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uronM 
The block atata variable for» la investigat- 

ed aa a technique to increase th« parallelism of 
a filter. Thia increase in parallelism allow» 
•ore parallel proceaaora to be usefully applied 
to the problem, reaultlng in a faster processing 
rata than ia possible In the unblocked for», 
upper and lower bounds on the sample patled bound 
and the number of processors required to support 
It  are determined. 

unmjuuutUM 

In digital filtering applications where the 
maximum processing rata ia of fundamental lm- 
portance, in particular real-tiae processing, 
higher rataa can be achieved by faatar processors 
or «ore parallel processors. For «any problems 
faatar hardware ia not practical or cost effec- 
tive compared to simple multiprocessor solutions, 
particularly for VLSI  implementations. 

Recurrence relations, auch aa recursive 
filters, specified by •fully specified signal 
flow graphs," have been shown to have a maximum 
parallallaa that la constrained by one or more 
'critical loops.* Adding additional processors, • 
beyond th« maximum parallallaa, performs no di- 
rectly useful work. However it ia possible to 
increase th« parallallaa of the problem by trans- 
formation to a block form. 

Thia paper concentrates on the block atata 
vsrlable for». Any particular fully speciflad 
•amber of thia claaa of filters baa a wall defin- 
ed sample parlod bound and any particular filter 
has a specific fully specified form which results 
in the minimum sample parlod bound. Determina- 
tion of the exact bound requires • lengthy search 
•«•ration. However, the determination of the 
sample parlod bound can itaalf be bounded by the 
gross propartlaa of th« system matrix. thia 
paper explores the block atata variable form and 
determines an upper and lower bound on the 
•sample period bound,* and the associated number 
of proceaaora required. Zt ia also shown that 
for many problems the blocked form baa lower 
computational requirements, and decreased finite 
word effects, even If evaluated on a typical 
sequential  uniprocessor. 

Flow Graph Specifloatioa 
A fully specified flowgraph la a generalised 

flow graph in which the node operations ace all 
fundamental operations of th* constituent pro- 
cessor on which the algorithm will be implemented 
Ml. The definition of the node operations in 
th« fully specified flow graph sets the granu- 
larity with whir» the parallelism can be 
exploited. 
Flow Crapha SosmamT. 

Given a fully specified flow graph it is 
possible to eoapute the lower bound on the sample 
period bound (or rata bound which la the recipro- 
cal of the sample period bound), which ia always 
achievable. the ample period bound la beat 
understood in the context of a recursive slngle- 
time-index flow graph (e.g. an IIS digital 
filter), although the concept ia meaningful in 
ayateaa which have as explicit aaaple period. 

For auch system« the sample period bound la 
given by 

»•here t varies over the set of all loops. D Is 
the total delay aroaad loop *. * 

D   " I -V (2) •   let   * w 

Th« computational time to perform the operation 
of node 1 is d|, and n ia the number of delays 
in loop 1. This la a generalisation of a result 
published by «enfors and Nuevo [2]. 

Any loop for «bleb T, • D. 
dared a crltlclal loop. 

Let D be the total computational delay of 
all the nodes. 

>/n, • T0 Is oonsl- 

D - IN,] (3) 

Then the maximum parallel ism, or number of pro- 
ceaaora in a 'processor optimal* solution, is the 
total delay divided by the aaaple period bound. 

9  - D/* (4) 

The maximum parallelism thus defined la the maxi- 
mum parallelism such that at all instances r 
operations can be performed in parallel. Zt la 
important  to note  the thia la not the 
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1 ctpt as the maximum number of pacallal oparationa 
that can ba achieved by a "greedy scheduler,* In 
«hieb aaeh operation la performed as aoon aa it 
1« possible. Rather, It la a constant laval of 
paiallallaa which allows for axaetly P operations 
to ba performed en «vary cycle. Another 1B- 

poitant point to ceatate la that ualng more than 
P proceaaora will not dactaaae the sample period 
bound. 
Optlnallty 

Tbia work aaaiaaaa an Implementation that 
meet a tha following optlmallty criteria. An 
Implementation ia proceaaor optimal If it exhib- 
lta perfect proceaaor efficiency, if every cycle 
of every proceaaor la uaed directly on the funda- 
mental oparationa of tha algorithm (flow graph) 
and no cycloa are uaed for aynchroniaatlon or 
ayatem control. If an implementation achieves 
tha aaaple period bound it la considered rate 
optimal. From the previous section it ia aeon 
that an Implementation that ia proceaaor and rat« 
optimal requirea exactly P proceaaora. 

Any ayatem, H(t), with a rational transfer 
function can be expressed In atate variable foiai 

Ks) - C(sl A»"1» • D 

Let Wk be the atate vector, 0, the Input and yk 
the output at time k. The atate aquation la then 
the familiari 

»k • «k + "k (S) 

For simplicity and clarity this paper will 
only consider single input, single output (8I«0) 
systems. The    generalisation     ia     straight- 
forward, for the case of a ayatem of order I, A 
la »m, B la Vial, C is 1* and D a acalax. 

The original scalar system, I, can be eon- 
verted to a block form system, zL, that operatea 
on a block of L (sequential) inputs and produces 
L (sequential) outputs In parallel. Our goal is 
to show that aa the block aise lncraasea the 
sample period bound decreases. 

The new system, L, Is defined in tens of 
the original ayatem aa followsi 

Jt    A • »*, B •  [AL"1mlAt"2l|   •••  IABIB] 

C 
CA 

£-1 

Bk " I", 

I 
a    D 

CA1*"2»   •••   i*M  a   *D 

n.   °»x*i 

yk • t'f*   »«.-i 

°rx«L-i J 

'aX-«.-! J 

k>1 \*nk 

•". («) 

The.poles of I and L are the eigenvalues of 
A      and \ respectively,     denoted      C1,#*9»V'*.) 
and (VV ",Xn]- Sinc* *"* • ">•" V^i" •* 
the block sise L increases, the poles of X. 
spiral Into the origin. This leads to increased 
stability and decreased coefficient quantisation 
error since the coded coefficients are those of 
A. Given fixed point implementation with finite 
precision and a sufficiently large block sise, 
l*i L, reduces to an FIX (no recursion) system, 
which Tiaa unbounded parallelism. The sampling 
rate of an FIX system is bounded only by avail- 
able resources and tolerable throughput delay 
ID. 

what of the parallelism of a blocked ayatem 
with block sise less than M? A difficulty with 
the block stste variable (state variable) Coca is 
that while the A matrix defines the form of the 
recursive part of tha network, it does not speci- 
fy the order of the additions. To rephrase, the 
state equations only define the generic signal 
flow graph. Recall that only a fully specified 
signal flow graph has a sample period bound and 
that a generic graph may have a large number of 
different fully specified graphs with different 
eaaoclated bounds. A good example is a non- 
blocked. Nth order direct form canonic filter. 
Tha optimal fully specified flow graph ham a 
sample period bound of tM*tm (add time • multiply 
time), while the worst ease fully specified graph 
has a bound of <"-i)t,*t . For a specifie 
generic graph, it is straightforward to find the 
fully apeclfled form with the lowest possible 
sample period bound ualng an lterstive tree 
height balancing algorithm. 

Despite these difficulties, it is atill 
possible to specify an upper and lower bound on 
the sample period bound of the state equations. 
Consider the. block stste system. Computation 
ot yK given w is son recursive end can be 
lapped with folloving .blocks. If necessary. 
matrix product »k

n
k- Vk can be pr»computed, 

proceeding blocks, if necessary, resulting in a 
new simple Input vector. Thus, the sample period 
is determined by the recursive portion miss a 
simple input. Examining the form of the update 
equetlona it can be seem that the update of each 
atate variable can proceed in parallel. This 
viewpoint leada to tha determination of the 
bound on the sample period bound. 

In general for the b}ock stste form, 
renoe of seroes In the \ vector are rare tor 
non-sero Input sequences. All of the multiplica- 
tions of(A)1j*(«k)1 «an proceed in parallel 
contributing ß delay, of t_.    Summing the products 

w  1 of A with n_  piss  the   input   term   (V )   , 
a balanced  tree  sanmar.   Introduces  a «Slay 

of row 
with 
of  llog-n.lt , where n.  is.the »2"i of 
coefficients" in  row 1 "ent Ä.    The upper 
the  sample period  is therefore determined by the 
row of A with the most nan  sero coefficients. 
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To determine the lernt bound, recall that 
what deteralnea th« bounds ata loop«. Tba update 
of th« atata varlabla ("w> i i» a weighted sum of 
a\l atatf variables. Iz in th« computation of 
tKtf (»V< do«« not form.* loop with 

light« th« aus of all „<V v  J0 
Lth   (*),  then 
(J   ll   Uli   Mt 

"k'i'    «"k'i 
weighted «üB BI «ü a\*Ki4, jm 

of indexes j such that Ck) j aoea not for« a loop 
with jWk)4).can b« preeoapdted aa a alngla Input 
(•^•(•Jij'Cli) j)). *hle leads to at laaat OM of 
th« state varxablea not containing a pr«ooaput- 
abla pattlal walghtad an*. Therefore, tha lowat 
bound auat b« greater than or equal to that aaso- 
elatad with tha tow of A with tha laaat 
eo«fflel«nta. How«v«c ainea It la poaalbla that 
th« critical loop contain« a p unit dalay lnataad 
of a unit dalay If la necessary to dir id« tha 
computational dalay by p to yield tha aanpla 
p«tlod bound. A nacaaaaty condition Cot a p, unit 
dalay to axlta in a critical loop la that A con- 
tain« p towa with ptaclaaly on« non-sero 
eoeffleiant. 

Per block for» systems, what la of aaln 
lntaraat In not tha aanpla period bound, but tha 
aanpla parlod bound pat output aanpla. Thia la 
juat tha aanpla pat lad bound divided by tha block 
alsa, which ylalda tha average tin« batwaan euc- 
eeaaive output aaaplaa. Tha pat output quali- 
fication betaaftar la implied whan referring to 
tha aanpla patlod bound, unloaa atatad other- 
wlaa. Tha bounda on tha aanpla patlod bound la 
therefore given aa follow« (for tha original 
unblocked ayataa substitute L-l and A for A)i 

riog3(aln (n^ • 1)lt# • tB 

«*o« 

flog2(»ajt{ni) • Ult^ • t§ 
(7) 

•here nt la tha number of non aato coefficient« 
In tow 1, p la tba nuabat of towa of A with 
exactly on« non-aato coefficient and L la tha 
block  als«. 

Zf th« ayataa la not a patallal ot serial 
cascade than blocking tha ayataa with a block 
alsa of MM typically taaulta In a ayataa with 
no (very faw) non-aato coefficients. This ta- 
aulta In tha worst case aanpla patlod bound ofi 

ftog2<n>1)1ta* tm 
(I) 

Conpntatlonal naqulraaaata 
Tha eonputatlonal requirements in terms of 

tha nunbat of operations and nuabat of required 
processor« la d«rlv«d by assuming a straight 
forward implementation of tha atata «atlabl« 
equations. Zt la further aaauaad that tha ayataa 
la of atata apaoa form, and haa no aato coeffi- 
cient« (worst caae). Tha constituent processors 
ata aaauaad to have katnal operations of "two 
Input addition* and "multiplication.* 

Tha nuabat of multiplication«_are the, nuabat 
of non aato ooefflcients In A, i. C, and D (A, B, 

C and D). Tha nuabat of addltlona ata n-1 for 
each n alaaent row a iMiami Inner product and a 
for each addition of a element rector«. Tnere- 
fota tba number of multiplies pat output and the 
number of addltlona par output ata given byt 

l>    NBult/output - »J • M * 1 

•add/output   m fr* • • • 1 

•mult     a  . v       »mult .  L*1      L 
•-J--T 

(•> 

(10) 

»add       jffcfj .  _ . L-1      Z. 
outs«*--t   *»*-rmi 

Aa can be seem from Fig. 1, for block alsea 
laaa than appro*inatley "or, tha total number of 
multiplication« la less than tec the nonblocked 
or 1*1 for«. Th« minimum for tba number of mul- 
tiplies par output occur« for a block alaa of 
L-/3T. Tha graph« for addltlona are nearly 
Identical to those for tha multiplication, with 
tha minima occur lag at L - /»(M-1).    nor« 
realisations aay ear« lean slgnifleant savings la 
total operations. 

Making tha aaaunptiae that t^-ot , allows 
for a simpler determination of the nwahar af 
processors or parallel la* froa the nuabat of 
operations. Aa la the previous portion«, thia 
reault la for tha fully populated state spaoe 
form, which la known to have processor and rate 
optimal solutions. The nanber of processors tm 
aqual to the total arithmetic delay divided by 
the sample period hound. 

,.». satts*. LJaffleaUJas t       „„ 
*o    Floskel T • a * 

*      D (•e1)(a^»n-a>l(ov11L>»<a-1)Ll/a 
V     i riog^KVÜe *• 

° na> 
For block system« the ormmr of the nuabet of the 
processors required la anuehly proportional to 
tha block also squared (since H U fined). Com- 
bining equations (•) «at (12) tor, ami, the 
number of normalised processors as a function of 
the normalised rate boat« is shown in rig. 2. 
normalisation in thia ease implying that for l*»l, 
one normalised processor a-ooessss at a normalis- 
ed rate of one. Thus the graph indloatoo the 
relative oast of a given tats increase. 
•lock normal Foe» 

Increasing tha block sine tends.to 
the apareenees of the ayaten matrix A, and 
leada to larger Increases in the number of opera- 
tions. Zf the •Blocked system is of bloc* 
diagonal fern, the blocked system matrix is at 
the sane block diagonal form, with a» stt 
decrease la sparsemess. anile the first 
that aay occur to the raster is tha Jordan 
for«,  thia  Implies eomplsm arithmetic which 

 L-L, 
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to greater complexity and an lncreaaad aaapla 
period bound (t^-conple* • t-real v t^-real). 
1ha parallal caaeada of aecond eidar nocaal form 
aactlona laada to an attractive block diagonal 
for». 1ha block normal torn la particularly 
attract!«« In that Barnes I«) has ehown that 1) 
average roundoff nolaa la dacraaaad by a factor 
of L, 2) for L aufflclantly larga all autcaonoua 
llalt cycla can ba eliminated, 3) minimum nolaa 
unblockad tors« load to minimum nolaa blockad 
foraa and 4) acallng for fixed point implananta- 
tlona of tha unblockad ayataa raaults la • 
blockad ayataa with proper acallng. 

To dataralna the aaapla par led bound and 
parallallaa of a parallal normal tora eonaldor an 
Nth ordar (M »van) ayataa with block alaa L. Tha 
ayataa matrix for thla eaaa la block diagonal 
with aaeh block balng a 2x2 eubmatrix with .non- 
taro coafflclonta. Since aaeh row of A baa 
exactly two non-saro coefficient«, tha upper and 
lower bound« on tha aaapla period bound are the 
aaaa. Therefore tha aaapla period bound la given 
byt 

rio*JJ1V*a     *!•*!      («»Dt. 
(13» 

Rote   that   thla   ayataa   exhibit»   direct   linear 
epeedup with block alae. 

Counting operation« par output aaaplet 

»ault/output - 2M(L*1)/L •   (L+1)/3 

«add/output - lia*1|A •   (L-1)/2 

The parallallaa la thant 

(14) 

-     T- £      («*1 )L2*((a+1 )4N+o-1 fr*(4«-a)R    „„ 
2e*4 

The number of proceaaor la thua of order tr/2. 
The nuaber of aultlpllea la alnialsad tor L 
- i/S, and the nuaber of adda la alnialaad for L 
• /S 

Tranaforalng a atate variable ayataa to • 
block atate variable tora lncreaaea tha effective 
parallallaa and decreaaea the aaapla period 
bound. The aaapla period bound aayatotleally 
approach«« direct linear speedup M the block 
alae lnereaaea, with an attendant coat of ordar 
t* prooeaaora. The block tora not only baa 
better materleal propertlea than the unblocked 
tora. It aey require fewer operation«. Evan If 
the laplaaentatlon la to be a eaejuentlal unipro- 
eeeaor the neaerlcal and eeaplealty propartlea of 
the block tora offer algnlfleant beneflta over 
the unblocked fora. 
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Fig. 1 Nuaber of aultlples aa a function of 
block also for atate apace ayataa of 
order •. 
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Fig. 2 Normalised nuaber of prooeaaora required 
to achieve a noraallted «ample rate 
Increase tor state apace eyatem of order 
a. 
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