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INTRODUCTION AND SUMMARY
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Phased arrays are attractive for troposcatter applications

because of their ECCM potential. In a non-hostile environment

- these capabilities may be used to improve the system performance

(i.e., decrease the bit-error-rate or transmitter power) through

adaptive combining of the array element outputs. This report

. examines the potential diversity gains which may be derived from

phased array antennas through adaptive combining. The perfor-

mance of phased arrays is compared with traditional diversity
types, such as space, frequency and polarization diversity.

Section 1 contains a summary of the key new results ob-
tained in this study. More details and additional results are
contained in the individual subsections. Section 2 describes the
basic propagation model used to determine the diversity perfor-
mance. Different diversity systems are discussed in Section 3,

o

where the equivalence between space and angle diversity is estab-
lished and a suitable measure of performance selected. Section 4
; compares different orders of elevation and azimuth diversity.
q Section 5 derives the performance of some suboptimum combiners,

PN

including a new technigque where only the K strongest diversity
ports are combined, Section 6 describes the effect of fading,

3L

namely that only a finite time is available to measure the

SR N B e S
! & )

. channel for optimal combining. Section 7 briefly treats the
' : wideband case where additional diversity is derived from the
?% frequency selective fading of the channel. In Section 8 an

experiment is proposed to verifyv the results, The experiment is
configured so that it could be used as a transportable remote
sensing tool to get details about the atmospheric reflection and
scattering structure. Section 9 describes the computer program

.
1
finegiuniosir AR

used to obtain the troposcatter diversity results presented in
this report.
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1.1 TROPOSCATTER MODEL

Transhorizon propagation of microwave signals results from
turbulent scatter in the troposphere. 1In our analysis we assume
that turbulent scatter is the only mechanism present. The re-
ceived signals are assumed to be free of diffraction or partial
layer reflection components. The scattering is assumed iso-
tropic, so the strength of the scatter in a given direction
depends only on the scattering angle. The region of scatterers
which are illuminated by the receive and transmit antennas 1is
called the common volume. The signals scattered from various

sections of the common volume are assumed independent. The
received signal is the sum of a large number of scattered signals
which have different amplitudes, phases, and relative delays.
For a narrowband system the relative delays of the signals have
no effect and the signal experiences Rayleigh fading. To combat
this fading diversity is generally employed. In this case a
number of signals are present at the receiver. These signals are
correlated in general and the system performance depends on the
correlations as well as the powers of the various signals.

1.2 COMPUTATION OF TROPOSCATTER SYSTEM PERFORMANCE

The theore*ical results we present were generated by a com-
puter program which performs a three-dimensional integration over
the common volume. The program determines the power received at
various relative delavs and the correlation between diversity
ports. It includes the effect of the transmit and receive an-
tenna patterns, scatter angle and link geometry. The correla-
tions between diversity ports include the effect of antenna
spacing and beam patterns.

'
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1.3 PERFORMANCE MEASURE

‘ If the transmitted signal is narrowband then the received
;;3 signal on each diversity port is Rayleigh distributed. The

: signals on various ports are correlated in general. The short-
?51 term statistics of the N-diversity ports are determined by the
B | covariance matrix of the signal levels. Further, the system per-
'* . formance under any performance measure is entirely determined by

i the eigenvalues of the covariance matrix. The eigenvalues cor-
respond to independent fading components of the channel.

5 % The performance measure we use is the Chernoff bound on the
average bit-error~rate (BER) of a digital communications system.

gish i
e

If {Ai, i=1, ..., n} are the eigenvalues then the Chernoff
bound is

V
1
¥ “

Vewr” e

Rl di i e

The exact average BER for DPSK modulation is ¢p/2. Although we
use this performance measure throughout, the conclusions drawn

depend on the eigenvalues and so would remain valid for other
performance measures.

Systems are denerally specified with a desired average
BER. To compare different systems we compare the required SNR
(i.e., transmit powér required) for a given average error rate.

1.4 DIVERSITY PERFORMANCE BOUND

The best possible diversity system has equal-power indepen-
dent signals on its diversity ports. The Chernoff bound on the

BER for such a system is

_ 1 \N
b = (TF3)




where A is the power on one port of the system. A graph of the
required SNR (i.e., X required) to set ¢5 = 10-4, 10% ang 108
is given in Figure 1-~1 for various orders of diversity. Note

that the initial SNR gains are large but that diminishing returns
are seen with higher order diversity. The magnitude of the gains
increases as the SNR gains from the diversity increase. For
¢ = 10~8 the SNR gains are roughly doubled.

This bound may be achieved by adding receive apertures of
the same size which are spaced far enough apart.

1.5 DIVERSITY FROM ARRAY ANTENNAS

Diversity may be derived from phased arrays by dividing the
array into subapertures., The element outputs in each supaperture
are simply added together, and the subarray outputs may be com-
bined adaptively. We assume throughout that the receive and
transmit apertures are the same size. If the receive aperture is

subdivided, then the beamwidth of each subaperture is greater
than the entire array beamwidth, and the boresight gain of the
subapertures 1is less. The larger beamwidth decreases the
aperture~to-medium coupling loss, but the boresight gain also
decreases. In addition the subaperture signals are correlated.
These effects may be examined in terms of the correlation dis-
tance of the received signal.

The signals incident on different parts of the receive
aperture are correlated, For a given transmitter beamwidth, we
may define correlation lengths in the horizontal and vertical
directions, L, and L. The correlation length is roughly the
distance by which points must be separated to be uncorrelated.
(L, and L, are given by the integral of the respective correla-
tion functions dlvided by their maximum values.) If the array

dimensions are ap by a, then the antenna gain is nominally

c = 41:ahaV
A
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However the receive coupling loss is roughly

:?
L"l <m

so the effective gain is

¢

4] G _ 41thLV

( Lc A 2

3

E Hence subapertures of a large array may have the same effective

gain as the entire array. In addition the maximum order of
diversity achievable with a given size array is the number of
subarrays of dimension L, x L.

e+

It is helpful to examine these effects in terms of differ-

e o———et e e ot i -

ent beams formed from the subarrays via a Butler matrix transfor-

mation,

a9

e Gl L e AP

1.5.1 Beam Transformation

A Butler matrix transformation of the subarray output
yields a set of beams. Each beam has the same beamwidth as the
entire array. The direction of boresight gain is different for
each beam, so the common volume of each beam is different. The
boresight of adjacent beams differ by one half the null beam-
. width., Because the beams are orthogonal the signals on each beam
p are effectively uncorrelated, and the power on each beam gives

one eigenvalue of the system.

. When subdivision of the array is examined in terms of cor-
relation distance, the maximum order of diversity is known
approximately. However, it is difficult to see the benefit of

1-6
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additional subdivisions near this maximum order. Under a beam
transformation additional beams receive less power because they
have larger scatter angles or do not intersect the transmit
antenna beam. So it 1is relatively easy to estimate the power
which would be received on additional beams.

1.6 ELEVATION ANGLE DIVERSITY

If a square array is subdivided into subsections which are
long in the horizontal dimension and short in the vertical direc-
tion, the vertical beamwidth of each subarray is greater than its
horizontal beamwidth. A beam transformation of these subarray
outputs yields a set of beams with different elevation angles.
As previously mentioned the beams are orthogonal and the bore-
sight of each beam falls at a null of all other beams.

The array is oriented such that the boresight of the lowest
beam is above the horizon. This beam has the lowest scatter
angle and so receives the most power, Higher elevation beams
receive progressively less power since the scattering angle
increases. So the additional eigenvalues from the upper beams
are less than the first eigenvalue and the diversity bound may
not in general be achieved. However, if the minimum scatter
angle is large relative to the beamwidth then the higher beams
receive almost the same power as the lowest beam and the bound
may be approached.

Calculations of the required SNR to achieve <;’0=10"4 for
elevation diversity systems of orders 1 to 5 appear in Figure
1-2, The diversity becund is included for comparison.  The -
minimum scatter angle is 1.2° and the beamwidth of the array is
1° (3m x 3m at 5 GHz). The upper elevation beams receive little
power so little benefit is derived from them.

1-7
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1.6.1 Elevation Diversity Approximation

3,5 If the beams are narrow relative to the scatter angle then
- f a simple approximation may be derived. This approximation leads
to new general expressions for elevation diversity performance.

For narrow beams the power on each beam depends on the
scatter angle at boresight. If B is the beamwidth and Onin is
the minimum scatter angle ther the i-th beam boresight is

_ 1 .
o, =0, *+3 B+ (i-1)p .

The received power goes as 0~11/3 o

Al
== [+ - B3
1 1

where X; is the power on the i-th beam. The resulting perfor-
mance from these eigenvalues 1is compared with those values
generated by the numerical common volume integration in Figure
1-2. The approximation agrees closely.

To continue the comparison Figure 1~3 contains curves of
diversity performance vs y where

is the ratio of the beamwidth to the boresight scatter angle of
the lowest beam. The curves were computed with various minimum
scatter angles and beamwidths. The approximation 1leads to the
following simple expression for ChY;

1-9
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Note that the averages BER for DPSK is ¢4/2.

The results agree ve:y closely for small y, which is to be
expected since the beams were assumed narrow. If the receiver
and transmitter beamwidths are not narrow, then the -11/3 expon-
ent tends toward -5/3, Similar expressions can be derived in
this case but will not be considered here. Thus, the power
decreases less rapidly than the approximation would predict and
the actual performance is somewhat better (lower required SNR)
than the approximation. This is in fact the behavior observed in
Figure 1-3, The limiting performance with y=0 achieves the
diversity bound., Section 4.1 contains the details of the eleva-
tion diversity results, Table 4-3 shows how good the simple
approximation can be.

1.7 AZIMUTH ANGLE DIVER3ZITY

If the array is divided into long vertical strips, then the
subarray beam patterns are broad in azimuth and narrow in eleva-
tion, The beams which result from a beam transformation thus
have different boresight azimuth angles. This interpretation
makes one key difference betwen azimuth and elevation diversity
very clear. Since the transmit and receive arrays have the same
beamwidths then some of the azimuth diversity beams do not inter-
sect the transmit antenna beam. In contrast higher elevation
angle beams always intersect the transmit beam. Any beams not

intersecting the transmit antenna beam receive very little power

g

and so are of little benefit.

1-11
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1,7,1 Azimcth Diversity Performance Bound

One possible method to improve azimuth diversity perform-
ance is to broaden the transmit Leam in azimuth. This may be
accomplished by transmitting with a subsection of the array. The
boresight gain of the transmitter decreases, bhut the receive
beams are illuminated more evenly. Because the boresight gain
must decrease in order to illuminate more receive beams, the
diversity bound of Section 1.4 cannot, in general, be achieved
with fixed size transmit and receive apertures. (An azimuth
space diversity system may achieve the bound, but only by using
additional apertures.)

Anothar bound may be derived as follows. If we assume that
the scatter angle is large, so that additional azimuth beams have
the same scatter angle, then the common volume integration
reduces to a one-dimensicona’ integrution of the transmit and
receive antenna patterns. integration in elevation is
required. The same effect is seen at all elevation angles since
the scatter angle is assumed large.) Thus, for a given set of
receive beams, the optimum transmit beamwidth may be determined.

a
* when

Table 1-1 gives the average SNR required for ¢3=10"
the optimum transmit antenna beamwidth («l1/«¢) is used. The loss
when the transmit antenna beamwidth is not optimized (a=l) is
also given for comparison purposes. BReam broadening can improve
azimuth diversity performance somewhat, but even with the optimum
transmitter beamwidth the azimuth diversity bound is far from the

elevation diversity bound.

1.7.2 Computed Azimuth Diversity Performance

rigure 1-4 compares elevation and azimuth diversity ver-
formance with their respective bounds. The minimum scatter angle
is 1.2° and the beamwidths are 1° (except that the transmit bean
is broadened optimally in azimuth for each order of diversity).

1-12
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The conclusion is that in general elevation diversity is
more effective than azimuth diversity. In some~cases, however,
dual azimuth diversity may perform slightly better than dual
elevation diversity. For instance, if the minimum scatter angle
is 0.7° and the beamwidth is 2°, then a dual azimuth diversity
system requires 24.3 dB whereas the elevation system requires
24,5, Because dual azimuth diversity performs reasonably close
to dual elevation diversity, a combination of the ¢two |is
generally the best for high order diversity.

1.8 COMBINED ELEVATION AND AZIMUTH DIVERSITY

If an array is subdivided both vertically and horizontally,
a beam transformation yields a rectangular set of beams in eleva-
tion and azimuth, That is, the total number of beams is the
product of the number in elevation and the number in azimuth.

A number of different orders of diversity are compared in
Table 1-2. Different beam selections -thich result in the same
order of diversity are compared. For high order diversity, sys-
tems with two azimuth beams and a number of elevation beams per-
form best. With fourth order diversity, this is especially
evident as a 2x2 set of beams is 2.7 dB better than a 4xl eleva-

tion diversity system and 5dB better than a 1x4 azimuth diversity
system.,

Figure 1-5 presents results'for differeht scatter angles
and beamwidths. The 4, 6, and 8 beam systems are formed with 2
azimuth beams and 2, 3, and 4 elevation beams respectively.

The performance of combined elevation and azimuth diversity
systems is significantly better than either type alone. So for
any angle diversity system of order 4 or higher, a combined
azimuth elevation system should be employed.

1~15




Table 1-2

Diversity performance by subdividing a given square aperture
(Minimum ngtteriqg Angle 1.2°, Antennas 3m by 3m.
Beamwidth 1°, Square Aperture)

: .| Lower Bound on
order of | No. of Beams | No. of Beams | Required Required SNR
Diversity| in Elevation| in Azimuth SNR {cf. Table 2-1)

1% 1 1 40,0 40.0

| 2% 2 1 23.3 20,0
' 2 1 2 23.5 20,0
3* 3 1 19.3 13.1

3 1 3 20.4 13.1

4 4 1 18.1 9.5

4* 2 2 15.4 9.5

4 1 4 20,0 9.5

6* 3 2 13.6 5.6

6 2 3 14.3 5.6

8* 4 2 13.0 3.4

! g* 3 3 12.5 2.5
12% 4 3 12.0 .6

* Optimum Diversity Configuration

1-1%6
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1.9 SPACE-ANGLE DIVERSITY EQUIVALENCE

The spaced antennas of a conventional space diversity sys-
tem may also be considered an array. A beam transformation of
the output of two widely separated antennas yields two orthogonal
gain patterns with a large number of grating lobes inside the
envelope determined by the beamwidth of each antenna. The two
voltage patterns vary roughly as sin x and cos x near boresight.
If the antennas are brought closer together, then ‘the width of
the grating lobes increases. If the antennas have no space
between them, then only one grating lobe of each pattern occurs
within the main lobe of the individual antenna patterns. This
last situation results in beam patterns which are the same as
those from a rectangular array divided into square subsections.

Similarly if more antennas are placed between the two space
diversity antennas, then the width of the grating lobes stays the
same but the number of them decreases. If a continuous linear
array is formed, then each gain pattern (in a beam transforma-
tion) has a single 1lobe within the envelope defined by the
individual antenna patterns.

1.10 APERTURE SHAPE

Thus far, we have considered subdivision of square antenna
arrays only. We now consider rectangular arrays with different
vertical and horizontal dimensions. Each antenna is defined by
an asymmetry parameter

where ay is the vertical dimension and ap, the horizontal. The
results are given in Figure 1-6 for fixed area apertures. The
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diversity systems are specified in terms of two integers (ng,n,)
corresponding to the number of elevation and azimuth diversity

beams, or equivalently, the number of horizontal and vertical
i
Eg:§ divisions of the array. Since practical links are duplex, the

shape.

3 & transmit and receive apertures are assumed to have the same
¥ o
|

For systems with many elevation beams, tall antennas are
2, better, and for azimuth beams wide arrays are better. The basic
' conclusion is that the subarrays are approximately square. The
aperture shape for a given order diversity system should be
Q formed by arranging a number of square subapertures.

1,11 IMPLICIT DIVERSITY FOR WIDEBAND SYSTEMS

The systems considered thus far have been narrow band sys-
tems; that is, systems whose signaling interval is long compared
to the channel delay spread. For such systems, the troposcatter
channel gives Rayleigh fading statistics., For wideband systems,
the channel delay spread distorts the transmitted waveform, and

equalization may be required. This delay spread may also be used
advantageously, since the signals which arrive at different
delays fade independently. If it is possible to add these
delayed signals coherently, then improved performance is pos-
sible. This is called implicit frequency diversity because

PO U Y S U U

different frequency components of the transmitted signal fade
independently.

The number of independent delayed versions of the signal
which are weighted and summed is the order of the implicit diver-
sity systen. One implementation of implicit diversity is a
tapped-delay line equalizer, The signal is passed through a

delay-line and is tapped oLf at various points to be summed.

The signaling interval and channel delay spread play
L roughly the same role in implicit diversity as beamwidth and

1-20
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scatter angle play in angle diversity. If the signaling interval
is short compared to the channel delay spread, then large diver-
sity gains are possible,

One major Jdifference between implicit and angle diversity
is that if the channel delay spread is long relative to the
signaling interval then adjacent symbols are smeared into each
other. This is known as intersymbol interference or ISI. Theo-

A K retically the effects of ISI may be removed by maximum likelihood
decoding, but this process becomes impractical as the delay

spread increases.

| Despite this consideration, the initial gains from implicit
diversity are significant. They taper off more rapidly than the
gains from angle diversity, but for most wideband systems 2 or 3
tap equalization (i.e., 2nd or 3rd order diversity) has an
important effect.

1 Figure 1-7 summarizes the major results on implicit diver-
sity. It plots the improvement in SNR (i.e., reduction in
required SNR) vs. o/T, the ratio of channel delay spreud to the
signaling interval, for various numbers of taps. Note that as
o/T increases, the SNR gains increase initially but then fall or
level out. The reason for this behavior is that as the channel

# e e o e
[ '

delay spread increases the energy in the transmitted pulse is
spread out further, and more taps are required to collect this
energy. PFor a fixed number of taps, the delayed signals become
less correlated as ¢ increases (for fixed T), but beyond some

level the power on each tap decreases. This contrasts with angle
diversity gains, where increasing the scatter-angle-to-beamwidth
ratio improves diversity gains for any order of diversity.
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1.12 SUB-OPTIMAL COMBINING

The optimal combiner of the signals from N Jdiversity ports
is a maximal-ratio combiner which scales each signal by a complex
constant and sums them. Maximal-ratio combining may be expensive
so sub-optimal techniques are of interest. One possible method
is phase-only combining, where the signals are multiplied by a
complex constant with magnitude 1. Another possible method is to
choose a subset of K of the N signals and combine these opti-
mally. (This subset of K changes as the signals fade.) If the
subset consists of a single signal (K=1) then the system is
selection diversity, and K=N corresponds to maximal-~ratio com-
bining.

For DPSK we have derived a new expression for the average
BER of an optimal K of N combiner:

_ 1 -K pK -1 oK " pK -1
BER = 5 [l+o] " (1+3g) (I+53g) ... (1Hy) , where
p = SNR per diversity branch

Analysis of these methods is done in Section 6. The major
results are summarized in Table 1-3. Phase-~only combining is at
most 1.2 dB worse than maximal ratio combining. In contrast,
selection diversity 1is significantly worse than the optimum
method, e.g., it is 3.4 dB worse than the optimum for fourth
order diversity (at BER=10'4). Intermediate values of K yield
fairly good performance. For instance, if the best 4 of 8 sig-
nals are combined then the performance is only 1dB from optimum.
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Thus, if a cost is associated with N, the number of pcrts,
and a comparable cost for K, the number of signals combined, then
K should be greater than one but less than N, If the cost of
downconversion and combining signals is small relative to the

cost of ports then maximal-ratio combining should be used. Con-

versely, if the cost of additional ports is small, then selection
« diversity is optimum.

1,13 MEASUREMENT INACCURACIES

The channel is assumed frozen, i.e., we assume that the
channel may be measured exactly and thus use the optimum combiner
weights., However, the addition of measurement errors result in
only very slight changes in required SNR for the order diversity
systems considered here. For instance, measurement errors for a

6th order system under fairly pessimistic assumptions (one
measurement receiver, rapid fading) costs only .5 dB. These
effects are discussed in more detail in Section 5.

e o o e —— e Wt~

¢ 1.14 PROPOSED MEASUREMENT

e
2T aBl i eom— e -

Section 8 describes a measurement system which could not
B only verify the analytical results in this report but also be
used to measure the atmospheric structure. It would measure
layer reflection at X-band, including height and reflection
coefficient of the layer, and turbulent scattering as a function
of height. 1In fact, all parameters necessary to evaluate tropo-
scatter performance with diversity, wideband equalization and
advanced modem designs would be determined. The measurement

system would be transportable so that geographical and seasonal
variations could be measured,
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i SECTION 2
20
o TROPOSCATTER MODEL

2.1 TROPOSCATTER SIGNAIL CHARACTERISTICS

The troposcatter medium may be thought of as consisting of
a large number of randomly distributed 'scatterers®.

Physically
the ‘'scatterers'’

are random spatial and temporal fluctuations in
the refractive index, or equivalently, the temperature, humidity,

and pressuie of the atmosphere. Energy incident on a region of

the atmosphere containing a number of these scatterers or 'blobs'
will be scattered in all directions.

In particular if the trans-
: mitted signal from a point on the surface of the earth is purely
y sinusoidal, i.e., a single tone exp{j2nft) , then the scattered
signal received at some other location on the surface of the
earth consists of the sum of the energy scattered by each blob in
the scattering volume., Mathematically it can be expressed as

: L
X r = Aie 1e32nft
: i

where the A; and ¢; are the amplitudes and relative phases of

the signals scattered by each blob.

IR TR NS

Since the location and 'size' of the blobs varies randomly
with time, the amplitudes and phases also vary randomly so thac
the signal received by a single antenna port can be expressed as

NSRS YU S S V0 S 2
3 ;
- b

r(t) = a(r)ell2mft + o(v)]
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ig; the time varying modulation imposed by the scattering med-
ium. The received signal «r(t) 1is a fading signal.

If the scattered signal is received by more than one an-
tenna then the received waveforms [rn(t) rn =1, 2, ..., NJ]
are all of the above form,

j¢n(t)
rn(t) = An(t)e .

It is convenient to express all of the received waveforms in
vector form, i.e.,

r,(t)
r(t) = :
rN(t)
Bach of the components of this vector represents a fading sig-
nal. All of the signals have similar statistics, and since tbey
all are a result of scattering from the same medium they will be

correlated in general. I1 adaptive troposcatter several received
waveforms are combined adaptively to improve performance.

2.,1.1 Fading Statistics

If the scattering volume coﬁtaining the blobs is iarge in
relation to the wavelength, XA = c/f where ¢ 1is the speed of
light and £ is the frequency of the incident signal, then the
Central Limit Theorem can be applied to characterize the statis-

2-2
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tics of the received signal. In this case it is simple to show
(1] that the amplitude of the received signal A(t) is Rayleigh
distributed and its relative phase $(t)
tributed, i.e.,

is uniformly dis-~

2
-A“/p
p(A) = %ﬁ 3 r , A >0
r
I | L. '
p(¢) = 5% ¢ 0 < ¢ < 2n
where P, = E(Az) is the average received power. In practice

the average received power exnibits long term (seasonal) varia-
tions which can also be described statistically.,

An equivalent statistical description is that tne received

signal «r(t) has a complex Gaussian distribution with zero mean
and variance P ,

Elr(e) |2 = P .

This is easily generalized to the case of multiple received wave-
forms represented by a vector r(t), where r 1is a complex Gaus-
¢ian vector with zero mean and covariance matrix P:

The prime denotes the complex conjugate transposed vector. The
covariance matrix P is Hermitian. The eigenvalues of this ma-
trix play an important role in the performance evaluation of ad-
aptive troposcatter techniques.
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2,.1,2 Frequency Selective Fading

The description of the received signal given abo'e applies
as long as the transmitted signal is a pure tone, exp(j2nft) ,
or a narrowband signal, i.e., a signal whose frequency spectrum
contains a narrow band of frequencies centered around the fre-
quency f .

When we turn to questions concerning the transmission of
wideband signals, however, the mathematical description of the
received troposcatter signal must explicitly take into account
the fact that differences in path lengths of the signals scat-
tered from different blobs give rise to different propagation
time delays, causing a spread in the time of arrival of the re-
ceived energy. This can be done by expressing the transmitted
and received signals, s(t) and r(t) , in terms of their fre-
quency spectra, S(f) and R(f) , as

I S(f‘ejzﬂftdf

- D

s(t)

[ R(E)eI2™Elge

-0

r(t)

0

The received signal at each frequency component of r(t)
can be written as

N .
M m (¢ ~2nf1_)
R(£) = s(f) | § A e D m
m=l n=1 ™

where Ny is the number of scattered signals arriving in the
time interval (T Tt 67) and ¢, is the relative phase of
each of these signals. The random amplitude coefficients Ann

2-4
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represent the power associated with each individual scattered
signal arriving at different delays and at different angles.

They are usually assumed to be independent (uncorrelated scatter)
and thus satisfy:

_ 2
E(Amnqu) = Supng E(AL,) -

If the total average received power is P, , then

® 2 g T 2
P, = B [ [R(E)|%as = Xl o, J |ste)]“at
mn= -

where

Thus Q, represents the total relai.ve average power ar-
riving in the delay interval (7t,, T,+81) where &8t = T, ~ Ty
= T, - Tp-1 @and thus is referred to as the delay power impulse

response in the limit as &t + 0.

The fact that most of the total received signal power
arrives over a finite delay interval 0 < t < Ty causes the
statistical properties of two frequency components of the
received gignal to he inde requency separation is
large enough. The maximum frequency separation for which the two
frequencies are strongly correlated is called the coherence band-
width. If the bandwidth of the transmitted signal is greater
than the coherence bandwidth then the fading is said to be fre-

quency selective. On the other hand if the transmitted bandwidth

2-5




is smaller than the coherence bandwidth, the fading is said to be
flat, i.e., frequency independent, and we can ignore delay spread
effects. 1In order to understand this last point it is necessavy
to establish the relationship between coherence bandwidth and
delay spread.

The coherence bandwidth can be determined from the correla-
tion properties of the received signal at two frequencies £
and fz ’ ineop

* *
E{R(E; )R (£,)} = s(£,) s (f,) B(f;-£,)
where
“mo o, -32m(fy-f,)c

B(£,-£,) = 2 2 E(A e -

m=1 n=1

M -jem(£,-£, )1,
= 1 Qe .
m=1

The function B(Q) is called the two-frequency correlation of
the channel and its 'width' is the coherence bandwidth Bec. The
product S(fl) S*(fz) can be assumed to be unity when the dif-
ference f;-f, is smaller than the bandwidth W of the trans-
mitted signal. Thus if the width of B(Q) 1is greater than the
bandwidth, then E{R(f;) R*(fz)} is really equal to unity for
all fy-f,<W and the fading at the two frequencies is highly
correlated (flat fading). On the other hand, if the width Bo of
B(Q) is smaller than the bandwidth, W, then frequency components

such that Bp < f3- £, < W will fade independently since E{R(£f;)
R¥(£,) }=0,
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From the definition of B(Q)
limit as we let the delay interval &t + 0

it can be seen that in the
. that

B(Q) = Q(r)e_jZHQTdT

O, 8

where @ = f1~f, , and Q(7)dt = Q
response. Thus B(Q) and O(t) are related by a Fourier trans-
formation. Hence the width of B(Q) 1is approximately equal to
the inverse of the width of Q(71) , i.e., the delay spread.

is the delay power impulse

The simplest definition of the width of Q(1) is

8 = [/ Q(t)dt/maxQ( 1)

T

= maxB(Q)/maxQ( )
Q T

Similarly, the width of B(Q) may be defined by

=]
[

B maxQ( t) /maxB(Q) .
T Q

Clearly, we then have exactly

8 = 1/6;.

Let us call &y the rectangle width of Q(1). Other commonly used
definitions are

1. 20 delay spread: [t20(7)dt/fo(v)dt-[[t0(7)d1/[Q(v)d)?
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2, 99% delay spread: t,-71,, where [ o(t)dr = 0.99 [ Q(7ndr .
0

T

1
Table 2-1 compares the definitions for several analytical shapes
of Q(1).

The multipath effects generalize to the case of multiple
antenna ports., If we assume a single transmitted waveform
s(t) we have

r(t) = [ hit,t) s(t-t)dt .
0

where hk(r,t) =3 Aknel¢n6(t~r) is the impulse response for

the channel betweéh the transmitter por“ and k'th receiving an-
tenna port and h(rt,t) is the vector of impulse responses. For
a time invariant channel the impulse response is independent of
t . The delay power impulse response for a time invariant set of
channels is a matrix with elements Q (1), where

*
ka( T) 6( T"’\)) = E[hk(T) hz(V)] .

Since the impulse responses for different receiving ports are
correlated it 1is necessary to specify all the N2 function
ka(T) [ klz = ll 2’ e e ey N

spread and coherence handwidth

Wil

The definitions of multipath

o °

or a single channel do not gen-
eralize to the multichannel case. However, for any linear com-
bination of the receiving ports, e.g..
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TABLE 2-~1
COMPARISON OF DELAY SPREAD DEFINITIONS
Q{ 1) RECTANGLE 20 99%
WIDTH WIDTH WIDTH
. <
1 for 0 < T<T T /Y3 0.99 T
0 otherwise
rne—aT/T, 2T iééz—, or
T
n=0: 2 T n=0: 4,6 T
a= nte/n" n=1l: 1,04 T n=l: 2,4 T
n=2: 0.94 7T
n+o; 0,80 T n+eo: 2,1 T
]
1
'
———~T}:'r-—2' T © 40,5 T l
1+(37) |
{
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the multipath spread and coherence bandwidth can be defined as
before,

o
0
- e e L N

-

2.1.3 Doppler Smear

The fading of the received signal is caused by the wind
moving the scatterers, thus changing the relative phase of the

different scattered signal components. The time varying channel
is characterized by the correlation function

E{h(r,tl)h*(v,tz)} = 0(t,ty-ty) S(1-v) .

O U,

where Q(r1,0) is the delay impulse response defined earlier,
This definition assumes both uncorrelated scattering and wide
sense stationary channel fading. For multiple channels Q 1is a
matrix as before. It is genevally reasonable to assume that the
troposcatter channel is Wide Sense Stationary and Uncorrelated
Scatterer (WSSUS)., Stationarity is a particularly good assump-
tion while the uncorrelated scatterer assumption can break down
for systems with extremely wide bandwidth. This question will be
discussed later.

For a single channel, or a linear compination of several
channels, we can define the coherence time, To + and Doppler
spread, By . The coherence time is the width of the temporal

{ correlation function defined as

2-10




24

Sy

DY ST
L b

)
qy"&\«‘»a

Pl e
[ AANYY

M

B

“rd
ot

e
5
B
=
2

oo

SR HP AT b ety A= S

B R

31

?,

bl g

A

-

ey sprag by b

,“UMWWJﬂﬁ%%uM&Q

ALt

R e
‘l{:\iﬁ. i
-

A ki

3

-

{vm:a- - EE T

o e

o e
sy rompm N VILE armrmsmepreaye e |

¥

The Doppler spread By 1is the width of the Fourier transform of
b(tl‘tz), SO

1
By ~7
C

Another common characterization of the troposcatter channel is
the scattering function:

s(t,€) = [ dt o(r,t)e 32"t

The width of the scattering function in the <t direction is the
multipath spread, while the f-dependence displays the Doppler
spread. The convenience of using the scattering function is a

result of the two basic assumptions: tuncorrelated scattering,
and stationary fading.

2.2 PHYSICAL MODEL OF TROPOSCATTER EFFECTS

The previous section dealt with a mathematical description
of the received troposcatter signal. 1In this section we discuss
the relationship between the various parameters which character-
ize the received signal and the physics of the troposcatter
medium. This is important because any investigation of adaptive
troposcatter techniques must incorporate the effects of the tro-
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poscatter medium in a realistic manner. In particular we must
establish a relationship between the average received signal
power of the output of each receiving antenna element and their
correlations as well as the matrix delay power impulse response
Q(1) (or its width - the delay spread) and the parameters which
describe the physics of the troposcatter medium. The average
received signal power is needed to determine the average signal-
to-noise ratio of the system whose performance is to be evaluated
while the delay power impulse response is needed if we are
dealing with wideband systems. In addition, when the receiving
system consists of an array of receiving apertures we also need
to determine the correlaticn between the signals received at each
aperture.

2.2.1 Average Received Signal Level

The average received signal level in a troposcatter link
depends on the path geometry as well as the distribution and
'strength' of turbulence of scatterers in the atmosphere. A
measure of the distribution and strength of the turbulent scatter
is given by the wavenumber spectrum ¢(x) where the wavenumber
k 1is related to the size of the scatterer, & , by kK = 2%/%.
The functional dependence of ¢ on « «can be found either by
measurement or from theoretical considerations. The dependence
of the average received power on the wavenumber spectrum depends
on the scattering mechanism. Tatarskii [2] has shown that tropo-

scatter is of the Bragg scatter type so that the average received
power is given by

2 2

2 gnlr) gplr) o(r)
LS RPN |9 > | IZR | o(2 sin(——)) (2.1)
Rp(x) Rp(r)

2
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CrsCg

dpe9dr

Rp/Rp

k=21/

0

e( )

The common

are the received and transmitted power
levels.

are the transmitter and receiver antenna
gains,

are the voltage gains relative to boresight
of the transmitter and receiver antennas, in
the direction of the point r of scattering
volume. -

are the distances from the point r in the
common volume V to the transmitter and re-
ceiver antennas.

»=2uf/c is the wavenumber.

is the scattering angle, i.e., the angle be-
tween the lines from the transmitter and re-
ceiver terminals to the point r in the
common volume,

is the wavenumber spectrum of the tur-
bulence, or the three dimensional Fourier
transform of the spatial correlation func-
tion,

scattering volume V is determined by the antenna

patterns gp.gR.

The above expression is valid in most cases of interest.

The assumpt

1.

ions made in arriving at it are

the scattering volume must be large compared to the
correlation distence of the turbulence Lo - This
limits the antenna gain that is practical. The condi-
tion is ‘

R

& 5SS T
T O 7

R fRe %0

where
8ps 8g = beamwidths of transmitter and receiver,
respectively

and

Lo = outer scale of turbulence.
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2. The Fresnel zone condition

2 R2 .

3
2L0/A < RT, R

Both of these conditions put an upper limit on usable frequencies
for troposcatter. The condition in 2. (derived by Parl and
Malaga [3]) represents an improvement on the condition derived by
Tatarskii.

Assuming a worst case situation where Rq = Rgp = 25 km and
Ly = 100 meters (pessimistic), then condition 2, states that

A > .0032 meters

or

f < 93 GHz.

Equation (2.1) is generally accepted as the basis of all
models of scatter from turbulence. However, many different

models for the turbulence spectrum have been proposed. Booker
and Gordon [4] based their model on an exponential correlation
function, leading to the scattering cross section dependency on ©
as 0%, Other models proposed in the 1950's showed a scattering
angle dependence of 0~ (5,6] or 0~13/3 (7). Based on approx-
imate agreement with troposcatter experiments in the 40~1000
MHz range the 0~° was selected as the basis for the NBS method
[8]. However, the model originally developed by Obukhov [9] and
Kolmogorov [10] is the model which is now generally accepted by
atmospheric physicists. It predicts a scattering angle depend-
ence of 0~11/3, The main reason that this theory was not
adopted for tropospheric scatter is that many measurements at
frequencies below 1GHz revealed layer or feuillet reflections
in addition to the scatter from turbulence, and the 0~ depen-

dence was selected by NBS as the best overall fit to the data
base.
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The Kolmogorov-Obukhov theory considers the turbulence as
the result of breaking up of eddies into progressively smaller
and smaller eddies. The size of the largest eddies contributing
to the turbulence 1is the outer scale Lo of the turbulence,
Lo is also a good measure of the correlation distance. The

0 smallest eddy size, % 1is called the inner scale. Turbulence
; N of a scale smaller than #3 is dissipated rapidly. The range of
turbulence

211/L0 <k < 2ﬂ/£0

¥ is called the inertial subrange. 1In this range the Kolmogorov-
' Cbukhov theory predicts a wavenumber spectrum of the form
’ 2 ~-11/3

§(x) = 0,033C

1 K (2.2)

where Ci is a measure of the strength of the turbulence.

Based on this, and the approximate behavior in the equili-
brium range (k < 2m/Lg) and in the dissipative range (k >
2n/%) the following expression is often used to represent the
entire spectrums:

N A oty ML P o 2 e

hx

KL
o(x) = oz, 0) = 0.033¢2(x) [&® + (21/0)2 ] Cexp[- (22)?] (2.3)

where Ci, L0 and L, are functions of climate, time, and height

P
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troposcatter link is therefore reduced to precdicting these param-—
eters. Typical values of Ly are in the range of 1-100 meters
i ‘ while 3 is typically 1 mm. Most troposcatter links can be as-
sumed to interact with turbulence in the 1inertial subrange.

.
o o e i
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Take, for instance, a typical scatter angle of 2° and inner and
| outer scales of 0,001 and 10 meters , respectively. Then the
‘ condition for being in the inertial subrange is

1

)
C A S - G-
A L0

or
0.9 GHz < £ < 900 GHz .,

Hence it is realistic to use the simpler form (2.2) at the higher
; microwave frequencies.

The model used in SIGNATRON's troposcatter computer program
{11, 12] assumes a general spectrum of the Von Karman type,

2 .3
olx) = I(m/2) %) Fo
/2 @3) (24Pl /2

2 \ . . .
where % is the measure of the refractive index variance,

rg = Lg/2n and m is called the spectrum slope. It reduces to
(2.3) when m = 11/3, The gererality of tihe form above is con-

venient since it allows the inclusion of the NBS model by simply
‘ setting w=5 ,

The structure constant Ci will be used extensively in-

stead of the variance og . The two parameters are related by

2 (5= -1 -3
20) 1(357) 7 [1(5=) (2x4)"°)
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or, for m=11/3 ,

2 _
Cn = 1,911 ¢, ¥

2 -2/3

0 )

2.2,2 Spatial Correlation

In order to evaluate the performance of troposcatter sys-
tems employing an array of receiving apertures one must be able
to calculate the correlation between the sigruls received by each
aperture. If the spacing between each aperture is small compared
to the distance from the receiving array to the scattering
volume, then all apertures in the receiving array have the same
common volume. Decorrelation between the signals received by
each aperture results then strictly from the difference in path
length from each scatterer to each of the receiving apertures.
The correlation between the signals received by any two apertures
is then obtained as follows.

Let ry; and r, be the signals received by apertures 1
and 2, If the apertures have equal dimensions, then the average
power received by each aperture is the same and given by

P, = E(|r1|2) = E(|r2|2)

where P, was defined in equation (2.1).

r

Since the received signal is Rayleigh fading, it has zero
mean, and therefore the correlation coefficient between the sig-
nals received by the two apertures is given by

= 127 (2.4)
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where

*. IgT|2 |9R12
E(rlrz) =c [

5 3 #(x0(x)) exp[—jx&(g)]d3r (2.5)
V. Ryplr) Rp(r)

where §(r) 1is the difference in path length from a point r in
the scattering volume to the two receiving apertures, and
C = PpGpGRrmk%/2 .

2.2.3 Angle Diversity Correlation

In an angle diversity system the apertures are in the same
location so §(r) is zero. However, the gain patterns, ggr;(0,9¢)
and gpo(0,¢), are different. So the correlation is given by
(2.5) with &(r)=0 andg igR|2 replaced by ggr;(0,¢) g*R2(0,¢) where
* denotes complex conjugate.

2,2.4 Delay Power Impulse Response

The delay power impulse response Q(t) which characterizes
the received power per unit delay can be calculated by subdivid-
ing the common volume into small cells. The power received in
the delay interval (i, © + 8t) can then be calculated by adding
the contributions from all these cells for which the relationship

T = ——————— (2.6)

is satisfied, where "¢ is the speed of light and Rp and Ry
are the distances from the cell to the transmitting and receiving
apertures, respectively. The 20 delay spread of the channel
which 1is inversely proportional to the coherence bandwidth
(maximum frequency separation for which the fading is correlated)
is then found from the second central moment of the power impulse
response, i.e.,
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2,2.5 Condition for Uncorrelated Scatterers

The validity of the uncorrelated scatter model presumes
that resolvable ielay cells are small compared to the correlation
distance of the turbulence. Consider a link with slant range
dg and the angles «a,8 as defined in Figure 2-1. The scatter-

ing angle is 0@y . For this link it can be shown [Monsen et al,
19811 that the relative delay is

1 do sin % sin g
T = -E (rl +r2-d0) = 2:—' P .
cos
2

Differentiating this expression yields

At _ d0 sin 8

Aa 2¢c cosz(g%é)
The change in height, A2 , with a change in the angle a by
A¢ 1is given by

AL _ sin B8 2

Aa d9 [sin(u+8)] )
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Hence if Agf = Ly the vertical correlation distance of ithe tur-
bulence, we get
O2

~_L—9—
2c B *

sinz(a+8)

Lo
At = 5% T8
¢ sin 8 cos(gf—)

The condition for uncorrelated scatter is
AT KK 1/W

where W is the bandwidth. Since ©0/28 1is on the order of one
we get the condition

WLOO/C <1 .

This condition is almost always satisfied. As an example take
Lg = 70 m and 0 = 12 mrad (corresponding to a 100 km
link). Then the condition is

W << 350 MHz .

2,2,6 Doppler Spread

The Doppler spread, i.e., the inverse of the coherence
time, is another important parameter, particularly for a realis-
tic evaluation of adaptive troposcatter techniques. 1In order for
the adaptive loops to oper: : the channel coherence time must be
longer than the time consta of the loops. 1In other words, the
channel must be essentially time invariant long enough to allow a
reliable measurement of the channel,

The Doppler spread is found from the refractive index spec~
trum using Taylor's hypothesis of frozen turbulence, The re-
ceived spectrum is then
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Splf) = J dr Bx) Sp(f - (g - er) * u/x)

where

eqseg = direction vectors of the incident and scat-
tered fields

Sp(£) = spectrum of the transmitted waveform, nor-
malized to unit power,

u = wind velocity vector,

H(x) = integrand in (2,1)

2 2
- . -5/3 .2 919 _11/3
= PTGTGR 0.0518 k Cn = © .

ReRp

The 2'th moment g of the Doppler Spectrum is then found from
w, = J a3 H(r) ((eqn— e,) o u/A)z
2 o = & =T~ =R = ’

The Doppler spread is defined from

2 _ 24,2
Doppler = (Bo¥y = u7)/ug .
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2.3 THE CONCEPT OF APERTURE-TO-MEDIUM COUPLING LOSS
2.3.1 Introduction

It was recognized early that troposcatter 1links do not
realize the full) antenna gain for very large apertures. The dif-
ference between the total terminal antenna gains and the actually
realized gains is called the aperture-to-medium coupling loss.
The physical basis for the loss can be explained either in terms
of antenna beamwidth or in terms of spatial decorrelation. Since
the concept of the aperture-to-medium coupling loss is often
misunderstood it may be helpful to view this concept from both
the spatial and angular viewpoint. It must first be pointed out,
however, that the coupling loss discussed here pertains to a
specific model of the scattering mechanism. Part of the
confusion about coupling loss is caused by the comparison of
coupling loss for different scattering models. Different models
may yield different values for the coupling loss but still be
correct. The concept of coupling loss is only to be considered
as a tool in the evaluation of the total path loss and as long as
the path loss is correct, differences in coupling 1loss
predictions are immaterial. The theoretically calculated
coupling loss is again different from the coupling loss that is
measured by adding a small aperture (wide beamwidth) to an
existing high gain aperture system,. In this case the coupling
loss depends not only on the atmospheric structure inside the
common volume of the high gain antennas, but also on the atmos-
phere outside that common volume. It can therefore experience
large long-term variations which are completely independent of
what happens in the common volume, i.e., what affects the total
path loss, The fact that the measured coupling loss can vary,
even if the measured path loss does not, indicates that the
concept of aperture-to-medium coupling loss should be used with
caution. We now discuss the coupling loss concept from two
points of view in order to clarify these ideas.
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2.3.2 The Definition of Coupling Loss in Beam Space

Ao,
Lk

BT i

g e

A heuristic explanation is simplified by assuming

(1) Ideal beam shape (zero gain outside the beam, constant
inside)

(o -
B T

g
. % (2) A volume of scatterers of finite extent.

Figure 2-2 illustraces the situation where the antenna
-, beams are so large that the common volume illuminated by the an-
1 tennas encompasses all the scatterers. With the idealized as-
sumptions above it is convenient to define

Common Volume: The volume in space which is illum-
inated by both the transmitter beam

and the receiver beam.

Scattering Volume: The part of the common volume which

contains scatterers.

Volume of Scatterers: The total volume containing scat-

terers.,

When the common volume is larger than the volume of scat-
terers then all scatterers contribute to the received field and
there is no coupling loss. This is illustrated in Figure 2-2.
When the beams are narrower (Figure 2-3) only a fraction of the
scatterers are illuminated by both apertures and the received
field does not include contributions from all scatterers. This
lack ~f scattering contribution reduces the total realized anten-~
na gain. This is the coupling loss. We now see how the coupling

loss arises naturally from the integration formulas developed
earlier,
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The aperture-to-medium coupling loss is the loss incurred
due to the fact antennas with non-isotropic radiation patterns do
not illuminate all of the turbulent atmosphere and hence do not

receive all of the scattered energy. Thus if we define the path
loss L as

1. __R_
L = PG.Cq

i 909 i,
0.0518 k™7 [ a3 cir) | X252 oM 3, (27
v — P 'ReRg =

where use of the Kolmogorov wavenumber spectrum has been substi-
tuted for ¢( ) in (2.1), then the basic path loss L, 1is defined

as the loss when the radiation patterns gp and gg are iso-

2

tropic. If C_  is constant (i.e., not a function of r), then

(2,7) can be integrated analytically for the case of isotropic
radiation patterns. The basic path loss is then given by [13],

P
= g = 0.0196c%(kog)™3/p . (2.8)
b T67%R

hrd

where ©0g is the minimum scattering angle in the common volume.

The aperture-to~medium coupling loss is then the difference
(in dB) between the actual path loss and the basic path loss,
i.e.,

10 Log Lg = 10 log L - 10 log iy (2.9)

From (2.7) and the definition of basic path loss it should
be clear that one can reduce.the aperture-to-medium coupling loss
by reducing the aperture size of the transmitting and receiving
antennas since their radiation patterns would then become




'fatter' approaching the radiation pattern of isotropic radia-
tors. This can be seen from Figure 2-4 (soiid line) where we
have plotted the asymptotic aperture-to-medium coupling loss as a
function of antenna diameter (transmit and receive) for narrow
beamwidths. However a reduction in antenna size also results in
a reduction in antenna gain Gp,Ggp » as seen from the dashed line
in Figure 2-4. In fact if we double the transmit and receive
antenna diameter, Gy and Gy increase by 6 dB each while the
aperture-to-medium coupling loss increases by 9 dB which is less
than the 12 dB increase in antenna gain, The net result is a
higher received signal level and hence a larger system signal-to-
noise ratio (:NR).

Let us see what happens asymptotically as one or both beams
become narrower. If the transmitter beam is fixed and the re-
ceiver beam 1s much smaller, the receiver beam will cut out a
narrow cone segment from the volume of scatterers. The length of
the segment is determined by the transmitter beamwidth and there-
fore fixed., As the receiver beam is narrowed by a factor of two
the receiver antenna gain is increased by 6 dB. However, the
common volume is reduced by a factor of two. Asymptotically for
small beamwidths the scatterers are uniformly distributed in the
scattering volume so the scattered power 1is also reduced by
6 dB. The net effect is then that the path loss is the same, but
the received signal is composed of fewer independently scattered
signals, 1If the transmitter beam is then narrowed by a factor of
two the antenna gain increases by 6 dB while scattered power is
reduced by 3 dB since the scattering volume is reduced by a
factor of two. Hence the path loss is always reduced by using
narrower beams at both ends of the link.

Suppose that the receiver beam is replaced by two beams il-
luminating separate halves of the original scattering volume.
The two received signals have different amplitudes and phases.
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The sum of these two complex signals is equivalent to the signal
received on the original single beam. The phases are random and
therefore the amplitudes can add destructively. The key feature
of adaptive troposcatter is that the received signals can be ad-
ded in phase and with optimal amplitude weightings. This advan-
tage is achieved by splitting a bcam, which may represent no
coupling loss, into two beams each of which have a significant
coupling loss. The adaptive combining not only overcomes the
coupling loss of each beam, but actually improves on the perfor-
mance of the single beam system with no coupling loss.

2.3.3 Coupling Loss in Terms of Spatial Correlation

Assume a relatively wide-beam transmitter. At the site of
the receiver, the field received at different points of a given
aperture will not be perfectly correlated since the signal is ar-
riving from many directions. In other words, the wavefront at
the receiver exhibits random fluctuations. A correlation func-
tion can be defined in the plane of the aperture. If u and

v are coordinates in this aperture the correlation function is

*
pluj=uyr vi=v,) = E[z(u;,vy)z (u,,v,)]

where z(u,v) is the field at the point u,v
ceived field over the aperture A is

« The total re-

[] du dv z(u,v)
A

k]
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and the received power is
P o= Effr|°] = 5 if du,dv, if duydvy p(uy-u,,vy-v, )

For small apertures p is constant for any pair of points and
P = p(olo) .

In this case there is no coupling loss. If the aperture is lar-
ger the decorrelation between widely spaced points on the aper-
ture results in a lower received power. This is the coupling
loss, which can therefore be defined also as

Lo = o(0:0)/[% [f Guydvy [f duydv, e(uy-uy, vi-v,)] .
2 A A

>

It is not difficult to show directly that the two coupling loss
definitions are identical, but we shall not do so here. Previous
SIGNATRON reports [11,12,13] have presented analytical expres-
sions for the coupling loss as well as the horizontal and verti-
cal correlation distances.
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SECTION 3
THE USE OF DIVERSITY

3.1 DIVERSITY TECHNIQUES

In the previous section it was shown that the system SNR
can be improved by increasing the size of the transmitting and
receiving apertures. However this is often impractical. A sub-
stantial improvement in system SNR can be achieved if we use mul-
tiple smaller apertures and combine the signals received with
each aperture in an optimum manner. This is commonly referred to
as space diversity and the order of diversity is determined by
the number of apertures. Thus a system employing one transmit
antenna and four receiving apertures is said to employ quadruple
space diversity. A multi-element receiving array whose outputs
are weighted and combined in an optimum manner is a particular
implementation of a space diversity system.

Space diversity improves the effective SNR of the system
because the multiple scattered waves which make up the received
troposcatter signal combine in a different manner at two spaced
receiving locations and therefore fade in an uncorrelated man-
ner. Given N uncorrelated fading signals, the diversity re-
ceiver combines them in some manner designed to improve the sys-
tem SNR and hence system performance,

In addition to space diversity, multiple uncorrelated fad-
ing signals can be obtained by other means: namely

(a) Frequency diversity, i.e., a system which employs mul-
tiple freqguencies (channels) to transmit the same in-
formation. The fading at two frequencies is uncor-
related if the frequency separation is greater than
the coherence bandwidth of the channel.

~
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Space/Polarization diversity, 1i.e., a system which
transmits the same signal on two orthogonal polariza-
tions and uses multiple spaced antennas tuv receive
both polarizations. A fourth order diversity system
which uses two transmitting antennas, one for each
polarization, and which receives both polarizations on
two spaced antennas is shown in Figure 3-1, Decor-
relation between the four signals (4 different paths)
is achieved solely from the spacing between the two
transmit and two receive antennas and not from the use
of orthogonal polarizations.

Angle diversity, i.e., a system which employs a single
receiving aperture and multiple feeds to generate mul-
tiple beams which illuminate different portions of the
scattering volume and hence fade in an uncorrelated
manner, One specific example of an angle diversity
system is one which employs a single dish receiving
antenna with two offset £eed-horns. Ancther example
is a receiving array, the outputs of which are fed by
means of a Butler matrix which generates the multiple
beams to scan different parts of the common volume.

Another type of diversity available on broadband systems is
implicit diversity. When the bandwidth is wide enough to permit

resolution of different segments of the power impulse response,

then a tapped delay line equalizer can exploit the independent
fading on the different segments.

3-2
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A 3,2 PERFORMANCE MEASURE

Any of the diversity systems described can be analyzed by

; considering a general N-port diversity combiner. The receiver
» ¥ combines the N diversity outputs to form an estimate of the
g transmitted signal. The optimum combiner is a maximal ratio

combiner, which scales each output by its conjugate (i.e., the
conjugate of the channel gain) and then sums them. We define a
performance criterion for diversity systems in terms of this
optimum combiner. In this way the potential gains from diversity

may be examined directly without regard to the actual implemen-
% i tation.

PR id
jers

EL

s

The transmitter sends a sequence of pulses of the form
z(t) = 7§ b,p, (t)

where by = 1 , is the polarity of each pulse and Pk is the
shape of the pulse,

It is assumed that a small percentage of these pulses are
transmitted with a polarity that is known to the receiver so that
they can be used to measure the channel. Appendix C derives the
performance including the effect of errors in the channel
measurements. These effects are also discussed further in Sec-

: tion 7, For simplicity we assume here that the measurement
errors are negligible.

i n i v

At the receiving array output we have availabtle a number of

noisy replicas cf the transmitted signal, which can be modelled
as

Zn(t) = an(t) + vq(tt

where G, 1is the complex fading introduced by the troposcatter
channel and V, 1is the n'th receiver thermal noise. We have re-
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moved the explicit dependence of G, on t Dbecause we are in-
terested in observation intervals short enough so that the chan-
nel gains can be assumed to be essentially constant. The values
of G, in this expression can arise from individual elements of
the array, from beamformer outputs, or from subarrays that are
nonadaptively steered. In any case, the receiver then samples
each Z,(t) by correlating it with every pg(t) to produce the

sampled-data outputs

These samples are weighted by the complex conjugate of
the G, and a linear combination of them (sum over n = 1, N) is
used to determine the polarity by of the transmitted pulses
according to some decision rule. The error rate, i.e., fraction
of pulses whose polarity is not determined correctly, 1is a
measure of the performance of the array as a diversity combiner.
The error rate depends on the correlation between the gains G, ,
and the receiver noise power in a 1 Hz bandwidth (noise spectral
density) Ng, assumed to be identical for all N output ports. We

assume that the channel is 'Frozen' so that Gn is known to the

receiver,
Let mij be the cross correlation between the channel
*®
gains for the i'th and j'th output ports, i.e., m,. = E(G,G.),

and define Mg as the covariance matrix whose elgﬁents are the
mij - Note that the diagonal elements of Mz represent the
average received power at each array output port while the off~
diagonal elements represent the correlation between the sgignal

components at two different ports.

An upper bound ¢5 to the error rate (Chernoff bhound) can
be written as (See Appendix C)

3-5
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% = =5}
|1y + Ny Mg
where
In = (NxN) identity matrix,
or as
T )
H = I 1 + A /N
0 n=1 n 0

where {An} are the eigenvalues of the covariance matrix Mg.

The smaller the error bound ¢3 is, the better the array
performs. Since ¢35 decreases as the eigenvalues increase, the
problem of evaluating the performance of a receiving array then
consists of determining the eigenvalues of the array and the con-
ditions wunder which these eigenvalues result in a small error
rate. With DPSK the error rate is BER = 43/2.

The performance measure we use in comparing the different
diversity configurations is the signal-to-noise ratio (SNR) re-
quired at tha receiver to set the Chernoff bound or the bit error
rate eqgual to 10"4s The SNR is not clearly defined for a system
witn a numper of receiver ports since in general each port sees a
different signai power. So we define the SNR to be that which
would be present on a system without diversity. Because of this
normalization the SNR required by the system without diversity is
determined entirely by the desired BER bound ¢5. For instanre,
if ¢g = 10™% then the SNR required by a no diversity system is 40
dB,
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A simple bound on the benefit of various orders of diver-
sity may be derived as follows. If {An: i=1l,...,N} are the

eigenvalues of the covariance matrix Mg (normalized to the noise
power), then the BER bound is

. Suppose A is the eigenvalue for a single diversity system with a

given aperture size, (For a single diversity system X is also
the SNR.,) The power received by each of the n ports of a diver-

i sity system consisting of n single diversity systems equals A,
The eigenvalues cannot exceed ) so the BER bound for an n-th
order system is bounded by

1 \n
b > () -
This implies

A > _1___)1/n_l
%

This final inequality bounds the SNR required to achieve a given
BER bound. Note that A is the SNR derived from a single diver-

s sity system as previously defined., Table 3-1 contains values of
this bound for various n,

If the various diversity ports have equal power and are
independent then this bound may be achieved. This is the case
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TABLE 3-1
Lower Bounds on the Required SNR to Achieve BER Bound ¢0=10'4
;Q } for Various Orders of Diversity

$

é SNR Bound
33 h

$ Order of Diversity Fixed Element Aperture
. g‘

%

40.0
20.0
12.1
9.5
7.3
5.6
4.4
g 3.4
: ‘ 9 2.5
3 10 1.8
“ | 11 1.2
‘ X 12 .62
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with space (and polarization) diversity if the antennas are suf-
ficiently separated and for frequency diversity if the two
frequencies ~2 far enough apart. For angle diversity, however,
the bound is ot generally achievable because the extent of the
common volume is limited and so additional beams receive less
power than the first. If the beams are narrow and the scatter
angle is large then the bound may be approached.

The bound clearly demonstrates that diminishing returns are
seen with increasing diversity. This conclusion does not depend
on any particular geometry or diversity type.

3.3 DIVERSITY FROM ARRAY ANTENNAS

3.3.1 Phased Array

High order diversity systems are of interest because of the
great diversity gains possible. The cost of high order diversity
systems using traditional diversity types, such as space, polari-
zation, and frequency, 1is prohibitive. Phased arrays offer
potentially high diversity at reasonable cost; hence it is of
interest to examine how much diversity may be derived from a
given phase array.

A general discussion of phased arrays and their gain pat-
terns is given in Appendix D.

3.3.2 Beam Transformation

Different diversity ports may be formed by dividing the
array into subarrays. The outputs of these subarrays may then be
combined adaptively. Increases in diversity may tﬁen be
accomplished by subdividing the array further.

If the array is divided into equal subsections then each
section has the same gain pattern and common volume and so each
section receives the same power. The effective order of diver-
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sity (i.e., the number of significant eigenvalues in the signal
covariance matrix) is determined by the correlations between sub-
sections. The degree of correlation between subarrays is not
intuitively obvious and so it is difficult to see the effect on
performance of further subdivision of the array. It is much
easier to see the possible diversity gains from a phased array
through a beam transformation,

A beam transformation takes the outputs from a uniform
array of antennas which have the same gain pattern (i.e., same
gain for each pair of elevation and azimuth angles), and forms a
set of beams which point in different directions. The beams are
orthogonal and the maximum gain for each beam is at a null of all
other beams. The transformation is invertible and lossless,
hence the system performance is not affected by it. The total
number of beams formed is the same as the number of antennas in
the array. The performance of various orders of diversity for
this array may then be evaluated simply by combining different
subsets of these beams. (In an actual system not all of the
beams would be formed.)

Since the beams point in different directions they have
different common volumes, and so the signals on the beams are
largely uncorrelated. In addition the power received by the
various beams is different, so it is easy to estimate how much a
given be€am may affect the system performance. A beam which
points away from the atmospheric volume illuminated by the trans-
mitter receives very little power, hence it cannot greatly affect
performance.

Another advantage to the beam transformation is that the
correlations between ports are real. This simplifies the compu-
tation of the eigenvalues of the covariance matrix.

If the phased array is rectangular then the beams from a
rectangular set, so there are a number of beams in azimuth and a
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number of beams in elevation. The total number of beams is the
product of these two numbers. In azimuth the common volume is
chiefly limited by the transmitter beamwidth. A dual azimuth
diversity system is not greatly affected by broadening the trans-
mitter beam, but higher order azimuth diversity systems generally
improve when the transmit beam is broadened even though this
reduces the boresight gain of the array. These effects are con-
sidered in greater detail in Section 5.

The number of elevation beams which may be used is
determined by the minimum scattering angle and the spacing
between beams. Higher elevation beams receive less power and
eventually their contribution becomes negligible. The trans-
mitter beamwidth does not 1limit elevation diversity since
different elevation beams always intersect the transmitter beam.

Consider a linear array with N elements. If the outputs
are summed using equal gains and with linear phasing (i.e., the
n-th element is phase-shifted by na) then the one-dimensional
amplitude pattern which results is

where g,(6) is the element gain pattern, d is the element
spacing, 6 is the off-boresight angle, and « is the phase shift
between adjacent elements. For the derivation of this equation
see Appendix D. A Butler matrix transformation forms a set of N
beams where the m-th beam has

- (2m-1)m
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1 . These beams are orthogonal, and the peak (or peaks) of each beam
falls at nulls of all other beams,

E. j If the number of elements is large and the element spacing
4 small then each beam has a single mainlobe and the beams cover

3o ey

all of visible space. For our purposes only the beams which are

relatively near boresight are of any consequence.

s $ An example of the beams which results from a Butler matrix
. transformaticn is given in Figure 3-2a., The array is linear and
t consists of four elements. The element gain pattern 1is the
p envelope of the four beam patterns.

r | A slight modification to the beam transformation is neces-

g ’ sary to allow an odd number of beams to be used when the number

. of array elements along a given dimension is even (or an even
number of beams when the number of elements is odd). Ccnsider a
linear phased array. If the number of elements in the array is

i

even then none of the beams formed by a beam transformation has a

| w

boresight which is perpendicular to the array. However, if we
wish to use an odd number of these beams in a system then the set
of beams should be symmetric about a line perpendicular to the
array, hence the center beam of the set should be perpendicular
to the array. This difficulty may be overcome by modifying the
definition of the beam transformation so that the beams are
shifted by 1/2 the separation between adjacent beams. The last
beam in the set then becomes a "difference beam". For this beam
the phase shifts applied to the outputs of adjacent el~ments
differ by 180°, so its gain pattern has two lobes with equal gain
which occur outside the other beams. This is illustrated in
Figure 3-2 for a linear array of four elements., If two beams are
desired i

23 P oty ~e o I Eanmen  blan h]
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beam transformation may be used (Figure 3-2a). If one or three
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beams are desired the transformation of Figure 3-2b is used.
Either set of beams may be derived from the other so no loss of
information is invelved., This idea may be applied for both di-
mensions of a two-dimensional array to allow even or odd numbers
of beams to be selected in either direction.
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SECTION 4
COMPUTED PERFORMANCE OF A PHASED ARRAY

The short-term performance of a number of different orders
of diversity has been evaluated using the TROPO program for a few
typical troposcatter 1links. The transmit and receive antennas
are single phased arrays. The arrays are rectangular and are
oriented with one axis horizontal. The boresight of bot™ arrays
lie in the great circle plane (i.e., the azimuth angle is zero
for both arrays). No polarization diversity is employed. The
transmit beam is generated from the entire array with no phasing
of the elements. For most of the results the receiver ports con-
sist of sets of beams which are derived from the element outputs
through a beam transformation. The elements are assumed to be
small enough that their gain is the same over the entire common
volume. This assumption is made to prevent the gain pattern of
the elements from affecting the diversity performance. The beams
form a rectangular set; that is, the number of receiver ports is
“he product of the number of beams in azimuth and the number of
beams in elevation.

For a given minimum scattering angle, the link distance has
no effect on diversity gains, The link distance does affect thne
path loss., The path losses which are presented in this sect '»n
assume a 100 km path length. The changes in path loss due to
scatter angle and antenna beamwidth are also unaffected by link
distance. So the results which follow apply to any link with the
given minimum scatter angles.

The carrier frequency affects the diversity gains only
through the antenna beamwidths. S50 the results apply to any
combination of carrier frequency and antenna size which give the
specified beamwidth. For path loss calculations the beamwidth is
assumed to be 5GHz, but as with link distance this has no bearing
on changes in path loss,
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Thus, the diversity results derived in this section are
generally applicable to any link with the specified beamwidth and
scatter angle, and are not limited to the specific link distance

and carrier frequency which are used to determine the path loss.

4.1 ELEVATION DIVERSITY

We first examine diversity systems with a number of beams
which differ only in elevation. All of the beams have zero
azimuth angles, i.e., they are pointed directly toward the trans-
mitter beam. The lowest elevation beam has ite lower 3 dB point
at the horizon, so its boresight is roughly one-half the 3 dB
beamwidth above the horizon. The other beams have boresights at
increments of half the null beamwidth above the first beam,
Adjacent beams cross over at the 2/n level (-3.9 dbB).

The first 1link we consider has horizon angles of .25° at
both the transmitter and the receiver. This results in a minimum
scattering angle of 1.20°. The antenna apertures are square and
measure 3 meters along each side, so the half-power beamwidth of
the arrays is 1.0°, Table 4-1 presents the SNR's required to
make the BER bound ¢ = 10~% for various orders cof elevation
diversity.

The bound on diversity gain derived in Section 3.2 is
included for comparison., The dual elevation diversity system is
only 3.3 dB above the bound, but after third order diversity,
additional elevation beams improve performance very little. The
hasic reason for this effect is that the power on the upper
elevation beams is very low due to the large scatter angle. To
further investigate this effect we have examined the performance
of one, two, and three beam elevaticn diversity systems for dif-
angles and beamwidihs, The aperture sizes
are 1,5m x 1.5m, 3m x 3m, and 6m x 6m which result in beamwidths
of 2°, 1°, and .5° respectively. fhe minimum scatter angles
considered are .7°, 1.2°, and l.7°. The results .are presented in
Tahle 4-2.
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Table 4-1

Sievation Diversity Performance --
Required SNR for Chernoff bound on BER = ,0001
(;.2o Minimum Scattar Angle, 1° Beamwidth, Square Array)

Required SNR (dB) ;

Number of Elevation ! Lower Bound

Elevation Beams* Diversity (Equal Power, Independent)
1 40.0 46,0 ’
2 23.3 20.0 |
3 19.3 13,1 |
4 18.1 9.5 i
5 17.5 7.3 |

*

NOTE: The elevation beams are formed by phasing the elements
of the array as described in Section 3.3.
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Table 4-2

Comparison of elevation diversity gain for different antenna
(Antenna sizes 1.5m, 3n,

sizes and minimum scattering angles.
6ém, Minimum scattering angles .7°,

1,29, 1.7°.)

a. 1.5m by 1l.5m Antennas
Required SNR
Order of Diversity W 1° 1,2° 1,7°
40.0 40,0 40,0
2 25,6 24.5 23,9
3 23,2 21,5 29,4
b. 3m by 3m Antennas
Required SNR
Order of Diversity NS 1,2° 1.7°
40,0 40,0 40,0
24,3 23.3 22,6
21.1 19,3 18.3
c., 6m by 6m Antennas
Reguired SNR
Order of Diversity W 7° 1,2° 1.7°
1 40.0 40,0 40,0
2 23.1 22,3 21.8
3 i8. S i7.5 i6.7

Por—
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Increasing the beamwidth and decreasing the scatter angle

both decrease the diversity gains. The boresight of the first

. 1 . .
beam 1is usually at about emin+ 58 where emin is the minimum

scatter angle and B is the beam separation (1/2 the null heam~
width), Additional beams have boresights at increments of §
above the first. If we define a parameter

then we may compare results for different beamwidths and scatter
angles on a single plot, The result is given in Figurs d4-1.
Note that ordering using o leads to fairly smooth curves.

An approximation to the performance of el~vation diversity
systems may be derived as follows. Assume that the signals on
each port are independent and that the losses in power on the
upper elevation beams are determined solely by the scatter angle
at their respective boresights. This determines a segusence of
2igenvalues, which may be used to find the reguired SNR f£or a
given bit-error-rate.

T AT
e .

-

The scatter angle of the boresight of the i-~th bean is

0,= 0, + 1

i~ Ouint 38 * (i~1)8

L T o T I

where i=1,2,...,N; 0,4, is the minimum scattering angle and 8 is

the beam spacing. For relatively narrow beams, the pow
i~th beam is proportional to

 on the
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& 1
: R B y-11/3
- = (1+(i-1)3 ) /
1
= (1+(i-1)y) /3
’ . where
Y = ——
} =
- emin+ 2B
: is the ratio of “he beam spacing to the scatter angle of the
' lowest elevation bzam boresight. The Chernoff bound on the bit-
errcr-rate is
a n
1 1
' 3ER = I
’ . i=1 l+<5[l+(i.--l)'{l—]'l/~3
e ‘
ﬂf'i t wnere o is the required SNR,
o »
L. § ) ) i )
& 3 ! In Figuvre 4-2 the required SHR from the approximation
%% : (dashed lines) is compared with actual computed values for 2 and
.

S
A

3 beams. The curves agree to within about .5 dB in all cases.
The mz2in source of error here is the effect of horizon blockage,
which 1is greatest w:ith dual Jdiversity and large beamwidths.

~
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Table 4-3 compares the actual pecformance of 2,3,4, and S beam

¥ » ’ systems (from Table 4-1) with the approximation. Note that the

vaiues for the four and five beam systems agree very well.
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Table 4-3

T
P

Comparison of Elevation Diversity Performance
With the Approximation
(Min. Scat. Angle 1.2°, 3m X 3m Antennas, 100 km link, 5 GHz)

Required SNR (for BER = .0001
- . Order of Diversity Actual (dB) Approximation (dB)
1 40 7 40
}
X 2 23.3 23,6
3 19.3 19.6
4 18.1 18.1
§ 5 17.5 17.5
| |
.
3
Eo
R
%
s k<
B I
[a
K
~»
‘
| %
:
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Figure 4-3 presents more approximate results for 2nd
through 6th order diversity. With very narrow beams (y = N) the
performance approaches the bound derived in Section 3.2 under the
assumption of equal power and independent ports. These curves,
although not exact, give a rough %idea of the beamwidths and
scatter angles necessary to make third or fourth order =levation
diversity worth while, for instance at 0 . = B = 10 the gain
from adding a fourth beam to a three beam system is only 1.4 dB

whereas the gain with independent egual power diversities (a = 0)
is 3.6 dB.

Thus far we have been concerned only with the effect of
scatter angle and beamwidth on diversity gain. These factors
also change the antenna gain and aperture-~to-medium coupling
loss, generally by more than they affect the diversity gains. So
the diversity gains alone cannot be used to determine the antenna
dimensions, for example, since the dimensions also affect the
required transmiter power. Path loss calculations are always
necessary to determine these factors.,

4.2 AZIMUTH DIVERSITY

Under the assumption that the receiver and transmitter
antennas have the same dimensions, an azimuth diversity system
cannot achieve the bound on diversity gains of the previous
section. The reason 1is that if we transmit with the entire
aperture then the common volume is limited in azimuth by the
transmitter beamwidth, Since the receiver beams have the same
beamwidth, additional azimuth beams (that is, beams with non-zero
azimuth angles) receive power through sidelobes even if the beam~
widths are very narrow. In order to illuminate a number of
azimuth beams with the mainbeam of the transmitter the aperture
must bhe unde

uminated, which decreases the boresight gain of

4-10
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the antenna. So additional azimuth beams cannot have the same
power as the first beam., Either power is lost on the outside
beams due to the transmitter beam pattern or power is lost on all
beams due to a decrease i- boresight gain,

A bound on azimuth diversity perfcrmance may be derived as
follows. Assume that the scatter angle is large relative to the
beamwidth so that additional azimuth beams are not affected by
increasing scatter angle. Under this assumption only a one-
dimensional integration (in azimuth) is necessary since all beams
have the same elevation behavior. The covariance matrix is thus
determined by the transmitter and receiver beam patterns. So
with rectangular apertures the transmitter gain pattern is

)/-a Sin aX

gT(a,x) ax

where o is varied to change the boresight gain and the beamwidth,
and the receiver beam patterns are

sin{x=-(i-n/2 + 1/2)n]

L S ERYAL '
LH
where x = TSin6 and Ly is the width of the array. The ij-th

element of the signal covariance matrix is

- T a2
cij(a) = _i gT(c,x)gRi(x)gRj(x) dx .

4~12
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_ The results of this procedure are given in Figure o -
4-4, Here we graph the SNR required to achieve a BER of 10 %

versus the parameter a. (a is proportional to the boresight gain
at the transmitter antenna, and 1/a is proportional to the trans-
mit beamwidth.) As the order of diversity increases the optimum
transmit beamwidth alco increases. In Table 4-4 we give the
required SNR for the best transmitter beamwidth along with the
value of «a which gives this beamwidth (a = .5 means that the
transmitter beamwidth is double the receiver beamwidth), and the
dB loss incurred if full illumination is employed.

Note that a dual azimuth diversity system loses only .2 dB
if the transmit beamwidth is not increased, but that higher order
diversitv systems lose 2 or 3 dB. The potential gains from
azimuth diversity are much lower than those possible with eleva-~
tion diversity (cf. Table 4-3). With third order diversity the
difference between the bounds is 4.3 dB, and with fourth order
diversity the difference is 5.5 dB.

We next present computed results for various azimuth diver-
sity systems. The link used is 100 km with 3m x 3m antennas (1°
beanwidth) and a minimum scatter angle of 1,2°, The carrier fre-
quency is 5 GHz. The optimum transmit beamwidth is used with
each order of diversity. In Table 4~5 we compare the azimuth
diversity performance with elevation diversity performance. Also
included for reference is the transmitter azimuth beamwidth (for
the azimuth diversity systems). Elevation diversity is always
better than azimuth diversity for this link.

If the scatter angle is small and the beamwidth is large,
then a dual azimuth diversity system may perform slightly better
than a dual elevation diversity system. For example, 1if the
antenna dimensions are 1.5m x 1l.5m instead of 3m x 3m for the

4-13
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Table 4-5

Comparison of Azimuth and Elevation Diversity
100 km Link, 3m x 3m Antenna, 1.2° Scattering Angle

Transmit Azimuth Beamwidth
Order of Required SNR (Azimuth Diversity Systems
Diversity Azimuth Elevation (Elevation Beamwidth = 1,0°)
1 40.0 40,0 1.0°
2 23,5 23,3 1.0°
3 20,2 19.3 1.4°
4 19,5 18.1 1,7°
5 19,2 17.5 2,0°

4--16
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by above 1link, then the required SNR is 24.5 dB with elevation
S | diversity and 24.3 dB with azimuth diversity. With higher order
diversity this almost never occurs since the transmitter beam-

width must be increased significantly, causing a loss in antenna
gain.

We may conclude that in general azimuth diversity is not as

‘. effective as other diversity types. Dual azimuth diversity. how-

ever, is often almost as good as elevation diversity and some-

times slightly better. Further, dual azimuth diversiéy may be

’ combined with elevation diversity for higher order angle diver-
sity systems,

4,3 COMBINED AZIMUTH AND ELEVATION DIVERSITY

We next consider combined elevation and azimuth diversity
systems of various orders. As before the iink we consider has
horizon angles of .25° at both the transmitter and the
receiver. This results in a minimum scattering angle of 1.20°,
The antenna apertures are square and measure 3 meters along each
side, so the half-power beamwidth of the ~rrays is 1.0°, Table
4-6 presents the SNR's required to make the BER bound % = 10—4
for various orders of diversity. The diversity systems are spec-
ified by the number of beams in azimuth and the number in eleva-
tion. The bound derived in Section 3.2 is included for compari-
son. Note that the gains achieved by the system are within a few
dB of the bound for small n. The larger the aperture the closer
the results will approach the bourid.

Different systems which have the same order of diversity
are compared. For example, if four beams are desired then a

square set (two beams in azimuth and two in elevaticn) or a set
of four beams with different elevations but the same azimuth may
be used. In generzl more than two beams in azimuth result in
little gain. For instance a 6th order system with three beams in

4-17
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Table 4-6

Required SNR for BER Bound ¢

10~4

(Minimum Scattering Angle 1.2°, Antennas 3m by 3m.
Beamwidth 1°, Square Aperture)

Lower Bound on

Order of No. of Beams . Nc. of Beams Required'! Required SNR
Diversity in Elevation in Azimuth i SNR | (c£, Tabie 2-1)
1% 1 : 1 | 40.0 40.0
2% 2 : 1 I 23,3 20.0
2 1 2 1 23.5 20.0
3 3 1 ,19.3 13.1
1 | 3 L 20.4 13.1
4 1 18,1 9.5
4% ; 2 2 15,4 9.5
4 ; 1 4 20.0 9.5
6+ ! 3 2 13.6 5.6
6 2 3 14.3 5.6
g* 4 2 13,0 3.4
9* 3 3 i2.5 2.5
12* 4 3 12,0 .6

* Optimum Diversity Confiéuration
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azirmuth and two in elevation is only 1.1 dB better than a 4th
order system with two beams in both azimuth and elevation.

We next consider the effect of antenna aperture size on
diversity gains. Table 4-7 contains the SNR required for the
same link as above for sguare arrays with dimensions 1.5 m or 6m.
In all cases the transmit and receive antennas are the same size.
The values for 3m arrays are included for comparison. The di-
versity gains are not greatly affected. In general the larger
antenna has better diversity gain but only by one or two dB.
These differences are much smaller than the changes in path loss
and antenna gain. The path loss is csmaller for small antennas
due to a decrease in the aperture-to-medium coupling loss, but
this is more than offset by the decrease in antenna gain. (These
values are also presented in Table 2-4.,)

The transmitter and receiver horizon angles also affect
diversity gains. In general diversity gain decreases as the
horizon angle decreases, This effect is due to the scattered
power dependence on the scatter angle o. As © decreases, a
larger fraction of the received power comes from the lowest sec-
tion of the common volume. This effect is illustrated in Table
4-8, Minimum scattering angles of .7° and 1.7° are compared with
the original case of 1.2° for 3m antennas. The diversity gain is
less for small horizon angles, but this effect is small compared
to the decrease in path loss. Figure 4-5 graphs these points
with values computed for 1.5m and 6m antennas.

4,4 DECREASED COMPLEXITY USING SUBARRAYS

A diversity system with beams derived from the element out-
puts may be too complex. If the rrray has N elements and m beams
are desired then mN phase shifts are required if m is less than
logoN. (All N beams may be formed with NlogoN phase shifts.) A
great reduction in the number of phase shifts may be aqhieved by

4-19
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Table 4-~7

Compariscn of systems which employ square antennas

of different sizes (1l.5m,

3m, 6m)

Half Power Beamwidths and Path Losses

Antenna Size

1.5m 3m 6m
Half Power Beamwidth 2° 1° 0.5°
Boresight Antenna Gain 39,0 dB 45,0 dB 51.0 dB
Path Loss 259.1 4B 262.6 dB 267,4 dB
b, Diversity Gains
Order of Elevation Azimuth Required SNR
Diversity Beams Beams 1.5m 3m 6m
1 1 1 40,0 40.0 40,0
2 2 1 24.5 23.3 22.3
2 1 2 24.3 23.5 23.0
3 3 1 21,5 19.3 17.5
4 2 2 17,2 15,4 14.2
6 3 2 15,9 13.6 11.8
8 4 2 15,5 13,0 10.8

4-20




Table 4-8

Comparison of system performance on links with different minimum

S 2 7
! ¥

scattering angles. (100 km Link, Minimum Scattering Angles .7°¢,
1,2, 1,7°, Xatenna Size 3m).
a., Path Losses
Scattering Angle
.70 1.20 1070
Path Loss 254,65 dB 262.6 dB 268.1 dB
b. Diversity Performance
Order of Elevation Azimuth Required SNR
Diversity Beams Beams .7° 1,2° 1.7°
1 1 1 40,0 40.0 40.0
2 2 1 24,3 23,3 22.6
2 1 2 24,1 23.5 23.2
3 3 1 21.1 19.3 18.3
4 2 2 16.8 15,4 14.6
6 3 2 15.4 13.6 12,5
8 4 2 15,0 13,0 11.9
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subdivision of the array. The element outputs within each sub-
array are summed and phase shifts applied to each subarray. The
number of subdivisions in a given dimension must be at least as
large as the number of beams desired. For instance, if three
beams with different boresight elevations are desired then the
array must be divided intc three sections which are spaced ve: -
tically.

Subdivision of the array causes performance to degrade
because the element outputs within each subarray are not exactly
in phase. Hence when they are summed some loss in power occurs.
This decreases the boresight gain of the beams which are not per-
pendicular to the array. In Figure 4-6 this effect is illus-
trated for a 3 beam system. Note that the main lobes of the
beams formed by subarrays have lower gain than those formed by
the array elements. The sidelobes of the gain patterns formed
from subarrays are much higher than those formed by the elements.
This effect is due to the small number of subarrays. These side-
lobes may make a svstem employing subarkays more susceptibie to
jamming. So greater subdivisicn of the array or tapering of the
subarrays may be important to improve ECCM capabilities,

For most of the results here we consider the diversity per-
formance of arrays which are not subdivided, 1In this way the

benefit of diversity alone is determined without effects due to
implementation.

The performance of systems employing subdivision of the re-
ceiver array has been evaluated for 3m x 3m antennas with trans-
mitter and receiver horizon angles of .25°. For each system the
arrays are divided into the minimum number of subarrays permis-
sible for the beams desired.” The results are presented in Table
4-9 along with the values for undivided arrays. The path loss is
determined by the case without diversity so it is the same for
divided and undivided array systems. As expected the subdivided
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arrays do not perform as well., However the performance loss is
very small relative to the reduction in complexity. If a more
complex system is permissible then a greater improvement in re-
quired SNR results from increasing the order of diversity rather
than increasing the number of subarrays.

4,5 EFFECTS OF ELEVATION ANGLES

The results of previous sections are derived under the as-
sumption that the antenna elevation angles above the horizon are
chosen optimally. This is not possible in practice since atmos-
pheric changes affect the radio horizon, and in addition small
pertubations are present due to wind and other factors. The ro-
bustness of a system against these problems may be examined by
varying the elevation angle. Figure 4-7 is a graph of required
SNR vs., elevation angle for some different diversity systems.
(The SNR is that which would be observed by a single diversity
system with the optimum elevation.) The elevation angles of the
transmitter and receiver antennas vary together. This data is
for a 100 km link, 6m by 6m antennas and 1.7° scattering angle.

The systems degrade in roughly the same manner as the ele-
vation angle varies about its optimum point. Systems with more
elevation beams are affected somewhat less, e.g., a pertubation
of + .2° degrades a system with three azimuth beams by 1.5 dB and
the degradation for three elevation beams is only 1dB, Overall

this effect is small compared to the diversity gains.

4,6 EFFECT OF APERTURE SHAPE

The common volume is affaected by the shapes of the antenna
beams, and these are determined by the shapes of the antenna
apertures. To determine the significance of this effect we have
determined the performance of a number of rectangular apertures
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witn different horizontal and vertical cimensions. The area of
the arrays is £fixed, sc the boresight gain is the same for all
cases, We define an asymmetry parameter

()
v = 1og —_—
Ly,

where L, and L, are the vertical and horizontal array dimensions
of the transmit and receive antennas. (The area, LyL,, is
fixed.)

As L, increases the antenna beams become narrow in eleva-
tion and broad in azimuth. The two factors which determine the
best ratio of L, to L, are the scattering angle and the size of
the common volume. As the beam becomes narrow the common volume
increases. For example if L, is doub:ied and L, halved for both
antennas then the area of the common volume which intersects the
great circle plane increases by a factor of four. The extent of
the common volume in azimuth (i.e., perpendicular to the great
circle plane) is only halved so the common volume increases by a
factor of two. This effect is offset because the additional
common volume elements have larger scattering angles and the com-
mon volume integral includes a factor of 0~11/3 yhere o is the
scattering angle. The scattering angle does not increase as
rapidly with increasing azimuth angles.

Figure 4-8 illustrates the effect of asymmetry on the re-
quired SNR (for ¢g = 10'4) for a number of diversity systems.
The link distance is 100 km, the antennas have areas of 36 m2,
and the scattering angle is 1.7°. The receiver and transmitter
antennas have the same shape. The SNR here is that which would
be measured by a single diversity system employing a square

array. The effect of asymmetry is relatively small compared with
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diversity gains., Systems with many elevation beams tend to per-
form better with wide azimuth beams (positive asymmetry), whereas
azimuth diversity systems are better with narrow azimuth beams.
In both cases the atmospheric volume illuminated by the various
receiver beams is roughly square.

If we consider the systems in terms of the largest sub-

arrays which give the same basic beam patterns (under a Butler

matrix transformation) then the resultant subarrays are néarly
square. Thus, an optimum diversity system should be formed by
arranging the desired number of square subarrays.
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SECTION 5
COMPARISON OF DIVERSITY COMBINERS

5.1 INTRODUCTION

Thus far we have compared diversity systems under the
assumption that the signals on the diversity branches are com-
bined optimally wusing a maximal-ratio combiner. It is of
interest to examine the effect of sub-optimal combining tech-
niques on diversity gains both to allow comparison with existing
systems and also to see if less complex combiners may be used
with little loss in performance. We assume that the signals on
the diversity branches are independent and have equal power.
This assumption is conservative since with unequal powers on
diversity ports the difference between various combining tech-
niques is generally less,

As previously mentioned the optimal combiner is a maximal-
ratio combiner. This combiner multiplies each fading signal by
its complex conjugate so the signals are added in-phase and the
larger ones have bigger weights. One sub-optimal combiner is
selection diversity where the strongest of the N fading signals
is selected. Another sub-optimal combiner selects the strongest
K of the N signals and combines these using a maximal-ratio com-
biner. The final method which we consider is the equal-gain com-
biner where the signals are added in-phase but with the same
gains.

For the first three combiners we compute the exact prob-
ability of error expression (DPSK modulation). Note that selec-
tion diversity and maximal ratio combining are special cases of
"K of N" combining, with K=1 and K=N. The exact performance of
the equal gain combiner is difficult to compute. However, a
simple approximation may be derived for low error rates.

5-1




b
o’

ia |
RS

The results of these calculations are presented in Table
5-1 for a bit-error rate of 1074, Selection (or switch) diver-
sity is 1.5 dB worse than maximal-ratio combining for dual diver-
sity and is 4.5 dB worse at sixth order. This is a significant
loss since the difference between an optimal fourth order system
and an optimal sixth order system is only 3.7 dB. Choosing the
pest 2 of N is about 2 or 2.5 dB better than selection diversity
so for a fourth order system choosing the best 2 is only 1.0 dB
worse than combining all four. Similarly if the best 4 of 8
ports are combined the required SNR is only 1 dB above the
optimum. Equal gain combining performs almost as well as maximal
ratio combining. Even at 12th order diversity the difference 1is
only 1.2 dB. This is an important result since phased arrays
already have variable phase shifters in order to steer the

beam, So an equal gain combiner might be significantly simpler
to implement with a phased array.

5.2 MAXIMAL RATIO DIVERSITY COMBINING

The output of any combiner is a linear combination of the N
diversity signals, so that the signal-to-noise ratio at the out-
put of the combiner is of the form

where A; is the amplitude of the i'th signal, ¢; is its phase,

nf is the average noise power in the i'th diversity branch and
W; is a proportionality constant (weight) to be determined so as
to maximize op, It should be clear that for any choice of the
magnitude of the W;'s; p will be maximum when all N signals are
comhbined in phase, Furthermore from the Schwartz inequality we
know that
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with equality occurring when w, = k Ai/ng where k is an arbitrary
constant. Therefore the signal-to-noise ratio at the output of
the combiner is maximum when the W; are chosen as indicated above

and the optimum signal-to-noise ratio Popt is given by

a2 N
o} = V 1 = 2 0.
opt i 2 i=1 1
ny

i.e,, it is the sum of the SNR in each diversity branch. Since
the p; are independent and exponentially distributed, the prob-
ability density of Popt is given by

-p

t/e
- 1 poEt N-1 ¢ ©P o
=5 =5) w1 ¢ 0 ¢ Popr <7

5.3 TRADEOFFS BETWEEN MAXIMAL-RATIO COMBINING AND SWITCH

DIVERSITY

Consider a system with N diversity ports. The optimum
receiver does maximal-ratio combining of all of the N outputs.
One suboptimal combining method is to take the best K (K<N) of
the diversity ports and combine these optimally. The best subset
of the N ports changes as the channel fades. We assume here that
the fading process is slow relative to the time necessary to
select the best K ports. In an actual implementation the
receiver might consist of K receivers which may be connectegd tg

any of the N ports using RF switching, and a measurement receiveyr
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which examines the power on the other ports. When the power on
one of the unused ports becomes greater than the smallest of the

K currently being combined, the receiver on the lowest power port

is switched over to the new port. The weight used for the new

port in the maximal~ratio combiner is initially zero so that it
adapts slowly without affecting the system performance.

In this subsection we compare the performance of systems
for various N and K. We assume that the N diversity ports have
equal power and fade indepeandently. The delay spread of the
channel is assumed to be small relative to the system signaling

interval so that the signals are well described by a Rayleigh
fading model,.

The modulation is assumed to be DPSK so the error rate is

where a is the signal-to-noise ratio. The distribution of the
SNR thus determines the average bit-error-rate and the outage

probability for any given theshold. The SNR distribution may be
derived as follows.

The system SNR is simply the sum of the K largest powers of
the N diversity branches (maximal-ratio combining). The power on
each diversity branch is exponentially distributed. Let {24,
i=1l, ..., N} be the powers on the N branches. The (N-K)th smal-

lest of the Z; is denoted Z(N~K) (that is, the largest one not
combined). It has the density function [14)]

5-5
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and the cumulative distribution function
Q) = 1 ()(1-e%)i(e¥ )7
N-K i=N-k *

This is the (N-K)th order statistic. (For simplicity we assume
that the 2; have unit power., They may be scaled later by their
actual power.) Since the Z; are exponentially distributed the

difference between one of the K largest and Z(N~K) is also ex-
ponentially distributed with unit variance and is independent of

e gt ¥ e e A4 e

Z(n-g)+ Thus, the sum of the K largest has the same distribution
as

where the Y; are independent unit-variance exponentially distri-

buted random variables. The probability density function of

y 2

i

Y., is
1 1

Il e~ R

K-1

_ X -X
Py(x) = mg=y7 ©

so the density of 2 is the convolution of gy.x and py: that is




pws o e g
e R G T B T iR

= " 2 A Stk
S v r o St T, G
MRt ay s Ity e A Tons, s it LA PN & A eden P e il v2 m

s

? L 7 ‘ < N ‘
5 xﬁ; :1
g 90
or
= a .
3 . Ey, gt = /0 dy-g (g oy (a=x) dx.
' , 5.3.1 Average Bit-Error-Rate
i i The average bit-error-rate is
5 %\ S
£
f 4 B *®
ABER = [ P[SNR=a]P[Error|SNR=a] da.
j“f‘ 4
k ! = For DPSK, we have
i
el P[Error|SNR=a] = —%e"“,
2l
il
?1 s ' where ¢ is the average SNR per diversity branch, and
| :
- P[SNR=qa] = Eg,x (@ -
,, So
%
’§\
“‘ R Qo
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where the last step follows by interchanging the order of inte-
gration., These integrals may be computed directly. The result

15

1 1 1 1 1
ABER(N,K,0) = = . . coe -,
2 K Ko Ko Ko
(o+l) I+gH 133 145

The loss due to combining the best K of N ports relative to
cembining all N ports may be seen directly from this formula.
The slope of the BER for large o is the same since the denomin-
ator increases as oY, The first K factors in the expression are
the same as those for maximal-ratio-combining (N=K). The factors
after these K have their SNRs reduced by increasing amounts. The
(K+1l)st one is reduced by Eéf . the next by K%? . etc., For large
SNR the reguired increase in SNR for the same BER if we combine

only K of the ports is approximately

RN (ML QN-Ky1/N

P

Vo

We have computed the required input SNR (i.e., the required o) to
give an ABER of 10"% for a number of different N and K. The
results are presented in Table 5~-2 and Figure 5-1., The results
show that a significant reduction in complexity may be realized
with only a small loss in performance., For instance, the re-
quired SNR for 8th order asaximal~ratio combining (N=8, K=8) is
2.8 dB, If the hest 4 of the 8 ports are used (N=8, K=4) then
the required SHNR increases by only 1 dB, These factors are
almost exactly the same as those given by the asymptotic formula
above for large SNR.
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The resul.s also show that haximal ratio combining of a few
of the ports is significantly better than switch diversity. A
4th order system with K=2 performs as well as a 6th order switch
diversity system (K=1). Also, a 5th order system with K=2 per-
forms better than a 4th order maximal-ratio combining system.

If the cost of a system is proportional to (N+K) then a
combination of switch diversity and maximal-ratio combining is
the most economical solution. If, on the other hand, the cost of
diversity branches (antennas, etc.) is significantly greater than
the down converters and combiner, i.e., cost proportional to
N+yK, where y is small, then maximal-ratio combining should be
used. If the cost imbalance is reversed then switch diversity is
the most economical solution. In general, if the cost goes as
N+Ky then the best system may be chosen by comparing the required
SNR's for various N and K which have the same cost. For example,
if the cost is N+K, then for cost=6, we may choose [N=5, K=1],
[N=4, K=2], or [N=3, K=3]. Since the required SNR's are 1.0.6,
9.7, and 12.1 respectively (from Table 5-2), we see that [N=4,
K=2] is best. .

5.3.2 Outage Probability Calculation

The outage probability, that is, the probability that the
SNR falls below a threshold, is determined by the cumulative dis-
tribution of the SNR, This cumulative distribution is most
easily derived by convolving the cumulative distribution of
2 (N-K) with the density of Y. That is,

F 2 plz<a]

N, k(@

QN_K(%)pY(a—x)dx.

n
O
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The result of this integral is

(e 1 (Hloluik,i,3,a)

() = |
F a) =
N, K - iLo

1=

where 5
’ K-1 K-1-4
-ay ~K _ a .
e v w1 ¢ Y0
2=0 (K-1-8)ty
. - A
G(N,K,i,5,0a) =< .
. %T o i y=0
Kt
and
A K-N+i-j
Y = K .

This expression may be used directly to calculate outage
probabilities for any given threshold. If the threshold is A and
the average SNR on each diversity branch is ¢ then the outage
probability is FN'K(%). The threshold is divided by o because
FN, K is derived assuming unit variance exponential random vari-
ables.

5.4 EQUAL GAIN DIVERSITY COMBINING

The SNR at the output of an equal gain combiner is -

= 5-12
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where A; 1is the amplitude of the i-th signal and n2 is the
average noise power. The amplitude A; is Rayleigh distributed,
i.e., its density is

2
Py (x) = 2x o=x7/a

a ’
1

where a/n2 is the SNR on each diversity branch. If

™~
>

Il g2
>

then for small arguments the density of 2 is

q N 2N-1
. pylx) » =X |
t (28-1)! a

Similarly if W is the output of a maximal ratio combiner we have

N-1
X

DuX) = ——— "X/
{(N-1)! «a

AU A G Y W e D

xN-—l

for small x.

The outage probability, i.e., the probability that the gain

=
falls below a fixed level py) for the equal gain combiner is
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P[z < N nzpo]

n2p0
pz(x)dx

2N (N n2 o )N
N L]

(2N)! «a

Similarly, for the maximal-ratio combiner

(00 )"

p B e,
out aN Nt

So the ratio of the equal-gain combiner input SNR's (a/nz) to
that of the maximal-ratio combiner is

Qa

BGC . 28 (yyyIN
Wre  (2n) 1N T

Since this ratio does not depend on the threshold p; the same
ratio applies if the performance criterion is the average bit-
error rate.

As a check on the accuracy of this approximation the same
procedure may be applied to selection diversity. With selection
diversity thée output SNR is
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so we have

o
SEL (Nl)l/N

MRC

Table 5-3 presents the approximate increase in required SNR
for both equal-gain and selection combiners at low error rates
and the actual increase for selection combiners at BER = 1074
from the previous section. The equal-gain combiner performs only
slightly worse than the maximal-ratio combiner. Selection diver-
sity is significantly worse than equal-gain combining. Although
these results are for asymptotically low error rates the actual
values for BER = ,0001 are within .2 dB for N < 5 and within

.5 dB for N < 12, So even at an error rate of .0001 the approxi-
mation is good.
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SECTION 6
EFFECTS OF TIME-VARYING PARAMETERS

We show in this section that wideband systems are not

severely limited by typical troposcatter fade rates.
caused by

The loss
inaccurate channel measurements can be held to less

than 0.5 dB for a 1 Mbps system. In Section 6.3,

the optimum use
of diversity on a fading

channel is derived and it is shown that
diversities with SNR below a critical value, ¢,, are not used by

the optimum combiner; ¢, depends on data rate, char--~1 fade rate,
and SNR.

6.1 FADE RATE LIMITATION ON CHANNEL GAIN MEASUREMENT

Thus far we have assumed that the channel gains vary so
slowly that they may be measured exactly by the receiver. In
this section we instead assume that estimates of the channel

gains are made by averaging K reference pulses, The number K is

deteriined by the channel coherence time, the data rate, and the
percentage of reference pulses.

We consider a combiner which weights each of the diversity

branch outputs by the conjugate of its estimated channel gain.

This combiner is not optimum, since the channel gains are not

known exactly, but as K becomes large its performance approaches
that of a maximal-ratio combiner.

In Appendix C, an upper bound ¢y on the error rate for this
combiner is shown to be

-1
oo = |E(K)Iy + g(KIMg/N,|




Aci iy e
¢ 3

where Mg is the covariance matrix of the channel gains,

K+1+1/K

EK) = woaik

9(K) = 1377

[l

Iy (NXN) identity matrix,

and Ng is the noise spectral density.
Equivalently we may write

[£(k) + g(r)A, /Ny ]

where {Ai} are the eigenvalues of Mg. As K increases f(K) and

g(K) approach 1, and the BER bound is the same as that for maxi-
mal-ratio combining.

6.2 PERFORMANCE DEGRADATION

Since the formulas for the performance criterion include
the effective number of reference pulses K used in the measure-

ment, it is helpful to have quantitative estimates of this
number,

Typical troposcatter circuits can be assumed to communicate
at least 1 Megabit/second in the absence of aJ protection. Data
rates as high as 12 Mbit/sec are seen on some circuits, A trans-
mission using 10% of the transmitted bits for reference is a
plausible wvalue, although possibly slightly excessive. This
vields a rate of transmission of reference pulses of at least
10° bits/second for a 1 Mbit/sec data rate.
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The number of reference pulses must be equivalent to the
coherence time of the channel, i.e., the time interval over which
the gains G, (fading) remain constant. With typical tropo-
scatter fade rates of a few Hz, a measurement bandwidth of a few
tens of Hz is more than adequate to track the fading. A measure-
ment duration of 1072 seconds is therefore reasonable in the ab-
sence of airplane flutter or other high fluctuation rate ef-
fects. We conclude that if measurements can be made continuously
on each port of the antenna system, then

K = 103

is reasonable for a 1 Mbit/sec system,

The value K = 103 in the formulas for the performance
criterion will obviously give superb performance even with a very
large number of adaptively controlled ports. We can overbound
$9 by

< b (14 N, )Y
¢0 n=1 n’ "0 *

For K=1000 a value of N=100 only results in a 10% increase in
the error probability bound, and this is negligibly small. The
weakness in this line of argument, however, lies in the implicit
assumption that it is possible to measure the reference signal on
each antenna port continuously and with the full SNR available
from that port. This implicit assumption is only valid if there
is separate RF amplification for every antenna port.

If it

antenna ports, it is probably necessary tc assume that a single

fo
n

desired to achieve adaptation on a large number of

"measurement receiver" is time-multiplexed among the outputs of
directional couplers connected to the ports. If we make a real-
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istic assumption that 10 4B couplers are used in this configura-
tlon, then the effective value of K is reduced by 10 because of
the coupler loss. The multiplexing of the measurement among N
ports then results in a further division of K by N, and the
result is that we must use the value

K = 100/N

for the multiplexed measurement. If we then rewrite the bound

n N -1
o9 < (1+1/K) ngl (1+xn/N0)

to display its dependence on N, we have

n N -1
% < (1+N/100) nfl (1+xn/N0) .

Let o be the factor by which the eigenvalues must be
increased to maintain the same error rate bound. Then we have

N
-1 N ~1
l(1+kn/N0) = (1+8/100) n31(1+oxn/no)

N=2Z2

n

If A,/Ng is the same for all n, then

o w 1+(N/100)(I+N0/A) .

6-4
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If A Np=1 (0 dB input SNR per diversity branch) then with &th
order diversity this is a loss of .5 dB, and even with 25th order
diversity the loss is only 1.8 dB, These losses are small
compared to the diversity gains. If A,/Ng is larger then the
losses are even less., Significant losses occur only -for

. N>min(l,-£a)-§6
where
b W = data rate
B = Doppler spread
) = duty factor for reference and measurement

We have assumed that all eigenvalues are the same, but if scme

are very small then the effective order of diversity is smaller
than N and so the order of the system should be reduced. We
conclude that channel measurement inaccuracy need not be a severe
problem on most troposcatter systems. The next section shows
that advanced processing can further reduce the 1limitations
imposed by the channel fading.

6.3 OPTIMUM COMBINING WITH MEASUREMENT INACCURACIES

It is now shown with an optimum orthogonalizing transforma-
tion that only some of the diversity branches (eigenvalue) should
be used by the optimum combiner. An example of the number of re-
quired measurements is evaluated.

6.3.1 Accessibility of Independent Fading Components

The following discussion is in the nature of determining

7

theoretical limitations rather than defining practical implemen-

tations.
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The basic scheme assumes that we have access to noisy fad-
ing replicas of the transmitted signal in the form

Salt) = Gult)z(k) + v(t)

either from the original array ports or from the output ports of
a fixed linear transformation on the array ports. From these
replicas we form the diversity-~combined output

C(t) = £ W (t) S, (t)

where the (W, (t)} are adaptively computed from known reference
pulses imbedded in z(t) .

In the previous section it was assumed that the measure-
ments were performed on the individual ({S,(t)} , possibly by a
multiplexed measurement. We also assumed that this might be done
using an auxiliary measurement receiver that was connected to,
say, directional couplers on each of the ports. We now describe
a way in which the entire measurement procedure can theoretically

be improved, and a consequent improvement that can be achieved in
the diversity combining.

First of all, we observe that even with a fairly noisy mea-
surement it is possible to "measure" the covariance matrix of the
fading, which we recall was defined as

Mg = E(GG') .

Although this covariance matrix is not fixed for all time, its
variations will tend to be at the slow rate associated with
changing atmospheric conditions rather than the several Hz fluc~

b 4oy ba
“

3 r -~
“Uei

ate of G . We therefore can theoretically compute the
nitary matrix Q which diagonalizes Mg

ct

- e
1

1§ r
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Q'MGQ=A.

We next observe that since the diversity combining network
can form C(t) as a weighted combination of the §S,(t) , it can
theoretically use different weights during the reference pulses,
and form a linear combination

c(t) = 3§ wo S (t) .
n

In fact, it can use N different sets of weights and
form N different linear combinations during N successive mea-
surements to create a set of measurable signals

sm(t) = E pmnsn(t)

which can be expressed more compactly in matrix form as

s(t) = P S(t)

where P is the (NxN) matrix with entries {Pmn} . Now, the
cnvariance matrix of s is

Mg = B(ss')
= E(P S s'p')

i
]|

~(Tat \n
B85 P

= P(Mg* Ig)p' .




Consequently, if we choose P to be the previously calculated
unitary wmatrix Q ,

P = Q P'=0Q =0 ,

so that we can display the independently fading components of
S(t} 1in the measurement.

We note that this structure also implies that it is un-
necessary to use an auxiliary receiver for measurement with its
directional coupler loss., [Nevertheless it might be desirable to

use such an apprcach from practical considerations.,]

6.3.2 Improved Diversity Combining for Finite Measurement Time

Appendix D defines the performance criterion

% = Minimum ¢(t)
t >0
where
o(t) = 1/1 Dn(t)
n
with
_ _ 2
D (t) =1+ 2) ¢t NG[An(1+1/K) + No/KJE”

We pointed out that, in general, the maximum of each D,(t)
occurs at a different value of t and therefore it is not pos-
sible to evaluate the minimum explicitly.

6-8




This difficulty is a reflection of the fact that with noisy
measurements, the fading components with very low SNR should be
partially or completely suppressed in the combining algorithm.
; : In the original problem formulation this was not possible because
!}

we didn't have access to these components. With the conceptual
rg ‘ modification used here this restriction no longer applies, and it

‘ can be assumed that an additional (optimum) weighting is applied
to the coherently weighted components before combining them.
With that change, we can write the performance criterion as

¢g = 1/1 [Maximum D _(t)]
. . n 0<t
f to obtain
1/n 1 °n ]
¢q = 1/M [1 +
0 n I+1/K + 1/(Kpnj
where
h * }‘n/NO °

The expression can also be written as

1 + (l+K)pn

¢0= )

2 .
n 1 + (1+K)pn + Kpn

6.3.3 Apportionment of Measurement Times

‘ i B ey e L e O YOI AR, ™ AR SHEIET 0 SR e PR
¥

The preceding results assume that the same measurement time
is used for tracking each independently fading component. That
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is, a fixed value of K 1is used for all components. The next
level of generalization is to allow different values of K for
each fading component. This leads to the performance criterion

N

1+ (14K Je.

% = 1 7 -
n 1+ (1+Kn)pn + Koo

This immediately suggests the variational problem of choosing

the K, to minimize ¢35 given a constraint on the total mea-

surement time. The solution to this problem is

0 ' otherwise

where the value of pp 1s determined by the constraint. With

this dependence of Kn on p, we then have
1 1
K = 1 [,
TOTAL . p p
n.pn>pA A n

which implicitly defines ppr and the diversity branches that
should be included. The error bound is

1 + N

. P
n.pn>gA n
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"6.3.4 Error Probability in Terms of the Performance Criterion

The performance criterion we are using is a bound on the
saddle-point integral that defines the error probability. Al-
though there is not a one-to-one relation between the values of
the bound and the exact error probability, it is possible to ar-
rive at approximate relations that are sufficiently accurate for

most system performance predictions. The most useful approxima-
tion of this sort is

%0 ‘
[4+1Tb]1/2 + [nb]l/2

Prob(error) =

: where
2 _, .

b b = 3 s, L" (sq)

:

¥

i and

| 4
- é.:

zx

g sqg = value of s that minimizes ¢(s) ,

- L(s) = log[ée(s)] .

Now, in many circumstances it is sufficiently accurate to approx-

imate the logarithm of the moment-generating function by a para-
bola:
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1s + C2~ .

L(s) =~ <=2C
The minimum of this is at
SO = Cl/C2 .

where

Since

L"(sg) = 2C,

we then have

b = % (-¢;/¢,)? (2¢,)

2
= €7/,

= —L(So )

—log(¢0) .
This leads to the approximation

¢
P~ 0

© " Tacrlog (99) 1% + [-log(4g) 172
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SECTION 7
DIVERSITY PERFORMANCE OF WIDEBAND SYSTEMS

INTRODUCTION

Angle diversity improves troposcatter system performance
because the signals from different sections of the common volume
fade independently. The difference in angle of arrival of these
signals makes different beams of an angle diversity antenna some-
what uncorrelated.

Similarly, the spatial separation of scatterers leads to
delay differences in signals received from the common volume. If
the signals at different delays could be added coherently, then
great gains in SNR could be achieved. Hence there is a potential
for diversity to improée system performance. Such diversity is
often called implicit since it is implicit in the received wave-
form., The delay spreads seen on most troposcatter links
typically range from 30 to 200 nsec. This corresponds to coher-
ence bandwidths of 5 to 30 MHz. Frequencies separated by more
than the coherence bandwidth fade independently while frequencies
separated by an amount less than the coherence bandwidth fade in
phase (correlated fading). That is, the implicit diversity in
the channel may not be exploited if the signal bandwidth is much
less than the channel coherence bandwidth because all frequency
components in the signal will fade in a correlated manner. This
is analogous to angle diversity systems, where very little diver-
sity gain is possible if the antenna bheamwidth is very large.

If the transmitted signal is wideband then it is possible
to improve performance by utilization of the implicit channel
diversity. A tapped delay line combiner may be used to ac-
complish this task. It forms the weighted sum of signals at
various delays. The weights are chosen adaptively in the same

7-1
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manner as the weights of a maximal-ratio combiner are adjusted to

combine the outputs of different antenna ports.

STy o | AT
w0 . oAl

Because of the implicit diversity, a wideband system with

equalization may perform better than a narrowband system. How-

Lol

ever, the channel also introduces distortion (intersymbol inter-
ference) which degrades the SNR relative to that of a narrowband
system., Hence equalization is necessary in many cases to remove

,n
e SRR

POV bt S
L e EE

distortion. Since we are chiefly interested in diversity gains,
we do not consider the problem of removing distortion. In par-
N ticular, for the digital systems considered here we do not con- -
sider intersymbol interference (ISI). Although it may be diffi-

7a' cult to remove ISI, it is possible via Viterbi decoding so this
: assumption is not unreasonable. All of the results which are
presented here are for the one-shot case; that is, only a single
pulse is transmitted.

One key difference between combining the signals £rom dif-
ferent antenna ports and combining delayed versions of the same
signal is that in the former case the noise components are in-
dependent whereas in the latter case noise is correlated. The
autocorrelation function of the noise is determined by the
receiver filter. This generally reduces the effectiveness of
delay combining since it is likely that the noise on two delay

taps can be large at the same time.

To illustrate the effectiveness of implicit diversity, we

present in Figure 7-1 the SNR gains of implicit diversity for
various signal bandwidths and delay combiners. The results are
graphed vs. o¢/T for various numbers of taps, where o is the

channel delay spread, and T is the duration of the transmitted
symbol. The SNR gain is relative to a narrowband system on the

same link.

~ As o/T increases the implicit diversity gains increase

initially, but then decrease. The initial benefit is due to

-
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increased diversity. Eventually, however, the loss of signal
power due to the spreading of the transmitted symbol offsets the
diversity gain and the SNR gain decreases. The gain begins to
decrease at higher o/T as the number of taps increases.

The link used as an example is 100 km long and has a min-
imum scatter angle of 1.7°, The receiver and transmitter antenna
apertures are 3 m, square and are aimed one quarter beamwidth
above the horizon. This results in a delay profile with a 2g¢
delay spread of 56 nsec. The shape of the channel delay profile
is insensitive to variations in the link parameters. The major
effect of changing link distance or scatter angle is to change
the delay spread. If the pulse durations are changed in a sim-
ilar manner then the same results are observed. So o¢/T, the
ratio of the pulse duration to the channel delay spread deter-
mines the henefit of diversity for a particular system and link.

In Section 7.1 we discuss the wideband troposcatter channel
model. In Section 7.2, the wideband system model and the perfor-
mance measure are considered. Section 7.3 contains calculated
results for delay combining of systems with and without explicit
diversity.

The results may be summarized as follows: Equalization
yields significant gains for wideband systems without diversity.
(We call a system "wideband" if the pulse duration is not much
greater than the channel delay spread.) For wideband systems
with diversity a two-tap delay combiner (i.e., "dual implicit-
diversity") can improve performance significantly. In fact a
dual angle diversity system with two delay taps on each port per-
forms nearly as well as a fourth-order angle diversity system,
In general, more than two taps are of little help for wideband

4
: b la -2
il

it diversity. While implicit diversity is

i b amme  wed
Q_x 2 wWliino w L
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3

explic
helpful in many situations, the gains are not as large as those
for angle diversity.




1 7.1 TROPOSCATTER CHANNEL MODEL FOR WIDEBAND SIGNALS

In a troposcatter system the received signal is the sum of
a large number of scattered signals. These scattered signals
arrive at the receiver with small relative delays, so the channel
impulse response is spread over some time interval. For a nar-
rowband system the transmitted waveform changes very little over
this interval so the channel statistics are given by Rayleigh
fading. The transmitted waveform changes slowly enough that the
channel impulse response does not affect the shape of the wave-
form but only its amplitude. With wideband signals, however, the
relative delays of the scattered signals must be taken into
account., The symbol duration is short enough that the channel
causes significant distortion,

Ccasider a system without explicit diversity. If s(t) is
the transmitted signal then the received signal r(t) is

r(t) = [ s(1)h(t-1)dT

- 00

where the channel impulse response, h(t), is a zero-mean random
process with complex Gaussian statistics. The impulse response
at two different times is independent, and it is non~zero only in

an interval ([0,7,], where 7, is the maximum difference in delays

m
of signals from the common volume. So the channel statistics are

completely determined by the second moment of h(t)
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(The real and imaginary parts of h(t) are independent and iden-
tically distributed.) The function Q(t) specifies the incremen-
tal power which arrives in the time interval {[t,t+dt], hence it
is called the delay-power profile. The TROPO computer program
computes a discrete approximation to Q(t) by determining the
relative delay of each element of the common volume and adding
the signal from the element to a particular delay cell of the
profile.

In Figure 7-2a an example of a delay-power profile is
given. This profile is for a 100 km link with a 1.7° scattering
angle and has 20 delay spread of 56 nsec. Figure 7-2b and 7-2c¢
are possible impulse responses which correspond to this delay
profile. These curves are actually discrete approximations to
the channel impulse response, but for transmitted signals which
vary little from sample to sample the approximation is adequate
to characterize the channel. Each point of the impulse response
curves is a Gaussian random variable with variance given by the
value of the delay profile,.

Next, consider systems with N explicit diversity ports., If
rr(t) is the k-th received signal, then

©

r,(t) = [ s(tih (t-1)dt

o~ 00

where hyp(t-t), the impulse response of the channel between the
transmitter and the k-th receiver, is a complex Gaussian process.
The impulse responses hy(7t) and hy(t) are correlated for all k

hy(t) and hy(t) are independent for rt#t, So the channel statis-
tics are specified by the second order statistics of
{h (£) k=1,...8},
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Figure 7-2 Troposcatter Channel Response; (a) delay-power profile,

(b) and (c) Possible Impulse Responses
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E[h,( Dhi(t) ] = §(t-1)Q, (&)

If k=2 we refer to ka(-) as a delay-power profile, for k#4& it is
called a cross correlation profile. Note that

ka( 1) = Q*;Lk( 1)

where x* denotes the conjugate of a complex number x.

On space diversity paths the crosscorrelation Qg (1) can
depend on frequency. This dependence can be ignored for most
practical systems where the fractional bandwidth is significantly
smaller than the ratio of aperture size to aperture separation,

7.2 WIDEBAND SYSTEM DESCRIPTION

The system is digital and employs a linear modulation tech-
nique, so the baseband-equivalent transmitted signal is

s(t) = Zaip(t-iT) (7.1)

where p(t) is the transmitted pulse shape, T is the signaling in-
terval and o; = %1 is t.ae i-th data sample. (The actual trans-~
mitted signal is the RF carrier £, modulated by s(t).) The
system transmits one data sample each T seconds. The transmitted
pulse shape is determined by the transmitter filter response,
{The transmitter filter serves to limit the bandwidth of the
transmitted signal.) The receiver consists of a filter and a

7-8




tapped delay line equalizer. The filter is matched to the trans-
mitted waveform (i.e., the filter impulse response is the trans-
mitted pulse shape) and the equalizer compensates for channel-
introduced distortion,

In a narrowband system p(t) changes very little in time T,
where 1, is the interval over which the éhahnel impulse response
h(t) is non-zero. Figure 7-3 illustrates the effect of a tropo-
scatter channel on a narrowband system where the transmitted
pulse is rectangular. Figure 7-3a is a discrete approximation to
a possible channel impulse response. The impulse response 1is
random, so this function is one of the random ensemble of func-
tions with a given delay-power profile Q(t). Figure 7-3b and
7-3¢c show the transmitted and received pulse shapes. The re-
ceived pulse shape is somewhat distorted, but after the receiver
filter, the shape is nearly triangular (Figure 7-3d). (The

matched filter output for a rectangular pulse is triangular.)

Now consider a wideband system with a rectangular pulse
shape. Figure 7-4 illustrates the effect of the same impulse
response on a wideband signal. Note that the received pulse
shape differs greatly from the transmitted pulse shape. After
filtering the pulse bears no resemblence to the triangular wave-
form of Figure 7-34d. In systems without delay combining the
receiver is simply matched to the transmitted waveform. Such a

system may be severely degraded by channel distortion. However,
the received waveform actually has more energy in the wideband
case than in the narrowband case (assuming the same energy per
pulse). So if the system were matched to the received waveform,
tiie wideband system would perform better.
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Figure 7-3 Troposcatter Channel Effect on Narrowband System:
| . (a) Channel Impulse Response, (b) Transmitted
Pulse, (c) Received Pulse, (d) Received Pulse
A ; After Filtering.

7-10




3
!
!
; f
4 i
. (a) ) - . :
- ‘ ‘ §
~ 3'
i
; i
|
y
4 1
3 5 J
K ;i
o (b)
5;
(c)
4] ;
Lo,

(@)

S

<

KT Lot
e s

e P N
e bt .

Figure 7-4 Troposcatter Channel Effect on Wideband System:
(a) Channel Impulse Response, (b) Transmitted
Pulse, (¢) and (3) Received Pulse Before and

After Filtering.
7-11

————e e e




§x 1oV S ey e R TT v e en

Just as the spatial separation of the scatterers allows
angle diversity to be used, the relative delays of the signals
from different scatterers allows implicit diversity to improve
performance. If the receiver were matched to the received wave-
form, then the maximum possible gain from implicit diversity
would be achieved. (This corresponds to infinite subdivision of
the receiver aperture in angle diversity.) A tapped delay-line
combiner, whose weights adapt as.the channel changes, may be used
to approximate this optimum system, The number of taps corres-
ponds roughly to the order of diversity. As the number of ‘taps
increases the complexity o¢f the system increases, and as with the
angle diversity systems, the decrease in the required SNR becomes
less,

In addition to the delay combiner a filter is necessary in
the recei&er in order to limit the thermal noise. The thermal
noise on different taps of the combiner is correlated because of
this receiver filter, and the correlation between the noise on
different taps is given by the autocorrelation function of the
receiver filter. That is, if we define

©0

R(1) = Lo f(t) fp(t+T)dt, (7.2)

where ER(-) is the RX filter impulse response, then the correla-
tion between the noise on two taps separated by 1 seconds is

E[n(t)n(t+1)] = NyR(T)

7-12




where N, is the noise variance and ER(-) is normalized to unit
energy, i.e., R(0)=1. This is a key difference between angle or
space diversity and implicit diversity. In the former case the
noise on different diversities is uncorrelated, whereas in the
latter case this is not true,

Figure 7-5 illustrates the wideband system model which
incorporates the above-mentioned features. The transmitted
signal is s(t) as defined in (7.1). The received signal is

T
C

y(t) = [ s(t-t)h(1)dt + n(t) . (7.3)
0

where h(°+) is the channel impulse response (non-zero only on an
interval [0,7,]) and n{t) is a white Gaussian noise process.
After the receiver filter the waveform is

r(t) x(t) + n(t) (7.4)

where

oo

/ y(t-t)E(T)dT, (7.5)

- 00

x(t)

and n(t) is a Gaussian process whose autocorrelation is given by
(7.2), The combiner forms an estimate of the i~th transmitted
symocl by sampling r{(t) at times 1T+71y, iT+7y,0.., iTH+TY,
weighting'these and summing. That is, the estimate of the i-th
syabol is
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TN AU =

O
]
X

Bjr(iT+1j) (7.6)

1

j
where the weights B. are selected adaptively to maximize the SNR.

J
In vector form we may write (7.6) as

(7.7)

where 8 = {§l,...,BM} is the vector of tap weights, r= r(iT+Tl),
r(iT+13),¢vss, r(iT+ty) is the vector of tap outputs and x and n
are the signal and noise components of r.

The system performance depends on the distribution of bj.
Without loss of generality we assume i=0. From Equations (7.3)-
(7.5) we see that both the signal and noise components of the
sampled signal, r, are random. The thermal noise is a stationary
Gaussian process with autocorrelation given by RX filter autocor-
relation R(7), so n is a zero-mean Gaussian vector with covar-
iance matrix Rn={ykj;k=l,...,M,j=1,...M}, where Yk 3 is the cor-
relation between the k-th and l-th taps, that is,

Yey = R(Tk—Tj) . (7.8)
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The signal component is a non-stationary Gaussian process whose
autocorrelation is determined by the delay power profile Q(t) and
the TX and RX Filters, fq(t) and fr(t). The signal vector x has
covariance matrix RS={Akj;k=1,...,M,j=1,...,M} where

>
{]

kj E[x(rj)x(rk)]

T
had C

E[ [ [ h(ws(u-vkr, JEp(v)dudy
0 J

- 0O

T

00

c
x [ [ h(u)s(u-v-7 JE (v)dudv]
0

- 00

Y
[+ o0 c
] g Q(u)fR(vl)fR(vz)s(u—vl—rk)s(u—vz-rj)dudvldvz.

-0 =00

(7.9)

We assume that no intersymbol interference (ISI) is present so
that the tap outputs for the zero-th symbol depend only on ag.
This assumption is made because we wish to examine the gains
which are theoretically possible throuch time diversity and ISI
may be removed by Viterbi decoding (although at some cost in com-
plexity). Under this assumption s(t) in (7.9) may be replaced by
agpfp(t). The signal covariance matrix may thus be computed. The
signal and noise components are independent so the system perfor-~
mance 1s determined by the two covariance matrices Ry and Rg.
Again the only difference between the implicit-diversity and
angle diversity cases is that in the angle diversity case the
matrix R, is diagonal since the noise components are independent.
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This analysis generalizes trivially to include a combina-
tion of explicit and implicit diversity, In this case we have
one received waveform for each of N antenna ports, so we have
ri(t),ry(t), ... rg(t). These are defined as in (7.3)-(7.5) ex-
cept that each port sees a different channel so h(t) in (7.3)
becomes h;(t),i=1l,...,N. The properties of h;(t) are given by

Efn; (£)hy(1)] = 0, (€) 8(e-1) (7.10)

where Qij(t) is the ij-th cross-correlation profile, If each
port has an M-tap delay line then the total number of samples to
be combined is NM, so (7.6) is replaced by

N M
by = I 1 Bkjrk(rj)

k=1 j=1 (7.11)

Br

where 8 = {811,812,...,81M.821,822,...,8NM} and r is defined sim-
ilarly. The signal covariance matrix is also NMxNM and consists
of N2 blocks of size MxM, each of which is determined by Equation
(7.9) with Q(+) replaced by ij('), k=l,...,M8,3=1,...,N. Bach
port sees an independent noise process nj(t),j=1,2,...,N, so the
noise covariance matrix R, is block diagonal. Each MxM diagonal
block corresponds to the taps of one equalizer.
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The performance criterion used for narrowband systems is
the Chernoff bound on the bit-error-rate. This criterion also
applies to the wideband system of Figure 7-5. So we have
P {Error} < ¢0,’where ¢g is given by [15],

L=MN is the order of the system, I; is the LxL identity matrix,
and Rg and R, are the signal and noise covariance matrices. Note
that if R, is replaced by NpI; (Ng is the noise variance), which
corresponds to independent noise components, then this is exactly
the same as the narrowband performance measure,

7.3 COMPUTED PERFORMANCE OF WIDEBAND SYSTEMS

The tapped delay-~line combiners. are assumed to have uniform
tap spacing. The spacing of the taps and the first tap position
are chosen optimally by numerical means. 1In general, as the num-
ber of taps increases the tap spacing decreases, but the spacing
between the first and last taps increases.

The receiver filter is assumed to be matched to the trans-
mitted waveform. Thus, if the transmitted pulse is rectangular,
the receiver filter impulse response is also rectangular and of
the same duration. In this way the combiner compensates for the
channel and not the transmitted waveform.

We consider two types of transmitted pulses; rectangular
pulses and sinc ((sinwt)/mt) pulses. Rectangular pulses have no
intersymbol intetference (ISI) but have too large a bandwidth to
be used in a practical system. Sinc pulses are completely band-
limited, but have unbounded ISI if any perturbation occurs. So
although neither of these pulses would be used in an actual sys-
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tem, they are limiting cases and the behaviour of actual pulses
will be similar, Sections 7.3.1 - 7.3.3 consider rectangular

pulses. Section 7.3.4 contains similar results for sinc pulses.

The noise autocorrelation function for the rectangular
pulse case is triangular. The autocorrelation for the sinc pulse
is also a sinc pulse.

The link used as an example is 100 km long with a scatter-
ing angle of 1.7° (as previously mentioned). The transmitter and
receiver antennas are 3m square and the channel 20 delay spread
on a system without explicit diversity is 56 nsec. For clarity
we use the pulse duration to characterize the different sys-
tems. However, if we instead used the ratio of the pulse dura-
tion to the delay spread then the results would apply to links
with different delay spreads as well.

7.3.1 Effgct of Pulse Duration

We first examine the effect of equalization for different
pulse durations. The pulses are rectangular, and the system has
only a single antenna port (no explicit diversity). Figure 7-6
contains results for pulse widths of 2000, 500, 100, and 20 nsec
with equalizers of up to 8 taps. The SNR's are those required
for a bit error rate of 10—4, and they are normalized such that
40 dB is the required SNR for a system with a very long pulse
duration.

For narrow pulse widths (wideband systems) the channel
lengthens the pulse considerably so that a single tap system per-
forms poorly. The wideband system benefits most from large num-—
bers of taps, however, since the implicit diversity of the chan-

e mow s mveam ola o

-~ b o s ~ L bom  am o ogmem ~re [ e 3
nel may b . The behaviour of the narrowband systems 1S

ne WAy

(9]
®
t]

the opposite. The performance of a single tap system is better
because the channel spreads the transmitted pulses only a little,
but the gains from additional taps are 1less.
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As with angle and space diversity the gains from delay com-
bining decrease as the number of taps increase.

The comparison of various pulse durations is not a compari-
son of alternative systems, since the system bandwidth is fixed
by other considerations. Rather the results illustrate what
improvement may be provided by diversity for various bandwidth
systems, .

7.3.2 Equalization of Diversity Systems

We next consider the use of delay combining on systems
which have a number of antenna beams, Since the antenna heams
are not orthogonal the combiner weights for a given antenna beam
depend on the other beams. Due to the complexity of having a
number of tapped delay lines, an explicit function is used to
determine the tap positions for each profile. These tap posi-
tions are not optimal, but are close enough so that there is
little effect in required SNR,

Figure 7-7 graphs the required SNR (for BER=10"%) vs.
number of taps for a single beam system (1) and for systems with
two azimuth beams (1,2), two elevation beams (2,1), three eleva-
tion beams (3,1), and four beams with two elevation and two azi-
muth (2,2). The pulses are rectangular and of duration 100 nsec.
(The 20 delay spread of the channel is 56 nsec.) The benefit of
delay combining is much less for higher order diversity systems,
even for relatively high bandwidth systems. (Equalization to
remove ISI would still be necessary for these systems even though
delay combining is of little benefit.) Figure 7-8 presents the
same results for 2000 nsec rectangular pulses. These results
show that for the narrowband case, very little is to be gained

from delay comhining
from Celay comdining.
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7.3.3 Tradeoffs in Implicit and Angle Diversity

The number of weights which must be adaptively adjusted in
an angle diversity system which also has time diversity is the
number of delay taps times the number of antenna ports. The
tradeoffs between the number of antenna ports and the number of

taps is an important consideration.

Figures 7-9 and 7-10 graph the same data as Figures 7-7 and
7-8 but with the order of diversity (i.e., number of weights) as
the x-axis. For the short pulse duration, 100 nsec, a single
beam system with a 2-tap delay combiner performs only 0.5 dB
worse than a dual angle diversity system. Similarly, a dual
elevation diversity system with two delay taps on each port is
only 1ldB worse than the quad angle diversity system.

For the narrowband system, (2000 nsec pulse duration), the
angle diversity systems perform significantly better than
implicit diversity systems of the same order of diversity.

7.3.4 Results for Sinc Pulses

Sinc pulses are entirely band-limited and so they are not
time-limited. For this reason we consider systems by various

bandwidths rather than pulse durations. A sinc pulse of band-

sin(27wWt)
21Wt :

with the results for rectangular pulses the bandwidths used give

width W is given by sinc(2Wt) = To allow comparison
filtered waveforms which are similar to those for rectangular
pulses (in the absence of channel delay spread). The bandwidths
which correspond to 2000, 500, 100, and 20 nsec pulse durations
are 500 kHz, 2 MHz, 10 MHz, and 50 MHz. In Figure 7-11 we com-
pare a duration T rectandular pulse (after filtering) and a 1/T
bandwidth sinc pulse. The mainlobe of the sinc pulse coincides
with the triangular waveform which results when the rectangular
pulse passes through a matched filter.
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Figure 7-11

cimparison of Sinc and Rectangular Pulses:

(a) Rectangular Pulse Duration T, (b) Filtered
Rectailgular Palge, (c) Sinc Pulse of Bandwidth
1/7. (Sinc Pulse is the Same Before ant
After Filtering.) .
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The requivred SNR for BER=10"% is given in Figure 7-12 for
the various bandwidth pulses. As with rectangular pulses (Figure
7-6) <che gains from delay combining decrease as the number of
taps lincrease, For narrowirand systems the curves saturate more
rapidly than the corresponding curves for rectangular pulses.
This occurs because the rectangular pulses have energy over a
vider band in frequency. For very wideband systems this is no
longer a factor, and so the two types of pulses perform about the
same.

Figures 7-13 and 7-14 present the effect of implicit diver-
sity on higher order diversity systems, As with rectangular
pulses, even with a 10 MHz bandwidth higher order systems gain
relatively little from implicit diversity. The narrowband sys-
tems gain practically nothing.

Figures 7-15 and 7-16 contain the same points graphed vs.
order of diversity. Wideband systems with 2-tap delay combiners
perform nearly as well as systems with twice as many angle diver-

sity ports, however, additional taps are not very beneficial.
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SECTION 8
A PROPOSED ADAPTIVE TROPOSCATTER EXPERIMENT

8.1 OBJECTIVES

The diversity results defined in this report rely on a few
simplifying assumptions: 1) no diffraction or layer refiection;
and 2) specific an profile. An experiment verifying the diver-~
sity gains must also be able to determine to what degree these
assumptions are satisfied. The experiment should cover several
diversity configurations, diversity combining techniques, and
performance measures. This high degree of flexibility requires
recording of the received signals so that the same measured data
can be used for different applications.

The basic requirements of the experiment are:

1, distinguish between troposcatter and diffraction

2. performance evaluation of the Key arrays considered in
Section 4

3. Determine diversity gain

4, evaluate fade rate limitation

5. resolve long term atmospheric layering.

Only narrowband diversity performance will be considered here,
i.e., the results in Section 7 cannot be validated with the pro-
posed experiment. However the proposed system can probe the
channel accurately enough to permit analytical estimates of the
wideband performance.

8.2 EXPERIMENT CONFIGURATIONS

A reasonable experiment would consist of seven separate
antennas with downconverters, as shown in Figure 8-1. A study of
the cost complexity tradeoffs has shown that an X-band experiment
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with 2'-3' parabolic antennas is the most cost effective con-

figuration. At lower frequencies, the larger antennas, wave-
guide, masts, etc. increase the cost while at high frequencies
the component cost is excessive. From the point of view of

mobility it is desirable to use a high frequency so that the
resolution can be achieved with smaller antennas.

As The transmitter will be a separate aperture, either small
(2'-3') to test the diversity effects of broad transmitter beams,
or large (10'-15') to evaluate the effect of a narrow transmitter
beam with horizontal or vertical diversity. Only a CW tone need
to be transmitted.

. The narrowband receivers convert to baseband and either
record the analog signals or sample at a rate of approximately
200 Hz and perform near real time processing.

The least costly system uses the analog tape recording with
. off-site, non-real-time data processing. This approach is also
very flexible, the same tape can be used over and over to cal-

culate different system parameters.

A more sophisticated approact is on-site, real-time pro-
cessing, recording only the pertinent data such as periodic co-
variance matrix estimates, coherence time. Real time processing
is then possible using an array processor such as the Floating
Point Systems Model AP-120B with an analog interface. Such a

AT e RS AL BT B e

system is shown in Figure 8-2. This approach is more expensive
but is actually cost effective in the long run when a lot of dif-

. ferent data (arrays, technical sites, etc.) are to be evalu-
ated., It obviates *“he need for the enormous task of processing
the large amount of analog tapes.

i X2

The proposed configuration is similar in many respects to
the experiment of Waterman, et al., [17]. They use 12 antennas on
a tower at 3 GHz while we propose 7 antennas at 8 GHz that can be
reconfigured to several types, e.g., linear array, sparse array,

8-3
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and rectangular array. They use an LOS reference to compensate
for array motion, and the proposed system would do that as
well. The key new features of the proposed system are:

1. flexible array configuration and portability
2. Rice/Rayleigh discrimination
v 3. diversity performance.

This is achieved by the signal processing shown in Figure 8-3.
\ This processing can be Jdone in real-time with the system in
Figure 8-2, but requires later computer processing with the
system in Figure 8~1 (doubling the required man-hours for the
experiment). The diversity performance in the presence of

specular components, although not considered in this report, can
be calculated as well.

8.3 ARRAY CONFIGURATIONS

The antenna elements can be arranged in a number of con-

figurations. A very interesting configuracion is a sparse linear
array in elevation which would allow a much better resolution
than previous measurements, It would be possible to study
details of the structure of the atmosphere that are not presently
known, even though it is known that such effects, e.g., turbul-
ence layers, strongly affect the long term performance of tropo-
scatter systems., By estimating the turbulence (Cn2 profile) it
would be possible to estimate the delay spread as well by using
the computer program described in Section 2. Thus, we would be
able to get wideband performance estimates even though only
probing the channel with a CW signal. The profile measurements

would be made with either the linear array of the sparse array
shown in Figure 8-4,
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Linear Array {(Horizontal or Vertical on Tower)

01 .101 Ol 01010

AZ: (7,1),(6,1),(5,1),..,(2,1)
Diversity Performance For:

EL: (117)1(116)1(115)1-0l(112)

Sparse Array (Vertical only of Interest)

Diversity Performance For: (1,18),(1,17),...(1,2)

L-shaped Array

I
e & o o

(4,4),(4,3),(4,2),(4,1)

Diversity Performance For: (3,4), (3,1)

s o0}

(1,4), (1,2)

* 00y

Figure 8-4 Some possible array configurations and the (AZ, EL)
dimension azreys for which performance can be

calculated.
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Most of the diversity results in this report can be veri-
fied by measurement on the L-shaped array shown in Figure 8-4.
Instead of a 4x4 array as shown, a 3x3 or a 6x2 array can be
used. Note how thz flexible rearrangement of the array allows us
to calculate a large number of different systems,

8.4 TYPICAL PRINTOUT RESULTS

For each link where the measurement system is set-up an
initial receiver calibration is performed and then the systenm is
started. Assuming real time processing as in Figure 8~2, we cat
get the following results printed out once a minute,

Mean (Diffraction/Reflecticen) and Variance (Scatter):

BEAM NO. SPECULAR COMPONENT SCATTER
1 * 40 ¢t
2 LI LR BN ]
N o & 0 LI 2

Diversity Configuration (AZ, EL):

Eigenvalues: ve

Tropo Only Total Riclan Signal
Required SNR oo see
Maximum Data Rate PN PN

=
=2
®
[
o))
0N
T
Qo

art would be vepeated for each diversity configuration

by the opsvrator. The only iimitation wculd be the
the printing terwminal. This system could be used to

assess the potential digital performance of all sxisting DS

0N
L)
0]
[}
Q:
o}
+ ™M

troposcatter links, for instance.
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SECTION O
DESCRIPTION OF TRQPOSCATTER PROPAGATION PARAMETER CGMPUTATICN
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l 9.1  INTRODUCTION

\ e

N The computer program determines the propagation parameters
i of a troposcatter link for general antenna configurations. The
inputs to the program are:

- - 1ink parameters (distance, elevations, etc.)
} - system parameters {frequency, bower)

' - diversity antenna configuration parameters

! : ~ antenna parameters.

| : The program allews arbitrary diversity configuration (no parti-
' cular symmetry is vegquired) and three basic types of antennas.
The antenna types are

v L.

1) parabolic reflectors,

N

2) phased arrays of parabolic veflectors, and

AR

3) phased arrays of sub arrays,

AN
¥ TV

where each subarray is a phased array of parabclic reflectors.

1

Fo

: z A diagram Qf a troposcatter link is given in Figure 9-1,
(%

. A The parameters which are necessary to define the link are the

H L

' M link distance, the antenna elevations (above sea level), and the
e » . .,
3 horizon elevation angles. These parameters are used {along with
§, the atmospheric parameters which determine the earth radius

transformation) tc determine the distance D' amd the angles o
and 87 (which determine the Joweyr bouandary of the common volume)
in Figure 9-2, Fach scatterer in the common volume is specified
by a vector v = {a, 8, y) which censists of the transmitter and
receiver elevation angles and tha distance y perpendicular to the
great circle plane (i.eg., the plane of the paper).
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RECEIVER ANTENNA BEAM SCATTERING POINT r={(a,B,y)

R 2 (z) BEAM

TRANSMITTER RECEIVER

Figure 5-2 Lilnk Faraweters Used In Integration Over
The Common Volume.
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The program determines the correlation between signals at
the various receiver ports. 1In the narrowband case this correla-
tion is given by an integral over the common volume. Specifical-

~

ly, the correlation betwsen receiver ports 1 and 2 is

2 *
lapte)| o, (£) gy (2)

12 © 2 2
Rp(r)  Rp(r)

where Rp(r) and Rp(r) are the distances to the scattering point r
from the receiver and transmitter respectively, © is the scatter-
ing angle, gp(r) is the transmitter antenna gain in direction x,
and gRlQE) and gRZQE) are the (complex) receiver antenna gains.
The integral is performed numerically, so the common volume is
divided into cells which are small enough that the integrand may
be approximated by a constant over the cell. In the wideband
case for each delay the integral is performed over all cells with
that delay (delay is proportional to Rp(r)+Rp(r)). The outputs of
the program are the power vs. delay profiles and the cross-corre-
lation profiles which are defined in what follows.

The value of the channel impulse response at a yiven time
is a zero-mean Gaussian random variable. The scathecers arc
assumed independent so the values of impulse response at two dif~
ferent times are independent. A power vs. delay profile is the
variance of the channel impulse response for a given antenna.
The cross-correlation profiles determine the correlation between
different antennas as a function of time., Different antennas are
correlated in general because for a given delay the scatterers
are the same for all antennas. (This assumption iz not valid if
the antennas are very far apart, but it represents a good approx-
imation in practical systems.)
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These profiles give all the necessary propagation informa-
tion to compute the performance of a combiner or modem. If the
symbol duration is long compared to the delay spread of the chan-
nel (i.e., narrowband), then only the integrals of the profiles
are necessary. The intersymbol interference due to "smearing" of
the source symbols by the channel is not significant. Ffor the
wideband case the entire profile is necessary to determine the
system performance. Intersymbol interference is important here,
and equalization may be necessary.

The major steps involved in the computation of the propaga-

tion parameters are given in Figure 9-3,

9.2 BRIEF DESCRIPTION OF STEPS IN PROPAGATION CALCULATIONS

We next describe the function of the modules in the flow-
chart of Figure 8-3.

9.2.1 Jdarth Radius Transformation

A modified form of the effective Barth's radius transforma-
tion is performed in subroutine TRANSF, When the surface refrac-
tivity is not specified (SURFN = 0), the effective radius factor
ERFAC in the input data is used; otherwise ERFAC is calculated
from the surface refractivity SURFN and this value of ERFAC is
used instead of the value in the input file. This accounts for
the mean curvalure of rhe beams due to atmospheric refraction.
In the transformed coordinate system, the beams follow straight
lines, simplifying the calculation of various distances and
angles which are nccessary to determine the profiles.

9.2,2 Antenna Gainrs and Parameters

As previously mentioned the program allows antennas of
three types; paraholic reflectors, phased arrays of parabolic
reflectors, and phased arrays whose elements are also phased
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arrays. To implement these antennas we note that the first two
types are special cases of the third. That is, if a phased array
has only a single element then it is a simple antenna. So the
parameters in the program are set up for the most general type.

The phased arrays are rectangular planar arrays of elemen-
tary antennas as shown in Figure 9-4., The parameters necessary
to define such a phased array include the gain of the elements,
the number of elements along each axis, and their spacing. In
addition a relative phase shift is applied between adjacent
elements which changes the directicn of maximum gain of the an-
tenna. Two phase shifts are specified; one between vertically
adjacent elements and one between horizontally adjacent elements.
The elemente of the array are identical and have boresight normal
to the plane of the array.

The gain patterns of the receiver and transmitter arrays
are given b functionse RGAIN and TGAIN respectively. The argu-
ments ¢f these functiouns are the antenna index, the off-boresight
angle, and the azimuth angle. (The boresight of a phased array
is perpendicular to the plane of the array, not necessarily the
direction of maximum gain.) Two angles are necessary because the
gain patterns of the arrays are not radially symmetric. The
azimuth angle must be measured relative to éome reference vector
in the plane of the array. For this reason an antenna coordinate
system is defined (in subroutine ANTPAR). One unit vector of the
system is the boresight. The other two vectors are roughly ver-
tical and horizontal. See Figure 9-5. A detailed description of
the definition of the coordinates is given in Appendices A and B.

Subroutine ANTPAR computes the horizontal and vertical
half-power beamwidths of the receiver and transmitter arrays and
subarrays. The beamwidthe are computed with no phase shifts be-
tween elements of the arrays, so that the direction of maximum
gain of the antenna is normal to the array plane. The boresight
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gains of the antennas are also computed (with no phase shifts).
The functions RGAIN and TGAIN give the antenna gain patterns

relative to these values.

9.2.3 Common Volume Integration Limits

Subroutine INTLIM determines lower bounds on the limits of
integration for the common volume. The beamwidths of the subar-
rays and the scattering parameter are used to determine these
bounds. The actual region of integration may be larger than the
region determined by INTLIM as the integration does not terminate
until the contributions to the delay profiles become small.
These bounds ensure that the integration does not terminate
before a sufficient volume has been integrated. 1In addition the
estimate of the common volume is used to determine the size and
number of delay cells to be used in the profiles. An input
parameter ERR is used in determining the limits. Small values of
ERR increase the size of the region.

9.2.4 Common Volume Integration

Subroutine LOOPS performs a numerical integration over the
common volume to determine the power vs, delay and cross-correla-
tion profiles. Bach scattering point in the common volume is
specified by the transmit and receive elevation angles «,8
(measured relative to a straight line between the receiver and
transmitter in transformed earth coordinates) and the distance y
perpendicular to the great circle plane. The great circle plane
containe the nominal receiver and transmiiter logations and the

center of the earth.

For each scattering point r, the program computes the dis-
tances from the transmitter to i and from r to the receiver
(slightly different for each receiver location), the angles of r
relative to the transmitter and receiver antenne patterns, and

9-10
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the scattering angle. The net received power from this single
scattering element at vector location r for transmitter ™ and

receiver R is
2 2
gplx) grlr) -
P(r) = P C 4V 5 5~ O
Rp(x)™ Rplr)
v
where
A
Pp = transmitted power
gp(x) = gain of the transmit antenna in the
direction of r
grlr) = gain for the receive antenna

distances from r to receiver and trans-
mitter, respectively.

RR (L) ’ RT (E_)

C = a factor depending on wavelength and
height above sea level

av = Volume of infinitesimal scatterer at r.

0 = scattering angle, i.e. angle by which
‘ waves from transmitting antenna must be
- deflected at the scattering point r to
reach the receiver antennas.

m = spectrum slope of refractive index (m

controls rate of fall-off of scattering
coefficient with scattering angle).

The antenna gain patterns in this equation are, of course,

AT LS R ey S e

expressed as dimensionless ratios (not dB).
i - The delay profiles are generated by computing the delay for
3 each scatterer and adding the value of the power P(r) for that
: scatterer to the corresponding delay all in the profile. The in-
B i tegral of the profile determines the total path loss.
%}
.
.
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The cross correlation profiles between different receiver

ports are obtained similarly, except that the receiver antenna
power gain |gR(£)|2 is replaced by gRl(E)g*Rz(E)' the product of
one receiver voltage gain with the conjugate of the other. Each
voltage gain .s a complex quantity with a phase angle determined
by the RF phase shift from the scatterer to the receiver. If
receivers Ry and R, have the same location (i.e., angle diver-
sity) then these phase shifts are the same and gRl(E)g*nz(E) is
real. So the phase shift has an effect only when the receivers
are in different locations. In addition if the receivers are for
different polarizations then the RF phase shifts from the trans-
mitters to the scattering point are included. The different
phase shifts for scatterers over the common volume cause decor-
relation of the signals at two space diversity receivers.

9.2.5 Step Size Parameters

Subroutine STPPAR determines a number of parameters which
are used to determine the step sizes in the integration over the
common volume, The step sizes must be selected such that the
contribution of scatterers to the profi'ess does not change too
much from one scatterer to the next. To accomplish this, the
variations of all of the parameters which determine this contri-
bution are considered. The dominant effects are given by the
gain patterns of the receivar and transmitter antennas, the scat-
tering angle, and the phase shifts for space diversity antennas.

3.3 VARIABLE DIMENSIONING PARAMETERS IN TRQPO

Many of the arrays used in TROPO have variable dimensions.
These distances are specified in parameter statements. These

.
parameters are:
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NTMX
NRMX
NRLMX
NRBMX

NRAMX

NSTMX

NPOWMX

NCORMX

NOMX

NCN2

Maximum number
Maximum number
Maximum number
Maximum number

Maximum number
antennas

Maximum number

of

of

of

distinct transmitter ports
distinct receiver ports
distinct receiver locations
distinct receiver beams

distinct receiver physical

different subarray types

Marimum number of receiver ports for which the
power may be computed

Maximum number of cross-correlations between
receiver ports which may be computed

Total number of samples in all delay profiles

Maximum number of samples in Cgprofile.

9.4 INPUT FILE FORMAT

The inputs for the TROPO program are taken from a file
INP. In the input file the line bhefore a data line

called TROPO,
!*|.

begins with

Any number of comment lines beginning with 'C'

may be included before the line which begins with '*',

The inputs are divided into five basic sections:

1.
2.
3.
4.
5.

Unit specifications
System parameters
Path geometry

Propagation and control parameters

Diversity input.
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9.4.1

Parameters Which Determine Units

DISTU

HDU

ANGU

FRU

Transmitter

PXMIT

WLT

E\
TLL
RLL

PNOISE

Distance units specification, (FORTRAN A4 for-
mat, left justified): SMI, KM, or NMI. All
parameters designated below as having units in
smi/nmi/kmm will be interpreted according to
the setting of DISTU, as follows:

SMI Statute Miles
NMI Nautical Miles
KM Kilometers

Height and diameter units specification (FOR-
TRAN A4 format, left justified): FT or M,
standing for feet or meters, respectin “vy.

All parameters designated below as being¢ in
units of ft/m will be interpreted according to
the setting of HDU,

Angle units specification, (FORTRAN A4 format,
left justified): DEG or MRAD. All parameters
representing angles will be interpreted ac-
cording to the setting of ANGU, as follows:

DEG all angles are in degrees
MRAD all angles are in milliradians,

i.e., 1000 mrad = 1 radian.
Frequency units specification, (FORTRAN A4
format, left justified): MHZ or GHZ. All \
frequency units will be interpreted according
to the setting of FRU, unless otherwise noted.
and Receiver Parameters
Rated transmitter power in dBm. (Default = 70
dBm). If PXMIT is input as 0, it is computed
from WLT as 10 Loglo(WLT) + 30,
Rated transmitter power in Watts, If WLT is
zero then WLT is computed as 10 (PXMIT -~
30)/10. The input value of WLT is ignored in
this case,
Carrier Frequency
Transmitter line loss in dB. Default = 0d4dB.
Receiver line loss in dB. Default = 04B.

Noise power in dBm.
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Path Geometry

D

HTN, HRN

ITOFF

THET, THER

DLT, DLR

HLT,HLR

Propagation

IHFLG

SEAN

Great circle distance (measured at sea level)
between transmitter and receiver (km, smi,
nmi)

Elevation of transmit and receiver nominal
antenna locations above sea level (meters or
feet)

control indicator for entry or calculation of
transmit/receive radio horizon angles THET,
THER. Use as follows:

0 = user specifies radio horizon angles
THET, THER.

2 = radio horizon angles THET,THER are
calculated in program using the horizon
distance (DLT,DLR) and horizon elevations
(HLT,HLR).

radio horizon elevation angles at transmit and

ieceiver sites in degrees or mrad. (Ignored if
ITOFF#0. )

distance to radio horizon from transmitter and

receiver respectively (km, smi, nmi). (Ignored
if ITOFF=0,)

transmit and receive radio horizon elevation

above sea level (meters or feet). (Ignored if
ITOFF=0.)

and Control Parameters

profile type: 0 for delay, 1 for height
(default = 0)

surface refractivity at sea level (default =
0)

effective earth radius factor (default =
1.333)

wavenumber specirum slope parameter m {(default
= 3,666) . ’

integration accuracy parameter (default = 40)

9-15




9.4.5

9.4.5,

ERR

KPROF

DELH

termination parameter (default = ,001)
number of Ci samples

distance between samples

CN2(1:KPROF) C: profile

Diversity Input

1l Transmitter Parameters

NT

PSITEO(NT)

PSITAO(NT)

IPOLT(NT)

UTH( i)
UTV(iq)
UTL(ig)
NRLOC

Note:

NTVPA(l:NT)

NTHPA(1:NT)

Number of transmit ports (NT < 2)

Antenna boresight elevation above the hori-
zontal (deg/mrad). (Boresight is defined as
perpendicular to the plane of a phased array.)

Transmit antenna boresight azimuth, relative
to the great circle plane containing the re-
ceive and transmit sites. Positive counter-
clockwise (deg/mrad).

Transmit antenna polarizations. The integer
values 0 and 1 represent any two orthogonal

polarizations. These may, for example, rep-
resent horizontal and vertical polarization.

Horizontal, vertical, and longitudinal
location of transmitting antenna i

relative to the nominal position where iT=1,
eeey NT (£ft/m)

Number of distinct receiver locations

For these coordinates, the longitudinal axis
is taken to be horizontal and in the great
circle plane containing the transmit and
receive sites. The positive longitudinal
direction is from the transmitter to the
receiver site. Up is positive in the vertical
direction and left is positive in the horizon-
tal direction, as seen looking from transmit-
ter to receiver.

index of the subarrav tvne for each antenna

acdlaTA WA

# of subarrays in vertical direction

# of subarrays in horizontal direction

9-16 -
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DTVPA(1:NT) distance between vertically adjacent subarrays

DTHPA(1:NT) distance between horizontally adjacent sub-
arrays

PTVPA(1:NT) phase shift between vertically adjacent sub-
arrays

PTHPA(1:NT) phase shift between horizontally adjacent sub-
arrays

GDBTX(1:NT) boresight gain of transmit antenna (computed
if entered as 0).

9.4.5.2 Receiver Parameters

Due to space limitations a number of pointers are used in
specifying the receiver ports. These pointers are illustrated in
Figure 9-6. For each of the NR ports, IRLOC specifies the loca-
tion index (i.e., the i-th port has horizontal offset
URH(IRLOC(i)), IRBEAM specifies the beam (which phasing of which
array), and IRPOL specifies the polarization (0 or 1).

Similarly, IRANT(i) is the physical antenna index for the
i-th bz2am. So, for example, the elevation angle of the i-th beam
is PSIREO(IRANT(i)).

Definition of Variables

NR number of ports

NRLOC number of locations

MRBEAM number of beams

NRANT number of antennas

NSAT number of subarray types
9-17
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PORTS
PARAMETERS:

IRPOL

IRLOC(i:NR) IRBEAM (1:NR)
LOCATI|ONS BEAMS
PARAMETERS : PARAMETERS :
URHK, URV,URL PRVPA,PRHPA

IRANT (1: NRBEAM)

]

* PHYSICAL ANTENNAS

PARAMETERS : PSIREC,PSIRAD, ANGR,
NRHPA, NRVPA, DRHPA, DRVPA, gain

ot bt o e

IRSAT {1: NRANT)

; SUBARRAY TYPES
' PARAMETERS: ELDIAM, NHELT, NVELT,
DHELT, DVELT, PHELT, PVELT

Figure 9-6 Receiver Port Definition -
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Port Parameters (arrays with NR elements)

IRPOL( ) polarization
IRLOC( ) location index
IRBEAM( ) number of subarray types

Location Parameters (NRLOC elements)

URV( ) horizontal offset
URV( ) vertical offset
URI-( ) longitudinal offset (positive towards trans-

mitter)

Beam Parameters (NRBEAM elements)

PRHPA ( ) phase shift between horizontally adjacent
elements

PRVPA( ) phase shift between vertically adjacent
elements

IRANT( ) index of physical antenna type

Physical Antenna Parameters (NRANT elements)

PSITEO( ) elevation angle above horizon
PSITAO( ) azimuth angle (= 0 if pointed at transmitter)
ANGR( ) rotation of array with respect to hori?ontal
NRHPA( ) number of subarrays in horizontal direction
NRVPA( ) number of subarrays in vertical direction
(NRVPA(i)*NRHPA(i) = total number of subar-
rays)
DRHPA( ) distance between horizontally adjacent subar-
rays
PRVPA{ ) distance between vertically adjacent subarrays
GDBRX( ) boresight gain (computed if input as 0)
IRSAT( ) index of subarray type.
9~19
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9.4.5.3

Subarray Parameters

.7"1}

oY

NSAT

ELDIAM(1:NSAT)

NVELT(1:NSAT)

NHELT (1 :NSAT)

DVELT(1:NSAT)

DHEL'T(1: NSAT)

PVELT(1:NSAT)

PHELT(1:NSAT)

# of subarray types (default 1)

element dimension for each subarray type
(elements assumed to be circular)

# of elements in vertical direction for each
subarray

# of elements in horizontal direction for
each subarray

cistance between vertically adjacent
elements (Default: element dimension)

distance between horizontally adjacent c.e-
ments (Default: element dimension)

phase shift between vertically adjacent ele-
ments (Default 0)

phase shift between horizontally adjacent
elements (Default 0)

9.4.5.4 Selection of Correlations Desired

IPROF
NPOW
IPOW(1:NPOW)

(I1CORR(1:NCORR),
I2CORR(1:NCORR))

1 if profiles desired, 0 if not
number of power profiles

indices of power profiles (i.e., which
ports)

pairs of indices for correlation profiles

9-20
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APPENDIX A

DEFINITION OF MATHEMATICAL AND COMPUTER PROGRAM SYMBOLS
USED IN TROPOSCATTER PROPAGATION MODEL

This appendix contains the mathematical symbols used and
the corresponding computer program parameters. The symbols are
described in the context of the COMMON statement in which they
appear in the computer program, In what follows, the symbols
used in the computer code are listed in square brackets.

Al PATH GEOMETRY

Figure A-1 shows the geometry of the path as seen in the
plane of the great circle through the nominal antenna locations.
Figure A-2 shows a top view of a path with horizontally spaced
antennas. The parameters in Figure A-1 are those used in most
troposcatter calculations. In addition to these parameters we

must also consider:

1. location of space diversity antennas relative to the
nominal terminal location,
2, angle diversity beams,

3. phased array parameters.
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The key TROPO program parameters including the effective

earth radius transformation are listed below,

NBS TECH,
NOTE SYMBOL

TROPO SYMBOL

ag

u u
th' “tv!’
ut2(1t§

[(A0]
(al

(D]

[DLT]

[DLR]

[DT]

(DR]

{HTN]

[HRN]

[UTH(I),

UTvV(I)
I NTMX]

Earth radius.
Effective earth radius.

Distance between nominal ter-
minal locations.

Distance to horizon from the
transmitter, measured at sea
level.

Distance to horizon from the
receiver (measured at sea
level).

Sea level distance to the scat-
tering point from the nominal
transmitter location.

Sea level distance to the scat-
tering point from the nominal
receiver location.

Height above the sea level of
the nominal transmitter loca-

tion.,

Height above the sea level of
the nominal receiver location.

Horizontal, vertical, and longi-
tudinal location of transmitting
antenna number i, relative to
the nominal posigion (site
ground level mid way between
antennas) (counted positive up,
into the paper, and from the
transmitter to receiver respec-
tively).
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[URH(I),
URV(I),
URL(I),
I <NRMX)

[HT)

[HR]

[s]

[s1]

[HLT,HLR]

[HCOM]

{ALFAOQ]

(BETAO]

[THETAO]

[PHIT]
[PHIR]

[THET)

[THER]

Horizontal, vertical and longi-
tudinal location of receiving
antenna no. i, relative to the
nominal position (site ground
level mid way between antennas).

Height above the sea level of
the center of transmit antenna

no. it' (=htn + uth(it)).

Height above the sea level of
the center of receive antenna
no. i, (=hyo, + u (i)).

Asymmetry parameter ag/Bg.

Asymmetry parameter (xg-Bg)/0q
= (1-8)/(1+8).

Height above the sea level of
the transmit (receive) horizon
obstacle.

Height of lowest scattering
point above sea level.

Angle at the nominal transmitter
between the hor‘zon ray and the
ray to the receiver.

Angle at the nominal receiver
between the horizon ray and the

ray to the nominal transmitter,

Scattering angle of horizon
rays.

dy/a.
dr/a.

Transmitter horizon elevation
angle.

Receiver horizon elevation
angle,




A.2

tennas are defined.

A.l

gt(it: 0, )

gr(irl Ol ‘4’)

ANTENNA PARAMETERS

Parameters relating to the transmitter and receiver an-

[TGAIN]

[RGAIN]

Gi (i) (GDBTX(I)],
Gpliy) [GDBRX(I),
I<NR]
Veeoliy) [PSITEO(I)
te t I<NT]
Yreolie) [PSIREO(I)
I<NR]
¥ (i) [PSITAO(I)
talQ'*¢ I<NT]
$.nli.,., (PSIRAO(I)
ra0® x I<NR]
Ny [NT]
N, [NR]
PROPAGATION PARAMETERS
AA (AA]
K [ERFAC]
M [{SCPARM]

Antenna location parameters are described in

Directive gain pattern of the
transmitting aperture no. i,. 6
is the off-boresight angle, ¢
is the azimuth angle.

TGAIN is a function subroutine.
Receiver gain patterns.

Boresight transmitter antenna
gains.

Boresight receiver antenna
gains.

Antenna boresight elevation
above the horizon for each
transmit antenna.

Same for receive antennas.
Transmit antenna boresight
azimuth, defines the angle to
the great-circle plane. Posi-
tive counter clockwise.

Same for receiver, but positive
clockwise,

No. of distinct transmit ports.

No. of distinct receive ports.

Atmospheric dB attenuation.
Effective earth radius factor.

Wavenumber spectrum slope param-
eter.

A-6
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Ng {SEAN] Minimum monthly median value of
sea level surface refractivity.

Ci(ih) [cN2(1), Atmospheric structure constant
I <NPROF] profile.
&y | DELH) Interval of sampled Ci.

SYSTEM TRANSMISSTON PARAMETERS

Wer fwLT) Transmitted power.

Wy {WT) Radiated power.

W [WR] Available power at receiver
input.

f [F] Frequency.

A {WAVLEN] Wavelength.
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APPENDIX B

DESCRIPTION OF MATHEMATICAL RESULTS USED IN
THE TROPOSCATTER PREDICTION PROGRAM

This appendix contains tlhie mathematical results used in the
coding of the common volume irtegration routine. The correspon-

dence of symbols to the variable names in the computer program
are found in Appendix A,

B.1l THE EARTH RADIUS TRANSFORMATION

We use the well known effective earth radius concept in a
way that allows an exact transformation.

Let ap be the actual earth radius (measured at sea level)
and let rgy be the distance from the center of the earth to any
point on or above the surface of the earth. Propagation in a

spherically stratified atmosphere 1is guided by the following
equation

ron(ro)sin eo(ro) = aon(ao)sin Go(ao) (Snell's Law) (B.1)

and

rodé, = tan 0,(r,)dr, (B.2)

B-1
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where (see Figure B-1)

Oo(ro) = zenith angle of ray at distance r,
¢0(ro] = angle from start of path (at r, = a)

to a variable point on the path.

We now assume a 3pecial form of height variation cof the refrac-

tive index,

n(ry) = no(ao/ro)Y . (B.3)

The refractive index varies according to a power law. Near the
surface of the earth the gradient is nearly constant. The re-
fractive index varies with height in a way similar to that of the
exponential model although the fall~off with increasing height is
slower than for the exponential model. However the model in
(B.3) is a better approximation than the linear gradient often
assumed. The parameter Yy is related to the gradient of the coef-
ficient of refraction (expressed in N-units) by

n(a,)
AN e v v 102 0’
N-units/km y 10 ag/[1lm] . (B.4)
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refractive index in (B.3) allows us to transform the coordinates
so that the electromagnetic waves propagate in straight lines in
the transformed coordinate system. Define in the great cir:le

plane

- = Loy 1=y
r = r(x) = =7 2o Yo

(B.5)

This transformation preserves distance along the surface of the

earth, but the new earth center distance r is different. In par-
ticular the new effective earth radius is

a = r(ao) = ag/(l-v) . (B.6)

The angular distance ¢3 is transformed into

6 = 8y(l-v) . (B.7)

The angles 0 are preserved *n the transformation,

—
[v4}
.

Lo 2]
~

olr,¢) = Oy{rgreg) -

3~4

For the standard atmosphere we have y = 0.25, The form of the
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The transformation (B.5) when inserted into (B.l) and (B.2) shows
that a path in the transformed coordinates satisfies

r sin 6(r)

a sin 0(a) (B.la)

rdé = tan O(r)dr {B.2a)

which vrepresents the equations for a straight 1line. Heights
above the nominal sea level are transformed according to

S S { 1~y
2a+h = 3o ag (ag + hy)
or
; hg (y+1) hg
h o= h, -4 =2 4 XYri) _x (B.9)
29

This formula describes the height reduction effect in a near

linear profile of the refractive index. in practice only the
first two terms are needed.
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B.2 CALCULATION OF SCATTERING POINT

The geometry for calculating the distances to and the

- height of the scattering point is shown in Figure B-2. The dis-

tances a, is given by a + hy,, where h., is the effective trans-

mitter height. Let us place a coordinate system with origin at

the center C and with X-axis along the 1line CR, Express in
vector coordinates the equation

TGRSR ST

B-5
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CI+TS = CR+RS
(at cos ¢, a_ sin $) + Xl(cos(¢-90°+0et), sin(¢~90°+®et))
= (ar,O) * X, (cos(90°—eer), sin(90°—0er))
where X, and X, are unknowns. Solving for X, and X, we get
X, = [ar cos 0, - a, cos(¢+®er)]/sin 0

X, = [at cos 0, = a. cos(¢+eet)]/51n o .

These numbers should be positive if the input parameters are

correct, The angle ¢, is determined from

X2 cos Oer

tan ¢ = X,/a .
r a. + X2 sin Oer 2" "x

o is calculated from $p = ¢ - ¢r' The signs of o and ¢, are

checked. ag is calculated from

. . 2 .
(ag - a.) cos ¢_= 2a_ sin®(¢,./2) + X, sin o .
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The slant range d; between the terminals is given by

2 _ 2 2
do = a, + a, 2atar cos ¢
_ _ 2 , 2
= (at ar) + 4a,a_ sin (6/2) .

The angles oy and By are then given by

X

i = 2 in O
sin aj dO si 0
X
sin BO = a. sin OO
0
00 + 80 = OO .

B.3 COMMON VOLUME CALCULATIONS

The size of the common volume is limited by the antenna
size, pointing angles, scattering angle, and atmospheric struc-
ture constant. We have already determined the minimum angles
agr By of the angle a« and B (see Figure B-3). The integration is
performed by integrating over «,B8, and the distance y perpendi-
cular to the great circle plane., It is assumed that all antenna
transmitter beams are essentially pointed at the horizons. Let
B

C

elevated receiving beam. and let a.; 08, be the corresponding

be the B-angle corresponding to the boresight of the most

transmitter and scatter angles. We have

B-8
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a, = a » § (B.10)

where 26Vte is the maximum vertical 3dB beamwidth of the trans-

mitter elements. Similarly

B, - B » § . (B.11)

We also need not consider angles where the contribution to
the integral is less than ¢, where ¢ is a program controllable

accuracy parameter. Using the results of [Equation 8 in Parl,

1979] we get

2~ 2~
(al + Bl) m < el(ac + Bc) m

or

B-10
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A weaker bound is then

a > e /™2 (q 4p ) - 8 (B.12)
~1/(m-2
B, > g /{m )(uc+Bc) - o (B.13)

(B.10) through (B.13) determine the minimum aanmaximum angles.
The value of ¢; used is min (0.2, 50¢).

Now consider the integration in the y-axis direction per-
pendicular to the great circle plane. Let 1y, be the extreme
values of the integration. We must have

y, > max(d d

t *hte’ rshre] ! (B.17)

where 6., and §,.. are the horizontal semi-beamwidths of the
transmitter and receiver array elements respectively. The max-
imum y-values may also be limited. by the scattering angles. We
assume here that the horizons are straight horizontal obstacles
so that ayg;, and B, ;. are unchanged for off-centerplane scatter-

ing. For present purposes we can use the following approximation
to the scattering angle 0,

®(aBy) = 6°(a,8,0) + (y/Ry)>

B-11
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where

If we require that
0 " (asRyy) < € 0 " (a8,0),
we get
lv,| > Ryo(a,8,0) [2/M-1]/2 (B.18)

B.4 STEP SIZE PARAMETERS

The step size in the integration is affected by the antenna
patterns and scattering angle. In addition changes the phase
difference between space diversity antennas limits the step size.
Let da, 8B and 8y be the step sizes for a«, B and y respectively.

We set
§a < stt
68 < Kcvr
where srt and Gvr are the minimum vertical half-power semi-beam-—

”

widths for the transmitter and receiver, and XK is

m
Q
Q
o
cr
0
or

generally not more than .2. In the program we set

B-12
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K = min(.5, 200xERR)
where ERR is an input parameter. Similarly we have
&y < K m1n(dt6ht, drahr)
semi-

where Ghr and Ghr are the minimum horizontal half-power

beamwidths.

The scattering angle imposes the limitation
(6 + §a) ™ > (1-K)e ™,
This limitation is the same for both a and f so we use

sa, 68 < 8[(1-K) +/™

-11.

The step size in the y direction is limited by
6" (a8, y+dy) > (1-K) 0 "(a,8,y)

or equivalently,

dy < [A2+ y2]1/2 -

B-13
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where

A = ola, 8y) R, (1-K) "2/ _y |

The limitations imposed by the scattering angle allow dynamic
step size calculations since 6(a,B8,y) depends on the scattering
point.

In computing the cross-correlation between space diversity
antennas there is a constraint on the step size due to the phase
difference between antennas. The y step size must be refined for
horizontal space diversity at either the transmitter or the
receiver, the a step size for vertical space diversity at the
transmitter, and the B step size for vertical space diversity at
the receiver. Consider horizontal space diversity at the trans-
mitter, Let Aht be the horizontal spacing of the transmit
antennas. If a step &y is made the change in the phase dif-
ference between the antennas is approximately

GyAh 27
d Y

t

§¢ =

{under the far field assumption), where dy is the distance from
the transmitter to the scatterer. Since d; is roughly the same
for all scatterers, for step size calculation we replace d, by
dppr the distance to the scatterer at (ao,Bo,O). So to limit the
phase change to §¢ we set

st

A
6y<6¢—2—";-£-};— .
t

B~14
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To decide on a value for 8¢ which yields the same accuracy
as that chosen due to the beamwidths we examine a beam transfor-
mation, Let the two space diversity beam patterns be g{r) and
gl(r) ej¢(£) where g(r) is real and ¢(r) is the phase difference.
A beam transformation yields two real patterns g(r)cos (¢(x)/2)
and g{r)sin (¢{(xr)/2) . The 3dB point for these patterns (without
considering g(r)) is at ¢(r)= n/2. So we set 3¢ = Kn/2,

Similarly, we have

KA dLr

i,

t and Avr are the maximum transmitter and receiver hor-

izontal separations we have

* Sy <

and if A
v

vt

i : and
KA 1
vy

B.5 CALCULATION OF DISTANCES TO THE SCATTERING POINT

The distances are required to calculate the delay associ-

ated with each scattering point. 1In addition, they are needed to
evaluate the cross correlations for space diversity antennas.
For the latter application high accuracy is needed. Define a co-

B T o s e S
ST el - - +

] i A
»

ordinate system centered at the nominal transmitter, X-axis along

he line to the nominal receiver location, Z-axis up, and Y-axis

[ B

perpendicular to the great circle plane. The transmitter,
receiver, and scatterer (X,Y,2) coordinates are

B-15
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T o= (uggr uppe v
R = (do FUper Yrne urv)
s = (ROt cos o, y, Ry, sin a)
= (a5, 0, 0)
+ (-Rgp cos 8, y, Ry sin 8)

where do is the distance between nominal transmitter and receiver

locations,
Rop = dp sin B/sin 0,
ROR = d0 sin a/sin Ol '

(0; = o+B), and the scattering point is determined by (a,8,y).
The geometry is shown in Figure B-4., We wish to calculate the
distances ryqs, r,.o to the scattering point with sufficient ac-

* curacy so that the variation of the differences in

27

27
b (rrsa - Tpgp) OF K (resa - rtsb)

B-16
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is much less than
the vector v.o =T

unity for two spaced antennas a and b. Write
S as

es = Yes1 t Y1 v
where
“pgl = (Ryp €os @, 0R;. sin a)
u = {(~u_, , y=u_., =u__) .
—tsl by th tv
Then, if
Tvg ~ thl r Tegl T ztsl| !
2 2 2
r - - “ts ~ Ttsl - 2V51 Yoy t Etsll (B.20)
ts tsl Tis * Fesl Yes1 * 2tsl1 * thll

Calculation of Lig
ceptible to round
This assumes that

lhim enmatnmb A o~
“i14L0O lJU.Lll\- we it

total path delay, a

e
3

[0]

relative to ry. in this way is much less sus-
off errors than a direct calculation of Lige
Lesl is known with sufficient accuracy. At
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sina/2 sinp/2

Tegp V F = dg * 2y TS )2

tsl rsl 0

(B.21)

Since the first term only contributes a constant delay it need
not be evaluated. The overall path length is then described ac-~
curately by the sum of (B.21), (B.20), and the term analogous to
(B.20) for the receiver.

For use in scattering angle calculations the distances ryg,
r,s can be evaluated with sufficient accuracy using

4 sin@
0 sin(a+B) °

B.6 CALCULATION OF SCATTERING ANGLE

It is assumed that, for each point in the scattering
volume, the scattering angle to any pair of transmitter and
receiver terminals is essentially the same. The scattering angle
calculations here therefore refer to nominal transmit and receive
antennas located in the great circle plane.

A point in the scattering volume is given by the coordi-
nates (a,B8,y). The scattering angle is the angle between the
vectors TS (transmitter-to-scatterer) and the vector SR (scat-
terer-to-receiver). The length of these vectors are denoted rg

and r,.., respectively. The scattering angle 0 is evaluated from

) (I8 + RS)?
sin"0 = 1 - ;—2——;——2-——-
ts “rs
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this is found to reduce to

. 2 2 2
cinZo - (sin“e; + Qg - QO *+ 2 cos °1°aQe)
(1 +0%) (1 + %)
a 8
where
Ol = o+ B
y sin 0
Qa = do sin «o Y/ROR
and
y sin 01
®g T G sin e Y/Rop -

B.7 CALCULATION OF OFF-BORESIGHT ANGLES

Considering a scattering point (a,B,y)

antenna with

wteo elevation above horizon

anO azimuth angle .

B~-20
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For coordinate system centered at the transmitter the ...or to
the scattering point is

cos, y, R, sin «) ,

v = (R 0T

—ts oT

where

0T dp

=
1

sin B/sin (a+B) .

The unit vector in the direction of the antenna beam is

v, = (cos Va0 COS % Sin ¥ ., cos o sin o )
where
% T % Y heo -
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The angle v, that the line to the scattering point makes with the
antenna boresight is givenr by

2 ¥ ¥ ‘2
. - —ts —b
sin” v, = 1 -
T IV |2
—ts
. 2
., (Rgp cos ¥ ,q cos(a = o) +y sin¥, o)
2 2
ROT + ¥y

. 2 . 2 2
[sin boa0 * sin“(o - o) cosTy g
2 2
* (¥/Ryp)” cosTu g0
- 2(y/Ryp) cos(a - a,) cosv, siny, ;]
/1L + (/Rgp)?]
0T *

For the purpose of antenna gain calculation the following approx-

imation is adequate:

sinzwr = [sinz(a—aA) + (sinv, 4 - y/RoT)Z]/(l + (Y/RoT)z) .




Similarly, for the receiver,

sin’y, = [sinz(B—BA) + (sinwrao—y/RORjz]/(l + y/ROR)z)

R

where

BA = BO * ¢re0

and

d0 sin «

ROR = sin( a+B) *

B.8 DEFINITION OF ANTENNA COORDINATES AND AZIMUTH ANGLES

To determine the gain of an antenna which is not circularly
symmetric two angles are required; the off-boresight angle and
the azimuth angle. (The off-boresight angle is defined in the
previous section.) Let the plane perpendicular to the boresight
be called the antenna plane. The azimuth for a given vector is
the angle between the projection of the vector into the antenna
plane and a reference vector in the plane. So a reference vector
nmust be selected in order to determine the azimuth, Basically we
choose a vector which is approximately vertical. Specifically we
use the following three conditions to determine this reference
vector (See Figure B-5.):
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FIGURE B~5 DEFINITION OF THE 1 RANSMITTER REFERENCE
VECTOR FOR AZIMUTH ANGLE CALCULATIONS.
THE x2-PLANE IS THE GREAT CIRCLE PLANE.
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1. The reference vector is perpendicular to the bore-
sight.

2, Let the boresight have coordinates (Xpr¥Ypr2p) in a co-
ordinate system centered on the antenna with the x-
axis pointing toward the other terminal and the z-axis
pointing up in the great circle plane. Then the ref-
erence vector is in the ©plane determined by
(xbrybrzb)r (xbryb,O) and (0,0,0).

3. A sign ambiguity remains. This is resolved by requir-
ing the x-component of the reference vector to have
the opposite sign of z,, the z-component of the bore-
sight. (If zp is zero then v = (0,0,1).)

r

These three conditions give the reference vector v uniquely as
r

L ) 2 2
2T Py Wty Xt Y p) /B

where A is the magnitude of the numerator. To resolve the ques-
tion of which direction to measure the azimuth angle we define
the cross product at the beamsight and the reference vector, i.e.
we define Yo T Y, X V. . where v is the boresight. (The com-
putation of the reference vectors and cross products is done in
subroutine ANTASM.)

The azimuth angle for a vector u is then defined as arctan
(a/b) where a = u - Y, and b=u v . This angle is computed
in subroutine LOOPS and used as an argument for the antenna gain
subroutines. The antenna gain subroutines are written such that
the azimuth angle is measured relative to the same reference

vector as is computed here,
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CALCULATION OF RECEIVED POWER AND CORRELATIONS

The received power on a tropcscatter link is

} IgT(£)|2 lgR(E)lz -m .3
: P = PG.G,C [I] 5 5 o(xr) = d°r (B.22)
- ! - Ro(r) Ro(r)
. R'— T —
3 where
L
X
.
& Gp(Gg) = the transmitter {receiver) boresight
gain.
Pp = transmitted power.,
_ 2 3-m  2-m,/m m-3

voltage gain relative to brresighb: for

gr(r)(gr(r))
transmitter (receiver).

! Rp(Rp) = distance from scattering point to trans-
! mitter (receiver).

; 0 = scattering angle.

;

; m = spectrum slope of the refractive index.

|

; oi = variance of the refractive index.

|

§ k = 27/)X = wavenumber of the frequency of in-
i terest.

é ro = correlation distance of the turbulent

: scatter.
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For the Kolmogorov-Obukhov turbul.uce theory, the spectrum

’ ) slope m is 11/3. In that case, it is customary to define the
structure constant Ci '

2 2 -2/3 .1/3 r(2/3)
Ch = 9Fo 2 r(4/3) °

The constant C is then

i ¢ = 2« pme1) sin B3, gy
= 0.0518 k~°/3 ci i (B.23)

The constant Ci is often measured as a function of height. For

it

m = 11/3 the received power is

g

@

2 2
g g
| T| I Rl 0‘11/3d3£ . (B.24)

53
Rp Rp

= -5/3 .2
Pp = PpG Gy 0.0518k c /1]

Observed values of m range from 2 to 5, but the mechanisms which
causes values of m different from the 3.67 predicted by the tur-
bulent scatter theory are not completely understood. It 1is
generally assumed to be due to atmospheric layering and other
nonhomogeneous or nonisotropic of effects., The NBS method uses
m=5, based on a large number of empirical results at lower fre-
quencies., We wish to match the model to “he NBS model for m=5,
assuming nearly symmetrical paths., For 0d < 10 and for a surface
refractivity NS = 301 the basic transmitter loss is

.
,
H
XTI AN AU 50 I ™M T R P o e
L}
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135.8 + 30 log 7o + 30 log 0 + 10 log To= + S0=  (B.25)

(g
o
]

= —74.2 + 30 log £ + 30 log 0 + 10 log d+0 + 0,332 » 107> od .

The bhasic loss for m=5 is derived in Parl [1979],
(B.26)
L (m=5) = -10 log (C£3) + 9.5 + 30 log £ + 30 log 0 + 10 log d
The two expressions match when
3

~10 log (C£3) = -83.7 + 0.332 « 107> od .

The 0d dependence can be attributed to the height dependence of
the refractive index. For small take-off angles, we have

Define

cg = k3 c(m=5) .
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2.15 « 10 (B.27)

For the turbulent scatter model (m=11/3) we use the Fried
model for the height dependence of Ci or equivalently oi . but
point out that there is a considerable variance in the observed
profiles. For the Fried model we have

oﬁ = 6.7 » 10°+% exp(-h/3200)
and
r, = 2/h .

Define now C11/3 in the same way as above

- 5/3 _
C11/3 = k C(m=11/3)

= 0.0518C2
n

_ : 2 -2/3
= 0.0990 °n Iy

-15  -1/3

= 4,18 + 10 h exp(~-h/3200). (B.28)
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The constant C can then be determined from (B.28) for C11/3, and
for m=5 it deviates by less than 1dB from the NBS model, i.e.,
(B.27); for 500m < h < 3000 nm. The correlation between two
receiving beams is

|9'r|2 gngéz -m,3
0 dr

7.3 X
Rp Rp

Py, = PyGeGeC [[]

where gp; and ggp, are the two beam patterns. For space of polar-
ization diversity paths, it 1is necessary to include in the
integral the phase difference from a scatterer to different ter-
minals. When the profile Ci ;s given (m=11/3 or m=5) then (B.23)
must be used while keeping Cn inside the integral. The computer
program is designed to take this into account when indicated by
the input data.

B.10 ANTENNA GAIN PATTERNS

The gain of a phased array antenna in direction (6, $),
where 9 is the off-boresight angle and ¢ is the azimuth angle, is
determined as follows. The phase difference between vertically
adjacent elements of an array is

. 27 y -
Py = ™3 dv 8in0® cos¢ Yy

where A is the wavelength, 4 is the vertical spacing of the

v
elements, and Yy is the phase shift between vertically adjacent
elements. Similarly the phase difference between horizontally

adjacent elements is




Py = 3% dh sin®6 sin¢ - Y, -

The voltage gain is then given by

sin(.5n,_p, ) sin(.5n_p_)
gl(e,¢) = P h7h X — vy X ge(e,cb)
ny, 51n(.5ph) /nV 51n(.5pv)

where n, and n, are the numbers of elements in the vertical and

v
horizontal directions and ge(e,¢) is the gain pattern of the ele-
ments., If the elements are subarrays then ge(9,¢) is determined
in the same way as g(6,¢). If the elements are parabolic then
ge(e,¢) is the gain pattern of a dish with 55% area efficiency.

(In this case ge(e,¢) does not depend on ¢.)

These equations are implemented in the program by functions
RGAIN, TGAIN and PHARGN.

B.11 PARABOLIC DISH ANTENNA PATTERN AND GAIN

The default antenna patterns assume a parabolic dish with a
55¢ area efficiency. Let D be the diameter of the circular
aperture. The boresight gain of a parabolic dish with diameter D
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The voltage beam pattern is given by

nDe
231 (—T sine)
g(e) = W, .
- sing

where

and 0 is the off boresight angle. To simplify the integration
the antenna pattern is truncated beyond the first sidelobe.

B.12 DELAY RESOLUTION

The delay between consecutive elements of the channel pro-
file is chosen to be about the variation in delay within a cell
at the horizon. Let da and dB be the step sizes for a cell
loc ted at (o, B, ¥) = (o5, By, 0). Then the delay variation is
roughly

(a7

0
At = 35— (B, da + an dB) .
0 0 0

This value is used for the delay resolution DELPB,
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APPENDIX C
PERFORMANCE CRITERION

We use as our performance criterion an approximation to the

error probability of a hypothetical digital communication modem
connected to the array.

Model of the Communication Modem

The basic modulation in the hypothetical system is phase-
reversal keying of Nyquist pulses

sin[mB(t-k/B) ]
B l/z(t—k/B)

Pk(t) =

{The normalization 1is chosen so that the¢ pulses form a set of

orthogonal unit-energy waveforms.] The transmitted sequence is
then of the form

z(t) = 7§ by by (t)

where bk = %1,

It will be assumed that a small percentage of these pulses
are transmitted with a polarity that is known to the receiver.
This is a common practice where the receiver may have to contend
with interference which might capture the tracking loops of the
measurement circuitry. The percentage of the pulses used for
this reference signal might typically be 10%., This results in an

effective loss of about 0.5 dB from the energy devoted to trans-
mitting information.




At the array output we have available a number of noisy
H replicas of the transmitted signal, which can be modelled as

Zn(t) = Gn z(t) + vn(t) .

~

We have removed the explicity dependence of G, on t because we

VA
B o

L)
1
XY

are interested in observation intervals short enough so that the
channel gains can be assumed to be essentially constant. The
values of G, in this expression can arise from individual ele-
ments of the array, from beamformer outputs, or from subarrays
that are nonadaptively steered. In any case, the receiver then

samples each 2,(t) by correlating it with every py(t) to produce
the sampled-data outputs

We now consider the problem of deciding on the peolarity cf
a single one of these pulses, say bg. In order to make this
decision the receiver will form an estimate of G, by averaging a
specific number of reference pulses preceding by, We will denote
this estimate by H,, and write it as

{We take the liberty of pretending that the reference pulses are
consecutive.) The overall performance is sensitive to the value
of K which is limited by the coherence time of the channel (reci-




procal of the fade rate) and the actual implementation. It would

be inappropriate here to dwell on the details of determining the
effective value of K.

Having estimated the channel gain, the receiver uses this

estimate in an approximation to a maximal ratio combiner by form-
ing

Under ideal conditions this will be proportional to the value of

bg, and the receiver correspondingly takes as its estimate of by
the quantity

1 if Real(2) > 0

-1 if Real(Z) < 0

Demodulator Statistics

Let G be the column vector with entries Gysr weey Gy ¢
similarly, let H be a column vector with entries Hy, ..., Hy. We
next define the noise components

-1

k=X—K ok

(o]
]
R

These noise components are independent complex Gaussian
variables with variance Nyj/K. We can then let U be the column
vector with coordinates {U,}, and write H as

Cc-3
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It will be noted that G is also a vector of complex Gaussian
numbers with zero mean; the covariance matrix of G will be de-
noted by Mg :

M, = E[G'C],

where the prime is used to indicate the transposed (row) matrix
and the overbar again indicates complex conjuguate,. The com-
ponents of Mg are determined by the array and scattering geo-
metries.

We next let X be the column matrix whose entries are

X = 2

n no,1<n<N.
[

We let V, be the noise component of 2, g

and let V be the column matrix with entries {V,}. These coor-
dinates are independent and have variance Np. It should be noted
that V is also independent of U, We then express X as




2 is then expressed as

The last step of the initial development is to define the
demodulator output

B = 2 Real Part of 7 .

This can be written as

However, we will want to express B in a slightly more complicated
way to facilitate subsequent averaging. To this end we define
the concatenated row matrix

Y' = (X',H')




and write g as

where R is a (2N x 2N) matrix with entries

Ran = 1 if m-n = v ,

Rmn = 0 otherwise.

That is, R can be written in partitioned form asg

8]
I8
-
O
4
-
A

where Oy is the (NxN) null matrix and Iy is the (NxN) identify
matrix,

We now write the demodulator error probability as

P(error) = p(g> ] by = -1) .




bl

TR TAAPRE R T e
s -

e

csirt]

This can also be expressed in terms of the conditional density of
B as

P(error) = fB(B | by = =1) d8 .

O 8

Rather than leaping into the problem of determining this density
function directly we will look instead at its moment-generating

function

-]

#s) = | £.(8] by=-1)e

sBdB

which can also be written as the conditional expectation
= sB =
os) = E(e®F | by = -1) .

If we substitute the definition of B as a matrix product this can
be written as

The next steps are simple arithmetic. Let My be the con-
ditional covariance of Y;

My = E(Y¥'|by = -1) .
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Then the (conditional) density of Y is
~N -1 -1 —
£y lylbg = -1) = o™ [uy| ™ exp(-y'm, M ),
and the moment-generating function is

#s) = [ £4(y|by = ~1)eSY 'RYgy

[The integral in this expression is a 4N-dimensional integration
over the real and imaginary parts of the 2N coordinates of y.]

For values of s with sufficiently small real parts the integrand
is well behaved and we have

$(s) = 1 1 ’

[Toq - 5 WyR|

where I,y is the (2N x 2N) identity matrix. The region of vali-
dity is simply

1

Real s < largest eigenvalue of #

YR
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The last step in the evaluation of ¢(s) is to express My in

terms of Mz. We have, when by = -1,

-G+V—l

Y = =
L ol
: J
and
-G+ V
My = E o [-G* + v' , G +U']
G+ 0
IAMG + NoIg Mg
L -Mg My + (NO/K)IN

It will be a notational convenience to write

so that we have

o(s) = [Too = sH

R

c-9

ﬁ




i
“ -t

The entries in My are easily evaluated as

Mg G oln

Mg + (Ng/K)Ig Mg _I

Error Probability and Performance Criterion

The density function £4(8) is recoverable from the moment-
generating function as

-~ 1 ety -Bs
fB(B) = 37w C_wa e $(s)ds .

This function involves at most polynomials and exponentials of B8
since ¢(s) is the reciprocal of a polynomial in s. Consequently
it is theoretically straightforward to evaluate the integral of
£4(8) on the half-line B » 0, As a practical matter, however,
this is a computationally difficult way to solve for the error
probability, and it is much better to do the integration on 8
first and evaluate the resulting integral by numerical saddle-
point methods.

C-10
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There is a somewhat more straightforward way of arriving at
a figure-of-merit for the diversity combining algorithm, via the
Chernoff bound. We have

n

Prob(Error) f Eg(B)dB
0

< f fB(B)etg if £ >0
0
= ot) ,
and therefore we can write
Prob(Error) <« ¢0
where

¢0 = Minimum o(t) .

0<t<tmax

The real t that minimizes ¢(t) is, in fact, the location of the
saddlepoint integration path as it crosses the real axis, and it
is possible to develop excellent approximations to the error pro-
bability that depend only on ¢p. Since all of these approxima-
tions are monotonic in ¢y, it is sufficient to use ¢g itself as
the performance criterion, and we will do this in most of the
evaluations in the text.
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The Determinant in Terms of the Eigenvalues of M;

Since the covariance matrix Mg is Hermitian, we can find a
unitary matrix Q for which

and

Gl

where A is the diagonal matrix of the eigenvalues of Mg:

Anm 0 if n # m .

Let S be the (2N x 2N) matrix consisting of 2 copies of Q

Q ON
s = .
ON Q
Clearly,
8'S = I,y

C-12
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and

|s] = 1.

Therefore

|8 (1,4 = sMR)S| = |1, = sMp| = 1/0(s) .

The left side of this is readily evaluated by multiplying the

partitioned matrices, and we have

IN + sA —sA—SNOIN
1/¢(s8) = .

-sA~s(N0/K]IN Iy * sA

The matrix in this determinant has mostly zero values in it, and
a simple permutation permits the determinant to be written as

Cc-13




where

1l + s -sA_~sN
n n 0

-sxn-sNO/K 1+ sxn

"2 2
1+ 20 s - [A Ny (K¥1)/K + N /K]s

The Special Case of Large K

In many troposcatter applications the coherence time of the
channel is so large that we can assume that

even if the measurement of channel gains has to be multiplexed
among the array ports. In this special case

2
0S

w)
n

1 + 2Ans - AnN

2
Lo+ A /Ny = ANg(s - 1/Ng)°

Cc-14




In this form we see that the maximum of every D, occurs at

s = 1/Ng. Consequently the minimum of ¢(t) occurs there also,
and

wE
RN

-1
o = T (1 + A /Ng) .

A Sy
. ey

B =
L

It is not even necessary to determine the eigenvalues of Mg in
this case since the last equation can be written as

T

PN

. 1
Iy # MG/NOI .

TN

%

¥

| : A Rough Approximation for Moderate K

The value of t that minimizes the individual terms {D,} is

A
n
No[An(l + 1/K) + Ny/K |

which can be written as

1
t = E<uonn 4 L]
: N, I+ 17K+ Ny /(KA ]

- ENCIIW R .M?‘-':\-'t T
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Bven if K is not large we can assume that the location of the
rinimum of ¢{t) is approximately at

N 1
tT N T OTEIR
as long as there are not too many terms for which
¥ 3
Ng/KA 2 1.

It is worthwhile using this value of t in the gencral case even
when it is not terribly accurate. This is justifiable since the
minimum of ¢{(t) will be fairly broad anyway; in addition, the use
of this value only weakens the bound on error probability, and is
therefore conservative,

We thus substitute

in the expression for 0, to obtain

n

2A /N0 ) )\n/N0

_ 1
D, = 1+ 1%

1+ 1/K K(1 + l/K)2
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: !f Again, we can express the result directly in terms of Mg as

S
L ]

F i ¢0 = l < l/K 1 .
‘( ;
; IR Iyt Mg/Mg(l + 1/K)
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APPENDIX D
PHASED ARRAY ANTENNAS

D.1 INTRODUCTION

The purpose of this appendix is to establish the array
antenna background for the adaptive Troposcatter proyram. We
will discuss the principles of and problems involved 1in the
design of phased array antennas for this application, leaving for

other sections the detailed discussion of the adaptive algo-
rithms.

D.1.1 Array Theory

A planar array antenna is a two dimensional set of elemen-
tary antennas, as shown in Figure D-1. The figure shows the
elementary antennas separated by a distance dy in the X direction
(azimuth) and dy in the Y direction (elevation), with an overall
array size of D, and Dy. It will be shown that in general,
dy = dy, that is, the element spacing is the same in the azimuth
and elevation directions. There is no underlying reason, how-
ever, to have D, = Dy, and their ratio is one of the design
tradeoffs affecting troposcatter performance.

Before continuing with the analysis of the planar array,
let us first examine the simpler case of the linear array, as
shown ia Figure D-2. Here we have assumed a uniform spacing dy,
and an incident plane wave at an angle 6 from broadside. Thus,
6=90° is broadside, while the endfire condition is for 6 = 0° and

180°, The phase difference between the wavefront at successive
antenna zlements is

2ud
A = \x cos 6 ., (D.1)
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If there are 2N + 1 elements in the linear array, then the far

field amplitude array factor is
n2nd_

N 3(—5= cos o]
A(g) = ) Ie '

(D.2)

where- I, is the complex amplitude weighting on the array ele-

If the. weighting 1% uniform, then lIn! = 1, and the

ments.
If the phasing is uniform,

phasing is the only antenna control.
that is the phase shift applied to the n-th element is na, then,

2ud
N in( Ax cos 8 - a)
A(e) = § e . (D.3)
=-N

Tha array factor in units of power, S(8), is the magnitude-

squared of the amplitude array factor,

s(8) = |a(e)|?
21 anx
sin®[5 (28+1) (—5= cos 0 - «)] (D.4)
- 27d
sinz[% = cos 6 - a}]
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Equation (D.4) shows the following factors involved in array an-
; tennas.,

1. The array factor has, in cos 6 space, periodically
spaced nulls, at values of © given by the zeros of the
numerator of Eq. (D.4):

1 21rdx
| - -1 (2kn A
6 = cos {(?‘,—"Tﬁ + 0) -i—n—d—x-} (D.5)

2. The array factor has, in cos 0 space, periodically
spaced maxima, of value (2N+1)2, given by the simul-
taneous zeros of the numerator and denominator of Eg.

(D.4):
% % (E;SE cos 6 - a) = kn; k=0, 1, ...
6 = cos™ {(2kn + a) 5%5;} : (D.6)
Equation (D.6) will always have one sclution in vis-~

ible space at the value k=0, such that:

2ndx
X cos 6 ., {(L,7)

Q
1
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Figure D-2 shows that this value of a points the antenna in the
direction ©f the incoming wavefront, Additional maxima, or
grating lobes, are given by solutions of Eq. (D.6) for k#0. The
first grating lobe occurs at

cos 0 = (o & 2m) io
X

. (D.8)

. A
cos 60 T 3

where 6y is given by cos 8g = Aa/2ndx. Thus, to avoid grating
lobes, the antenna elements must be spaced such that:

— > 1 + jcos 00 ' (D.9)

e.g., if the antenna is to be steered through all visible space,
the element spacing must be a half wavelength.

3. The array factor has secondary maxima located between
the pattern nulls of Eg. (D.5). These maxima are ap-
proxzimately located when the numerator of Eg. (D.4) is
unity, that is

274
(2N+l)(~«—5 cos 8 - c) = ¢(2m+l)ﬁ; m=0,1,...

rwln-—-

g = cos”l{ (é%;%)n + a) rﬁa~} . (D.Tp)
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These maxima and their adjacent minima define the array antenna's

4
X
3
s o ;oﬂtfﬂ:a\ntjﬁi‘. u%d

sidelobes.
4, The beam widths between nulls of a main lobe steered
to angle 6y is:
(D.11)
*
. _ -1 1 oAy - 1 A
Null Beamwidth = cos "~ [cos 8y - =z 3;} cos” " {cos 8y + mrr 1
At Broadside, g = x/2, and 3
f‘
i 3 1 3& = l
Null Beamwidth = T dx = 2 T (D.1la) ]
where L is the array length. The null separation on sidelobes is ]
half of Eg. (D.lla), or A/L radians.
The 3dB beamwidth is given by
Half Power Beamwidth = cos_l{cos 8y - 0.886 e =i ==~}  (D.12) N
0 2N+1 2d * Y
_,:‘g
- -1 1 X
cos” " {cos 8y + 0.886 i 2d 51—} X
3
and at broadside: N
3
Half Power Beamwidth = 0,886 —stre 2 = 0,886 = (D.12a) 4
- ] (2N+1) dx 3 L . * E

Bquations (D.l11l) and (D.12) show that the antenna beamwidth is a

function of the length of the antenna, (2N+l)dx, while Eq. (D.6)
of the element

ghows that the grating—-iobe spacing is a

1

separation d,.

NSO 0 e i

N




Up to this point, the discussion has been devoted to a uni-
form linear array of isotropic elements. Eq. (D.4) shows that
the resulting antenna pattern has a (sin x/x)2 behavior. The
first sidelobes of this pattern are 13.5 dB below the main lobe.
Tapering of the array can reduce the sidelobes, but will broaden
the main lobe. In addition, if the elements are not isotropic,
the pattern of the resulting antenna is the product of the ele-

ment and array patterns.

The linear array theory extends directly to planar arrays.
Figure D-3 shows the coordinate system of a planar array. The
array is in the X-Y plane, ¢ is the angle from the X axis to the

projection of the r vector in the X-Y plane, and 6 is the polar
angle. As with the linear array we denote the element weighting

by Ipns
coordinate. Thus 0<|m|<Ny, 0<fn|<N,. The two dimensional array

where the index m is in the X coordinate, and n in the ¥

factor is then

(D.13)
. N N
3 X Y .21 . .
i} a(e,¢) = § y I_exp{j 5 sin 6[md_ cos 6 + nd_sing]}.
j L L mn A X y
H m=~N n=-N
} X
|
If I, is constant amplitude, uniform phase, i.e.:
. Ion = exp{-j(mo, + nay)} / (D.14)

A1)
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then

. 27
A(8,¢) = § § exp{j[m(5= d_ sin 8 cos ¢ - «a
n o A X x)

. (D.15)
27 . .
+ n(i— dy sin 6 sin ¢ - ay)]}
The array factor in power, S(6,¢) is:
s(8,6) = |ae, ]2, (D.16)

Substituting Eq. (D.15) into Eq. (D.16),

. 271 2 .
] _ sin®[5 (2Nx+l)(—x-11 d, sin 6 cos ¢ - )]
(el¢) - 2"d

. 271 X .

sin®[5 (——= sin 6 cos ¢ - a,])]

(D.17)

.27l 2 .

sin® [ (2t\1y+1)(—>‘-—11 d, sin 6 cos ¢ - o )]

sinz[% (%1 d, sin 6 sin ¢ - ay)]

Equation {(D.17) shows that in the absence of tapering, the
array pattern of the planar array is the product of the patterns
of two equivalent linear arrays, one in the X direction and one
in the Y direction. As in the linear array, the elements must be
spaced at half-wavelength intervals to avoid grating lobes. The
concept of beamwidih is somewhat complex for a planar array, and
is best described in term: of a hemisphere, as in Figure D-4.
The intersection of the antenna beam and the hemisphere is an el-
liptical surface. The geometry of the projection of the pencil
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beam onto the surface of the hemisphere is conventionally defined
in terms of the following parameters. Let © be the beamwidth in
the North-South direction, and 9 be the beamwidth in the East-
West direction. Furthermore, let the beam be scanned to the
coordinates 6, $¢gr and define

0

<0 = 3 db beamwidth for 60 = 0, ¢0 = ¢0, i.e., if

scanning is in the X-Y plane

0
= 3 dB beamwidth for 60 90 , ¢0 = ¢0, i.e., if

OyO

scanning is in the Y-2 plane. In this case, 0yp and OyO are
given by Eq. (D.12)., It ca. then be shown that

-2 _ 2 -2 2 -2 . 2

0 ° = cos“o)[0, Scos e, + 0,sin 4] (D.18)
| and
| -2 -2 . 2 -2 2

Q = exosxn ¢ * oyocos ¢g - (D.19)
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For a square array, 0O,q = Oyo' and

0 = Oxoseceo

square array . (D.20)
Q= 0x0
Thus an array will, from Egs. (D.18) and (D.19) have broadening
in both the 0 and @ beams. For the square array the beamwidth is
dependent only on the polar angle, 03, while the Q beamwidth is
angle independent. The directivity, D, is given by

o0 0
= 0 (D.21)

-©-
(]
]

s el

6 = 60

T
g o
,

where, in Eg. (D.21), © and 9 are in radians. If 0 and Q are in

degrees, the factor of 9.87 is replaced by 32,400,

D.2 ANTENNA BEAM FORMATION

Section D.,l1 has discussed the theory of beam formation
given a set of antenna elements. 1In this section, we address the
engineering aspects of this problem, namely, how does a practical
beam get formed.

To begin with, let us find the dimension of the problem.
In the troposcatter context, a typical antenna might be 8 feet

. square, and have an operating freguency range of 4.4 to 5.0 GHz.
At 5.0 GHz, the wavelength is
&
3 x 10%
A = === = 0.06 meters = 0.2 feet. (D.22)
5 x 10

D-11
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Assuming half-wavelength separation (0.1 ft), the antenna will
have

N/2 = N /2 = 80,

for a total of 6400 elements. If a pencil beam is to be formed,
each of these elements will have to be individually phased and
their outputs summed in order to form a pencil beam pointed in
the desired direction.

It is apparent that an approach which requires some 6400
variabhle phasings is an expensive undertaking. An alternate ap-
proach is to use an RF beam forming matrix or Butlier matrix. A

Butler matrix is a hardware implementation of a Fast Fourier
Transform (FFT), although it was developed in 1960, six years
before Cooley announced the FFT. The Butler matrix has N input
and N output ports. The outputs are the Fourier transforms of
the inputs, and if the waveform incident on the antenna is a
plane wave, the output of the Butler matrix is N beams, which
simultaneously point at all visible space. To make this point
more concretely, consider the eight element Butler array shown in
Figure D-5. The notation used in the figure is as follows:

X = 4 port quadrature hybrid 6
straight-through phase shift = 50 = %

coupled arm phase shift = 0° .,

{n = phase shift of %ﬂ radians .

D-12




mv)»m"”“ -

[Sicvastital QRui

R T
TR Y EAL

Py *:"”Pj“r 54 w——
|
i
!
|
Digital, Matrxix, and Intermediate-Frequency Scanning
0 1 2 3 4 5 6 7
\/ \/ \/ \/ \/ \/ \/ \/ ‘
|
D> N
f2 4 3k 2L Zr 3t IR 1
* Units of Phase Shift are 7m/8 racdians z
;
1L iR
2L R 3
|
3L R j
4L 4R ‘
i
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We number the antenna elements 0 through 7 from left to right, |
and denote their output voltages by Eg. Tracing the signals
which go to the output ports we find the output voltages:

(D.23)

B = Eoej5n/8 . Elej6u/8 . Ezej7n/8 . E3ejn . E4ej9n/8 . ESelen/s

1R

g oilln/8

j12n/8
6 e

+ + E

7

Since there is a progression of =/8 radians on zach term, E1r
will have a maximum when E, = e~INT1/8,  that is, for a beam arriv-
ing at the right of broadside with a progressive phase shift of

/8 radians at each element. Similarly:

. . o .j5u/8 j81/8 . . jllu/8
Eor = Eg® + Epe +g,e

v ByeL4n/8

. (D.24)
+ E4ejn/8 . E5e341r/8 + E6e37n/8 N E76310n/8

Thus, there is a progression of 3n/8 radians on each term of Eopy
and Epp will have a maximum when E, = e=IN37/8  that is, for a
beam arriving on the right of broadside with a progressive phase
shift of 3#/8 radians. Table D-1 summarizes the pointing angles
of the eirht heams.

D-14
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Table D-1
Eight Beam Butler Matrix Pointing Angles

BEAM PHASE SHIFT POINTING ANGLE
AL -71/8 = =157.5° -61.0°
3L -51/8 = ~112,5° -38,7°
2L -31/8 = - 22.,5° -22.0°
1L ~ /8 = - 67,5° ~7.2°
1R n/8 = + 22.5° 7.2°
2R 3n/8 = + 67.5° 22.0°
3R Su/8 = +112.5° 38.7°
4R 71/8 = +157.5° 61.0°

The eight beams span %61° of visible space.

In the general case of an ¥~ element array, the output of
the m-th port of the Butler matrix will have the amplitude

. d . 2m~1

sin N{;— sin 8 - (—ﬂﬁ—) %}
. d . 2m—1

sin {%— sin 6 - (—Eﬁ—) % }

1D0.25)

which, upon comparison with Bg. (D.4), is seen to be the ampli-
tude array factor of an untapered array pointing at an angle

9 = sin !t 2o (AL 2md (D.26)

from broadside. The factor g in Eg. (D.26) is an integer which
can take on any value. Visible space is limited by the largest
value of g for which the argument of Eg. (D.26) is less than
unity. It is iwmportant to note that in sin © space the array

D-15
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pattern is of tne form sin X/X, with the beam maxima shifted =n/N,
Thus, the pointing angles form a linear progression in sin 6
space, but are nonuniformly positioned in physical space. The
angular coverage of an array is given by:

Angular Coverage = 2 sin =~ 5= (——). (D.27)

Adjacent beams cross over at the 2/7w level, which is 3,92 dB down
from the peak, and the maximum of each beam falls at a null of
all other beams. Thus, the Butler matrix forms orthogonal beams.

The usefulness of the Butler matrix arises from the fact
that it is a passive, lossless means of forming simultaneous
beams which essentially cover all visible spac¢e. It is made up
ertirely of four-port quadrature cougplers apnd fixed phase
shifters. As it is an FFT, it can be most easily implemented
when the number of elements in it are a power of 2, For an N
element array, the basic unit of phase shift is 180/N degrees,
which is 22.5° for an 8 element arvay, 11.25° for a 16 element
array, etc. A two dimensional Butler array is made by forming
one-dimensional arrays for each row (or column), and then combin-
ing their outputs into a second array, usiag the corresponding
outputs of each linear array. Thus an NXN plarnar array would use
2N linear arrays to foram the planar array pattern, giving N2
output beams.

D.3 ARRAYS OF SUBARRAYS

The Butler matrix has provided us with a tradeoff of build-

ing a fived multi: teeranls single bean

]

a
array. It has not, however, cut down on the number of elements.

We previousiy have shown, for exanple, khat an 8 ftoot antenna

o]

D-16
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will require 6400 elements. We now consider a reduced implemen-
tation, still using a Butler matrix, but feeding it with a
reduced number of elements, each of which is a fixed subarray. A
typical geometry is shown in Figure D-6; this implementation is
simply shown as an example and is not necessarily a desirable ap-
proach for .1 adaptive trogposcatter system. The array is divided
into 64 subarrays, each 1' by 1°', he subarrays are identical,
each having a corporate feed and phased to produce a boresight
beam. No tapering is used, and the elements are spaced at half-
wavelength intervals, so that the subarray pattern is

sinz[%-(l n sin 0 cos ¢] sinz[%g 7 sin 8 sin ¢]
s(6,¢) |= T 5 (D.28)
sin“[ sin & cos ¢] sin“[5 sin 8 sin ¢]
subarray
A cut through the 6 plane gives:
sinz[Sw sin 6]
S(6,0)| = 100 ' (D.29)

sinz[% sin 6]
subarray
and the boresight half-power beamwidth (Eq. (D.12)), is:

= = L] l’-——- L

0.18 radians . (D.30)

0
10.2
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The subarrays are spaced on 1' centers, which, at 5 GHz,
are 5A, The array factor then becomes (Eg. (I,25))

in the
plane:
sin“8{5% sin 6 - (2%:£) %}
SC8H, T — . (D.31)
BLE2Y  sin {57 sin & - (ﬁ%“l} %}

Equation (D,30) has maxima spaced at 9 given by BEg. (D.26):

cin~t L_ (199 + 2m-1
sin™" 15 { 5 )

-4
J

. (D.32)

£ 0.729. 12 2,159, 13,589, +5,062%, % 6.460, ...

The first four setsz of beams of BEg. (D.32), x 0,7Z° through
£ 5,02°, are the eight desired antenna beams, covering a peek
angular range of 10.04°, and a 3 dR angular range of 11.3°., The
beams at * 6.49° are grating lohes, which are due to the X sub-
array spacing. The subarray, however, has only a 10.2°

. b peam=-
width, as shown hy Eg. (D.36). Therefore the grating lobes will

be in the sidelcbs regicn on the subarray, and will be suppressed
by tne (sin X/X) sSubarray patterr. As long as a half-wevelength
spacing is maintainad on the subarrav, and neither the subarray
nor the array have amplitude taper.ny, the subdivision cf an
array lntc an array of suparcrays will always result iyt the grat-
ing lobes being reduced by the subarray sidelobes, Therefore,
the array antenna will have a region which can be defined as the
"main beam", with the remainder of visible space being in the
sidelobe region, The penalty which is poid for this is the nar-

rower scan angle range walch the maln veam covers. In our
example, the eight subarrays f£rcm beawms covering a 10° range,

whereas the full eighty element array, with steering capabdility

on each eslement, would; from Eq. (D.27), have an angular coverage

D-19
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of 162°, It is evident that a tradeoff is possible between the P
rumber of subarrays and the angular coverage of the beams, in
general, if there are N elements in the subarrey, each spaced at
A/2, and M subarrays, the antenna pattern in the 6 plane formed
by a Butler matrix will be:
sinz(N 5 sin 6) sinz(M > [N sin 6 - Zﬂ:l)})
D{ o) = s 2T 2. * 2% 2 /?x"-lM (D.33)
sin®(3 sin 8) sin®(z {% sin 9 -~ {ZF=)})
i}
D-20
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