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0. Introduction and Accomplishments

Introduction

SThe recent appearance of new observational data from specialized satellites

and rocket probes has led to increased interest in upper atmospheric processes.

The work to be reported herein is of the current status of a limited three-

dimensional model of the dynamical and important chemical processes which are

known to take place in the mesosphere and lower thermosphere to an altitude of

about 400 km above the earth's surface - Unfortunately, funds for the program

were cut off prior to its completion and thus the model codes have not been

finalized. It is hoped that this program can be picked up again in the near

future.

> The modeling approach taken was to make use of the dynamical schemes and

simplified chemical treatments embodied in our three-dimensional Stratospheric

Circulation Model (SCM) developed for the study of stratospheric ozone, (see

',Xunnold, et al., 1975). This model has been running on the now defunct ILLIAC-4

vector computer at NASA's Ames Research Center in California. In addition to

large changes required in the existing dynamics and chemistry to reform the

model for thermospheric and mesospheric levels, it was also necessary to revise

the code structure to accommodate the shift from the ILLIAC machine to the AFGL

CDC-660 computer. Much of this work was accomplished on the NASA machines prior

to the availability, through special modems and telephone connections, of the

AFGL CDC-6600. Since that time the programs have been transferred to AFGL and,

while not completed, tests of the model dynamics on that machine have been under-

taken.

The basic strategy in the modeling effort was to use the modified SCM codes

to specify the large scale dynamical properties of the upper atmospheric region

0-1



and for the integration of the time dependent, three-dimensional mass continuity

equations for the chemically active species. Development of the chemical and

sub-scale transport properties of the model were to be undertaken by the AFGL

group under the direction of Dr. S. P. Zimmerman. Thus, the complete modeling

program was devised to be a cooperative venture between Georgia Tech and AFGL.
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Accompl ishments.

The program's goal was to create a three-dimensional model of the meso-

sphere and lower thermosphere over a three-year period with limited funds. The

model was to incorporate simplified dynamics and interactive chemistry. A

"first" run of a single simulation experiment with the completed model was tntic-

ipated late in the third year. Thus, intermediate results of a scientifically

viable nature could not be expected prior to completion of the program. While

the program has been cut short before these goals could be attained, substantial

progress has been made, particularly in the modification of the dynamical por-

tions of the model codes and the changes required to run the model on the AFGL

CDC-6600 machine.

A. Model heating

One of the~principal needs of the upper atmospheric model is the incorpora-

tion of realistic heat forcing processes for the 40-400 km regions of interest.

Considerable thought, therefore, has been given to this problem.

The existing Dynamical/Chemical Stratospheric Circulation Model (SCM),

which is being revised for the present work to include mesospheric and lower

thermospheric levels, currently uses heating codes applicable to altitudes be-

low * 80 km. Since a number of quite different physical processes lead to atmo-

spheric heating in the thermosphere, new model codes will have to be developed

for these thermospheric levels. For this, however, we must keep in mind that

such codes must be considerably simplified because of time and size limitations

which must be imposed on the already large three-dimensional calculations.

Some of the heating processes we have considered include:

0-3



(1) Direct solar absorption

It is convenient to divide the solar spectrum into several large wavelength

segments according to their absorption characteristics and treat each of these

segments separately.

a. 2050 - 3000 A region.

Heating is due to absorption by both 02 and 03 in this region and

is most important at the lowest thermospheric and mesospheric levels

(i.e., < 100 km). Model treatment for this region can be essentially

the same as was devised for the SCM (see Cunnold, et al., 1975). For

example, for 03. the rate of temperature change due to 03 absorption is

approximated by the linear law

x 
0 3

(H) = M Q(Nsec)
at03

where X03 is the number mixing ratio of 03, M the mass of an average air

molecule, Q(NsecC) the heating rate due to absorption by one molecule of

03, N is the number of 03 molecules in the cm2 vertical column above the

point of heating, and c is the solar zenith angle. In the SCM calcula-

tions the heating rate, Q, is approximated by a finite sum over a number

of small spectral intervals centered on wavelengths Ai in the form

Q(Nsec) = E a 0 3 (Xi) F(Xi ) -L exp(- Nsec )

in which (03(.) is the absorption coefficient of 03 and F(Xi) is the

solar flux of photons integrated over each Xi interval. In the calcu-

lations, tables of a03, F, and the exponential functions are maintained

for a wide range of likely values.

0-4
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b. 1027 - 1300 A and 1750 - 2050 A (Schumann-Runge bands) regions.

Absorption by 0 in these two banded regions is comparatively large

below about 120 km altitude but can probably be safely neglected above

this level. As in the 2050 - 3000 A region we can estimate the heating

rates by summing over the important absorption bands using band averages
0

as tabulated by Hudson and Mahle (1972) for the 1750 - 2050 A region

(although the apparent temperature dependence of the cross sections is a

complication) and by Adams (1974) for the 1027 - 1300 A region.

c. 1300 - 1750 A (Schumann-Runge continuum) regions.

For this 02 absorption region, the absorption cross sections are

quite consistent and we should be able to treat this region as a single

band. Heating by absorption in this region is most important to tota7

heating at levels between x, 100 and 130 km.

d. 40 - 1027 A (EUV) region.

Nearly all photons in this frequency range are absorbed by photo-

ionization of N2, 02, and 0 which leads to very complicated ionization

and photoelectric processes. These processes are particularly dominant

above " 110 km but are replaced by heating through collisional processes

above ' 300 km. It may be possible to estimate the magnitude of the
0

heating resulting from photon absorption in the 40 - 1027 A region by

using a simple electron density model such as that of Ching and Chiu (1973)

to infer photon absorption quantities and apply a heating efficiency fac-

tor of ", 30 - 35Z (Stolarski, et al., 1975). Such a model is currently

being tested.

0-5



(2) Atomic oxygen recombination and deactivation

Atomic oxygen produced at high model altitudes does not recombine (and

thus release its chemical energy of recombination) above n- 120 km. Two pro-

cesses, 0 + 0 + M - 02 + M and 0 + 02 + M - 03 + M may be important here. A

simple estimate for heating by these processes may be possible by assuming

(Adams, 1974) that the lifetime of an oxygen atom goes from , 5000 years at

150 kmi to \ 2 hours at 80 km. Clearly, model vertical transports will play a

large role here.

The process of deactivation of 0(ID) is somewhat uncertain but potent .'y

important to heating in the lower thermosphere. Whatever the mechanism

(0(1D) + M - O(3P) + M + KE is the prime candidate), the reaction takes place

very fast and, since there is no known large source for 0( D) at night, is

confined to sunlit hours. A possible estimate for 0( D) deactivation in the

m:odel may he obtained by using the results of Adams (1974, pg. 97) with suit-

able adjustments for diurnal and latitudina.l variations.

3. Molecular thermal conduction

The flux of heat across a horizontal surface, FZ, is usually parameter-

ized using

F = -K -T

where here K represents a thermal conduction coefficient. This is a fairly

simple process to represent computationally but the selection of the proper

K's will be done in consultation with the AFGL group.

4. 15u CO2 and 62p 0 radiational cooling

Various authors have estimated cooling rates for these two frequencies

0-6

.A6



I

and the model parameterization will make use of a simplified version of one of

these. The 62p 0 band is particularly effective above 110 km while the 151 ,

CO2 band seems to dominate below that level.

5. Other heating processes

Thermal heating by the dissipation of tidal and gravity waves may be impor-

tant to the thermosphere. In three dimensional models, such as we are working

with here, these heat quantities will be realized through the thermal and dynamic

dissipation terms built into the model equations.

Joule heating and non-thermal emissions may also play a role in total therm-

ospheric heating but their magnitudes are usually thought to be small and will

thus be neglected in the current work.

U\
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B. Model lower boundary conditions

The Stratospheric Circulation Model (SCM) has been reconfigured in its ver-

tical structure to incorporate the region ', 40 km - 400 km in its 26 vertical

levels. As required by the model, mean global temperatures (T) and stability

quantities (dT R T) at each level were obtained from the U.S. Standard Atmo-

sphere. The quantities will be discussed and displayed in some detail in later

sections. However, we want to point out that the new Mesospheric and Lower

Thermospheric Model (MTM) overlaps the height range of the SCM over the MTM's

lowest six levels. Thus, it will be possible to "drive" the lower boundary of

the MTM using values computed from annual runs of the SCM. To this end, a spec-

ial run of the SCM for a two year integration period was performed on the ma-

chine at NASA's Ames Research Center. From these results, we have obtained for

transference to AFGL:

(1) A set of lower boundary conditions for temperature (T), vertical

motion (W) and ozone (X). A complete one-year cycle of these quantities for

the model's 70 horizontal degrees of freedom were collected at four-hour inter-

vals. Thus, we have tabulated (on a computer tape) the required lower boundary

conditions to drive the MTM as functions of both time and space. This involves

more than 1/2 million values.

(2) Twelve sets of initial conditions, one for each month of the year,

were generated by the SCM runs and tabulated on tape files. This data includes

values for the model temperatures, vertical motions ard ozone mixing ratios in

the region of overlap between the SCM and the MTM. In addition, a set of tirie

dependent total heating values from the SCM have been collected for the one year

cycle for use in driving the MTM during early dynamical tests. These functions

0-8
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will be replaced by internally derived heating quantities in the MTM's final

form.

All of the data fields described in (1) ana k2) have been transferred (in

ASCII codes) to the AFGL 6600 disk system and are available for use in the model

although some may not have been rewritten in binary form as required by the MTM

input scheme.

To incorporate these lower boundary conditions, the MTM codes have been

extensively rewritten and tested. Furthermore, new codes have been generated to

allow for the introduction of additional minor species into the model calcula-

tion in fully predictive form (through the species continuity equations). De-

tails of the chemical production and loss terms, however, are to be added later

in cooperation with the AFGL research group.

0-9
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C. Dynamical tests

A considerable problem arises in working with large, non-linear numerical

models concerning the viability of the final computer codes. That is, how can

one feel confident that the code is correctly performing the numerical integra-

tions originally envisioned? Even changing a working program from machine to

machine frequently introduces computational errors which cannot always be de-

tected by simple model runs. It is necessary, therefore, to subject such model

codes to rigorous testing procedures whenever the codes are modified or trans-

ported to other machines. Such a procedure was undertaken and completed for the

dynamical portion of the MTM subsequent to introduction of the model changes

outlined in sections A and B above. Similar checks were underway for the ver-

sion transferred to the AFGL CDC 6600 at the time of the stoppage of work on the

model.

Of particular concern is the performance of the non-linear terms in the

dynamical sections of the MTM. We thus make use of known conservative proper-

ties of the model to test for "correctness" of solutions under various model

circumstances. Some care, however, has to be taken in this procedure since it

is frequently very difficult to distinguish true model or programming errors

from normal numerical or machine induced inaccuracies.

One series of tests which have been completed for the MTM involves running

the model with the heating, frictional dissipation and lower boundary vertical

motion terms all set to zero. Thus, the quasi-geostrophic set of dynamical

equations reduce to the form

0-10
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3V2_ = - 2~ SI J(i'V 2 ) - a(x)
at axfV(p

___ - (t - P- V 2x (0.1)
at P

RV2T = V-fV(a )

and we can show, for example, that total energy (kinetic plus available poten-

tial) must be preserved (for details of the model, see the following sections).

Table 0.1 contains the results of several runs under varying conditions. As a

base case, Run "A" was computed using the normal N-cycle scheme of Lorenz (1971)

with N = 4 and an internal time step 6t = 1 hour. We see from the table that

0.06% of the initial model energy has been lost after one day of computations

and n 0.19% at the end of two days. Thus, the energy has not been preserved

(which, of course, is not unexpected) and we must ascertain whether the inac-

curacy is due to our numerical approximations or results from some more impor-

tant physical or computational problem.

Run "B" is similar to "A" but we have removed the non-linear Jacobian terms

from (0.1). For this case, the table shows that the energy conserves much better

during the first two days, losing only n 0.014,'. From these results it appears

that the Jacobian terms generate the major inaccuracies in the model runs but

it is still not certain whether this can be attributed to model errors or to

numerical approximations. One possibility would be to change the N-cycle rou-

tine from four to eight cycles per step as an attempt to generate a more accur-

s ate solution. This can be of help, particularly for the linear parts of the

Jacobian calculations. Still maintaining 6t = 1 hour for the internal time

intervals, Run "C" repeats the calculation of "A" for N 8 with no improvement

0-11
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Table 0.1: Total energy as a percent of the initial total energy for days 0, 1,
and 2 of test Runs "A" through "F". The conditions for each run are described
below the table.

Day Run "A"* Run "B"* Run 'C"* Run "D"* Run "E"* Run "F"*

0 100.000 100.000 100.000 100.000 100.000 100.000

1 99.943 99.993 99.942 99.999 99.478 99.299

2 99.812 99.986 99.797 99.996 99.962 99.719

* All the Runs make use of the Lorentz N-cycle time stepping scheme and, unless
otherwise indicated below, the friction, heating, and lower boundary vertical
motion terms are all zero. The specific conditions for each run are:

Run "A": Uses the 4-cycle scheme with internal time steps 6t = 1 hour.

Run "B": Same as "A" but the non-linear Jacobian (advection) terms in (0.1).
are zero.

Run "C": Same as "B" but uses 8-cycles.

Run "D": Same as "A" but 6t = 0.2 hours.

Run "E": Same as "A" but the lower boundary vertical motion (WBot) is
*forced using the results of a Stratospheric Circulation Model

(SCM) computation.

Run "F": Same as "E" but heating from the SCM computation has been added.

j0-12



in the accuracy of the solutions (as seen in the table). On the other hand,

when we repeat the calculation of Run "A" (4 cycle) but with internal time step

intervals reduced to 12 minutes (6t = 0.2 hours), the accuracy greatly improves

(Run "D") with an energy loss of only % 0.004% during the first two days.

Clearly, the small energy losses observed over the first two days of the 1model

test runs are due to numerical inaccuracies in the time stepping scheme rather

than to coding errors in the Jacobian terms.

To get an idea of the relative importance of the numerical errors detected

above, we ran two more experimental tests. The first of these was coiputed

under the conditions of Run "A" but with the vertical motion at the lower bound-

ary of the model introduced from the results of previous runs of the SCM. For

the second test we added the computed heating values from the SCM to the lower

levels of the MTM. The results, shown as Runs "E" and "F" in Table 0.1, show

that the energy changes introduced by these physical terms in the model are at

least as large as the uncertainties created by the numerical procedures used.

Thus, reductions in the time step increments used for the model to improve the

accuracy of the non-linear terms are not justified since they would be masked

by the forcing and boundary terms.

0 1



1. Basic dynamical e uations and coordinate system.

The horizontal coordinate system will be longitude (positive eastward) and

- latitude, denoted by X and p. This dependence will be represented in spherical

surface harmonics, except that certain terms, such as part of the heating and

photochemistry will be evaluated point-wise at selected values of X and . In

the vertical direction pressure (p) will be used as a coordinate with finite-

differences being employed. These pressure levels will be distributed at equal

intervals of log P in order to give roughly equal intervals in height. We

define

P = p Z (100 cbar)

Z = -fnP, P = eZ .
(1.1)

From the hydrostatic relation dp - -pgdz and p - p/RT, we have

dZ LP- p Rz (1.2)P R

The vertical levels will be separated by a uniform value of VZ. To the extent

that the temperature T is approximately uniform at near surface values, a change

of one in Z corresponds to a height change of the order of 7 km. The bottom of

the atmosphere, but not necessarily of the model, will, for simplicity, be taken

at Z = 0, i.e., at p = 100 cb instead of at the conventional sea-level pressure

of 101.325 cb.

The dynamical system not only assumes hydrostatic balance, but also a

"quasi-geostrophic blance" in the horizontal equations of motion. Because we

*must consider global processes over the entire sphere, this balance must allow

for complete variability of the Coriolis parameter f:

j 1-1
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f = 2Q sin

S1 = 7.292 x 10-5 rad sec
-1

The quasi-geostrophic balance in question is ubtained as follows (Lorenz,

Tellus, 1960, P. 364). First, we divide the horizontal velocity v into a non-

divergent pdrt k x Vp given by a stream function p and a divergent part -VX,

given by a velocity potential X:

v= k x V - VX (1.4)

If the eastward and northward components of v are represented by u and v and a

is the radius of the earth, this is equivalent to

u acos dX 1 D 1 X-

u = ac s - a 3 a cospo3X

(1.5)

v = a do - Io€ -a2

The vertical component of relative vorticity, C, and the horizontal divergence

of v are related to qp and X by

S= k • curl v = V2 ; div 4  - V2X (1.6)

where V2 is the horizontal Laplacian operator on the sphere.

The condition of the quasi-geostrophic balance is

V . fV = gV2z (1.7)

where g is gravity and z is the height of a constant pressure surface. [Unless

noted otherwise, all partial derivatives with respect to X, @, and t (time) are

1-2



carried out at constant pressure (or Z)]. The hydrostatic relation,

g)z _ 1 _ RT (1 8a)

p p
or

g = RT (l.8b)

enables (1.7) to be rewritten as

V . fV- = V2RT . (1.9)

Associated with this relation (which is a simplified form of the equation

obtained by taking the horizontal divergence of the equations of motion) is the

"vorticity equation":

V2j = - k x Vp • V (f+V21p) + V _ fVX + V (rxk) (1.10)at

where Fr is the horizontal frictional force per unit mass.

The continuity equation (conservation of mass) is

a (p!dp = rdPl -

apldtJ 7olJ - -v • v x (111)

The upper boundary condition at Z = Ztop will be that dp/dt vanishes there. Let

us define

P x ax (1.12)~X -fXdp, X -
fPtop

Equation (1.10) can then be rewritten as

1-3
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V2at - k x Vp - v(f+V2 f) -v * fv + V - (rrxk) (1.13)

If we use Z = -tnP as the vertical coordinate, the appropriate vertical

advection velocity is

dZ 1 dP (1.14)

The continuity equation (1.11) in terms of W is:

V-P + a(PW)/aZ = 0 (1.15)

From (1.11), (1.12) and (1.14) we get D[PW - V2x]/DP = 0, or

PW = V2x (1.16)

Boundary conditions on W are that W vanishes at Zto p and that it is given

from external sources at the bottom:

Z = Ztop: W = 0 (1.17)

Z = Zbot: W = Wo(tXp) as given. (Ll.7a)

Since Zbot is some distance above the actual earth's surface, we must

also specify the bottom dynamical and thermodynamical conditions. For this pur-

pose, we will make use of previous runs of the model version which includes the

surface as its bottom boundary. The results from such a computation will be

used to specify the bottom boundary temperature field (in space and time) for

the present upper level model. Thus, we have

Z Zbot: T = To(t,x,) as given. (1.17b)

1-4
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The bottom streamfunction field will then be given through the thermal wind

equation.

Friction will be represented by a vertical Austausch, rr = 1

-g3./ap. Thus V-rrxk =- • k] We set , = pK (kxVp)/3z, giving

V.p xk) = v.[ p v-l m p

p p m pj
0 0

Using the "scale height"

RT
H 0 (1.18)

0 g

replacing p by p/RT and replacing g/RT by I/Ho we get

p K
V - x = - m P -- Z

0

To summarize the friction term we can write

V-rrxk = L(PF)

(1.19)
K

Z>O: F = m P 2--Z
0

At Z Zto p  F will vanish (no stress).

The next physical statement is the thermodynamic law d (entropy) /dt

rate of heating ! temperature. For our perfect gas system this would be

C d EZn(Tp-')] :T K (1.20)
p Cp 7 .20

where q is the rate of heating per unit mass and T the temperature. In terms
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V

of T, this becomes

S•kv-VX) VT - W - - KWT + (.21)

We will, however, use a simplified formof this, obtained by ignoring V -VT and

by replacing T in WaT/aZ and KWT by T, where T is the horizontal average:

T = T(p,t) + T'(X,O,p,t)

T4- fWJc s fd~ 27T (1.22)T = 4I J cos Odo TdX; T- o72 1 l.2

-7/2 0

[This definition of () and will be applicable to any variable.] This

greatly simplifies the computations, and is reasonably accurate because vp >> VX

and 3T'/3Z + KT' is generally small compared to aT/aZ + KT. The result is

aT dT
t kxV • VT - W( a-Z + KT) + q/Cp (1.23)

However, this simplification has the result that we can no longer interpret

(1.23) as forecasting T, the horizontally averaged T; this is because the hori-

zontal average of (1.23) gives simply

;T
T-- = q/C p

whereas the horizontal average of the exact equation (1.21) gives

T -q 1 (P T ), (1.24)
Dt Cp PZ

1-6



mhowing the effect of vertical transports of entropy by the motion. We expect

little change in T from the observed annual average T(Z), however, either with

season or with changes in the ozone chemistry. [The effect of the latter will

be discussed separately.]

In passing, we note that

T+ KT +3-Z g- z + Cp

i

where N is the buoyancy frequency.

Finally, we describe the basic form of the equation for the (number density)

mixing ratio of a trace substance such as 03. Define

n -(1.26)

where ni is the number density of the i-th trace substance, nm is the total num-

ber dcnsity. For levels below 't 110 km we use

n "=p/kT

--26 -1 (1 .27)
k = Boltzman constant z 1.330x10 kilojoules deg

Above - 110 kin, nm = Yn.

The equation for dxi/dt (the rate of change following the motion) is

1-7
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dxi axi kV -× X

d L kxV- V) Vxi + W--

_ dni I  1 K a i
nm 1~-Jc + 1 3 p d'Xi

where (dni/dt) is the net rate of local photochemical gehtration of the sub-

stance (number per unit volume per unit time) and Kd is the vertical eddy-dif-

2fusion coefficient [with dimensions length) time]. Kd will vary only with P.

The vertical diffusion term can be rewritten by using the hydrostatic equa-

tion as

19PI 3Xi= Kd axil

K[Kd I- F p Z (1.28)

where we have again absorbed the variation of density with T into H0 on the

recognition that Kd itself is not a precisely known quantity. Kd (and the

momentum Austausch Km) will be prescribed functions of P. The equation for i

is now

3xi _axi 1 dni] a Kd axi
= "?VXi - -|d- + +-#I- P aZ] (1.29)

or

axi a(PWxi)

7 ( P vxi) + 3 ]

F ' + Kd x30)

+ d--L d 1]

ni I-8



[having made use of (1.4) and (1.15) to obtain the last form].

The rate of change of 7i (the horizontal average) is obtained from the

horizontal average of (1.30):

'Xt 3 n
' Kd t (1.31)

The rate of change of X' will, however, be obtained from a simplified form

of (1.29), much as was done in the thermodynamic equation (1.23):

ax a xix' kxV • Vx' -W --
I k (1.32)

+ [ dni Kd .n+ --- + L I - Fj P T

In contrast to T, where we are for the most part content to take T as given, we
must predict - as well as xi. Equation (1.31) will therefore be used as well

as (1.32).

Presumably (1.33) need not be applied every time step in the numerical

integration, Xi being a slowly changing function of time. However, the term

W'X i must be put equal to zero at P = I to ensure no net creation of Xi by the

large scale motion.

A special treatment of the minor species equation will be necessary at cer-

tain levels. As an example, Lindzen and Goody (J. Atmos. Sc., 1965, P. 341)

show that the photodissociation of ozone is extremely rapid at heights above . 45

ki, with a time constant becoming less than 1 hour. (They presumably use typi-

cal values of incident solar radiation). The conventional methods of "time-

1-9
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stepping) equations such as (1.32) require a computational time step no longer

than the characteristic phy;ical times associated with tenms on the right ,ide

of (1.32). Since the advective time scale is of the order of an hour or so, we

must consider replacing (1.31) and (1.32) at these levels by the equilibrium

condition.

= ~~dn1. ( . 3
Xi (X )equil <=>dt- 0 (1.33)

* 1-10
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2. Choice of vertical levels.

We obtain equal intervals in Z =-feIP (P =pressure 100 Gb) by defining

Z. AZ(J-j)
J =1, 2, .. ,j. (2.1)

j=1 is at the "top" of our model atmosphere, and j =J at the bottom, whence

Z z1 = ____

A convenient choice is obtained by choosing

AZe =r, r = 2.12472
(2.2)

AZ = enr =0.753640

so that

Z1 Ztop = (J-1),enr

(2.3)

Successive pressure levels are separated by (roughly) 6 kmp below the turbopause.
The relations

P 1Ji;P r (2.4)

are useful. At these levels, the following basic variables will be represented

j 1,2, .. J:T~.W~,(x.)j toqether with the heatinq rate, the photochenical

termii, and the vertical turbulent fluxes of momentum. At the intermecdiaite levels



the streamfunction i will be represented

3s 5J = 235... J *

For convenience in notation, however, will be labeled with an interger sub-

*script according to the convention

,p(P = P . /

This results in the scheme as seen in Figure 2.1.

Table 2.1 lists the values of the more basic variables for the choice

r = 2.12472, J = 26. Values of T were taken from the U.S. Standard Atlosphere,
1976 (NOAA, NASA, and USAF). The static stability parameter S is defined later

in equation (3.20).

2-2
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Figure 2.1: Vertical levels of the model and the location on these
levals of the model variables.

i j
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TABLE 2.1

Pressure, temperature, approximate height,
and static stability for model levels.

Level (= -Zn(p/1000mb)) p(mb) T(°k) z(km) LT + L.f(°k)
P

1 24.92 0.15 (-7) 995.5 398.0 289.01

2 24.17 0.32 (-7) 991.0 354.3 292.70

3 23.42 0.68 (-7) 981.0 313.6 299.13

4 22.66 0.14 (-6) 962.5 275.2 308.45

5 21.91 0.31 (-6) 930.5 240.7 321.53

6 21.15 0.65 (-6) 878.5 210.0 336.53

7 20.40 0.14 (-5) 801.5 183.1 346.05

8 19.65 0.29 (-5) 702.0 161.0 345.16

9 18.89 0.62 (-5) 583.5 143.0 327.56

10 18.14 0.13 (-4) 459.5 129.0 288.16

11 17.39 0.28 (-4) 347.0 118.9 233.47

12 16.63 0.60 (-4) 257.0 111.4 162.65

13 15.88 0.13 (-3) 212.5 106.0 100.51

14 15.13 0.27 (-3) 197.0 101.0 71.20

15 14.37 0.57 (-3) 190.0 96.6 60.91

16 13.62 0.12 (-2) 187.0 92.3 55.41

17 12.86 0.26 (-2) 187.0 88.0 50.76

18 12.11 0.55 (-2) 191.0 83.9 45.93

19 11.36 0.01 200.0 79.5 45.52

20 10.60 0.02 208.5 74.8 46.62

21 9.85 0.05 219.5 69.8 47.77

22 9.10 0.11 231.0 64.7 49.07

23 8.34 0.24 245.0 59.3 50.08

24 7.59 0.51 261.0 53.7 59.96

25 6.84 1.07 267.0 47.8 80.58

26 6.08 2.28 254.5 41.9 88.62

Note: Levels 21-26 (between the dashed lines) are levels which overlap the
. )Stratospheric Circulation Model.
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3. Non-dimensional finite-difference equations

In this section we write the basic equations in a non-dimensional form ',pri-

marily to simplify the dynamical computations) and simultaneously introduce the

vertical finite-difference representation defined in Section 2. We define

= sin-

V(dim) = 7- V(non-dim)

V2 (dim) = 72 (non-dim)a-

X(dim) = 2,,a 2 X(non-dim)

t(dim) = a(non-dim)

W(dim) = 22W(non-dim)

T(dim) = (4?2a2/R) T (non-dim) + (4 2a2/R) T(non-dim)

In the last expression T (dim) is the "total" temperature in absolute degree,,

T T(Z) is the "standard atmosphere" temierature (also in degrees) given in the

table at the end of Section 2, while the .uantity (4Q2a2/R) T (non-dim) is the

(deviation from the horizontal mean) variable T appearing in (1.23), having a

zero horizontal average. [The total T (dim) is, of course, used in all chemical

computations].

s = 2a/8.64x1O
4 rad sec -I

6
a = 6.371x10 meters

R 27 tn (3.2)
R = 287 kU ton deg

Cp-- (7/2)R

3-1
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The non-dimensional 7 operator is

v2( ) 3( 49 o. L. [cos, ] (2.4)
c+- EX-0-- coso

The relation

PW = V2X (2.16)

between W and X can be used to eliminate X in favor of W [in equation (1.13).

by defining the inverse Laplacian operator

(3.5)
X = PI.W

We also have

= 2 ; ' = (3.6)

A further convenient arrangement is useful for evaluating terms of the form

3(PF)/,P, which appears in the vertical diffusion terms for vorticity and trace

substances and in the term

Tp w[P(LW)l

in the vorticity equation (1.13). We have

P+I/2 F j+/ 2 - Pj1/2 Fj-I/2 r

!JPF)rJJ =1/ -.- T F (--)F, (3.7)
dPPF] : P j+112 - P j-112 j12 rl -/

where we have made use of (2.4).

3-2
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The horizontal advection of a quantity F can be written as the Jacobian

-v .VF= kxV -VF =3Xaa±ll A l

(3.8)
J(F,'P)

The non-dimensional form of the vorticity equation (1.13), with regard to

the subscript labelling defined in Section 2, together with equation (1.19) and

(3.5) - (3.8) is as follows:

For j = 1, 2, ... , J-1:

l ~ ,+C, ) - v. {'IL[ ~r I )W -, (l~ j +

+(-A 1 )FT - TF A iF (3.9)
+ 

(3.1)F0)

F 0 (.1

F j -Ili-1(3.12)

F. E (r.-Cj. ) ( 2, 3, .,Jl (3.13)

E. (K [H. .2Z (3.14)
m .j Hi ~ 2

D k 2o2 (3.15)

= 0 (3.16)

h.(L~Jl (3.17)
0

The non-dimensional form of the "thermal wind equation" (1.9) becomes for
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j 2 , J-1... -l:

- I -Tj AZ  (3.18)

The non-dimensional form of the thermal equation (1.23' becomes for

j 2. 3, ... , J-1:

3 T J(T - SW + R (2.19)
t 2 J, j-1 ]q

p

where

= dS R T-(3.20)

J 4 2adZ C

is tabulated at the end of Section 2. Note that qj, the rate of heating per

unit :.ass, is still in dimensional form in (3.19).

The trace substance is, for

J = joJ+l .... J-1:

i Xj - J(X +a" ) - Wj(dZ,)G )G

ait 2 z' j- I - - j-1

+ (L)[L(dn) ] (3.21)

G= D(Xj+-<j) ; for j=jo* ... , J-2

D.= (Kd) j+ :/ (22H )" (3.22)

[The vertical diffusion coefficient Kd is defined at the Zj-levels corresponding
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to j integer plus 1/2, whereas the vertical exchange coefficient K for vor-
in

ticity, appearing in (3.14), is defined at interger values of j.]
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4. Spectral form of the equations

W:e define spectral solutions at arbitrary level j in the form

, = ZWajYa(XP) (4.1)

Tj = IT OjYa(XP)
a

qj = jq aljY a(X,)

a

and for the trace substance equation

Gj -- =G Lj Y c%(X~p (4.2)

In terms of longitude (X) and latitude ) we have defined members of the

complete set of orthogonal spherical harmonics in (4.1) and (4.2) using

Ya(X,p) = e a p O) (4.3)

with

a = n + iZ (4.4)

denoting a vector index of planetary wave number Fc4 and deqree n . The P((1)

are Leqendre polynomials of rank and deqree 4;iven by ,(. Norma1ization (f the
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spherical harmonics is such that integration over the unit spherical surface

(s) yields the orthooonal property

sYY ds =4,T (4.5)

Complex conjugate values are denoted by an asterisk. Another useful property

of the set of spherical harmonics is that they satisfy the differential equation

V2Y = -c•Y ; c = n c )(nl (4.6)

The complete set of orthonormal Legendre polynomials as used in (4.3) are de-

fineu such that

P* - P (4.7)

and alI P have been normalized such that

f+p p d = (4.8)

We now want to substitute solutions (4.1) and (4.2) into the non-dimensional

forms of our model equations, multiply through with a member of the orthogonal

set (say, Y ), and integrate the resulting relationships over the unit sphere.

Application of this procedure to the vorticity equation (3.9), for example,

yields the desirec spectral form of this eojation,
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d -it p -A +
dt = '( ,J (,J C- L r-l y-f:,j+1 -

E_
, I,_) - ,4.9)r - )wciJ -c~K

7 'r~ ~ J

+ r

W-lW.+c,j + (?r_-)Fyj+l -r-IF j

in which, over the unit spherical surface s,

dr 1_ ds

dt 4-ij s: --t - y

_ ' , l F Y*ds

Fy j (4 10

A~ 4 3(,p., ,)Y*Js (See Appendix A) (.0

-. c [V-,i7L(W. )]Y~ds (See
cI - , f c'j y+C +,j '-i s Appendix B)

YJ= 4--JFiY~ds _

Similarly, the thermodynamic energy equation (3.19), the trace substance equa-

tion (3.21), and the thermal wind relationship (3.18) reduce to the spectral

forus

i
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dT 1  R
dt yJ J YJ 1 -

d 1 - B(X) - ~W + (E)G -(411)

d ty"j dZ yj r-1 y~j

)G + !4L' FL) 1Y~ds
r1 Y'j-l 4 7Tj2TC n c C 7j

AZ C T D )Y + E y ,j

where, for example, fYd

dT i I 'TiY*ds
dt dtJ" t

Y~ ~ ds 4 1

B J(Yj+% 1_,T)Y-ds (See Appendix A)

B(X) - ( +1f lx.)Y*ds (See Appendix A)

y'j 8-Ti f -P

Dp .- p P i~ [17.pV~b.]Y*ds (See Appendix B)

In addition, we want to determine the spectral form of (1.6) relating the verti-
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cal component of relative vorticity (;) and the streamfunction (,. It can be

shown that

,, C ~ j C y . ,{ , ( 4 . 1 3 )

or

Y'j (4.14)
£YJ - c'¢

provided that in (6.14) we stipulate y0O-iO (i.e., c yo).

The spectral relationships (4.9), (4.11), and (4.13) [or (4.14)] along with

definitions (4.10) and (4.12) form a complete set of equations for solution.

However, it is not convenient to attempt to integrate the model in this form as

there is no explicit relationship determining the vertical velocit/ field repre-

sented by W. In order to define W, we want to alter the thermal wind relation-

ship in (4.11) This development is contained in the next section. Furthernore,

specification of the truncation limits to be used for series solutions (4.1) and

(4.2) have not yet been established and will be discussed in a later section.
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5. Determination of W4 in the dynamic equations

In order to obtain an explicit description of the vertical motion fields in

our model atmosphere, we insert (4.14) into the thermal wind equation of (4.11)

and differentiate w.r.t. time to get

dT- 'j Dy d ;r, j d ._, j
AZC d c- dt

d-Fc (5.1)

E d(+ J- d {+rJ'

dtC dt J

for all levels j = 2,3 ...... J-1. We note that (5.1) does not apply for the

cases y = O+iO. Furthermore, for notational purposes, we will stipulate that in

(5,1) and all future relationships, terms which require y-.& = O+iO or n <Z

do not exist. This applies equally to cases in which -y+c is not contained within

the specified model truncation limits.

Let us now define

a~ -- - i Z (p -,, - - -) -A +A
y' Y Yj-, +yj y'j-I Ay~j_

_+(r+l +A

F1 r+1' r Fjl
1 , + (r-TF - F (5.2)

b . - B + R I
y,j y,J + p8Q'a' -y,j

such that using (4.9) we can write
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dtj Dt Y h [W 2 ~ (r+1 )W
d=,j1 dy,j 1 (a 1 D

W1 E (5.3)
+ rWY-':,j+l + -q- (INY+j -

- (r+l)Wy+,j + rWy+,j+l

and, the thermodynamic energy equation of (7.11) reduces to

dTY' = b - S W (5.4)

dt y,j ,j y,j

Inserting solutions (5.3) and (5.4) into (5.1) has the effect of eliminating

the time dependence of (5.1) and at any given time we have

/Zy ,aj cY J Yj c _F Y-E,J cy+c y+E,j -

D E+ - 1 c I_2 +c _ [Wy-2: - (r - Wy2 + rW- ,j+l

{TY-- cy.c C( cY-2cj-1

- 1E E C [W j -(r+l + 64W

r- I c + C y C Y-- -+ Wy2j_ )Wy ,j y2,,j+ll

or, if we define
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01

(r- - a a - Y -- a - AZ b

Y-C CY

2?, E, y ED E (5.5)

EY (r-I ),Z S.

the W-equation can be compacted to

[fm1 w ~ ~ + f(2)W f(3
'y Y y-2E,j-l Y f -y,j-1 + Y +2s.,j-1

-(r+1) [f(1)W1  f(2)W . + ~ +
'( '(-2z,j + Y ,j + ~Y +2c,j

+rf'W+ f(2 )W ,j+l + f( 3 W . (5.6)
'y y-2c,j+l 'y Y y -y+2c j+1

3 WyJ ILY,j

in which from (1.17) we represent the boundary conditions as

W =0
Y91

as q i ven fromi external ,ources,.
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To prepare (5.6) for inversion we want to take note of certain properties

of the equations in order to -educe the calculation to a finite set of simple

j matrix solutions. Inspection of (5.6) shows that the equations uncouple accord-

ing to planetary wave numbers, Z . In addition, within each planetary wave the
y

equations contain two independent sets; one of even vector elements (n + z all
Y Y

even) and the others of odd vector elements (n + e all odd). Thus, to facili-

tate ease of notation, let us define some new sets of indices to be applied to

(5.6) by first denoting a maximum planetary wave number, L, for a given spectral

truncation as

L )max  (5.8)

so that we can designate K independent sets of matrix equations using index k

where

k =  1, 2, 3, ... K; K = 2(L+I). (5.9)

For a given matrix set we will determine k by designating

F2Z + 1 for even vector setsks= ts] (5.10)

2Q_ Y+ 1) for odd vector sets

Furthermore, within each of the K matrix equation sets it is useful to designate

an element index, bk' where

bk = 1. 2, 3, ... , Bk (5.11)

Thus, for a given matrix set designated by the subscript k we devise the bk

indices as follows:
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(1) For k odd (even vectors) let

N k n Jk~nax (5.12)

for which we consider only n k from the set n k + fkeven. Then the value for an

individual bk is determined from

bk= nk- +2k2 Vk 0
(5.13)

B N k - k + 2
Bk 2 '_V

where we icnore values of b k outsidca the range indicated in (5.11); i.e., when

k = 1, n1  0, and e 0 we do not include the value b 0 which desiqnates

the nonallowable equation of (5.1) in which y = O+iO [see comments following

(5.1)].

Similarily,

(2) For k even (odd vectors) let

N k =nkdmax (5.14)

in which here we consider only n k from the set n k + e k odd. Then, we have

b n k-k +1
bk 2

(5.15)
N -k+1

a k 2 -

At this point we want to note an additional property inherent in the spec-

tra I '.-equations represented by (5.6) . That is, from defini tinS Lontdined in
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(5.5) and Appendix B we can show that for any given k,

E E

bk Cyk cc y2c

(5.16)
D D
cy k cy Cy-2E

C k c t yt2c kt

We are now prepared to convert (5.6) to matrix form. To do this we first

define tridiagonal matrices Dk as

of3) 0......

f(3) f(2) f(3)
I1 2 2

0 f(3) f(2) f (3)
k  bk bk (5.17)

O. f(3) "f(2)k
0 .................. f(3) f(2

where we have made use of (5.8) - (5.16). We note from (5.17) that not only is

each 0k tridiagonal but it is also symmetric. In addition, it can be shown that

every principle minor determinate of Vk is positive and thus Dk can be said to

be positive definite. These properties will be discussed in more detail below.

To complete the conversion of (5.6) to matrix form we define vectors
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w j 2t,j

b~ ;' (5.18)

k' J k B k-)k

such that (5.6) can be written in the matrix form

Vk Wkj-l (1 )kj 4_rk k,j+l '7j Wk,j 'k,j

j= 2, 3, 4.... J-1 for each k 1, 2, 3 ...... K

We wish to modify (5.19) through diagonalization of each 0 k. Hoeitver,

since eacti tridiagonal 0 k is real, symmetric- and positi-vedefin-ite. .ie know that

allenvaL~ ~1of 2 a re real and positive. Also, the sets of eilenvectors

associated with these eigenvalues are orthonormal-. Thus, if 0 k is an MxM watrix,

there exists a set uf real positive eigenvalues (),k)P with p = 1, 2, 3, ... ,M

associated with V k and MI sets of orthonornal eigenvectors qp' with s =1, 2, 3,

M1. Ifw et -epresent the matrix of eigenvectors associated with the

the set (X k p and matrix Vk% we have

q 2 q 22 ... - q.2m

Q (5.20)

q pl qp2 qP .. . qI11

q1111 1052 - us. . I'l k



such that

Qk~ Q k~ (5.21)

where I is the unit matrix and ()denotes transposition. Define

(X......k.............................0

A k= .kp (5.22)

0................ (X k)
Dl

where then we know

D Ak = Q

and (5.23)

Qk D A = QkQk Ak = A k

We now want to expand the vector W kj in (5.19) in the form

W kj = QkVkj ; Vkj " QkWkj (5.24)

where we note that V kj is also a vector.

Inserting solutions (5.24) into (5.19) and multiplying through with Q k gives

Qk VkA Vk,j-l - (r+l )Qk~kQkVkj I rQk DkQkVk~j+l-

-7 i QkQk Vkj = Qk Rkj

or, fromr (5.23), we can write
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AkVk j - [(r+l) Ak + G ] Vk,j + r.,kVk,j+1 QkRk,j (5.25)

Now, we know that there exists an inverse

/( 0 .................... 0

0 =(5.26)k ;I/(Sk)p

0 ........................ i/0 Oi k m

such that

AkIAk (5.27)

Thus, if we multiply (5.25) through with Ak1 (5.L5) reduces to the form

V - [(r+l)l + jAk] ,j  rVk Jl 1 QkRkj (5.28)

where for each k 1, 2, 3, ... , K we have j 2, 3, 4, ...., j-i. We now let

Sk,j - [(r+l)l + j A k

and

A TkQkRk 'I k (for j 2)

Rk,j A QkRk,j (for 3-.j<J-2) (5.29)

AA-1- rVk, j (for j J-1)
kQk'k,J-1 kj

Using (5.29) , (5.28) transforms to the set
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Sk, 2Vk, 2 + r Vk, 3  Rk, 2  (for j = 2)

V. + SkV + r V R (3<j<J-2) (5.30)
k,j-l Sk,j k~j k,j4-l k~j--

V S V (for j =J-l1

;* Vk J -
2  Sk,J-IVk,J - I  Rk,J- (

4 in which from (5.24) and the boundary conditions of (5.7) we see that in (5.29)

V =0
k,l (5.31)

VkJ QkWk,j

We see that for each k the system (5.30) is tridiagonal in j and thus submits

readily to solution provided certain provisions are met (see Appendix C for

details). Briefly, to invert (5.30) we first define

Uk,2 S-I (for j = 2)

k2 k,2 2

ukj (Sk - r kj.l) (for 3<j<J-l) (5.32)

V (2-ru-l

and then let

Yk,2 Uk,2 Rk 2  (for i = 2)

(5.33)

Ykj uk,j (R - k,j-l) (for 3<j<J-l)

Solutions to (5.30) thus appear as
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V k,d-I Yk,J-l (for j J-1)

k,j = Vk Vk,j+l + Yk,j (for j = J-2, 3-3, .... 2)

provided all u in (5.23) exist and are finite. Vectors Wk,j are then ob-

tained from (5.24).
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6. The model codes

The model consists of four separate programs, three of which are prelimi-

nary and need to be executed only once. The names of the four programs are

ITCOFI, ITCOF2, MESOSI, and MESOS2. A brief description of each of these follows.

ITCOFI, ITCOF2

ITCOFl and ITCOF2 are used consecutively to generate and store on the system

disk a set of non-linear interaction coefficients for use in computing the non-

linear Jacobians in the model. The definition and method used for the computa-

tion of the interaction coefficients are contained in Appendix A.

To run ITCOFI, use file RUNIC1 (see Figure 6.1). This routine requires disk

files INTCOEFI and STRATI as input and creates a file named ICIOUT as output.

ICIOUT is used as input by ITCOF2.

lhe program RUNIC2 (Figure 6.2) drives ITCOF2 and requires files INTCOEF2,

STRATI, and IClOUT as input. ITCOF2 creates a file IC20UT on output which con-

tains the interaction coefficient and instruction fields required by the model.

MESOS1

MESOSI is an initializing program which creates and stores all constants,

truncation parameters, transform parameters, and fixed fields required for the

particular model configuration to be run. This program must be run prior to the

beginning of a particular model experiment and, in general, calculates every-

thing that can be done for the model in advance outside of the main iterative

loop.

MESOSI is driven by the file MESOSBEG (Figure 6.3) and requires input files

STRATI and [C2OUT. On output, the iIe M[SOSI0 will contain all of the input
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fields re.Iiired by the model except for the model's initial conditions. In

addition, a set of data which includes horizontal mean temperatures and stabil-

ities is required as input as shown in Figure 6.3.

MESOS2

MESOS2 represents the central loop of the model. It is called into action

by the file MESOSSTART (Figure 6.4) which requires input files STRAT2, MESOS10,

INITDEC, BNDFILE, and HEATFILE. The last three of these are data files which

include the initial conditions file, the lower boundary conditions file, and

the temporary heating file respectively. MESOS10 is as described above under

MESOSI.

On output, the file MESOUT11 contains the complete history of the model

run. The model can be restarted as often as required from this history file and

the subsequent output is appended onto the file. The first records on MESOUTil

contain fixed model parameters. Subsequent records are each made up of a time

step number, the spectral vorticity ccefficients, the spectral vertical velocity

coefficients and, if applicable, the spectral ozone mixing ratio coefficients

for the particular time step.

An additional file is provided in the program to include the spectral coef-

ficient values for all the non-linear terms in the model at each time step.

This is assigned to "TAPE13" but is currently not being retained by the model as

a permanent file.

The first pages of the listings for the model programs ITCOFl, ITCOF2,

NESOSI, and MESOS2 are shown in Figures 6.5 - 6.8 for purposes of reference.
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Appendix A. Spectral form of Jacobian terms and evaTuation 6f the associated

nonlinear interaction coefficients.

Consider on the unit sphere the Jacobian of arbitrary horizontal 9)obal

scalars A and B where

'A~1 3 3Av3BJ(A,B) (M) B A

and X is longitude while p is the -line of latitude. Expanding A and B in terms

of spherical harmonics, we have for solutions

A = a V (Ya( ),

B = Jb Y (P,1), (A.2)

= + ita C(

in which the special properties o1 the orthonormal spherical functions Y (\,)

are outlined in (4.3) - (4.8). Inserting solutions (A.2) into (A.l), trans orm -

ing the result to insure symmetry v ith respect to vector indices a and 3, and

writing in terms of a single nonredundant sun (for details of these developments,

see Baer and Platzman, 1961) we arrive at

S E 3] (e +C )X dP CX dPl
J(A,B) =- il - J (abe - a ba)ei e LtPd-- W-- -Z P cd-- (A.3)

for which we define through use of the Kronecker delta, i

E n 1 tf, I (A.4)

The term 1- ] is necessary because the two conjugate interactions for the

A-1
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case n, : nct and ILeI- I t, assumed in the symmetric reduction of J(A,B) to

the form of (A.3), are not unique and otwe of them must be ignored.

We now multiply (A.3) with any arbitrary member of the orthogonal-

izing set, say Y*/47, and integrate over the unit sphere to get

YY

C -1 1 J(AB)Y)

-i - . (acb B - a ba)Ky (A.5)

nj n n 1

Y = a+l :5

and the interaction coefficient. K is obtained from

y laPr dP dP JPydp. (A.6)

Since we intend to evaluate K using the "transform" method with integration

by exact Gaussian quadrature (see, for example, Eliasen et al., 1970), a time

saving simplification can be obtained by noting that the integral in (A.6) can

be nonzero only if the integrand possesses an even parity with respect to the

equator. For this condition we can reduce (A.6) to

K 1 r dP dPa
d--LE d d p A s cx d jj .Pd ( A .7 )

In order to evaluate (A.7) numerically let us define
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f() - d
(A. 8)

a

where g can be determined from the Legendre differential relationships in the

form

dP

(nCX+l )pP (2n +1) (n +Ce+l) (n -Z.Q +1) 1/2
0 'i_,2) (i_ 2) (2n a+1)(2n a+3) PCI+L, A 9

1 + iO

We now let

dP dP

d -  Ct a du
(A.1O)

f 00g - fag

which can be expanded in the form

H 5'(p) = h9 , P 6(p) (A.11)

From (A.1O) and (A.1l) we see that (A.7) can be replaced with

Ky -~ = .o[H'2,jj, ) ] p d i,

h>.~k IP6P c A.12)
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U

11

However, if we represent H M( at N d-iscrete points Pk where k 1 , 2, ... ,.N,

then an exact quadrature analog for (A.12) is obtained in the form (see Eliasen

et al., 1970)

N
K. = Wk[HQ(k)]Py(tlk)

k=

N
I W.IIIfl4 (A.13)k= 1 - f( k)g 3('9 k )]PY(Wk )

provided

N = (K + 1)/2
I (A.14)

K > Zmax + (nmax - Zmax) 11
(N and K must be intergers) and the latitudes ik are located at the Northern

Hemisphere zeroes of the Legendre polynomial PK(p) (including the equator if

K is odd). In (A.13) the Wk represent the Gaussian weights required to maintain

orth(jonalization of the discrete set of Legendre polynomials used in (A.13)

such that

N
IWkP(l)P(ilk) = 6 ,B (A.15)

k=l

A discussion of tie evaluation of these Gaussian weights is contained in Appen-

dix D.
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Appendix B. Spectral representation of divergence terms of the general form

V * VA

* In terms of spherical operators on the unit sphere in which X is longitude

and pi is the sine 'of latitude we have

V* - VA Vp - VA + iiV2 A
(B.1)

in which A is an arbitrary horizontal global scalar expandable in the form

A z aa Y(i) . (8.2)

Properties of the orthonormal spherical functions Y at(Xli) are outlined in (4.3)-

(4.8). Insertion of solutions (B.2) into (B.1) yields

V iiA =(l-ii
2) eietX dP (p)- iceexP )

adi a

=-ae (_ 2 Pcp . (B.3)

a na(n l)

But, if we def-ine

(2n +1)(n Z W 1/2

(n +t a (B.4)
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then we know from the Legendre differential and recurrence relations (for exam-

ple, see Jahnke and Emde, 1945) that

dP N
( -n pP + (n +.e)N- - Pa-s

aL-6

and (B.5)

(n -Z+l) Na ( P
PPP + OLa Na(2n +l) N +P a+s+ (2n+1) N _a-s

Then, using (B.5), we can show that

dP (1-n')(n +,e ) N n (n +2)(n -Z +1) N
PC____aaa_ ____aa at0 LP (B6- - cP = (2na+1) N pEa-E (2n +1) N a+E P (B.6)

We now insert (B.6) into (B.3), multiply through using Y* /4r, and integrate
Y

over the unit sphere to get

271 1 aF(l-n 2) (n + ) N 1

1T f [(V-pVn jY*dlidX- a a ax a P I P d -

IO J .IMI1U X oL (2n +1) N J_ 2 _I~a-yP~d

Q -ln a +1a-Y

Y

Fn°(n C+2)(n°-Z +l) No,-+1)
a a (2n +1) 2Nl JP+ Pyd

Z B-ay
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n 2(n +) I-(n-h Y )1 1/2y) (26nY-1)(2n y+11j y-C

-n(n+2) (n +t +1)(n -t ' + a)]

(2 (2n-+1 (2ny+3) a

D a -E a (B.7)
y y-C y y+E

where we have defined

D E (1-n2) (n +Z' )(n fTl
y (- n [2y- 1)(2ny ) (B.8)

F(n+t +1 )(n- -z+1 1/2
E a n (n +2) Ln yJ~ y

y y (2n +1)(2n +3)

A special case of (B.7) occurs when we-consider scalar B in which

B = V2A (B.9)

where similar to (B.2) we can expand B in the form

B lb Y(i). (B.10)
CL

Then, from (4,6), we know that

b -c a (B.11)

and, in terms of coefficients b , (B.7) becomes
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.. j (i-pVA)YyddX - Y b + _EL4-i 0 y ~ y- cy+t: y-
~0'-1y-t:(8.12)

yb - Eyby+

in which we have defined

D E
= - ---- , E - (B.13)y Cy.E  y cY+C

provided that in (B.12) we ignore terms in which c = 0 (i.e., n, = 0).

Further, for both (B.7) and (B.1-:$) we must stipulate that all terms calling for

any a 'Y- ay+-, b _ or b outside the range of the particular spectral trun-

cation chosen must also be ignored.
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Appendix C. Solution of a tridiagonal set of equations.

Suppose we have an equation set of the form

ayXY 1 + byXy+ C yXs,+l = Ry

(C.1)
y 1, 2, 3, r

where we must have

a 1 0

(C.2)
c 0 1

That is, in matrix form we can write (C.1) as

AX = R (C.3)

with A being tridiagonal of the form

b I  c .......... 0

a2  b2  c2

A = " T  " b y( C .4 )
A ~a *b *c (Ay

0 ..........a b~

For solutions we define

C1 = I/b I

Cy 1/(bY-ayCy_y); 2<y<r .(C.5)

D y c - C yy

C-I



and let

B1 = CR1  (C. 6)

By c y RY a~_ 2<ygt

Then, the solutions appear as

X 1 , Br(C.7)

*y =~ D yX Y+1+B ; y =r-i, r-2, .. ,I

provided all C yin (C.5) are finite. That is, if

b, (C.8)

b y a yc Y 1 C y1  J

C-2



Appendix D. Computation of the weight functions for Gaussian quadrature.

We consider the set of complete orthogonal Legendre polynomials, P fU), in

which t = 0, ±1, ±2, ... and n = 0, 1, 2 ...... We define this set, according

to (4.8), to be normalized such that

n n n n (pdp n 26 ,n (D.1)

where p is the sine of latitude or equivalently, the cosine of colatitude, P.

Now in order to expand an arbitrary function of latitude, say f(p,), in terms of

the set of Legendre polynomials we let

f(,) = HfnPn(p) (0.2)
Znnn

from which the coefficients, f, are obtained through application of (D.1) such

that

f Y- ~fl, P (O)P (1)di f (ff()P z(i) d (0.3)fn 27 n nT

However, to be able to transform at will between spectral and grid point space,

it is necessary to represent f() at a number of discrete points, 1k, in which

k = 1, 2, 3, ..., N with N being the total number of points lying within -l<p<l.

Thus at each latitude point, (D.2) becomes

, 11flpI(Po (D.4)
Zn n

This means that in order to determine coefficients ffn we must evaluate the inte-

D-I
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9

grals in (D.3) numerically and at the same time maintain the orthogonality prop-

erties of the discrete polynomials representation in (D.4). For this purpose,

integrating by quadratures, we introduce a set of Gaussian weight functions, wk)

such that

N
. wPn(Id)Pn((Pk))P ( )dp (D.5)

k=l

and the numerical analog for (D.3) becomes

n fn- Ywk-Pk~j)pn(lk)2 k=kk nk

1 N t
2k=l kf(Ujk)Pn (Pk) D6

The remainder of this Appendix is devoted to the method of evaluation of the

Gaussian weights, wk.

Because we know that any given Legendre polynomial, p (MJ), can be repre-n an be rere

sented by a finite series in j of at most degree n, we can expand

? n+n'P (l)Pn (pj) I b bip

i:O

or (D.7)
n Uk nk ~n+n

n~wk~p (Pk) i=O Il'

and thus,

1 ~1

- i 0bi  ldp (D.8)

D-2
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Integrating (0.8) by quadratures using (.5),

1 n(P%. ,()di w k= P: wk(PJk)P'( ik

tN n+n'
Y w Wk Y b ilpk]1  (D.C

k=l i=0

Equating (0.8) and (0.9) we have

n+n' N n+n'

i=0 k=1 i 10 b

and thus for any i such that 0 <1< n + n' it must hold that

Ji di Y w k.11 (0.11)

k= 1

We see from (0.11) that if we choose the number of latitude points, N, such

that N-i = n+n' then utilizing all i = 0, 1, 2, ... , n+n we can form a set of

N equations containing N unknown quantities, wkV for inversion. However, in

terms of colatitude, P, we can show that any cosj,, (j is an integer) can be

expanded in the form

j/2 2m (j/2)-i 2al
cosjk= a2  aji + a '

m 0 m m0

and (.2

j (j/2)-i 2m

D-3



I
Then, inserting (D.12) into (D.11),

1 1
l__I  1 (i/2) I

a1 cosi~dp - a 2m .2md,,=
-1 i m=O -1

I i-=- 
(D .13)

N I (i/2)-1 N 2m
S k1 WkCOSik a a 2m Wk[ Ik]
ai k l ai m a k I= m=O k=l

or

N
Y WkCOShik = cosidp

k=l 

= cosi sinpd

V0 for i odd
-2-- for i even (D.14)

0, 1, 2, ... n+n

where we have made use of (D.11) to eliminate the second term on each side of

(D.13). Again, as for (D.11), we see that if we take N-1 = n+n', we can invert

(D.14) to obtain the Gaussian weights.

As an example, consider N=3 where we select c1=3
0', 02=90', and 3:150'.

Then, from (D.14) we can construct the set (using i = 0, 1, 2)

wI + w2  + w3  = 2

/3 r3 0 (D015)

1 1

W2l - + 1 -2/3
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with solutions

w 1 W 3 =4/9
I (D.16)

w2  10/9

We note that the solutions (D.16) are symmetric in wk about the equator. If we

assume such symmetry a priori then all equations in (D.14) involving odd values

of i become redundant and we can write (D.14) over the integration interval from

0 to p = nT/2 as

N+I /2 = 7/
x wkcos 2 ipk = cos2iq sin,[d,,

k=l 0O

{414 .• (D.17)

i 0, 1, 2, .' N-i n+n'

Again, using the example used above in which N=3, l = 30 ', and 2= 90 ' we

have _+l = 2 and N- 1 giving the set
ave 22 2-

1 2

l- w23

with solutions

5 (0.18)
I4

D-b
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Furthermore, if we want to obtain wk s for the entire pole to pole integration,

we need only make use of the symmetry property

W N+I- k  Wk + wk  (D.19) W

which gives for our example

4W = W3 9

2 39

Solutions (D.20) are identical with those of (D.16).

D-6


