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\{ 0. Introduction and Accomplishments
4

Introduction

~—

t 1:£5The recent appearance of new oBservationa] data from specialized satellites
‘ and rocket probes has led to increased interest in upper atmospheric processes.

’ The work to be reported herein is of the current status of a limited three-

t dimensional model of the dynamical and important chemical processes which are

5 known to take place in the mesosphere and lower thermo§phere to an altitude of
about 400 km above the earth's surface:- Unfsrtﬁnately, funds for the program
were cut off prior to its completion and thus the model codes have not been }

finalized. It is hoped that this program can be picked up again in the near j

future. .
— —

:>>The modeling approach taken was to make use of the dynamical schemes and

simplified chemical treatments embodied in our three-dimensional Stratospheric

- —

Circulation Model (SCM) developed for the study of stratospheric ozoneﬁ(see‘f S
)&cﬁﬁo]d, et al., 1975). This model has been running on the now defunct ILLIAC-4
vector computer at NASA's Ames Research Center in California. In addition to

large changes required in the existing dynamics and chemistry to reform the

model for thermospheric and mesospheric levels, it was also necessary to revise
the code structure to accommodate the shift from the ILLIAC machine to the AFGL
CDC-660 computer. Much of this work was accomplished on the NASA machines prior
to the availability, through special modems and telephone connections, of the
; AFGL CDC-6600. Since that time the programs have been transferred to AFGL and,
while not completed, tests of the model dynamics on that machine have been under-
taken. \§j4f A ——
v The basic strategy in the modeling effort was to use the modified SCM codes

to specify the large scale dynamical properties of the upper atmospheric region




and for the integration of the time dependent, three-dimensional mass continuity
equations for the chemically active species. Development of the chemical and
sub-scale transport properties of the model were to be undertaken by the AFGL
group under the direction of Dr. S. P. Zimmerman. Thus, the complete modeling

program was devised to be a cooperative venture between Georgia Tech and AFGL.
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Accomplishments.

The program's goal was to create a three-dimensional model of the meso-
sphere and lower thermosphere over a three-year period with Timited funds. The
model was to incorporate simplified dynamics and interactive chemistry. A
"first" run of a single simulation experiment with the completed model was antic-
ipated late in the third year. Thus, intermediate results of a scientifically
viable nature could not be expected prior to completion of ;he program. While
the program has been cut short before these goals could be attained, substantial
progress has been made, particularly in the modification of the dynamical por-

tions of the model codes and the changes required to run the model on the AFGL

CDC-6600 machine.

A. Model heating

One of the,principal needs of the upper atmospheric model is the incorpora-
tion of realistic heat forcing processes for the 40-400 km regions of interest.
Considerable thought, therefore, has been given to this problem.

The existing Dynamical/Chemical Stratospheric Circulation Model (SCM),
which is being revised for the present work to include mesospheric and lower
thermospheric levels, currently uses heating codes applicable to altitudes be-
low ~ 80 km. Since a number of quite different physical processes lead to atmo-
spheric heating in the thermosphere, new model codes will have to be developed
for these thermospheric levels. For this, however, we must keep in mind that
such codes must be considerably simplified because of time and size limitations
which must be imposed on the already large three-dimensional calculations.

Some of the heating processes we have considered include:




(1) Direct solar absorption

It is convenient to divide the solar spectrum into several large wavelength
segments according to their absorption characteristics and treat each of these
segments separately.

a. 2050 - 3000 A region.

Heating is due to absorption by both 02 and 03 in this region and

is most important at the lowest thermospheric and mesospheric levels

(i.e., <100 km). Model treatment for this region can be essentially

the same as was devised for the SCM (see Cunnold, et al., 1975). For

example, for 03, the rate of temperature change due to 03 absorption is

approximated by the Tinear law

Xg

(BT)03= ~M—3- Q(Nsecz)

at
where X03 is the number mixing ratio of 03, M the mass of an average air
molecule, Q(Nsecz) the heating rate due to absorption by one molecule of
03, N is the number of 03 molecules in the cm2 vertical column above the
point of heating, and ¢ is the solar zenith angle. In the SCM calcula-
tions the heating rate, Q, is approximated by a finite sum over a number

of small spectral intervals centered on wavelengths A in the form
- 1
Q{Nsecz) = f a03(ki) F(Ai) . exp(~ Nsecz)
in which a03(Ai) is the absorption coefficient of 03 and F(Ai) is the
;o]ar flux of photons integrated over each A interval. In the calcu-

lations, tables of a03, F, and the exponential functions are maintained

for a wide range of likely values.

0-4
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b. 1027 - 1300 K and 1750 - 2050 R (Schumann-Runge bands) regions.

Absorption by 02 in these two banded regions is comparatively large
below about 120 km altitude but can probably be safely neglected above
this level. As in the 2050 - 3000 X region we can estimate the heating
rates by summing over the important absorption bands using band averages
as tabulated by Hudson and Mahle (1972) for the 1750 - 2050 K region
(although the apparent temperature dependence of the cross sections is a

complication) and by Adams (1974) for the 1027 - 1300 A region.

c. 1300 - 1750 A (Schumann-Runge continuum) regions.

For this 02 absorption region, the absorption cross sections are
quite consistent and we should be able to treat this region as a single
band. Heating by absorption in this region is most important to tota’

heating at tevels between ~ 100 and 130 km.

d. 40 - 1027 A (EUV) region.

Nearly all photons in this frequency range are absorbed by photo-
jonization of N2’ 02, and 0 which leads to very complicated ionization
and photoelectric processes. These processes are particularly dominant
above ~ 110 km but are replaced by heating through collisional processes
above v 300 km. It may be possible to estimate the magnitude of the 4

heating resulting from photon absorption in the 40 - 1027 A region by

using a simple electron density model such as that of Ching and Chiu (1973)
to infer photon absorption quantities and apply a heating efficiency fac-
tor of ~ 30 - 357 (Stolarski, et al., 1975). Such a model is currently

being tested.

0-5




(2) Atomic oxygen recombination and deactivation

Atomic oxygen produced at high model altitudes does not recombine (and

|
’ thus release its chemical energy of recombination) above ~ 120 km. Two pro-
§ cesses, 0 + 0 + M > 02 + Mand 0 + 02 + M 03 + M may be important here. A
Z simple estimate for heating by these processes may be possible by assuming
(Adams, 1974) that the lifetime of an oxygen atom goes from ~ 5000 years at
9 5 150 km to ~ 2 hours at 80 km. Clearly, model vertical transports will play a
large role here.
The process of deactivation of 0(]D) is somewhat uncertain but potent ..y
imgortant to heating in the lower thermosphere. Whatever the mechanism f
(O(ID) + M~ 0(3P) + M + KE is the prime candidate), the reaction takes place
very fast and, since there is no known large source for 0(]D) at night, is
confined to sunlit hours. A possible estimate for 0(]D) deactivation in the

model may be obtained by using the results of Adams (1974, pg. 97} with suit-

able adjustments for diurnal and latitudinal variations.

3. Molecular thermal conduction

The flux of heat across a horizontal surface, FZ’ is usually parameter-

ized using

where here K represents a thermal conduction coefficient. This is a fairly
simple process to represent computationally but the selection of the proper ¢

K's will be done in consultation with the AFGL group.

4. 15y CO, and 621 0 radiational cooling

Various authors have estimated cooling rates for these two frequencies
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and the model parameterization will make use of a simplified version of one of
¢ these. The 62u 0 band is particularly effective above ~ 110 km while the 15,

CO2 band seems to dominate below that level.

5. Other heating processes

Thermal heating by the dissipation of tidal and gravity waves may be impor-
tant to the thermosphere. In three dimensional models, such as we are working
with here, these heat quantities will be realized through the thermal and dynamic
dissipation terms built into the model equations.

Joule heating and non-thermal emissions may also play a role in total therm-

ospheric heating but their magnitudes are usually thought to be small and will

thus be neglected in the current work.




B. Model lower boundary conditions

The Stratospheric Circulation Model (SCM) has been reconfigured in its ver-
tical structure to incorporate the region ~ 40 km - 400 km in its 26 vertical
levels. As required by the model, mean global temperatures (T) and stability
quantities (g; - %~ T) at each level were obtained from the U.S. Standard Atmo-
sphere. The quant?ties will be discussed and displayed in some detail in later
sections. However, we waﬁt to point out that the new Mesospheric and Lower
Thermospheric Model (MTM) overlaps the height range of the SCM over the MTM's
lowest six levels. Thus, it will be possible to "drive" the lower boundary of
the MTM using values computed from annual runs of the SCM. To this end, a spec-
ial run of the SCM for a two year integration period was performed on the ma-

chine at NASA's Ames Research Center. From these results, we have obtained for

transference to AFGL:

(1) A set of lower boundary conditions for temperature (T), vertical
motion (W) and ozone (x). A complete one-year cycle of these quantities for
the model's 70 horizontal degrees of freedom were collected at four-hour inter-
vals. Thus, we have tabulated (on a computer tape) the required lower boundary
conditions to drive the MTM as functions of both time and space. This involves
more than 1/2 million values.

(2) Twelve sets of initial conditions, one for each month of the year,
were generated by the SCHM runs and tabulated on tape files. This data includes
values for the model temperatures, vertical motions and ozone mixing ratios in
the region of overlap between the SCM and the MTM. [n addition, a set of time
dependent total heating values from the SCM have been collected for the one year

cycle for use in driving the MTM during early dynamical tests. These functions

0-8




will be replaced by internally derived heating quantities in the MIM's final

form.

A1l of the data fields described in (1) ana (2) have been transferred (in
ASCII codes) to the AFGL 6600 disk system and are available for use in the model
although some may not have been rewritten in binary form as required by the MTM
input scheme.

To incorporate these lower boundary conditions, the MTM codes have been
extensively rewritten and tested. Furthermore, new codes have been generated to
allow for the introduction of additional minor species into the model calcula-
tion in fully predictive form (through the species continuity equations). De-

tails of the chemical production and loss terms, however, are to be added later

in cooperation with the AFGL research group.




C. Dynamical tests

A considerable problem arises in working with large, non-linear numerical
models concerning the viability of the final computer codes. That is, how can
one feel confident that the code is correctly performing the numerical integra-
tions originally envisioned? Even changing a working program from machine to
machine frequently introduces computational errors which cannot always be de-
tected by simple model runs. It is necessary, therefore, to subject such model
codes to rigorous testing procedures whenever the codes are modified or trans-
ported to other machines. Such a procedure was undertaken and completed for thé
dynamical portion of the MTM subsequent to introduction of the model changes
outlined in sections A and B above. Similar checks were underway for the ver-
sion transferred to the AFGL CDC 6600 at the time of the stoppage of work on the
model.

Of particular concern is the performance of the non-linear terms in the
dynamical sections of the MTM. We thus make use of known conservative proper-
ties of the model to test for "correctness" of solutions under various model
circumstances. Some care, however, has to be taken in this procedure since it
is frequently very difficult to distinguish true model or programming errors
from normal numerical or machine induced inaccuracies.

One series of tests which have been completed for the MTM involves running
the model with the heating, frictional dissipation and lower boundary vertical

motion terms all set to zero. Thus, the quasi-geostrophic set of dynamical

equations reduce to the form




et e

v2 ?) X

B -0 9,02 - v-19(3)

3 = 9. T) - v (0.1)
27 = y.fy (¥

RVZT = v-f9(2¥)

and we can show, for example, that total energy (kinetic plus available poten-

tial) must be preserved (for details of the model, see the following sections).

Table 0.1 contains the results of several runs under varying conditions. As a
base case, Run "A" was computed using the normal N-cycle scheme of Lorenz (1971)
with N = 4 and an internal time step &t = 1 hour. We see from the table that

~ 0.06% of the initial model energy has been lost after one day of computations
and v 0.19% at the end of two days. Thus, the energy'has not been preserved
(which, of course, is not unexpected) and we must ascertain whether the inac-

curacy is due to our numerical approximations or results from some more impor-

tant physical or computational problem.

Run "B" is similar to "A" but we have removed the non-linear Jacobian terms
from (0.1). For this case, the table shows that the energy conserves much better
during the first two days, losing only ~ 0.014%. From these results it appcars
that the Jacobian terms generate the major inaécuracies in the model runs but
it is still not certain whether this can be attributed to model errors or to

numerical approximations. One possibility would be to change the N-cycle rou-

tine from four to eight cycles per step as an attempt to generate a more accur-
ate solution. This can be of help, particularly for the linear parts of the
Jacobian calculations. Still maintaining St = 1 hour for the internal time

intervals, Run "C" repeats the calculation of "A" for N = 8 with no improvement




Table 0.1: Total energy as a percent of the initial total energy for days 0, 1, !
and 2 of test Runs "A" through "F". The conditions for each run are described
below the table.

Day Run "A"* Run "B"* Run "C"* Run "D"* Run "g"* Run "F"=*

0 100.000 100.000 100.000 100.000 100.000 100.000
1 99.943 99.993 99.942 99.999 99.478 99.299
2 99.812 99.986 99,797 99.996 99.962 99.719

* A1l the Runs make use of the Lorentz N-cycle time stepping scheme and, unless
otherwise indicated below, the friction, heating, and lower boundary vertical
motion terms are all zero. The specific conditions for each run are:

Run "A": Uses the 4-cycle scheme with internal time steps 8t = 1 hour.

Run "B": Same as "A" but the non-linear Jacobian (advection) terms in (0.1).
are zero.

Run "C": Same as "B" but uses 8-cycles.

Run "D": Same as "A" but &t = 0.2 hours.

Run "E": Same as "A" but the lower boundary vertical motion (Wpot) is
forced using the results of a Stratospheric Circulation Model ,
(SCM) computation. A

Same as "E" but heating from the SCM computation has been added.




E : in the accuracy of the solutions (as seen in the table). On the other hand,

‘ when we repeat the calculation of Run "A" (4 cycle) but with internal time step
intervals reduced to 12 minutes (&t = 0.2 hours), the accuracy greatly improves
(Run "D") with an energy loss of only ~ 0.004% during the first two days.

2 ~ Clearly, the small energy losses observed over the first two days of the wmodel

test runs are due to numerical inaccuracies in the time stepping scheme rather

¥ % than to coding errors in the Jacobian terms.

To get an idea of the relative importance of the numerical errors detected

above, we ran two more experimental tests. The first of these was couputed
under the conditions of Run "A" but with the vertical motion at the lower bound-
ary of the model introduced from the results of previous runs of the SCM. For
the second test we added the computed heating values from the SCM to the lower
levels of the MTM. The results, shown as Runs "E" and "F" in Table 0.1, show
that the energy changes introduced by these physical terms in the model are at

Teast as large as the uncertainties created by the numerical procedures used.

Thus, reductions in the time step increments used for the model to improve the
accuracy of the non-linear terms are not justified since they would be masked

by the forcing and boundary terms. j
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1. Basic dynamical equations and coordinate system.

The horizontal coordinate system will be longitude (positive eastward) and
latitude, denoted by X and ¢. This dependence will be represented in spherical
surface harmonics, except that certain terms, such as part of the heating and
photochemistry will be evaluated point-wise at selected values of X and ¢. In
the vertical direction pressure (p) will be used as a coordinate with finite-
differences being employed. These pressure levels will be distributed at equal
intervals of log P in order to give roughly equal intervals in height. We

define

©
L]

p : (100 cbar)
; (.

~N
1

-LnP, P = e
From the hydrostatic relation dp = -pgdz and p = p/RT, we have

=.4d .9
dz = - B=fodz (1.2)

The vertical levels will be separated by a uniform value of VZI. To the extent
that the temperature T is approximately uniform at near surface values, a change
of one in Z corresponds to a height change of the order of 7 km. The bottom of
the atmosphere, but not necessarily of the model, will, for simplicity, be taken
at Z =0, i.e., at p = 100 cb instead of at the conventional sea-level pressure
of 101.325 cb.

The dynamical system not only assumes hydrostatic balance, but also a
"quasi-geostrophic blance" in the horizontal equations of motion. Because we
must consider global processes over the entire sphere, this balance must allow

for complete variability of the Coriolis parameter f;

1-1
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5 (1.3)

7.292 x 107" rad sec']

el
n

The quasi-geostrophic balance in question is ubtained as follows (Lorenz,
Tellus, 1960, P. 364). First, we divide the horizontal velocity v into a non-
divergent part k x V¢ given by a stream function y and a divergent part -Vyx,

given by a velocity potential x:

~

V=kxWw-v - (1.4)

If the eastward and northward components of Vv are represented by u and v and a

is the radius of the earth, this is equivalent to

) d\ . 1oy 1 oy
U= acoségg T - a 3® a c0S¢ oA (
1.5)
_ode_ ) sy 1y
V=34 T 3 cose §¥ T a 3¢

The vertical component of relative vorticity, ¢, and the horizontal divergence

of V are related to Yy and x by

L= ko curl v = V2y; div V = - V3y (1.6)

where V2 is the horizontal Laplacian operator on the sphere.

The condition of the quasi-geostrophic balance is
v - foy = gviz (1.7)

where g is gravity and z is the height of a constant pressure surface. [Unless

noted otherwise, all partial derivatives with respect to A, ¢, and t (time) are




carried out at constant pressure (or Z)]. The hydrostatic relation,

‘ 2. 1. _RT

I 955 5 5 (1.8a)

? or

. 92 _
- 957 = RT (1.8b)
.‘

enables (1.7) to be rewritten as
. fyd¥ - p2
v fvaz VIRT . (1.9) l

Associated with this relation (which is a simplified form of the equation
obtained by taking the horizontal divergence of the equations of motion) is the

“vorticity equation":

v = kx Ty e v (FHV2) ¢ T - FUx + T - (Frck) (1.10)

-
where Fr is the horizontal frictional force per unit mass.

The continuity equation (conservation of mass) is

[%Ftl] = g-ﬁ[g%} =gV (1.11)

g

The upper boundary condition at Z = Z will be that dp/dt vanishes there. Let

top

us define

P
oX
X=-dep,x=-§p

. Ptop .

- Cmp—.—

Equation (1.10) can then be rewritten as




[N F

vz%\g oKX Ty - V(f+v2yp) - V - fv[-g%] + 7 e (?rx;) . (1.13)

If we use Z = -gnP as the vertical coordinate, the appropriate vertical

advection velocity is

[N S

| B (1.14)
!
| The continuity equation (1.11) in terms of W is:
V-PY + 3(PW)/3Z =0 - (1.15)
From (1.11), (1.12) and (1.14) we get 3[PW - ¥v2x]/3P = 0, or
PW = V2x _ (1.16)

Boundary conditions on W are that W vanishes at Ztop and that it is given

from external sources at the bottom:
tW=20 (1.17)

Z=17,,:W=W(tA,¢) as given. (1.i7a)

Since Zbot is some distance above the actual earth's surface, we must

also specify the bottom dynamical and thermodynamical conditions. For this pur-

pose, we will make use of previous runs of the model version which includes the
surface as its bottom boundary. The results from such a computation will be
used to specify the bottom boundary temperature field (in space and time) for

the present upper level model. Thus, we have

. 1= zbot: T= To(t,A.¢) as given.

1-4
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The bottom streamfunction field will then be given through the thermal wind

equation.
Friction will be represented by a vertical Austausch, Fr = % 9t/8z =
-g31/9p. Thus V-Frxk = gﬁ-[v . (§%¥xk)]. We set T = L, 3(kxVy)/3z, giving

92 k) = p.rde’y Wy
v (potxk) v [lﬁj_Km 8p]

Using the "scale height"
H =__l, (]']8)

replacing p by p/RT and replacing g/RT by 1/H, we get

-~

-g> o _ _m o, 3V
G - e

To summarize the friction term we can write

. _ 93
veFrxk = 5§(PF)
(1.19)
K 2
. p=_Mpavy
At Z = Ztop’ F will vanish (no stress).
The next physical statement is the thermodynamic law d (entropy) /dt =
rate of heating : temperature. For our perfect gas system this would be
d - _R _2

Cpgg[ﬁn(Tp’()]=%;x—c—;-7 (1.20)

where q is the rate of heating per unit mass and T the temperature. In terms




of T, this becomes

T . -(kxvy-vy) « 9T - Wl ot + & (1.21)
ot Ry Cp
We will, however, use a simplified formof this, obtained by ignoring Vy-VT and

by replacing T in W3T/3Z and «WT by T, where T is the horizontal average:

—
|

= T(pst) + T‘(A"bapat)
(1.22)

1 (/2 2m _
IﬁE"J cos ¢do J Tda; T =0
-n/2 0

[This_definition of (7) and ( )~ will be applicable to any variable.] This

greatly simplifies the computations, and is reasonably accurate because Wy >> vy

and 3T7/3Z + «T~ is generally small compared to 87/3Z + xT. The result is

3= - kxwp - VT - U

04&

Z_ + KT) + q/cp . (].23)

However, this simplification has the result that we can no longer interpret
(1.23) as forecasting T, the horizontally averaged T; this is because the hori-

zontal average of (1.23) gives simply

Q.)‘Q)
ot —i

= Q/Cp

whereas the horizontal average of the exact equation (1.21) gives

Q»
=

3 b
—z— (PH T ),

- kW T -

|
]
n'n |

(o8]
(ad
Oj—

P
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showing the effect of vertical transports of entropy by the motion. We expect
little change in T from the observed annual average T(Z), however, either with
season or with changes in the ozone chemistry. [The effect of the latter will
be discussed separately. ]

In passing, we note that

T _RT faT , g
37 kT g 19z e J
‘ p
3 -x
= Toy Len(Tp )] : (1.25)
, - {
= N°[RT)? F
R {9

where N is the buoyancy frequency.
Finally, we describe the basic form of the equaticn for the (number density)

mixing ratio of a trace substance such as 03. Qefine

xj =Ny i (1.26)

where n; is the number density of the i-th trace substance, Do is the total num-

ber density. For Tevels below ~ 110 km we use

nm = p/kT

26 1 (1.27)

k = Boltzman constant = 1.330x10°°" kilojoules deg"

Above ~ 110 km, Ny = %ni.

The equation for dxi/dt (the rate of change following the motion) is

1-7
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oG Xy e 9X;
ac ° 3t + (kXVlD-Vx) . VX] + NS“Z—‘
1 [dn‘] + L3 [DK a_xl]
N dt c P 592 d dz

where (dn]./dt)C is the net rate of local photochemical generation of the sub-

stance {number per unit volume per unit time) and Kd is the vertical eddy-dif-
fusion coefficient {with dimensions 1ength)2 : time]. Kd will vary only with P,
The vertical diffusion term can be rewritten by using the hydrostatic equa-

tion as

p

20N K X
3y (9P) Ny 9 o dp Xi
aP[Kd[RT} w7 sl m P (1.28)

where we have again absorbed the variation of density with T into H0 on the
recognition that Kd itself is not a precisely known quantity. Kd {and the !

momentum Austausch Km) will be prescribed functions of P. The equation for X;

is now

X R X dn, K, ' 3xs
e (kxT-Ty) RGO P I B d d o X
st 7 lwm) -y - N nm[a*t—]c fot g P AT (1.29)

or

X . 3(PHy. )
5t T - plv(Pvyg) + ——]
(1.30)
+ ]_L_dn‘_ + 9 [- 2‘, p ox’]
npldt jo o 9P Hy 3L

1-8




[having made use of (1.4) and (1.15) to obtain the last form].

The rate of chahge of fi (the horizontal average) is obtained from the

horizontal average of (1.30):

dn, K 3%
_ 9 s 1 i d . dy M
T IR LI Fa v T: c] *5el m P (1.31)

The rate of change of X{ will, however, be obtained from a simplified form

of (1.29), much as was done in the thermodynamic equation (1.23):

(1.32)

dn, ” K %

1 i 3 d i
gl tw g P ]

In contrast to T, where we are for the most part content to take T as given, we
must predict ii'as well as x{. Equation (1.31) will therefore be used as well
as (1.32).

Presumably (1.33) need not be applied every time step in the numerical

integration, ii being a slowly changing function of time. However, the term

W7§? must be put equal to zero at P = 1 to ensure no net creation of x; by the

large scale motion.

-

A special treatment of the minor species equation will be necessary at cer-
tain levels. As an examnle, Lindzen and Goody (J. Atmos. Sci., 1965, P. 341)
show that the pnotodissociation of ozone is extremely rapid at heights above . 45
km, with a time constant becoming less than 1 hour. (They presumably use typi-

cal values of incident solar radiation). The conventional methods of "time-




( stepping) equations such as (1.32) require a computational time step no longer

than the characteristic physical times associated with terms on the right <ide
3 of (1.32). Since the advective time scale is of the order of an hour or so, we
1 must consider replacing (1.31) and (1.32) at these levels by the equilibrium

5 :,' dn

. e
Xy 7 (Xi)equi1 > g =0 (1.33)
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2. Choice of vertical levels.

We obtain equal intervals in Z = -guP (P = pressure : 100 cb) by defining

~N
]

j = 82(3-3)
J=1,2, ..., 4. (2.1)

p. = e‘AZ(\]'j)

J =1 is at the "top" of our model atmosphere, and j = J at the bottom, whence

~N
n
j
]
[
13
-l

A convenient choice is obtained by choosing

e = v, ro=2.12472
(2.2)
AZ = gnr = 0.753640
so that
2 = 20, = (3-Dear
(2.3)
P, = r"(J'])

Successive pressure levels are separated by (roughly) 6 km below the turbopause.

The relations

Py = p(3-3), Py = P (2.4)

are useful. At these Tevels, the following basic variables will be represented

J :]\ 2, [SESEEES J: TJ, w\], (\])J

term, and the vertical turbulent fluxes of momentum. At the intermediate levels

together with the heating rate, the photochemical

2-1




the streamfunction 1% will be represented

1.
s aees J'f : wj

_ 3
J_?!

~ojon

For convenience in notation, however, ¢ will be labeled with an interger sub-

script according to the convention
(P = Pj+]/2) : wj

This results in the scheme as seen in Figure 2.1.

Table 2.1 Tists the values of the more basic variables for the choice

r=2.12472, J = 26. Vvalues of T were taken from the U.S. Standard Atimosphere,

1976 (NOAA, NASA, and USAF). The static stability parameter S 1s defined later

in equation (3.20).
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Pressure, temperature, approximate height,
and static stability for model levels.

TABLE 2.1

z

Level (= -2n(p/1000mb)) p(mb) T(°k) z(km) 3% + %;T(°k)
1 24.92 0.15 (-7) 995.5 398.0 289.01
2 24.17 0.32 (-7) 991.0 354.3 292.70
3 23.42 0.68 (-7) 981.0 313.6 299.13
4 22.66 0.14 (-6) 962.5 275.2 308.45
5 21.91 0.31 (-6) 930.5 240.7 321.53
6 21.15 0.65 (-6) 878.5 210.0 336.53
7 20.40 0.14 (-5) 801.5 183.1 346.05
8 19.65 0.29 (-5) 702.0 161.0 345.1
9 18.89 0.62 (-5) 583.5 143.0 327.56

10 18.14 0.13 (-4) 459.5 129.0 288.16
1 17.39 0.28 (-4) 347.0 118.9 233.47
12 16.63 0.60 (-4) 257.0 111.4 162.65
13 15.88 0.13 (-3) 212.5 106.0 100.51
14 15.13 0.27 (-3) 197.0 101.0 7.20
15 14.37 0.57 (-3) 190.0 96.6 60.91
16 13.62 0.12 (-2) 187.0 92.3 55.41
17 12.86 0.26 (-2) 187.0 88.0 50.76
18 2.1 0.55 (-2) 191.0 83.9 45.93
19 11.36 0.01 200.0 79.5 45.52
20 10.60 0.02 208.5 74.8 46.62
21 9.85 0.05 219.5 69.8 47.77
22 9.10 0.1 231.0 64.7 49.07
23 8.34 0.24 245.0 59.3 50.08
24 7.59 0.51 261.0 53.7 59.96
25 6.84 1.07 267.0 47.8 80.58
26 6.08 2.28 254.5 41.9 88.62

Note: Levels 21-26 (between the dashed lines) are levels which overlap the
Stratospheric Circulation Model.
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3. Non-dimensional finite-difference equations

In this section we write the basic equations in a non-dimensional form [pri-
marily to simplify the dynamical computations) and simultaneously introduce the

vertical finite-difference representation defined in Section 2. We define

u = sine

v(dim) = % 7(non-dim)
v?(dim) = %3 v2(non-dim)

p(dim) = 20a% p(non-dim)

. (3.1)
X(dim) = 2a° X(non~dim)
. 1 .

t(dim) = 76 t(non-dim)

W(dim) = 20W({non-dim)

T(dim) = (42%a*/R) T (non-dim) + (4Q2a?/R) T(non-dim)

In the last expression T (dim) is the "total" temperature in absolute degree:.,
T = T(Z) is the "standard atmosphere" temperature (also in degrees) given in the
table at the end of Section 2, while the cuantity (402a2/R) T (non-dim) is the
(deviation from the horizontal mean) variable T appearing in (1.23), having a

zero horizontal average. [The total T (dim) is, of course, used in all chemical

computations].
Q= 21/8.64x10% rad sec”!
a = 6.371x|06 meters
R = 287 kJ ton”| deq”]
Cp = (7/2)R




|
1
!
One day, (2m/Q) secs, corresponds to
-
I At{non-dim) = 2&(}%) = 45 . (3.3)
‘ The non-dimensional Vv operator is
1T 3% )., 1 3 al )
i 2 = —y— ——
i ve() €O0STH AA° ¥ C0S) 30 [coso ¢ ] (5.4)
s The relation
]
PW = 72X (7.16)

between W and X can be used to eliminate X in favor of W [in equation (1.13)

by defining the inverse Laplacian operator

L = -2 f
(3.5)
X = PLW
We also have
g = V5 p = Lz (3.6)

A further convenient arrangement is useful for evaluating terms of the form

3(PF)/3P, which appears in the vertical diffusion terms for vorticity and trace

substances and in the term
X
3 = plP(L]

in the vorticity equation (1.13). e have

P. F. - P. F.
3 . Jrl/2 g+v/2 - g-1/2 j-v/2 o r AN .
[BP(PF)]j Pj+]/2 _ Pj-]/z = (F:T)Fj+]/2 (r'])FJ-]/Z ()-7)

where we have made use of (2.4).
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-y
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-
: The horizontal advection of a quantity F can be written as the Jacobian
{ —* - = - K . é—. a—‘g _E_a__
! v, vF kxVyp « UF = T T
{ (3.8)
i = J(F,y)
.
\ The non-dimensional form of the vorticity equation (1.13), with regard to
‘ ‘ the subscript labelling defined in Section 2, together with equation (1.19) and
{ ‘ (3.5) - (3.8) is as follows:
For j =1,2, ..., J3-1:
.aCj _ 1
3% - J(u+c Wy ) - v {HVL[( )W - (F:T)wj] +
r
+ (o7)F i+ (—T)F (3.9)
. = L. 3.10)
¥y = Lg; (
Fy =0 (3.11)
FJ = ‘DCJ_'I (3'12)
. = i =2, 3, ..., J-1 3.13
Fy= Eilesmnsy) (G =2 ) (3.13)
- y oo 2 a
Ej (Km)j  [H220a7] (3.14)
D= kp + 20 (3.15)
- w] = 0 (3.]6)
. wy= =30, o ) (3.17)
J H® 70-1 '

The non-dimensional form of the “thermal wind equation” (1.9) becomes for

3-3




e

j=2,3, ..., -1

‘«"HV"('."J"PJ_]) = -‘/"TJ.;\Z (3.18)
The non-dimensional form of the thermal equation (1.23} becomes for

j=20 3, «s ey J-]:

3T .
“3.1 1 - R 2
It ? J(TJ‘ wJ+JJ-]) SJWJ + [CWJQJ (--19)
where
_ R dT . R
S % ) [zt o T . (3.20)

is tabulated at the end of Section 2. Note that qj, the rate of heating per

unit mass, is still in dimensional form in (3.19).

The trace substance is, for

J = Jo’ JO+]9 « ey \]'1:

% = %J(xj’ bitvs_q) - wj(ggi) + (r_'_”T)Gj B} (FIT)GH N
! (%ﬁ)[%—(g%) ]J (3.21)
m
6j = Djlxjeqm¢g) 5 for J=jgs ovs J-2
Dy = (Kgdjeryn * (20H342) ' (3.22)

[The vertical diffusion coefficient K4 s defined at the Zj-levels corresponding

o




to j = integer plus 1/2, whereas the vertical exchange coefficient Km for vor-

ticity, appearing in (3.14), is defined at interger values of j.]




4. Spectral form of the equations

ke define spectral solutions at arbitrary level j in the form

| T ————r . —sam——.
<
]

j - gwa’jYa(A’“)
i CJ = anana(AﬂJ)
Q
NJ. = gwa’jYa()"u) , (4.1)
TJ = ZTOt’jYa()”u)
a
qJ = gqa’qu('\’“)

and for the trace substance equation

Xy gxa,jYa(,\,p)

GJ. %Ga’jYG(A’U)

In terms of longitude (A\) and latitude (p), we have defined members of the
complete set of orthogonal spherical harmonics in (4.1) and (4.2) using

i A

Y (hu) =e %P (u) (4.3)

a

with

a=n + ila (4.4)

T S LYy, e

denoting a vector index of planetary wave number Ea and deqree N The ﬂl(n)

are Legendre polynomials of rank and degree given by «. Normalization of the
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spherical harmonics is such that integration over the unit spherical surface

(s) yields the orthoaonal property
JSYOYLS ds = 4776&'5 ’ (4.5)
Complex conjugate values are denoted by an asterisk. Another useful property

of the set of spherical narmonics is that they satisfy the differential equation

V‘YLL = -c VY ; c, = na(na+1) (¢.6)

C «

The complete set of orthonormal Legendre polynomials as used in (4.3) are de-

fined such that
p * = (4.7)

and aii Pu have been normalized such that

+] _ e
J_]Paps du =28 o (4.8)
We now want to substitute solutions (4.1) and (4.2) into the non-dimensional
forms of our model equations, multiply through with a member of the orthogonal
*
set (say, YY), and integrate the resulting relationships over the unit sphere.
Application of this procedure to the vorticity equation (3.9), for example,

yields the desirec spectral form of this eauation,
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SR B SRR A s S5 4131 P, .~.-A.~.‘\mwzw« i At i A o b Ty

_L’J = - N R o+ D_{.__[' _.L
dt 1£{YY»J A(yJ '_-L(r‘ )w‘l’-f;,J+] -
E
1 Y C oy .
(= - = —a- )W . {
(Y‘-n) {-Ls\]} CY+C (r-]) Y+ sJ+] \4.9)
RV LY - (=-)F
r-1 TELJ | r-1""vy,j+1 r-17"v,J
in which, over the unit spherical surface s,
dz 3t
TS | —Ei Y* ds
dt dsjnt Ty
iy o= 1 J(w; w)Y*ds = = l‘;L‘j—Y*ds
YU d Q‘YJS ¥ ’ Y G s?"\ N
A=l s veds (See Appendin A) (+.10)
Yod o ) Iy ’
% e 1S
- W .- W, .= - - [VeuvL(W,)]Y*ds (See
Cy-e rmEsd Cy+£ AACEN b g J Appendix B)
Foooo= {F.vds
YsJ o Ay

Similarly, the thermodynamic enerqy equation (3.19), the trace substance equa-
tion (3.21), and the thermai wind relationship (3.18) reduce to the spectral

forms




i Ve "

. ———— 1 .

dZ’'y,J r-1"7v,3 (4.11)

luj
2y g s (]
r- YsJ- m s Y] an CJJ
= - ' R -1 -1 .
Az e T 5= o0 te o sty ) B e 51 7yee,5)
where, for example,
art._ . 3T,
._Y_’J = l.. __,.J
dt 44 7t 1 ds
$
dy_ dy ;
.._Y_’J = ___l]— *
@t G”JSdt Y3ds
1 .
C= o=l (-77T.)Y*d
5Ty 4WL( J) v
(4.12)
1 .
c = —! Ity )Y * dix A
BY,J 8NJSJ(¢J wJ-]’TJ)YYdS (See Appendix A)
()() = l.._ Sy .+l \ i
BY,j * & S”(VJ*“j-l’Kj)Y;ds (See Appendix A)

Dy __ .- Ew

:-l._. . * 3
. v s 4ﬂj (v uij]des (See Appendix B)

S

In addition, we want to determine the spectral form of (1.6) relating the verti-
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cal component of relative vorticity () and the streamfunction (v). It can he

shown that

CY:j = 'CY‘:‘.{J (4.]3)
or
s - _Yad
wY’j C*( (4.14)

provided that in (6.14) we stipulate y£0+i0 (i.e., cny).

The spectral relationships (4.9), (4.11), and (4.13) {or (4.14)] along with
definitions (4.10) and (4.12) form a complete set of equations for solution.
However, it is not convenient to attempt to integrate the model in this form as
there is no explicit relationship determining the vertical velocity field repre-
sented by W. In order to define W, we want to alter the thermal w:nd relation-
ship in (4.11)})  This development is contained in the next section. Furthermore,
specification of the truncation limits to be used for series solutions (4.1) and

(4.2) have not yet been established and will be discussed in a later section.

4-5
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5. Determination of W in the dynamic equations

In order to obtain an explicit description of the vertical motion fields in
our model atmosphere, we insert (4.74) into the thermal wind equation of (4.11)

and differentiate w.r.t. time to get

AZ . dTY'J _ Y de_E,J_] ;V’E,j -
y dv C dt T
v (5.1)
: d .
5 [Fga %)
Cue L 4T at

for all levels j = 2,3, ...., J-1. We note that (5.1) does not apply for the
cases y = 0+i0. rfurthermore, for notational purposes, we will stipulate that in
(5.1) and all future relationships, terms which require y-z = 0+i0 or nY-€<CY-£
do not exist. This applies equally to cases in which y+c is not contained within

the specified model truncation Timits.

Let us now define

iL (1 ) - A + A

(+Y
13

Yod =T LT TG vad-1 T ML -
- (_]_'vF + (r+])F . (_Y;_)f: )
r-1""y,j-1 r1'7y,j -1y, 41 (5.2)
b, ;-8B .+ [-‘—B-r*z}q ;
Y»d Y»d CpBQ a®y,J

such that using (4.9) we can write

P
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e TR I 10
H - A1 — A - S S -
I dt dt LI B o D - [wy-:.j-1 (r+])wY-€,j +
| E (5.3)
i ] i —;&— . _ .
| + er_C,j+1] YD Cur [dY+c,j-1
- (r+1)W . ]
YR e 541

and, the thermodynamic energy eguation of (7.11) reduces to

ar .
B T Y I (5.4)
dt Y,J J7Y.J

Inserting solutions (5.3) and (5.4) into (5.1) has the effect of eliminating

the time dependence of (5.1) and at any given time we have

D, E,
AL ¢ b - A7 cSM oL.=-T 3 R,
“700 SINLI T e Sreead T el Tyreld -
1 Y-ey }
) TY'—-l CY'Z CY-E D’ (-Zv’\j‘] (‘”—] )w{‘ZJ:J * rwl'2bv\]+1] *
. E“’?I ED, 4 ;
by R LRI - ()W W - i
(=10 € S Cue SR B I L D |
! EY,E_Y.*‘
L - . - ! . ]
(F:fj-Cy+gcy+25[wY+2€,J-1 (r+])dY+2€,J ¥ r"'wr+25,3+1]

or, if we define




D emm— . o - ' . R

[ D 3
1, sl ie~—Y—a - —Y_ a5 _arp .
"y C C =Cyy YT -
Yo L y-eSy Y€ C.Coyc (714 (4
D
(1) L Oy
B C C
Y cy-Ze Y€y
£
f(2) o1 (“y-t:Dl R E*,'D'Nr,]
Yy " clle ¢
Y L oY-c yhoo |
3) EE 4e
f( = _Y 1 <
A A2y

the W-equation can be compacted to

(2) (3)
¥ fY WY,i—l ¥ fY WY+ZS,J-1

(2) (3)
.+ .+ A
22, fY wY,J fy wv+2c,J] *

(2)y ; (3)
y-2e,501 T Iy R T e nd

in which from (1.17) we represent the boundary conditions as

W

il
o

Y,

[}

(tv)\ vU)

vaJ wY wJ

as given from external sources.

(5.6)




To prepare (5.6) for inversion we want to take note of certain properties

of the cquations in order to reduce the calculation to a finite set of simple
matrix solutions. Inspection of (5.6) shows that the equations uncouple accord-
ing to planetary wave numbers, £Y. In addition, within each planetary wave the
equations contain two independent sets; one of even vector elements (nY + gY all
even) and the others of odd vector elements (nY + KY all odd). Thus, to facili-
tate ease of notation, let us define some new sets of indices to be applied to
(5.6) by first denoting a maximum planetary wave number, L, for a given spectral

truncation as

L = £Y)max {(5.8)

so that we can designate K independent sets of matrix equations using index &

where
k=1,2, 3, ..., Ki K= 2(L+1). (5.9)
For a given matrix set we will determine k by designating

ZZY + 1 for even vector sets

(5.10)
2(£Y + 1) for odd vector sets

Furthermore, within each of the K matrix equation sets it is useful to designate

an element index, bk’ where
bk =1.2, 3, ..., Bk . (5.11)

Thus, for a given matrix set designated by the subscript k we devise the bk

indices as follows:

5-4




W TN g

(1) For k odd (even vectors) let

N (5.12)

k = nk)max

for which we consider only N from the set N + Ek even. Then the value for an

individual bk is determined from

N S S
k 7 °£k,o
(5.13)
B = N_k—__-_u - 5
k ? £,,0

where we icnore values of b, outside the range indicated in (5.11); i.e., when
k =1, ny = 0, and ﬁl = 0 we do not include the value b] = 0 which desianates
the nona]lowqble equation of (5.1) in which y = 0+i0 [see comments following
(5.1)1.

Similarily,

(2) For k even (odd vectors) let

Nk = nk)max (5.14)

in which here we consider only Ny from the set Ny + Ck odd. Then, we have
S
k 2
(5.15)
Hk - ﬂk + {
k 2

At this point we want to note an additional property inherent in the spec-

tral W-equations represented by (5.6). That is, from definitions contained in




(5.5) and Appendix B we can show that for any given k,

) EYk EYEE

cyk Cytc cyth

We are now prepared to convert (5.6) to matrix form. To do this we first

define tridiagonal matrices Dk as

where we have made use of (5.8) - (5.16). We note from (5.17) that not only is
each D, tridiagonal but it is also symmetric. In addition, it can be shown that

every principle minor determinate of Dk is positive and thus Dk can be said to

be positive definite. These properties will be discussed in more detail below.

To complete the conversion of (5.6) to matrix form we define vectors




e

Y 3 %y 5
2.3 2.
Hk,j = E 5 Rk,j = E (5.18)
W X
bk,J bk"]
N. 1. .
| Pied Byad i

such that (5.6) can be written in the matrix form

- (r+])DkN rD - a.M =R, .

DMy 51 g s DM e T 9N T R
(5.19)

J=2,3,4, ....,Jd-) foreach k=1,2,3, ...., K

We wish tc modify (5.19) through diagonalization of each D,. Howuver,

since each tridiagonal Dy is real, symmetric and positive definite., we know that

all eigenvalues of D, are real and positive. Also, the sets of eijenvectors

associated with these eigenvalues are orthonormal. Thus, if D, is an MxM matrix,

there exists a set of real positive eigenvalues ().k)p withp=1,2,3, ..., M

associated with Dk and M sets of orthonormal eigenvectors qp.s with s = 1, 2, 3,
o If we et Qk represent the matrix of eigenvectors associated with the

the set (Ak)p and matrix Dk, we have

Q1 N2 oo G oot

7 Gy +-- Gy o+ O

S 2m
Q=10 : .
qpl qp2 © Gps ot Yo

G oy s -
Y e Uns D k




such that

Qka = Qka =1
where [ is the unit matrix and ( ) denotes transposition.
r N\
(\k)] Ovevriennnn. 0
0 "(x), :
A = . .
k (Xk)p .
0 (x,)
\ )
where then we know
0, Q = Qi

and
QD0 = QQAy = Ay
We now want to expand the vector W j in (5.19) in the form
i T W5 Vg T Qg

where we note that Vk i is also a vector.

b ]

Ul QY 51 - (D Q Y, 5+ rQD QY Sy -
=0V 5 T QR

or, from (5.23), we can write

5-8

Define

(5.21)

(5.22)

(5.23)

(5.24)

Inserting solutions (5.24) into (5.19) and multiplying through with Q, gives




- LG o Wl o,

R G N TR (5.25)

Now, we know that there exists an inverse

L T P 0 }
, 0 /() :
Ak = : ',. . (5.26)
: TASIR
: ". :
LO ......................... (), J
such that
-1 .
Ak Ak = 1. (5.27)

Thus, if we multiply (5.25) through with A;I, {3.¢5) reduces to the form

) -1 R b :
vk’j_, [(rt1)1 + 050 ) vk‘j MR PIETREL N QkRk‘j (5.28)

where for each k = 1, 2, 3, ..., Kwe have j 2, 3, 4, ..., j-1. We now let

- -1
Sk,j z - [(r+1)I + “jAk ]
and
-17 . .
Ak QkRk,Z - !k,l (for j = 2)
-1z .
Rk,j Ak QkRk,j (for 3-j<J-2)

-]~ 7 = -
Ak QkRk,J-l - rvk,j (for j = J-1)

Using (5.29) , (5.28) transforms to the set




Sk P r ks T R (for § = 2)
Ve TSV P Vg Ry B9iw-2) (5. 30)
k0.2 * S,k “ R g (for § = 3-1)

in which from (5.24) and the boundary conditions of (5.7) we see that in (5.29)

Ve =0
(5.31)
Vio = Ay
We see that for each k the system (5.30)is tridiagonal in j and thus submits
readily to solution provided certain provisions are met (see Appendix C for

details). Briefly, to invert (5.30) we first define

U o = SL32 (for § = 2)
Uy 2 Sy uk’j_])-l (for 3<j<d-1) (5.32)
Vi 2T Y (2<j<d-1)
and then let
Yi,2 = Uk.2 Rk,2 (for j = 2)

(5.33)

Yk T Y,g (Rk,j - yk,j-]) (for 3<j<J-1)

Solutions to (5.30) thus appear as




Vi a-1 7 YKo (for j = J-1)

-

(5.34)

A
v

koo T VK Y YK (for 5= 9-2, 33, L., 2)

provided all u, ; in (5.23) exist and are finite. Vectors Wy ; are then ob-

; tained from (5.24).




6. The model codes
The model consists of four separate programs, three of which are prelimi-

nary and need to be executed only once. The names of the four programs are

ITCOF1, ITCOF2, MESOST, and MESOS2. A brief description of each of these follows.

ITCOF1, ITCOF2

ITCOFY and ITCOF2 are used consecutively to generate and store on the system
disk a set of non-linear interaction coefficients for use in computing the non-
linear Jacobians in the model. The definition and method used for the computa-
tion of the interaction coefficients are contained in Appendix A.

To run ITCOF1, use file RUNIC1 (see Figure 6.1). This routine requires disk
files INTCOEF1 and STRATI as input and creates a file named ICIOUT as output.
ICI0UT is used as input by ITCOF2.

The program RUNICZ2 (Figure 6.2) drives ITCOF2 and requires files INTCOEF2,
STRAT1, and ICIOUT as input. ITCOF2 creates a file IC20UT on output which con-

tains the interaction coefficient and instruction fields required by the model.

MESOS]

MESOS1 is an initializing program which creates and utores all constants,
truncation parameters, transform parameters, and fixed ficlds required for the
particular model configuration to be run. This program must be run prior to the
beginning of a particular model experiment and, in general, calculates every-
thing that can be done for the model in advance outside of the main iterative
loop.

MESOST is driven by the file MESOSBEG (Figure 6.3) and requires input tiles

STRATI and [C20UT. On output, the tile MCSOSTY will contain all of the input

i
q
s
|
1




[ e e e e -

fields reu.ired by the model except for the model's initial conditions. In
addition. a set of data which includes horizontal mean temperatures and stabil-

ities is required as input as shown in Figure 6.3.

MES0S2

MESOS2 represents the central loop of the model. It is called into action
by the file MESOSSTART (Figure 6.4) which requires input files STRAT2, MESOS1Q,
INITDEC, BNDFILE, and HEATFILE. The last three of these are data files which
include the initial conditions file, the iower boundary conditions file, and
the temporary heating file respectively. MESUOS1@ is as described above under
MESOS1.

On output, the file MESOUTI1 contains the complete history of the model
run. The model can be restarted as often as required from this history file and
the subsequent output is appended onto the file. The first records on MESOUT11
contain fixed model parameters. Subsequent records are each made up of a time
step number, the spectral vorticity ccefficients, the spectral vertical velocity
coefficients and, if applicable, the spectral ozone mixing ratio coefficients
for the particular time step.

An additional file is provided in the program to include the spectral coef-
ficient values for all the non-linear terms in the model at each time step.

This is assigned to "TAPE13" but is currently not teing retained by the model as
a permanent file.
The first pages of the listings for the model programs ITCOF1, ITCOFZ,

MESOST, and MESOS2 are shown in Figures 6.5 - 6.3 for purposes of reference.
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Appendix A. Spectral form of Jacobian terms and evaluation 8f the associated

nonlinear interaction coefficients,

Consider on the unit sphere the Jacobian of arbitrary horizontz! global

scalars A and B where
_9A 3B 3A 3B
J(A,B) 5% 31 " 3u 3N (A1)

and X is longitude while u is the sine of latitude. Expanding A and B in terms

of spherical harmonics, we have for solutions

A = Zaava()\cU)o
Q
6 = I, (o). (r.2)
a=n_ + i
[s 3 Ct

in which the special properties ot the orthonormal spherical functions Ya(\,u)
are outlined in (4.3) - (4.8)., |Incerting solutions (A.2) into (A.1), transorm-
ing the result to insure symmetry with respect to vector indices a and 8, and
writing in terms of a single nonredundant sun (for details of these developments,

see Baer and Platzman, 1961) we arrive at

E . dp dp ,
- a3 i(e +L,)A a B
J(A,B) ;§£1 > ] (aabB - aBba)e a B £8P83ﬁ_' L, Paaﬁ—- (A.3) I

n._>n
B- "«

\ A
L)

for which we define through use of the Kronecker delta, 51

(A.4)

E =3 §
a,3 na.ns l

The term [1 - —%Ji ] is necessary because the two conjugate interactions for the

A-1




case ny = n_ and [ZBI = ltul, assumed in the symmetric reduction of J(A,B) to

the form of (A.3), are not unique and ore of them must be ignored.
We now multiply (A.3) with any arbitrary member of the orthogonal-

izing set, say Y;/4n, and integrate over the unit sphere to get

G
¢ 4—[ J JALBIYE (h,u)duch

Y T
0 1
=-i§ (- fa.8 (a b, - ayb )K (A.5)
2 a B B a’y,B,a )
a,B
ng 2 Ny,
= £ +
ZY Za 26
and the interaction coefficient, KY 8.o is obtained from
: J ][ ap_ dP,
KY;B;Q = ? -] £BPB a‘r - [_apa ‘ar PYdLl. (AG)
Since we intend to evaluate K using the "transform" method with integration

YsBsa

by exact Gaussian quadrature (see, for example, Eliasen et al., 1970), a time

saving simplification can be obtained by noting that the integral in (A.6) can

be nonzero only if the integrand possesses an even parity with respect to the

equator. For this condition we can reduce (A.6) to

! dp aP,
= | &P, 2 - 2P —=IP du.

KY,B,OL 0 88 du oo du | Y

In order to evaluate (A.7) numerically let us define

A-2




e kvt Witk it

P S

(A.8)

i

ga(ll) = dn

where g, can be determined from the Legendre differential relationships in the

form
dP_(u)
a
g().(“) = du
(n +1)up (2n +1) [(n +£ +1)(n -2 +1) /2
R R L " (A.9)
-5 049 | eng)en 3y [
e =1+ 10
We now let
dPa dPB
Hool) = &Pe q - &Py @
(A.10)
= fsga - fagﬁ
which can be expanded in the form
Hy (1) = ghd,s,ai’é(u) : (A.11)
From (A.10) and (A.11) we see that (A.7) can be replaced with
1
KY,S,a ) _[O[HS.u(“)]PYdU
- 1
h %hé,ﬁ,a J Pédeu . (A.12)
' 0
= h
¥ 9argtd
A-3
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However, if we represent H_ (u) at N discrete points Hy where k = 1, 2, ...,N,

By
then an exact quadrature analog for (A.12) is obtained in the form (see Eliasen

et al., 1970)
N -
K'Y-B,C'- = kzlwk[HB,a(“k)JpY(uk)
N
= kglwk[fs(“k)ga(“k) - £ Gy dag () IPy(uy) (A.13)
provided
N=(x+1)/2
(A.14)
K>2 +3 (n -2 )+ 1
- "max 2 ' max max 2

(N and K must be intergers) and the latitudes My are located at the Northern
Hemisphere zeroes of the Legendre polynomial Pg(u) (including the equator if
K is odd). In (A.13) the W, represent the Gaussian weights required to maintain
orthc jonalization of the discrete set of Legendre polynomials used in (A.13)

such that
N

A discussion of the evaluation of these Gaussian weights is contained in Appen-

dix D.
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Appendix B. Spectral representation of divergence terms of the general form

V_ - pvA.
In terms of spherical operators on the unit sphere in which A is longitude

and u is the sine of latitude we have

"

V + uvVA = vp - VA + uviA

(B.1)

"

(1-u?) g—ﬁ + uv2A

in which A is an arbitrary horizontal global scalar expandable in the form

A= Ja ¥ (Au) . (.2)
)

Properties of the orthonormal spherical functions Ya(x,u) are outlined in (4.3)

(2.8). Insertion of solutions (B.2) into (B.1) yields

i€od

7 - WA = (1-;12)ZameuﬂA Efg‘“) - chaaae P, (1)
o du o
. dp (8.3)
- oA 12y _
gaae {(] H )du ugupd]’
Cy = na(na+1)

But, if we define

{(2n1+1)(na-£a)!]]/2

(na+£a)!

1 +10

]
n

B-1




then we know from the Legendre differential and recurrence relations (for exam-

ple, see Jahnke and [imde, 1945) that

dp
2yt - o a
(T-u )du nauPa * (na+£a)N Pa-e
a-g
and (B.5)
P - (na-£a+1) Na - (na+£a) Na b
a T?na+l) Na+c ate <2na+l) Na-e a-€
Then, using (B.5), we can show that
dp -n2 -
(1-u2)—2 - e P = ( na)(na+£a) Na p _ na(na+2)(na £a+]) Na p (B.6)
du aa (2na+1) Na-e a-€ (2na+1) Na+c ate :

We now insert (B.6) into (B.3), multiply through using Y; /4%, and integrate

over the unit sphere to get

(2na+17' N

2m o 1
_ (1-n2)(n 42 ) N
l_ J [ (V°uVA)Y*dudA = z a [ o a a a
0 /-1 Y ¢ a-

|

na(na+2)(na-£a+1) Ny

- g"a (zn_T)

N

“at+]




S

ik

(n,£ )(n_-C) Ve
n " n -
(1-n)) (2%\(-\1()(23%3) e "

(nY+£Y+1)(n -Ey+1)

n_{(n_+2)
Yy (2n +T)(2n

<

+3) ~tg
Y / (te

D a - a
Y Y-€ EY yte

where we have defined

1/2
(n+_)(n_-£)
(1-n2) Y Y S
Y (?nY-17(2nY+T7

it

1)

1/2
n_(n_+2) (ny+€Yj})(nY-€Y+])
Y 12nY+1) (2nY+3)

A special case of (B.7) occurs when we consider scalar B in which

B = V2A

where similar to (B.2) we can expand B in the form

B = gbuYa(A,u).

Then, from (4.6), we know that

and, in terms of coefficients ba, (B.7) becomes

B-3

Py

(8.7)

(8.8)

(8.9)

(8.10)

(B.11) J




yo Y0 Sywe T
(8.12)
= Dyby—e - EYbY+E
in which we have defined
_El_ _EI_ ( )
D = - , £ = - B.13
Y Cy-e Y Cy+e
provided that in (B.12) we ignore terms in which Cy-s =0 (i.e., Ny ¢ = 0).

Further, for both (B.7) and (B.13) we must stipulate that all terms calling for

any a a s b or b e outside the range of the particular spectral trun-

Y-€’ Tyre’ Ty-¢ Y+
cation chosen must also be ignored.

Reference

Jahnke, E. and F. Emde, 1945: Tables of Functions. Dover, New York, 306 pp.
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Lol e e e R ———— 5. e ey,

Appendix C. Solution of a tridiagonal set of equations.

Suppose we have an equation set of the form

where we must have

X + + =
-1 R e

y=1,2,3, ..., T

That is, in matrix form we can write (C.1) as

AX =R

with A being tridiagonal of the form

For solutions we define

1/b]

1/(bY—aYcY_]CY_

- ¢ C
YY

c-1

1) 2evsr

Y

(c.1)

(C.2)

(C.3)

(C.4)

{C.5)

|- e oo A —— o

RE—

'\ m L s i e i e,
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and let
B, = C,R
] L (C.6)
BY = CY(RY—ayBY_1); 2<y<T
Then, the solutions appear as
X, =8
rr (C.7)
= + s = - -
XY DYXY+] By, y=r-1,T1-2, ..., 1
provided all (‘.Y in (C.5) are finite. That is, if
b1 #0
(C.8)
by # 3yCy18y-1
c-2




e e

Appendix D. Computation of the weight functions for Gaussian quadrature.

We consider the set of complete orthogonal Legendre polynomials, Pﬁ(u), in

which £ = 0, *¥1, #2, ... and n =0, 1, 2, ... We define this set, according

to (4.8), to be normalized such that

1
[ PEGIFE- (W = 28, . (0.1)
-1

where py is the sine of latitude or equivalently, the cosine of colatitude, @.
Now in order to expand an arbitrary function of latitude, say f(u), in terms of

the set of Legendre polynomials we let

- 2,2
f(u) = %gfnpn(u) (D.2)

from which the coefficients, fﬁ, are obtained through application of (D.1) such

that

] 1
fﬁ = % ggfﬁ»[ :ﬁ,(u)Pﬁ(u)du = % [ :(u)Pf(u)du . (D.3)

However, to be able to transform at will between spectral and grid point space,
it is necessary to represent f(u) at a number of discrete points, My in which
k=1,2,3, ..., Nwith N being the total number of points lying within -T<u<l.

Thus at each latitude point, (D.2) becomes
L
Flu) = gfﬁpn(uk) : (0.4)

This means that in order to determine coefficients fﬁ we must evaluate the inte-




w e —_ !
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¢

grals in (D.3) numerically and at the same time maintain the orthogonality prop-
erties of the discrete polynomials representation in (D.4). For this purpose,

integrating by quadratures, we introduce a set of Gaussian weight functions, Wy o

such that

JEERERPEE S

it

1
N
L w7 () J PE(IPE- () (0.5)
) -1

and the numerical analog for (D.3) becomes

N
1 2 ol
fr = ?’% L - kglwkpn‘(“k)Pn(“k) 1

i F P () : (0.6)

The remainder of this Appendix is devoted to the method of evaluation of the

Gaussian weights, W -

Because we know that any given Legendre polynomial, pﬁ(u), can be repre-

- sented by a finite series in u of at most degree n, we can expand
ntn” :
L £ = 1
PrwPr.(u) = § b
i=0
or (D.7)
‘ ntn”

Pﬁ(uk)Pg‘(uk) = igobi[uk]i

-

and thus, e f

1

. ]
n+n .
Pf(u)Pﬁﬁ(u)du =} bi[ TR T (D.8)
4 i=0 4




} l

f

.

K

!

r

1 Integrating (D.8) by quadratures using (D.5),

1 N
' [ Pﬁ(u)Pﬁ'(u)du = kzlwkpg(uk)Pﬁ‘(uk)
-1

} g n%n’ ;
3 = w b. [, ] . (D.¢;
& k=1 Kisg 1K
g ?
f % Equating (D.8) and (0.9) we have
- n+n” 1 ; N n+n~ ;
G/ Z bi wodu = Zwkz bi [uk] (D.10)

E R k=1 KiZ0

and thus for any i such that 0 < 1 < n + n” it must hold that
' N i
pwdu =} owlul - (D.11)
k=1 KK
-1 -

We see from (D.11) that if we choose the number of latitude points, N, such
that N-1 = n+n” then utilizing a1l i =0, 1, 2, ..., ntn we can form a set of
N equations containing N unknown quantities, Wy s for inversion. However, in
terms of colatitude, ¢, we can show that any cosjo (j is an integer) can be

expanded in the form

j/2 . (J/2))
cy = _ J 2m

| cosjo = Y a, pl =a.yu + ] .

: m=g oM J m=g &M
; and
| ' (3/2)
| . 3 3/2 -1 2m

cosjy, = aj[uk]J + 'Z) an-[u ]

D-3




Then, inserting (D.12) into (D.11),

! V[ A R AP
l N cosigdy - s Z azm yody =
| LI i m=0 -1
i (D.13)
: N (i/2)-1 N
1 . 1 2m
g = — J wocosip, - — a w [, ]
LR k k a; mzo 2m kZ] k-7 k
or
N 1
kZ]wkcosi¢k = [ cosigdu
™
= J cosi¢ singde
0
0 for i odd
= -2 .
—1;ﬁ;— for i even , (D.14)

i
i=0,1,2, ..., ntn~

where we have made use of (D.11) to eliminate the second term on each side of
(D.13). Again, as for (D.11), we see that if we take N-1 = n+n”, we can invert
(D.14) to obtain the Gaussian weights.

As an example, consider N=3 where we select ¢]=30°, ¢2=90°, and ¢3=150°.

Then, from (D.14) we can construct the set (using i = 0, 1, 2)

"y + W, + Wy o = 2
V3, V3
2‘./_, - 2w3 = 0 (D. ]5)
]
2%y oW, F %w3 = -2/3
D-4
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with solutions

Wy = Wy = 4/9
(D.16)

W, = 10/9
We note that the solutions (D.16) are symmetric in Wy about the equator. If we
assume such symmetry a priori then ail equations in (D.14) involving odd values
of i become redundant and we can write (D.14) over the integration interval from

$ =0 to ¢ = w/2 as

5 n/2

Y wcos2ig, J cos2i¢ sintdsd

k=1 0
= '; ) . D.17
R SEIN (D.17)

i=0,1,2, ..., i‘-;—”— . N-1 = nn”

3

Again, using the example used above in which N=3, 9y = 30°, and b = 90°, we

have N%l = 2 and N%l-= 1 giving the set

Wy +ow, = 1

o~

1 -
21 W T

with solutions

D-5
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Furthermore, if we want to obtain wk's for the entire pole to pole integration,

we need only make use of the symmetry property

Mok T T O, mr2 M (0-19)
which gives for our example
s =4
Wy = V3 =g
(D.20)
_5,.5_10
Wo2Tg3t97 g

Solutions (D.20) are identical with

those of (D.16).
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