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This paper introduces a new itecative image
restorstion method which fs capable of restoring
noisy, blurred images by incorporating s priori
knowledge about the image and noise statistics
into the iterative proosduce.. The iteration
squstica comsists of s prediction part which is
based on & soncsusal insge model description and
an innovation part which is weighted by & gain

optinigation and is opdated et each--
step of the iteration. This image restoration

schems can be interpreted as an iterative proce-

dure with a statistical oconstraint on the image

“n.

In many practical situations, the image
degradation can be adequately modelled by a
linear bdlur (motion, defocussing, atmospheric
turbulence) and an additive, white Gaussian noise
process [1]. If the observed image is repre-
sented by an M arzay of real Ppicture
elements {y(i,3): 16¢i@M, 1<iN}, then in the
spatially invariant case it can be described by
the following two-dimensional (2-D) convolution
summation:

Y4, ) = [ I bimnix(i-m,I=n)ew(i,F) w
(Io'\)“b

where y(i,3) is the degraded image; x(i,)) is the
original image; w(i,4) is the additive cbserva-
tion noise, which is assumed to be uncorrelated
with the imsge data; and d(n,n) 1is the impulse
response or point-spresd function (FSP) of the
imaging system that is introducing the bleuc. It
is assumed that the support of the FSF, W,, is
such smaller than the sise of the image.

with this model, the problem of image re-
storation is ctepresented as the problem of

to get an improved image x(i,J) which is as close
tc the original imsge x(i,3) as possible, subject

ummmmnwmm’ AT
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£actor. .. The gain is computed using » linear 5B -
#pcooeture

operating on the degraded image y(4,)) im order -

“This work was supported in part by the Joint Services Rlect-
and in part by the Netherlands Organization for the Advancemer: o:

84 06 18

! v« ' 7To be presented at the 1984 International Conference on Acoustics, Speech, and

ccession For
"}!"IC

GRA%IL
'O TAR

1.0858 i

cvieoneed

+ Re M. Mersereau, R. W. Schafer ’ ‘Avarl mag/or

- ; (,_‘-»:.-,_

Tiut

Dopan:-cnt of Electrical ﬁwuoouu , !

Delft University of 'tochnol.qu i I

Delft, The Netherlands ! /4/ | :

, i

to a suitable optimality criterion and given some

prior knowledge about the PSF of the blsr, the
image, and the noise statistics.

Inverse filtering techniques, which aim st
pezfect restoration of the imsge by usimg the
oconvolutional inverse of the blur, become poor
restoration technigues when noise is presest.
This cen alsc be the cass with the class of iter-
ative crestoration algorithms which were
introduced a {2). The {iterative tecimiques,
however; 40 have advantages when compared with
the inverse filter, such as the possibility of
incorporating physical constfaints on the dats
{2), san-machine interaction {3}, and the ability
to deal with non-linear or shift-varyisg bdlurs
[2}. Therefore, oonsiderable effort has been

od in trying to diminish the high noise
sensitivity of the litecative procedures, while
still producing reasonably sharp images. Of the
different procedures proposed o far, we msntion
here the low-pass filtering of the obserwvad dats
prior to applying a constrained iteratiwe proce-
dure {4], the “reblurring® procedure [2]}, amd the
use of some type of stopping rule basel en the
error residual and the variance of the chescve~
tion noise [S]. In all of these appresaches,
however, no attempt has been made to incosporate
statistical knowledge of the image and the noise
directly into the restoration schese, as is com
mon practice with Wiener and Kalman filters and
is done in the nev proposed algoritha.

We assume that the original, undistorted
imsge can be interpreted as a sample from a
édiscrete, homogeneous random field {fx(i,9):
1€t Qt, 1<§M). Por convenience we will sssume
that the mean of the image has been estimstad and
subtracted, Por a discussion of autoregressive
models for images with non-zero means sse [6). .
Under these assunptions the origimal image ={i.J)
can be modeled by the 2-D autoOregressive sgmtion
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where x(i,J) represents the image intensity value
at spatial coordinates (i,§) and where u(i,3j) can
be viewed as either the input process or as the
error in generating x(1,%)..

The shape of the region $§ specifies that
some samples of x(i,j) must be computed before
others., Causality, bhowever, is & time-domain
concept which has no meaning when talking about
the spatial varisdbles in an image. Imposing an
ordering relation on the samples is unnstural and
should be avoided if possible. Therefore, we
restrict ourselves to the ‘class of non-causal
image models for which

8= ()t Paes?, (P *0,00) (3)

In this case, the image can be seen to be a sam-
ple from an anisotropic homogeneous -random f£ield
that satifies a noncausal stochastic difference
equation [7]. WNote that with this description we
make no assumptions asbout the separability or the
exponential form of the autocovariance func~
tion, Also nots that unlike causal ainimum
varisnce wmodels, noncausal minimum variance
models, are not driven by white noise (7].

There arq different approaches that can be
followed to estimate the parameters a(p,q) of eq.
(2). If we have a noise-free unblurred prototype
image the noncausal model could be fitted to the
measured sutocovariance function (under the as-
sumption of homegeneity), for different values
of p by using a linear MBE fitting procedure.
Which model ultimately serves to describe the
image data would depend upon some model guality
criterion [8]. 1In the case we have noisy image
data, we could make use of the model parsmeter
identification procedure described by Raufman et.
al., (9}.

A NEW ITERATIVE RESTORATION ALGORYTEM
Porsulation

Given the observation equation (1), repre-
senting the noisy blurred image data, and &
noncausal image model description of the original
undistorted image (2), we proposs the following
{terations

xp(403) * A ¥(4,9) (4a)
X (49 = At eex, _ (4,9) )

;k(l.J)-;k(l.j)*’l.[!(l,1)-b(l.j)"u.k(£.j)‘]‘c,

Bere a(i,3) and b(1,J) result from the imege and
observation models respectively, k denotes the
iteration index, and ** denotes 2-D oonvolu-
tion. It should be noted that the predicted
signal in (4b) and the filtered c.cnal 4n (4¢)
sre truncated after each step in -+ iteration to
the sise of the observed image » .

The proposed iteration seems to be similar
in many respects to a Kalman filter. Contrary to
the recursive Kalman filter, however, this filter
is iterative by nature 4ue to the noncausal image
and bdlur description., 1In [(10) Pu and Ksufman
suggest a similar scheme for restoring noisy
unblurzed images. They report improved perfor-
mance relative to recursive noise smoothing
algorithms.

Pilter Gais

To compute the gain at the kth iteration
in (4), we minimige the ticy

I = Bz (2019 P (s)
The resulting opthduluof:\.enhmu
be equal to
e __b(0,0)
* 1 I »*mm
(-ol).b
2
1- »
1 1 I b 1,9 @
.' ‘1,3)' ] ’ k [}

where cf is the variance of the observation
noise and where is the number of pixels in the
support region W [11j, For a bhomogensous image
the support region can be taken to be the whole
image, but for a nonhomogeneocus image it would be
a subssction., If a windov is used to limit the
support region, then a nev model and a nev gain
should be computed for every window position,
The window size should be larger than the support
of the blur but small enough so that over the
region covered by the window, the blur is space~
invariant.

By oonsidering limiting cases, the innove-
tion gain can be shown to satisfy the bounds
0 < & < b(0,0
Il »am n
(l.n)-b

Por the case of linear motion blur the upper
bound will be equal to one, while for a gaussian
blur it may be somewvhat larger.

Souvergence

To investigate the convergence of the itera~
tion {n the spatially {invariant case, we caa
tewrite (4) in the frequency Gomain.

;o"'x"‘a"’b""x"‘a)
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Bere Alw ,u.) is the frequency zesponse of the
pndscui 2\4 B( .:%) is the fregquency response
of thg blur. 3 lving the iteration we see
that xk‘“i"h) can be written as

k=1 L3

gy < L 3 {1 atey e liodpiey o 1

'(.1'.:) + "u"‘x"“z’ {9)
If we assuss that
A. - l. for all k » K

then the swm in (9) becomes a geometric series

which converges if

=g & <
%7200

2 both A{ ) and B{ ) are known, equation
{10) govla;.t aeans ;:'.zcuntatng ;eommo
values of A . Purther insight into this issue
might be !l!!f by oconsidering the following 1-D
example.

Remsples

An arbitrary image line is modelled by the
tirst-order autoregressive relation

'““1":’ | -u.-l“l(-lm‘) 1€1,

z(n) = a x(n-1) + a x(n*l) ¢ u(n) (1)

This imsge line is then convolved with a simple
linear motion blur of the form

1 4
T 0<n<I~1

bin) = (2)
0 , otherwise

Then the necessary' condition for convergence is
found by substituting into (10) which results in
the inequality

2 gin?k A sin(ihy
1+ _;.‘..:..Ttr__).- 2 .%'.-'—-—Z;m
14 sin @ sin€3)

-1

(o

1
< Thoos oT 29

In Pig. 1, the expressions from the left- and
right~hand sides of this inequality are plotted
for A =1, a=,5, and L=7,14. 1t shouvld be moted
that convergenoe oondition is not satisfied
for L=id, A wvay to overcome the oonvergence
problems in the second case is to use the. re~
dlurring ' procedure [2). According to this
procedure the degraded image is, first oonvolved
with the point spresd functior t .-i,~4), where *
denotes the ocomplex oonjugate. w:ile this
forthes degraldes the image it “uaientees that
the owerall blur, b(i,4)** '~i,~3} vill have a
teal, monnegstive transfer “he resulte

‘symmetg ic

ing equations for the algorithm and the filter
gain are very similar to the ones given by equa~
tions (4), and (6), [11). Por an S-neighbor
2-D noncausal prediction wmodel,
however, that was used with a linear motion blur
given by equation (12), the condition for conver-
gence is never satisfied, thus reblurring is
always necessary. More generally, convergenoe is
assured for every positive real transfer function
of the distorting systes provided that
|A(‘“ﬁ)|‘1-

Exper imental Results

Because of the preliminary nature of this
work, only one-dimensional results are pre~
sented. Bach image line is modelled by the
first-order autoregressive relation described by
equation ‘(11). The optimal value of the coeffi~
cient a {a found by minimising tbe squared ecroc
between the noise~free, blur-free image line and
the best output of the prediction model, ovesr a
whole line. White Gaussian noise was added to
the distorted signal. The performantce of the
filter was evalusted by measuring the impcovement
in signal-to-noise ratio (SWR) after Kk iters-
tions, according to the formula

" ] 2
I I, 9-xt.9m
i=9 2!

[
:

Ay = 10 109, R "
T Ixts,5-xt4,3))
i=1 §=1

Figuze 2 shows the removal of a Gaussiar and @
linear motion blur for the "girl® isage., Re~
dlurcing was used for the linear motion case. 1n
both cases the signal to noise ratio was 2048,
The SMR improvements were 1.9dB for the Gaussian
blur and 7.2 4B for the motion blur. Detter
results would be expected if s true 2-D algorithes
were used which could exploit the vertical corre~
lation between pixels.

Discussion and Conclusions

As mentioned in the introduction one of the
advantages of the iterative procedure is the
possibility of incorporating physical (possibly
nonlinear) oonstraints on the restoration. Ia
{2] these constraints were expressed in terms of
operators which project a signal onto an allow-
able subset of signals, and can be interpreted as
hard comatraints. 1In the new algoritim the esti-
astion pert can be interpreted ae a ‘wof:®
statistical constraint. The similarity in fors
between the two mentioned iterations suggests the
possibility of bybrid slgoritims where nonlimear
predictors are used whioch incorporate both physi-
ocal and statistical information.

The performance of the nev stochastic itera~
tive algorithe has been oompezed with the
petformance of the deterministic algorithm of
Schafer et. al. (2], in the presence of moiee
(11]. Por high S¥MRs the deterainistic algocitim

—



outperforms the stochastic one, while for low
SNRe only the stochastic algorithm converges. It
should be noted that the reblurring procedure
eliminates the noise at high frequencies,
resulting in an improved performance of the de-
terministic algorithm.

Further research will involve experimenta-
tion with 2-D causal, semi-causal, non-csusal
linear prediction models, use of shift-varying
models for the blur, simultaneous estimation of
the gain and the prediction coefficients at each
jteration step as well as identification of the
parametcrs of the distorting system.
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Figurs 1 : Convergence analysis for motion blur.
{s) L7, 8=.5,2=1., (b) L=14 , 9=5, A=1.
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Figure 2 : (a) Noisy blurred image : Gaussien blurst. dev. '4

sample: . SNR=2008 , (b) restored imaor : improvement in
SNri=1.945 (c)nohyuumd image - mauon blue , Le®,
rebiurrang , SNA=20d8 , (d) restorsd image : improvement
in SNKk=7.2d8
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