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\\ ABSTRACT

This report represents the final stage of distributed breach development
for the conical shock tube. An initial design of the distributed breach has

been used to find the effect of prestressing before firing on the stress

state after firing. Finite element method has been used to evaluate in-plane

and hoop stresses before and after firing. A coarse finite element model

is used to find points of high stresses before a finer mesh thereat is adopted.

Results confirm the existance of a prestress three dimensional continuum
which creates a very high resistance to firing loads. In fact, stresses
have literally been improved after firing due to prestressing effect. The
results of the initial design led to modifications which can further improve
the stress distribution in the breach. The improved design with its working
drawing is included in the redesign section of this report. The next stage
is the manufacturing and testing of the improved design. This will be in-
cluded in this final report of the project.

Test results indicate a marked improvement over the old tube. No

failure has occured and the efficiency of simulating real blasts is about

90% which is much higher than the old tube.
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I. INTRODUCTION |
! A program of development and redesign of the existing shock tube is |
? ; presented. One of the main problems which has limited the continued suc-
| cessful use of the tube is the plastic deformation in the breach resulting
E [} from the detonation. The objectives of this proposed continuation of the
current program is to develop a new design to the shock tube with a dis-
' tributed breach which should enhance shock wave characteristics by mini-
g p mizing the energy losses associated with the plastic deformation. ,
! An explosive driven hydrodynamic conical shock tube was developed
i [1, 2, 3] to test the integrity of a device in an explosive underwater
{ environment. The original design utilized an expendable mild steel breach
i to confine the explosive. The number of shots which could be made before 5
( replacing the breach plug varied from a large number when using a blasting |
cap only to one or two when using 10 grams equivalent TNT. Also the loss :
L of energy through the resulting plastic deformation severely limits the j
amplification factor - reducing it from 7770 theoretically to approximately
i L 1400 when using 10 grams equivalent TNT. The shock tube was fabricated in
I two pieces of approximately four feet and six feet in length. This was done
L to facilitate handling of the tube, whose total weight is approximately
1 L 1200 bounds.
In this interim report the four foot section of the tube is discarded f
: L and the equivalent amount of charge is distributed over a spherical surface H
kj { .L_ at that station. Current results of dynamic history response of the shorter

", H shock tube [3] has indicated no degradation in natural frequencies or mode
shapes. The dynamic stress wave in the tube wall indicated tolerable magni-

tudes. Stress analysis is herein initiated to investigate the proposed de-
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To get a closer insight into the stresses in the distributed breach, a 1
: 1
i simple and approximate model is selected for the expendable part. After the .
analysis is completed accordingly a redesign of the breach is consumated de-
E ] pending on the findings of the preliminary analysis.
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I1T1. DESIGN CALCULATION

11-1. Description of Initial Design

The initial design is illustrated in Figure 1. Again, use of an expend-
able section is recommended to orevent the occurrence of damage to the body
of the tube. Use of this piece will also permit the insertion of an isolation
layer between the breach and the tube body.

This new design provides a prestressed three dimensional continuum, part
(1), Figure 1, around the detonation area which creates a triaxial state of
hydrostatic stress [4]. The proposed design has, therefore, considerable ad-
vantages over the existing design.

AR spherical wave front of 4' radius should exist immediately after de-
tonation. Initiation will be by use of a single blasting cap located at the
tube centerline. The rate of detonation will be approximately 20,000 fps.

The rate of propagation of the shock wave in water is approximately 5000 fps.
Therefore the surface of the distributed charge should not be spherical, but
should actually be concave by almost 1/4" at the tube centerline (5000/20000).
It is recommended that the initial feasibility be determined, using a flat
surface. This would allow use of DuPont Line Wave Generator which is a per-
forated flexible explosive prepared from Datasheet. Its thickness of 0.050"

is almost exactly what is needed to provide the desired total amount of explo-
sive,

The available finite element computer program (SAP IV) [5] is used in
the stress analysis of the expendable part (part 1, fig. 1). To perform
the finite element analysis it is necessary to identify the boundary conditions

and to define type, form, and number of element.
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Line Wave Generator (Detaprime)

Double cone expendable section 6.

Steel backing jaws 7. Blasting Cap
Steel backing jaws 8. 0-ring
Existing Shock Tube 9. O0-ring
Existing Back Up Plate 10. Long Bolt

Figure 1. Schematic of Distributed Breach




| | 11-2. Boundary Conditions
| 1 Stiffness calculation of the expendable part is required to properly ?
evaluate the external pressure before and after firing. The prestressing é
[ : before firing will be altered after firing. The following calculations ;
§ are performed to define both conditions. %
¢ 11-2. 1. Stiffness Calculation :
} Figure 2(a) and (b) show diagramatic sketches of the two ends of the ex- }
! i pendable part. The contraction dé of an element of length dx (Fig. 2(a)) is .
given by ;
g i
dé = %dx (1)
|
where E is Young's modulus and A(x) is the area of the element dx at distance
1 x and P(x) is the total force on the element such that
L P(x) = )%? m (r+a) /{rta)Z* x? = pan(x2-a?) (2) a
L where p is the normal press on the surface and the cone angle is 45°. The ?
i y total contraction is given by :
L x=h ) x=h . j
s=[ X = L I%)’%:—%ﬁ—dx
{ L X=a X=a
. L p
! = g (h-a) (3)
{ | L
g : The resultant force is given by
| L
.5 F = pa(h? - a2)s (4)
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Hence the stiffness of the part shown in fig. 2(a) is
o6 o
ky = o = nE(h+a) (5)

Similarly the stiffness of the end Fig. 2(b) can be obtained by substituting

a=01ineq. (5) to get
ko = nEh (6)

The equivalent stiffness of the expendable part is then

ki k nEh(h+a)
= —L—z— =
ke ki+ k> 2h+a (7)

For the initial design h is selected as 3 in. and a as 1 in. Hence eq. (7)

yields
k, = 162 x 10¢ 1b/in (8)

where E = 30 x 10° psi for steel.

The stiffness of a single bolt (part 10 in fig. 1) is expressed by
k= EF =1.06 x 10° 1b/in
where £= 12.5 in and A = 0.44 in® for 3/4 in diameter bolt. The total

stiffness of the 12 bolts is
ky = 12 k = 12.7 x 10 1b/in (9)

II. 2.2 Surface Pressure Before Firing

A diagramatic sketch of the expendable part with the surface pressure

before firing is depicted in fig. 3. To evaluate the surface pressures px
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Figure 3. Diagramatic Sketch of the Expendable Part
with Surface Pressure Before Fixing

Figure 4. Diagramatic Sketch of the Expendable Part with
Surface and Detonation Pressures after Firing
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and p2 the total force generated from the prestressing caused by bolt tightening
should be obtained.
Using 3/4 in SAE Grade 5 bolts with proof strength Sp= 85,000 psi and
ultimate strength o, = 120,000 psi. The initial tightening force Fi is given
by [4]
F; = 0.9 SpA,

where At is the tensile area = 0.334 in?. Therefore Fi = 25,550 1b.

The maximum force produced by tightening all 12 bolts is then
Fg = 12 F; = 0.307 x 10° b (10)

The normal pressure pr generated by this force is obtained from

NE i
/2— surface area

2
where the right conical surface area is vZ2 nh. Substituting the values of

FB and h gives

p, = 10,844 psi (M)

From equilibrium of the whole part (Fig. (3)) the ratio £2 is obtained

P1
by
P2 _ Area of right conical surface
P1 Area of Teft conical surface
from which p, is calculated as
pz = 12,184 psi . (12)

Ly




II. 2.3 Surface Pressure After Firing

After firing the expendable part will be subjected to the loads as shown
in Fig. 4. To evaluate the new surface pressures p,' and p,' after firing the
preloading effect should be taken into account. The forces in the bolts after

firing Fg is obtained from [4].

.~ k0

where Q is the total force induced by the pressure wave and is given by
Q=p, - mal (14)

Pm is the peak pressure at the location of the distributed breach (at 4 feet
from the apex cf tube) and equals 25,000 psi [1]. Substituting the values
from eqs. (8,9,10) and (14) into eq. (13) given

Fg' = 312 x 102 1b (15)

The force in the expendable part is given by [4]

ke Q

Fe = —F_T—-b 5 - - FB (16)

which upon substitution gives
Fo = -234 x 10° b (17)

The normal pressure pi' generated by this compressive force is obtained from

Py’ i Fe

S surface area

which gives
py' = 8,276 psi (18)
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Ep——




F

2 e Frms e

o= M= =0 |

From equilibrium of the whole part (Fig. (4)), the normal pressure on the left
conical surface may be calculated by

F -0
0 4ey €
P2 Teft surface area

I11.3. Finite Element Implementation

A preliminary coarse finite element model of the expendable part is used
first to find the points of high stresses where a finer mesh should be used.

A refined finite element model is then adopted.

11.3.1 Coarse Finite Element Model

Figure 5 shows the selected mesh for the coarse finite element model with
both element and node numbers indicated. The mesh was generated by using
computer program GRID [6]. Twenty-five quadrilateral axisymmetric elements
based on an isoparametric formulation are used. The total number of nodes is
thirty-five.

SAP IV computer program [5] was used to evaluate the stresses inside the
expendable part. The three principle stresses were obtained at the center
of each element. Figure 6 shows the in-plane compressive principle stresses
and their orientation for the case of prestressing before firing. The third
principle stress (hoop) is shown in Fig. 7.

Stresses generated after firing were also computed and displayed as

shown in figures 8 and 9.

11.3.2 Refined Finite Element Model

It can easily be seen that high stress gradients occur around the detona-
tion area. For this reason a finer mesh generated by the computer program

GRID was adopted around that area. A general computer program was developed

= 6,175 psi (19)
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Figure 5. Coarse Finite Element Model
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Figure 6.

In-plane Compressive Principal Stresses
Before Firing
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Figure 7. Third Compressive Principal (HOOP) Stresses
Before Firing
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Figure 8. In-Plane Compressive Stresses
J After Firing
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to display the mesh, element number, and stress values at the center of each
element. A listing of the program is included in Appendix A. Figure 10
shows the refined mesh with element numbers indicated and figure 11 depicts
an enlargement of the crowded part of the mesh.

A. Stresses before firing

The output of the computer program for the three principle stresses
(in-plane o, and o, and hoop o3) is plotted in figures 12-17 for the prestres-
sing before firing. It should be noted that the printed positive values of
stresses are compressive and vise versa.

Since the distortion energy theory of failure [4] is used in this analysis

the value of the equivalent von Mises stress is calculated from

o, = V il{o1 - 02)%+ (o2 - 03)° + {03 - 01]7] (20)

Figures 18 and 19 display the values of % at the center of each element. It
is obvious from fig. 18 that the value of 7 is nearly zero at the outer
boundary of the expendable part except at the mouth where there is no conti-
nuity of the material. This demonstrates the state of almost hydrostatic
stress and the suitability of the design of this part.

B. Stresses after firing

Principle stresses (o1, 02, and o3) computed after firing including the
effect of prestressing are shown in figures 20-25. Comparing values of stresses
before and after firing reveals that the state of stress has literally been
improved after firing due to the prestressing effect.

The von Mises stress (oe) is also plotted in figures 26 and 27 which in- i
dicate the improvement in the state of stress after firing.

A complete 1isting of computer printbut results for both before and after

firing cases is included in Appendix B.
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ITI. DISTRIBUTED BREACH REDESIGN

The results of the previous analysis reveal that improvement could be
attained through an appropriate redesign of the breach.

Maximum utilization of material could be achieved by eliminating areas
of low stresses. Furthermore, the high stress generated at the mouth of the
expendable part may be reduced by the reduction of the mouth extension.

Such modifications are implimented as shown in figure 28.

Detailed working drawings of distributed breach parts are included in
figures 29-31.

Hot rolled G4140 steel is selected for all the parts of the distributed

breach so that it would have the sufficient strength and ductility requirements.

Such a material has a yield strength of 63 x 10° psi which will provide a

factor of safety of 1.4 for the worst loading condition of the initial design.
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Figure 28. Redesign Modification of
Distributed Breach
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IV. TESTING OF THE NEW BREACH

IV-1. Charge Calculations

The fundamental principle behind the conical shock tube is that a small
conical charge placed at the vertex of the conical tube produces the same shock
effect as a spherical charge of equal radius would produce in a free field [1].
The shock tube merely isolates this portion of the wave from the rest and ideally
has no effect on the wave characteristics [1]. The shock waves in the tube should
be sperical in nature and the explosive energy liberated by the conical charge
will be concentrated into the solid angle of the cone rather than radiating in
all directions. The small amount of explosive thus behaves 1ike a much larger
amount and an amplification is realized. The amplification factor (AF) can then
be defined as the weight of apparent spherical charge to that of the actual coni-
cal charge. The AF then can be viewed as the ratio of the solid angle of a
sphere (4r steradians) to that of the cone.

The form of the shock wave may be approximated by a discontinuous rise in
pressure followed by an exponential decay [7]

P(t) = P exp(t/e). (21)
The scaling laws are empirical correlations relating the peak pressure (Pm),
time constant (), and other shock wave parameters to the charge weight (W) and
the range (R) from the charge center. For TNT the following relations apply
[8]: |

P = 2.16 x 10*(W}/R)2 22 (22)

0 = 58 Wi(wi/R)7o-22 (23)
where W is the charge weight in pounds, R is the distance from the charge in
feet, Pp §s the pressure in psi, and @ is the time constant in microseconds.

The tube is to generate a shock wave whose characteristics are equivalent

to that of a 125 pound spherical charge of TNT up to a range of 11.0 feet. The




scaling laws show that to match peak pressure the same value of reduced dis-
tance (w%/R) is required. Obviously, this places no constraint on the length
of the tube. However, to match the time constant (), the same apparent weight
must be used since

0= w%f(w%/r). (24)
Therefore, to match both the peak pressure and the time constant an apparent
weight of 125 pounds must be used (NAPPARENT = AF(W)TRUE) and the formal tube
length must be at least 11.0 feet from the center of the apparent charge to the
muzzle end.

From the old tube, the cone angle

tan o/2 = (3)in/(11)(12)in, (25)
or o =2 arctan (0.0227) = 2.6°.

The theoretical AF can now be determined from [1]

AF = sin~2(2.6/4) = 7770. (26)
Assuming for now that this level of amplification is achievable the true weight

of explosive required is [1]
WacTuaL = Wapparent/AF

= 7.3 gm TNT (27)
The Dupont Company manufactures a flexible sheet explosive with trade name
Detasheet which is available in perforated 0.05 inch of what they denote as
line wave generator. Blasting caps with a two grain strength were used to
initiate the Detasheet. Since Detasheet is made of PENT, and since 1 gram of
TNT is equivalent to 9.45 grains and 1 gram of PENT is equivalent to 15.4 grain,
then the actual weight of the Detasheet (used for the 7.3gm TNT) should then

be

o5 arQully

The two grains blasting cap should replace
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WpETASHEET = 2 9rains

2 .
Y54 " 0.13gm (29)
The net required Detasheet that should generate the same energy as required at
the vertex of the cone is then

W = 4.48-0.13 = 4.35gm (30)

DETASHEET
With the known density of the perforated Detasheet, this weight should come

from more than one layer of the explosives.

Iv-2 Test Results

Five tests have been conducted at NRL-Orlando with the new design with-
standing all of them without any sign of failure to the distributed breach. The
only observation is the minor imprint on the surface due to the perforated pattern
of the Tine wave generator (Fig. 32). No change in shape or dimensions has re-
sulted and no plastic deformation occured.

The first shot (#1) was conducted with only 2.6 gm of Detasheet. This
represented only one layer of the explosives and was selected as primary test.
The resulting pressure wave is shown in Fig. 33. With approximate extrapola-
tion of the curve and using the approximate calibration of this gage (76B,-253.1
dB/1V/uPa), the peak pressure was found to be approximately 7500 psi. Using
the scaling laws ratio, the pressure for a full charge should have been approx-
imately 9000 psi. The expected pressure at this distance (10 ft) for a 125 pound
spherical charge of TNT is 9869 psi (see Eqn. 22). This would give an efficiency
of about 91%.

The next two shots (#2 & #3) were carried out with the full charge of 4.35
gm of Detasheet. Due to probe failure in shot #2, the results were discarded.
Shot #3 resulted in the pressure wave shawn in Fig. 34. Performing the approx-
imate extrapolation and calculations, we can find the pressure to be 8800 psi.

This would represent an efficiency of about 89%.
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Fig. 32
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The following two shots (#4 and #5) were performed with a fortified
rubber gasket inserted between the breach assembly and the tube and with the
full charge of 4.35gm. The results are shown in Figs. 35 and 36. Although no
calibration value is available for the gage used, the pressure response has
jmproved particularly at the peak.

In all tests, however, the pressure gage mounting has suffered from the

blast and needed to be changed.
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V. CONCLUSION

Test results of the new distributed breach design indicate that the new

| design can withstand the full load without any sign of failure or damage. The

efficiency of simulating real blasts is about 90% which is very high compared
to the efficiency of the old tube. The pressure gages, however, have suffered
from the shock wave and required replacement almost after every shot. A diff-
erent type of gages might be used and a different gage mounting should be de-

[ | signed.

r

o

50

et




-,,*1
T
L -

~ P o

= /e r—r

APPENDIX A

Program listing for element mesh drawing
and displaying element number
and stress values at element
center
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