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AM AM to a suitable aptimality cr iter ion and givenms

priLo knowledge about the POP of the himr, the
Thits paper Introduces a mew iterative Image Image. and the noise statistics. OI

restorat ion method which to capables at restoring
noisy. Maurred Inages by Incorporating a priori Inverse filtering techniques, which aim at COPY
knowledge about the image and nois statistics perfect restoration of the Image by using the NIsPtcrgo
iato the Iterative proa.me.. lbe Iteration convolutinal Laverne of the blurs bernm powr 3

equsatios coneishe at a Prediction- pat 1*u Is restoration techniques whem noise is present.
bane& m a mmssl image nadl a Mewipticn ad This am also he the asse with the class at iter-

anImmoatim part whim Is weighted by a gain ative restoration Algoritm which "to
faster. -, the gafa Is oomputed sing a linear WM Introduced in (2). The Iterative toeigme

opimuai neem is updted at sub- hwver , do have ahvatagen when - , -d with
step of the Iteratin. This Image restoration the inverne f ilter * suft as the posihflity of
sahe. can he Interpreted as an iterative prove- incorporating physical constraints on tin date
lure with a statistical constraint on the Image (23 , man-machine interaction 131, and the ability
data, to deal with nan-linear or shift-varyng blurs

12). Therefore, considerable efftort ha been
ZOMMOOCRMexpended In trying to diminish the high noise

sosihtIvIty of the Iterative procedures, while
In many practical situations. the Image still producing reasonably sharp Images. of the

degradation can be adequately modelled hi a different procedures proposed no far, we mtima -

linear blur (motion, 6 efocussing, atmspher ic here the low-peas filtering of the observed data
turbulence) and an additive, white Gaussian noise prior to applying a constrained Iterative prove-
prove"e 1lJ. If the cbserved Image is repre- dare (41, the OreblurringO procedure 12), mid the
sented by an mm array of real picture use of awm type of stopping role based en the
elements (7(i,3)1 141iN lcjcn) then in the error residual and the variance of the ebrva-
spatially invariant case It can be described by tion noise IS]. In all of these approaches,
the following two-dimensional (2-D) convolution however, no attempt has been made to inooporate
samstiont statistical knowledge of the image and the noise

directly Into the restoration scheme, as Is cm
non practice with Wiener and Ralnan filters and

y (i1) n Cbmnximjn)wi1 (1) is done in the nay proposed algorithm.

*where y(iej) is the degraded imaget x(i.j) Is the
original imagey w(i,j) is the additive observe- We &see that the original, undistorted

*tion noise, which is assumed to be wnoorrelated Image can be Interpreted as a eomple fta a
with the Image dotal and b(m,n) is the Impulse discrete, homogeneous randus field 1Ci4)t
response or point-spread function (PIP) of the 14 41 , 1 4j 4N). Por convenience we will ass
Imaging system that Is introducing the blur. it that the sean of the image bas been eti ~ and
Is assomed that the sayport of the We1 V60 is subtracted. For a discussion of autorpessive
soft smaller than the also of the Uwae. models for images with non-ace, means an 16. .

Under the" assumptions the original image zjIj)
*With this model, the problem of Image re- ca be modeled by the 2-D autoregressive agtaa

storat ion Ls represented as the problem of
operating an the degraded Image y(I,1) In order Iij I ~~~~-..q4~~ 2
to get an Improved Image z(1'j) whim is as close (~)9
te the original Image zMi,j) as possible* subject

This work was supported in pert by the Joint Services Xlect- r-Y ar under contract tOA;S4I-44024
and in part by the Netherlands Organsation for the Advancatri v, 1 Iesparch (so).
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where N11,1) represents the image Intensity value The proposed iteration sms to be similar
at spatial coordinates (i,J) ad where uI.J) can in many respects to a Kalman filter. Contrary to
be vieVed as either the input prces or as the the recursive Ralman filter. however, this filter
error in generating z(ijs). 1s iterative by nature due to the noncausal imag

and blur description. In 110) Pu and Kautman
The shape of the region 5 specifies that suggest a similar scheme tot restoring noiay

nm amples of x(ij) must be computed before u butted images. 2hey report Improved perfor-
others. Causality. however, is a time-domain zone relative to recursive noise smoothing
concept which has no meaning when talking about algorithms.
the spatial variables in an image. Imposing an4 ordering relation on the samples is unnatural and IFLJI a
should be avoided If possible. Therefore, we
restrict ourselves to the class of non-causal To ompute the gain k. at the kth iteration
Image models for which in (4), we minimise the quwtity

I- ((ptq)l p 4q 4P (p,q)*(G,O)) (3)

In this came, the iage am b sen to bee am- (k
le from an a•toneropic bomagena••• -random field

that satifies a noncausal stochastic difference The resulting optimal vale of Ai - he ghmr to
equation 17). Note that with this description we be equal to
make no assnmptilos about the separability or the
exponential form of the autocovarlance furn-
tio. Also note that unlike causal minimm At "- "-b-0,0
variance models, noncausal Wainn variace I b(m4,n)
models, are not driven by white noise 171. (VIA) b

There ae different approaches that can be
followed to estimate the parameters &(pro) of eq. 2
(2). If we have a noLse-free vnblurred prototype % -

isge the noncausal model could be fitted to the I
smmption of homegeneity), for different values % r0 k..~4eiIi)2
measured autoovariane function (under the as- [ (6}

of p by using a linear f fitting procedure.
nich model ultimately serves to describe the where a w. is the varlance of the observation
image data would depend upon me model quality noise od where N, in the nmber of pixels in the
criterion Is). In the case we have noisy image support region V [11l. For a bomogeneca imag
data, we could make t of the model parameter the support region am be taken to be the whole
identification procedure described by Kaufman et. image, but for a nonbomogeneous image it would be
l., 19)]. a subsection. If a window is used to limit the

support region, then a ne model and a new gain
A -~ TII5 ignac.AI018 MAD l should be computed for every window position.

The window also should be larger than the support
V@Ozelatio of the blur but small enough so that over the

region covored by the window, the blur Is spe-
Given the observation equation (1), repre- invariant.

senting the noisy blurred image data, and a
noncausal Image model description of the original by considering limiting cases, the innove-
undistorted image (2), we propose the following tion gain can be shown to satisfy the bounds
iterations 0 4 k b(0r0)

10 yAkj 4 (7)
(4a) (~)

-0(L3 turn) %

For the me of linear sotion blur the upper
o (i,j) a a(L,e)*)k-l(i.,) (4b) bound will be equal to one, bhile for a gaussian

blur it may be somewbat larger.

To investigate the oonvergence of the Iter -
tere ni1,J) and b(ij) result from the image and tion in the spatially invariant case, we am

observation models respectivly, k denotes the rewrite (4) in the frequmy domain.
iteration index, and *5 donotes 2-D sonvolu-
ties. It should be noted that the predicted
signal in (4b) and the filtered L .Lnal In (4c)
ate truncated after eacb stop in U- iteration to
th ils of the Observed image P '. Xk(O 1 ) A('1 ,S )Zk l(',;2)



+Ak T 46 NW) -aai YA(6p W);k- (w ra') Ig equations for the algorithm and the filter
gain are very simiar to the on"s given by eguar-
ticme (4), and (6), Ill]. rot an S-fneighbor

Sars h(OWO w, is the frequency response of the 'symetric 2-D noncausal prediction model.
predictor and D(. * ) is the frequency response~ however,* that was used with a linear motion blur
of thA blr. Utsaving the Iteration we me given by equation (12), the condition lot me-
that oil Aa) can be written an genes is never satisfied, thus reblurring is

always necessary. nore generally, convergence is
k1k asrdfo vr ps tiv eal transfer f-lIcton

1 .1 J11Alw,& )of te dstoring system provided that

work, only one-dimensional, results are pro-
les for all k 1% sented. sc mg litis modelled by the

first-order autoregressive relation described by
tea the su 1& (9) becomes a geometric series equation '(Il. *the optimal value of the coeff 1-
whift non op-e it cdent a is found by uInIaisiag the squared wrier

between the noise-free, blur-free Image line me
IA~e~,e~)I.l-l~s2 ,~)Il, ~ ( .~(Ithe best output of the ptediction modelv over a

(10) 1w0ol line. 1bite Gaussian voise, was added to
a knm, eqatim the distorted signal. The perforome of the

- If both £L(~ a and 5ag~ arekoi autc filter was evaluated by measurin the Improvement
(10) PCovce MOans irAeteruiin acceptable in signal-to-noise ratio (M) after k itera-
value of I . lutter Insight iato this Issue tions. amorntg to the formula
Might be gafld by coasidwerig the following 1-0
*xzmle.

An arbitrary Image line is modelled by the A 010 M a 2
first-oiler autoregressive relation 1 1l~~)zi)

x(n) - a ala-I) + a ala-li + uin) (I11)
?igure 2 shows the removal of a Goussias and a

This Iage line Is then convolved with a simple linear motion blur for the OgLrl Image. S- -

linear notion blur of the form blurring was used for the linear motion case, In
' both cose the signal to noise ratio wee 20M.

, 0(G.-lThe SIR Improvements were 1.903 fat the Geussian
bin) L (12) blur and 7.2 13 for the motion blure. netter10 *otherwise results would be exeted if a true 2-b algorithe

were used which could exploit the vertical conte-
Then the necessary condition fez convergence Is lotion between pixels.
found by substituting Into (10) which results In
the Inequality Discussion ad Couloua

,2 2 As mentioned in the Introduction one of theas 2 asco advantages Of the iterative procedure is theZ, sin4t I' in()T possibility of Incorporating physical (poesibly
I nonlinear) constraints ont the resteratioa. to

< lZa FUs al (20) 121 these constraints were expressed in terms of
operators which project a signal onto an allow-
able subeet of signals, and can be interpreted as

In fig. I, the expressions from the left- amd hard constraints. In the mew algorithm the esti-
right-band sides of this Inequality are plotted motion pert am he Interpreted s a eaofte
for a o1. au.S, and 10.04. It should be noted statistical constraint. The similatity In form
that Sle convergence condition is not satisfied between the two mentioned Iterations suggests the
for L-1 4. A war to overcome the convergeoce possibility of hybrid alyoritm where nonlinear
pr~blems is the second ase is to use the. rgo- Predictors are used which inorporate both pbysi-
blurring 'procedure 12). According to this CA amd statistical Latogmatics.
procedure the degraded long le first convolved
with the poit Spread functior t Whe.j)* bre a The performance of the mew Stochatic itera-
denotes the cmplex conjugate. 16,1l0 this tifs algorithe has bae compared with the
ferthe dae" the 1^696 It ua 1e5that performafce of the deterministic allotitho of
the overall blur. b(ioj)** -1,-;) wil have a Schafer et. at. 121. In the presence of noit"
real, inmmSatiwe transfer r.2 result- Pe).ur high am the determn~ais algcritan
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outperforms the stochastic one, while for low W1-k SCOII vs. i I AC&,)I
StIRs only the stochastic algorithm converges. It I/ IACi.,0I
should be noted that the reblurring procedureSo
eliminates the noise at high frequencies, .-

resulting in an improved performance of the de-
terministic algorithm.. .......................

Further research will involve experiments- *3.AC~

tion with 2-0 causal, semi-causal, non-causal................
linear prediction models, use of shift-varying
models for the blur, simultaneous estimation of I

the gain and the prediction coefficients at each 0FREQUENCY w/T
iteration step as well as identification of the(a
parameters of the distorting system.
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