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INCREASING TEE PARALLELISH OF PILTERS TEROUGE TRAMEFORMATION T0 BILOCK STATIR VARIABLE FOB

D. A. Schwarts and T. P Barnwell, III

School of Electrical Engineering
Georgie Institute of Technology
Atlanta, Georgia 30332

The block state varisble form is investiget-
od as e technique to increese the parallelisa of
e filter. This increase in parelleliam allowe
mOre parellel processors to be usefully epplied
to the problam, resulting in e fester processing
tete than {s possible in the unblocked fors.
Upper and lower bounds on the sample pariod bound
and the number of processors required to support
it are deterained.

In digital filtering epplicetions where the
naxinum processing rete is of fundamental {im~
portence, in particular real-time proceseing,
higher tetes can be achieved by fester processors
or more parallal processors. For many problems
fester hardware is not practical or cost effec—
tive compared to simple multiprocessor solutions,
particularly for VLSI implementations,

Recurrence rceletions, such es recursive
filters, specified by “fully specified signal
flow grephs,” heve been shown to have ¢ maxiaum
parallelisa that is constreined by ons ©Or more

®critical loops.” Adding additional proceesors,

beyond the maximum parallelism, parforms mno di-
gectly useful work. [Bowever it is poesible to
increase the parallaliam of the problsa by trane~
formation to e block form.

This pat concentretes on the block state
varisble form. Any particular fully specified
nember of this class of filters has ¢ well defin-
od sample pariod bound end any particular filter
hes ¢ specific fully specified form which resulte
in the minimum sample pariod bound, Determine-
tion of the exact bound requires ¢ lengthy search
eperetion. Sowever, the determination of the
sample pariod bound can itself be bounded by the
gross properties of the systea matrix. This
pepar explores the block stete variable form and
determines an upper and lower bound on the
“sample period bound,” and the associeted number
of processors reqQuired, It is also showm that
for many problems the blocked form has lower
computetional requirements, and decreased finite
word effects, even if evaluated on a typical
sequential uniprocessor.

Plow Graph Specificstioa

A fully specified flowgraph is e generalised
flow greph in which the node operetions are all
fundamental operetions of the constituent pro-
cessor on which the algoritim will be implemented
[1). The definition of the node operetioms in
the fully specified flow greph sets the granu-
larity with which the parallelism can be
exploited.

Flow Graphs Bounds

Given e fully specified flow graph it is
possidble to compute the lower bound on the sample
period bound (or tate bound which is the recipro-
cal of the sample period bound), which is alwvays
achievable. The sample period bound is beet
understood in the context of e recursive single-
time-index flow graph (e.g. an IIR digital
filter), although the conocept is meaningful in
systems which have mo explicit sample pariod.

For such systems the smmple pariod bound s

given by
"o"";"”/‘z’ ™)

Where £ varies over the set of all loops. D" is
the total deley arommd loop 2.
D = ) (4]
L ‘E‘ i )

The ocomputational time to perfora the operetion
of node { is 4,, amd n_ is the number of delays
in loop &. This is e generalization of e result
published by Renfors and Wuevo (2],

Any loop for which 1"'- p‘/n"- ro is consi~
dered ¢ criticial loop.

Let D be the total oomputetional delay of
all the nodes.

L f ta,) 3
Then the maxiaum parallelism, or number of pro~-

cessors in e "processor optimal® solution, is the
total deley divided by the sample pariod bound.

Ps Dﬂo )
The naximum parallelimm thus defined is the maxi-
muR perallelism such that et all instances P

operetions can be performed in parallel. It is
important to note tha this is not the same oon-
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cept as tha maximum number of perallel operations
that can be achiaved by a "graedy schedular,® in
vhich aach operation is performed as soon as it
is posaibla. Rather, it ia a constant lavel of
parallelisa which allows for exactly P operations
to be performed on every cycle. Another im~
portant point to reststa is that using mora than
P proceasors will not decraase the sample periocd
bound.
imal

This work assumas an implementation that
meats the following optimality critaris. An
implementation is procesaor optimal if it exhib-
its perfect proceasor efficiency, if evary cycla
of evary procassor is used directly on tha funds~
mental operationa of the algoritha (flow graph)
and no cycles ara usad for aynchronisstion or
systam control. If an implementation achievas
tha sample period bound it is considered rata
optimal, From the previous aection it is eeen
that an implementation that is processor and rate
optimal raquires exactly P procaasors.

Any systam, H(s), with a rational transfac
function can be exprasaed in state variabla forms:

E(s) = C(s1 -A) "3 +D

Let W, be tha atate vector, the input and y,
tha output at time k. The state equation is then
tha familiar:

Inow,, - M, + 30,

le + “’x (5)

Por simplicity and clarity this peper will
only considar singla input, single output (8180)
systems. Tha generalisation is straight-
forvard. PFor tha case of a system of ordar W, A
is M, B is Wx1, C is- 158 and D a scalar.

Tha original scslar system; I, can he oon-
verted to a block form systes, L, that operates
on & block of L (saquantial) inputs and produces
L (sequential) outputs in parallel. Our goal is
to show that as tha block sise incrasses the
sampla period bound degraases.

The newv system, I,, is defined in terms of
the original system as follows:

It Aeal, i [aL""51ab"2) ooo aniB]

Yoy = M0 ¢35,
Y, = G +DL )

The _polas of I and are the eiganvalues of
A and A raspectivaly, not ﬂ, ,)z,-n--,x }
and {Ashyocedy)e  Binca A=a”, then agel?. fs
the block sisa L incraases, tha polas ‘of
spiral into the origin. This laads to incra
stability and decraased coefficiant quantisation
ciror sinca tha coded coefficiante ara those of
A¥. Givan fixed point implemantation with finite
precision and a sufficiently larga block sise,
LN, reduces to an PIR (no recursion) systes,
which s unbounded parallalisa. Tha sampling
rata of an FIR system is bounded only by avail-
abla rasources and tolarabla throughput delay

[31.

What of the perallalisa of a blocked systes
with block size lass than M? A difficulty with
tha block stata yariable (state variabla) fora is
that while the A matrix defines the fora of the
recursive pert of tha nmetwork, it does not speci-
fy the ordar of the additions. To raphrass, the
stata equations only define tha ganeric signal
flow graph. Recall thet only a fully specified
signal flow graph has a sampla period bound and
that a ganeric graph may have a large number of
diffarant fully specified graphs with diffareat
associated bounds. A good example is a non-
blocked, Nth ordar direct form canonic filter.
Tha optimal fully specified flow graph has a
sampla period bound of tatt, (add time + multiply
time), while the worst csse fully specified graph
has a bound of (N-1)t o Por a specitic
genaric graph, it is straightforward to find the
fully specified form with tha lowest possible
sampla period bound wusing an itarative tree
haight balancing algoritim.

Despite these difficulties, it s still
possibla to specify an upper and lower bound on
tha sample period bound of the state equations.
Congidar the block stete system. Camputetion
of y, given is non recursive and can be ower~
lapped with following blocks, if necessary. The
satrix product B,Uy® V; can he precomputed, over
preceeding blocks, if mecessary, resulting im a
nev simpla input vector. Thus, the sample period
is datarmined by the recursive portion plus a
simple input. Examinisg the form of the update
equations it can be seen that the uwpdsta of.each
state variabla can prooeed in parallel. This
viewpoint leeds to the detarmination of the wpper
bound on the sample period bound.

In general for the block state fora, ooour-
rence of saroces in the V. vector are race for
non=gero input sqquences. of the multiplice~
tions of(A), ';:!) can procesd in parallel
contributing ) J.o! tye Sumaing the progucts
of tovtotlvuh'.pl-m input ters "l;’ 0
with a balanced tree ewmmar, introduces a hﬂy
of |logan,it,, where n, is the number of mon sero
oocfﬂeionu in rov 1 of A, The upper bound on

‘the sample period is therefore Getermined by the

row of A with the most men sero cvefficieats.
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To datarmine tha lower bound, recsall thet
vhat dstsrainas the bounds ara loops. The update
of tha stata variabla (W,), is a weighted sum of
all ststg vsriables. x} in tha computation of
(Ik)‘, ('k)ci does not fors_ a locp with (") then
the weight sun of all (W.),, JeJ (J is t.to set
of indgxas J such that (W,) s not fora a loop
with jlk)}),can he pneapt?td as a singla input
(6= (A) 44 ('k)?”' This leada to at laast one of
tha ststa varfiadblas not containing a precomput-
abla partial weighted sum. Tharafora, the lower
bound must he graater than or pqual to thet aseo~
ciated with the row of A with the laast
coefficients. HNowevar since it is possibla that
tha critical loop contains a p unit dalay insteed
of a unit dalay if ia necessary to divida the
computational dalay by p to yield the sample
period bound. A necassary condition for a g mmit
dalsy to exits in a critical loop is that A com~
tains p rows with precisely one non-zaro
coefficiant.

For block form systems, what is of main
interest in not the sampla period bound, but the
aampla period bound per output sampla., This is
just tha samzpla period bound divided by the block
sisa, which yialds tha avaraga time between suc~
cessiva output samplas. The per output gquali-
fication heraaftar is implied whan rafarcing to
the ssmpla period bound, unlass stated othar-
wise. Tha bounds on tha sampla period bound (s
tharafore given as follows (for the ogiginal
unblocked systea substituta L=1 and A for A):

flqz(l:n {n) st st

) < !‘° <
h.egz(m(n*) + t)'le. *t,
T - - N
. Wara n; is tha number of non 3ero coeffigiante
in tow i, p is the number of rows of A with

axactly one non-sato coefficiant and L is the
block sise.

If the system is not a psrallal or serial
cascade than blocking the system with a block
sisa of LX=2 typically rasults in a system with
no (vaty faw) non-saro ooefficiants. This tre-
sults in the worst case sampla period bound of:

£ Mog, Men)le, ¢ ¢,

H T (L }]

t ir enents

Tha computational requirements in terms of
the number of operations and number of required
procassors is darived Dy assuming a straight
forward implamentetion of the stete variable
equations. It is further assumed that the system
is of stete space form, and has no saro coeffi-
clants (worst case). Tha constituent processors
ara assumed to have karnal operations of “two
input eddition® and “"multiplication.®

The number of multiplicatiqns ara thq nuambsr
of non sero coefficisnts in A, B, C, and D (A, B,

3/4

C and D). Tha number of additions ara n-1 for
each n elemant zov a colmmn innar product and m
for aach addition of m element vectors. There~
fora ths number of multiplias per output and the
number of additions per ostput ara givea by:

I+ Meult/output = e

2 (9)
Hadd/oatput = R + W + 1

o or

Nadd _ mQM-1) L
cutpet” L M+ =3

(10)

As can he sem fram « 1, for block sises
lass than approximatlay s the total number of
nultiplications is lass than for the mnonblocked
or L= form. Tha minimum for the number of msul~-
tiplies per output occurs for a block aise of
L=/2N. Tha graphs for additions ara neatly
idantical to thoss for tie multiplications, with
the minima occuring at L = 0i=1), Mota spaces
raalisations may hava less aignificant savings ia
total operatioms.

Namber of Processers

Making tha assumptien that t =t _, allows
for a simplar detsrminstion of the n o2
processors of parallelimm fras the number of
operations. As ia the grevious portions, this
rasult is for the fully populated stete space
form, which is known to hava processor and raté
optimal solutions, The mmmber of processors (s
equal to the total aritimetic delay divided by
the sample period bound,

pelaoletil s genueon,
% ﬂq‘IOﬂOC .

an

- 3 z 4

p =2 aodstl(aenn-sel (e e (e EL/2 |
T c l.q’pﬂ *q a
(]

(12)

For block systame the ordac of the number of the
processors tequired is seughly proportional to
the block sise squared (since W is fixzed). Com-
bining equations (8) amd (12) for, e, the
number of normalised procassors as a function of
the mormalised rate bound is shown in Pig. 2.
Mormaliszation in this case implying thet for 1mi,
one normalised proocessor processes at & normalis~
ed rate of one. Thus the graph indicates the
ralative cost of a given sate imcrease.

Block Normal Form
Incrassing the block sise tends_to decesse

the sparseness of the system matrix A, and them
laeds to largar incraases in the number of opete-
tions. If the mmblochsd system is of bhlock
diagonal form, the bloched system matrix is of
the same block disgonal form, with =m0 atteadamt
decraase in spacssseas. Wails the fizst fora

that may ococur to the raaller is the Jordan mormal
form, this inplies comples aritheetic which leads
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to grester complexity and an incressed sample
period bound (t-oaplu = ~zeal ¢ t g-feal).
The parallel d order norlu. fora
sections leede to - utuutln block diagomal
form. The block notmal fors ie particularly
sttrective in that Barnes {4] has ehown that 1)
sverage roundoff noise is decreased by s factor
of L, 2) for L sufficiently lsrzge all eutomonous
1imit cycle can be eliminated, 3) aminimum noise
unblocked forms leed to ainimum noise blocked
forms and 4) scaling for fixed point implements~
tione of the unblocked system resulte ia a
blocked systeam with pecoper scaling.

To deternine the emmple period bouhd and
parallelisa of e parallel normal form consider an
Wth order (N even) systmm with block eise L, The
eystmm matrix for this case is block diagonal
with each Dlock heing e 2x2 submatrix with non-
sero coefficiente. S8ince eacd row of A bas
exactly two non-sero ooafficiente, the upper and
lower bounds on the sample period bound are the
same. Therefore the sample period bound is given
byt

g nq,m.ﬁ. a.ﬁ- (ett) e b
o T L L

Wote thst this system exhibits direct linear
speedup with block eise.
Counting operetione per output sample:
.huu/mm s MWLM/ ¢ (L) /2
;ud/output s W(LHM)/L ¢ (L-1)/2

The parallelimm ie then:

(et )L e[ (av1) aNea-1 1L (dar2)W ot
2ot

(14)

peTm .

The number of processor ie thus of order L3/2.
The number of multipliee is nminimised for L
= 2/, snd the number of sdde is mininised for L

Traneforming a - state variadble syetema to a
block etste variable form increasee the effective
parallelismm and decreasee the eample period
bound. The sample period bound asymtotically
approachee direct linear speedup as the block
oiu increasee, with an sttendant oost of order

pcooesesore. The block form not only has
mm numerical peoperties than the unblocked
form, it may require fewer operetions. Bven if
the implementation is to be ¢ sequential unipco~
cessot the numerical and oomplexity properties of
the block form offer eignificent benefite ower
the unblocked fora.
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