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X ' c-in flns paper we briefly present..ls.he desxgn of a distributed relational data
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&) base system. Then, we discuss experimental observations of the performance of

- that system executing both short and lmg commands. Conclusions are also

-

drawn concerning metrics that dnst.nbntd query processing heuristics should
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attempt to minimize. Lastly, we comment or architectures which appear viable
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for distributed data base applications. e
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1. INTRODUCTIOR o

Many algorithms have been proposed tp solve distributed relational data
base problems in the areas of:

a) distributed concurrency control
b) distributed crash recovery

¢) support of multiple copies of data
d) distributed command processing

There is currently little quantitative kinowledge on the performance of such
algorithms. Previous work has been based exclusively on simulation, e.g.
[RIES79; GARC78a, GARC78b, LINB1] or formal modeling, ¢.g. [GELE?8, BERN79].
One of the objectives of this research is to provide empirical results concerning

the performance of various algorithms.

This paper first presents a short descsiption of a working prototype distri-
buted data base system. Then, we present;the results of a collection of experi-
ments on this prototype. Conclusions coneerning query processing algorithms
are drawn as appropriate. lastly, comments on viable distributed architectures
for data base applications are presented.

& DISTRIBUTED INGRES .

Distributed INGRES operates on a collectian of DEC VAX 11/780s and 11/750s
ocomnected by a 3 mbit ethernet. All run the 4.1cBSD, a version of the UNX
[RITC?5] operating system enhanced at Berkeley with paging, numerous pro-
gram development tools, remote interprocess communication, and remote pro-
cess execution.

Most features of Distributed INGRES [EPST78] are currently operational. A
master INGRES process runs at the site where the command originated and siave

INGRES processes run at each site which have data involved in the command. The
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S _‘ < master process parses the command, resolves any views, and creates an action
::IE ) plan to solve the command using the fragment and replicate technique. The
. slave process is essentially single-machine INGRES [STON76, STONB0] with minor
- extensions and with the parser removed. The coordinator and slaves communi-
i cate using the 4.1cBSD interprocess message system.
i Distributed INGRES supports fragments of relations at different sites. For
= example, one can distribute the relation .
"‘.:t’
- EMP (name, salary, manager, age, dept)
<.
e as follows:
&
e range of E is EMP
e distribute E
e st Berkeley where E.dept = “shoe”
o at Paris where E.dept = "toy”
at Boston where E.dept != "toy"” and
{ Edept != "shoe”
'_:.:'j Berkeley, Paris and Boston are logical names of machines which are mapped to
_,'.: : site addresses by a lookup table. A single sits. relation is a special case of the
— " distribute command, e.g.
%3 distribute ONE-SITE at Berkeley
=
j::' Currently, all QUEL commands without aggregates are processed correctly
= for distributed data. Consider, for example, the following update:
\S: .
AZe range of E is EMP .
\% replace E(dept = "toy”) where e.salary > 10000
x':'
This command will be processed by all sites containing fragments of the EMP
:j: relation. All qualifying tuples are updated and their site location may be
<
o changed. For example, the tuple of an employee earning more than 10000 in the

shoe department would be moved from Berkeley to Paris.

Distributed uses a two phase commit protocol [GRAY78, LAMP78).
Sleves send a “ready” message to the master when they are prepared to commit
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an update. Tuples which change sites are included thh this message. The mas-
ter then redistributes the tuples by piggybacking them onto the commit mes-
sage. A three phase commit protocol can optionally be used [SKEES2] for added
reliability. In this case the above redistribution is handled in the second phase.

When a command spans data at multiple sites, a rudimentarv version of the
“fragment and replicate” query processing strategy is used. For example, sup-

pose a second relation
DEPT (dname, ficor, budget)
exists at two sites as follows:

distribute D
at Berkeley where D.budget > 5
at Paris where D.budget <=5

Consider the guery subnitted by a Boston user:

range of E is EMP
range of D is DEPT
retrieve (E.name) whereE.dept = D.dname
and D.floor = 1 .

First, the one variable clause "D.floor = 1” is detached and run at both Berkeley
and Paris, i.e.

range of D is DEPT
retrieve into TEMP (D.dname) where D.floor = 1

The original query now becomes

range of E is ENP
range of D is TENP
retrieve (Ename) where E.dept = D.dname

To satisfy the query, detsa movement must now take place. One relation (say
TEMP) is replicated at sach processing site. Hence, both Berkeley and Paris
send their TEMP relatioas te each site which has a fragment of EMP. Therefore,

the needed transmissions are:
TEMP(Paris) -> Bosten
- ‘ -
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‘ ' ‘ TEMP(Paris) -> Berkeley

~ TEMP(Berkeley) -> Paris

:" \ . TEMP(Berkeley) -> Boston

- L

N Now, all three sites have a complete copy of TEMP and a fragment of the EMP

relation. The above query is now performed at each site, and the resulting
S tuples are returned to the master site, where they are displayed to the user.

Since our ETHERNET has the hardware capability to support broadcast, it is
- possible to perform the above four transfers by broadcasting each fragment of

TEMP. However, the 4.1cBSD operating system does not support multicast or

L]
s ¢ o

.
e fat

broadcast transmissions. Consequently, the above four transmissions occur

o 1)
SRR
l'l‘

separately, and the strategy of replication may perform poorly [EPST78]. The

_ network on which we planned to run [ROWE78] supported broadcast, and we have
_,._:'

Y not subsequently modified the query processing heuristics.

2

o At the moment, the relation to be replicated is chesen arbitrarily, so TEMP
__ . and EMP are equally likely to be selected for movement. A more elegant stra-
" tegy is being planned.

o,

-,

. 8 SIMPLE UPDATES

-::J'.: In all experiments we use the EMP and DEPT relations as discuased in Sec-
'{Eﬁ tion 1. Our data base consists of 30,000 EMP tuples, each 38 bytes long and 1500
ML DEPT tuples each 18 bytes long. In all cases we will be comparing the perfor-
- mance of Distributed and single-site INGRES.
> The first benchmark consists of 1000 random updates of the form:

e replace E (salary = K) WHERE E.name = L,

g The n-site data base was distributed as follows:
2

8% distribute E -

e at site-a where e.name < J,

o atsife-d where e.name >= 4,

= and e.name < Js
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atriten wh;re e.name >= J,

The constants §,...Ja-; Were chosen so that exactly 1000/n updates were
_directed to each site. The number of sites, n, was varied from 1 to 3.

Each site ran a script which contained 1000/ n updates and processed the
next command when it received "done” from the previous one. In this way there
was a master INGRES at each site and we avoided creating a bottieneck at a single-

coordinating site.

Note that this benchmark consists of a large collection of small transac-
tions, each of which can be completely processed at a single site. A distributed
data base should perform well in this situation.

Table 1 indicates for each confliguration the CPU time spent inside the
.operating system, the CPU time spent inside the INGRES code and the elapsed
time. The benchmark was run on a VAX 11/780 along with 0, 1 or 2 VAX 11/750's.
Unfortunately, the 11/750's have varying amounts of main memory, disk sys-
tems, and buffer space allocations. Moreover, the error rate of network
transmission varies between pairs of machines. As a result, a fair amount of

random variation of the numbers must be expected.

For the distributed processing configurations, the reported times are a sum

*of the time spent by the master INGRES at that site along with the times spent

by any slave INGRESs on behalf of masters at other sites. According to local

benchmarks, an 11/750 is about 0.829 times as fast as an 11/780 [HAGGB83):

bence total CPU time is calculated by scaling 11/750 time by the above factor
end is reported in the row labeled by n*780.

Several conclusions can be drawn from these resuits. First, Distributed
INGRES is about 20 percent slower than normal INGRES when run on a local data
base. Distributed INGRES must check the distribution criteria to ascertain that
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,.\, user time system time elapsed time
R Normal INGRES
N 11/760 7:34 3:04 . 223¢
.:\.
o Distributed
INGRES - local
Oy data base
% 11/780 9:08 3:53 26:57
o Distributed
RN INGRES - foreign
data base
P 11/750 7:58 3:02 28:37
hY - 11/780 5:34 2:57
o 02780 10:35 4:51
J'.-.
- Distributed
N INGRES - 2
gites
Uy 13/780 5:14 24 15:30
e 11/750 8:24 4:05 16:46
S 024780 10:31 4:58
Y
R Distributed
¢ INGRES - three
o gites
ol 11/780 3:43 1:30 12:43
g . 11/750 5:28 2:18 13:34
11/750 5:48 2:13 13:22
03780 11:09 4:30
- Performance of Simple Updates
s Table 1
e .
’-; esach of the commands is a local one. Currently, this checking is performed at
4,

run time; however, for better performance it could be performed at compilation
time. In addition, each updated tuple must also be checked against the distribu-

4,

tion criteria to ensure that it does not change sites (i.e. that the dept field is
. pot being changed).

Second, Distributed INGRES on a one machine foreign data base is about 10
percent slower than on a local data base. The foreign data requires master

::?': INGRES to communicate with a non-local slave instead of a local slave, and this
" requires extra user and system CPU time.
N
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Third, 2°780 and 3*780 Distributed INGRES use 20 percent more CPU time
than Distributed INGRES on a local data base and 45 percent more CPU time
than single-site INGRES. Both systems use marginally more CPU time than Dis-
tributed INGRES on a one-site foreign data base. The benefit of these

configurations is increased parallel processing: bence the benchmark finishes
respectively 25 and 40 percent faster. Of course, the benchmark would have
finished even faster if the additional machines were 11/780s. We suspect that a
collection of n 11/7680s could finish the benchmark in approximately 28/n
minutes.

Lastly, note that the 3 site benchmark uses the same amount of CPU time
as the two site benchmark. It is reasonable to expect that the tatal CPU time
would continue to be a constant as additional sites were added. Hence, we
predict that total aggregate CPU time would remain a constant as sites are
added and would be split among an increasing number of machines.

Benchmark 1 on a foreign data base results in 522,880 bytes being
transferred across the network, and less than two percent of the available
bandwidth is consumed. It appears that a large number of machines could be
added to the ETHERNET before bandwidth limitations arise.

4. ONE RELATION RETRIEVES

In this benchmark we attempted to load the network as fully as possible
with the following query:

o il S

The result of this query is 30000 tuples which would ordinarily be printed on the
terminal. To stress differences in the ervironments being tested, we discarded
the qualifying tuples in both this benchmark and the subsequent one. Hence,
the cost of printing more than 1 mbyte of data is not included in the results
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presented in Table 2. In the 2 site and 3 site benchmarks the EMP relation is

:_\_ uniformly distributed across the sites. Moreover, we are timing several repeti-

‘1‘.'.

}*‘_ tions of the query submitted from a single job stream and then averaging them.

) Distributed INGRES on a local data base runs at about the same speed as
single-site INGRES. The extra overhead of discovering that the query is local is
amortized over a large amount of processing, so the two systems perform com-
o parably.

':x:‘

NN

E‘.‘ user time system time  elapsed time
Y,

2 Normal INGRES

v 11/780 1:44 0:15 2:03

o

XS

P Distributed

.y INGRES - local

i data base

,‘_ 11/780 1:47 0:10 2:05

-

- Distributed )
AN INGRES - foreign
'_-:.: data base

s, 11/750 0:03 0:03 2:54

' 11/780 1:47 0:20

N 02°*780 1:49 0:22

A

. Distributed

Dy INGRES - 2
F.-. sites

- 11/780 1:08 0:19

. 11/750 1:38 0:15 2:59
e 02780 2:08 0:28

Distributed

e INGRES - three

‘c:.:‘t dte'

o 11/780 0:35 0:05 2:37

11/750 1:13 0:16
11/750 1:12 0:17

- 03*780 2:08 0:26

iﬁ Performance of One-relation Retrieves
Table 3
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‘. On a foreign data base distributed INGRES is 0:49 seconds slower. In this

:ﬁ : environment, a slave must write the EMP relation into a temporary file and pass

'\% it across the network to a another file. Consequently, there are a total of two

X copies made of the 1200 block EMP relation.

The cost of a executing a remote copy of the 1200 block file is 0:17 of

\'. elapsed time and 0:11 of system CPU time. Hence, about 32 percent of the 0:49

'. difference is explained by the network overhead; the rest is added INGRES over-

5 bead. This remote copy consumes about 18.3 percent of the 3 mbit bandwidth.

) ,:'- Because INGRES adds extra overhead, it uses only 6 percent of the available }

N bandwidth. Obviously a large number of concurrent data base users would be

.'_ required before INGRES could use any substantial fraction of the ETHERNET

5 bandwidth. }

& When the data base is distributed over multiple sites, the total CPU time |

remains approximately constant and is distributed evenly over the machines. i
When two sites are present, about 50 percent of the CPU cycles are offloaded to é
an 11/750 which is 0.829 times as fast. The maximum improvement possible in 3

o this configuration is about 25 percent, and it appears that INGRES overhead 5

_:; offsets this gain. With three sites dividing the work, response time begins to

_:":E improve, and this improvement should continue as new sites are added. *

‘ Four conclusions can be drawn from the results of this benchmark and the i

'. above discussion. First, query processing heuristics should account for the i

- .

3_‘: speed of the various machines when deciding optimal strategies. To achieve ]

; minimum response time using our configuration, one should give the 11/780 ;

| disproportionately more work than the 11/750s. Second, bandwidth will never
be a problem in our environment. Even operating system flle transfers do not ]

¢ come close to using the entire bandwidth, and INGRES relations cannot be i

:js': moved any fester than OS files. Third, data base and file servers are often pro- 1

2 -10- ]
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posed as useful architectural concepts in a local network environment. How-
ever, this configuration is closely approximated by a foreign data base which had
the next to worst performance of the ones tested. Unless a server is much fas-
ter than other machines on the network or unless other machines do not have
disks, the merits of a server seem tioubt.ful. Lastly, it appears desirable to split
complex queries among a large rmumber of sites and take advantage of the
resulting paraliel processing.

S. JOIN EXPERIMENT

The last experiment executed the natural join of EMP and DEPT, with EMP
hashed on the dept field and DEPT hashed on the dname field, i.e:

range of E is EMP
range of D is DEPT
retrieve (E.all, D.all) where E.dept = D.dname

The same environments were tested as in the previous sections. In the 2 and 3
site cases both EMP and DEPT were uniformly distributed, and DEPT was
selected as the relation to be replicated in query processing. Table 4 contains

the measured results.

Notice that these results are very similar to the preceding two sets of
numbers. Hence, we will not comment on their relative magnitudes. Rather, we

will discuss other points.

First, the two and three site versions moved the DEPT relation to solve the
query. We forced distributed INGRES to instead move the EMP relation, and the
results were about 20 times slower than tbose reported. The explanation is
somewhat subtle. When Distributed INGRES replicates a relation at multiple
sites, it loses the access structure of the relation involved and does not recreate
the original access path for the composite relation. Hence, if DEPT or EMP is
moved, it becomes a heap at each site. Local INGRES algorithms solve the join by
fterating over the smaller of the two relations, in this case DEPT. If DEPT is

-11-
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user time system time elapsed time

Normal INGRES
11/780 8:41 0:38 9:37

Distributed

INGRES - local

data base

11/780 8:57 0:47 1034

Distributed

INGRES - foreign

data base

11/750

11/780 9:01 0:42
02*780

Distributed

INGRES - 2

gites

11/780 4:28 121 10:45
11/750 7:56 1:02

02*780 9:28 1:00
Distributed

INGRES - three

pites

11/780 3:11 :13 7:41
11/750 5:27 :43

11/750 5:14 :40

03+780 9:54 1:05

Performance of Joins
Table 4

moved, then INGRES will iterate over a heap producing a large collection of
queries of the form:

retrieve (E.all, -constants- )
where E.dept = constant

These queries can then be executed by a hashed access to the EMP relation.
However, if !:l(P is moved and becomes a heap, a large number of queries are
generated, each requiring a complete scan of the EMP relation.

We did not execute the query with EMP at one site and DEPT at another. In
this case the query processing module should move the DEPT relation to the site
of EMP. This should add only a few seconds of overhead to the distributed

-12-
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; x INGRES times for a local data base.

Cal

:j}: We also did not force the obvious semi-join strategy indicated by the follow-
- ing commands.
retrieve into W(E.dept)

:\' move W
¥ retrieve into W2 (D.all) where D.dname = W.dept
e move W2 -

A.

o~ retrieve (E.all, W2.all) where E.dept = W2.dname
,-. Since all values of dname appear in the EMP relation, W2 is exactly the size of
:"‘ DEPT. This algorithm will consequently perform more poorly than all other ones
::;' since it will perform a projection of the EMP relation in addition to the work
. done by other algorithms. Given that bandwidth is not a consideration in our

_EZ:j environment, semi-joins, which must execute the guery twice, will seldom be
-

" advantageous.

6. CONCLUSIONS
L
:'-t This paper presented timings for a distributed data base system. By and

::‘: large, they are extremely encouraging. Although Distributed INGRES is not

; ‘_ highly optimized, it does not add a large amount of overhead. 1t is expected that

X

E_‘,’ judicious tuning could make it competitive with single-site INGRES on local data

\j bases. On distributed data, the costs of moving data are not excessive and
™2

result in substantial parallelism.
-
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! IMPLEMENTATION OF RULES IN RELATIONAL DATA BASE SYSTEMS

.- - by
: Michael Stonebraker, John Woodfill and Erika Andersen

.:- - Dept of Electrical Engineering and Computer Science
University of California
Berkeley, Ca.

ABSTRACT

This paper contains a proposed implementation of a rules system in a rela-
tional data base systemn. Such a rules system can provide data base services
including integrity control, protecticn, alerters, triggers, and view processing.
Moreoever, it can be used for user specified rules. The proposed implementa-
tion makes efficient use of an abstract data type facility by introducing new data
types which assist with rule specification and enforcement.

Punibe 9
- e atieva Al

I INTRODUCTION

Rules systems have been used extensively in Artificial Intelligence applice-
tions and are a central theme in most expert systems such as Mycin [SHOR7€ ]
and Prospector {[DUDA78]. In this environment knowledge is represented as
rules, typically in a first order logic representation. Hence, the data base for an
expert system consists of a collection of logic formulas. The role of the data
manager is to discover what rules are applicable at a given time and then to
apply them. Stated differently, the data manager is largely an inference engine.

On the other hand, data base management systems have tended to
represent all knowledge as pure data. The data manager is largely a collection cf
heuristic search procedures for finding qualifying data. Representation of first
order logic statements and inference on data in the data base are rarely
attempted in production data base management systems.

The purpose of this paper is to make a modest step in the direction of sup-
porting logic statements in a data base management system. One could make
this step by simply adding an inference engine to a general purpose DBMS. How-
ever, this would entail a large amount of code with no practical interaction with
the current search code-of a data base system. As a result, the DBMS would get
much larger and would contain two essentially non overlapping subsystems. On
the other hand, we strive for an implementation which integrates rules into
DBMS facilities so that current search logic can be employed to control the
activation of rules.

The rules systemn that we plan to implement is a variant of the proposal in
[STONB2], which was capable of expressing integrity constraints, views and pro-
% tection as well as simple triggers and alarms for the relational DBMS INGRES
] [STON78]. Rules are of the form:

on condition

SN LN MIRFLILINI SIS
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{ then action
% The conditions which were specified include:

5 the type of command being executed (e.g. replace, append)
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{ the relation affected (e.g. employee, dept)
o the user issuing the command

o the time of day

e the day of week

7. . the fields being updated (e.g. salary)

e the flelds specified in the qualification

the qualification present in the user command
The actions which we proposed included:

-5 sending a message to a user

AL aborting the command

P executing the command

- modilying the command by adding qualification or
. cbhanging the relation names or field names

Unfortunately, these conditions and actions often affect the command
which the user submitted. As such, they appear to require code that manipu-
lates the syntax and semantics of relational commands. This string processing
code appears to be complex and has little function in common with other data

y base faciiities. In this paper we make use of two novel constructs which make
| implementing rules a modest undertaking. These are:

L 1) the nction of executing the data
: and
- 2) a sequence of QUEL commands as a data type for a relational data base sys-
- tem

: The remainder of this paper is organized as follows. In Section II we indi-
A cate the new data types which must be implemented and the operations
required for them. Then in Section Il we discuss the structural extensions to a
2 relational data base system that will support rules execution. Lastly, Section IV
. and V cor.tains some examples and our conclusions.

I
|
11 RULES AS ABSTRACT DATA TYPES |

Using current INGRES facilities [FOGG82, ONG82, STON82a] new data types
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for columns of a relation can be deflned and operators on these new types
specified. We use this facility to define several new types of columns and their
associated operators in this section

The first data type is a QUEL command, e.g.

range of e is employee
replace e(salary = 1.1%.salary) where e.name = “John" |
|
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The abstract data type facility supports an external representation such & -
that above for a given data type. Moreover, when an object of the given type is
stored in the data base it is converted to an internal representation. QUEL com-
mands are converted by the INGRES parser to a parse tree representation such
as the one noted in Figure 1 for the qualification "where 13. + employee.salary =
100". Consequently, a natural internal form for an object of type QUEL is a
rse tree. Each node in this parse tree contains a value (e.g. 13.) and a type
o e.g. foating point constant).

- The second new data type which will be useful is an ATTRIBUTE-FUNCTION.
U] This is a notion in the QUEL grammmar and stands for anything that can be
evaluated to a ~onstant or the name of a column. Examples of attribute func-
y . tions include:

e 13.




L : RETBOOL
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. The Parse Tree for the Qualification
o~ Where 13. + employee.salary = 100
\ Figure 1
™ 1.1*employee.salary +20
3 newsal
" The external representation is the same string format used for objects of type
3 QUEL; the internal representation is that of a parse tree.
w2 " Two other data types of lesser significance are also needed, a TIME data
. type to contain a time of day value and a COMMAND data type to contain a value
. which is one of the QUEL commands.
-
-7 Current built-in INGRES operators (e.g. *, /, +, etc.) must be extended for
. use with attribute functions. In addition, two new operators are als> required.
J First, we need a function new() which will operate with integer data types. When
- called, it will return a new unique identifler which has not been previsusly used.
Second, we require a partial match operator, -, which will operate on a variety
of data types and provide either equality match or match the value "'*".
o I INGRES CHANGES
g We expect to create two rules rejation, RULES1 and RULES2, with the follow-
ing fields:
) create RULES1(
>, rule-id = i4,
et user-id = c10, -
N time =time,
N command = cornmand,
. relation = c12,
&S terminal = c2,
a8 action = quel)
f create RULES2 (
e rule-id = i4,
e type = cl0,
" att-fn1 = attribute-function
_. operatgr = c5,
e att-fn2 = attribute-function)
‘ :j For example, we might wish a rule that would add a record to an audit trail
.-:f.
-

3
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whenever the user "Mike” updated the employee relation. This requires a row in
RULES1 specified as follows:

append to RULESlé
rule-id = new(),
user-id = "Mike",
command = “replace',
relation = "employee”,
action = QUEL command to perform audit)

It additionally we wished to perform the audit action only when Mike
updated the employee relation with a command containing the clause “where
employee.name = “Fred'"' we would add an additional tuple to RULES2 as follows:

append to RULES2(
rule-id = tht one assigned in RULES1
type = "where"
att-fnl1 = "employee.name"
operator = "="
att.fn2 = "Fred"”)

We also require the possibility of executing data in the data base. We pro-
pose the following syntax:

range of r is relation
execute (r.fleld) where r.qualification

In this case the value of r.fleld must be an executable QUEL command and
chereby of data type QUEL. To execute the rule that was just appended to R1 we
2ould type:

range of ris R1

execute (r.action) where r.user-id = "Mike" and
r.command = "replace” and
r.relation = "employee”

When a QUEL command is entered by a user, it is parsed into an internal
parse tree format and stored in a temporary data structure. We expect to
change that data structure to be the following two main memory relations:

create QUERY1(
user-id = c10,
command = command,
relation = c12,
time = time,
terminal= c2)

create QUERY2(
clause-id = i4,
type =c10,
att-fnl = attribute-function,
operator = c¢5,
att-fn2 = attribute-function)

If the user types the query:

range of e is employee
retrieve (esalary)
where (e.name = "Mike" or e.name = "Sally")
and e.salary > 30000

.
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: then INGRES will build QUERY1 to contain a singie tuple with values:
R QUERY1
Ty user-id { command | relation | time ’ terminal
\.;: A current-user | retrieve | employee | current-time | current-terminal
"o
o QUERY2 will have four tuples as follows:
AN
N QUERYZ
‘\': clause-id type att-fn1 operator att-fn2
';-'," id-x target-list | employee.salary = 2mployee.salary .
. id-y where employee.name = Mike
A . id-y where emrloyee.name = Sally
v id-z where | employee.salary > 30000
_.-2;5.'
LA 2]
2ol Notice that QUERY1 and QUERY2 contain a relational representation of the parse
- tree corresponding to the incoming query from the user. The where clause of
3 the query is stored in conjunctive normal form, so that atomic formulae which
2O are part of a disjunction have the same clause-id, while the atomic formulae and
:'_.:: disjunctions in the conjunction have different clause-ids.
e Then we execute the QUEL commands in Figure 2 to identify and execute
) ;:-j the rules which are appropriate to the incoming command. These commands
N are performed by the normal INGRES search logic. Activating the rules system
( simply means running these commands prior to executing the user submitted
S command. After running the commands of Figure 2, the query is converted
RO back to a parse tree representaticn and executed. Notice that the action part
of a rule can update QUERY1 and QUERY2; hence modification of the user com-
N mand is easily accomplished. The examples in the next section illustrate several
S uses for this feature:
g range of rl is RULES1
I range of r2 is RULES2
L, range of q1 is QUERY1
o range of q2 is QUERY2
o retrieve into TEMP(rl.id, rl.quel) where
R rl.user-id ~ ql.user-id and
O rl.command ~ ql.command and
P rltime ~ql.time and
Z'::T‘ rl.terminal~ ql.terminal
':f:::. range of t is TEMP
RO execute (t.quel) where t.id < O or
A (t.id = r2.rule-id and
O set(r2.all-but-rule-id by r2.rule-id)
o = set(r2.all-but-clause-id by r2.rule-id
y v where r2.all-but-rule-id ~ q2.all-but-clause-id))
b *\-
N Rule Activation in QUEL
s Figure 2.
@7 The set functions are as defined in [HELD75). The conditions for activating a
o rule are:
) ::j:: (i) its tuple in RULES1 matches the tuple in QUERY1
-
-
R
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i and either
(ii) each tuple for the rule in RULES2 matches a tuple in QUERY2.

(iii) there are no required matches in RULES2
(represented by rule-id < 0).

The second condition provides appropriate rule activation when both the user
) : query and the rule do not contain the boolean operator OR. However, a rule
N which should be activated when two clauses A and B are true will have two tuples
otk in RULES2. This rule will be activated by a user query containing clauses match-
o ing A and B connected by any boolean operator. Under study is a more sophisti-
cated activation system which will avoid this drawback.

The commands in Figure 2 cannot be executed directly because set func-
\ tions have never been implemented in INGRES. Hence, we turn now to a pro-
posed implementation of these functions.

Suppose we define a new operator "|" to be bitwise OR, and "bitor()” to be an

-
B
.

o aggregate function which bitwise ORs all qualifying flelds. Then if we add the
O attribute "mask"” to RULES2, and give each tuple for a particular rule a unique
- bit, the following query is correct:
range of t is TEMP
w execute (t.quel) where t.id < O or
N . (tid = r2.rule-id and
bitor(r2.mask by r2.rule-id)
S = bitor(r2.mask by r2.rule-id
where r2.all-but-rule-id ~ q2.all-but-clause-id))
t ! This solution will be quite slow, since the test for each rule involves processing a
complicated aggregate. A more eflficient solution involves generating masks for
e all rules in parallel and writing special search code as follows:
- range of r1 is RULES1
N range of r2 is RULES2
" range of q1 is QUERY1
g} range of q2 is QUERY2 .
Y retrieve into TEMP(rl.id, ri.quel, mask = 0) where
T rl.user-id ~ ql.user-id and
Y rl.command ~ ql.command and
Iy ritime ~ql.time and
> rl.terminal~ ql.terminal
- range of t is TEMP
o
o, foreach g2 do begin
- replace t (mask = t.mask | r2.mask)
o\, where t.id = r2.rule-id and
. r2.all-but-rule-id ~ g2.all-but-clause-id
< end foreach
.‘.t
0 execute (t.quel) where t.id < O or
. (t.id = r2.rule-id and
- bitor(r2.mask by r2.rule-id)
- = t.mask)
,._ Since the value of "bitor(r2.mask by r2.ruleid)” remains constant, the perfor-
e mance of this 3lgorithm can be further improved by including the value of
o “bitor(r2.mask by r2.ruleid)" in RULES1 and copying it into TEMP as the )
X “acceptmask”. The third query would then become:
4 S 2 !
- 1
X 1
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| execute (t.quel) where t.id = r2.rule-id and )
u t.acceptmask = t.mask .

Y Notice the case where there are no tuples in RULES2 for a particular rule is han- -
- dled with an acceptmask of zero. . Y
e - Either a variable length abstract data type "bitstring” or a four byte integer t:

can be used to store the mask The abstract data type solution has the advan-
tage of allowing an unlimited number of conditions for specifying rule activation,
while the four byte integer solution has the advantage of simplicity and speed,
but can only represent 32 conditions.

IV EXAMPLES

We give a few examples of the utility of the above constructs in this section.
First, we can store a pommand in the data base as follows:

append to storedqueries (id = 8,
quel = "range of e is employee
retrieve (e.salary)
N where e.name = "John'"')
' ¥We can execute the stored command by:

range of s is storedqueries
execute (s.quel) where s.id = 8

!
g e,

aaad
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The following two examples will pertain to the qiery:

range of e is employee
replace e(salary = salary®*1.5) where e.name = "lirika"”

Y To represent this query INGRES will append the following tuples to the QUERY1
£ and QUERY2 relations:

A QUERY1

" user-id command | relation | time terminal

current-user | replace employee | current-time | current-terminal

N ) R QUERY2
- clause-id |  type att-fnl |_operator | att-fn2
- id-z target-list | employee.salary = employee.salary®1.5
S id-x where employee.name = Erika
Suppose we want to implement the integrity contraint to insure that

N employee salaries never exceed $30,000. Using query modification [STON75] we
K would add the clause "“and employee.salary*1.5 <= 30000". to the user's
- qualification with the following rule:
- append to RULES1(

rule-id = new(), (callit id-y)

user-id = ¢ (matches any user-id)

command = "replace”,

relation = “employee”,

action = "range of Q2 is QUERY2
_ append to QUERY2(
( clause-id = id-x,

type = 'where",

A att-fnl = Q2.att-fn2,
) operator = "<=",
~ .
N
2 --

....................
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att-fn2 = "30000")
- where Q2.att-fnl = "employee.salary”)"”
append to RULES2(
rule-id = id-y,
type = "target-list",
att-fnl = "employee.salary’,
operator = "=",
att-fn2 =*)

Consider a transition integrity constraint that specifies that the maximum
salary increase is 20%. This means that the new salary divided by the old salary
must be less than or equal to 1.2. This can be achieved by appending a single
tuple to R1:

append to RULES 1§

rule-id = new(),

user-id = *,

command = “replace”,

relation = "employee”,

action = "range of Q2 is QUERY2

append to QUERY2(
clause-id = id-x,
type = "where",
att-fnl = Q2.att-fn2/Q2.att-fni,
operator ='"<="
att-fn2 ="1.2")
where Q2.att-fnl = “employee.salary

As a last example of an integrity constraint, consider a referential con-
straint that a new employee must be assigned to an existing department. Such
a rule would be applied, for example, to the following query:

append to employee (name="Chris", dept = "Toy", mgr = "Ellen")
The corresponding tuples in QUERY2 would look like:

QUERY2
clause-id | type att-fnl operator | att-fn2
id-z target-list | employee.name = _Chris
id-z target-list | employee.dept = Toy
id-z target-list | employee.mgr = Ellen

Implementation of the constraint requires checking that the department given
in the target list of the append appears in the department relation. This is
accomplished with the following rule:

append to RULESIé

rule-id = new(),

user-id = *,

command = “append”,

relation = "employee”,

action = "range of Q2 is QUERY2

append to QUERY2(

clause-id =id-z,
type = "where”,
att-fnl1 = "dept.name"”,
operator =''=",
att-fn2 = Q2.att-fn2)

a

-
o
L)

OO
’n“". A"l.’l‘l.

8-

s T T e T T e e e e S o Y U G, 2 TR e e C e
PRSI, A7 Llﬂ. ﬂh‘}.‘. \'A.I_A(".A'u..h“ “‘1.'3_.}"!::'!_':'?,-"_.3 e N T T L L T e T e



R
PR ]

.
‘..
o
-
3
N

NG

“n LALN
.‘ng

XX
o [
) .':h't..‘:l-l

g‘ LA

4]

R

where Q2.att-fn1 = employee.dept”

Lastly, protection is achieved primarily by making use of the RULE1 rela-
tion, which pertains to the query “bookkeeping” information. Suppose we
wanted to ensure that no one could access the employee relation after- hours
(after SPM and before 8AM). The following tuple would be added to the Ri rela-
tion:

append to RULESIé

rule-id = new(),

user-id = *,

time ="17:01-7:59",

command = *,

relation = “employee”,

terminal = ¢,

action = "range of Q1 is QUERY1
range of Q2 is QUERY2
delete Q1
delete Q2

If the query meets the conditions, the action removes the tuples in QUERY1 and
QUERYZ2 and thereby aborts the command.

V CONCLUSIONS

This paper has presented an initial sketch of a rules system that can be
embedded in a Relational DBMS. There are two potentially very powerful
features to our propcsal. First, it can provide a comprehensive trigger and
alerter system. Real time data base applications, especially those associated
with sensor data acquisition, need such a facility. Second, it provides stored
DBMS commands and the possibility of parallel execution of triggered actions.
In a multiprocessor environment such parallelism can be exploited.

There are also several deficiencies to the current proposal, including:
a) Rule specflcation is extremely complex. This could be avoided by a language
processor which accepted a friendlier syntax and translated it into the one in
this paper.

b) The resuit of the execution of a collection of rules can depend on the order in
which they are activated. This is unsettling in a relational environment.

¢) Rules trigger on syntax alone. For example, if we want a rule that becomes
activated whenever John's employee record is affected, we trigger on any query
having “employee.name = John” in the where clause. However if the incoming
query is to update all employees’ salaries, this rule would not be triggered.

d) Commands with multiple range variables over the same relation, so called
reflexive joins, are not correctly processed by the rules engine.

e) Aggregate functions have not yet been considered.
f) As noted earlier, boolean OR is not treated correctly.

We are attempting to resolve these difficulties with further work.
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ABSTRACT

A reimplementation of the UNIX file system is described. The reimple-
mentation provides substantially higher throughput rates by using more flexible
allocation policies, that allow better locality of reference and that can be adapted
to a wide range of peripheral and processor characteristics. The new file system
clusters data that is sequentially accessed and provides two block sizes to allow
fast access for large files while not wasting large amounts of space for small
files. File access rates of up to ten times faster than the traditional UNIX file
system are experienced. Long needed enhancements to the user interface are
discussed. These include a mechanism to lock files, extensions of the name
space across file systems, the ability to use arbitrary length file names, and pro-
visions for efficient administrative control of resource usage.
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The original UNIX system that runs on the PDP-11¢% has simple and elegant file system
N facilities. File system input/output is buffered by the kernel; there are no alignment constrainis
on data transfers and all operations are made to appear synchronous. All transfers to the disk
> are in 512 byte blocks, which can be placed arbitrarily within the data area of the file system.
- No colnsmims other than available disk space are placed on file growth [Ritchie74], [Thomp-
- son79].

A When used on the VAX-11 together with other UNIX enhancements, the original 512
- byte UNIX file system is incapable of providing the data throughput rates that many applica-
.- tions require. For example, applications that need to do a small amount of processing on a
: large quantities of data such as VLS] design and image processing, need to have a high
throughput from the file system. High throughput rates are also needed by programs with large
address spaces that are constructed by mapping files from the file system into virtual memory.
Paging data in and out of the file system is likely to occur frequently. This requires a file sys-
tem providing higher bandwidth than the original 512 byte UNIX one which provides only
about two percent of the maximum disk bandwidth or about 20 kilobytes per second per arm
[White80], [Smith81b].

Modifications have been made to the UNIX file system to improve its performance. Since
the UNIX file system interface is well understood and not inherently slow, this development
retained the abstraction and simply changed the underlying impiementation to increase its
throughput. Consequently users of the system have not been faced with massive software
conversion.

Problems with file system performance have been dealt with extensively in the literature;
see [Smith81al for a survey. The UNIX operating system drew many of its ideas from Multics,
a large, high performance operating system ([Feiertag7l). Other work includes Hydra
[Almes78], Spice [Thompson80], and a file system for a lisp environment [Symbolics81a).

A major goal of this project has been to build a file system that is extensible into a
networked environment [Holler73). Other work on network file systems describe centralized
file servers [Accetta80], distributed file servers [Dion80), [Luniewski77), [Porcar82], and proto-
cols to reduce the amount of information that must be transferred across a network
[Symbolics81b), [Sturgis80].

» .
- File System -1- Introduction :‘
- !
- 1. Intreduction !
-~ This paper describes the changes from the original 512 byte UNIX file system to the new
{ one released with the 4.2 Berkeley Software Distribution. It presents the motivations for the >
changes, the methods used to affect these changes, the rationale behind the design decisions, '3
QT and a description of the new implementation. This discussion is followed by a summary of the Y
results that have been obtained, directions for future work, and the additions and changes that :Il

have been made to the user visible facilities. The paper concludes with a history of the .
& ‘ sofiware engineering of the project. jj
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¢ DEC, PDP. VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.
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File System -2- Old file sysiem

2. Old File System

In the old file system developed at Bell Laboratories each disk drive contains one or more
file systems.t A file system is described by its super-block, which contains the basic parameters
of the file system. These include the number of data blocks in the file system, a count of the
maximum number of files, and a pointer to a list of free blocks. All the free blocks in the sys-
tem are chained together in a linked list. Within the file system are files. Certain files are dis-
tinguished as directories and contain pointers to files that may themselves be directories. Every
file has a descriptor associated with it called an inode. The inode contains information describ-
ing ownership of the file, time stamps marking last modification and access times for the file,
and an array of indices that point to the data blocks for the file. For the purposes of this sec-
tion, we assume that the first 8 blocks of the file are directly referenced by values stored in the
inode structure itself*. The inode structure may also contain references to indirect blocks con-
taining further data block indices. In a file system with a 512 byte block size, a singly indirect
block contains 128 further block addresses, a doubly indirect dblock contains 128 addresses of
further single indirect blocks, and a triply indirect block contains 128 addresses of further dou-
bly indirect blocks.

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed
by 146 megabytes of data. This organization segregates the inode information from the data;
thus accessing a file normally incurs a long seek from its inode to its data. Files in a single
directory are not typically allocated slots in consecutive locations in the 4 megabytes of inodes,
causing many non-consecutive blocks to be accessed when executing operations on all the files
in a directory.

The allocation of data blocks to files is also suboptimum. The traditiona! file system never
transfers more than 512 bytes per disk transaction and often finds that the next sequential data
block is not on the same cylinder, forcing seeks between 512 byte transfers. The combination
of the small block size, limited read-ahead in the system, and many seeks severely limits file
system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliability
and throughput. The reliability was improved by changing the file system so that all
modifications of critical information were staged so that they could either be completed or
repaired cleanly by a program after a crash [Kowalski?8). The file system performance was
improved by a factor of more than two by changing the basic block size from 512 to 1024 bytes.
The increase was because of two factors, each disk transfer accessed twice as much data, and
most files could be described without need to access through any indirect blocks since the direct
blocks contained twice as much data. The file system with these changes will henceforth be
referred to as the old file system.

This performance improvement gave a strong indication that increasing the block size was
a good method for improving throughput. Although the throughput had doubled, the old file
system was still using only about four percent of the disk bendwidth. The main problem was
that although the free list was initially ordered for optimal access, it quickly became scrambled
as files were created and removed. Eventually the free list became entirely random causing files
to have their blocks allocated randomly over the disk. This forced the disk to seek before every
block access. Although old file systems provided transfer rates of up to 175 Kkilobytes per
second when they were first created, this rate deteriorated to 30 kilobytes per second after a few
weeks of moderate use because of randomization of their free block list. There was no way of
restoring the performance an old file system except to dump, rebuild, and restore the file sys-
tem. Another possibility would be to have a process that periodically reorganized the data on
the disk to restore locality as suggested by [Maruyama76).

t A file system always resides on a single drive.
* The actual number may vary from system to system, but is usually in the range 5-13.
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3 |
~d ) 3. New file system organization 1
As in the old file system organization each disk drive contains one or more file systems.
[ A file system is described by its super-block, that is located at the beginning of its disk parti- ]
. tion. Because the super-block contains critical data it is replicated to protect against catastrophic ‘
o Joss. This is done at the time that the file system is created; since the super-block data does
i not change, the copies need not be referenced unless a head crash or other hard disk error 1
causes the default super-block to be unusable. 1
>3, . To insure that it is possible to create files as large as 2132 bytes with only two levels of '

indirection, the minimum size of a file system block is 4096 bytes. The size of file system
blocks can be any power of two greater than or equal to 4096. The block size of the file system
is maintained in the super-block so it is possible for file sysiems with ifferent block sizes to be
O accessible simultaneously on the same system. The block size must be decided at the time that
the file system is created; it cannot be subsequently changed without rebuilding the file system.

The new file system organization partitions the disk into one or more areas calied cylinder
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associ-
- ated with each cylinder group is some bookkeeping information that includes a redundant copy
N of the super-block, space for inodes, a bit map describing available blocks in the cylinder group,
and summary information describing the usage of data blocks within the cylinder group. For

St St et ol

g

N each cylinder group a static number of inodes is allocated at file system creation time. The

N current policy is to allocate one inode for each 2048 bytes of disk space, expecting this to be far

g more than will ever be needed.

Ny All the cylinder group bookkeeping information could be placed at the beginning of each

_.j. cylinder group. However if this approach were used, all the redundant information would be on

' the top platter. Thus a single hardware failure that destroyed the top platter could cause the y
::- loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping informa- .
X5 tion begins at a floating offset from the beginning of the cylinder group. The offset for each 1
{ successive cylinder group is calculated to be about one track further from the beginning of the 1
o~ cylinder group. In this way the redundant information spirals down into the pack so that any

e single track, cylinder, or platter can be lost without losing all copies of the super-blocks. Except

-.ﬂ for the first cylinder group, the space between the beginning of the cylinder group and the
;:‘ beginning of the cylinder group information is used for data blocks.t

3.1. Optimizing storage utilization

::J Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly

j increasing file system throughput. As an example, consider a file in the new file system com-

-f:j posed of 4096 byte data blocks. In the old file system this file would be composed of 1024 byte

X blocks. By increasing the block size, disk accesses in the new file system may transfer up to

", four times as much information per disk transaction. In large files, several 4096 byte blocks

‘L may be allocated from the same cylinder so that even larger data transfers are possible before

N initiating a seek.

-Z:: The main problem with bigger blocks is that most UNIX file systems are composed of

W many small files. A uniformly large block size wastes space. Table 1 shows the effect of file

N system block size on the amount of wasted space in the file system. The machine measured to

obtain these figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line
\' storage. The measurements are based on the active user file systems containing about 920

megabytes of formated space. The space wasted is measured as the percentage of space on the
disk not containing user data. As the block size on the disk increases, the waste rises quickly,
10 an intolerable 45.6% waste with 4096 byte file system blocks.

1 While it appears that the first cylinder group could be laid out with its super-block at the “‘known* jocation,

this would not work for file systems with blocks sizes of 16K or greater, because of the requirement that the
cylinder group information must begin at a block boundary.
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File System -4- New file system

Space used | % waste | Organization

775.2 Mb 0.0 Data only, no separation between files
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary
828.7 Md 6.9 512 byte block UNIX file system

866.5 Mb 11.8 1024 byte block UNIX file system
948.5 Mb 224 2048 byte block UNIX file system
1128.3 Mb 45.6 4096 byte block UNIX file system

Table 1 — Amount of wasted space as a function of block size.

To be able to use large blocks without undue waste, small files must be stored in a more
efficient way. The new file system accomplishes this goal by allowing the division of a single
file system block into one or more fragments. The file sysiem fragment size is specified at the
time that the file system is created; each file system block can be optionally broken into 2, 4, or
8 fragments, each of which is addressable. The lower bound on the size of these fragments is
constrained by the disk sector size, typically 512 bytes. The block map associated with each
cylinder group records the space availability at the fragment level; to determine block availabil-
ity, aligned fragments are examined. Figure 1 shows a piece of a map from a 4096/1024 file

system.
Bits in map XXXX XX00 O00XX 0000
Fragment numbers 0-3 4.7 8-11 12-15
Block numbers 0 1 2 3

Figure 1 — Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragment; an *‘X’* shows that the fragment is in use,
while & ‘O’ shows that the fragment is available for allocation. In this example, fragments
0-35, 10, and 11 are in use, while fragments 6—9, and 12~ 15 are free. Fragments of adjoining
blocks cannot be used as a block, even if they are large enough. In this example, fragments
6—9 cannot be coalesced into a block; only fragments 12—15 are available for allocation as a
block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 by1es, a file is
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block.
If a file system block must be fragmented to obtain space for a small amount of data, the
remainder of the block is made available for allocation to other files. As an example consider
sn 11000 byte file stored on a 4096/1024 byte file system. This file would uses two full size
blocks and a 3072 byte fragment. If no 3072 byte fragments are available at the time the file is
created, a full size block is split yielding the necessary 3072 byte fragment and an unused 1024
byte fragment. This remaining fragment can be allocated to another file as needed.

The granularity of allocation is the write system call. Each time data is written to a file,
the system checks to see if the size of the file has increased®. If the file needs to hold the new
data, one of three conditions exists:

1)  There is enough space left in an already allocated block to hold the new data. The new
data is written into the available space in the block.

. 2) Nothing has been allocated. If the new data contains more than 4096 bytes, a 4096 byte
- block is allocated and the first 4096 bytes of new data is written there. This process is
; repeated until less than 4096 bytes of new data remain. If the remaining new data to be
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located, oth-
erwise a 4096 byte block is located. The new data is written into the located piece.

* A program may be overwriting data in the middle of an existing file in which case space will atready be allo-
cated.
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File System -5 New file system

3) A fragment has been allocated. If the number of bytes in the new data plus the number
of bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The
contents of the fragment is copied to the beginning of the block and the remainder of the
block is filled with the new data. The process then continues as in (2) above. If the
number of bytes in the new data plus the number of bytes already in the fragment will fit
in three or fewer 1024 byte pieces, an unallocated fragment is located, otherwise a 4096
byte block is located. The contents of the previous fragment appended with the new data
is written into the allocated piece.

The problem with allowing only a single fragment on a 4096/1024 byte file system is that
data may be potentially copied up to three times as its requirements grow from a 1024 byte
fragment to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block.
The fragment reallocation can be avoided if the user program writes a full block at a time,
except for a partial block at the end of the file. Because file systems with different block sizes
may coexist on the same system, the file system interface been extended to provide the ability
to determine the optimal size for a read or write. For files the optimal size is the block size of
the file system on which the file is being accessed. For other objects, such as pipes and sockets,
the optimal size is the underlying buffer size. This feature is used by the Standard
Input/Output Library, a package used by most user programs. This feature is also used by cer-
tain system utilities such as archivers and loaders that do their own input and output manage-
ment and need the highest possible file system bandwidth.

The space overhead in the 4096/1024 byte new file system organization is empirically
observed to be about the same as in the 1024 byte old file system organization. A file system
with 4096 byte blocks and 512 byte fragments has about the same amount of space overhead as
the 512 byte block UNIX file system. The new file system is more space efficient than the 5§12
byte or 1024 byte file systems in that it uses the same amount of space for small files while
requiring less indexing information for large files. This savings is offset by the need to use
more space for keeping track of available free blocks. The net result is about the same disk
utilization when the new file systems fragment size equals the old file systems block size.

In order for the layout policies to be effective, the disk cannot be kept completely full.
Each file system maintains a parameter that gives the minimum acceptable percentage of file
system blocks that can be free. If the the number of free blocks drops below this level only the
system administrator can continue to allocate blocks. The value of this parameter can be
changed at any time, even when the file system is mounted and active. The transfer rates to be
given in section 4 were measured on file systems kept less than 90% full. If the reserve of free
blocks is set to zero, the file system throughput rate tends to be cut in half, because of the ina-
bility of the file system to localize the blocks in a file. If the performance is impaired because
of overfilling, it may be restored by removing enough files to obtain 10% free space. Access
speed for files created during periods of little free space can be restored by recreating them
once enough space is available. The amount of free space maintained must be added to the
percentage of waste when comparing the organizations given in Table 1. Thus, a site running
the old 1024 byte UNIX file system wastes 11.8% of the space and one could expect to fit the
same amount of data into a 4096/512 byte new file system with 5% free space, since a 512 byte
old file system wasted 6.9% of the space.

3.2. File system parameterization

Except for the initial creation of the free list, the old file system ignores the parameters of
the underlying hardware. It has no information about either the physical characteristics of the
mass storage device, or the hardware that interacts with it. A goal of the new file system is to
parameterize the processor capabilities and mass storage characteristics so that blocks can be
allocated in an optimum configuration dependent way. Parameters used include the speed of the
processor, the hardware support for mass storage transfers, and the characteristics of the mass
storage devices. Disk technology is constantly improving and a given installation can have
several different disk technologies running on a single processor. Each file system is
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File System -6- New file system l
- !
-::: parameterized so that it can adapt to the characteristics of the disk on which it is placed.

-::j For mass storage devices such as disks, the new file system tries to allocate new blocks on .
l the same cylinder as the previous block in the same file. Optimally, these new blocks will also :
” be well positioned rotationally. The distance between ‘‘rotationally optimal’’ blocks varies )
. greatly; it can be s consecutive block or a rotationally delayed block depending on system “
< characteristics. On a processor with a channel that does not require any processor intervention N
o between mass storage transfer requests, two consecutive disk blocks often can be accessed “
without suffering lost time because of an intervening disk revolution. For processors without . x

such channels, the main processor must field an interrupt and prepare for 8 new disk transfer.
The expected time to service this interrupt and schedule a new disk transfer depends on the 5
speed of the main processor. a

The physical characteristics of each disk include the number of blocks per track and the

3 rate at which the disk spins. The allocation policy routines use this information to calculate the o
= number of milliseconds required to skip over a block. The characteristics of the processor
‘ include the expected time to schedule an interrupt. Given the previous block allocated to a file,
‘ the allocation routines calculate the number of blocks to skip over so that the next block in a

file will be coming into position under the disk head in the expected amount of time that it
takes to start a new disk transfer operation. For programs that sequentially access large
- amounts of data, this strategy minimizes the amount of time spent waiting for the disk to posi-
. tion itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary
information includes a count of the availability of blocks at different rotational positions. Eight
rotational positions are distinguished, so the resolution of the summary information is 2 mil-
liseconds for a typical 3600 revolution per minute drive.

The parameter that defines the minimum number of milliseconds between the completion
of a data transfer and the initiation of another data transfer on the same cylinder can be
{ changed at any time, even when the file system is mounted and active. If a file system is
parameterized to lay out blocks with rotational separation of 2 milliseconds, and the disk pack is
then moved to a system that has a processor requiring 4 milliseconds to schedule a disk opera-
tion, the throughput will drop precipitously because of lost disk revolutions on nearly every
block. If the eventual target machine is known, the file system can be parameterized for it
even though it is initially created on a different processor. Even if the move is not known in
advance, the rotational layout delay can be reconfigured after the disk is moved so that all
further allocation is done based on the characteristics of the new host.

“.'.l-.&l Rar a) Vv X

AR - JUE R X EDPI | FNRPL T T GRRN IR

i :‘;'.‘ 5

abbs Al 3

- 3.3. Layout policies

- The file system policies are divided into two distinct parts. At the top level are global pol-
" icies that use file system wide summary information to make decisions regarding the placement

of new inodes and data blocks. These routines are responsible for deciding the placement of
new directories and files. They also calculate rotationally optimal block layouts, and decide
4 when to force a long seek to a new cylinder group because there are insufficient blocks left in
. the current cylinder group to do reasonable layouts. Below the global policy routines are the
local allocation routines that use a locally optimal scheme to lay out data blocks.

Two methods for improving file system performance are to increase the locality of refer-
ence to minimize seek latency as described by [Trivedi80], and to improve the layout of data to
make larger transfers possible as described by [Nevalainen?7]. The global layout policies try to
improve performance by clustering related information. They cannot attempt to localize all data
references, but must also try to spread unrelated data among different cylinder groups. If 100
much localization is attempted, the local cylinder group may run out of space forcing the data
to be scattered to non-local cylinder groups. Taken to an extreme, total localization can result
in a single huge cluster of data resembling the old file system. The global policies try to bal-
ance the two conflicting goals of localizing data that is concurrently accessed while spreading out
unrelated data. ‘
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File System -7- New file system .‘

One allocatable resource is inodes. Inodes are used to describe both files and directories.
Files in a directory are frequently accessed together. For example the *‘list directory™ com-
mand often accesses the inode for each file in a directory. The layout policy tries to place all
the files in a directory in the same cylinder group. To ensure that files are allocated throughout
the disk, a different policy is used for directory allocation. A new directory is placed in the
cylinder group that has a greater than average number of free inodes, and the fewest number of
directories in it already. The intent of this policy is to allow the file clustering policy to succeed
most of the time. The allocation of inodes within a cylinder group is done using a next free
strategy. Although this allocates the inodes randomly within a cylinder group, all the inodes for
each cylinder group can be read with 4 to 8 disk transfers. This puts a small and constant upper
bound on the number of disk transfers required to access all the inodes for all the files in a
directory as compared to the old file system where typically, one disk transfer is needed to get
the inode for each file in a directory.

The other major resource is the data blocks. Since data blocks for a file are typically
accessed together, the policy routines try to place all the data blocks for a file in the same
cylinder group, preferably rotationally optimally on the same cylinder. The problem with allo-
cating all the data blocks in the same cylinder group is that large files will quickly use up avail-
able space in the cylinder group, forcing a spill over to other areas. Using up all the space in a
cylinder group has the added drawback that future allocations for any file in the cylinder group
will also spill to other areas. ldeally none of the cylinder groups should ever become com-
pletely full. The solution devised is to redirect block allocation to a newly chosen cylinder
group when a file exceeds 32 kilobytes, and at every megabyte thereafter. The newly chosen
cylinder group is selected from those cylinder groups that have a greater than average number
of free blocks left. Although big files tend to be spread out over the disk, a megabyte of data is
typically accessible before a long seek must be performed, and the cost of one long seek per
megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks.
The local affocation routines will always allocate the requested block if it is free. I the
requested block is not available, the allocator allocates a free block of the requested size that is
rotationally closest to the requested block. If the global layout policies had complete informa-
tion, they could always request unused blocks and the allocation routines would be reduced to
simple bookkeeping. However, maintaining complete information is costly; thus the implemen-
tation of the global layout policy uses heuristic guesses based on partial information.

If a requested block is not available the local allocator uses a four level allocation strategy:
1) Use the available block rotationally closest to the requested block on the same cylinder.

2) If there are no blocks available on the same cylinder, use a block within the same cylinder
group.

3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups look-
ing for a free block.

4) Finally if the rehash fails, apply an exhaustive search.

The use of quadratic rehash is prompted by studies of symbol table strategies used in pro-
gramming languages. File systems that are parameterized to maintain at least 10% free space
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o almost never use this strategy; file systems that are run without maintaining any free space typi-
E_‘ cally have so few free blocks that almost any allocation is random. Consequently the most
S important characteristic of the strategy used when the file system is low on space is that it be
Le fast.
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File System -8- Performance

4. Performance

Ultimately, the proof of the effectiveness of the algorithms described in the previous sec-
tion is the long term performance of the new file system.

Our empiric studies have shown that the inode layout policy has been effective. When
running the “list directory”’ command on a large directory that itself contains many directories,
the number of disk accesses for inodes is cut by a factor of two. The improvements are even
more dramatic for large directories containing only files, disk accesses for inodes being cut by a
factor of eight. This is most encouraging for programs such as spooling daemons that access
many small files, since these programs tend to flood the disk request queue on the old file sys-
tem.

Table 2 summarizes the measured throughput of the new file system. Several comments
need to be made about the conditions under which these tests were run. The test programs
measure the rate that user programs can transfer data to or from a file without performing any
processing on it. These programs must write enough data to insure that buffering in the operat-
ing system does not affect the results. They should also be run at least three times in succes-
sion; the first to get the system into a known state and the second two to insure that the experi-
ment has stabilized and is repeatable. The methodology and test results are discussed in detail
in [Kridie83]¢. The systems were running multi-user but were otherwise quiescent. There was
no contention for either the cpu or the disk arm. The only difference between the UNIBUS
and MASSBUS tests was the controller. All tests used an Ampex Capricorn 330 Megabyte
Winchester disk. As Table 2 shows, all file system test runs were on a VAX 11/750. All file
systems had been in production use for at least a month before being measured.

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 29 Kbytes/sec 29/1100 3% 11%

new 4096/1024  750/UNIBUS 221 Kbytes/sec  221/1100 20% 43%
new 8192/1024  750/UNIBUS | 233 Kbytes/sec  233/1100 21% 29%
new 4096/1024 750/MASSBUS | 466 Kbytes/sec  466/1200 39% 73%
new 8192/1024 750/MASSBUS | 466 Kbytes/sec  466/1200 39% 54%

Table 2a — Reading rates of the old and new UNIX file systems.

Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU
old 1024 750/UNIBUS 48 Kbytes/sec 48/1100 4% 29%

new 4096/1024  750/UNIBUS | 142 Kbytes/sec  142/1100 13% 43%
new 8192/1024  750/UNIBUS | 215 Kbytes/sec  215/1100 19% 46%
new 4096/1024  750/MASSBUS | 323 Kbytes/sec  323/1200 27% 94%
new 8192/1024 750/MASSBUS | 466 Kbytes/sec  466/1200 39% 95%

Table 2b — Writing rates of the old and new UNIX file systems.

Unlike the old file system, the transfer rates for the new file system do not appear to
change over time. The throughput rate is tied much more strongly to the amount of free space
that is maintained. The measurements in Table 2 were based on a file system run with 10%
free space. Synthetic work loads suggest the performance deteriorates to about half the
throughput rates given in Table 2 when no free space is maintained.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of
the disk by the file system. An upper bound on the transfer rate from the disk is measured by
doing 65536° byte reads from contiguous tracks on the disk. The bandwidth is calculated by

1 A UNIX command that is similar to the reading test that we used is, *‘cp file /dev/null’", where “*file*’ is
eight Megabyies long.
* This number, 65536, is the maximal 1/0 size supported by the VAX hardware. it is a remnant of the
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File System -9. Performance

comparing the data rates the file system is able to achieve as a percentage of this rate. Using
this metric, the old file system is only able to use about 3-4% of the disk bandwidth, while the
new file system uses up 10 39% of the bandwidth.

In the new file system, the reading rate is always at least as fast as the writing rate. This
is to be expected since the kernel must do more work when allocating biocks than when simply
reading them. Note that the write rates are about the same as the read rates in the 8192 byte
block file system; the write rates are slower than the read rates in the 4096 byte block file sys-
tem. The slower write rates occur because the kernel has to do twice as many disk atlocations
per second, and the pracessor is unable to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them. This
is because the write system call is asynchronous and the kernel can generate disk transfer
requests much faster than they can be serviced, hence disk transfers build up in the disk buffer
cache. Because the disk buffer cache is sorted by minimum seek order, the average seek
between the scheduled disk writes is much less than they would be if the data blocks are writ-
ten out in the order in which they are generated. However when the file is read, the read sys-
tem call is processed synchronously so the disk blocks must be retrieved from the disk in the
order in which they are allocsted. This forces the disk scheduler 10 do Jong seeks resulting in a
lower throughput rate.

The performance of the new file system is currently limited by a memory 1o memory copy
operation because it transfers data from the disk into buffers in the kernel address space and
then spends 40% of the processor cycles copying these buffers to user address space. If the
buffers in both address spaces are properly aligned, this transfer can be affected without copying
by using the VAX virtual memory management hardware. This is especially desirable when
large amounts of data are to be transferred. We did not implement this because it would
change the semantics of the file system in two major ways; user programs would be required to
allocate buffers on page boundaries, and data would disappear from buffers after being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain together
kernel buffers. This would allow files to be allocated to contiguous disk blocks that could be
read in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors per track.
The inability to use contiguous disk blocks effectively limits the performance on these disks to
less than fifty percent of the available bandwidth. Since each track has a multiple of sixteen
sectors it holds exactly two or three 8192 byte file system blocks, or four or six 4096 byte file
system blocks. If the the next dlock for a file cannot dbe laid out contiguously, then the
minimum spacing to the next allocatable block on any platter is between a sixth and a haif a
revolution. The implication of this is that the best possible layout without contiguous blocks
uses only half of the bandwidth of any given track. If each track contains an odd number of
sectors, then it is possible to resolve the rotational delay to any number of sectors by finding a
block that begins at the desired rotational position on another track. The reason that block
chaining has not been implemented is because it would require rewriting all the disk drivers in

A the system, and the current throughput rates are already limited by the speed of the available
: Processors.

Currently only one block is allocated to a file at a time. A technique used by the DEMOS
file system when it finds that a file is growing rapidly, is to preallocate several blocks at once,
Y releasing them when the file is closed if they remain unused. By batching up the allocation the
L system can reduce the overhead of allocating at each write, and it can cut down on the number
of disk writes needed to keep the block pointers on the disk synchronized with the block alloca-
tion [Powell79].
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File System -10 - Functional enhancements

5. Flle system functional enhancements

The speed enhancements to the UNIX file system did not require any changes to the
semantics or data structures viewed by the users. However several changes have been generally
desired for some time but have not been introduced because they would require users to dump
and restore all their file systems. Since the new file system aiready requires that all existing file
systems be dumped and restored, these functional enhancements have been introduced at this
time.

5.1. Long file names

File names can now be of nearly arbitrary length. The only user programs affected by this
change are those that access directories. To maintain portability among UNIX systems that are
not running the new file system, a set of directory access routines have been introduced that
provide a uniform interface to directories on both old and new systems.

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation
can be transferred to disk in a single atomic operation. Each allocation unit contains variable-
length directory entries. Each entry is wholly contained in a single allocation unit. The first
three fields of a directory entry are fixed and contain an inode number, the length of the entry.
and the length of the name contained in the entry. Following this fixed size information is the
null terminated name, padded to a 4 byte boundary. The maximum length of a name in a
directory is currently 255 characters.

Free space in a directory is held by entries that have a record length that exceeds the
space required by the directory entry itself. All the bytes in a directory unit are claimed by the
directory entries. This normally results in the last entry in a directory being large. When
entries are deleted from a directory, the space is returned to the previous entry in the same
directory unit by increasing its length. If the first entry of a directory unit is free, then its inode
number is set to zero to show that it is unallocated.

5.2. File locking

The old file system had no provision for locking files. Processes that needed to synchron-
ize the updates of a file had to create a separate “‘lock’’ file to synchronize their updates. A
process would try to create a ‘‘lock™ file. If the creation succeeded, then it could proceed with
its update; if the creation failed, then it would wait, and try again. This mechanism had three
drawbacks. Processes consumed CPU time, by looping over attempts to create locks. Locks
were left lying around following system crashes and had to be cleaned up by hand. Finally,
processes running as system administrator are always permitted to create files, so they had to
use a different mechanism. While it is possible to get around all these problems, the solutions
are not straight-forward, so a mechanism for locking files has been added.

The most general schemes allow processes to concurrently update a file. Several of these
techniques are discussed in [Peterson83]. A simpler technique is to simply serialize access with
locks. - To attain reasonable efficiency, certain applications require the ability to lock pieces of a
file. Locking down to the byte level has been implemented in the Onyx file system by
[Bass81). However, for the applications that currently run on the system, a mechanism that
locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory
locks. The primary difference between advisory locks and hard locks is the decision of when to
override them. A hard lock is always enforced whenever a program tries to access a file; an
advisory lock is only applied when it is requested by a program. Thus advisory locks are only
effective when all programs accessing a file use the locking scheme. With hard locks there
must be some override policy implemented in the kernel, with advisory locks the policy is
implemented by the user programs. In the UNIX system, programs with system administrator
privilege can override any protection scheme. Because many of the programs that need to use
locks run as system administrators, we chose to implement advisory locks rather than create a
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protection scheme that was contrary to the UNIX philosophy or could not be used by system
administration programs.

The file locking facilities allow cooperating programs to apply advisory shared or exclusive
locks on files. Only one process has an exclusive lock on a file while multiple shared locks may
~ be present. Both shared and exclusive locks cannot be present on a file at the same time. If
any lock is requested when another process holds an exclusive lock, or an exclusive lock is
requested when another process holds any lock, the open will block until the lock can be
gained. Because shared and exclusive locks are advisory only, even if a process has obtained a
lock on a file, another process can override the lock by opening the same file without a lock.

Locks can be applied or removed on open files, so that locks can be manipulated without
needing to close and reopen the file. This is useful, for example, when a process wishes to
open a file with a shared lock to read some information, to determine whether an update is
required. It can then get an exclusive lock so that it can do a read, modify, and write to update
the file in a consistent manner.

A request for a lock will cause the process to block if the lock can not be immediately
obtained. In certain instances this is unsatisfactory. For example, a process that wants only to
check if a lock is present would require a separate mechanism to find out this information.
Consequently, a process may specify that its locking request should return with an error if a
lock can not be immediately obtained. Being able to poll for a lock is useful to ‘‘daemon’’
processes that wish to service a spooling area. If the first instance of the daemon locks the
directory where spooling takes place, later daemon processes can easily check to see if an active
daemon exists. Since the lock is removed when the process exits or the system crashes, there
is no problem with unintentional locks files that must be cleared by hand.

Almost no deadlock detection is attempted. The only deadlock detection made by the sys-
tem is that the file descriptor to which a lock is applied does not currently have a lock of the
same type (i.e. the second of two successive calls to apply a lock of the same type will fail).
Thus a process can deadlock itself by requesting locks on two separate file descriptors for the
same object.

PR
» b B M
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5.3. Symbolic links

The 512 byte UNIX file system allows multiple directory entries in the same file system to
reference a single file. The link concept is fundamental; files do not live in directories, but
exist separately and are referenced by links. When all the links are removed, the file is deallo-
cated. This style of links does not allow references across physical file systems, nor does it sup-
port inter-machine linkage. To avoid these limitations symbolic links have been added similar to
the scheme used by Multics [Feiertag71].

A symbolic link is implemented as a file that contains a pathname. When the system
encounters a symbolic link while interpreting a component of a pathname, the contents of the

- symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield

A the resulting pathname. If the symbolic link contains an absolute pathname, the absolute path-
. name is used, otherwise the contents of the symbolic link is evaluated relative to the location of
- the link in the file hierarchy.

o2 . Normally programs do not want to be aware that there is a symbolic link in a pathname

N that they are using. However certain system utilities must be able to detect and manipulate

RN symbolic links. Three new system calls provide the ability to detect, read, and write symbolic

t links, and seven system utilities were modified to use these calls.

e )

AN In future Berkeley software distributions it will be possible to mount file systems from

;-.:fs other machines within a local file system. When this occurs, it will be possibie to create sym-

@ bolic links that span machines.
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§.4. Rename

Programs that create new versions of data files typically create the new version as a tem-
porary file and then rename the temporary file with the original name of the data file. In the
old UNIX file systems the renaming required three calls to the system. If the program were
interrupted or the system crashed between these calls, the data file could be left with only its
temporary name. To eliminate this possibility a single system call has been added that performs
the rename in an atomic fashion to guarantee the existence of the original name.

In addition, the rename facility allows directories to be moved around in the directory tree
hierarchy. The rename system call performs special validation checks to insure that the direc-
tory tree structure is not corrupted by the creation of loops or inaccessible directories. Such !
corruption would occur if a parent directory were moved into one of its descendants. The vali- i
dation check requires tracing the ancestry of the target directory to insure that it does not :
include the directory being moved.

5.5. Quotas

The UNIX system has traditionally sttempted to share all available resources to the
greatest extent possible. Thus any single user can allocate all the available space in the file sys-
tem. In certain environments this is unacceptable. Consequently, a quota mechanism has been
added for restricting the amount of file system resources that a user can obtain. The quota 1
mechanism sets limits on both the number of files and the number of disk blocks that a user
may allocate. A separate quota can be set for each user on each file system. Each resource is
given both a hard and a soft limit. When a program exceeds a soft limit, a warning is printed
on the users terminal; the offending program is not terminated unless it exceeds its hard limit.
The idea is that users should stay below their soft limit between login sessions, but they may
use more space while they are actively working. To encourage this behavior, users are warned
when logging in if they are over any of their soft limits. If they fail to correct the problem for
too many login sessions, they are eventually reprimanded by having their soft limit enforced as
their hard limit.
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6. Software engineering

The preliminary design was done by Bill Joy in late 1980, he presented the design at The
USENIX Conference held in San Francisco in January 1981. The implementation of his design
was done by Kirk McKusick in the summer of 1981. Most of the new system calls were imple-
mented by Sam Lefller. The code for enforcing quotas was implemented by Robert Elz at the
University of Melbourne.

To understand how the project was done it is necessary to understand the interfaces that
the UNIX system provides to the hardware mass storage systems. At the lowest level is a raw
disk. This interface provides access to the disk as a linear array of sectors. Normally this inter-
face is only used by programs that need to do disk to disk copies or that wish to dump file sys-
tems. However, user programs with proper access rights can also access this interface. A disk
is usually formated with a file system that is interpreted by the UNIX system to provide a direc-
tory hierarchy and files. The UNIX system interprets and multiplexes requests from user pro-
grams to create, read, write, and delete files by allocating and freeing inodes and data blocks.
The interpretation of the data on the disk could be done by the user programs themselves. The
reason that it is done by the UNIX system is to synchronize the user requests, so that two
processes do not attempt to allocate or modify the same resource simultaneously. It also allows
access to be restricted at the file level rather than at the disk level and allows the common file
system routines to be shared between processes.

The implementation of the new file system amounted to using a different scheme for for-
mating and interpreting the disk. Since the synchronization and disk access routines themselves
were not being changed, the changes to the file system could be developed by moving the file
system interpretation routines out of the kernel and into a user program. Thus, the first step
was to extract the file system code for the old file system from the UNIX kernel and change its
requests to the disk driver to accesses to a raw disk. This produced a library of routines that
mapped what would normally be system calls into read or write operations on the raw disk.
This library was then debugged by linking it into the system utilities that copy, remove,
archive, and restore files.

A new cross file system utility was written that copied files from the simulated file system
to the one implemented by the kernel. This was accomplished by calling the simulation library
to do a read, and then writing the resuitant data by using the conventional write system call. A
similar utility copied data from the kernel to the simulated file system by doing a conventional
read system call and then writing the resultant data using the simulated file system library.

The second step was to rewrite the file system simulation library to interpret the new file
system. By linking the new simulation library into the cross file system copying utility, it was
possible to easily copy files from the old file system into the new one and from the new one to
the old one. Having the file system interpretation implemented in user code had several major
benefits. These included being able to use the standard system tools such as the debuggers to
set breakpoints and single step through the code. When bugs were discovered, the offending
problem could be fixed and tested without the need to reboot the machine. There was never a
period where it was necessary to maintain two concurrent file systems in the kernel. Finally it
was not necessary to dedicate a machine entirely to file system development, except for a brief
period while the new file system was boot strapped.

The final step was to merge the new file system back into the UNIX kernel. This was
done in less than two weeks, since the only bugs remaining were those that involved interfacing
to the synchronization routines that could not be tested in the simulated system. Again the
- simulation system proved useful since it enabled files to be easily copied between old and new
:' file systems regardless of which file system was running in the kernel. This greatly reduced the
. number of times that the system had to be rebooted.
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}:7 The total design and debug time took about one man year. Most of the work was done
AR on the file system utilities, and changing all the user programs to use the new facilities. The
;-s:_\j . code changes in the kernel were minor, involving the addition of only about 800 lines of code
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\ , ABSTRACT

2 A fast filename search facility for UNIX is presented. It consolidates two data compression methods with
\ a novel string search technique to rapidly locate arbitrary files. The code, integrated into the standard

.. JSind utility, consults a preprocessed database, regenerated daily. This contrasts with the usual mechan-

ot

e ism of matching search keys against candidate items generated on-the-fly from a scattered directory

e structure.

’-} The pathname database is an incrementally-encoded lexicographically sorted list (sometimes referred to

oy as a “‘front-compressed”’ file) which is slso subjected to common bigram coding to effect further space

i reduction. The storage savings are a factor of five to six over the standard ascii representation. The list
' is scanned using a modified linear search specially tailored to the incremental encoding; typical! ‘‘user
e time"’ required by this algorithm is 40%-50% less than with naive search.

{2

S

e Intreduction
b Locating files in a computer system, or network of systems, is a common activity. UNIX users
{ . have recourse to a variety of approaches, ranging from manipulation of cd, s, and grep commands, to
f:.';: specialized programs such as U. C. Berkeley’s wherels and fleece, to the more general UNIX find.
':-;'} The Berkeley fleece is unfortunately restricted to home directories, and whereis is limited to eke-

.‘ ing out system code/documentation residing in standard places. The arbitrary

. ‘ find / -name "* <filename>*" -print

- "

‘}2‘ will certainly locate files when the associated directory structure cannot be recalled, but is inherently
K {j-i slow as it recursively descends the entire file system to mercilessly thrash about the disk. Impatience
::: has prompted us to develop an alternative to the “‘seek and ye shall find'* method of pathname search.

N N

| Precomputatien ‘(5‘2' byte

e Why not simply build a static list of all files on thé system to search with grep? Alas, a healthy
s system with 20000 files contains upwards of 1000 blocks of filenames, even with an abbreviated /s (vs.
20 fusr) adopted for user home prefixes. Grep on our unloaded 30-40 block/second PDP 11/70 system
[ ::Z; demands half a minute for the scan. This is unacceptable for an oft-used command.
Nz : Incidently, it is not much of a sacrifice to be unable to reference files which are less than a day
b old—either the installer is likely to be contactable, or the file is not quite ready for use! Well-aged files
l::'" originated by other groups, usually with different filesystem naming conventions, are the probable can-
NN didates for search.

o
25

=, To speed access for the application, one might consider binary search or hashing, but these
NN schemes do not work well for partial matching, where we are interested in portions of pathnames.
' -_:;,'_\ Though fast, the methods do not save space, which is often at a premium. An easily implementable
i ‘4‘:‘:

R
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space saving technique for ordered data, known as incremental encoding, has been adapted for the simi-
lar task of dictionary compression [Morris/Thompson, 1974]). Here, a count of the longest prefix of the
preceding name is computed. For example,

lust/src
Jusr/src/cmd/sardvark.c
Jusr/src/cmd/armadillo.c
fust/tmp/zo0

transforms to

0 /usr/src

8 /cmd/sardvark.c
14 armadillo.c

S tmp/200

If we choose to delimit the pathname residue with parity-marked count bytes, decoding can be as sim-
ple as (omitting declarations):

fp = fopen ( COMPRESSED_FILELIST, *r" );
while ( (count = (getc (fp) & 0177)) != EOF) {
for (p = path + count; (°p++ = getc (fp)) < 0200;)
s /*® overlay old path with new */
ungetc ( *--p, fp );
*p-- = NULL;
if ( match ( path, name ) == YES )
: puts ( path );

where maich is a favorite routine to determine if string parh contains name.

In fact, since the coded filelist is about five times shorter than the uncoded one, and the decoding
is very easy, this program runs about three to four times as fast as the efficient grep on the expanded
file.

oy PP P

PR PO

Speedier Yet

Useful as it is, there is still room for improvement. (Aside: this code is best inserted into the
distributed find. There is no need to burden UNIX with another command {and manual page] when we
can improve an existing similar program. Conveniently, there is no two-argument form of find so we
can fill the vacuum with an unadorned

find name
to perform the function.)

Notice that the above code fragment still searches through all the characters of expanded list,
albeit in main memory instead of disk. It turns out that this can be avoided by matching the name sub-
string backwards against a reversed pathname, until the boundary delineated by the repetition count.
Assuming namend points 10 the final character of a NULL-byte prefixed name, then replace maich by

for (s = p, cutoff = path + count; s > = cutoff; s-- ) {

b il ol

if (*°s == *°namend ) { /° quick first char check */
for (p=namend-1,q~=s-1;* != NULL; p--. q-- )
if(°q'="¢)
break;
if (°p == NULL ) {
puts ( path );
break;
)
)
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This is more easily understood by considering three cases. If the substring lies wholly to the right of
the cutoff, the match will terminate successfully. If there is an overlap, the cutoff becomes **soft’* and
the match continues. 1If the substring lies completely 1o the left of the cutoff, then a match would have
been discovered for an earlier pathname, so we need not search these characters! Technically, curoff
must be re-anchored to parh immediately after matches. This condition is omitted above for the sake
of clarity. Statistics on overlap have not been garnered, but a 40-50% speedup is consistently observed.

The author has not discovered this refinement in the literature.

Twe Tier Technique

Sheli-style filename expansion without undue slowdown can be had by first performing the fast
search on a metacharacter-free component of name, then applying regular expression syntax ‘‘glob-
bing’’ to these selected paths via the slower recursive amarch function internal to find. Ergo,

puts ( path );
becomes

::If:' if ( globchars == NO | amatch ( path, name ) )
puts ( path );

:I:f;ﬁ where globchars is set if name contains shell glob characters. Using wildcarc.ng, a primitive man com-
mand might be

vtroff -man ‘find '*man**"$1".(1-9}"*

Diminishing Returns

Production find code at Ames exacts a further 20-25% space compression (entropy reduction) by
assigning single non-printing ascii codes to the most commeon 128 bigrams. *‘.c™* and **.P"’ figure prom-
inently. Room for these codes is made by reserving only 28 count codes for the likeliest “‘differential’
counts (the interline difference between one prefix count and the next), along with a **switch'* code for
out-of-range counts (remember the possible 1024 byte pathnames, courtesy BSD 4.2). Printable ascii
comprises the filename residue. We will not dwell on this rather ad hoc means, which barely reduces
search time.

Other algorithms to address the time-space complexity tradeoff such as Huffman or restricted vari-
ability coding [Reghbati, 1981) do not look promising—they only change an 1/0-bound process to a
compute-bound one. Some experiments were done with the inverted file programs inv and hunt.
Here, process startup overhead (the fgrep call to disambiguate *‘false drops’’) and space consumption
(full pasthnames plus an index) make /nv invocations noncompetitive. Boyer-Moore sublinear search
[Boyer., 1977]) or macro model methods [Storer/Szymanski, 1982] might be employed, but must con-
cern typically short 4-10 character patterns and equally short post-compression pathname content, for all
their added complexity.

To conclude, we are content to scan 19000 filenames in several seconds using 180 blocks and two
exira pages of C code.
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ABSTRACT

This paper describes the design end one propcred implementction
of a new application program interface to a database management
system. Programs which browse through a database making ad-hoc
updates are not well served by conventional embeddings of DBMS
commands in programming languages. A new embedcing is sug-
gested which overcomes all deficiencies. Tkis construct, called a
portal, allows a program to request a collection of tuples at once
and supports novel concurrency control schemes.
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DATABASE PORTALS: A NEW APPLICATION PROGRAM INTERFACE
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3 1. INTRODUCTION
w:.:
,:i&'{ There have been several recent proposals for user interfaces whereby a
\i person can “browse” through a database [CATES80, HER080, MARYS0, ROWES2,
{ - STONS82, ZLO0B2). Such interfaces allow one to select data of interest (e.g., "all
employees over 40") and then navigate through this data making ad-hoc
i:‘,:: changes.
N
' A simple illustration of a browsing program is described with the aid of
ok
': figure 1. This program allows a user to "edit” a relation. R is similar to a full
) -
~
ﬁ:}' screen, visual text editor (e.g., vi [JOY79] or EMACS [STALS1]) except that a rela-
\‘J
oy tion is edited rather than a text flle. This example browser will be used to
motivate the need for a new programming language interface to a database
N management system.
‘., . In figure 1 data from an employse relation is displayed. Since only a few
.:-;: rows of the relation can fit on the screen at one time, cursor commands are pro-
S
:J, vided to scroll forward and backward. In other words, the screen provides a
oy
;’ “portal” onto the employee relation which the user can reposition Commands
;;I: are also provided so a u-ser can edit the data on the screen. For example, Dave
o
_:jj Smith’s salary can be changed by repositioning the cursor to the fleld containing

N e AL AR A B I P T T T e
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employee relation

name age | salary dept
Ken Johnson 43 | 25000 | sales
Sue Keller 40 | 28000 | accounting

Dave Smith 52 | 30000 { purchasing
Kathy Able 28 | 22000 | accounting
George Toms | 26 | 18000 | shipping
Mike Baker 34 | 27000 | sales

find insert delete update quit

Figure 1. Relation editor interface.

30,000 and entering a new value.

Other operations are listed at the bottom of figure 1. The find operation
scans forward or backward through the data from the row the CRT cursor is on
until the first row is found that satisfles a user specified predicate. The insert
and delete operations allow the user to enter or remove rows from the table.
The update operation commits changes to the database so they become visible
to other users. Lastly, the quit operation exits the editor.

The data manipulation facilities supported by conventional programming

language interfaces [ALLM78, ASTR76, SCHM77, ROWE79, WASS79] allow a pro-

gram to bind a query to a database cursor,! open it, and fetch the qualifying
tuples sequentially. Moreover, one can specify that a query or collection of
queries is to be a transaction [ESWA76, GRAY78). The DBMS provides serializabii-

ity and an atomic commit for such transactions.

- « v
[IEFRLING (PRI

There are several drawbacks to such an interface when used to implement a

browser such as the one discussed above. First, the relation editor can scroll

1 A database c\zwor is an embedded query language cancept not the cursor displayed on a CRT.
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:_. backwards, thereby requiring that the cursor be repositioned to a previously !
'::'_f fetched tuple. This feature is not supported by a conventional programming ]
'language interface (PLI). Second, current PLI's return one record at a time. j
When the user scrolls forward or backward., a browsing program would prefer !
f that the DBMS return as many records as will fit on the screen. The program w
j.' issues one request and receives several records. This protocol simplifies the :
{ - browsing program code. :
": Next, the browser must scan forward or backward to the first tuple that
" satisfles a prédicate. This function is needed to implement the find operation
. i described above. Of course, the predicate could be tested in the application
:\ program but would duplicate function already present in the DBMS. A cleaner
?s and more efficient solution would be to use the DBMS search logic through a new
.-" programming language interface.
‘ '_: Lastly, to implement the update operation, the relation editor must be able
.:}_; to commit updates incrementally during the execution of a single query. Con-
o ventional transaction management facilities do not support this kind of update.
, This paper describes an application program interface that supports the
:' data manipulation and transaction management facilities required to implement
.": database browsers. The basic idea is to have the database management system
f:.: support an object, called a portal, that corresponds to the data returned by a
- single query and allow a program to retrieve data from it. Figure 2 shows a gen-
‘.. eral model for the proposed system. The DBMS mansges portals and allows a
.‘_ program to selectively retrieve or update data from the portal with a new collec-
. tﬁ tion of DBMS commands.
'\' A portal can be thought of as a relational view that is ordered. The query
. that defines the portal retrieves the data in some particular sequence which
\ establishes the ordering of tuples in the portal. Each tuple will have an extra
5
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Figure 2. General Model for Portals.

field that contains a unique sequence number, called a line identifier (L/D)
[STONB2a] that represents the position of the tuple in the portal. Line
identifiers are automatically updated when tuples are inserted into or deleted
from the portal so the position of each tuple is always represented by the line
identifler.

Commﬁnds are provided which return collections of portal tuples to the

application program. For example, a program can request tuples which:
e match a predicate (e.g., "all employees over 40"),

e scroll from the current position of the cursor (e.g., the tuples whose LID

exceeds the LID of the tuple pointed at by the cursor by less than 24), or

e surround a particular tuple in the portal (e.g., the tuples with an LID within
12 of the LID of the tuple corresponding to Jones)

Changes made to the data in a portal are propagated to the relations that
deflne it when the update is committed. Six commit modes are supported so

.........
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that different forms of concurrency control can be implemented by an applica-
tion program. In addition to modes that ailow one or more queries to be treated
- as an atomic transaction, a mode is provided that allows a transaction to be

committed incrementally.

This paper describes the design and one proposed implementation of this
new application' program interface. Section 2 presents the design of the portal
abstraction. Section 3 describes a new collection of tactics that a database sys-
tem can use to implement portals. Section 4 discusses some issues in designing
versions of the language constructs for different programming languages and

contains some other comments on their implementation and use.

2. APPLICATION PROGRAM INTERFACE

The application program interface includes language constructs to define a

portal, to open and close a portal, to fetch tuples from a portal, to update tuples

in a portal, and to further restrict a portal. A portal is defined by specifying a
query that selects the tuples that are in it. The general format of a portal h

definition is similar to the definiiion of a cursor [ASTR76] and is® ﬂ

let portal be (target-list) [where qualification) :

where portal is the name of the portal, target-list is a comma separated list of
expressions that deflne the columns or attributes in the portal, and gualification

a0 .

is a predicate that determines which tuples arc in the portal. For example,

Pl S
LA,

given an employee relation with the following attributes

fo

x
@

EMP (name, address, age, salary, years-service, dept)

e
e

]

the command

e
.

let p be (EMP.name, EMP.salary, birthyear = 1982 — EMP.age)
where EMP.sdlary > 25000

® (3] indicates that x is optional.
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defines a portal, named p, that contains the name, salary, and birthyear of
employees whose salary is greater than $25,000.

The query that defines a portal can be a multiple variable query. For exam-

ple, given a department relation
DEPT (dname, mgr, floor, budget)

a portal that contains employee and department information can be defined by
let p1 be (EMP.name, EMP.dept, DEPT.floor) where EMP.dept = DEPT.dname !

This portal contains the name, department, and department floor for all employ-
ees. The portal query can also include programming language variables so that
it can be defined at run-time. For example, the following declaration

let p2 be (EMP.name) where EMP.salary > x and q

includes two program variables, z and g, that allow the employee's salary and
some other predicate (e.g.. "EMP.age < 20"") to be substituted at run-time.

The deflnition of a portal causes the query to be parsed and stored by the
DBMS. Then, opening a portal causes the values of run-time variables in the por-
tal query to be passed to the DBMS. Depending on the implementation tactic
chosen by the DBMS, the query might be executed and a temporary relation
created to store the portal data. Other implementation tactics are described in
the next section. For now, a portal can be thought of as a view. The open com-
mand also specifies the program variable into which data will be fetched and an
optional lock mode that selects a concurrency control mechanism for the por-

tal. The general format of the open command is
open portal into variable [with lock-mode = n]

where portal is the name of the portal, variable is a program buffer, and n is an
integer that identifies a lock-mode. The program buffer is an “array of records"

declared in the application program which determines the maximum number ot
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{ tuples that can be retrieved from the portal by one command. Lock modes and
A
NP transaction management are discussed below.
LN
_:-{ A portal remains open until it is explicitly closed by a close command. The
.l‘.ﬁ
format of a close command is
2R close portal
Z:’:'.; Figure 2 sh'ows a PASCAL program fragment that declares a buffer, defines a
\, portal, and opens it. The buffer, named buf, has a fleld with the same name as
each attribute in the portal. Notice that even though the line identifier was not
explicitly defined in the target-list of the portal definition, it is included in the
.u buffer record. A column, named L/D, is implicitly defined for each portal.
aNA
'}::: Data can be retrieved from the portal and stored in the program buffer by
a.’.
f\, the fetch command. For example, the command
~ fetch buf
..’ fetches data from p and stores it into buf. When the program run-time environ-
o
';::: { declare buffer |
<5 var buf: array[1..10] of
o record
i LID: integer;
< name: array [1..20] of char:
” salary: real;
NG age: integer
2
g
- . : lot pbo (EMP.name, EMP.salary, EMP.age) where EMP.salary > 25000
T~ open p into buf
Ay oo
‘.\
e
e Figure 2. PASCAL program fragment that declares a portal.
¢
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ment passes this command to the DBMS, it also passes the number of records
that can be stored in the buffer The DBMS returns the number of tuples
requested to the program. The attribute values returned from the portal are
automatically converted to the appropriate data types and stored in the bufler.

A built-in function is provided tbat indicates how many records were actu-
ally stored in the buffer by the last fetch command. The programmer can use
this function to determine if any data was returned or if the bufler is only par-
tially filled. For example, if the portal in figure 2 contained only 5 records, the
fetch command above would not flll the buffer. On the other hand, if the portal
contained 50 tuples, the command would fetch only the first 10 tuples because
only that number can fit in the buffer. The program can retrieve the next 10

tuples by executing a fetch command with a where-clause as follows:
fetch buf where p.LID > 10

This command fetches 10 tuples beginning with tuple number 11. Notice that

the portal name, in this case p, is used to refer2nce tuples in the portal

A fetch command can have an arbitrary qualification that will restrict the
tuples retrieved to those that satisfy a predicate. For example, the program
might want to retrieve employees under 20 who make more than $40,000. The

command to retrieve these records is -

fetch buf where p.age < 20 and p.salary > 40000

The fetch command can also be used to retrieve data by position and to

search forwards or backwards. The general format of the fetch command is:?

fetch buff
[I !whm} ntta:!i before | around) qualification ]

A position fetch uses the keyword after, before, or around rather than where. A

N fetch with an after-clause indicates that the first tuple that satisfles the
.l"-ﬂ:

:__':‘_‘- 3 (zly| indicates that X or y must sppeer.

%

2

@

R LA I TP e e et e e Tt fe et L e U S S ISR S N T I TP R T S
I T R P T T LAt D SN I A R R A A R A S A T A SRR R s
VI PR PRV TR LR R I I AR R R R SRR -'._'.'L.ﬁ'.,L"(';’.'\.'.h\."\_}!:'f;'.\‘.n.’r\'.-:"t*‘- "\_".:'\u_“'\_"'




e, l'

f:' l',
SOt e

*y
219

X

)

.
4

v
- =

y

@

..........

qualification and the tuples immediately after it in the portal ordering are to be

retrieved. For example, if the following command was executed on the portal in

figure 2 it would retrieve 10 tuples beginning with tuple number 40:

fetch buf after p.LID = 40
Tuples 40 to 49, if they exist, would be stored in duf. The tuple that satisfles the
qualification (i.e., tuple number 40) is stored in buf{1]. Subsequent returned
tuples follow the selected one in L/D order and do not necessarily satisfy the
qualification. In contrast, all tuples returned by a restriction fetch (i.e., one
thet includes a where-clause) must satisfy the qualification.

The keyword before indicates that the first tuple that satisfles the
qualification should be stored at the end of the buffer. Consequently, the buffer
will contain the qualifying tuple and the tuples that immediately precede it. The
keyword around indicates that the qualifying tuple should be stored in the mid-
die of the buffer and the tuples immediately before and after it will be fetched.

The qualification in a position fetch can be an arbitrary predicate such as
... after p.LID > 10 and p.age < 25

which retrieves tuples beginning with the first one found after tuple number 10
that satisfies the qualification on age. This facility can be used to implement a
search operation which scans for the first record after the current one that
satisfles a user-specified predicate. The following command fetches the
eppropriate data
fetch buf around p.LID > nand q

where n is the L/D of the current record and g is a string variable that contains
the user-specified predicate. Most browsers also allow users to search back-
wards. The fetch previous command can be used to implement this function. It
scans backward through the portal rather than forward. For example, the com-
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mand
fetch previous buf beforep.lID <nand gq

searches for the first record before the current one that satisfies a search

predicate.

The qualification in a fetch command can be any boolean combination of
terms involving portal variables (e.g.. "p.age = 40”) and application program
variables (¢.g.. "q from the example above”). It is also possible to support

qualifications involving join terms to other data base relations.
A command is provided which allows a programmer to restrict the portal to

a smaller subset of the data that it currently contains. The format of the res-

trict command is:
restrict portal where qualification

This command removes from the portal all tuples which do not satisfy the
qualification. For examnple,

restrict p where p.age > 25
removes all employees 25 and under from the portal. A restrict command is

equivalent to defining a new portal with a qualification obtained by AND'ing the
new qualification to the one that defined the portal.

The portal abstraction also includes update commands to insert, deiete,
and replace tuples in the buffer. Appropriate commands are also passed to the
DBMS which change the portal so that subsequent fetches will see the updated
data. When a transaction is committed, portal changes become visible to other
DBMS users.

Because portals are defined by queries, some updates cannot be unambigu-
ously mapped onto the underlying relations. This problem is identical to the
problem of updating relational views [DAYA78, STON75]. However, since portal
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updates affect single tuples only, several special purpose view update algorithms
appear possible for this restricted case,

The general format of the replace command is

replace buffer-reference (target-list)

where byffer-reference is a program reference to a record in the buffer (e.g.,
dbuffi]). For eiample. the following command changes the age of the tuple
stored at dufl4):

replace buf[4] (age = 25)
This command does not change tuple number 4; it changes which ever tuple was

last fetched into buff¢].

The insert command appends a tuple to the portal. The general format of
this command is:
insert (target-list) before buffer-reterence

This command inserts the tuple before the buffer array element referenced.
The elements in the buffer are moved down to make room for the new data.
Since the buffer is fixed size, the last record must be is removed from the
buffer. The new record is assigned the L/D of the element it is being inserted
before. The L/D's of all records following the new element are incremented. The
new tuple and its L/D are passed to the DBMS which updates the portal.

The last update command allows tuples to be deleted. The format of this

command is:
delete buffer-reference

The LID of the buffer element referenced is set to zero to indicate that it has
been deleted. The L/I's of all records that follow it in the buffer are decre-
mented. Then, the L/D and the deleted record value are peassed to the DBMS
which updates the portal.

.......................

e .
Y e N e T e T




AR RN < e ded )

~~~~~~~ MR it s A S 0 D A2 0 3y )

-12-

Update commands are passed to the DBEMS which records the changes so
that subsequent fetches will return the new data. The lock mode selected when
the portal is opened will determine when the update is committed to the data-

base. The following lock modes are provided.

1. The tuples returned by a fetch command are locked, and tuples locked by
the previous fetch command are uniocked. Updates are commitied when

the next fetch command does not span the updated tuples.

2. This option is the same as number 1 except that each update is committed

immediately upon a replace, delete, or append command.

3. This option is a variant on optimistic concurrency control [BARGBSO,
KUNG81]. The browsing program does not lock a tuple until it is deleted or
replaced. When a tuple in a portal is modified, the tuple(s) from the
relation(s) that deflne the portal are locked and the portal tuple is
recreated. If the portal tuple to be modified is the same as the recreated
tuple, the update is committed. Otherwise, an error is returned to the pro-
gram. Append commands are committed immediately. This locking mode
allows a browsing application to set no long-term read locks during a ses-

sion.
4. This option is the same as number 3 except that ell tupies returned by the

last fetch command are locked, refetcbed, and compared with the
recreated values. The update is committed only if they all are the same.

oy This mode is appropriate if an update is determined by data elsewhere in

e

'-;!‘: the scope of the current fetch command.

::“ 5. Transactions are defined explicitly by the program. A begin and end tran- |
E:, saction command are executed to delimit the beginning and end of the !
-!-'-—i transaction. A transaction can be an arbitrary collection of fetch, insert, j
:. delete, and replace commands. :
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o 6. All commands between opening and closing a portal are considered one
v i:i _ transaction.

\ ' The conventional definition of a transaction is that it is a collection of reads
2 ‘ and writes which are atomically committed and serializable [GRAY78, ESWA78]. |
A ,
PO Lock modes 3-8 obey this model. For example, lock mode 4 can be implemented |

N as follows:

=g begin transaction

:ﬁ:: recreate the most recently fetched tuples

*C:' if tuples changed

z ; then abort the repluce or delete

»?; else update relation(s)

v end transaction

Eh

- lock modes 1 and 2, on the other hand, do not correspond to any atomically
comrmitted and serializable collection of reads and writes. They both require
- . that locks be held after the end of an alomically committed action.
EF The next section describes several tactics for implementing portals.

M4

Y
N 3. IMPLENENTATION STRATEGIES

This section describes four strategies for implementing the portal abstrac-
o

}':: tion. It is expected that a data manager would implement most {(or all) of them.
-y

‘o For each portal the DBMS would select one based on the estimated size of the
.-‘ portal and hints from the user program. Selecting an implementation for a por-
*-.; tal is analogous to optimizing a query in a conventional relational system. This
l\‘ ’

;'; section also describes the transaction management facilities needed to imple-
L ment the six lock modes for portals.

N
V] 8.1. Portal Impiementation

.'-l

.‘ The first strategy for implementing portals is to create an ordered temn-
o porary relation that co;xmns the portal data. Portal commands would then be
t...

';:: translated into conventional queries on this temporary relation. A tuple in the
2
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temporary relation must contain a column for each attribute in the portal and a

disk pointer* to each tuple used to construct it. For example, given the portal

let p be (EMP.name, EMP.age, ENP.dept, DEPT.mgr)
where EMP.dept = DEPT.dname

defined on the EMP and DEPT relations described in section 2, a temporary rela-
tion is created for this portal by executing the following query

retrieve into TEMP(EMP.name, EMP.age, EVP.dept, DEPT.mgr,
EMP_TID=EMP.TID. DEPT_TID=DEPT.TID)
where EMP.dept = DEPT.dname

If TEMP is organized as an ordered relation [STON82a], the DBMS will automati-
cally create and maintain the L/D attribute using an auxiliary storage structure
called an ordered B—tree (OB-treze). An OB-tree is similar to a B*—tree (i.e.,
data is stored in the leaves of the tree and a multi-level index is provided to
access the data as indicated in figure 3). The leaf pages in the tree contain
pointers to the tuples in the relation (i.e., T/I's). The LID ordering of the tuples
is represented by the order of the T/D's in the leaf pages. Hence, traversing the
leaf pages from left to right scans the tuples in L/D order (i.e., the first T/D in
the leftmost page is the tuple with LID 1). Non-leaf pages contain a pointer to
the next level of the index or a leaf page and a count of the number of tuples in
that subtree.

The tree structure and the tuple counts can be effectively used by the DBMS
to retrieve or update tuples based on their L/D. For example, to find the I-th
tuple, the DBMS begins at the root page and seiects the subtree that contains

the tuple by performing a simple calculation. Assuming that s, is the number of

L.-

g_‘-tf tuples in the first 1 subtrees, i.e.,

..‘_:._

‘w’;\-' |

> & = t count, |

'.’ I=1

™ i
P |

o ‘

> 4 In a relstiona! DBUS, & pointer to a tuple in & relstion is called a tupls idensifter ( T1D). ‘

S |

o |
[ ] ‘

-

i":l‘
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the subtree that contains the /-th tuple is pointed to by the entry at

rn’inis‘--,<153¢!

This process is performed iteratively until the algorithm reaches a leaf page
which is guaranteed to contain the tuple. The calculation at intermediate levels
of the tree to sglect a subtree must take into account the number of tuples that
precede the first tuple in the subtree. Assuming that this number is z, the cal-

culation to select the correct subtree for intermediate levels is

min { z+8;_; <l S z+s5; 3
: 3

The value for z is s, at the next outer level. The T/D for the I-th tuple is stored
in the leaf page at entry 1 - z.

For example, in figure 3 to find the tuple with LID 17, the algorithm will
examine page 1 and select the second subtree because 17 is between 11 (s,) and
18 (s‘). Examining page 3 with z equal to 11, the algorithm selects page 10
because 17 is between 16 (z + 5,) and 18 (= + s,). Page 10 is a leaf and the T/D
for tuple 17 is stored in the first entry (I - z).

Insertions into an OB—tree are implemented by inserting a TID for a new
tuple into the appropriate leaf page and updating the counts. A standard B-t.rée
split algorithm is used if the leaf page is full [KNUT73). Deletions and replaces
are implemented in a similar way. A complete description of these operations
and a prototype impiementation of OB—trees are described in [LYNN82].

In the first implementation strategy, the DEMS executes portal commands
by transforming them into queries on the temporary relation. For example, the

fetch cornmand
fetch buf where p.age < 25

is implemented by executing the query

....... A R L e e e A A A N AL A e e
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retrieve (TEMP.LID, TEMP.all) where TEMP.age < 25

Recall that the number of records that can fit in the program buffer is passed to
the DBMS along with the command so that only the requested number of tuples

are returned.
A position fef.ch is implemented by executing two retrievals. Suppose the
position fetch was
fetch buf after p.LID > 10 and p.age < 25

and that the program buffer can hold n records. First, the following query is
executed to find the LID of the first qualifying tuple

retrieve (1 = min(TEMPF.LID)) where TEMP.LID > 10 and TEMP.age < 25
Then the DBMS can execute a query to return-n tuples beginning with the i-th
tuple. The query to retrieve these tuples is

retrieve (TEMP.LID, TEMP.all) where | £ TEMP.LID and TEMP.LID < 1+n-1
Alter and around position fetches can be implemented using a similar tech-
nique.

Fetch previous commands can be implemented by scenning the OB—tree
backwards. Fetch commands that include joins with other relations are easy to
implement because the porta! is stored as a relation. Update commands on the

portal are implemented by executing queries to update the temporary relation

and writing an intentions list that will be used by the transaction manager to

A

L]

N by creating a new temporary.

\."':‘

E‘E\ The advantages of this implementation are that large portals can be
Y

.“., browsed and that forv!ard and backward searching can be implemented
—

L-Z;’,: efficiently. The disadvantages are the time and space it takes to create the tem-
WAS

:1'.§‘: porary relation.

N

&

S

2

update the primary relation(s). Finally, restriction commands are implemented
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A possible improvement to this strategy is to create the temporary relation
incrementally. At any time the temporary relation contains all tuples with L/D's
less than the maximurn L/D that has been fetched thus far. If the data required
by a fetch command is in the temporary relation, a retrieval is executed to fetch
it. Otherwise, the portal query is resumed to retrieve more data into the tem-
porary and the retrieval is executed. An update command can only modify data
that has already been fetched so the data to be changed must be in the tem-
porary.

Incrementally constructing the temporary reduces the time needed to open
the portal because the retrieval to create the temporary is deferred. However,
this implementation introduces more variability in the time to execute a fetch
command because the portal query may bave to be resumed. The space
required for the temporary will be reduced if the user specifies a query that

generates a large portal, but does not examine all of the data in it.

Another improvement is possible when the relation on which the portal is
defined is already maintained by the DBMS as an ordered relation. If the portal
deflnition selects all flelds from this relation with no restriction, then the DBMS

can directly utilize the underlying primary relation structure and no copy is

. s,
g e 5

i~

L:\ . required.

:ﬁ:::: The second strategy for implementing portals is to store the temporary
E.'-:; relation in primary memory. The representation in memory can use an OB~tree
h“'f or a conventional data structure, such as an AVl-tree, besh table, or array. The
:!:: implementation of portal commands is identical to that described above. The
- advantage of this implementation is that portal commands will be faster because

A primary memory is faster than seconcary storage. Update commands will also
w.—"—' be faster because only the intentions list bas to be written to disk. The disad-

vantage of this implementation is that only small portals can be stored in pri-

IRIARYRRACE 'L AN & S R At S 8, 9 & 701 %) §
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mary memory. Of course, a main memory imp.lement.at.ion can also be incre-
mentally meterialized to reduce space requirements. h

The third strategy for implementing portals is to store pointers to the
tuples in the primary relations in the temporary relation (i.e.. the temporary is |

a kind of secondary index). For example, given the portal definition

let p be (EMP.all) where EMP.salary > 20000

® M. . oa_a

the DBMS does not have to make a copy of the data in the EMP relation. The
ordered temporary relation could be defined by

X Ao m.m.» a

retrieve into TEMP(EMP.TID) where EMP.salary > 20000

Fetch commands that involve only the L/D attribute can be implemented by res-

tricting TEMP to the qualifying entries and using the T/Ds to access the EMP

mdade & b h

tuples. The advantage of this implementation is that it reduces the space

raquired to store the temporary relation. The disadvantage is that it requires

St IR Al

an extra disk read to fetch the data so portal commands will be slower.

The fourth strategy for implementing portals is to materialize the portal
dynamically and to buffer only the amount of data needed by the current fetch
command. For example, suppose the browsing program issued a sequence of
fetch commands that scrolled forwards through the portal. The DBMS would
execute the portal query to generate tuples to be returned by the current com-
mand and would keep them in main memory buffers. The next fetch command
would be implemented by continuing the portal query and discarding the tuples
buffered for the previous fetch. If the browsing program issues a fetch com-
mand that requires data that bhas already been discarded, the portal query must
be restarted at the beginning.

The advantage of this implementation is that very large portals can be
browsed without having to make a copy of the data. The disadvantages are that
some commands will be slow and that fetch previous commands cannot be
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implemented efficiently. An obvious improvement to this strategy is to buffer
more data than was returned by the last command which would allow some fetch

previous commands to be implemented.

3.2. Concurrency Control

The impiementation of the six lock modes for portals can use a conventional
transaction manager that locks physical entities and supports operations to
begin, commit, and abort transactions. The general strategy is to update the
temporary relation when the update command is executed. In addition, updates
for the primary relation(s) are generated and written to a log. These updates
are either committed immediately (lock mode 2) or at a later time (lock modes

1 or 3-8).

Lock modes 1 and 2 can be used only if the portal is implemented by
dynamic materialization (i.e., strategy four discussed above). An update is com-
mitted when the tuple is not included in the next fetch command (i.e., it is
removed from the buffers). The DBMS locks tuples which are buffered in main
memory. locks can be released immediately if the portal is defined on a single
primary relation. If a portal is defined by a join, the lock is released only if the
tuple is not used to construct another portal tuple which is currently locked.

For example, suppose the portal definition was

let p be (EMP.name, EMP.dept, DEPT.floor, DEPT.mgr)
where EMP.dept = DEPT.dname

and two employees, say Smith and Jones from the toy department, are in the
DBMS buffer. Consequently, the two EMP relation tuples and the DEPT relation
tuple would be locked. If Smith's tuple was removed from the portal, the lock on
his tuple in the EMP relation can be released. However, the lock on the toy
department tuple could. not be released because it is used to construct Jones'
tuple in the portal. In other words, the buffer must be searched to see if the

---------------

..........
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department tuple is used elsewhere before that lock can be reieased.

Locks do not have to be released on every fetch. For example, it may be
advantageous to perform lock releases periodically. Releasing locks is analogous
to garbage collection of free space by a programming language run-time system.
However, in contrast to garbage collection which is performed when free space
is exhausted, a DBMS wants to release locks as soon as possible to increase

parallelism.

Lock mode 2 differs from lock mode 1 only in the time at which updates are
committed back to the underlying primary relation(s). Locking is implemented

the same way it is for lock mode 1.

Lock mode 3 which requires refetching the tuple being changed can be
implemented as follows. The primary relation(s) are not locked. When a replace
or delete command is executed, the 7/0s in the temporary relation are used to
lock and refetch the values from the primary relation(s). The update is aborted
if the value in the primary relation is different than the value in the temporary
relation. Otherwise, the primary relations are updated and the locks are
released. Lock mode 4 can be implemented in the same way.

Lock mode 5 and lock mode 6 can be implemented in an obvious way. In
lock mode 5, the program indicates when the begin and commit operations
should be executed. In lock mode 8, the DBMS begins the transaction when the

portal is opened and commits updates when the portal is closed.

4. DISCUSSION

This section discusses several issues concerning the design and implemen-
tation of the portal abstraction. First, the language constructs presented in
section 2 map a portal'into a buffer which is a static 1-dimensional array. The
constructs can be generalized to dynamic and n-dimensional arrays. If the pro-
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gramming language into which the constructs are embedded has dynamic
arrays, the size of the program buffer can be redefined at run-time. The DBMS
can pass a count of the number of records that will be returned by a fetch com-
mand before the records are returned. The run-time support routines in the
user program can dynarmically allocate an array to hold the returned records.
This would relieve the program of executing multipie fetch commands when the

number of returned tuples exceeded the static buffer size.

Ordered relations can also be generalized to n dimensions [STON82a). In
this case a relation can have several LIDs, one for each dimension. The language
constructs discussed in section 2 can be easily generalized to support a portal
with multiple LIDs which is mapped to an n-dimensional buffer. This feature
would be especially valuable to browsers such as SDMS [HERO80] which imple-
ment 2 dimensional scrolling.

The second design issue concerns how the portal commands are integrated
into existing query language embeddings that do not have an explicit open com-
mand (e.g., EQUEL [ALLM78]). The basic idea is to generalize the notion of a

range variable to include portal constructs. For example, the command

range of buf is p(EMP.all)
where EMP.age < 40
with lock-mode=3

would be equivalent to

let p be (EMP.all) where EMP.age < 40
open p into buf with lock-mode=3

Lastly, a database system that implements portals must be able to save and
restore the currently executing query because programs can open multiple por-

tals and because several implementation strategies discussed in Section 3 are

based on restarting the portal query.

..........
.............

...............

..........




5. CONCLUSIONS

A new application program interface to a relational database system hes
been described which makes it easier to implement database browsers. The
interface is based on the concept of a portal that supports querying and updat-
ing an ordered view. Several lock modes were suggested that can be used to
implement browsing transactions with varying consistency and parallelism

requirements.
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An Implementation of Hypothetical Relations

by

John Woodfill and Michael Stonebraker
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA

BERKELEY, CaA. |

ABSTRACT

In this paper we develop a different approach to implementing
hypothetical relations than those previously proposed. Our design,
which borrows ideas from tactics based on views and differential files,
offers aeyoral advantages over other schemes. An actusal implementation

is described and performance statistics are presented.

1. IRTRODUCTION

The motivation for, and applications of hypothetical relations
(HR's) were introduced in [STONS8O|. They can be used to support “"what
if" changes to a data base and offer a mechanism for debugging applica-
tions programs on live data without fear of corrupting the data base.
The suggested implementation in [STONBOJ involved a differential file
[sEVR76]. 1In [STONB1], supporting HR's as views [STON75] of the form W
= (R UNION S) = T was suggested. In this case an implementation only
requires extending a relational DBMS and its associated view mechanism
with the UNION and - oéorator-. Moreover, R can be a read-only relation

while S and T are append only. As a result, hypothetical relations may




offer cheap aupport for crash recovery and 1logging. Unfortunately,
there are problems with treating HR's as views. We first examine these
problems and show general solutions in Section 2. Next we combine these
solutions in Section 3 into & new mechanism for supporting HR's. Our
proposal has several similarities but a different orientation from one
in [KATZSZ]. We then describe our implementation in Section 4. Finally

we analyze the performance of this implementation in Section 5.

.

2. PROBLEMS AND SOLUTIONS
Proposals for hypothetical relations &8s visws contain various flaws
which nust be removed before a realistic implementation can be

attenpted.

2.1. A Known Problem

[STON81J points out that the implementatioa of hypothetical rela-
tions as W = (R UNION S) - T is flawed in the case where one wants to
re-append a tuple which has been deleted, as shown by the example in
figure 1. 1Initially there is a tuple in relation R corresponding to
Eric. Following the algorithm in [STONS1], the tuple can be deleted by
inserting it 4into relation T. Laitly a user re-appends Eric and an
appropriate tupl, is inserted into S. Unfortunately, the resulting
relation, W does not contain the re-appended tuple, since (R UNION S) is

the same as R, and R - T is empty.

2.2. A Solution

As noted in [Agra82], this problem can be solved by adding a times-

tanp field to the relations S and T, and modifying the semantics of the

s @
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DIFFERENCE operator, “"-". There will be no timestamps for the relation
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59 R; hence these tuples can be thought of as having a timestamp of gero.
EY

ﬁ The timestamp field is filled in with the current time (from a sys-
-

.7 tem clock, or any other monotonicaly increasing source of timestamps)
"
£“ whenever a tuple is appended to S or T. For any relations A and B with
V' timestamps as described, the DIFFERENCE, A = B is defined as all tuples
R a in A for which there is no tuple b in B such that

%

(1) DATA(a) = DATA(D)

S
~ and

="

N (2) TIMESTAMP(a) < TIMESTAMP(b)

2™

~ The definition of R UNION S is unchanged, except for the addition of a
a tinestanp field in the result which contains either the timestamp of a
:i tuple in S, or a sero timestamp for a tuple in R. If tuples with ident-
- ical DATA sppear in dboth R and S, the never timestamp (from S) is chosen
v','

_j for the result tuple.

ﬂa In the above example, the timestamp of Eric's tuple in T would be
@ .

~ never than that of Eric's tuple in R (sero), but would be older than the
-‘-l

X timestanp of Eric's tuple in S; hence, (R UNION S§) - T would be
X
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equivalent to S, and W would contain the re-appended tuple.

2.3. A Nev Problem

The addition of timestamps solves the problem of appending deleted
tuples. However, this solution is not free from problems. Consider the
case of a second level hypothetical relation, W' = (W UNION S') - T, as
shown in figure 2. Suppose Eric was given a 20 percent raise in W' at
timestamp 10 which caused the indicated entries in S' and T'. Simce no
upd;tes bave occurred in W, S and T are empty. Now suppose a user gives
Eric a 50 percent raise in V¥ at timestamp 20, which results in the
entries for S ;nd T shown in figure 3. According to the algorithm
above, W' would contain two tuples for Eric, one with salary 15,000; and
one with salary 12,000. The problem is that the tuple in T' =no longer
functions to exclude Eric from W UNION S' and hence an unwanted Eric
tuple is present.

There.are at least two choices for the proper semantics for W'

under this update pattern:

R
name |salary i
i
eric | 100005
1
S T
name |salary |t-stamp name |salary |t-stamp
sl T.
pame |salary |t~stamp name |salary |t-stamp
eric | 12000} 10 eric | 10000} 10}
]
Pigure 2, Eric's 20% raise in ¥'.
- 4 -
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R

ime |salary |
]
i i
{eric | 10000}
i i
S T
pame {salary |t-stamp name |salary {t-stampi
eric | 15000} 20 eric |} 10000} zog
i
s’ 7
name |salary |t-stamp name |salary }t-atanpi
i
eric | 12000] 10 eric | 10000| 10i
i

Pigure 3, Eric's 50% raise in VW.
1) BEric’s salary is set to the latest value, in this case the

15,000 from W.

2) Eric's salary is set to 12,000, corresponding to the original
update of W'.

We choose to follow tae latter choice, and specify the following seman-

tics:

Once & tuple has been changed at level N, changes at 1levels < N

cannot affect tuples at levels >= N.

2.4, A Nev Solution

o" -

E? These semantics can be guaranteed by the addition of a tuple iden-
ESZ tifier, and modification of the DIFFERENCE operator. A tuple identif-
g; ier, THAME, nust be given to each tuple in R. Each tuple inserted into W
ﬁ& (and thereby added to S) must also be given an identifier. Then, any

inserts to S or T, which are used to replace or delete a tuple in W,
must be marked with the identifier for the original tuple in R or §

which they replace or delete. For any relations A and B with timestamps
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and TNAMES as described, the DIFFERENCE, A - B is defined as all the

tuples a in A for which there is no tuple b in B such that

(1) THNAME(a) = TNAME(D)
and

(2) TIMESTAMP(a) < TIMESTAMP(D)

To guarantee that our chosen update semantics hold, tuples in A ~ B
are given timestamps of zero. Hence, at a second level, each tuple in
S'.and T' will have a newer timestamp than its corresponding tuple in W.

In our example the identifier of all of the five Eric tuples from
figure 3 will ©be identical. Since the timestamp of the tuple in W is
treated as being older than that of the tuple in T', only Eric's tuple
from S’ will be contained in W'.

A similar method is proposed in [KATZ82], to solve this problem.

3. A MECHANISM

Given tiese modifications to S, T and the DIFFERENCE operator, an
HR of the form W = (R UNION S) - T no longer has its original conceptual
simplicity. Moreover, support for HR's becomes considerably more com-
plex than simply implementing UNION and - as valid operators in a DBMS.
Consequently, ve have designed a mechanism based on differential file
techniques which builds on the above developments. The goal is to pro-
vide a single-pass algorithm with proper semantics that will support
arbitrary cascading of HR's. The next two sections describe our data

structure and algorithm in detail.
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2+1. The Differential Relation

Each hypothetical relation W, built on top of a real or hypotheti-
cal relation B, has an associated differential file D, which contains
all columns froz B plus plus five additional fields. For example, the
differential relation D for the base relation R from Section 2 is shown
in figure 4. "Name" and "salary" are the atiributes from R. The fields
"mindate” and . "maxdate” are both timestampa; “Minaate" is exactly the
tinestamp as defined above, while 'naxdate‘ is another timestamp to be
explained in section 4.2. The fields "level” and “"tupnum" are used to
identify the tuple which this tuple replaces or causes deletion of. Each
hypothetical relation is assigned a level number as indicated in figure
5. All real relations are at level zero, and an HR built from a real
relation is assigned a level of one. Then an HR built on top of a level
one HR is given a level of two. Here the column "level" identifies the
level number of a particular tuple, while the column "tupnun” is a
unique identifier at that level. Together "tupnum" and "level” comprise
the unique identifier, TNAME, of a tuple. Values for "tupnum” are Jjust
a sequentially allocated integers. The last field in D, "type," marks
what form of update the tuple represents; thus, it has three values,
APPEND, REPLACE, and DELETE.

The following examples will illustrate the use of these extra

name cl2
salary i4
mindate i4
naxdate i4
tupnun i4
level i
type i1
- Figure 4.
-7-
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level 3 [vw'']

level 2 [H']/ (o]
// \[n'J
level 1 (w]
// \[D]
level O [R]
Figure 5.

fields. A precise algorithm is presented in Section 3.2.

Suppose the relation R has the following data:

inane {salarys
I i
ifred | 4000| tupnum of this tuple is O
%aally | 6000| tupnum of this tuple is 1

Figure €.

Initially W is identical to R, and D is empty.

Running the following QUEL command:
append to W (name = "nancy”, salary = 5000)
would cause a single tuple to be inserted into D as follows:

pname |salary|mindate jmaxdate |tupnum |level |type

nancy | 5000] 304 ol o} 1 | APPEND

Figure 7.

The 30 stored in “mindate"™ is simply the current timestamp, and the

“type” is clearly LPPEND. Since there is no corresponding tuple at

- level O, which the tuple replaces, the fields "level”™ and "tupnum” are

.....................



set to identify the tuple itself (i.e. "level” = 1, "tupnun” = 0)

Suppose ve now change the salary of Sally as follows:

rapge of w is W
replace v (salary = 8000) where wv.name = “sally”

After this update, D looks like:

name |salary,mindate |maxdate |tupoum |level |type

] {

! |

inancy | 5000} 304 bl 0} 1| APPEND |

isally | 8000) 40| bl 1! O{REPLACEi

| [}
Figure 8.

“Mindate™ is 40, the current timestamp. The tuple which we are replac-
ing in R has an identifier of (level = O, tupnum = 1) (see figure 6).

Suppose we delete the tuple just replaced:
delete w where w.name = “sally"
The resulting form of D is:

name |salary|mindate |maxdate |tupnum |level |type

] i
{ ]
] ]
gmcy { 5000} 304 -, o} 1 | APPEND 5
jsally i aoooi 40| "i 1§ O{REPLACE|
, { i 50; Aot 1 0i{DELETE §
] [}
Pigure 9.

Since this operation is a delete and "name” and “salary” are no longer

important, they are set to null. “Tupnun” and "level" are the same as
in in figure 8, since they refer to the same tuple.

Suppose we nov replace the tuple appended above; eg:

replace v (name = "billy”) where w.name = “nancy”

The resulting form of D is:

'
5

a¥
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........................

isalaryimindate |maxdate |tupnum |level |type i

]
{ 5000} 30} Lad o) 1| APPEND |
| 8000} 40} bid 1} o.nnrucn'
i 0i 50| il 1} O!DELETE |
| 5000} 60} Lot o} 1| REPLACE|

i

Figure 10.

“Tupnun” and "level” identify the original “"namcy” tuple (see figure 7

above). At this point, R is unchanged, and W looks like:

iname 3salaryi

i i

ifred | 4000} unchanged

ibilly i SOOOi billy replacing nancy
1 i

3.2. [The Algorithm

There are two parts to the algorithm for supporting hypothetical

relations: accessing an HR, and updating an HR.

S.2.1. Accessing Hypothetical Relations

The algorithm for deriving a level N hypothetical relation W from a
base relation R and a collection of differential relations D1, ..., DN
is a one pass algorithm which starts with the highest level differential
relation and proceeds by examining each tuple, passing through each
lower level, and finally passing through the 1level O base relation.
Figure 11 shows this processing order more clearly. MaxLevel is the
level N of the relation H.

An auxiliary data structure, which will be called “"seen-ids,” is

saintained during the execution of this algorithm. This data structure
has one associated update routine, “see(level, tupnum)”, and a boolean

retrieval function, “seen(level, tupnum)". The routine see(level,

O
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POR physlevel := MaxLevel DOWN TO O DO
BEGIN . i
WHILE (there are tuples at level physlevel) DO !
BEGIN
tuple := get-next-tuple(physlevel);
examine-and-process-tuple(tuple, physlevel);
END
END.
Pigure 11.
tupnum) inserts a TNAME into the data structure if it has not been seen
before, while seen(level, tupnum) returns the value TRUE if <level, tup-
num> is in seen-ids, FALSE otherwise.
The examine-and-process-tuple routine takes one or both of the fol-
lowing actions: it can "accept” the tuple for inclusion in H and it can

call the routine "see” to place the identifier in “seen-ids". The

choice of actions is dictated by Table 1.

) action action
levelOinevest{seen {type |accept|samelevel|see
1 1yes —eee==) 768 cweces=| N0 e e B 1] ]
2 iyes  arad b CJ ———ecee| Y08 ———eaa === 00 '
3 ino no no wmecveme= (N0 1
4 no yes yes il § 1) cewceee== |00
5 jno yes no DELETE jno yes no
6 ino yes no REPLACE,yes yes no
T yno yes no APPEND yes yes no )
8 yno yes no DELETE {no no yes
9 ino yes no REPLACEyes no yes
Table 1, Processing criteria for HR's.
In applying table 1, to a particular tuple t, "levelO" is a boolean con-
ﬁ: dition which is "yes" if physlevel from figure 11, is sero, "no" other-
t:\
&: wise. A tuple t at physlevel N is "newest” if (as in Section 2.4) there
)
¢ is no tuple tb at level N such that ]
-1 - J
1
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(1) (t.level = tb.level and t.tupnum = tb.tupnum)
and '

(2) ta.mindate < tb.mindate.

A tuple t has been “"seen” when the pair <t.level, t.tufnum) has already
been entered into "seen-ids". Fast tests for "newest” and "seen" are
presented in Sections 4.2 and 4.3. The "type” of tuple t is t.type.
“Samelevel” is a boolean field to indicate if physlevel is the same as
t.level. The exam:ning and processing of a tuple is shown in figure 12.

To demonstrate this processing we will generate W from D and R in
figures 6 - 10. The starting configuration is shown in figure 13. Pro-
cosging starts wi.th MaxlLevel = t and physlevel = 1 in the differential
relation D; hence, for all of this level, level0 will be false. Tuple
(1) 1is not “pewest”, since tuple (4) has the same identifier, and a
higner mindate. Since levelQ is false, the tuple corresponds to line
(3) of table 1, and the.tuple is neither "accepted” nor "seen."

Tuple (2) is not "newest" either, because tuple (3) has the same
identifier, and a higher mindate, and so it also corresponds to line (3)
of table 1, and is neither “accepted” nor "seen.”

Tuple (3) is “newest,” because the only other tuple at this
physlevel with the same identifier, tuple (2) has a smaller mindate. It
has not been "seen,” since seen-ids is empty and type is DELETE. We now
determine "samelevel” by comparing the level field with physlevel. Both
are 1, 8o "samelevel” is true and line (5) is applied. Hence, the tuple
is neither "accepted” nor "seen”.

Tuple (4) is also "newest,” has not been "seen,” and type is
REPLACE. Comparing level and physlevel, we find “samelevel™ is false,

since the level field is O, and physlevel is still 1. hence, (9) is the

'
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. examine-and-process-tuple(t, physlevel)
( : BEGIN
\ o levelO s BOOLEAN;
o nevest ¢ BOOLEAN;
3OS seen : BOOLEAN;
i~ : (APPEND, REPLACE, DELETE);
f:; samelevel : BOOLEAN;
- levelO := (physlevel = 0);
.if: IF levelO then
L BEGIN-
= newest := NULL;
e seen := seen(t.level, t.tupnum);
s type := NULL;
AT
A
N samelevel := TRUE;
-~ 3 END ELSE
o BEGIN
-{3 newest := iq_peweat(t.mindate, t.level, t.tupnum);
s
s seen := seen(t.level, t.tupnum);
b
( type := t.type;
o .
b4~ samelevel := (t.level = physlevel);
NN END;
AN
e IF table-accept(levelO, newest, seen, type) THEN
: accept-tuple(t);
-:.:p‘
0t IF table-see(levelO, newest, seen, type, samelevel) THEN
f}' see(t.level, t.tupnum);
e END;
v"’:
. Pigure 12, processing a tuple.
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D
name |salary|mindate {maxdate |tupnum |level |type |
]
[}
1 {nancy i 5000i 305 “i o} 1immm:
2 isally | 8000} 40) L] 1} O{REPLACE;
3 i of 50} . 14 O|DELETE |
4 ;billy | 5000, 60} L] 0} ﬂnspucni
]
R
name Iualuryi
" ]
5 |fred | 4000} tupnum of this tuple is 0
6 (sally | GOOOi tupnum of this tuple is 1
]

seen-ids = {}
Tuples “accepted”

name |salary

Figure 13, Initial structures for processing W.
correct line in table 1, and the tuple is both “seen" and "accepted”.

At this point, W and seen-ids look like:

seen-ids = {<0, 1)}

Physlcjgl nov changes to O, “levelQO” becomes true, and we start to
scan the base relation. Only lines (1) and (2) of table 1 are relevant
differing in the value of “"seen”. To check whether a tuple has been
“seen,” at level O, we look for the pair <level, location> in seen-ids.
Yor tuple (5) this pair is <O, 0> (see figure 6) which is not in seen-
ids. Hence, line (2) of table 1 is applied and we "accept” the tuple.
The pair <level, 1ocnt;on> for tuple (6) is <0, 1>, which is in seen-

ids. The corresponding line is (1), so the tuple is not “accepted,” and

- 14 -
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is not “seen.” We have reached the end of our scan, and bave generated

{ ) the relation W as follows.

3.2.2. Updating Hypothetical Relations
* All updates to an HR of level N require appending tuples <to the

differential relation DN at level N. The contents of the different

N
N .
fields in the appended tuple are specified as follows:

\ (A) Por APPENDS and REPLACES, The data columns of DN, are filled
with nev data. For DELETES, the fields are NULL.

.ﬂ

- (B) Mindate, is assigned the current timestamp. (Maxdate is dis-
{ cussed in Section 4.2.)

- .

N (C) For APPENDS, tupnum and level are set to self-identify the
} inserted tuple. For DELETEs and REPLACEs tupnum and level identify the
" target tuple being deleted or replaced.

<

¥ (D) Zype is the type of the update, APPEND, DELETE or REPLACE.

L ¢

- 4. IMPLEMENTATION
N An implementation of HR's was done within the INGRES DBMS [STON76].
N

a2 In order to create an HR, the following addition to QUEL was made:

.
N
. DEFINE HYPREL newrel ON baserel
]
. Once an HR has been defined, it can be updated and accessed just like an
1Y R
o ordinary relation. Since, "baserel” can be either a regular relation,
. -

= or an HR, an unlimited number of levels is allowed.
X -15 -
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4.1. Modifications

Within the INGRES access methods, a relation is accessed first by a
call to "find™ which sets the range for a scan of tuples, and then "get"
is called repeatedly to access each tuple in this range. It 4is within
"get™ that most of the HR algorithm is implemented. "Get" returnms
tuples from each differential relation, and finally the tuples from the
base relation. The routines which perform REPLACES, DELETES, and
APPENDs are also modified to initialize and append the appropriate

tuples to the differential relation.

i «2. Newest

If tuples were appended to a differential relation at one end, and
the relation were scanned from the other direction, it would be possible

to tell when a tuple was the "newest” for a particular identifier by the

- fact that it was the {firast one encountered. Unfortunately, INGRES

appenda tuples and scans relations in the same direction. In order to
be able to tell from a single pass vhether a tuple is "newest™, an addi-
tional timestamp field "maxdate” was added. When a tuple is appended,
maxdate is seset to infinity. Wwhen the tuple is REPLACED or DELETED at
the same level, maxdate is updated. Thus a tuple is the "newest” if the

time of the current scan is between mindate and maxdate.

4.3. Seen-ids

The data structure, seen-ids is stored in a series of main wmemory
bit-maps, one for each level. Thus to see a tuple with tupnum Y at
level L, bit Y in bitmap L is set. The boolean function “seen(L, Y)"

tests vhether the corresponding bit is set.
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4.4. Optimiszation

If the base relation is organized as either a random hash structure
or an ISAM structure, then the differential relations can be given a
similar structure and a sequential scan of the differential relation
avoided. To accomplish this, a correspondence must be established
between the pages in a differential relation and those in the base rela-
tion. If a tuple would be placed on a certain page of the base rela-
tion, then the tuple in the hypothetical relation must be placed on the
corresponding page in the differential relation.

To acceass & tuple in such a structured HR, the scan within each
relation is restricted to those pages corresponding to the key of the
query. For example, suppose the relation R(name, salary) is stored
hashed on name and the differential relation D is stored likewise.

Then, the query

range 6f wis W
ret-ieve (w.all) where w.name = “billy"

only requires accessing the appropriate hash bucket in both R and D.
There s one complication with this performance enhancement, which

stems from the fact that a REPLACE command can change the hash key, and

hence the page location of a tuple in a structured relation. For exam-

ple, consider the following contents of R and D:

R D
innno {salary) inane {salaryjother|
hashbucket i | i i
! sugy | 3000 | % ' :
] i ] ] ] 1
] 25| | | i |
] i

2 ltandy
[}

Figure 14, R and D hashed on name.

Then, nuppéle ve do the following REPLACE:
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range of w ia ¥
replace v (name = “tandy") where w.name = “suzy”

As a result, R and D would look like

R D
name |salary name |salary|type |*

1
tandy ! 3000; REPLACE,

i

i
hashbucket i
2 |

susy i 3000
:tandy 1 25
'

Figure 15, problematiz hashed replace.
and the query:
retrieve (v.all) where w.name = "suzy”
Ioula generate the result:

pane {aalaryi

aray
&
<
\g

Despite thé fact that wve changed suzy's name, she appears in the result
because the algorithm indicates searching hashbucket t of D, wnere
there are no tuples, then searching hashbucket 1 of R, where susy's
tuple appears. This tuple in hashbucket 1 of R is "accepted”, because
no tuples have been "seen.” Unfortunately, the algorithm never searches
hashbucket O of D to discover the correct tuple.

This problem can be solved by the addition of a fourth type of dif-
ferential tuple, FORWARD. An additional FORWARD tuple is appended in
hashed and ISAM differential relations whenever a REPLACE is done which
inserts a tuple in a different hashbucket (or ISAM data page) than that
of the target tuple. With this correction, D of figure 15 would 1look

like:

..............
....................
...................
................................................
................




...........

-.‘_ |pame |salary|mindate|maxdate |tupoum|level|type |

a4, X bashbucket | ' - y
(: . 1 { { O}  100{INPINITY; O}  O}FORWARD|
R 2 ftandy | 3000{  100{IFFINITY{ O0;  O|REPLACE|
[ '

: | Figure 16.

LA

___.:: The processing of the query would then start in hashbucket 1 of D in
;_‘. : figure 16, where a FORWARD tuple would be found, and the ordered pair
:.'c‘::" <0, 0> would be added to seen-ids. Next, hashbucket 1 of R would be
_-\.:,: scaxined, but since <0, 0> is in seen-ids, Suzy's tuple, tuple. 0 of R,
_:él would not be accepted.

e

= 4.5. Functionality

vﬁ With this refinement all QUEL commands have been made operational
o on HRs for any INGRES storage structure. Such HR's could be used as the
' basis for a crash recovery scheme as suggested in [STONS1] with aminor
\ " modifications to the our algorithms. Moreover, “snap-shots" of the sta-e
of an HR at any point in the past can be generated by setting the scan
J,‘_, time to a time prior to the current time. Minor changes to the QUEL
."-. syntax would allow a user to run retrieval commands against an HR as of
" some previous point in time.
If at any time one wanted to make the changes in an HR permanent,
he can use a series of QUEL statements to update the base relation using
: the information in the differential relations. Alternately, a simple
“: ' utility could be constructed to perform the same function.

)S'.; 5. PERFORMANCE MEASUREMENT AND ANALYSIS

;}: Our performance analysis is aimed at comparing the performance of
:_. : standard QUEL commands on real relations versus the same ones on HRs and

A A e




our tests were run on a single user VAX-11/780. The following four com-
mands are used to measure update performance for a real parts relation
parts500(pnun, pname, pweight, pcolor) of 5000 tuples stores as a heap.

Baseparts will serve both as a real relation and an HR.

range of b is baseparts
range of p is parts5000

{(a) append to baseparts (p.all)
(b) delete b
(c) replace b (weight = b.weight + 1000)

(d) replace b (poum = b.paum * 1000)

Table 2 indicates the results of rurning commands a) - ¢) firat for a
real baseparts relation of 5000 tuples stored as a heap and then for
baseparts as an HR. In the lattcr case it consists of an enpty dif-
ferential relation, D and a 5000 tuple real relation, R stored as a
heap. Command d) was not run in this situation because it should pro-
duce comparable results to command c¢) for unstructured relations.
Notice that real and hypotheticai relations perform comparably.

To test retrieval performance we ran query (e) for four different

compositions of baseparts, including

. range of b is baseparts
L (e) retrieve (= = max(b.weight))

N

AN

'.-_‘-’

. § )

:f? a 10 tuple real relation, a 10000 tuple real relation, a 10 tuple HR and
o

C;: a 10000 tuple HR. The hypothetical relations had sizes of differential
s
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S. query operation relation-type cputime elapased
5 (a) append regular 24.47 secs 32 secs p
(a) append hypothetical 26.57 secs 36 secs .
(v) delete regular 24.38 secs 26 secs "
(v) delete hypothetical 19.78 secs 25 secs 1
N (c) replace regular 26.03 secs 28 secs :
- (c) replace hypothetical 25.03 secs 35 secs :
“; Table 2, updates on 5000 tuples unstructured. 5
{ ;
\ L]
~ :
:4 query operation relation-type cputime elapsed .
(a) append regular 74.68 secs 268 secs {
. (a) append hypothetical 64.82 mecs 226 secs :
. (v) delete regular 20.15 secs 31 secs .
S (v) delete hyp thetical 21.32 secs 37 secs :
- (e) replace  regular 42.32 secs 47 secs :
(c) replace  hypothetical 40.97 seca 59 secs ;
L (d) replace regular 91.33 secs 345 secs i
N (a) replace hypothetical 89.63 secs 422 secs d
%f Table 3, updates on 5000 tuples, hashed on salary. E
;
:j relations, D, varying from O to 200% of the size of the R. Tables 4 and
" .
" 5 show the results of these tests. ¢
_ !
;Z relation size of D cputime elapased f
? type time .{
- regular - 0.16 secs 1 sec .
- hypothetical 0% 0.20 secs 1 sec :
- hypothetical 50% 0.26 secs 1 sec
7 bypothetical  100% 0.26 secs 1 sec ;
5
3 Table 4, Query (e) run with 10 tuple base. )
e : ;
" :
¢ :
:$ f
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relation size of D cputime elapsed

type time

regular - 11.88 secs 13 secs
hypothetical 0% 13.86 secs 15 secs
hypothetical 10% 14.40 secs 15 secs
hypothetical 25% 15.22 secs 16 secs
hypothetical 50% 16.73 secs 18 secs
hypothetical 100% 18.60 secs 21 secs
hypothetical 200% 21.58 secs 30 secs

Table 5, Query (e) run with 10000 tuple base.

Query (e) was also run against a second level HR based on a first
level HR with 50% of its tuples replaced. The results of this test are
in table 6.

Lastly, ve ran query (f) against a baseparts relation hashed on

poum.

range of § is parts5000
range of h is RELATION

(£) retrieve (p.weight, h.weight) where p.pnum = h.pnum

In this case table 7 compares performance where RELATION is either a

5000 tuple real relation hashed on pnum, or a 5000 tuple HR hashed on

hypothetical sige of D cputime elapsed
relation level time

1 50 16.73 secs 18 asecs
2 (0,1 17.35 secs 18 secs
2 10% 17.73 secs 19 secs
2 25% 18.52 secs 19 secs
2 50% 18.78 secs 21 secs
2 100% 20.75 secs 24 secs

Table 6, Query (e) 10000 tuples, 2 levels.
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\

AP
P A

LR,

.*t .
P ,1_'. ., .'. .

AY /..‘-"

0
o' »* 0 e
‘l, a4t

S o~
AR )
et

WA

Y
P

L}
L4 Y
ot ..

N
x-’?t‘.".'f.-‘.

ot -.' ’(

RN RN

e

v

)
..
[
e,

L
a_a

el
Sl

A

s e,

Dyl

)
-
“ a

.
‘e
e
a a A A

P

. -
p
£,

»

;

¢
z
‘.
.

paum, with 50% of its tuples replaced. Parta5000 is an unstructured

Query (f)

relation type cputime elapsed
hashparts regular 131 secs 5.85 minutes
hhashparts hypothetical 185 secs 9.88 minutes

Table 7, hashed access results.

5000 tuple relation.

Two comments are appropriate about the numbers in Table 7. First,

~ notice that INGRES is 1/0 bound in both tests and elapsed time substan-

tially exceeds CPU time. The reasons include the particular query pro-
cessing tactic chosen for this query and the fact that a substantial

amount of data is printed on the output device. The second point is

" that Jjoins on hypothetical relations are less than a factor of two

slover than those on real relations.

Thus we can aee that the performance of INGRES wueing hypothetical
relations in many types of query is never worse than a factor of its
level number and usually much better. We assume that for more complex

queries involving an HR, the same general result would hold.

6. CONCLUSIONS

We have described a mechanism for supporting HR's which is shown
to overcome the problems of previous proposals. Ve have described an
implementation of HR's and provided performance data to show that per-
formance of HR's is in general no vorse than a factor of one per level

of HR. Moreover, in most cases, performance is considerably better than
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Interactive Mathematical Manipulation, Typesetting, and
Graphics - a Progress Report

Gregg Foster
Richerd Fatemen

Uniiversity of Californis, Berkeley
July, 1983

1. RECENT WORK

We have developed and implemented a hierachical representation for mathematical expres-
sions that includes display position, expression dimensions, font information, the motion of
super- and sub-expressions, and access to the algebraic manipulation system internal form
that is being represented. This is a particular representation technique which we believe can
be used in other problem domains and which will work in the context of a menu-driven win-
dow oriented user interface.

1. Strophe (pronounced ‘“‘stroh-fee”, s musical term for putting new lyrics to old music) is a
system for the representation of a tree of expression boxes. The boxes are frames with inher-
itance of font and position information. This is naturally done in Lisp, and is convenient to
use on graphics workstations which provide immediate feedback. Lisp forms representing
algebraic expressions (sums, products, powers, matrices, etc) in internal forms are accepted
and converted to box frames which can be displayed.

2. Strophe’s representation of mathematical expressions is largely independent of any partic-
ular algebrs system. It is currently usable by Macsyma and is being prepared for use by a
sew mathematical representation and manipulation system (SCARAB) being developed
Berkeley. :

3. Stropbe bas been implemented in Lisp on Sun Workstations, but the design has been kept
as machine independent as possible.

4. We explored various ways of pointing st expressions and found the mouse (with keyboard
back-up) to be satisfactory. A mouse driven prototype sub-expression locator/bighlighter
reas oa the Sun Workstations (much of this work was dose by R.J. Anderson) and will be
merged with Strophe when address space limits are removed. The Strophe representation
makes it easy to identify expression-boxes from screen coordinates and to move up or dowa
in the expression tree.

Summary

We cas demonstrate bigh quality real-time display of mathematical expressions and the ability to
sccess sub-expressions.

Example
a/b is Macsyma is represented internally as:

((mtimes simp) & ((mezpt simp) b -1)).




............

A schematic representation of one of the boxes (the outermost),
as printed by a Strophe debuggiag tool is:

St — foat: ROMAN (normsl)
: h=24 . height: 12
o~ ' ' width: 12
‘o ~[0,0])~ -~
oy : : H out: nil
< é=24 ' ia: (L00007 H00013 H00012)
. @ erenen an e sen e §
w=14 oxp:
; ((ntimes simp) a ((mexpt simp) b ~1))
- The screen display is:
L .
N a
o
N 3. FUTURE WORK
_:_‘: Objectives
h\'
\ 1. We wish to allow a user to preview and compose expression forms in a readable format in
o aa interactive environment.
., 2. We wish to provide tools for a wser of 3 symbolic mathematics system to point to any

, piece of a displayed expression and specify its alteration by a combination of mouse and
f---. keyboard commands.

d ::f: 3. We wish to formulate criteria for measuring the success of the SCARAB system design.
‘ 4. We wish to provide 3 user with more options (such as variant display formatting using
tables and multi-line displays) and relevant informatioa about bis interaction with the sys-
NN tem (such as s command history and the status of the system).
AEN Plan

. We must develop the software tools to handle the increased display-representation/mathematics-
internal-representatios interaction.

Requirements:

a. It must be easy to refer to an identified expression (or super-/sub expressions) in the con-
text of manipulatory commsands typed from the keyboard and indicated by the pointing
device. In the case of commands which change the expression itself, these must be mapped
back to the mathematics internal form aad to the display.

b. Rapid redisplay with highlighting and smooth motion of selected areas must be sup-
posted.

¢. Subframes to other windows should be provided.

QSN
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« N
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j‘{. d. There must be more and better fonts than are provided by the Sun graphics package.
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¢. Expression templates (a 11 in the blanks "approach) should be explored.

1. It must be essy to get to command history, process status, and other “‘eavironmental
informatioa".
Equipment

1. The Sun Workstations run Strophe and have run pieces of Macsyma aad SCARAB. To
rua Lisp, Strophe, and an SCARAB or Macsyma together we need more address space (16
megabytes rather thap 2). Sum has promised delivery of SUN-II boards with this address
space ia the fall.

2. A Pixel 100/AP (68000 based) UNIX system has recently been used to bring wp a full
Macsyma system but lacks the bitmap display capability. The performance of the 68000 is
a0 longer an open question: it is definitely faster thaa the VAX 11/750 on Lisp-based appli-
cations, and with tuning and a 12megaberts chip, it may outperform s VAX 11/780.

Summary

High quality real-time composition, manipulation, and typesetting of mathematical (and other)
expressions are possible using current technology. Much of this can be demonstrated now.

3. Acknowledgements

This work been supported in part by DARPA, DOE, and the Systems Development Founda-
tion.

PR N A PCEN




. .
......

-32-

8. Statement of Work

v
{-:;f 8.1. Operating Systems, Distributed Computing, and Programming Sys-
73 tems
("". e Ve will implement the interprocess communication and large file
! :.:.: access enhancements to UNIX and make them available as part of the
\:- Berkeley Software Distributions. We will have a substantially complete
ff::::: experimental version of the system with the large flle access enhance-
.. - ments documented in a technical report by March 1882. We will have a
. ‘-:‘_‘. substantially complete experimental version of the systemn with the
1 ::.. interprocess control enhancements documented in a technical report
::: by June 1982. We will have a complete system including the large file
e access and interprocess control enhancements ready for distribution
.,;‘ by September 1982.

:ZE'E: e Ve will implement a UNIX-based distributed computing environment in
j::f the context of & network of personal workstations and larger comput-

( _ ers not pecessarily under a common administration. We will create
_'.'_'—: experimental versions of various components of such an environment

.'3::'.." and document them with technical reports throughout the contract
.5 period. We will have an experimental version of the distributed system

" documented in a technical report by March 1983. We will have an ini-
tial version of a distributed system ready for distribution by Sep-

'::‘ tember 1983.

o s  We will construct a table driven code generator which takes input from
oo the first pass of the Portable C Compiler, the Fortran 77 compiler and
the Berkeley Pascal compiler. A technical report describing the imple-

mentation and comparing its output to that of the existing compilers

will be provided by September 1982. We will explore techniques for
improving the generated code, implement those which appear best,
and examine their impact in another technical report by September
1883.
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We will explore basic issues related to distributed computing
throughout the contract period and document our research results in
technical reports.

Information Management in Degign and Decision Support Systems

We will investigate how to extend the class of data representations
which can be processed by a relational database system. We will
extend INGRES to allow mnultiple representations of data itemns using
the techniques of descriptor based access methods and will document
the result in a technical report by September 1982. We will introduce
the notion of bins into INGRES to provide efficient processing of spatial
data; the bins will be implemented using a generalization of secondary
indices and will be documented by a technical report by March 1983.
We will investigate using a relational datebase system as an Al pro-
gramming tool by experimentally rewriting some existing Al programs
to use a version of INGRES which has been enhanced to allow storing
information which would have been stored using Lisp; the experiment
will be described in a technical report by September 1983.

We will explore the use of forms as an efficient interface for developing
various applications of database systems. The specification of a form
application development system will be provided as a technical report
by June 1982. A prototype system will be developed and documented
in a technical report by December 1882. During the remainder of the
contract period we will build a variety of applications using the proto-
type system in order to evaluate its interface.

Interfaces and Graphics

We will explore connection-based style of design including how to
represent and manipulate connections graphically, how to hide the
details of complex connections using the concept of bundles, and how
to deal with geometrical constraints. We will measure relevant aspects
of existing designs and design tools to provide a context for this
research. These measurements will be documented in a technical
report by June 1982. We will develop a simple connection-based design
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system and describe it in a technical report by June 1983.

e We will study and build a prototype mathematical software environ-
ment based on workstations which communicate with remote comput-
ers. The workstations will be graphics based and will provide the user

with an integrated interface. The large computer will provide a large

'__ scale algebraic/numerical computation environment for eflective
.fl?:: problem solving. The user interface to be provided by the workstation
;}E will be designed and spelled out in a technical report by September
: 1982. A working user interface to Macsyma provided via a workstation
-._f: will be documented in a technical report by March 1983 and a system
'E_“,' with interactive and graphical enhancements will be documented in a
::;;.: technical report by September 1983.

e VWe will conduct both theoretical and experimental research into the

"1:: applicability of Beta-splines for curve and surface representation in
:'::::' computer graphics systems which allow the representation and
LV

‘}b modification of geometrical shapes. A basic experimental graphics

-

facility for use from within the UNIX environment will be constructed
and documented in a technical report by September 1982. A technical
report evaluating subdivision techniques for Beta-splines will be pro-
-".?.:: vided by September 1983.
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IMPLENENTATION OF RULES IN RELATIONAL DATA BASE SYSTEMS

by ‘
Michael Stonebraker, Jobn Woodfill and Erika Andersen

Dept of Electrical Engineering and Cornputer Science
University of California
Berkeley, Ca.

ABSTRACT

This paper contains a proposed implementation of a rules system in a rela-
tional data base system. Such a rules system can provide data base services
including integrity contral, protection, alerters, triggers, and view processing.
Moreoever, it can be used for user specified rules. The proposed implemente-
tion makes efficient use of an abstract data type facility by introducing new data
types which assist with rule specification and enforcement.

1 INTRODUCTION

Rules systems have been used extensively in Artificial Intelligence applicz.-
tions and are a central theme in most expert systems such as Mycin [SHOR7€ ]
and Prospector [DUDA78). In this environment knowledge is represented as
rules, typically in a first order logic representation. Hence, the data base for an
expert system consists of a collection of logic formulas. The role of the data
manager is to discover what rules are applicable at a given time and then to>
apply them. Stated differently, the data manager is largely an inference engine.

On the other hand, data base managemen: systems have tended to
represent all knowledge as pure data. The data manager is largely a collection cf
heuristic search procedures for finding qualifying data. Representation of first
order logic statements and inference on data in the data base are rarely
attempted in production data base management systems.

The purpose of this paper is to make a modest step in the direction of sup-
porting logic statements in a data base management system. One could make
this step by simply adding an inference engine to a general purpose DBMS. How-
ever, this would entail a large amount of code with no practical interaction with
the current search code-of a data base systemn. As a result, the DBMS would get
much larger and would contain two essentially non overlapping subsystems. On
the other hand, we strive for an implementation which integrates rules into
DBMS facilities so that current search logic can be employed to control the
activation of rules.

The rules systermn that we plan to implement is a variant of the proposal in
[STONB2), which was capable of expressing integrity constraints, views and pro-
tection as well as simple triggers and alarms for the relational DBMS INGRES
[STON78]. Rules are of the form:

on condition
then action

The conditions which were specified include:
the type of command being executed (e.g. replace, append)

Y \-... " ’\---{- ‘f ‘{ .f L Ll T 7.-‘:.'-..‘--- ‘e -. " .\.—‘.‘ -t ‘-..‘-..'w'."’ ".-\. _"‘-\-.\.-“ .--‘~.\-.\. SN
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RN

l the relation affected (e.g. employee, dept)
<~ the user issuing the command
28 the time of day
the day of week
the fields being updated (e.g. salary)
= the filelds specified in the qualification
the qualification present in the user command
- The actions which we proposed included:
y sending a message to a user
~ aborting the command

executing the command
) modil'ying the command by adding qualification or
A changing the rejation names or field names

. Unfortunately, these conditions and actions often affect the command
e which the user submitted. As such, they appear to require code that manipu-
- lates the syntax and semantics of relational commands. This string processing
. code appears to be complex and has little function in common with other data
R base faciiities. In this paper we make use of two novel constructs wnich make
= implementing rules a modest undertaking. These are:

1) the nction of executing the data

- and

&R 2) a sequence of QUEL commands as a data type for a relational data base sys-

. tem

_ The remainder of this paper is organized as follows. In Section Il we indi-

O cate the new data types which must be implemented and the operations X
required for them. Then in Section 111 we discuss the structural extensions to a

relational data base system that will support rules execution. Lastly, Section IV
and V cor.tains some examples and our conclusions.

1 RULES AS ABSTRACT DATA TYPES

~ Using current INGRES facilities [FOGG82, ONG82, STON82a] new data types

o for columns of a relation can be defined and operators on these new types

> specified. We use this facility to define several new types of columns and their

N associated operators in this section. .
. The first data type is a QUEL command, e.g. :

.
.-

mands are converted by the INGRES parser to a parse tree representation such
O as the one noted in Figure 1 for the qualification "where 13. + employee.salary =
N 100". Consequently, a natural internal form for an object of type QUEL is a
o e tree. Each node in this parse tree contains a value (e.g. 13.) and a type
e e.g. floating point constant). _
o The second new data type which will be useful is an ATTRIBUTE-FUNCTION.
@ This is a notion in the QUEL grammar and stands for anything that can be
- evaluated to a ~onstant or the name of a column. Examples of attribute func-
x tions include:
> 13.
e 2 ~

N
S
-.

range of e is employee
replace e(salary = 1.1%.salary) where e.name = “John"

The abstract data t,}.'.pe facility supports an external representation such as
that above for & given data type. Moreover, when an object of the given type is
stored in the data base it is converted to an internal representation. QUEL com-

.o
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- Where 13. + employee.salary = 100 P
. Figure1 B
1.1%employee.salary +20 .
newsal ;.

, The external representation is the same string format used for objects of type
. QUEL; the internal representation is that of a parse tree.

Two other data types of lesser significance are also needed, a TIME data N
type to contain a time of day value and a COMMAND data type to contain a value
which is one of the QUEL commands.

Current built-in INGRES operators (e.g. *, /, +, etc.) must be extended for ~
use with attribute functions. In addition, two new operators are als> required. .
First, we need a function new() which will operate with integer data types. When ~
called, it will return a new unique identifier which has not been previosusly used.
Second, we require a partial match operator, ~, which will operate on a variety
of data types and provide either equality match or match the value "*".

Il INGRES CHANGES

We expect to create two rules relation, RULES1 and RULES2, with the follow-
ing fields:
create RULES1(
rule-id = i4,
user-id  ¢10, -
time = time,
command = command,

1 e a4’ a
v 2 e 0

relation = ¢12,

terminal = ¢2, ]
. action = quel) N
. N
X create RULES2 ( .
2 rule-id = i4, R
) type = c10, -~
¥ att-fn1 = attribute-function

operatgr = c5,

att-fn2 = attribute-function)
For example, we might wish a rule that would add a record to an audit trail
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whenever the user “Mike"” updated the employee relation. This requires a row in
RULES1 specified as follows:

append to RULES1
rule-<id = n .
user-id = "Mike",
command = "replace”,
relation = "employee”,
action = QUEL command to perform audit)

QERALN

-
) .
o's I}

s

If additionally we wished to perform the audit action only when Mike
updated the employee relation with a command containing the clause "where
employee.name = “Fred"' we would add an additional tuple to RULES2 as follows:

append to RULES2(
rule-id = tht one assigned in RULES1
type = “where"
att-fnl = "employee.name"”
operator = “="
att.fn2 = "Fred")

L ap - e
A
.".(..l‘."“.l" ':", A

/

o, €,

€

We also require the possibility of executing data in the data base. We pro-
pose the following syntax:

range of r is relation
execute (r.fleld) where r.qualification

In this case the value of r.fleld must be an executable QUEL command and
, thereby of data type QUEL. To execute the rule that was just appended to R1 we
could type:
- range of r is R1

- execute (r.action) where r.user-id = “Mike" and
_ r.command = “replace” and
- r.relation = “employee”

XX
) 4 i

NN

.

When a QUEL command is entered by a user, it is parsed into an internal
- parse tree format and stored in a temporary data structure. We expect to
N change that data structure to be the following two main memory relations:

iy create QUERY1(

user-id = c10,
command = command,
relation = c12,

time = time,
terminal= ¢2)

. create QUERY2(
. . clause-id = i4,
type =cl10,
att-fnl = attribute-function,
operator = c¢5,
att-fn2 = attribute-function)

If the user types the query:

range of e is employee
retrieve (esalary)
where (e.name = “"Mike" or e.name = "Sally”)
and e.salary > 30000

>
d’. I'. o
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o then INGRES will build QUERY1 to contain a single tuple with values:
) QUERY1
- user-id l command | _relation | time ‘ terminal
s current-user | retrieve | employee | current-time | current-terminal
< QUERY?2 will have four tuples as follows:
N
- QUERY2
o clause-id type att-fni operator att-fn2
id-x target-list | employee.salary = =mployee.salar
\ id-y where employee.name = Mike
S, id-y where embployee.name = Sally
:j id-z where employee.salary > 30000
b \J
.
'{: Notice that QUERY1 and QUERY2 contain a relational representation of the parse
‘ tree corresponding to the incoming query from the user. The where clause of
- the query is stored in conjunctive normal form, so that atomic formulae which
o are part of a disjunction have the same clause-id, while the atomic formulae and
e disjunctions in the conjunction have different clause-ids.
-, Then we execute the QUEL commands in Figure 2 to identify and execute
. the rules which are appropriate to the incoming command. These commands
are performed by the normal INGRES search logic. Activating the rules system
{ . simply means running these commands prior to executing the user submitted
- command. After running the commands of Figure 2, the query is converted
e back to a parse tree representaticn and executed. Notice that the action part
o of a rule can update QUERY1 and QUERY2; hence modification of the user com-
s mand is easily accomplished. The examples in the next section illustrate several
‘¢ uses for this feature:
" range of rl is RULES1
N range of r2 is RULES2
o range of q1 is QUERY1
N range of q2 is QUERY2
s retrieve into TEMP(rl.id, ri.quel) where
> rl.user-id ~ ql.user-id and
rl.command ~ ql.command and
% rltime ~gql.time and
. rl.terminal~ ql.terminal
= range of t is TEMP
" execute (L.quel) where t.id < Oor
'@ (t.id = r2.rule-id and
set(r2.all-but-rule-id by r2.rule-id)
v = get(r2.all-but-clause-id by r2.rule-id
" where r2all-but-rule-id ~ q2.all-but-clause-id))
~I
N Rule Activation in QUEL
i’ Figure 2.
r- The set functions are ‘as defined in [HELD75]. The conditions for activating a
"o rule are:
. (i) its tuple in RULES1 matches the tuple in QUERY1
¢ -

................
...........
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and either
(ii) each tuple for the rule in RULES2 matches a tuple in QUERY2.

or
(iii) there are no required matches in RULES2
(represented by rule-id < 0).

The second condition provides appropriate rule activation when both the user
query and the rule do not contain the boolean operator OR. However, a rule
which should be activated when two clauses A and B are true will have two tuples
in RULES2. This rule will be activated by a user query containing clauses match-
ing A and B connected by any boolean operator. Under study is a more sophisti-
cated activation system which will avoid this drawback.

The commands in Figure 2 cannot be executed directly because set func-
tions have never been implemented in INGRES. Hence, we turn now to a pro-
posed implementation of these functions.

Suppose we define a new operator "|" to be bitwise OR, and "bitor()" to be an
sggregate function which bitwise ORs all qualifying flelds. Then if we add the
attribute “mask” to RULES2, and give each tuple for a particular rule a unique
bit, the following query is correct:

range of t is TEMP
execute (t.quel) where t.id < Oor
. (tid = r2rule-id and
bitor{r2.mask by r2.rule-id)
= bitor(r2.mask by r2.rule-id
where r2.all-but-rule-id ~ q2.all-but-clause-id))

This solution will be quite slow, since the test for each rule involves processing a
complicated aggregate. A more efficient solution involves generating masks for
all rules in paralle] and writing special search code as follows:

range of rl1 is RULES1
range of re is RULES2
range of q1 is QUERY1
range of q2 is QUERY2 .
retrieve into TEMP(rl.id, ri.quel, mask = 0) where
rl.user-id ~ ql.user-id and
rl.command ~ ql.command and
rltime ~ql.time and
rl.terminal~ ql.terminal

range of t is TEMP

foreach q2 do begin
replace t (mask = t.mask | r2.mask)
where t.id = r2.rule-id and
. r2.all-but-rule-id ~ g2.all-but-clause-id
end foreach

execute (t.quel) where t.id <Oor
(t.id = r2.rule-id and
bitor(r2.mask by r2 rule-id)

= t.mask)
Since the value of "bitor(r2. mask by r2.ruleid)" remains constant, the perfor-
mance of this Blgorithm can be further improved by including the value of
“bitor(r2mask by r2ruleid)’ in RULES1 and copying it into TEMP as the
"acceptmask”. The third query would then become:

..
~h

N AR
LT SR,

-
L3

.....................................................
AN L e T e e e e e e
C v . - PR PP S P MU TR SR I R




........
...........................................

AN

N

e

[ ) execute (t.quel) where t.id = r2.rule-id and

IS t.acceptmask = t.mask

o Notice the case where there are no tuples in RULES2 for a particular rule is han-

o dled with an acceptmask of zero.

rros, .

N2 Either a variable length abstract data type "bitstring” or a four byte integer
N g

can be used to store the mask The abstract data type solution has the advan-
k- tage of allowing an unlimited number of conditions for specifying rule activation,
TN while the four byte integer solution has the advaniage of simplicity and speed,

::'_: N but can only represent 32 conditions.

P,

ASATE

) IV EXAMPLES

NS We give a few examples of the utility of the above constructs in this section.
P First, we can store a pommand in the data base as follows:

e append to storedqueries (id = 8,

A quel = "renge of e is employee

i retrieve (e.salary)
oo where e.name = “John'")

o We can execute the stored command by:

range of s is storedqueries

o execute (s.quel) where s.id = 6
';::I_': The following two examples will pertain to the quaery:
(s range of e is employee
( replace e(salary = salary®1.5) where e.name = "Erika"

To represent this query INGRES will append the following tuples to the QUERY1
o and QUERY2 relations:
5 QUERY1

X - I id |_relation | ___time 1 __ terminal __

! employee | current-time | current-terminal

oY) — ) QUERY2

o clause-id | type catt-fnt | operator | att-fn2

RN id-z target-list | employee.salary = employee.salary®l.5

’ "‘ id-x where employee.name = Erika

.':‘.::: Suppose we want to implement the integrity contraint to insure that
o employee salaries never exceed $30,000. Using query modification [STON75] we
e would add the clause “and employee.salary®l.5 <= 30000". to the user's
- . qualification with the following rule:

= . append to RULES1(
."‘ rule-id = new(), (callit id-y)

e user-id = ¢, (matches any user-id)

command = “replace”,

relation = “employee”,

N action = "range of Q2 is QUERY2

append to QUERY2(

clause-id = id-x,
type = "where",
att-fnl = Q2.att-fn2,
operator = "{&=",

-
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{ o .Qu-fnz = "30000") \
. ere Q2.att-fnl = "employee.salary")"
7 append to RULES2( ploe
e rule-id = id-y,
- type = "target-list”,
att-fnl = “employee.salary”,
operator = "=",
att-fn2 = *)

Consider a transition integrity constraint that specifies that the maximurn
salary increase is 20%. This means that the new salary divided by the old salary
must be less than or equal to 1.2. This can be achieved by appending a single
tuple to R1:

p append to RULES1
_ rule-id = n .
user-id = ¢,
command = "replace”,
relation = "employee”,
. action = "range of Q2 is QUERY2
append to QUERY2(
7 clause-id = id-x,
2 type = “where",
- att-fnl = Q2.att-n2/Q2.att-fni,
) operator = '¢="
att-fn2 ="1.2")
{ where Q2.att-fnl = “employee.salary”
o As 8 last examnple of an integrity constraint, consider a referential con-
v - straint that a new employee must be assigned to an existing department. Such
:'.-: a rule would be applied, for example, to the following query:
NG append to employee (name="Chris", dept = "Toy", mgr = "Ellen")
The corresponding tuples in QUERY2 would look like:
- ‘ QUERY2
", clause-id | _ type att-fnl operator | att-fn2
= id-2 target-list | employee.name = Chris
~ ' id-z target-list | employee.dept = To
. id-z target-list | employee.mgr = Ellen
o Implementation of the constraint requires checking that the department given
p.- in the target list of the append appears in the department relation. This is
N accomplished with the following rule:
[ : append to RULES1
¢ . rule-id = new(),
= user-id =9,
command = "append”,
relation = “employee”,
- action = "range of Q2 is QUERY2
append to QUERY2(
clause-id = id-z,
e - type = "where", d

att-fnl = “dept.name”,
operator = ''=",
att-fn2 = Q2.att-fn2)

q £ X
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where Q2.att-fn1 = employee.dept”

Lastly, protection is achieved primarily by making use of the RULE1 rela-
tion, which pertains to the query "bookkeeping” information. Suppose we
wanted to ensure that no one could access the employee relation after- hours
gafter SPM and before BAM). The following tuple would be added to the R1 rela-

ion:
sppend to RULES lé
rule-id = new(),
user-id = °,
time = "17:01-7.59",
command = °,
relation = "emplioyee”,
e terminal = ¢, _,
oy action = "range of Q1 is QUERY1
. range of Q2 is QUERY2
. delete Q1
o delete Q2
If the query meets the conditions, the action removes the tuples in QUERY1 and
e e QUERY?2 and thereby aborts the command.

e V CONCLUSIONS

This paper has presented an initial sketch of a rules system that can be
embedded in a Relational DBMS. There are two potentially very powerful
features to our proposal. First, it can provide a comprehensive trigger and
( . alerter system. Real time data base applications, especially those associated
] with sensor data acquisition, need such a facility. Second, it provides stored
b~ DBMS commands and the possibility of parallel execution of triggered actions.
i In a multiprocessor environment such parallelism can be exploited.

o There are also several deficiencies to the current proposal, including:
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a) Rule specfication is extremely complex. This could be avoided by a language
processor which accepted a friendlier syntax and translated it into the one in
this paper.

R b) The result of the execution of a collection of rules can depend on the order in
e which they are activated. This is unsettling in a relational environment.

¢) Rules trigger on syntax alone. For example, if we want a rule that becomes

sctivated whenever John's employee record is affected, we trigger on any query

- baving "“employee.name = John" in the where clause. However if the incoming
. query is to update all employees’ salaries, this rule would not be triggered.

.« . - d) Commands with multiple range variables over the same relation, so called

, \ reflexive joins, are not correctly processed by the rules engine.
:':‘J | e) Auregale.hmctions have not yet been considered.

Z:T:";: f) As noted earlier, boolean OR is not treated correctly.

.' We are attempting to resolve these difficulties with further work.
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ABSTRACT

This document provides an introduction to the interprocess communica-
tion facilities included in the 4.2bsd release of the VAX* UNIX** system.

It discusses the overall model for interprocess communication and intro-
duces the interprocess communication primitives which have been added to the
system. The majority of the document considers the use of these primitives in
developing applications. The reader is expected to be familiar with the C pro-
gramming language as all examples are written in C.

* DEC and VAX are trademarks of Digital Equipment Corporation.
** unix is & Trademark of Bell Laborstories.
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4.2bsd IPC Primer «2- Introduction

1. INTRODUCTION

One of the most important parts of 4.2bsd is the interprocess communication facilities. These
facilities are the result of more than two years of discussion and research. The facilities pro-
vided in 4.2bsd incorporate many of the ideas from current research, while trying to maintain
the UNIX philosophy of simplicity and conciseness. It is hoped that the interprocess communi-
cation facilities included in 4.2bsd will establish a standard for UNIX. From the response to the
design, it appears many organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to
the 4.2bsd facilities, the only standard mechanism which allowed two processes to communicate
were pipes (the mpx files which were part of Version 7 were experimental). Unfortunately,
pipes are very restrictive in that the two communicating processes must be related through a
common ancestor. Further, the semantics of pipes makes them almost impossible to maintain
in a distributed environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction.
The majority of the problems have been related to the fact these facilities have been tied to the
UNIX file system; either through naming, or implementation. Consequently, the ipc facilities
provided in 4.2bsd have been designed as a totally independent subsystem. The 4.2bsd ipc
allows processes o rendezvous in many ways. Processes may rendezvous through a UNIX file
system-like name space (a space where all names are path names) as well as through a network
‘name space. In fact, new name spaces may be added at s future time with only minor changes
visible to users. Further, the communication facilities have been extended to included more
than the simple byte stream provided by a pipe-like entity. These extensions have resulted in a
completely new part of the system which users will need time to familiarize themselves with. It
is likely that as more use is made of these facilities they will be refined; only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the
new system calls and the basic model of communication. Section 3 describes some of the sup-
porting library routines users may find useful in constructing distributed applications. Section 4
is concerned with the client/server model used in developing applications and includes exam-
ples of the two major types of servers. Section 5 delves into advanced topics which sophisti-
cated users are likely to encounter when using the ipc facilities.

DRAFT of July 27, 1983 LefMer/Fabry/Joy




2. BASICS

for communication is the socket A socket is an endpoint of
communication to which a name may be dound Each socket in use has a8 o)pe and one or more
associated processes. Sockets exist within communication domains. A communication domain is
an ebstraction introduced to bundie common properties of processes communicating through
sockets. One such property is the scheme used to name sockets. For example, in the UNIX
communication domain sockets are named with UNIX path names; e.g. a socket may be named
“/dav/ioo™. Sockets normally exchange data only with sockets in the same domain (it may be
possible to cross domain boundaries, but only if some translation process is performed). The
4.2bd ipc supports two separste communication domains: the UNIX domain, and the Internet
domain is used by processes which communicate using the the DARPA standard communica-
tion protocols. The underlying communication facilities provided by these domains have a
significant influence on the internal system implementation as well as the interface to socket
facilities availabie to & user. An example of the latter is that s socket ‘“‘operating’” in the UNIX
domain sees & subset of the possible error conditions which are possible when operating in the

2.1. Secket types

Sockets are typed according to the communication properties visible to a user. Processes
are presumed to communicate oaly between sockets of the same type, although there is nothing
that prevents communication between sockets of different types should the underlying com-
munication protocols support this.

Three types of sockets currently are available 10 a user. A stream socket provides for the
bidirectional, reliable, sequenced, and unduplicated flow of data without record boundaries.
Aside from the bidirectionality of data flow, & pair of connected stream sockets provides an
interface nearly identical to that of pipes®.

A doxgram socket supports bidirectional flow of data which is not promised to be
sequenced, relisble, or unduplicated. That is, a process receiving messages on a datagram socket
may find messages duplicated, and, possibly, in an order different from the order in which it
was sent. An important characteristic of a datagram socket is that record boundaries in dats are
preserved. Daagram sockets closely model the facilities found in many contemporary packet
switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which sup-
port socket abstractions. These sockets are normally datagram oriented, though their exact
characteristics are dependent on the interface provided by the protocol. Raw sockets are not
intended for the general user; they have been provided mainly for those interested in develop-
hcmmmuniaﬁonmmk.ufmniniumwwmeo(memmuﬁcfuﬂiﬁes

;
f
|
i

the reliably delivered message socket. A sequenced packet socket is identical to a
the exception that record boundaries are preserved. This interface is very
to that provided by the Xerox NS Sequenced Packet protocol. The relisbly delivered

message socket has similar properties to a datagram socket, but with reliable delivery. While

these two socket types have been loosely defined, they are currently unimplemented in 4.2bsd.

As such, in this document we will concern ourselves only with the three socket types for which

In the UNIX domain, in fact, the ssmantics are identice! and, as one might expect, pipes have been imple-
mented imteraslly as simply & pair of connected stream sockets.

DRAFT of July 27, 1983 . Lefller/Fabry/Joy
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2.2. Secket crestien
To create a socket the socker system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified
ope. A particular protocol may also be requested. If the protocol is left unspecified (a value of
0), the system will select an appropriate protocol from those protocols which comprise the com-
munication domain and which may be used to support the requested socket type. The user is
returned a descriptor (s small integer number) which may be used in later system calls which
operate on sockets. The domain is specified as one of the manifest constants defined in the file
< gys/socket.h>. For the UNIX domain the constant is AF_UNIX®; for the Internet domain
AF_INET. The socket types are also defined in this file and one of SOCK_STREAM,
SOCK _DGRA:4, or SOCK_RAW must be specified. To create s stream socket in the Internet
domain the following call might be used:

8 = socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the
underlying communication support. To create a datagram socket for on-machine use a sample
call might be:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

To obtain a particular protocol one selects the protocol number, as defined within the
communicstion domain. For the Internet domain the available protocols are defined in
< netinet/in.h> or, better yet, one may use one of the library routines discussed in section 3,

such as getprorobyname:

#include <sys/types.h>

#include <sys/socket.h>
#tinclude <netinet/in.h>
#inciude <netddb.h>

PP = getprotobyname Ctcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting
protocol (EPROTOTYPE).

2.3. Dinding names

A socket is created without a name. Until a name is bound to a socket, processes have no
way (o reference it and, consequently, no messages may be received on it. The dind call is used
to assign a name 10 a socket:

bind (s, name, namelen);

The bound mame is a variable length byte string which is interpreted by the supporting
protocoi(s). Its interpretation may vary from communication domain to communication
domain (this is one of the properties which comprise the ‘*‘domain’*). In the UNIX domain
mames are path names while in the Internet domain names contain an Internet address and port
aumber. If one wanted to bind the name *‘/dev/foo" to a UNIX domain socket, the following
would be used:

* The manifent consants are named AF_whatever os they indicate the “‘address format™ 10 use in interpret-
ing names.

DRAFT of July 27, 1983 Leffler/Fabry/Joy
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4.2bed IPC Primer -5. Basics

bind(s, */dev/foo®, sizeof (*/dev/foo’) - 1);

ththenunminlhemkwcoumedunﬂdthenm) In binding an Inter-
net address things become more complicated. The actual call is simple,

#include <sys/types.h>
@include <netinet/in.h>

struct sockaddr_in sin;

bind(s, &sin, sizoof (sin));

but the selection of what to place in the address s/n requires some discussion. We will come
back to the probiem of formulating Internet addresses in section 3 when the library routines
used in name resolution are discussed.

2.4. Cennection estadlishment

With a bound socket it is possibie to rendezvous with an unrelated process. This opera-
tion is usually asymmetric with one process a “‘client’’ and the other a “‘server™. The client
requests services from the server by initiating a ‘‘connection’ to the server’s socket. The
server, when willing to offer its advertised services, passively “listens™ on its socket. On the
client side the connect call is used to initiate a connection. Using the UNIX domain, this might
appeasr as,

connect(s, “server-name®, sizeof ("server-name®));
while in the Internet domain,

struct sockaddr_in server;
eoanect(s.&m sizeof (server));

I the client process’s socket is unbound at the time of the connect call, the system will
sutomatically select and bind s name to the socket; cf. section 5.4. An error is returned when
the connection was unsuccessful (any name automatically bound by the system, however,
remains). Otherwise, the socket is associsted with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOUT
Afer failing to establish a connection for a period of time, the system decided there was
po point in retrying the connection attempt any more. This usually occurs because the
destination host is down, or because problems in the network resulted in transmissions
being lost.
ECONNREFUSED
The host refused service for some reason. When connecting to a bost running 4.2bsd this
is usually due to a server process not being present at the requested name.
ENETDOWN or EHOSTDOWN
These operational errors sre returned based on satus information delivered to the client
host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH

route to the network or host is present), or because of status information returned by
intermediste gateways or switching nodes. Many times the status returned is not
sufficient to distinguish a network deing down from s host being down. In these cases the
system is conservative and indicates the entire network is unreachabie.

For the server to receive a client’s connection it must perform two steps after binding its
socket. The first is to indicate a willingness to listen for incoming connection requests:

DRAFT of July 27, 1983 Lefller/Fabry/Joy
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4.2bsd IPC Primer -6- Basics

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connec-
tions which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual
messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error, the client would be unable to tell
if the server was up or not. As it is now it is still possible to get the ETIMEDOUT error back,
though this is unlikely. The backlog figure supplied with the listen call is limited by the system
to s maximum of § pending connections on any one queue. This avoids the problem of
processes hogging system resources by setting an infinite backiog, then ignoring all connection
requests.

With a socket marked as listening, a server may accept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the
server wishes to find out who its client is, it may supply a buffer for the client socket's name.
The value-result parameter fromien is initialized by the server to indicate how much space is
associsted with from, then modified on return to reflect the true size of the name. If the
client’s name is not of interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is
available or the system call is interrupted by a signal to the process. Further, there is no way
for a process to indicate it will accept connections from only a specific individual, or individuals.
It is up to the user process to consider who the connection is from and close down the connec-
tion if it does not wish to speak to the process. If the server process wants to accept connec-

" tions on more than one socket, or not block on the accept call there are alternatives; they will

be considered in section §.

2.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there are
a number of possible calls. With the peer entity at each end of a connection anchored, a user
can send or receive a message without specifying the peer. As one might expect, in this case,
then the normal read and write system calls are useable,

write(s, buf, sizeof (buf));
read(s, duf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send (s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recv are virtually identical to read and write, the extrs flags argument is impor-
tant. The flags may be specified as a non-zero value if one or more of the following is required:

SOF_OOB send/receive out of band data
SOF_PREVIEW look at data without reading
SOF_DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is
currently used only by the routing table management process, and is unlikely to be of interest
10 the casual user. The ability to preview data is, however, of interest. When SOF_PREVIEW
is specified with a recv call, any data present is returned to the user, but treated as still

DRAFT of July 27, 1983 LefMer/Fabry/Joy
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‘“‘unread™. That is, the next read or recv call applied (0 the socket will return the data previ-
ously previewed.

3.6. Discarding seckets
Oncs & socket is no longer of interest, it may be discarded by applying a close to the

(;

I} data is sssociated with a socket which promises reliable delivery (e.g. a stream socket) when s
place, the system will continue 10 attempt to transfer the data. However, after a

time, if the data is still undelivered, it will be discarded. Should a user

ing data, it may perform a shuzdown on the socket prior to closing it.

4
]
&g
:

To this point we have been concerned mostly with sockets which follow a connection
oriented model. However, there is also support for connectionless interactions typical of the
datagram facilities found in contemporary pecket switched networks. A datagram socket pro-
vides a symmetric interface 1o data exchange. While processes are still likely to be client and
server, there is no requirement for connection establishment. Instead, each message inciudes
the destination sddress.

Datagram sockets are created as before, and éach should have a name bound to it in order
that the recipient of a message may identify the sender. To send data, the sendro primitive is

1

sendto(s, buf, bufien, flags, &to, tolen);

s, b/, buflen, and flags parameters are used as before. The /0 and rolen values are used to
the intended recipient of the message. When using an unreliable datagram interface, it
ikely any errors will be reported to the sender. Where information is present locally to
e 8 message which may never be delivered (for instance when a network is unreach-
), the call will return —1 and the global value errmo will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is pro-

1k

H

i

recvirom(s, buf, bufien, flags, &from, &fromien);

Once again, the ffomien parameter is handled in a value-result fashion, initially containing the
size of the ffom buffer.

In sddition to the two calls mentioned above, datagram sockets may also use the connect
call to associate 8 socket with s specific address. In this case, any data sent on the socket will
sutomatically be addressed to the connected peer, and only data received from that peer will be
delivered to the user. Only one connected address is permitted for each socket (i.e. no multi-
easting). Connect requests on datagram sockets return immediately, as this simply results in
the system recording the peer’s address (as compared to & stream socket where a connect
connection). Other of the less important
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| 2.8. Input/Output multiplexing .
. One last facility often used in developing applications is the ability to multiplex i/o
a requests among multiple sockets and/or files. This is done using the select call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and
one for which exceptional conditions are pending. Bit masks are created by or-ing bits of the
form *‘1 << fd’. That is, a descriptor A is selected if a 1 is present in the /& th bit of the

ex mask. The parameter rfds specifies the range of file descriptors (i.c. one plus the value of the

* largest descriptor) specified in a mask.

‘_:f-:: A timeout value may be specified if the selection is not to last more than a predetermined
- period of time. If timeout is set to 0, the selection takes the form of a poll, returning immedi-
. ately. If the last parameter is a null pointer, the selection will block indefinitely®. Selecr nor-

mally returns the number of file descriptors selected. If the selecr call returns due to the

._,:. timeout expiring, then a value of ~1 is returned along with the error number EINTR.

'-‘f:: ~ Select provides a synchronous multiplexing scheme. Asynchronous notification of output
AN completion, input availability, and exceptional conditions is possible through use of the SIGIO
A and SIGURG signals described in section §.

{
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* To be more specific. 8 return takes place only when s dexcriptor is selectable, or when » signai is received
by the caller, interrupting the system call.
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4.2bed IPC Primer -9. Network Library Routines

3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
sddresses when using the interprocess communication facilities in a distributed environment.
in this task a number of routines have been added 10 the standard C run-time librasy.

we will consider the new routines provided to manipulate network addresses.
While the 4.2bsd networking facilities support only the DARPA standard Internet protocols,
these rou hl:vc been designed with flexibility in mind. As more communication protocols

Locating s service on s remote host requires many levels of mapping before client and
server may communicate. A service is assigned a name which is intended for human consump-
tion; e.g. ‘‘the login server on host monet’’. This name, and the name of the peer host, must
then de transisted into network addresses which are not necessarily suitable for human con-
sumption. Finally, the address must then used in locating a physical location and route to the
service. The specifics of these three mappings is likely to vary between network architectures.
For instance, it is desirable for a network to not require hosts be named in such a way that their
physical location is known by the client host. Instead, underlying services in the network may
discover the actua! location of the host at the time a client host wishes to communicate. This
ability to have hosts named in & location independent manner may induce overhead in connec-
tion establishment, as a discovery process must take place, but allows a host to be physically
mobile without requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network
pames to network numbers, protocol names to protocol numbers, and service names to port
oumbers and the appropriate protocol to use in communicating with the server process. The
flle <netdb.h> must be included when using any of these routines.

3.1. Hest names
A host name 1o address mapping is represented by the Aostent structure:

struct hostent (
char *h_ 3 /* official name of bost */
char **h_aliases; /* alias list ¢/
int b_addrtype; /* host address type */
fat b_length; /® length of address */
char *h_addr; /* address */

The official name of the host and its public slisses are returned, along with a varisble length
eddress and . The routine gethostbyname(3N) takes s host name and returns s Aos-
routine gethostbyaddr(3N) maps host addresses into a Aostent structure.
many addresses, all having the same name. Gethostybyname
in the data base file /etc/hosts, if this is unsuitable, the lower
be used. For example, to obtain s Aostent structure for s host
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#finclude <sys/typesh>

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

l.t.r.uct hostent *
gethostbynameandnet (name, net)
char *name;

register struct hostent *hp;
register char **cp;

sethostent(0);
while ((hp = gethostent()) != NULL) (
if (hp->h_addrtype '= AF_INET)
continue;
if (stremp(name, hp->h_name)) {
for (cp = hp->h_aliases; cp && °cp != NULL; cp+ +)
if (stremp(name, *cp) == ()
goto found,
continue;

found:
if (in_netof(*(struct in_addr *)hp->h_addr)) == pet)
break;

)
endhostent(0);
return (hp);

)
(in_netof(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network names
As for host names, routines for mapping network names to numbers, and back, are pro-
vided. These routines return a netenr structure:

,.
¢ Assumption here is that a network number
® fits in 32 bits -- probably a poor one.

*/

struct mpetent {
char °n_name, /° official name of net */
char *°n_alisses; /* alias list */
int n_addrtype; /* net address type */

) int n_net; /* network # ¢/

The routines gemetbyname(3N), getnetbynumber(3N), and gernetent(3N) are the network coun-

2 terperts to the host routines described above.

o 3.3. Pretecel names

e For protocols the profoent structure defines the protocol-name mapping used with the rou-
@ tines getprotobyname(3IN), geprotobynumber(3N), and getprotoent(3N):

N2

> "» ‘e )
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struct protoent {
char *p_name; /° official protocol name */
char **p_aliases; /° alias list ¢/ -
int p_proto; /° protocol # */ ’

3.4. Bervice names

Information regarding services is a bit more complicated. A service is expected to reside
st a specific “port” and employ a particular communication protocol. This view is consistent
with the Internet domain, but inconsistent with other network architectures. Further, a service
may reside on multiple ports or support multiple protocols. If either of these occurs, the higher
level library routines will have to be bypassed in favor of homegrown routines similar in spirit
to the *“‘gethostbynameandnet’’ routine described above. A service mapping is described by the

servent structure,
struct servent (
char °s_name, /° official service name */
char **s_aliases; /° alias list */
int s_port; /° port # °/
char *s_proto; . /* protocol to use */

'.
*

The routine gerservbyname(3N) maps service names to a servent structure by specifying a ser-
vice name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname (“teinet”, (char *)0);
returns the service specification for a telnet server using any protocol, while the call
sp = getservbyname(“teinet”, “tcp®);
returns only that teinet server which uses the TCP protocol. The routines gerservdyporr(3N)

and getservent(3N) are also provided. The gerservbyport routine has an interface similar to that
provided by getservbyname, an optional protocol name may be specified to qualify lookups.

3.5. Miscellancous

With the support routines described above, an application program should rarely have to
deal directly with addresses. This allows services to be developed as much as possible in a net-
work independent fashion. It is clear, however, that purging all network dependencies is very
difficult. So long as the user is required to supply network addresses when naming services and
sockets there will always some network dependency in a program. For example, the normal
code included in client programs, such as the remote login program, is of the form shown in
Figure 1. (This example will be considered in more detail in section 4.)

¥ we wanted to make the remote login program independent of the Internet protocols and
sddressing scheme we would be forced to add a layer of routines which masked the network
dependent aspects from the mainstream login code. For the current facilities available in the
system this does not appesr 10 be worthwhile. Perhaps when the system is adapted to different
sstwork architectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines avail-
sbie in the run-time library which are of interest to users. These are intended mostly to sim-
plify manipulstion of names and addresses. Table 1 summarizes the routines for manipulating
variable length byte strings and handling byte swapping of network addresses and values.

The byte swapping routines are provided because the operating system expects addresses
%0 be supplied in network order. On 2 VAX, or machine with similar architecture, this is usu-
olly reversed. Consequently, programs are sometimes required to byte swap quantities. The

w « .l
- b SN L]
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#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

lﬁ;in(mc. argv)
( char *argvl];

struct sockaddr_in sin;
struct servent *sp;
struct hostent *hp;
ints,

p = getservbyname ("login”, "tcp®);

nf (sp == NULL) {
fpmz;t; (stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

hp = gethostbyname(argv(l));

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv(1));
exit(2);

bzero((char *)&sin, sizeof (sin));

beopy (hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_family = hp->h_ nddrtype;

sin.sin_port = gp->s

{ s = socket(AF_ SOCK STREAM, 0),
A if (s < 0) {

g perror ("rlogin: socket");

exit(3);

if (connect (s, (char *)&sin, sizeof (sin)) < 0) {
-, perror(“rlogin: connect”);
ey exit(5);
Pd

Figure 1. Remote login client code.

- e
Call Synopsis

e bemp(sl, 82, n) | compare byte-strings; 0 if same, not 0 otherwise

O beopy(sl, 82, n) | copy n bytes from sl to 82

bzero(base, n) zero-fill n bytes starting at base
htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohi(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table 1. C run-time routines.
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fibrary routines which return network addresses provide them in petwork order so that they
may simply be copied into the structures provided to the system. This implies users should

encounter the byte swapping problem only when interpreting network addresses. For example, if
an Internet port is to be printed out the following code would be required:

printf("port number %d\n", ntohs(sp->s_port));
On machines other than the VAX these routines are defined as null macros.
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4. CLIENT/SERVER MODEL

The most commonly used peradigm in constructing distributed applications is the
client/server model. In this scheme client applicstions request services from a server process.
This implies an asymmetry in establishing communication between the client and server which
has been examnined in section 2. In this section we will look more closely at the interactions
between client and server, and consider some of the problems in developing client and server
applications.

Client and server require a well known set of conventions before service may be rendered
(and accepted). This set of conventions comprises a protocol which must be implemented at
both ends of a connection. Depending on the situation, the protocol may be symmetric or
ssymmetric. In s symmetric protocol, either side may play the master or slave roles. In an
asymmetric protocol, one side is immutably recognized as the master, with the other the slave.
An example of a symmetric protocol is the TELNET protocol used in the Internet for remote
terminal emulation. An example of an asymmetric protocol is the Internet file transfer proto-
col, FTP. No matter whether the specific protocol used in obtaining a service is symmetric or
asymmetric, when accessing a service there is a *‘client process’” and s *‘server process’’. We
will first consider the properties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clog-
ging the system while remaining dormant most of the time. The Xerox Courier protocol uses
the latter scheme. When using Courier, a Courier client process contacts a Courier server at
the remote host and identifies the service it requires. The Courier server process then creates
the appropriate server process based on a data base and ‘‘splices’” the client and server
together, voiding its part in the transaction. This scheme is sttractive in that the Courier server
process may provide a single contact point for all services, as well as carrying out the initial
steps in authentication. However, while this is an attractive possibility for standardizing access
to services, it does introduce a certain amount of overhead due to the intermediate process
involved. Implementations which provide this type of service within the system can minimize
the cost of client server rendezvous. The portal notion described in the **4.2BSD System
Manual'’' embodies many of the ideas found in Courier, with the rendezvous mechanism imple-
mented internal to the system.

4.1. Servers

In 4.2bsd most servers are accessed at well known Internet addresses or UNIX domain
names. When a server is started at boot time it advertises it services by listening at a well know
locstion. For example, the remote login server’s main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = ;emrvbymme(‘lo;m' *tcp’);

if (sp == NULL) {
fpnx:tf)(:tderr. "riogind: tcp/login: unknown service\n");
exit(1);

:- This definition is used in later portions of the code to define the Internet port at which it listens
o for service requests (indicated by a connection).

< Step two is to disassociate the server from the controlling terminal of its invoker. This is
important as the server will likely not want to receive signals delivered to the process group of

@
.
SR

Sl the controlling terminal.

2

"W

o
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gy

37

S0 main (arge, argv)

o int argc;

char **argv;

Y intf;
g struct sockaddr_in from;
o) struct servent *sp;

- sp = getservbyname (Vlogin®, *wcp*);

- if (sp == NULL) {
N fprintf(stderr, “rlogind: tcp/login: unknown service\n®);
NS ) exit(1);

< #ifndef DEBUG
\ < <disassociste server from controlling terminal> >

3 Weadit

o sin.sin_port = gp->s_port;

o f = socket(AF_INET, SOCK_STREAM, 0);
f (bind(f, (caddr_dksin, sizeof (sin)) < O) |
o )y

R fisten(f, 5);
{ for () {
int g, len = sizeof (from);

X
NN g = sccept(f, &from, &len);
o) f@g<0|
if (ermo != EINTR)
: perror("riogind: accept®);
continue;

o )
g close(D);

doit(g, &from);
close(g);

o Figure 2. Remote login server.

oo Once a server has established a pristine environment, it crestes a socket and begins
e accepting service requests. The dind call is required to insure the server listens gt its expected

oz focstion. The main body of the loop is fairly simple:
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for ;) {
int g, len = sizeof (from);

g = accept(f, &from, &len);
if g <0
if (errno != EINTR)
perror ("rlogind: accept”);
continue;

}

if (fork() == 0) {
close(f);
doit (g, &from);

)
close(g);

An accept call blocks the server until a client requests service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section $).
Therefore, the return value from accepr is checked to insure & connection has actually been
established. With a connection in hand, the server then forks a child process and invokes the
main body of the remote login protocol processing. Note how the socket used by the parent for
qQueueing connection requests is closed in the child, while the socket crested as a result of the
accept is closed in the parent. The address of the client is also handed the doif routine because
it requires it in authenticating clients.

4.2, Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the
separate, asymmetric roles of the client and server clearly in the code. The server is a passive
entity, listening for client connections, while the client process is an active entity, initiating a
connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the
server process the first step is to locate the service definition for a remote login:
sp = getservbyname(Vlogin®, “1cp”);
if (sp == NULL) {
fprintl; (stderr, “rlogin: tcp/login: unknown service\n");
exit(1);

Next the destination host is looked up with a gerhostbyname call:

hp = gethostbyname(argv(l]);

if (hp == NULL) {
fprix:tf)(stderr. *riogin: %s: unknown host\n", argvil]);
exit(2);

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then filled
in with the Internet address of the foreign host and the port number at which the login process
resides:
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bzero((char *)&sin, sizeof (sin));
beopy (hp->h_addr, (char *)sin.sin_sddr, hp->h_length);
sin.sin_family = hp->h_sddrtype; -
sin.sin_port = gp->3 port;

A socket is created, and a connection initisted.

s = socket(hp->h_sddrtype, SOCK_STREAM, 0);
¥Gc<O0|

if (connect(s, (char *)dsin, sizeof (sin)) < 0)
perror("riogin: connect”);
exit(4);

The details of the remote login protocol will not be considered here.

4.3. Cennectionless servers

While connection-based services are the norm, some services are based on the use of
datagram sockets. One, in particular, is the *‘rwho" service which provides users with status
information for bosts connected to a local area network. This service, while predicated on the
ability to broadcast information to all hosts connected 10 a particular network, is of interest as
an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a
machine with the ruprime(1) program. The output generated is illustrated in Figure 3.

arpe up 945, Susers losd 1.15, 139, 131

ead up 24+12:04, Busers,load 4.67, 5.13, 4.5

calder uwp 10:10, Ousers,load 027, 0.1S, 0.14

dali up 240628, Susers, Josd 1.04, 120, 1.65

degas up 2540948, Ousers, load 149, 143, 141

esr up S4+00:05, Ousers,load 151, 154, 156

ernie down 0:24

esVax down 17:04

ingres down 0:26

kim up 3+09:16, Susers, losd 203, 246, 311

matisse up 3406:18, Ousers,load 0.03, 003, 0.05

medea up 340939, 2users,load 035, 037, 0.50

merlin  down 19+15:37

miro up 140720, Tusers,load 4.59, 328, 212

monet up 140043, 2users,lond 022, 009, 0.07

oz down 16:09

statvax up 2+15:57, 3Jusers,losd 1.52, 181, 186

uchvax wp %34, 2users,load 608, S5.16, 3.28
Figure 3. ruptime output.

Sistus information for esch host is periodically broadcast by rwho server processes on
each machine. The same server process also receives the status information and uses it to
update » database. This datsbase is then interpreted to generate the status information for each
host. Servers operate sutonomously, coupled only by the local network and its broadcast capa-
bilities.
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The rwho server, in s simplified form, is pictured in Figure 4. There are two separate
tasks performed by the server. The first task is to act as a receiver of status information broad-
cast by other hosts on the network. This job is carried out in the main foop of the program.
Packets received at the rwho port are interrogated to insure they've been sent by another rwho
server process, then are time stamped with their arrival time and used to update a file indicating
the status of the host. When a host has not been heard from for an extended period of time,
the database interpretation routines assume the host is down and indicate such on the status
reports. This algorithm is prone to error as a server may be down while a host is actually up,
but serves our current needs.

l'minO

sp = getservbyname("who", "udp®);

pet = getnetbyname(“locainet®);

sin.sin_addr = inet_makeaddr(INADDR_ANY, net);
sin.sin_port = sp->s_port,

s = socket(AF_INET, SOCK_DGRAM, 0);
i;nd(s. &sin, sizeof (sin));

sigset(SIGALRM, onalrm);
onalrm();
for (;)) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &len);
if (cc <= 0) {
if (cc < 0 && ermo != EINTR)
perror("rwhod: recv");
continue;

if (from.sin_port = sp->s_port) {
fprintf(stderr, "rwhod: %d: bad from port\n®,
ntohs(from.sin_port));
continue;

}

if ('verify(wd.wd_hostname)) |
fprintf (stderr, "rwhod: malformed host name from %x\n",
ntohl(from.sin_addr.s_addr));
continue;

)
(void) sprintf(path, “%s/whod.%s", RWHODIR, wd.wd_hostname);
whod = open(path, FWRONLYFCREATEFTRUNCATE, 0666).

(void) time (&wd.wd_recvtime):
(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4. rwho server.
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The second task performed by the server is to supply information regarding the siatus of
its bost. This involves periodically acquiring system status information, peckaging it up in a

Status information is broadcast on the local network. For networks which do not support
the notion of broadcast another scheme must be used 10 simulate or replace brosdcasting. One
possibility is to enumerate the known neighbors (based on the status received). This, unfor-
tunately, requires some bootstrapping information, as a server started up on 8 Quiet network
will have no known neighbors and thus never receive, or send, any status information. This is
the identical probiem faced by the routing table management process in propagating routing
statug information. The standard solution, unsatisfactory as it may be, is to inform one or
servers of known neighbors and request that they always communicate with these neigh-
If each server has at least one neighbor supplied it, status information may then pro-
te through a neighbor to hosts which are not (possidly) directly neighbors. If the server is
to support networks which provide s brosdcast capability, as well as those which do not,
networks with an arbitrary topology may share status information®.

‘The second problem with the current scheme is that the rwho process services only s sin-
gle local network, and this network is found by resding a file. It is important that software
operating in a distributed environment not have any site-dependent information compiled into

severe headache. 4.2bsd attempts (o isolste host-specific information from applications by pro-
viding system calls which return the necessary informationt. Unfortunately, no straightforward
mechanism currently exists for finding the collection of networks to which a host is directly
connected. Thus the rwho server performs a lookup in a file to find its local network. A
better, though still unsatisfactory, scheme used by the routing process is to interrogate the sys-
tem data structures to locate those directly connected networks. A mechanism to acquire this
information from the system would be s useful addition.

* Ong must, however, be concerned sbout “loops™. That is, if & host is connected to multipie networks, &
will receive status information from itself. This can lssd 10 an endless, wasteful, exchange of information.
€ An exampis of such a sysiem call is the geshosmeme(2) call which returns the host’s **official™ name.
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5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the ipc the mechan-
isms already described will suffice in constructing distributed applications. However, others will
find need to utilize some of the features which we consider in this section.

$.1. Out of band data

The stream socket sbstraction includes the notion of ‘‘out of band’’ data. Out of band
data is & logically independent transmission channel associated with each pair of connected
stream sockets. Out of band data is delivered to the user independently of normal data along
with the SIGURG signal. In addition to the information passed, a logical mark is placed in the
data stream to indicate the point at which the out of band data was sent. The remote login and
remote shell applications use this facility to propagate signals from between client and server
processes. When a signal is expected to flush any pending output from the remote process(es),
all data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reli-
able delivery of at least one out of band message at a time. This message may contain at least
one byte of data, and at least one message may be pending delivery to the user at any one time.
For communications protocols which support only in-band signaling (i.e. the urgent data is
delivered in sequence with the normal data) the system extracts the data from the normal data
stream and stores it separately. This allows users to choose between receiving the urgent data
in order and receiving it out of sequence without having to buffer all the intervening data.

To send an out of band message the SOF_OOB flag is supplied to a send or sendro calls,
while to receive out of band data SOF_OOB should be indicated when performing a recvfrom or
recv call. To find out if the read pointer is currently pointing at the mark in the data stream,
the SIOCATMARK ioctl is provided:

joctl(s, SIOCATMARK, &yes);

If yesis a 1 on return, the next read will return data after the mark. Otherwise (assuming out
of band data has arrived), the next read will provide data sent by the client prior to transmis-
sion of the out of band signal. The routine used in the remote login process to flush output on
receipt of an interrupt or quit signal is shown in Figure S.

5.2. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated
process group (just as is done for terminals). This process group is initialized to the process
group of its creator, but may be redefined at a later time with the SIOCSPGRP ioctl:
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?obo
intout = 141; -
char waste[BUFSIZ], mark;

signal (SIGURG, oobd);
/* flush local terminal input and output */
focti(1, TIOCFLUSH, (char *)&out);
for () {
#f Goctl(rem, SIOCATMARK, &mark) < 0) {
perror(“ioct!”);
| break;
if (mark)
bresk;
(void) read(rem, waste, sizeof (waste));

)
recv(rem, &mark, 1, SOF_OOB);

Figure 5. Flushing terminal i/0 on receipt of out of band data.

ioctl(s, SIOCSPGRP, &pgrp); ,
A similar joctl, SIOCGPGRP, is available for determining the current process group of a socket.

$.3. Psevdo terminals

Many programs will not function properly without s terminal for standard input and out-
put. Since a socket is not a terminal, it is often necessary to have a process communicating
over the network do 30 through a pseudo serminal A pseudo terminal is actually a pair of dev-
ices, master and slave, which allow a process to serve as an active agent in communication
between processes and users. Data writien on the slave side of a pseudo terminal is supplied as
input to a process reading from the master side. Data written on the master side is given the
slave as input. In this way, the process manipulating the master side of the pseudo terminal has
control over the information read and written on the slave side. The remote login server uses
peeudo terminals for remote login sessions. A user logging in to a machine across the network
is provided a shell with a slave pseudo terminal as standard input, output, and error. The
server process then handles the communication between the programs invoked by the remote
shell and the user’s local client process. When a user sends an interrupt or quit signal to a pro-
cess executing on a remote machine, the client login program traps the signal, sends an out of
band message to the server process who then uses the signal number, sent as the data value in
the out of band message, to perform a kilipg(2) on the appropriate process group.

$.4. Internet address binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communicat-
fng processes are bound by an associction. An association is composed of local and foreign
eddresses, and local and foreign ports. Port numbers are allocated out of separate spaces, one
for each Internet protocol. Associations sre always unique. That is, there may never be dupli-
eate <protocol, local address, local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association, <local address,
port>, while the connect and accept primitives are used to complete s socket’s sssocia-
Since the association is created in two steps the associstion uniqueness requirement indi-
above could be violated unless care is taken. Further, it is unrealistic to expect user
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programs to always know proper values to use for the local address and local port since a host
may reside on multiple networks and the set of allocated port numbers is not directly accessible
10 a user. :

To simplify local address binding the notion of a “‘wildcard’* address has been provided.
When an address is specified as INADDR_ANY (s manifest constant defined in
<netinet/in.h>), the system interprets the address as “‘any valid address”. For example, to

<
»
-

bind a specific port number to & socket, but leave the local address unspecified, the following
code might be used:

#include <sgys/types.h> A
#include <netinet/in.h> )

struct sockaddr_in sin;

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET; ;
sin.sin_sddr.s_addr = INADDR_ANY; E
sin.sin_port = MYPORT, N

bind(s, (char *)&sin, sizeof (sin));
Sockets with wildcarded local addresses may receive messages directed to the specified port z
number, and addressed to any of the possible addresses assigned a host. For example, if a host N
is on a networks 46 and 10 and a socket is bound as above, then an accept call is performed, -
the process will be able to accept connection requests which arrive either from network 46 or ' -
network 10. 3
In a similar fashion, a local port may be left unspecified (specified as zero), in which case

the system will select an appropriate port number for it. For example: :
sin.sin_sddr.s_sddr = MYADDRESS, -
sin.sin_port = 0; ]

bind(s, (char *)&sin, sizeof (sin)); -

The system selects the port number based on two criteria. The first is that ports numbered 0 -
through 1023 are reserved for privileged users (i.e. the super user). The second is that the port -
number is not currently bound to some other socket. In order to find a free port number in the o
privileged range the following code is used by the remote shell server: »
..

)

'-
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struct sockaddr_in sin;

tport = IPPORT_RESERVED - ;
sin.sin_sddr.s_sddr = INADDR_ANY:;

for G
sin.sin_port = heoas((u_short)iport);
if (bind(s, (caddr_t)&sin, sizeof (sin)) > = 0)

break;

if (errno != EADDRINUSE && ermo {= EADDRNOTAVAIL) {
perror("socket”);

| break;

lport--;
if (port == IPPORT_RESERVED/2) {
fprintf(stderr, “socket: All ports in use\n");
break;
}
)

The restriction on allocating ports was done to allow processes executing in a “‘secure’’ environ-
ment to perform authentication based on the originating address and port aumber.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable
for an application. This is due to associations being created in 8 two step process. For exam-
ple, the Internet file transfer protocol, FIP, specifies that data connections must always ori-
ginate from the same local port. However, duplicate associations are avoided by connecting to
different foreign ports. In this situation the system wouild disallow binding the same local
address and port number to s socket if a previous data connection’s socket were around. To
override the default port selection algorithm then an option call must be performed prior to
sddress binding:

setsockopt (s, SOL_SOCKET, SO_REUSEADDR, (char *)0, 0);
bind(s, (char *)&sin, sizeof (sin));

With the above cull, focal addresses may be bound which are aiready in use. This does not
violate the uniqueness requirement as the system still checks at connect time to be sure any
other sockets with the same local address and port do not have the same foreign address and
port (if an association already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a host
is on multiple networks. Logically, one would expect the system to bind the local address asso-
clated with the network through which a peer was communicating. For instance, if the local
host is connected to networks 46 and 10 and the foreign host is on network 32, and traffic from
petwork 32 were arriving via network 10, the local address to be bound would be the host's
address on network 10, not network 46. This unfortunately, is not always the case. For rea-
sons 100 complicated to discuss here, the local address bound may be appear 1o be chosen at
random. This property of local address binding will normally be invisible to users unless the
foreign host does not understand how 10 reach the address selected®.
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§.5. Broadcasting and datagram sockets

By using a datagram socket it is possible to send broadcast packets on many networks sup-
ported by the system (the network itself must support the notion of broadcasting; the system
provides no broadcast simulation in software). Broadcast messages can place a high load on a
petwork since they force every host on the network to service them. Consequently, the ability
to send brosdcast packets has been limited to the super user.

To send 3 broadcast message, an Internet datagram socket should be created:

s = socket(AF_INET, SOCK_DGRAM, 0);

and at least a port number should be bound to the socket:
sin.sin_family = AF_INET,
sin.sin_addr.s_sddr = INADDR_ANY;
sin.sin_port = MYPORT;
bind(s, (char *)&sin, sizeof (sin));

Then the message should be addressed as:
dst.sin_family = AF_INET;
dst.sin_sddr.s_sddr = INADDR_ANY;
dst.sin_port = DESTPORT,

and, finally, a sendto call may be used:
sendto(s, buf, buflen, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagram sockets are
snchored before a message is aliowed to go out).

§.6. Signals

Two new signals have been added to the system which may be used in conjunction with
the interprocess communication facilities. The SIGURG signal is associated with the existence
of an “‘urgent condition’. The SIGIO signal is used with “‘interrupt driven i/0"* (not presently
implemented). SIGURG is currently supplied a process when out of band data is present at a
socket. If multiple sockets have out of band data awaiting delivery, a select call may be used to
determine those sockets with such data.

An old signal which is useful when constructing server processes is SIGCHLD. This sig-
nal is delivered to a process when any children processes have changed state. Normally servers
use the signal to “‘reap™ child processes after exiting. For example, the remote login server
loop shown in Figure 2 may be augmented as follows:
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int reaper(); .
- sigset (SIGCHLD, resper);
tisten(f, 10); -
{ for ) {
B int g, len = sizeof (from);

y g = accept(f, &from, &len, 0);
w: fg<0 |
if (errno '= EINTR)
perror("rlogind: accept®);
coatinue;

)
\ #include <waith>

- reaper()
1, :: l
- union wait status;
: while (wait3(&status, WNOHANG, 0) > 0)
™ )
7.: If the parent server process fails to reap its children, a large number of ‘“‘zombie™
3 processes may be created.

&

.
a

XX
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- ABSTRACT

4'

_::j This report describes the internal structure of the networking facilities
. developed for the 4.2BSD version of the UNIX® operating system for the
=~ VAX¢t. These facilities are based on several central abstractions which struc-
N ture the external (user) view of network communication as well as the internal
I (system) implementation.

i_: The report documents the internal structure of the networking system.
N The *“*4.2BSD System Manual® provides a description of the user interface to

the networking facilities.
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‘Networking Implementation -1- Introduction

1. Introduction

This report describes the internal structure of facilities added to the 4.2BSD version of the
UNIX operating system for the VAX. The system facilities provide a uniform user interface to
networking within UNIX. In addition, the implementation introduces a structure for network
communications which may be used by system implementors in adding new networking facili-
ties. The internal structure is not visible to the user, rather it is intended to aid implementors
of communication protocols and network services by providing a framework which promotes
code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system inter-
face, as described in the 4.2BSD System Manual [Joy82a). Basic understanding of network com-
munication concepts is assumed; where required any additiona! ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding,
when possible, those portions which are utilized only by the interprocess communication facili-
ties.

CSRG TR/6 Leffler, et. al.
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Networking Implementation -2- Overview

2. Overview

If we consider the International Standards Organization’s (1ISO) Open System Interconnec-
tion (OSI) model of network communication [ISO81} [Zimmermann80], the networking facili-
ties described here correspond to a portion of the session layer (layer 3) and all of the transport
and network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal
sddressing structure. Addressing at this level is normally host to host, with implicit or explicit
routing optionally supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and
service addressing are normally included. Reliability is usually managed by explicit ack-
nowledgement of data delivered. Failure to acknowledge a transfer results in retransmission of
the data. Sequencing may be handled by tagging each message handed to the network layer by
a sequence number and maintaining state at the endpoints of communication to utilize received
sequence numbers in reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into for-
mats required by the transport layer, service authentication and client authentication, etc. Vari-
ous systems also provide services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility
routines, then examine the internal layering. The contents of each layer and its interface are
considered. Certain of the interfaces are protocol implementation specific. For these cases
examples have been drawn from the Internet [Cerf78] protocol family. Later sections cover
routing issues, the design of the raw socket interface and other miscellaneous topics.

Leffler, et. al.
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Networking Implementation -3

3. Goals

The networking system was designed with the goal of supporting multiple prorocol families
and addressing styles. This required information to be *‘hidden’ in common data structures
which could be manipulated by all the pieces of the system, but which required interpretation
only by the protocols which “‘controlled™ it. The system described here atiempts to minimize
the use of shared data structures to those kept by s suite of protocols (a protocol! family), and
those used for rendezvous between “‘synchronous’’ and “‘asynchronous’ portions of the system
(e.g. queues of data packets are filled at interrupt time and emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and
bardware could be easily be supported. To this end, a great deal of effort has been extended to
create utility routines which hide many of the more complex and/or hardware dependent chores
of networking. Later sections describe the utility routines and the underlying data structures

they manipulate.

Lefller, et. al.
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Networking Implementation -4- Address representation

4. Internal address representation

Common to all portions of the system are two data structures. These structures are used
10 represent addresses and various data objects. Addresses, internally are described by the
sockaddr structure,

struct sockaddr {
short sa_family; /* data format identifier */
l char sa_data[14]; /° address */

All addresses belong to one or more address families which define their format and interpreta-
tion. The sa_family field indicates which address family the address belongs to, the sa_data field
contains the actual data value. The size of the data field, 14 bytes, was selected based on a
study of current address formats®.

® Later versions of the system support vatiable length addresses.

CSRG TR/6 Leffler, et. al.




. »
l“:'

P a'a’

-~

Networking Implementation -5. Memory management

»

" s. Memory management
2 A single mechanism is used for data storage: memory buffers, or mbyfs. An mbuf is a
( - structure of the form:
- struct mbuf |
N struct mbuf °m_next;  /* next buffer in chain */
o~ ulong m_off; /° offset of data */
N short m_len; /* amount of data in this mbuf */
e short m_type; /* mbuf type (accounting) */
u_char  m_dat{MLEN]; /* data storage */
N \ struct mbuf *m_act; /* link in higher-level mbuf list */
:,';'.‘, The m_next field is used to chain mbufs together on linked lists, while the m_acr field allows
~ed lists of mbufs to be accumulated. By convention, the mbufs common to a single object (for
example, a packet) are chained together with the m_nexr field, while groups of objects are
- linked vis the m_act field (possibly when in a queue).
‘-I{ Each mbuf has a small data area for storing information, m_dar. The m_len field indicates
e the amount of data, while the m_off field is an offset to the beginning of the data from the base
-Z;’- of the mbuf. Thus, for example, the macro mrod, which converts a pointer to an mbuf to a
NG pointer to the data stored in the mbuf, has the form
g #define mtod(x,t) (@) (Gint) (x) + (x)->m_off)
™ (note the s parameter, a C type cast, is used to cast the resultant pointer for proper assign-
N ment). :
NJ )
:;‘ In addition to storing data directly in the mbuf’s data area, data of page size may be also A
! be stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for
{ this purpose and manipulate a private page map for such pages. The virtual addresses of these
data pages precede those of mbufs, so when pages of data are separated from an mbuf, the
Y mbuf data offset is a negative value. An array of reference counts on pages is also maintained
i 0 that copies of pages may be made without core to core copying (copies are created simply by
N duplicating the relevant page table entries in the data page map and incrementing the associated
LS reference counts for the pages). Separate data pages are currently used only when copying data

from a user process into the kernel, and when bringing data in at the hardware level. Routines

y which manipulate mbufs are not normally aware if data is stored directly in the mbuf data array,

or if it is kept in separate pages.

- The following utility routines are available for manipulating mbuf chains:

4 m = m_copy(mO, off, len);

- The m_copy routine create a copy of all, or part, of a list of the mbufs in m0. Len bytes of
dats, starting off bytes from the front of the chain, are copied. Where possible, reference

fi-: counts on pages are used instead of core to core copies. The original mbuf chain must
v have at least off + len bytes of data. If len is specified as M_COPYALL, all the data
:.:: present, offset as before, is copied.

"7 m_cat(m, n);

e The mbuf chain, n, is appended to the end of m. Where possible, compaction is per-
T formed.

Y m_adj(m, diff)

The mbnf chain, m is adjusted in size by diff bytes. If diff is non-negative, dw‘ bytes are
shaved off the front of the mbuf chain. If diff is negative, the alteration is performed
from back to front. No space is reclaimed in this operation, alterations are accomplished
by changing the m_len and m_off fields of mbufs.

m = m_pullup(m0, size);
After a successful call to m_puliup, the mbuf at the head of the returned list, m, is

CSRG TR/6 Lefller, et. al.
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guaranteed to have at least size bytes of data in contiguous memory (allowing access via a
pointer, obtained using the mtod macro). If the original data was less than size bytes long,
len was greater than the size of an mbuf data area (112 bytes), or required resources were
unavailable, m is 0 and the original mbuf chain is dealiocated.

This routine is particularly useful when verifying packet header lengths on reception. For
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid
packet header are present at the head of the list of mbufs representing the packet, the
remaining 8 bytes may be “pulled up” with a single m_pullup call. If the call fails the
invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the
mbuf associated with a data area by masking off the low bits of the virtual address. This allows
modules to store data structures in mbufs and pass them around without concern for locating
the original mbuf when it comes time to free the structure. The dtom macro is used to convert
& pointer into an mbuf’s data area to a pointer to the mbuf,

#define  diom(x) ((struct mbuf *)((int)x & “(MSIZE-1)))
Mbufs are used for dynamically allocated data structures such as sockets, as well as

memory allocated for packets. Statistics are maintained on mbuf usage and can be viewed by
users using the netstar(1) program.

CSRG TR/6 Leffler, et. al.
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6. Internal layering

The internal structure of the network system is divided into three layers. These layers
correspond 1o the services provided by the socket abstraction, those provided by the communi-
cation protocols, and those provided by the hardware interfaces. The communication protocols
are normally layered into two or more individual cooperating layers, though they are collectively
viewed in the system as one layer providing services supportive of the appropriate socket
abstraction.

The following sections describe the properties of each layer in the system and the inter-
faces each must conform to.

6.1. Secket layer

The socket layer deals with the interprocess communications facilities provided by the sys-
tem. A socket is a bidirectional endpoint of communication which is *‘typed’® by the semantics
of communication it supports. The system calls described in the 4.2BSD System Manual are
used to manipulate sockets.

A socket consists of the following data structure:

struct socket {
short so0_type; /° generic type */
short so_options; /° from socket call */
short so_linger; /* time to linger while closing */
short $0_state; /° internal state flags */
caddr_t  so_pcb; /* protocol control block */
struct protosw *so_proto, /° protocol handie */
struct socket *so_head; /° back pointer to accept socket */
struct socket *s0_q0; /°® queue of partial connections */
short 80_qOlen; /* partials on so_q0 */
struct socket *s0_q; /* queue of incoming connections */
short so_gqlen; /* number of connections on so_q */
short so_qlimit; /* max number queued connections */
struct sockbuf so_snd;  /° send queue */
struct sockbuf so_rcv,  /° receive queue */
short $0_timeo; /* connection timeout */
u_short  so_error; /* error affecting connection */
short so_oobmark; /° chars to oob mark */
short SO_pgIp; /* pgrp for signals */

k

Each socket contains two data queues, so_rcv and so_snd, and a pointer to routines which
provide supporting services. The type of the socket, so_ppe is defined at socket creation time
and used in selecting those services which are appropriate to support it. The supporting proto-
col is selected at socket creation time and recorded in the socket data structure for later use.
Protocols are defined by a table of procedures, the protosw structure, which will be described in
detail Iater. A pointer to a protocol specific data structure, the “‘protocol control block'’ is also
present in the socket structure. Protocols control this data structure and it normally includes a
back pointer to the parent socket structure(s) to allow easy lookup when returning information
to a user (for example, placing an error number in the so_error field). The other entries in the
socket structure are used in queueing connection requests, validating user requests, storing
socket characteristics (c.g. options supplied at the time a socket is created), and maintaining a
socket’s state.

Processes “‘rendezvous at a socket’” in many instances. For instance, when a process
wishes to extract data from a socket’s receive queue and it is empty, or lacks sufficient data to
sstisfy the request, the process blocks, supplying the address of the receive queue as an ‘‘wait
channel’ to be used in notification. When data arrives for the process and is placed in the
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Networking Implementation -8- Internal layering

socket’s queue, the blocked process is identified by the fact it is waiting ‘‘on the queue™'.

6.1.1. Socket state
A socket’s state is defined from the following:

#define SS_NOFDREF 0x001 /° no file table ref any more */
#define SS_ISCONNECTED 0x002 /® socket connected to a peer */
#define SS_ISCONNECTING Ox004 /* in process of connecting to peer */
#define SS_ISDISCONNECTING 0x008 /* in process of disconnecting */
#define SS_CANTSENDMORE 0x010 /® can’t send more data to peer */
#define SS_CANTRCVMORE 0x020 /* can’t receive more data from peer */
#define SS_CONNAWAITING  0x040 /°* connections aw+iting scceptance */

#define SS_RCVATMARK 0x080 /* at mark on input */
#define SS_PRIV 0x100 /* privileged ¢/
#define SS_NBIO 0x200 /* non-blocking ops */
#define SS_ASYNC 0x400 /® async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through system
calls). When a socket is created the state is defined based on the type of input/output the user
wishes 1o perform. ‘‘Non-blocking’ 1/0 implies a process should never be blocked to await
resources. Instead, any cal! which would block returns prematurely with the error EWOULD-
BLOCK (the service request may be partialiy fulfilled, e.g. a request for more data than is
present).

If a process requested ‘‘asynchronous’’ notification of events related to the socket the
SIGIO signal is posted to the process. An event is a change in the socket’s state, examples of
such occurances are: space becoming available in the send queue, new data available in the
receive queue, connection establishment or disestablishment, etc.

A socket may be marked ‘‘priviledged™ if it was creasted by the super-user. Only
priviledged sockets may send broadcast packets, or bind addresses in priviledged portions of an
address space.

6.1.2. Socket data queues

A socket’s data queue contains a pointer to the data stored in the queue and other entries
related 10 the management of the data. The following structure defines a data queue:

struct sockbuf {

short sb_cc; /* actual chars in buffer ¢/

short sb_hiwat; /* max actual char count */
short sb_mbent; /* chars of mbufs used */

short sb_mbmax; /* max chars of mbufs to use */
short sb_lowat; /* low water mark */

short sb_timeo; I* timeout */

struct mbuf *sb_mb; /* the mbuf chain */

struct proc *sb_sel; /* process selecting read/write */
short . sb_flags; /* flags, see below */

k
Data is stored in a queue as a chain of mbufs. The actual count of characters as well as
high and low water marks are used by the protocols in controlling the flow of data. The socket
routines cooperate in implementing the flow control policy by blocking a process when it
requests to send data and the high water mark has been reached, or when it requests to receive
data und)leu than the low water mark is present (assuming non-blocking 1/0 has not been
specified).

CSRG TR/6 Lefller, et. al.
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When a socket is created, the supporting protocol ‘‘reserves’ space for the send and
receive queues of the socket. The actual storage associated with a socket queue may fluctuate
during s socket’s lifetime, but is assumed this reservation will always allow & protocol to acquire
enough memory to satisfly the high water marks.

The timeout and select values are manipulated by the socket routines in implementing
various portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in

scquiring resources;
#define SB_LOCK 0x01 /* lock on data queue (so_rcv only) */
#define SB_WANT 0x02 /° someone is waiting to lock */
#define SB_WAIT 0x04 /° someone is waiting for data/space */
#define SB_SEL 0x08 /* buffer is selected */
#define SB_COLL 0x10 /* collision selecting */

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection quenelng

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two sides are con-
sidered distinct. One side is termed active, and generates connection requests. The other side

.1::';5 is called passive and accepts connection requests.

N From the passive side, a socket is created with the option SO_ACCEPTCONN specified,
NIA creating two queues of sockets: so_g0 for connections in progress and so_g for connections
/ j_‘-I; already made and awaiting user acceptance. As a protocol is preparing incoming connections, it
e creates a socket structure queued on so_g0 by calling the routine sonewconn(). When the con-
::;_’-.j pection is established, the socket structure is then transfered to so_g, making it available for an
AT accept. _

( " If an SO_ACCEPTCONN socket is closed with sockets on either so_g0 or so_g, these
sockets are dropped.

:'.:EZ 6.2. Protocol layer(s)

j-_':} Protocols are described by a set of entry points and certain socket visible characteristics,

A some of which are used in deciding which socket type(s) they may support.

An entry in the “‘protocol switch™ table exists for each protocol module configured into
NN the system. It has the following forsw::
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struct protosw {
short pr_type; /* socket type used for */
short pr_family, /* protocol family */
short pr_protocol; /° protocol number */
short pr_flags; /® socket visible attributes */
/® protocol-protocol hooks */
int C°pr_input) (); /* input to protoco! (from below) */
int Cpr_output) );  /* output to protocol (from above) */
int (*pr_ctlinput));  /* control input (from below) */
int (*pr_ctioutput) (); /* control output (from above) */
/* user-protocol hook */
int (*pr_usrreq)();  /° user request */
/* utility hooks */
int C*pr_init) (), /* initialization routine */
int (*pr_fasttimo) ();  /° fast timeout (200ms) */
int (*pr_slowtimo) (); /° slow timeout (500ms) */
int (*pr_drain) (); /* flush any excess space possible */

|5

A protocol is called through the pr_init entry before any other. Theresfter it is called
every 200 milliseconds through the pr_fastimo entry and every 500 milliseconds through the
pr_slowtimo for timer based actions. The system will call the pr_drain entry if it is low on space
and this should throw away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the pr_inpur and
pr_output routines. Pr_input passes data up (towards the user) and pr_ouipur passes it down
(towards the network); control information passes up and down on pr_ctlinput and pr_ctloutpur.
The protocol is responsible for the space occupied by any the arguments to these entries and
must dispose of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.
The pr_flags field is constructed from the following values:

#define PR_ATOMIC 0x01  /* exchange atomic messages only */
#define PR_ADDR 0x02 /* addresses given with messages */
#define PR_CONNREQUIRED 0x04 /* connection required by protocol */
#define PR_WANTRCVD 0x08 /* want PRU_RCVD calls */
#define PR_RIGHTS 0x10  /* passes capabilities */

Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the socket
routines will never attempt to send data before & connection has been established. If the
PR_WANTRCVD flag is set, the socket routines will notfiy the protocol when the user has
removed data from the socket’s receive queue. This allows the protocol to implement ack-
nowjedgement on user receipt, and also updste windowing information based on the amount of

KA

“ space available in the receive queue. The PR_ADDR field indicates any data placed in the
N socket’s receive queue will be preceded by the address of the sender. The PR_ATOMIC flag
~e specifies each user request to send data must be performed in a single protocol send request; it is
— the protocol’s responsibility to maintain record boundaries on data to be sent. The

PR_RIGHTS flag indicates the protocol supports the passing of capabilities; this is currently
used only the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an
appropriste protocol to support the type of socket being created. The pr_gnype field contains one
of the possible socket types (e.g. SOCK_STREAM), while the pr_family field indicates which
protocol family the protocol belongs to. The pr_protocol field contains the protocol number of
the protocol, normally a well known value.
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oY 6.3. Network-interface layer

::.;_-‘ Each network-interface configured into a system defines a path through which packets

e . may be sent and received. Normally a hardware device is associated with this interface, though

(- there is no requirement for this (for example, all systems have a software *‘loopback’’ interface
Y used for debugging and performance analysis). In addition to manipulating the hardware dev-
G ice, an interface module is responsible for encapsulation and deencapsulation of any low level
3o beader information required to deliver a message to it’s destination. The selection of which

" interface t0 use in delivering packets is a routing decision carried out at a higher level than the
NN petwork-interface layer. Each interface normally identifies itself at boot time to the routing

module so0 that it may be selected for packet delivery.
An interface is defined by the following structure,

N struct ifnet { ‘
oA char *if_name; /° name, e.g. “‘en” or “lo" ¢/ ‘
Ry short if_unit; /® sub-unit for lower level driver */
. short if_mtu; /* maximum transmission unit */
int if_net; /* network number of interface */
S short if_fags; /* up/down, broadcast, etc. */
short if_timer; /* time 'til if_watchdog called */
int if_host(2]; /* local net host number */
struct sockaddr if_addr; /° address of interface */
union {
struct sockaddr ifu_broadaddr;
struct sockaddr ifu_dstaddr;
}if_ifu;
struct ifqueue if_snd; /* output queue */
int Cif_init) O; /* init routine */
int (*if_output) (); /* output routine */
int (*if_ioct)) (); /* joct! routine */
int (*if_reset) (), /* bus reset routine */
int (*if_watchdog) (); /* timer routine */
int if_ipackets; /° packets received on interface */
int if_ierrors; /° input errors on interface */
int if_opackets; /* packets sent on interface */
int if_oerrors; /° output errors on interface */
int if_collisions; /° collisions on csma interfaces */

' struct Hinet ®if_next,

Each interface has a send queue and routines used for initialization, £ init, and output,

Sy {output. If the interface resides on a system bus, the routine {f reser will be called after a bus
N reset has been performed. An interface may also specify a timer routine, i/ warchdog, which
o should be called every i/ timer seconds (if non-zero).

Na

" The state of an interface and certain characteristics are stored in the {f flags field. The fol-
N ) lowing values are possible:

#define IFF_UP Ox1 /¢ interface is up */
#define IFF_BROADCAST Ox2  /°* broadcast address valid */
#define IFF_DEBUG Ox4  /° turn on debugging */
#define IFF_ROUTE 0x8  /° routing entry installed */

#define IFF_POINTOPOINT O0x10 /° interface is point-to-point link */
#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */
#define IFF_RUNNING 0x40 /* resources allocated */

If the interface is connected to a network which supports transmission of broadcast packets, the
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::;; IFF_BROADCAST flag will be set and the i broadaddr field will contain the sddress to be used

o in sending or accepting a broadcast packet. If the interface is associated with a point to point

-~ hardware link (for example, 8 DEC DMR-11), the IFF_POINTOPOINT flag will be set and

{( dstaddr will contain the address of the host on the other side of the connection. These

l addresses and the local address of the interface, {f addr, are used in filtering incoming packets.

The interface sets IFF_RUNNING after it has allocated system resources and posted an initial

e read on the device it manages. This state bit is used to avoid multiple allocation requests when

.o an interface’s address is changed. The IFF_NOTRAILERS flag indicates the interface should
refrain from using a trailer encapsulation on outgoing packets; trailer protocols are described in
section 14.

The information stored in an {frer structure for point to point communication devices is
not currently used by the sysiem internally. Rather, it is used by the user level routing process
in determining host network connections and in initially devising routes (refer to chapter 10 for
more information).

Various statistics are also stored in the interface structure. These may be viewed by users
using the nerstar(1) program.

: o The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS

~ ioctls. SIOCSIFADDR is used to initially define each interface’s address; SIOGSIFFLAGS can

I be used to mark an interface down and perform site-specific configuration.

"y

ot 6.3.1. UNIBUS interfaces

Ak All hardware related interfaces currently reside on the UNIBUS. Consequently a common

- set of utility routines for dealing with the UNIBUS has been developed. Each UNIBUS inter-
'_-.j: face utilizes a structure of the following form:

- struct  ifuba { .

short ifu_uban; /* uba number */

: short ifu_hlen; /° local net header length */

{ . struct uba_regs *ifu_uba; /* uba regs, in vin */

:-}: struct ifrw {

caddr t  ifrw_addr, /* virt addr of header */

N int ifrw_bdp,  /* unibus bdp */

o, int ifrw_info; /° value from ubaalloc */

- int ifrw_proto; /° map register prototype */

A struct pte ®ifrw_mr,/® base of map registers */

‘o ) ifu_r, ifu_w;

i struct pte ifu_wmap{IF_MAXNUBAMR]J;/* base pages for output */

- short ifu_xswapd, /* mask of clusters swapped */
[-NA short ifu_flags; /* used during uballoc’s */

>t struct mbuf *ifu_xtofree; /* pages being dma'd out */

o k

Y The f uba structure describes UNIBUS resources held by an interface. IF_NUBAMR
e map registers are held for datagram data, starting at {#_mr. UNIBUS map register ifi_mr{—1]
< maps the locsl network header ending on a page boundary. UNIBUS data paths are reserved
= for read and for write, given by {# _ddp. The prototype of the map registers for read and for
= write is saved in {fr_proto.

T When write transfers are not full pages on page boundaries the data is just copied into the
e pages mapped on the UNIBUS and the transfer is started. If a write transfer is of a (1024 byte)
N page size and on a page boundary, UNIBUS page table entries are swapped to reference the
Xt pages, and then the initial pages are remapped from fi_wmap when the transfer completes.

o When read transfers give whole pages of data to be input, page frames are allocated from
3 a network page list and traded with the pages already containing the data, mapping the allocsted
-
o “..:
po CSRG TR/6 Leffler, et. al.
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" Retworking Implementation -13. Internal layering

pages to replace the input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers, all
use the {fisba structure described above.

if_ubainit(ifu, uban, hien, nmr);

{f_wbainit allocates resources on UNIBUS adaptor uban and stores the resultant informa-
tion in the {fuba structure pointed to by (. It is called only at boot time or after a
UNIBUS reset. Two data paths (buffered or unbuffered, depending on the {fi_flags field)
are allocated, one for reading and one for writing. The amr parameter indicates the
number of UNIBUS mapping registers required 1o map a maximal sized packet onto the
UNIBUS, while hlen specifies the size of a local network header, if any, which should be
mapped separately from the data (see the description of trailer protocols in chapter 14).
Sufficient UNIBUS mapping registers and pages of memory are allocated to initialize the
input data path for an initial read. For the output data path, mapping registers and pages
of memory are also allocated and mapped onto the UNIBUS. The pages associsted with
the output data path are held in reserve in the event a write requires copying non-page-
sligned data (see | wubaput below). If if ubainit is called with resources already allocated,
they will be used instead of allocating new ones (this normally occurs after a UNIBUS
reset). A 1 is returned when allocation and initialization is successful, 0 otherwise.

m = if_rubaget(ifu, totlen, off0);

if_rubaget pulls read data off an interface. totlen specifies the length of data to be
obtained, not counting the local network header. If oV is non-zero, it indicates & byte
offset to a trailing local network header which should be copied into a separate mbuf and
prepended to the front of the resultant mbuf chain. When page sized units of data are
present and are page-aligned, the previously mapped data pages are remapped into the
mbufs and swapped with fresh pages; thus avoiding any copying. A 0 retumn value indi-
cates a failure to aliocate resources.

if_wubaput(ifu, m);
{[_wubaput maps a chain of mbufs onto a network interface in preparation for output. The
chain includes any local network header, which is copied so that it resides in the mapped
and aligned 1/0 space. Any other mbufs which contained non page sized data portions are
also copied to the 170 space. Pages mapped from a previous output operation (no longer
needed) are unmapped and returned to the network page pool.

CSRG TR/6 Leffier, et. al.
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Networking Implementation Socket/protocol interface

7. Socket/protocol interface

The interface between the socket routines and the communication protocols is through
the pr_usrreq routine defined in the protocol switch table. The following requests to a protocol
module are possible:

#define PRU ATTACH
#define PRU DETACH
#define PRU_BIND

#define PRU_LISTEN
#define PRU_CONNECT
#define PRU_ACCEPT
#define PRU DISCONNECT
#define PRU_SHUTDOWN

/* attach protocol */

/* detach protocol */

/° bind socket to address */

/* listen for connection */

/* establish connection to peer */
/* accept connection from peer */
/* disconnect from peer */

/* won’'t send any more data */
#define PRU RCVD /° have taken data; more room now */
#define PRU_SEND /* send this data */

##define PRU_ABORT /° abort (fast DISCONNECT, DETATCH) */
#¢define PRU_CONTROL /* control operations on protocol */
#define PRU_SENSE /° return status into m */

#define PRU RCVOOB /* retrieve out of band data */
#define PRU_SENDOOB /° send out of band data */
#define PRU_SOCKADDR /* fetch socket's address */
#define PRU_PEERADDR /° fetch peer’s address */

#define PRU_CONNECT?2 /* connect two sockets */

/° begin for protocols internal use */

#define PRU_FASTTIMO 18 /* 200ms timeout */

#define PRU_SLOWTIMO 19 /* 500ms timeout */

#define PRU_PROTORCV 20 /° receive from below */

#define PRU_PROTOSEND 21 /* send 1o below */

U DR MDY Dy A MR R e DY A g R
U-N ENE. WV SN RN -

A call on the user request routine is of the form,

error = (*protosw(].pr_usrreq) (up, req, m, addr, rights);
int error; struct socket *up; int req; struct mbuf *m, *rights; caddr_t addr,

The mbuf chain, m, and the address are optional parameters. The rights parameter is an
optional pointer to an mbuf chain containing user specified capabilities (see the sendmsg and
recvmsg system calls). The protocol is responsible for disposal of both mbuf chains. A non-
zero return value gives a UNIX error number which should be passed to higher level software.
The following paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socreare system call) the protocol module
is called with this request. It is the responsibility of the protocol module to allocate any
resources necessary. The “‘attach’ request will always precede any of the other requests,
and should not occur more than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted.
The protocol module may deallocate any resources assigned to the socket.

PRU_BIND
When a socket is initially created it has no address bound to it. This request indicates an
address should be bound to an existing socket. The protocol module must verify the
requested address is valid and available for use.

PRU_LISTEN
The *‘listen"* request indicates the user wishes to listen for incoming connection requests
on the associated socket. The protocol module should perform any state changes needed
to carry out this request (if possible). A ‘‘listen’ request always precedes a request to

CSRG TR/6 Lefller, et. al.
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accept a connection.

PRU_CONNECT

The “‘connect™ request indicates the user wants 10 a establish an association. The addr
parameter supplied describes the peer to be connected to. The effect of a connect request
may vary depending on the protocol. Virtual circuit protocols, such as TCP [Postel80b],
use this request to initiate establishment of a TCP connection. Dastagram protocols, such
as UDP (Postel79], simply record the peer’s address in a private data structure and use it
to tag all outgoing packets. There are no restrictions on how many times a connect
request may be used after an attach. If a protocol supports the notion of multi-casting, it is
possible to use multiple connects to establish a multi-cast group. Aliernatively, an associ-
ation may be broken by a PRU_DISCONNECT request, and s new association created
with a subsequent connect request; all without destroying and creating a new socket.

PRU_ACCEPT

Following a successful PRU_LISTEN request and the arrival of one or more connections,
this request is made to indicate the user has accepted the first connection on the queue of
pending connections. The protocol module should fill in the supplied address buffer with
the address of the connected party.

PRU_DISCONNECT

Eliminate an association created with a PRU_CONNECT request.

PRU_SHUTDOWN

This call is used to indicate no more data will be sent and/or received (the addr parameter
indicates the direction of the shutdown, as encoded in the soshurdown system call). The
protocol may, st its discretion, deallocate any data structures related to the shutdown.

PRU_RCVD

This request is made only if the protocol entry in the protocol switch table includes the
PR_WANTRCVD flag. When a user removes data from the receive queue this request
will be sent to the protocol module. ]t may be used to trigger scknowledgements, refresh
windowing information, initiate data transfer, eic.

PRU_SEND

Each user request to send data is translated into one or more PRU_SEND requests (a pro-
tocol may indicate a single user send request must be translated into s single PRU_SEND
request by specifying the PR_ATOMIC flag in its protocol description). The data to be
sent is presented to the protocol as s list of mbufs and an address is, optionally, supplied
in the addr parameter. The protocol is responsible for preserving the data in the socket's
send queue if it is not able to send it immediately, or if it may need it at some later time
(e.g. for retransmission).

PRU_ABORT

This request indicates an abnormal termination of service. The protocol should delete any
existing association(s).

PRU_CONTROL

The *“‘control’’ request is generated when a user performs a UNIX ioct/ system call on a
socket (and the ioctl is not intercepted by the socket routines). It allows protocol-specific
operations to be previded outside the scope of the common socket interface. The addr
perameter contains a pointer to a static kernel c'ata area where reievant information may
be obtained or returned. The m parameter contains the actual ioct/ request code (note the
non-standard calling convention).

PRU_SENSE

The “‘sense’’ request is generated when the user makes an ftar system call on a socket. it
requests status of the associated socket. There currently is no common format for the
ststus returned. Information which might be returned includes per-connection statistics,
protocol state, resources currently in use by the connection, the optimal transfer size for
the connection (based on windowing information and maximum packet ‘size). The addr
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'::T-, parameter contains a pointer to a static kernel data area where the status buffer should be
O placed.

o PRU_RCVOO!

[ ’ Any “‘out-of-band”’ data presently available is to be returned. An mbuf is passed in to
. the protocol module and the protoco! should either place data in the mbuf or attach new
:j.‘_-j mbufs to the one supplied if there is insufficient space in the single mbuf.

o PRU_SENDOOB

Z-j Like PRU_SEND, but for out-of-band data.

o PRU_SOCKADDR

The local address of the socket is returned, if any is currently bound to the it. The
address format (protocol specific) is returned in the addr parameter.

o PRU_PEERADDR

i The address of the peer to which the socket is connected is returned. The socket must be
N in a SS_ISCONNECTED state for this request to be made to the protocol. The address
N format (protocol specific) is returned in the addr parameter.

s PRU_CONNECT2

? o The protocol module is supplied two sockets and requested to establish a connection
N between the two without binding any addresses, if possible. This call is used in imple-
- j: menting the system call.

-C;.'~ The following requests are used internally by the protocol modules and are never gen-
N erated by the socket routines. In certain instances, they are handed to the pr_usrreq routine
yO solely for convenience in tracing a protocol’s operation (e.g. PRU_SLOWTIMO).

e PRU_FASTTIMO

I * A ‘‘fast timeout” has occured. This request is made when a timeout occurs in the
;:5 protocol’s pr_fastimo routine. The addr parameter indicates which timer expired.

e PRU_SLOWTIMO

{ A “‘slow timeout” has occured. This request is made when a timeout occurs in the
protocol’s pr_slowtimo routine. The addr parameter indicates which timer expired.

:{'.;{ PRU_PROTORCV

e This request is used in the protocol-protocol interface, not by the routines. It requests
’ reception of data destined for the protocol and not the user. No protocols currently use
e this facility.

A PRU_PROTOSEND

XN This request allows a protocol to send data destined for another protocol module, not 8
oSy user. The details of how data is marked “‘addressed to protocol’’ instead of ‘‘sddressed to
_Z‘,-;: user” are left to the protocol modules. No protocols currently use this facility.
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2
f" ‘ 8. Protocol/protocol interface
A The interface between protocol modules is through the pr_usrreq, pr_input, pr_output,
[ . p_ctlinput, and pr_ctloutput routines. The calling conventions for all but the pr_usrreg routine
o are expected to be specific to the protocol modules and are not guaranteed to be consistent
s across protocol families. We will examine the conventions used for some of the Internet proto-
:::: cols in this section as an example.
Cal
;f.' 8.1. pr_eutput
The Internet protocol UDP uses the convention,
! error = udp_output(inp, m);
int error; struct inpcb inp; struct mbuf *m;
:‘-.:; where the inp, ‘‘imernet protocol control dlock®’, passed between modules conveys per connec-
tion state information, and the mbuf chain contains the data to be sent. UDP performs con-
. sistency checks, appends its header, calculates a checksum, etc. before passing the packet on to
. g the IP module:
'S ' error = jp_output(m, opt, ro, allowbroadcast);
-\% int error; struct mbuf *m, ®opt; struct route °ro; int allowbroadcast;
N
T The call to IP's output routine is more complicated than that for UDP, as befits the addi-
I tiona! work the IP module must do. The m parameter is the data to be sent, and the opr param-
- eter is an optional list of IP options which should be placed in the 1P packet header. The ro
) parameter is is used in making routing decisions (and passing them back to the calier). The
N final parameter, allowbroadcast is a flag indicating if the user is allowed to transmit a broadcast
,".\\- packet. This may be inconsequential if the underlying hardware does not support the notion of
+ broadcasting. .
_ ' All output routines return 0 on success and a UNIX error number if a failure occured
. which could be immediately detected (no buffer space available, no route to destination, etc.).
\r 8.2. pr_imput
o . Both UDP and TCP use the following calling convention,

(void) (*protoswl).pr_input) (m);
struct mbuf *m;

-' Each mbuf list passed is a single pscket to be processed by the protocol module.

.
als

3 The IP input routine is a VAX software interrupt level routine, and so is not called with
» any parameters. It instead communicates with network interfaces through a queue, ipinirg,
B which is identical in structure to the queues used by the network interfaces for storing packets
N awaiting transmission.
% 8.3. pr_ctlinput
N This routine is used to convey *‘control™ information to a protocol module (i.e. informa-
o . tion which might be passed to the user, but is not data). This routine, and the pr_crloutpur rou-
L] tine, have not been extensively developed, and thus suffer from a ‘‘clumsiness’ that can only
be improved as more demands are piaced on it.
o The common calling convention for this routine is,
~Z:'ji (void) (*protosw(l.pr_ctlinput) (req, info);
int req; caddr_t info;
: Tbe reg parameter is one of the following,
2
o,
~0
'
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Networking Implementation -18.
#define PRC_IFDOWN 0
#define PRC_ROUTEDEAD 1
#define PRC_QUENCH 4
#define PRC_HOSTDEAD 6
#define PRC_HOSTUNREACH 7
#define PRC_UNREACH_NET 8
#define PRC_UNREACH_HOST 9
#define PRC_UNREACH_PROTOCOL 10
#define PRC_UNREACH_PORT 11
#define PRC_MSGSIZE 12
#define PRC_REDIRECT_NET 13
#define PRC_REDIRECT_HOST 14
#define PRC_TIMXCEED_INTRANS 17
#define PRC_TIMXCEED_REASS 18
#define PRC_PARAMPROB 19

while the info parameter is s “‘catchall” value which is request dependent. Many of the
requests have obviously been derived from ICMP (the Internet Control Message Protocol), and
from error messages defined in the 1822 host/IMP convention {(BBN78]. Mapping tables exist
to convert control requests to UNIX error codes which are delivered to a user.

8.4. pr_ctioutput

This routine is not currently used by any protocol modules.

CSRG TR/6
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/* interface transition °*/

/® select new route if possible */
/® some said to slow down */

/° normally from IMP ¢/

I* ditto */

/°® no route to network */

/*® no route to host */

/* dst says bad protocol ¢/

/® bad port # */

/°* message size forced drop */
/*® net routing redirect */

/* host routing redirect */

/* packet lifetime expired in transit */
/* lifetime expired on reass q */
/* header incorrect */

Lefller, et. al.
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3 9. Protocol/network-interface interface

A . The lowest layer in the set of protocols which comprise a protocol family must interface
{ itself to one or more network interfaces in order to transmit and receive packets. It is assumed
[ that any routing decisions have been made before handing a packet to a network interface, in

7o fact this is absolutely necessary in order to locate any interface at all (unless, of course, one

“ uses & single *‘hardwired’ interface). There are two cases to be concerned with, transmission

of a packet, and receipt of a packet; each will be considered separately.
b 9.1. Packet transmission

Assuming a protocol has a handle on an interface, i, a (struct ifnet ), it transmits a

-7 fully formatted packet with the following call,

error = (%ifp->if_output) (ifp, m, dst)
imt error; struct ifnet *ifp; struct mbuf *m; struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dsr address, or
returns an error indication (a UNIX error number). In reality transmission may not be
immediate, or successful; normally the output routine simply queues the packet on its send
queue and primes an interrupt driven routine to actually transmit the packet. For unreliable
mediums, such as the Ethemet, “‘successful’® transmission simply means the packet has been
placed on the cable without a collision. On the other hand, an 1822 interface guarantees proper
N delivery or an error indicstion for each message transmitted. The model employed in the net-
working system attaches no promises of delivery to the packets handed to a network interface,
and thus corresponds more closely to the Ethernet. Errors returned by the output routine are
normally trivial in nature (no buffer space, address format not handled, etc.).

X4

'
‘.I‘I.l"
'ata’aa e

9.2. Packet reception
Each protocol family must have one or more *“‘lowest level’ protocols. These protocols

Laakl” ¢
.

j deal with internetwork addressing and are responsible for the delivery of incoming packets to
o the proper protocol processing modules. In the PUP model [Boggs78] these protocols are
\.j termed Level 1 protocols, in the ISO model, network layer protocols. In our system each such
:-_.. protocol module has an input packet queue assigned to it. Incoming packets received by a net-
s work interface are queued up for the protocol module and a VAX software interrupt is posted
| to initiate processing.
-}fg Three macros are available for queueing and dequeueing packets,
ne IF_ENQUEUE(ifq, m)
) This places the packet m at the tail of the queue .
Y IF_DEQUEUE(ifq, m)
i This places a pointer to the packet at the head of queue /g in m. A zero value will be
-;.*.: returned in m if the queue is empty.
- IF_PREPEND(ifq, m)
:’.::: This places the packet m at the head of the queue .
o Each queue has s maximum length assosiated with it as a simple form of congestion con-
- trol. The macro IF_QFULL(ifq) returns 1 if the queue is filled, in which case the macro
' IF_DROP(ifq) should be used to bump a count of the number of packets dropped and the
:2 d'endin. packet dropped. For example, the following code fragment is commonly found in a
" sstwork interface’s input routine,
«4
o if GF_QFULL(inq)) {
P IF_DROP(inq);
[ 4 m_freem(m);
\‘!'. ' .m
N IF_ENQUEUE(inq, m);
N
ad
2
F CSRG TR/6 Lefller, et. al.
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10. Gateways and routing issues

The system has been designed with the expectation that it will be used in an internetwork
environment. The ‘‘canonical’’ environment was envisioned to be a collection of local area
networks connected at one or more points through hosts with multiple network interfaces (one
on each local area network), and possibly a connection to a long haul network (for example, the
ARPANET). In such an environment, issues of gatewaying and packet routing become very
important. Certain of these issues, such as congestion control, have been handled in a simplis-
tic manner or specifically not addressed. Instead, where possible, the network system attempts
to provide simple mechanisms upon which more involved policies may be implemented. As
some of these problems become better understood, the solutions developed will be incorporated
into the system.

This section will describe the facilities provided for packet routing. The simplistic
mechanisms provided for congestion control are described in chapter 12.

10.1. Routing tables

The network system maintains a set of routing tables for selecting a network interface to
use in delivering a packet to its destination. These tables are of the form:

struct rtentry |

: u_long rt_hash; /® hash key for lookups */
struct sockaddr rt_dst;  /° destination net or host */
struct sockaddr rt_gateway,/* forwarding agent */
short rt_flags; /° see below ¢/
short rt_refcnt, /* no. of references to structure */
u_long n_use; /*® packets sent using route */
struct ifnet °rt_ifp; /* interface to give packet to */

ki

The routing information is organized in two separate tables, one for routes to a host and
one for routes to a network. The distinction between hosts and networks is necessary so that a
single mechanism may be used for both broadcast and multi-drop type networks, and also for
networks built from point-to-point links (e.g DECnet [DEC80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calcu-
Iated by routines defined for each address family;, one based on the destination being a host,
and one assuming the target is the network portion of the address. Each hash value is used to
locate a hash chain to search (by taking the value modulo the hash table size) and the entire
32-bit value is then used as s key in scanning the list of routes. Lookups are applied first to the
routing table for hosts, then 1o the routing table for networks. If both lookups fail, a final
Jookup is made for a “‘wildcard” route (by convention, network 0). By doing this, routes to a
specific host on a network may be present as well as routes to the network. This also allows a
*fall back’’ network route to be defined to an “‘smart’ gateway which may then perform more
intelligent routing.

Each routing table entry contains s destination (who's at the other end of the route), a
gatewsy to send the packet to, and various flags which indicate the route’s status and type (host
or network). A count of the number of packets sent using the route is kept for use in deciding
between multiple routes to the same destination (see below), and a count of ‘*held references’
to the dynamically allocated structure is maintained to insure memory reclamation occurs only
when the route is not in use. Finally a pointer to the a network interface is kept; packets sent
using the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as “‘direct’ or “‘indirect’".
The host/network distinction determines how to compare the re_dst field during lookup. If the
route is 10 a network, only a packet's destination network is compared to the r_dsz entry stored
in the table. If the route is to a host, the addresses must match bit for bit. .

CSRG TR/6 Leffler, et. al.
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Networking Implementation -21- Gateways and routing

‘The distinction between “‘direct” and ‘‘indirect™ routes indicates whether the destination
is directly connected to the source. This is needed when performing local network encapsula-
tion. If a packet is destined for a peer at a host or network which is not directly connected to
the source, the internetwork packet header will indicate the address of the eventual destination,
while the local network header will indicate the address of the intervening gateway. Should the
destination be directly connected, these addresses are likely to be identical, or a mapping
between the two exists. The RTF_GATEWAY flag indicates the route is to an “indirect’’ gate-
way agent and the local network header should be filled in from the r1_gareway field instead of
r1_dst, or from the internetwork destination address.

It is assumed muitiple routes to the same destination will not be present unless they are
deemed egual in cost (the current routing policy process never installs multiple routes to the
same destination). However, should multiple routes to the same destination exist, a request for
a route will return the *‘least used’’ route based on the total number of packets sent along this
route. This can result in a “‘ping-pong’’ effect (alternate packets taking alternate routes),
unless protocols *‘hold onto®’ routes until they no longer find them useful; either because the
destination has changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table
entries as well as dynamically create new routing table entries. On hosts where exhaustive rout-
ing information is too expensive to maintain (e.g. work stations), the combination of wildcard
routing entries and routing redirect messages can be used to provide a simple routing manage-
ment scheme without the use of a higher level policy process. Statistics are kept by the routing
table routines on the use of routing redirect messages and their affect on the routing tables.
These statistics may be viewed using

Status information other than routing redirect control messages may be used in the
future, but at present they are ignored. Likewise, more intelligent “‘metrics’’ may be used to
describe routes in the future, possibly based on bandwidth and monetary costs.

10.2. Routing table interface

A protocol accesses the routing tables through three routines, one to allocate a route, one
to free a route, and one o process a routing redirect control message. The routine rialloc per-
forms route allocation; it s called with a pointer to the following structure,

struct route {
struct rtentry “ro_rt;
struct sockaddr ro_dst;
The route returned is assumed ‘‘held’’ by the caller until disposed of with an rgfree call. Proto-
cols which implement virtual circuits, such as TCP, hold onto routes for the duration of the
circuit’s lifetime, while connection-less protocols, such as UDP, currently allocate and free
routes on each transmission.

The routine rrredirect is called to process a routing redirect control message. It is called
with s destination address and the new gateway to that destination. If a non-wildcard route
exists to the destination, the gateway entry in the route is modified to point at the new gateway
supplied. Otherwise, a new routing table entry is inserted reflecting the information supplied.
Routes to interfaces and routes to gateways which are not directly accesible from the host are

ignored.

10.3. User level reuting policies

Routing policies implemented in user processes manipulate the kernel routing tables
through two /octl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing
entries, respectively; the tables are read through the /dev/kmem device. The decision to place
policy decisions in ‘s user process implies routing table updates may lag a bit behind the
identification of new routes, or the failure of existing routes, but this period of instability is

CSRG TR/6 Leffler, et. al.
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Networking Implementation «22- Gateways and routing :
normally very small with proper implementation of the routing process. Advisory information, ¢
such as ICMP error messages and IMP diagnostic messages, may be read from raw sockets M
(described in the next section). .

One routing policy process has already been implemented. The system standard “‘routing )
daemon”’ uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain . ;

up to date routing tables in our local environment. Interaction with other existing routing pro-
tocols, such as the Internet GGP (Gateway-Gateway Protocol), may be accomplished using a

similar process.

CSRG TR/6 Leffler, et. al.
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11. Raw sockets

A raw socket is a mechanism which allows users direct access to a lower level protocol.
Raw sockets are intended for knowledgeable processes which wish to take advantage of some
protocol feature not directly accessible through the normal interface, or for the development of
new protocols built atop existing lower level protocols. For example, a new version of TCP
might be developed at the user level by utilizing a raw IP socket for delivery of packets. The
raw IP socket interface sttempts to provide an identical interface to the one a protocol would
have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possibly) aug-
mented by t’lgrotoml-wecilic processing routines. This section will describe the core of the raw
socket interface.

11.1. Centrol blecks
Every raw socket has a protocol control block of the following form,

struct rawcb |
struct rawcd °rcb_next; /* doubly linked list */
struct rawcb °rcb_prev;
struct socket *rcb_socket; /* back pointer to socket */
struct sockaddr rcb_faddr; /* destination address */
struct sockaddr rcb_laddr, /® socket’s address */
caddr_t  rcb_peb; /* protocol specific stuff */

) short rcb_flags;
All the control blocks are kept on a doubly linked list for performing lookups during packet
dispatch. Associstions may be recorded in the control block and used by the output routine in
preparing packets for transmission. The addresses are also used to filter packets on input; this
-.will be described in more detail shortly. If any protocol specific information is required, it may
be attached to the control block using the rcb_pcb field.

A naw socket interface is datagram oriented. That is, each send or receive on the socket
requires a destinstion address. This address may be supplied by the user or stored in the con-
trol block and automatically installed in the outgoing packet by the output routine. Since it is
not possible to determine whether an address is present or not in the control block, two flags.
RAW_LADDR and RAW_FADDR, indicate if a local and foreign address are present.
Another flag, RAW_DONTROUTE, indicates if routing should be performed on outgoing pack-
ets. If it is, a route is expected to be allocated for each ‘‘new’ destination address. That is,
the first time a packet is transmitted a route is determined, and thereafter each time the desti-
nation address stored in rcb_route differs from rcb_faddr, or rcb_route.ro_rt is zero, the old route
is discarded and a new one allocated.

11.2. Iaput precessing
Input packets are “‘sssigned’’ to raw sockets based on a simple pattern matching scheme.
Each network interface or protocol gives packets to the raw input routine with the call:

raw_input(m, proto, src, dst)
struct mbuf *m; struct sockproto *proto, struct sockaddr *src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw_header {
struct sockproto raw_proto,
struct sockaddr raw_dst,
struct sockaddr raw_src,

CSRG TR/6 Lefller, et. al.
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s
"
poi and it is placed in a packet queue for the “‘raw input protocol'’ module. Packets taken from
:j this queue are copied into any raw sockets that match the header according to the following
! rules
i y
{ 1)  The protocol family of the socket and header agree.
2) If the protocol number in the socket is non-zero, then it agrees with that found in the
packet header.
o 3) If s local address is defined for the socket, the address format of the local address is the
s same as the destination address’s and the two addresses agree bit for bit.
4) The rules of 3) are applied to the socket’s foreign address and the packet’s source address.
. A basic assumption is that addresses present in the control block and packet header (as con-
- structed by the network interface and any raw input protocol module) are in a canonical form
2y which may be *‘block compared*’. ;
"~ .
:;: 11.3. Output processing
. On output the raw pr_usrreq routine passes the packet and raw control block to the raw
P protocol output routine for any processing required defore it is delivered to the appropriate net-
; o work interface. The output routine is normally the only code required to implement a raw
S socket interface. _
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12. Buffering and congestion control

One of the major factors in the performance of a protocol is the buffering policy used.
Lack of a proper buffering policy can force packets to be dropped, cause falsified windowing
information to be emitted by protocols, fragment host memory, degrade the overall host perfor-
mance, etc. Due to problems such as these, most systems allocate a fixed pool of memory to
the networking system and impose a policy optimized for “‘normal’ network operation.

The networking system developed for UNIX is little different in this respect. At boot
time a fixed amount of memory is allocated by the networking system. At later times more
sysiem memory may be requested as the need arises, butl at no time is memory ever returned
to the system. It is possible to garbage collect memory from the network, but difficult. In
order to perform this garbage collection properly, some portion of the network will have to be }
‘“‘turned off”’ as data structures are updated. The interval over which this occurs must kept !
small compared to the average inter-packet arrival time, or too much traffic may be jost,
impacting other hosts on the network, as well as increasing load on the interconnecting medi-
ums. In our environment we have not experienced a need for such compaction, and thus have
left the problem unresolved.
< The mbuf structure was introduced in chapter 5. In this section a brief description will be
u given of the allocation mechanisms, and policies used by the protocols in performing connec-
' tion level buffering.
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The basic memory allocation routines place no restrictions on the amount of space which
may be allocated. Any request made is filled until the system memory allocator starts refusing
to aliocate additional memory. When the current quota of memory is insufficient to satisfy an
mbuf allocation request, the allocator requests enough new pages from the system to satisfy the

. current request only. All memory owned by the network is described by a private page table
¢ used in remapping pages to be logically contiguous as the need arises. In addition, an array of
reference counts paraliels the page table and is used when multiple copies of a page are present.

:sj Mbufs are 128 byte structures, 8 fitting in a 1Kbyte page of memory. When data is placed
g in mbufs, if possidle, it is copied or remapped into logically contiguous pages of memory from
s the network page pool. Data smalier than the size of a page is copied into one or more 112
i byte mbuf data areas.

12.2. Protocol buffering policies

~ Protocols reserve fixed amounts of buffering for send and receive queues at socket crea-
N tion time. These amounts define the high and low water marks used by the socket routines in
. deciding when 1o block and unblock a process. The reservation of space does not currently
oy result in any action by the memory management routines, though it is clear if one imposed an
) upper bound on the total amount of physical memory allocated to the network, reserving
o memory would become important.

N Protocols which provide connection level flow control do this based on the amount of
space in the associsted socket queues. That is, send windows are calculated based on the
amount of free space in the socket’s receive queue, while receive windows are adjusted based
Las! . on the amount of data awaiting transmission in the send queue. Care has been taken to avoid
bl the “‘silly window syndrome** described in [Clark82) at both the sending and receiving ends.

12.3. Queue limiting
e Incoming packets from the network are always received unless memory allocation fails.
‘ $ However, each Level 1 protocol input queue has an upper bound on the queue’s length, and
' "' any packets exceeding that bound are discarded. It is possible for a host to be overwhelmed by
: excessive network traffic (for instance s host acting as a gateway from a high bandwidth net-
! work 10 a low bandwidth network). As a “‘defensive’” mechanism the queue limits may be

.
'y 12.1. Memory management
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Networking Implementation - 26 - Buffering and congestion control

adjusted to throttle network traffic load on a host. Consider a host willing to devote some per-
centage of its machine to handling network traffic. If the cost of handling an incoming pscket
L can be calculated 30 that an acceptable *‘packet handling rate’® can be determined, then input
{ queue lengths may be dynamically adjusted based on a host'’s network load and the number of
g packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a
o problem such as this (simply dropping packets is likely to increase the load on a network); the
queue lengths were incorporated mainly as a safeguard mechanism.

o 12.4. Packet forwarding

When packets can not be forwarded because of memory limitations, the system generates
a “‘source quench’ message. In addition, any other problems encountered during packet for-
warding are also reflected back to the sender in the form of ICMP packets. This helps hosts
avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early
stage of network development, broadcast packets were forwarded and a “‘routing loop™ resulted
in network saturation and every host on the network crashing.

R

-

LA
:.J“;"_"'.."' PLA

14

D
4y
3
il

»
v
LS

»
4

'i’ .
LRI A v .
' ‘{ ','".- '-‘ . ‘.‘o ¢

3,10
..

-
1% S ..
~J:r4.‘h ‘::k A

, v

LA

AR

PRF5e

s s e
DA RPN
ettt
*| e

)

.
I

AR
‘,I

e .-".J‘.a

CSRG TR/6 Leffler, et. al.

o

RO A LT L TN T S L . AT w, . AP
S LN Y R ARRRYY X R L OO R
P .



Networking Impiementation -27- Out of band data

13. Out of band data

Out of band data is a facility peculiar to the stream socket abstraction defined. Little
agreement appears 0 exist as to what its semantics should be. TCP defines the notion of
‘‘urgent data” as in-line, while the NBS protocols (Burruss81] and numerous others provide a
fully independent logical transmission channel along which out of band data is to be sent. In
addition, the amount of the dsta which may be sent as an out of band message varies from pro-
tocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest reasonable
common denominator (at Jeast reasonable in our minds); clearly this is subject to debate. Out
of band data is expected to be transmitted out of the normal sequencing and flow control con-
straints of the data stream. A minimum of 1 byte of out of band data and one outstanding out
of band message are expected to be supported by the protocol supporting a stream socket. It is
a protocols perogative 10 support larger sized messages, or more than one outstanding out of
band message at a time.

Out of band data is maintained by the protocol and usually not stored in the socket’s send
queve. The PRU_SENDOOB and PRU_RCVOOB requests 1o the pr_usrreq routine are used in
sending and receiving data.

CSRG TR/6 Leffler, et. al.
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- 14. Traller protocols
._’,-Z;‘, Core 10 core copies can be expensive. Consequently, a great deal of effort was spent in
( minimizing such operations. The VAX architecture provides virtual memory hardware organ-
o ized in page units. To cut down on copy operations, data is kept in page sized units on page-
:‘,'-j aligned boundaries whenever possible. This allows data to be moved in memory simply by
e remapping the page instead of copying. The mbuf and network interface routines perform page
o table manipulations where needed, hiding the complexities of the VAX virtual memory
N hardware from higher level code.
-k Data enters the system in two ways: from the user, or from the network (hardware inter-
s face). When data is copied from the user's address space into the system it is deposited in
ol peges (if sufficient data is present to fill an entire page). This encourages the user to transmit
AR information in messages which are 3 multiple of the system page size.
;' o Unfortunately, performing a similar operation when taking data from the network is very
iy difficult. Consider the format of an incoming packet. A packet usually contains a local network
o header followed by one or more headers used by the high level protocols. Finally, the data, if
IR any, follows these headers. Since the header information may be variable length, DMA'ing the
\_’.‘ eventual data for the user into a page aligned area of memory is impossible without a priori
.:,:.:I knowledge of the format (e.g. supporting only a single protocol header format).
"}}f To allow variable length header information to be present and still ensure page alignment
"'\g of data, a special local network encapsulation may be used. This encapsulation, termed a wrailer
protocol, places the variable length header information after the data. A fixed size local network
header is then prepended to the resultant packet. The local network header contains the size of
-$\; the data portion, and a new rrailer protocol header, inserted before the variable length informa-
5;:- tion, contains the size of the variable length header information. The following trailer protoco!
N ‘.:.' header is used to store information regarding the variable length protocol header:
f:f struct {
( short protocol; /* original protocol no. */
. short length; /* length of trailer */
T

- The processing of the trailer protocol is very simple. On output, the local network header
'\I: indicates a trailer encapsulation is being used. The protocol identifier also includes an indica-
A tion of the number of data pages present (before the trailer protoco! header). The trailer proto-
col header is initialized to contain the actual protocol and variable length header size, and

-'\:. appended to the data along with the variable length header information.

gy On input, the interface routines identify the trailer encapsulation by the protoco! type
A stored in the local network header, then calculate the number of pages of data to find the
O beginning of the trailer. The trailing information is copied into a separate mbuf and linked to

‘o the front of the resultant packet.

. Clearly, trailer protocols require cooperation between source and destination. In addition,
e they are normally cost effective only when sizable packets are used. The current scheme works
.;:", decause the local network encapsulation header is a fixed size, allowing DMA operations to be
R performed at a known offset from the first data page being received. Should the local network
e beader be variable length this scheme fails. -

e Statistics collected indicate as much as 200Kb/s can be gained by using a trailer protocol
b with 1Kbyte packets. The average size of the variable length header was 40 bytes (the size of 2
oy minimal TCP/IP packet header). If hardware supports larger sized packets, even greater gains
s may be realized.
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Acknowledgements

The internal structure of the system is patterned after the Xerox PUP architecture
(Boggs79], while in certain places the Internet protocol family has had a great deal of influence
in the design. The use of software interrupts for process invocation is based on similar facilities
found in the VMS operating system. Many of the ideas related to protocol modularity, memory
management, and network interfaces are based on Rob Gurwitz’s TCP/IP implementation for
the 4.1BSD version of UNIX on the VAX [Gurwitz81]. Greg Chesson explained his use of
trailer encapsulations in Datakit, instigating their use in our system.
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