sin 0

These numbers should be positive if the input parameters are

correct. The angle 4r is determined from

tan ~x 2 Cos 0 er x2/tan #r= er X2/ar "
ar + X2 sin 0er

is calculated from - @r The signs of and 1r are
checked. as is calculated from

(as - ar) cos 4r 2ar sin 2 (r/2) + X2 sin 0er
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4 The slant range do between the terminals is given by

2 2 2
d a + a 2ata cosdo = t r - r

(at - ar) 2 + 4atar sn( /2)

The angles a0 and 00 are then given by

x2
sin a0  = d sin 00

xl
sin a0 = -sin 0

0 0  0

a0 + 0 00

B.3 COMMON VOLUME CALCULATIONS

The size of the common volume is limited by the antenna

size, pointing angles, scattering angle, and atmospheric struc-

ture constant. We have already determined the minimum angles

a0 , 00 of the angle a and 0 (see Figure B-3). The integration is

performed by integrating over a,O, and the distance y perpendi-

cular to the great circle plane. It is assumed that all antenna

transmitter beams are essentially pointed at the horizons. Let

Oc be the 0-angle corresponding to the boresight of the most
transmittern bem r setalye it e ct th horzon Let

_ elevated receiving beam, and let c e the
jtransmitter and scatter angles. We have
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a1 -ci (B. 0)c 6vte

where 2 6.te is the maximum vertical 3dB beamwidth of the trans-

mitter elements. Similarly

I -c vre (B.11)

We also need not consider angles where the contribution to
the integral is less than e, where e is a program controllable
accuracy parameter. Using the results of [Equation 8 in Parl,

1979] we get

al+ l)2-m £l(a c + ac)2-m

or

1B-10
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ri A weaker bound is then

a1  l-/(m- 2 )(ac+c) - (B.12)

>1 1 -/(m-2)(,c ) am (B.13)

(B.10) through (B.13) determine the minimum and.maximum angles.

The value of F, used is min (0.2, 50).

Now consider the integration in the y-axis direction per-

V pendicular to the great circle plane. Let ±yl be the extreme

values of the integration. We must have

l> max (dt6t d 6h (B.17)

where 6hte and 6hre are the horizontal semi-beamwidths of the

transmitter and receiver array elements respectively. The max-

imum y-values may also be limited by the scattering angles. We
assume here that the horizons are straight horizontal obstacles

so that amin and Omin are unchanged for off-centerplane scatter-

ing. For present purposes we can use the following approximation

to the scattering angle 0,

02 (,,y) = 2 (a,0,0) + (y/R 0 ) 2
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where

d ddrdtdrR0 dr+ dr
t r

If we require that

07m (a, y) 4 0-m a,0,0),

we get

lyll R0 0( ,8,0 ) [ 2 /m_1] 1 / 2 . (B.18)

B.4 STEP SIZE PARAMETERS

The step size in the integration is affected by the antenna

I patterns and scattering angle. In addition changes the phase

difference between space diversity antennas limits the step size.

Let 6a, 68 and 6y be the step sizes for a, 8 and y respectively.

We set

6a < K6vt

6a < K6

where 6 and 6 are the minimum vertical half-power semi-beam-
Irt yr

widths for the transmitter and receiver, and K iS - Constant

generally not more than .2. In the program we set
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K = min(.5, 200xERR)

where ERR is an input parameter. Similarly we have

6y < K min(d 6 ht dr 6hr)

where 6hr and 6hr are the minimum horizontal half-power semi-

beamwidths.

The scattering angle imposes the limitation

(0 + 6a) -m > (l-K)O 
-m

This limitation is the same for both a and B so we use

Sa, S < 6[ll-K) -I m -]

The step size in the y direction is limited by'I e-m a,-, y+dy) > (l-K) e-m ,y)

I. or equivalently,

I Sy < (A2+ y2 1/2 - y
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where

A = 0(a, ,y) R0  (1-K) 2 /m -i

The limitations imposed by the scattering angle allow dynamic

step size calculations since O(a,ay) depends on the scattering

point.

In computing the cross-correlation between space diversity

antennas there is a constraint on the step size due to the phase

difference between antennas. The y step size must be refined for

horizontal space diversity at either the transmitter or the

receiver, the a step size for vertical space diversity at the

transmitter, and the a step size for vertical space diversity at

the receiver. Consider horizontal space diversity at the trans-

mitter. Let Aht be the horizontal spacing of the transmit

antennas. If a step 6y is made the change in the phase dif-

ference between the antennas is approximately

6 dt 2

t

j (under the far field assumption), where dt is the distance from

the transmiitter to the scatterer. Since dt is roughly the same

for all scatterers, for step size calculation we replace dt by

dLt, the distance to the scatterer at (a 0 ,1 0,O). So to limit the

phase change to 64 we set

j 6 X dLt

t
IB- 14
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To decide on a value for 6 which yields the same accuracy

as that chosen due to the beamwidths we examine a beam transfor-

mation. Let the two space diversity beam patterns be g(r) and

g(r) e where g(r) is real and (r) is the phase difference.

A beam transformation yields two real patterns g(r)cos (l(r)/2)

and g(r)sin ( (r)/2) . The 3dB point for these patterns (without

considering g(r)) is at (r)= w/2. So we set = Kn/2.

Similarly, we have

dKX dLr
'y < 4 Ahr

and if At and Avr are the maximum transmitter and receiver hot-

izontal separations we have

6<KX 1

< 4 A V

tv

and

KX 1

yr

B.5 CALCULATION OF DISTANCES TO THE SCATTERING POINT

I The distances are required to calculate the delay associ-

ated with each scattering point. In addition, they are needed to

evaluate the cross correlations for space diversity antennas.

For the latter application high accuracy is needed. Define a co-

ordinate system centered at the nominal transmitter, X-axis along

th- li o the nominal receiver location, Z-axis up, and Y-axis

perpendicular to the great circle plane. The transmitter,

receiver, and scatterer (X,Y,Z) coordinates are
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T (ut Uth, utv )

R (d + r, Uh U

S (R ot cos a, y, ROt sin a)

= (do, 0, 0)

+ (-R cos 0, y, ROR sin 0)

where do is the distance between nominal transmitter and receiver

SI locations,

ROT = d sin 0/sin 0

0 1

'2 ROR = d o sin a/sin 01

(01= a+O), and the scattering point is determined by (aty).

The geometry is shown in Figure B-4. We wish to calculate the

distances rts, rrs to the scattering point with sufficient ac-

.curacy so that the variation of the differences in

2-i 2 i
-x- (rrsa- rrsb) or --- (rtsa rtsb)

B-1 6



4J u

z
1-

[V)
0 L0

4o 0

00

1<o
w
D

A.41

B-17



is much less than unity for two spaced antennas a and b. Write

the vector --LS T S as

-ts -tsl -tsl

where

-tsl =(Rot cos a,OR 0t sin a)

Utsl = (-Uty, Y-Uth -Ut)

Then, if

t, =st = I-tsl

2 2 rs tsrI2

r r rts - ris I  2v tsI  tsl (B.20)

rts rtsrts + r tsl Itsl + UtsiI + Itsi (B.20)

Calculation of rts relative to rts in this way is much less sus-

ceptible to round off errors than a direct calculation of rts.

This assumes that rtsl is known with sufficient accuracy. At
,- nt- wa note that the 'cuayi cuJ ~rqirdFor thc,

total path delay, and that we can write
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it W

sina/2 sin3/2 (B.21)

rtsl + rrsl = d0 + 2d0 cos( a+ )/2

Since the first term only contributes a constant delay it need

not be evaluated. The overall path length is then described ac-

curately by the sum of (B.21), (B.20), and the term analogous to

(B.20) for the receiver.

For use in scattering angle calculations the distances rts,

rrs can be evaluated with sufficient accuracy using

r d sino
tsl d sin(a+a)

B.6 CALCULATION OF SCATTERING ANGLE

It is assumed that, for each point in the scattering

volume, the scattering angle to any pair of transmitter and

receiver terminals is essentially the same. The scattering angle

calculations here therefore refer to nominal transmit and receive

Iantennas located in the great circle plane.

IA point in the scaLtering volume is given by the coordi-

f nates (a ,,y). The scattering angle is the angle between the

vectors TS (transmitter-to-scatterer) and the vector SR (scat-

terer-to-receiver). The length of these vectors are denoted rts

and rrs, respectively. The scattering angle 0 is evaluated from

(TS RS) 2

sin' 0 1 - 2 2

rts r rs

B-I 9



this is found to reduce to

2 2 2

s(sin2
1 + - Oa + 2 cos Ola08)sin 0

(1+ Q)( +Q2)

where

0 = a+ 0

y sin 01
a - dO sin a = Y/RoR

: ( and

Q0 d sin 8 = Y/ROT

s0 1

i B.7 CALCULATION OF OFF-BORESIGHT ANGLES

-i I Considering a scattering point (a,$,y) and a transmitter

antenna with

te0 = elevation above horizon

Ita0 = azimuth angle

B- 20



For coordinate system centered at the transmitter the - or to
the scattering point is

-t = (RO cost yp RO sin a)
:I 0TO

where

R OT d sin O/sin (a+O)

The unit vector in the direction of the antenna beam is

Xb (Cosp. Cos aM sin %a'cssin A-byoA tO o tO a
where

aA '0 t e 0

B- 21



The angle vt that the line to the scattering point makes with the

antenna boresight is given by

2 I.Yts . b 2
sin VT = 1-

iytsl
2

(ROT COS taO cos(a aA) + y sin ta 0 )2

1- 2 2
ROT + y

2 2 2
[sin taO + sin (a - aA) cos 2 taO

+ (y/Ro2 Cos2

(OT) aos

21 - 2(y/ROT) cos(a - aA) coSIta0 sinlta0]

I /[l + (y/RoT) 2 ]

For the purpose of antenna gain calculation the following approx-

imation is adequate:

-. 2 2 2] ( +2)
sin vT = [sin (a-aA) + (sin ta 0 - y/RoT)2]/(I + (Y/RoT)2)

B-22



K Similarly, for the receiver,

2i 2R 2)/2
sin = [sin2(0-A) + (sina-y/RoR)2]/(l + y/RoR) 2 )

where

'A '0 + re0

and

R d o sin a

R0R sin( a+ 0

B.8 DEFINITION OF ANTENNA COORDINATES AND AZIMUTH ANGLES

To determine the gain of an antenna which is not circularly

symmetric two angles are required; the off-boresight angle and

the azimuth angle. (The off-boresight angle is defined in the

previous section.) Let the plane perpendicular to the boresight

be called the antenna plane. The azimuth for a given vector is

the angle between the projection of the vector into the antenna

plane and a reference vector in the plane. So a reference vector

must be selected in order to determine the azimuth. Basically we

choose a vector which is approximately vertical. Specifically we

use the following three conditions to determine this reference

vector (See Figure B-5.):

iB
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1. j

_rREFERENCE VECTOR IN ANTENNA PLANE

I ' " I

'i! I I

I "(xb'YbZb)=BORESIGHT OF
I - ANTENNA

I-.b

y

I-',- . . .-
I!

[ FIGURE B-5 DEFINITION OF THE "RANSMITTER REFERENCE
- VECTOR FOR AZIMUTH ANGLE CALCULATIONS.

THE xz-PLANE IS THE GREAT CIRCLE PLANE.
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I. The reference vector is perpendicular to the bore-
sight.

2. Let the boresight have coordinates (xbyb,zb) in a co-
ordinate system centered on the antenna with the x-
axis pointing toward the other terminal and the z-axis
pointing up in the great circle plane. Then the ref-
erence vector is in the plane determined by

(xbyb,zb), (xbyb,O) and (0,0,0).

3. A sign ambiguity remains. This is resolved by requir-
ing the x-component of the reference vector to have
the opposite sign of z , the z-component of the bore-
sight. (If zb is zero %hen v = (0,0,1).)

r

These three conditions give the reference vector v uniquely as
r

2 2
r = (-XbZb, z-Yb'. X b,  y b)/A

: r

where A is the magnitude of the numerator. To resolve the ques-

tion of which direction to measure the azimuth angle we define

* the cross product at the beamsight and the reference vector, i.e.

we define v = Vb x vr , where vb is the boresight. (The com-

putation of the reference vectors and cross products is done in

subroutine ANTASM.)

The azimuth angle for a vector u is then defined as arctan

(a/b) where a = u • v and b = u .v . This angle is computed--- C - -r
in subroutine LOOPS and used as an argument for the antenna gain

subroutines. The antenna gain subroutines are written such that
~the azimuth angle is measured relat-ive to the same reference

vector as is computed here.

IB2



B.9 CALCULATION OF RECEIVED POWER AND CORRELATIONS

The received power on a troposcatter link is

G-r --Ir -§d r Br I2)
PR PTGTGR C  f 2 (r) R 2 (r) 0(r) d r (B.22)

R- T

where

w e j GT (GR) the transm itter (rece iver ) bores ight
gain.

PT transmitted power.

n o 3-m k2-m (M )/ [2/Vi r(---3)]

gT(r)(gR(r)) voltage gain relative to brresigh for
transmitter (receiver).

RT(RR) distance from scattering point to trans-
- I m i t t e r ( r e c e i v e r ) .

* 0 - scattering angle.

m - spectrum slope of the refractive index.

2 - variance of the refractive index.

I2

kn 2n/X = wavenumber of the frequency of in-
terest.

r- correlation distance of the turbulent"t -scatter.
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For the Kolmogorov-Obukhov turbul1,ice theory, the spectrum
slope m is 11/3. In that case, it is customary to define the

2
structure constant C

n

C2 = 2 r-2/ 3 21/3 r(2/3)
n n 0 T(4/3)

The constant C is then

C = C2 k 5 / 3 r(m-1) sin / (871)53 n2

0.0518 k 5 /3 C2 . (B.23)

The constant C2 is often measured as a function of height. For
n

m =11/3 the received power is

III 2 R2
SPa PIG GR 0.0518k -5/3 c2  1T I 2 19Ig 1 1/

R TT11/3d
3  (B.24)

RR T

Observed values of m range from 2 to 5, but the mechanisms which

causes values of m different from the 3.67 predicted by the tur-

bulent scatter theory are not completely understood. it is

generally assumed to be due to atmospheric layering and other

F nonhomogeneous or nonisotropic of effects. The NBS method uses

m=5, based on a large number of empirical results at lower fre-

quencies. We wish to match the model to the NBS model for m=5,

assuming nearly symmetrical paths. For Od < 10 and for a surface

refractivity NS - 301 the basic transmitter loss is

B-27



V.,

Lb = 135.8 + 30 log 1 + 30 log 0+ 10 log + dO (B.25)

-3

-74.2 + 30 log f + 30 log 0 + 10 log d+0 + 0.332 • 10 3d

The basic loss for m=5 is derived in Parl [1979],

(B.26)H 3
L (m=5) = -10 log (Cf3 ) + 9.5 + 30 log f + 30 log 0 + 10 log dh I p
The two expressions match when

33-10 log (Cf3 ) = -83.7 + 0.332 • 10 - od

The Gd dependence can be attributed to the height dependence of

the refractive index. For small take-off angles, we have

1
h tdo

Define

C5 = k3 C(m=5)1

B-28
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We then get

lO) fC1-3 h13
= 2 e (B.27)

For the turbulent scatter model (m=1l/3) we use the Fried
2 2

model for the height dependence of Cn or equivalently an , but

point out that there is a considerable variance in the observed

profiles. For the Fried model we have

2 6.7 • 10 exp(-h/3200)

and

i r 0  = 2Ah .

Define now Cli/ 3 in the same way as above

C = k5/ 3 C(m=l1/3)C11/3

=0.0518C 
2

=2 -2/30.0990 a r
n0

= 4.18 10- 15 h-1 / 3 exp(-h/3200). (B.28)
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The constant C can then be determined from (B.28) for C1 1 /3, and

for m=5 it deviates by less than 1dB from the NBS model, i.e.,

(B.27); for 500m < h < 3000 in. The correlation between two

receiving beams is

2

19I g~ lgR2-m 3
12 2 2 Omd

R T

where gRl and gR2 are the two beam patterns. For space of polar-

ization diversity paths, it is necessary to include in the

integral the phase difference from a scatterer to different ter-
~2

minals. When the profile Cn is given (m=ll/3 or m=5) then (B.23)

must be used while keeping C2 inside the integral. The computer
n

program is designed to take this into account when indicated by

I' the input data.

B.10 ANTENNA GAIN PATTERNS

The gain of a phased array antenna in direction (0,4),

where 0 is the off-boresight angle and is the azimuth angle, is

determined as follows. The phase difference between vertically

adjacent elements of an array is

v = 2rr d sin0 cos - y

1where A is the wavelength, dv is the vertical spacing of the

elements, and yv is the phase shift between vertically adjacent

elements. Similarly the phase difference between horizontally

adjacent elements is

B-30



- d sinO sin - y
- uh h

The voltage gain is then given by

sin(.5nhph) sin(.5nvP )g( , #) =XX ge ,)
njh sin(.5P) Vn-sin(.5p ) e
h Ph) v v

where nv and nh are the numbers of elements in the vertical and

horizontal directions and ge(0, ) is the gain pattern of the ele-

ments. If the elements are subarrays then ge (0,) is determined

in the same way as g(8, ). If the elements are parabolic then

!eI (0, ) is the gain pattern of a dish with 55% area efficiency.

(In this case g e ( 6, ) does not depend on *.)

These equations are implemented in the program by functions

RGAIN, TGAIN and PHARGN.

B.11 PARABOLIC DISH ANTENNA PATTERN AND GAIN

The default antenna patterns assume a parabolic dish with a

55% area efficiency. Let D be the diameter of the circular

aperture. The boresight gain of a parabolic dish with diameter D

is

G 6.4D 2* G-=
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The voltage beam pattern is given by

irD
2J 1 (- sino)

g(e) - D
Y sine

where

D = D/1.2e

and 0 is the off boresight angle. To simplify the integration

the antenna pattern is truncated beyond the first sidelobe.

B.12 DELAY RESOLUTION

The delay between consecutive elements of the channel pro-

file is chosen to be about the variation in delay within a cell

at the horizon. Let da and dR be the step sizes for a cell

loc - ted at (a, 0, y) = (c00 0, 0). Then the delay variation is

roughly

do
AT 0 (a dc + o .

This value is used for the delay resolution DELPB.

"+ " B-32
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V APPENDIX C

PERFORMANCE CRITERION

We use as our performance criterion an approximation to the

error probability of a hypothetical digital conunication modem

connected to the array.

Model of the Communication Modem

The basic modulation in the hypothetical system is phase-

reversal keying of Nyquist pulses

/2

SPk(t )  _ sin [B(t-k/B)
ksnB 1/2(t-k/B)

[The normalization is chosen so that the, pulses form a set of

2 t orthogonal unit-energy waveforms.] The transmitted sequence is

then of the form

zlt) = bkPk(t)

I I where bk = *i.

It will be assumed that a small percentage of these pulses

are transmitted with a polarity that is known to the receiver.

' This is a common practice where the receiver may have to contend

with interference which might capture the tracking loops of the

measurement circuitry. The percentage of the pulses used for

this reference signal might typically be 10%. This results in an

effective loss of about 0.5 dB from the energy devoted to trans-

mitting information.
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At the array output we have available a number of noisy

replicas of the transmitted signal, which can be modelled as

z (t) = G z(t) + v (t)n n n

We have removed the explicity dependence of Gn on t because we

are interested in observation intervals short enough so that the

channel gains can be assumed to be essentially constant. The

values of Gn in this expression can arise from individual ele-

ments of the array, from beamformer outputs, or from subarrays

that are nonadaptively steered. In any case, the receiver then

samples each Zn(t) by correlating it with every Pk(t) to produce

the sampled-data outputs

z n,k G nbk + Vn,k

We now consider the problem of deciding on the polarity cf
a single one of these pulses, say b0 . In order to make this

decision the receiver will form an estimate of Gn by averaging a

specific number of reference pulses preceding b0 . We will denote

this estimate by Hn, and write it as

k=-K
4.

(We -ake the liberty of pretending that the reference pulses are

consecutive.) The overall performance is sensitive to the value

of K which is limited by the coherence time of the channel (reci-

C-2
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procal of the fade rate) and the actual implementation. It would

be inappropriate here to dwell on the details of determining the

effective value of K.

Having estimated the channel gain, the receiver uses this

estimate in an approximation to a maximal ratio combiner by form-

ing

Z = H nZn ,0
n 8

Under ideal conditions this will be proportional to the value of

b0 , and the receiver correspondingly takes as its estimate of b0

the quantity

A 1 if Real(Z) > 0

:1 0
-1 if Real(Z) < 0

Demodulator Statistics

.1 Let G be the column vector with entries GI, ... , GN

similarly, let H be a column vector with entries HI, ... , HN. We

[next define the noise components

-1
AU 1 V

Un K k=-K n,k

i Ii These noise components are independent complex Gaussian

variables with variance N0 /K. We can then let U be the column

vector with coordinates {Un}, and write H as

C-3



. .. . . . . . . . . . _ . . . . .. . . , . . . . - . . . - - -, - . . . . - 6 :

H = G + U

It will be noted that G is also a vector of complex Gaussian

numbers with zero mean; the covariance matrix of G will be de-

noted by MG

t :

MG =E[G'

where the p~ime is used to indicate the transposed (row) matrix

and the overbar again indicates complex conjuguate. The com-

ponents of MG are determined by the array and scattering geo-

metries.

We next let X be the column matrix whose entries are
if

X n = n,0 n "n N

We let Vn be the noise component of Zn,0'

Vn nV0

and let V be the column matrix with entries {Vn}. These coor-

- dinates are independent and have variance No . It should be noted

ii -that V is also independent of U. We then express X as

4,C-
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X -boG +V

Z is then expressed as

The last step of the initial development is to define the
demodulator output

2 Real Part of Z

i !This can be written as

I X'H + H'X

However, we will want to express a in a slightly more complicated

way to facilitate subsequent averaging. To this end we define

the concatenated row matrix

Y1 (X',H')

C-5



and write 6 as

; I
13 Y' PY

where R is a (2N x 2N) matrix with entries

4Rmn 
= 1 if rn-n = *N,

VRmn =0 otherwise.

V That is, R can be written in partitioned form as

i L N O

where ON is the (NxN) null matrix and IN is the (NxN) identifyf 
matrix.

We now w'rite the demodulator -error probability as

P(error) r(13 > I b0  = -]0

ACI

I. 
C-6
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This can also be expressed in terms of the conditional density of

4 8as

P(error) f F f 0(0 b0 -1 dO0

Rather than leaping into the problem of determining this density

function directly we will look instead at its moment-generatin2_

function

f(s) = f f (B bo = -i) eSadO

which can also be written as the conditional expectation

¢(s) = E(es  b0 = -1)

If we substitute the definition of 8 as a matrix product this can

>1 be written as

¢s) = E[eS'RYlb0 = -1]

The next steps are simple arithmetic. Let My be the con-

ditional covariance of Y;

M = E(Y b0 = -1)

C-7



Then the (conditional) density of Y is

fy(ylb 0 = -1) - r- IMyI-1 exp(-y'M Y_ 1

and the moment-generating function is

~(s) = fyf(ylb, = 1)esy6Rydy

[The integral in this expression is a 4N-dimensional integration

over the real and imaginary parts of the 2N coordinates of y.]

For values of s with sufficiently small real parts the integrand

is well behaved and we have

C S 1 s M RI
= ,2N s

where 12N is the (2N x 2N) identity matrix. The region of vali-

dity is simply

f 1
Real s <

largest eigenvalue of MyR

i! 8
- i C-8
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The last step in the evaluation of f(s) is to express My in

terms of MG. We have, when b0 = -1,

= L: -- B ::
H + U

and

my EG V' ,G' + U'

G FM + NOI1N -M G1L !-MG M + (NO/K)Ij

It will be a notational convenience to write

MR = MyR

' so that we have

I 2N SMR

C-9



4, The entries in MR are easily evaluated as

-M M + N I

GM G NO0N]
M MG + (NO/K)IN -MG j

Error Probability and Performance Criterion

The density function f s(8) is recoverable from the moment-

generating function as

fC(1 = e- *(s)ds

This function involves at most polynomials and exponentials of 8

since 4(s) is the reciprocal of a polynomial in s. Consequently

it is theoretically straightforward to evaluate the integral of

f8 (8) on the half-line 8 > 0. As a practical matter, however,

this is a computationally difficult way to solve for the error

probability, and it is much better to do the integration on 8

first and evaluate the resulting integral by numerical saddle-

point methods.

C1

C- 10
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There is a somewhat more straightforward way of arriving at

a figure-of-merit for the diversity combining algorithm, via the

Chernoff bound. We have

Prob(Error) =f f (O)do

0

O Dt

= 't) ,

and therefore we can write

Prob(Error) 4 0

where

0= Minimum C(t)
04t'tmax

The real t that minimizes (t) is, in fact, the location of the

I saddlepoint integration path as it crosses the real axis, and it

is possible to develop excellent approximations to the error pro-

$ bability that depend only on 40. Since all of these approxima-

tions are monotonic in 40, it is sufficient to use 40 itself as

the performance criterion, and we will do this in most of the

= -evaluations in the text.
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The Determinant in Terms of the Eigenvalues of MG

Since the covariance matrix MG is Hermitian, we can find a

unitary matrix Q for which

QQ = N ,

and

A IAQ'MGQ = A

where A is the diagonal matrix of the eigenvalues of MG:

A 0 if n *mi~iInm

j Let S be the (2N x 2N) matrix consisting of 2 copies of Q

, Q ON
S0Q

ON  Q

Clearly,

S'S 12N

C-12



and

IsI = 1

Therefore

Is' (I2N - SMR)SI = 112N - sMRI - /4"(s)

The left side of this is readily evaluated by multiplying the

partitioned matrices, and we have

IN + sA -sA-sN oN

1/C(s)

-sA-s(No/K)IN IN + sA

The matrix in this determinant has mostly zero values in it, and

a simple permutation permits the determinant to be written as

L N•1 D1i /4(s) = n D
n= n

C-13



'V where

1 + SXn  -sXn-SN 0

D =
n

-sX -sN/K 1 + sx
n 0 n

= 1 + 2Xns - [XnNo(K+1)/K + N0/K]s

The Special Case of Large K

In many troposcatter applications the coherence time of the

channel is so large that we can assume that

even if the measurement of channel gains has to be multiplexed

among the array ports. In this special case

D = + 2XS - XN0s 2

= i+ Xn/N 0 - nN 0 (s- 1/N 0 ) 2

C-14I _1



In this form we see that the maximum of every D n occurs at

s = 1/N0. Consequently the minimum of 4(t) occurs there also,

and

= n(-I0 11 (1 + X n/N 0O -

It is not even necessary to determine the eigenvalues of MG in

this case since the last equation can be written as
4

1' = 1

o I N + MG/Nff "

A Rough Approximation for Moderate K

The value of t that minimizes the individual terms {Dn ) is

:1
tx X n

t - N0 [An( + 1/K) + N0 /KI

which can be written as

N " + l/K + No/K) "
0n

C-i5
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Even i K is not large we can assume that the location of the
(A minimum of 4(t) is approximately at

10 1 /

Vtt

as long as there are not too many terms for which

/Kn

It is worthwhile using this value of t in the genoral case even

when it is not terribly accurate. This is justifiable since the

minimum of p(t) will be fairly broad anyway; in addition, the use

of this value only weakens the bound on error probability, and is

therefore conservative,

We thus substitute

S s= N 1 + /K

in the expression fo Dn to obtain

i D 1 2 An/No - n/No 1

Dn 1 + K 1 + I/K K(I + 1/K) 2
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I

r

p.i

D K+ / I/N0

n K + 2+ 1/K 1 +1/K

j Again, we can express the result directly in terms of MG as

C-17
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FAPPENDIX D

PHASED ARRAY ANTENNAS

D.1 INTRODUCTION

The purpose of this appendix is to establish the array

antenna background for the adaptive Troposcatter program. We

will discuss the principles of and problems involved in the

design of phased array antennas for this aipplication, leaving for

other sections the detailed discussion of the adaptive algo-

rithms.

D.1.1 Array Theory

A planar array antenna is a two dimensional set of elemen-

tary antennas, as shown in Figure D-1. The figure shows the

elementary antennas separated by a distance dx in the X direction

(azimuth) and dy in the Y direction (elevation), with an overall

array size of Dx and Dy It will be shown that in general,

* dx = dy, that is, the element spacing is the same in the azimuth

and elevation directions. There is no underlying reason, how-

ever, to have Dx = Dy, and their ratio is one of the design

tradeoffs affecting troposcatter performance.

Before continuing with the analysis of the planar array,
let us first examine the simpler case of the linear array, as

shown ik Figure D-2. Here we have assumed a uniform spacing dx ,

and an incident plane wave at an angle e from broadside. Thus,

0Q90 ° is broadside, while the endfire condition is for 0 = 0 and

1800. The phase difference between the wavefront at successive

-antenna elements is
i

2 - d coGe 0 (D.1)
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Figure D-1 A Planar Array Antenna
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If there are 2N + 1 elements in the linear array, then the far

field amplitude array factor is

Nn 2 iidN .J( X Cos e
A() = I e o (D.2)n=-Nn

where' I n is the complex amplitude weighting on the array ele-

ments. If th. weighting is uniform, then In = 1, and the

phasing is the only antenna control. If the phasing is uniform,

that is the phase shift applied to the n-th element is na, then,

2 ird
N ,e - cos 6 - )

A(B) = e . (D.3)"[ 8 Fn=-N

The array factor in units of power, S(0), is the magnitude-

squared of the amplitude array factor,

S(O) J A(6)12

K 2122ird
sin (214+1)( x cos 0- a)] (D.4)

sin[l (---cos 0 - )]

2D X
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Equation (D.4) shows the following factors involved in array an-

tennas.

1. The array factor has, in cos 0 space, periodically

spaced nulls, at values of 0 given by the zeros of the

numerator of Eq. (D.4):

2nd

S(2N+) XCos 0- a)= kr; k=0, ±1,

= (Nl(2kX a)

0 i cos - { y + a (D.5)

2N+ a 21rd
x

2. The array factor has, in cos 0 space, periodically

spaced maxima, of value (2N+l) 2 , given by the simul-

taneous zeros of the numerator and denominator of Eq.

j (D.4):

: 1 2 dx
2 x cos 0- a) ki; k=O, ±1,

Cos=(2k- + a) (D.6)

A+

Equation (D.6) will always have one solution in vis-

ible space at the value k=O, such that:

2 Trcl
a xcos0. (D.7)
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Figure D-2 shows that this value of a points the antenna in the
direction of the incoming wavefront. Additional maxima, or

grating lobes, are given by solutions of Eq. (D.6) for k*0. The

first grating lobe occurs at

Cos 0 = (a • 2,) 21dx

(D.8)
iA

= cos B0 -0d7 Ix

J where 60 is given by cos 00 = Xa/ 2 ndx .  Thus, to avoid grating

lobes, the antenna elements must be spaced such that:

I + Icos 801 ,(D.9)

!d

e.g., if the antenna is to be steered through all visible space,

the element spacing must be a half wavelength.

3. The array factor has secondary maxima located between

the pattern nulls of Eq. (D.5). These maxima are ap-

proximately located when the numerator of Eq. (D.4) is

A unity, that is

1 2 7rd (2m+lS(2N+l)(- cos 0 - )) ( -> m%0,1,...

6 cos {" t r' + () . (.-)
!x
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These maxima and their adjacent minima define the array antenna's

sidelobes.

4. The beam widths between nulls of a main lobe steered

to angle 00 is:

(D.11)

Null Beamwidth = cos-I [cos e cos-{cos 60 + --I-0 2N+I dx  0o 2N+I dx

At Broadside, 00 w/2, and

Null Beamwidth a 1 2 = 2 (D.lla)- 2N+I d L
x

where L is the array length. The null separation on sidelobes is

half of Eq. (D.lla), or X/L radians.

The 3dB beamwidth is given by

Half Power Beamwidth cos - Icos 00 0.886 1N+l I (D.12)
-l 1 A

Cos -1cos 0 + 0.886 2N+I 2dx  '

and at broadside:

Half Power Beamwidth 0.886 1 A 0.886 A (D12)(2N+I) d L

Equations (D.11) and (D.12) show that the antenna beamwidth is a

function of the length of the antenna, (2N+l)d x , while Eq. (D.6)

,hows that the grating-lobe spacing is a function of thee .met

separation dx . I
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Up to this point, the discussion has been devoted to a uni-

form linear array of isotropic elements. Eq. (D.4) shows that

the resulting antenna pattern has a (sin x/x)2 behavior. The

first sidelobes of this pattern are 13.5 dB below the main lobe.

Tapering of the array can reduce the sidelobes, but will broaden

the main lobe. In addition, if the elements are not isotropic,

the pattern of the resulting antenna is the product of the ele-

ment and array patterns.

The linear array theory extends directly to planar arrays.

Figure D-3 shows the coordinate system of a planar array. The

array is in the X-Y plane, 4 is the angle from the X axis to the

projection of the r vector in the X-Y plane, and 6 is the polar

angle. As with the linear array we denote the element weighting

by in, where the index in is in the X coordinate, and n in the Y

coordinate. Thus 01mI<Nx, O-InljNy. The two dimensional array

factor is then

(D.13)

N Nx [y
A(8 )= Imnexp {j 2 os +A( 6, e -p - sin 6[md x cos 0 + nd sinf]}.

m= - N n=-N n x y
x y

if imn is constant amplitude, uniform phase, i.e.:

Iron expl-j(ma x + nay )} (D.14)
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then

A(o,4) = I Xexp{j[m2 d x sin 0 cos 4 - ax)

n m

(D.15)

+ n(22 d sin 0 sin 4 - a

* The array factor in power, S(0,) is:

S(M) = IA(e,4) 2 . (D.16)

Substituting Eq. (D.15) into Eq. (D.16),

sin 2- (2Nx +1 - dx sin O cos 4 - ax)]
S(0,4) 2 dxX

sin2[l (2X sin a cos 4)-ax)]

(D.17)

sin 2 [1 (2N +1)(x d sin 0 Cos a A

[ 2X y ax)]

sin2 [ [ (2d sin O sin p- a)]

Equation (D.17) shows that in the absence of tapering, the

array pattern of the planar array is the product of the patterns
x_ ,o of two equivalent linear arrays, one in the X direction and one

in the Y direction. As in the linear array, the elements must be

spaced at half-wavelength intervals to avoid grating lobes. The

bconcept uOe Z e..ti.."h is so ..wht- compexfrOr A planar array, and

is best described in term- of a hemisphere, as in Figure D-4.

The intersection of the antenna beam and the hemisphere is an el-

liptical surface. The geometry of the projection of the pencil

D-9



beam onto the surface of the hemisphere is conventionally defined

in terms of the following parameters. Let 0 be the beamwidth in

the North-South direction, and Q be the beamwidth in the East-

West direction. Furthermore, let the beam be scanned to the

coordinates 00, P0, and define

0X0 = 3 db beamwidth for 0 = 0, 0 = 0, i.e., if

scanning is in the X-Y plane

0
0 = 3 dB beamwidth for 0 = 90 , 0= 0, i.e., if5yO

scanning is in the Y-Z plane. In this case, OxO and Oy0 are

given by Eq. (D.12). It ca,, then be shown that

2 Cos2 00 [ 
2 Cos 2 0 + 0-2sin2 0] (D.18)

and

2 02sin 20 + 22 2 (D.19)
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For a square array, Ox0 = 0y0, and

s 0 I  square array . (D.20)

S1 0 X0

Thus an array will, from Eqs. (D.18) and (D.19) have broadening

in both the 0 and Q beams. For the square array the beamwidth is

dependent only on the polar angle, 00, while the Q beamwidth is
c angle independent. The directivity, D, is given by

11 D 9.87

0= 0 (D.21)

00

where, in Eq. (D.21), 0 and 9 are in radians. If 0 and Q are in

degrees, the factor of 9.87 is replaced by 32,400.

D.2 ANTENNA BEAM FORMATION

Section D.1 has discussed the theory of beam formation

given a set of antenna elements. In this section, we address the

engineering aspects of this problem, namely, how does a practical

beam get formed.

To begin with, let us find the dimension of the problem.

In the troposcatter context, a typical antenna might be 8 feet

£ square, and have an operating frequency range of 4.4 to 5.0 GHz.

At 5.0 GHz, the wavelength is

3 x 108
3 x 108 0.06 meters = 0.2 feet. (D.22)

5xD10 9
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Assuming half-wavelength separation (0.1 ft), the antenna will
have

N /2 N /2 = 80,

for a total of 6400 elements. If a pencil beam is to be formed,

each of these elements will have to be individually phased and

their outputs summed in order to form a pencil beam pointed in

the desired direction.

It is apparent that an approach which requires some 6400

variable phasings is an expensive undertaking. An alternate ap-

proach is to use an RF beam forming matrix or Butler matrix. A

Butler matrix is a hardware implementation of a Fast Fourier

Transform (FFT), although it was developed in 1960, six years

before Cooley announced the FFT. The Butler matrix has N input

and N output ports. The outputs are the Fourier transforms of

the inputs, and if the waveform incident on the antenna is a

plane wave, the output of the Butler matrix is N beams, which

simultaneously point at all visible space. To make this point

more concretely, consider the eight element Butler array shown in

Figure D-5. The notation used in the figure is as follows:

x = 4 port quadrature hybrid

straight-through phase shift =90 =

coupled arm phase shift = 00

<n phase shift of n-- radians

ID- 12
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Digital, Matrix, and Intermediate-Frequency Scanning

0 1 2 3 4 5 6 7

I

• Units of Phase Shift are u/8 radians

IL
2L,

3L R

04 Figure D-5 8-Element Butler Array (from Hansen, 1966)
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We number the antenna elements 0 through 7 from left to right,

and denote their output voltages by Em .  Tracing the signals

which go to the output ports we find the output voltages:

(D.23)

E IR E 0eJ l/ 8 + Elej6 r/8 + E 2eJ7T/ 8 + E3 eJ + E4 ej 9 / 8 + E5eJl0 /8

+ E eEe / + E7

Since there is a progression of iT/8 radians on aach term, ElR

will have a maximum when En = e - j n -/8, that is, for a beam arriv-tn

ing at the right of broadside with a progress'.ve phase shift of

r/8 radians at each element. Similarly:

E2R E ej 5 / 8 + E eJ 8 n/8 + EXeJllT / 8 + E ej14 /8

(D.24)

+ E4 e/j
8 .1. E 5eJ4/8 + E 6e 7 /8 + E 0/8

Thus, there is a progression of 3w/8 radians on each term of E2R,

and E2R will have a maximum when En = e"-j n3 /8 , that is, .or a

beam arriving on the right of broadside with a progr.ssive phase

Mshift of 3n/8 radians. Table D-1 summarizes the pointing angles

of the ei,ht beams.
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Table D-1
Eight Beam Butler Matrix Pointing Angles[IBEAM PHASE SHIFT POINTING ANGLE

4L -7irf/8 = l57.51 -61.00

3L -5wr/8 = -112.50 -38.70

2L -3-a/8 =- 22.50 -22.00

IL - 1Tf/8 =- 67.50 -7.20

I R w/8S = + 22.50 7.20

2R 3nr/8 = + 67.50 22.00[3R 5wr/8 = +112.50 38.70

4R 7ir/8 =+157.50 61.00

The eight beams span ±610 of visible space.

In the general case of an N- elemtent array, the output of

the m-th port of the Butler matrix will have the amplitude

sin N [Ld- sin 0 - (2m-1l) jI(025
sin {j.sin 0 (21) -1 1

which, upon comparison with Eq. (D.4), is seen to be the ampli-

tude array factor of an untapered array pointing at an angle

1 2N9g+ 2rn-1)
6 sn (D.26)

from broadside. The factor q in Eq. (D.26) is an integer which

can take on any value. Visible space is limited by the largest

i Ivalue of q for which the argument of Eq. (D,26) is less than

unity. It is important to note that in sin 0 space the array
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pattern is of tne form sin X/X, with the beam maxima shifted W/N.

Thus, the pointing angles form a linear progression in sin 6

space, but are nonuniformly positioned in physical space. The

angular coverage of an array is given by:

Angular Coverage = 2 sin - 1 k_ (!) (D.27)2d N

<I Adjacent beams cross over at the 2/v level, which is 3.92 dB down

from the peak, and the maximum of each beam falls at a null of

all other beams. Thus, the Butler matrix forms orthogonal beams.

The usefulnens of the Butler matrix arises from the fact

that it is a passive, lossless means of forming simultaneous

beams which essentially cover all visible space. It is made up

er.tirely of four-port quadrature couplers and fixed phase

shifters. As it is an FFT, it can be most easily implemented

when the number of elements in it are a power of 2. For an N

element array, the basic unit of phase shift is 180/N degrees,

which is 22.50 for an 8 element array, 11.250 for a 16 element

array, etc. A two dimensional Butler array is made by forming

one-dimensional arrays for each row (or column), and then combin-

ing their outputs into a second array, using the corre&ponding

outputs of each linear array. Thus an NXN planar array would use

2N linear arrays to for-a the planar array pattern, giving N2

I :output beams.

D.3 ARRAYS OF SUBARRAYS

The Butler matrix has provided us with a tradeoff of build-

ing ; in Pine of a steecatab- single beam

array. It has not, however, cut down on the number of elements.

We previously have shown, for example, that an 8 toot antenna
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will require 6400 elements. We now consider a reduced implemen-
tation, still using a Butler matrix, but feeding it with a
reduced number of elements, each of which is a fixed subarray. A

typical geometry is shown in Figure D-6; this implementation is

simply shown as an example and is not necessarily a desirable ap-

proach for -i adaptive troposcatter system. The array is divided

into 64 subarrays, each l' by 1'. The subarrays are identical,

4 each having a corporate feed and phased to produce a boresight

beam. No tapering is used, and the elements are spaced at half-

q wavelength intervals, so that the subarray pattern is

•2[10 21 i

sin2 [-- sin 0 cos @] sin2  " r, sin e sin ]1
sin [ sin 6 cos .sin 2 [ sin 6 sin 0,]

subarray

A cut through the 0 plane gives:

S(6,0) = 100 sin2[5, sin 61 (D.29)
sin 2 [g sin ]

si2

subarray
and the boresight half-power beamwidth (Eq. (D.12)), is:

10
0i 0 I 0.886 T1

= 0.18 radians (D.30)

= 10.2

D-17
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I

I Figure D-6 An Ar-ray of Suharrays
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The subarrays are spaced on V' centers, which, at 5 GHz,

are 5 X. The array factor then becomes (Eq. (C.25)) in the b

plane:

si- 8{15ni sin 8 (~2

~''array- .('Z)

Equation 0D,30) has maxima spaced at 9 given by Eq. 0D.26):

= ~l1 (5 + 2rnKl)

(D. 32)

-k 0 .720. 2.150, 1.3,580, 1-.0B 6.b

The first foul- sets of beamas of Eq. (D.32), 0 .7-40 througjh

~Ij ~51O2o, are the eight desired antenna beam~s, covering a peak
angular range of 10.04*, and a 3 df* angular range of 11.30. The

beams at ± 6.460 are grating lobes, which are due to the1. X sub-

array spacing. The subarray, however, has only a 10.2"' team-

width, as shown by Ea. (D.36). Therefore the grating lobes will
be in the sidelob-s r-egion on the subarray, arnd will be suppressed

by tne (sin X/X) oubarray patterr. As long &E a half-wevelength

spac:.ng is maintainad on the sutlarray, and neither the subarL-ay

nor the array have amplitude taper.Dg, the subdivision o~f an

array into an array off subacrays will always result i., the grat-

ing lobes being radu~ceci by the subarray sidelobes, Therefore,

F ~ the array antenna will have a region which can be defined a-- the
"main beam",F with thke remainder of visible space being in the

sidelobe region, The penalty which is paid for this is the nar-

__ ~~rower scan angle range which th-a main beam cover.I u

example, the eiaht subarrays frcni beain covering a 100 range,

. whereas tihe full- eighty element array, with steering capability

on each element, would, f--rom Eq. (D.27), have an angular coverage
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of 1620. It is evident that a t.-adeoff is possible between the

A number of subarrays and the angular coverage of the beams, in

general, if there are N elements in the subarray, each spaced at
~ nd M subarrays, the antenna pattern in the e plane formed

by a Butler matrix will be:

sin2 (N .7 sin 0) a 2 r, (M {N sin 6 - (ihI}
D( 0) = _ _ _ _ _ _ _ _ - - - - - (.3

si~n( sin 0) sin(22 {N sinS

Z =2
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