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-4In ihis paper we briefly presentkhe design of a distributed relational data
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base mystem. Then, we discuss experimeatal observations of the performance of

that system executing both short and long commands. Conclusions are also

drawn concerning metrics that distribut query processing heuristics should

, attempt to minimize. Lastly, we comnenton architectures which appear viable

for distributed data base applications.
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46 1. NIMDCfiCK

* Many algorithms have been proposed t solve distributed relational data

base problems in the areas of.

a) d~ibuted concurrency control

b) distributed crash recovery

c) support of multiple copies of data

d) distributed command processing

There Is currently little quantitative knowledge on the performance of such

algorithms. Previous work has been based exclusively on simulation, e.g.

[RIESM9 GARC79a, GARC79b. LINSI] or formal modeling. e.g. [GELE?8 BERN79].

One of the objectives of this research is to pro'de empirical results concerning

the performance of various algorithms.

This paper first presents a short descslpton of a working prototype distri-

buted data base system. Then, we present the results of a collection of experi-

mente on this prototype. Conclusions concerning query processing algorithms

* are drawn as appropriate. Lastly. commenks on viable distributed architectures

for data base applications are presented.

IL wrmwIaUTO INGlS

Distributed IGlS operates on a coliection of DEC VAX 11/750s and 1/5os

-omected by a 3 mbit ethernet. All run the 4.1cSlD, a version of the UND(

[RITc75] operaUg system enhanced at Berkeley with paging, numerous pro-

gram development tools, remote nterprocess communication, and remote pro-

nea execution.

Most features of Distributed DIGRES [EPST78] are currently operational. A

master DIGRZS process runs at the site where the command originated and slave

BMW3 processes run at each site which have data involved in the command. The
ftn -f-
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-" master process parses the command. resolves any views, and creates an action

plan to solve the command using the fragment and replicate technique. The

*. 8dave process is essentially single-machine INGRE [STON7B. STONSD] with minor

extensions and with the parser removed. The coordinator and slaves cemmuni-

. cate using the 4.IcBSD interprocess message system.

- Distributed fINRE supports fragments of relations at different sites. For

example, one can distribute the relation

]IP (name, salary, manager. age. dept)

as follows:

range oFE is EIMP
distribute E

at Berkeley where Ldept = "shoe"
at Paris where Ldept = "toy"
at Boston where Edept I= "toy" and

Edept = "shoe"

Berkeley. Paris and Boston are logical names ed mehines which are mapped to

site addresses by a lookup table. A single site. relation is a special case of the

distribute command. e.g.

distribute ONE-SITE at Berkeley

Currently. all QUEL commands without agq ates are processed correctly

for distributed data. Consider. for example, the llowing update:

range of Z is UP
replace E(dept = "toy") where e.salary> 1000'

This command will be processed by all sites ctaning fragments of the EIP

relation. All qualifying tuples are updated and their site location may be

changed. For example, the tuple of an employee earning more than 10000 in the

shoe department would be moved from Berkeley to Paris.

Distributed DOW uses a two phase conmit protocol [GRAY7. LAMP76].

Saves send a "ready ' message to the master when they are prepared to commit
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- 4° o " . + . . .-.- :-';'-.-. "... ".....-............-... . .-., -,. +. "," +.- .-.... .+",-, ..... . .- , : ... .. .- .•.++-..,-... +".,,"., ,--,..,,. ,'



-o , - . . - - - - - - - - - - --

- P8dV.,,E.

4. an update. Tuples which change sites are included with this message. The mas-

ter then redistributes the tiples by piggybacking them onto the commit me*-

*. ,sage. A three phase comnit protocol can optionally be used [SKEEB2] for added

reliability. In this case the above redistribution is handled in the second phase.

When a command spans data at multiple sites, a rudimentary version of the

"fragment and replicate" query processing strategy is used. For example, sup-

pose a second relation

• .. DEPT (dname. floor, budget)

exists at two sites as follows:

distribute D
at Berkeley where D.budlget > 5
at Paris where D.budjet <= 5

Consider the query submitted by a Boston user.

range of E is EMP
range of D is DEPT
retrieve (Kname) whereFEdept = D-dname

and .fiaor = 1

First, the one variable caue '.floor = 1" is detached and run at both Berkeley

and Paris. te.

range of D Is DEPT
retrieve Into TEMP (.drmme) where D.floor = 1

K: The original query now becomes

y.,.. range of E is IMP
range of D is TEMP
retrieve (Ename) whereKdept = D.dname

To satisfy the query, data movement must now take place. One relation (say

TE[P) is replicated at each processing site. Hence. both Berkeley and Paris
snd their TEMP relatios to each site which has a fragment of MP. Therefore.

the needed transnmluslo are:

TEMP(Parts) -> Dosti

-4-
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TEMP Paris) ->BerkeleyTEMP Berkeley) ->Pais
TEMP(Berkeley) >Boston

Now. all three sites have a complete copy of TEMP and a fragment of the IEMP

relation. The above query Is now performed at each site. and the resulting

- tuples are returned to the master site. where they are displayed to the user.

" Since our ETHERNET has the hardware capability to support broadcast, it is

possible to perform the above four transfers by broadcasting each fragment of

TEMP. However, the 4.icBSD operating system does not support multicast or

broadcast transmissions. Consequently, the above four transmissions occur

separately, and the strategy of replication may perform poorly [EPST78]. The

network on which we planned to run [ROWE79] supported broadcast, and we have

not subsequently modified the query processing heuristics

At the moment, the relation to be replicated is chosen arbitrarily, so TEMP

and IMP are equally likely to be selected for movement. A more elegant stra-

tegy is being planned.

I 8 IP UPDATZS

In all experiments we use the EMP and DEPT relations as discussed in Sec-

tion 1. Our data base consists of 30.000 EMP tuples, each 38 bytes long and 1500

DEPT tuples each 15 bytes long. In all cases we wl be comparing the perfor-

mance of Distributed and inglle-site UnR .

The frst benchmark oanssts of 1000 random updates of the form:

replace I (salary = K) WHOM Lname = L

The n-site data base was distibuted as follows:

distribute I
at saed. where e.name < J,
atuU@-b where e.name >z j I

and e.name < jg
A r
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etstlsn where e.name >=

The constants . were chosen so that exactly 1000/n updates were

directed to each site. The number of sites. ni, was varied from I to 3.

Each site ran a script which contained 1000/n updates and processed the

v-xt command when It received "done" from the previous one. In this way there

" was a master WO-- at each site and we avoided creating a bottleneck at a single

coordinating site.

Note that this benchmark consists of a large collection of small transac-

tions. each of which can be completely processed at a single site. A distributed

data base should perform well in this situation.

Table I indicates for each configuration the CPU time spent inside the

operating system, the CPU time spent inside the INGRES code and the elapsed

time. The benchmark was run on a VAX 11/780 along with 0. 1 or 2 VAX 11/750's.

Unfortunately, the 11/750s have varying amounts of main memory, disk sys-

ten, and buffer space allocations. Moreover. the error rate of network

transmission varies between pairs of machines. As a result, a fair amount of
random variation of the numbers must be expected.

For the distributed processing configurations, the reported times are a sum

-of the time spent by the master INGRES at that site alo vith the times spent

by any slave INGRESs on behalf of masters at other sites. According to local

benchmarks, an 11/750 is about 0.629 times as fast as an 11/150 [HAGC83];

"ence total CPU time Is calculated by scaling 11/750 tie by the above factor

end Is reported In the row labeled by n780.

Several conclusions can be drawn from these results. irst, Distributed

I"GRES is about 20 percent slower than normal INGRES when run on a local data

base. Distributed IGRES must check the distribution criteria to ascertain that

-. '. - --
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user time system time elapsed time

Normal INGRES
11 8O 7:34 3:04 2:34P

Distributed
INGRES - local
data base
11,6O 9.06 353 26:57

Distributed
INGRES - foreign
data base
11,750 7:58 3:02 2837
11/780 5:34 2:57
02780 10:35 4.51

Distributed
WGRES - 2
mites
1k/lO 5:14 2:24 15:30
11/750 8:24 4:05 16:48
02780 10:31 4:58

Distributed
INGRES - three
mites
11/780 3:43 1:30 12:43
11/750 5:28 2:15 13:34
11/750 5:48 2:13 13:22
1*80 11:09 4:30

Performance of Simple Updates
Table I

*each of the commands is a local one. Currently. this checking is performed at

run time; however, for better performance It could be performed at compilation

time. In addition, each updated tuple must also be checked against the distribu-

tioa criteria to ensure that It does not change sites (Le. that the dept field is

not being changed).

Second. Distributed INGRES on a one machine foreign data base is about 10

percent slower than on a local data base. The foreign data requires master

INGRES to communicate with a non-local slave instead of a local slave. and this

requires extra user and system CPU time.

e~-Y -
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Third. 20M8 and 30?0 Distributed INGRES use 20 percent more CPU time

than Distributed INGRES on a local data base and 45 percent more CPU time

then single-site INGRES. Both systems use marginally more CPU time than Dis-

tributed INGRES on a one-site foreign data base. The benefit of these

configurations Is increased parallel processing; hence the benchmark finishes

respectively 25 and 40 percent faster. Of course, the benchmark would have

finished even faster if the additional machines were 11/780s. We suspect that a

collection of n 11/780s could finish the benchmark in approximately 28/n

,. .. minutes.

Lastly. note that the 3 site benchmark uses the same amount of CPU time

as the two site benchmark. It is reasonable to expect that the total CPU time

• . .* would continue to be a constant as additional sites were added. Hence, we

predict that total aggregate CPU time would remain a constant as sites are

added and would be split among an increasing number of machines.

Benchmark 1 on a foreign data. base results in 522,880 bytes being

transferred across the network, and less than two percent of the available

bandwidth is consumed. It appears that a large number of machines could be

"". added to the ETHERNET before bandwidth limitations arise.

b4L ONE RETIGN FYTR

In this benchmark we attempted to load the network as fully as possible

* -. :with the following query:

range of E is EMP
retrieve (Lan)

The result of this query is 30000 tuples which would ordinarily be printed on the

terminal. To stress differences in the enwironments being tested, we discarded

the qualifying tuples In both this benchmark and the subsequent one. Hence.

the cost of printing more than 1 mbyte of data is not included in the results

r .. 7.
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presented in Table Z In the 2 site and 3 site benchmarks the EMP relation is

unlformly distributed across the sites. Moreover, we are timing several repeti-

tions of the query submitted from a single job stream and then averaging themL

Distributed INGRES on a local data base runs at about the same speed as

- single-site INGRES. The extra overhead of discovering that the query is local is

amortized over a large amount of processing, so the two systems perform com-

parably.

user time system time elapsed time

Normal INGRES
11/780 1:44 0:15 2:03

Distributed
INGRES - local
data base
11/780 1:47 0:10 2:05

Distributed
INGRES - foreign
data base
11/750 0:03 0:03 2:54
11/78 1:47 0:20
0270 1:49 0.22

Distributed
INGRES - 2
sites
11/780 1:06 0:19
11/750 1:36 0:15 2:59
meo80 2:06 0.28

Distributed
INGRES - three
sites
11/m80 0.35 0:05 2:37
11/750 1:13 0:16
11/750 1:12 0:17
.. ,0 2!80 0:26

Performance of One-relation Retrieves
Table 3

.4-
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On a foreign data base distributed INGRES is 0:49 seconds slower. In this

environment, a slave must write the EIP relation into a temporary file and pass

It across the network to a another file. Consequently. there are a total of two

copies made of the 1200 block EIP relation.

The cost of a executing a remote copy of the 1200 block file is 0:17 of

elapsed time and 0.11 of system CPU time. Hence. about 32 percent of the 0:49

difference is explained by the network overhead; the rest is added INGRES over-

bead. This remote copy consumes about 19.3 percent of the 3 mbit bandwidth.

Because INGRES adds extra overhead. it uses only 6 percent of the available

bandwidth. Obviously a large number of concurrent data base users would be

required before INGRES could use any substantial fraction of the ETHERNET

bandwidth.

When the data base is distributed over multiple sites, the total CPU time

remains approximately constant and is distributed evenly over the machines.

When two sites are present, about 50 percent of the CPU cycles are offloaded to

an 11/750 which is 0.629 times as fast. The maximum improvement possible in

this conAguration is about 25 percent, and it appears that INGRES overhead

offsets this gain. With three sites dividing the work, response time begins to

Improve, and this Improvement should continue as new sites are added.

Your conclusions can be drawn from the results of this benchmark and the

above discussion. FIrst, query processing beurstics should account for the

speed of the various machines when deciding optimal strategies. To achieve

minimum response time using our configuration. one should give the 11/780

disproportionately more work than the 11/150s. Second. bandwidth will never

be a problem in our environment. Even operating system fle transfers do not

come close to using the entire bandwidth, and DNGRES relations cannot be

moved any faster than OS fles. Third. data base and file servers are often pro-

4 - 10-
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posed as useful architectural concepts in a local network environment. How-

ever, this configuration is closely approximated by a foreign data base which had

the next to worst performance of the ones tested. Unless a server is much fas-

ter than other machines on the network or unless other machines do not have

disks, the merits of a server seem doubtful. Lastly. it appears desirable to split

complex queries among a large nmber of sites and take advantage of the

resulting parallel processing.

. .JOIN

The last experiment executed the natural join of LM and DEPT. with EMP

hashed on the dept field and DEPT hashed on the drame field, Le:

range of E is EMP
range of D is DEPT

"- " retrieve (Eall. D.all) where E.dept = D.dname

The same environments were tested as in the previous sections. In the 2 and 3

site cases both EMP and DEPT were uniformly distributed, and DEPT was

selected as the relation to be replicated in query processing. Table 4 contains

the measured results.

Notice that these results are very similar to the preceding two sets of

numbers. Hence, we will not comment on their relative magnitudes. Rather, we

will discuss other points.

First, the two and three site versions moved the DEPT relation to solve the

query. We forced distributed INGRES to instead move the EMP relation, and the

results were about 20 times slower than those reported. The explanation is

somewhat subtle. When Distributed INGRES replicates a relation at multiple

sites, It loses the access structure of the relation involved and does not recreate

the original access path for the composite relation. Hence, if DEPT or EMP is

moved. It becomes a heap at each site. Local INGRES algorithms solve the join by

Iterating over the smaller of the two relations, in this case DEPT. If DEPT is

-11-
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user time system time elapsed time

Normal INGRES
11/780 &41 0.38 9.37

Distributed
INGRES - local
data base
11/t80 &57 0:47 1.4

Distributed
INGRES - foreign
data base
11,/50
11,PtiO 9.01 0:42
020780

Distributed
INGRES -2
sites
11780 4:28 :21 10:.45
11/750 7:58 1:02
02*780 9:28 1:00

Distributed
INGRES - three
sites
11/780 3:11 :13 7:41

S11/1150 5:27 :43
11/50 5:14 :40
-"0380 54 1:05

Performance of Joins
Table 4

moved, then INGRES will iterate over a heap producing a large collection of

queries of the form:

retrieve (Eall -constants-)
where E.dept = constant

These queries can then be executed by a hashed access to the EMP relation.

However. If ,MP is moved and becomes a heap. a large number of queries are

generated, each requiring a complete scan of the IMP relation.

.5' We did not execute the query with EMP at one mite and DEPT at another. In

this case the query processing module should move the DEPT relation to the site

of IP. This should add only a few seconds of overhead to the distributed

-12
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INGRES times for a local data base.

We also did not force the obvious semi-Join strategy indicated by the follow-

Ing commands.

retrieve Into W(ELdept)
move W
retrieve into W2 (D.all) where D.dname a W.dept
move W2
retrieve (E.all, W2.all) where Edept = W.dnarne

Sne all values of dname appear n the EMP relation, W2 is exactly the size of

DEPT. This algorithm will consequently perform more poorly than all other ones

since It will perform a projection of the EMP relation in addition to the work

done by other algorithms. Given that bandwidth is not a consideration in our

environment, semi-joins, which must execute the query twice, will seldom be

advantageous.

SCONCLUIONS

This paper presented timings for a distributed data base system. By and

large, they are extremely encouraging. Although Distributed INGRES is not

highly optimized, it does not add a large amount of overhead. It is expected that

judicious tuning could make it competitive with single-site INGRES on local data

bases. On distributed data, the costs of moving data are not excessive and

result in substantial parallelism.
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ABSTRACT
This paper contains a proposed implementation of a rules system in a rela-

tional data base system. Such a rules system can provide data base services
including integrity control, protection, alerters, triggers, and view processin4..
Moreoever. it can be used for user specified rules. The proposed implementa-
tion makes efficient use of an abstract data type facility by introducing new data
types which assist with rule specification and enforcement.

I INTRODUCTION
Rules systems have been used extensively in Artificial Intelligence applice.-

tions and are a central theme in most expert systems such as Mycin [SHOR7E'
and Prospector [DUDA78]. In this environment knowledge is represented as
rules, typically in a first order logic representation. Hence, the data base for an
expert system consists of a collection of logic formulas. The role of the data
manager is to discover what rules are applicable at a given time and then to
apply them. Stated differently, the data manager is largely an inference engine.

On the other hand. data base management systems have tended ta
represent all knowledge as pure data. The data manager is largely a collection cf
heuristic search procedures for finding qualifying data. Representation of first
order logic statements and inference on data in the data base are rarely
attempted in production data base management sysLems.

The purpose of this paper is to make a modest step in the direction of sup-
porting logic statements in a data base management system. One could make
this step by simply adding an inference engine to a general purpose DBMS. How-
ever, this would entail a large amount of code with no practical interaction with
the current search code-of a data base system. As a result, the DBMS would get
much larger and would contain two essentially non overlapping subsystems. On
the other hand. we strive for an implementation which integrates rules into
DBMS facilities so that current search logic can be employed to control the
activation of rules. _

The rules system that we plan to implement is a variant of the proposal in
[STON82]. which was capable of expressing integrity constraints, views and pro-
tection as well as simple triggers and alarms for the relational DBMS INGRES
[STON76]. Rules are of the form:

on condition
then action

The conditions which were specified include:
the type of command being executed (e.g. replace, append)

-1-



the relation affected (e.g. employee. dept)
the user issuing the command
the time of day
the day of week
the fields being updated (e.g. salary)
the fields specified in the qualification
the qualification present in the user command

The actions which we proposed included:
sending a message to a user
aborting the command
executing the command
modilying the command by adding qualification or

changing the rjation names or field names

Unfortunately, these conditions and actions often affect the command
which the: user submitted. As such, they appear to require code that manipu-
lates the syntax and semantics of relational commands. This string processing
code appears to be complex and has little function in common with other data
base facilities. In this paper we make use of two novel constructs which make
implementing rules a modest undertaking. These are:

1) the nc tion of executing the data
and
2) a sequence of QUEL commands as a data type for a relational data base sys-
tem

The remainder of this paper is organized as follows. In Section 11 we indi-
cate the new data types which must be implemented and the operations
required for them. Then in Section III we discuss the structural extensions to a
relational data base system that will support rules execution. Lastly, Section IV
and V cortains some examples and our conclusions.

II RULES AS ABSTRACT DATA TYPES
Using current INGRES facilities [FOGG82, ONG82, STON82a] new data types

for columns of a relation can be defined and operators on these new types
specified. We use this facility to define several new types of columns and their
associated operators in this section.

The first data type is a QUEL command, e.g.
range of e is employee
replace e(salary = 1.10e.salary) where e.name = "John"

The abstract data type facility supports an external representation such e
that above for a given data type. Moreover. when an object of the given type is
stored in the data base it is converted to an internal representation. QUEL com-
mands are converted by the INGRES parser to a parse tree representation such
as the one noted in Fligure 1 for the qualification "where 13. + employee.salary =
100". Consequently. a natural internal form for an object of type QUEL is a
parse tree. Each node in this parse tree contains a value (e.g. 13.) and a type
e.g. floating point constant).

The second new data type which will be useful is an ATTRIBUTE-FUNCTION.
This is a notion in the QUEL grammar and stands for anything that can be
evaluated to a ionstant or the name of a column. Examples of attribute func-
tions include:

13.

~.4-
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RETBOOL

+-F4EQ -

+-F4PLUS-+ 100.i I
13. F4VAR

The Parse Tree for the Qualification
Where 13. + employee. salary = 100

Figure 1

1. l*employee.salary +20

newsal

The external representation is the same string format used for objects of type
QUEL; the internal representation is that of a parse tree.

Two other data types of lesser significance are also needed, a TIME data
type to contain a time of day value and a COMMAND data type to contain a value
which is one of the QUEL commands.

Current built-in INGRES operators (e.g. 0, /, +, etc.) must be e:tended for
use with attribute functions. In addition, two new operators are also required.
First, we need a function newo which will operate with integer data types. When
called, it will return a new unique identifier which has not been previously used.
Second. we require a partial match operator, -. which will operate on a variety
of data types and provide either equality match or match the value

III INGRES CHANGES
We expect to create two rules relation. RULES1 and RULES2, with the follow-

ing fields:
create RULES1(

rule-id = i4,
" user-id = c 10, -

time = time,
command = command,
relation = c12.
terminal = c2,
action = quel)

create RULES2 (
rule-id = i4,
type = edO,
att-fnl = attribute-function
operatpr = c5,
att-fn2 = attribute-function)

For example, we might wish a rule that would add a record to an audit trail
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whenever the user "Mike" updated the employee relation. This requires a row in
RULES1 specified as follows:

append to RULES1(
rule-id = newt),
user-id = "Mike",
command = "replace".
relation = "employee".
action = QUEL command to perform audit)

If additionally we wished to perform the audit action only when Mike
updated the employee relation with a command containing the clause "where
employee.name = "Fred!"' we would add an additional tuple to RULES2 as follows:

append to RULES2(
rule-id = thb one assigned in RULES 1
type = "where"
att-fnl = "employee.name"
operator - "-"
att.fn2 = "Fred")

We also require the possibility of executing data in the data base. We pro-
pose the following syntax:

range of r is relation
execute (r.fteld) where r.qualiflcation

In this case the value of r.fleld must be an executable QUEL command and
,hereby of data type QUEL. To execute the rule that was just appended to R1 we
c:ould type:

range of r is R1
execute (r.action) where r.user-id = "Mike" and

r.command = "replace" and
r.relation = "employee"

When a QUEL command is entered by a user, it is parsed into an internal
parse tree format and stored in a temporary data structure. We expect to
change that data structure to be the following two main memory relations:

create QUERY1(
user-id = cO,
command = command,
relation = c12,
time = time,
terminal= c2)

create QUERY2(
clause-id = i4
type clO,
att-fnl = attribute-function,
operator = c5,
att-fn2 = attribute-function)

If the user types the query:

* range of e is employee
retrieve (emalary)

where (e.name = "Mike" or e.narne = "Sally")
and e.salary > 30000

4-4
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then INGRES will build QUERY1 to contain a single tuple with values:

QUEFMt
user-id command I relation I time I terminal

current-user I retrieve I employee I current-time current-terminal

QUERY2 will have four tuples as follows:

cQUERY2
_cause-id __tye att-fn 1 operator att-fn2

id-x [ target-list employee.salary- = 3mployee.salary
id-y I where employee.name = Mike
id-y where emnloyee.name = Sally
id-z where employee.salary > 30000

Notice that QUERYI and QUERY2 contain a relational representation of the parse
tree corresponding to the incoming query from the user. The where clause of
the query is stored in conjunctive normal form, so that atomic formulae which
are part of a disjunction have the same clause-id. while the atomic formulae and
disjunctions in the conjunction have different clause-ids.

Then we execute the QUEL commands in Figure 2 to identify and execute
the rules which are appropriate to the incoming command. These commands
are performed by the normal INGRES search logic. Activating the rules system
simply means running these commands prior to executing the user submitted

* .command. After running the commands of Figure 2. the query is converted
back to a parse tree representation and executed. Notice that the action part
of a rule can update QUERY1 and QUERY2; hence modiftcat'on of the user com-
mand is easily accomplished. The examples in the next section illustrate several
uses for this feature:

range of rl is RULESI
" "range of r2 is RULES2

range of q1 is QUERY1
range of q2 is QUERY2
retrieve into TEMP(rl.id, rl.quel) where

rl.user-id - ql.user-id and
rl.command - ql.command and
rl.time - ql.time and
rl.terminal- ql.terminal

range of t is TEMP
execute (t.quel) where Lid < 0 or

(Lid = r2.rule-id and
uet(r2.all-but-rule-id by r2.rule-id)

= set(r2.all-but-clause-id by r2.rule-id
where r.all-but-rule-id - q2.all-but-clause-id))

Rule Activation in QUEL
Figure 2.

S' The set functions are as defined in [HELD75]. The conditions for activating a
rule are:

(i) its tuple in RULESI matches the tuple in QUERY1

* -0-
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and either
(ii) each tuple for the rule in RILES2 matches a tuple in QUERY2.

or
(iii) there are no required matches in RULES2

-(represented by rule-id < 0).
The second condition provides appropriate rule activation when both the user
query and the rule do not contain the boolean operator OR. However, a rule
which should be activated when two clauses A and B are true will have two tuples
in RULES2. This rule will be activated by a user query containing clauses match-
ing A and B connected by any boolean operator. Under study is a more sophisti-
cated activation system which will avoid this drawback.

The commands in Figure 2 cannot be executed directly because set func-
tions have never beej implemented in INGRES. Hence, we turn now to a pro-
posed implementation of these functions.

Suppose we define a new operator "I" to be bitwise OR, and "bitor0" to be an
aggregate function which bitwise ORs all qualifying fields. Then if we add the
attribute "mask" to RULES2, and give each tuple for a particular rule a unique
bit, the following query is correct:

range of t is TEMP
execute (t.quel) where Lid < 0 or

(Lid = ra-rule-id and
bitor(r2.mask by r2.rule-id)
= bitor(r2.mask by r2.rule-id

where r2.all-but-rule-id - q2.all-but-clause-id))
This solution will be quite slow, since the test for each rule involves processing a
complicated aggregate. A more efficient solution involves generating masks for
all rules in parallel and writing special search code as follows:

range of rl is RULES1
range of r2 is RULES2
range of q1 is QUERY1
range of q2 is QUERY2
retrieve into TEMP(rl.id, rl.quel, mask - 0) where

rl.user-id - ql.user-id and
rl.command - ql.command and
rl.time - ql.tirne and
rl.terminalh ql.terminal

range of t is TEMP

foreach q2 do begin
replace t (mask = t.mask I r2.mask)

where tid = r2.rule-id and
r2.all-but-rule-id - q2.all-but-clause-id

end foreach

execute (t.quel) where Lid < 0 or
(Lid = r2.rule-id and

bitor(r2.mask by r2.rule-id)
- t.mask)

Since the value of "bitor(r2.mask by r2.ruleid)" remains constant, the perfor-
mance of this Slgorithm can be further improved by including the value of
"bitor(r2.mask by r2.ruleid)" in RULES1 and copying it into TEMP as the
"acceptmask". The third query would then become:

%i



execute (t.quel) where Lid = r2.rule-id and
Lacceptmask = Lmask

4w, Notice the case where there are no tuples in RULES2 for a particular rule is han-
dled with an accept.ask of zero.

*.- Either a variable length abstract data type "bitstring" or a four byte integer
can be used to store the mask. The abstract data type solution has the advan-
tage of allowing an unlimited number of conditions for specifying rule activation.
while the four byte integer solution has the advantage of simplicity and speed.
but can only represent 32 conditions.

IV EXAMPLES

We give a few examples of the utility of the above constructs in this section.
First, we can store a aommand in the data base as follows:

append to storedqueries (id = 6,
quel = "range of e is employee

retrieve (e.salary)
where e.name = "John"')

We can execute the stored command by

range of s is storedqueries
execute (s.quel) where s.id = 6

The following two examples will pertain to the q iery:

range of e is employee
replace e(salary = salary*1.5) where e.name = "Erika"

To represent this query INGRES will append the following tuples to the QUERYl
and QUERY2 relations:

QUERY1 "

user-id command relation time terminal

current-user i replace employee I current-time current-terminal

QUERY2
clause-id I. tye I att-fnl operator 1 att-fn2

-. id-z I tarxet-list I employee.salary I = employee.salary*l.5
id-x where employee.name = Erika

Suppose we want to implement the integrity contraint to insure that
employee salaries never exceed $30,000. Using query modification [STON75] we
would add the clause "and employee.salary*1.5 <= 30000". to the user's
qualification with the following rule:

append to RULES1(
rule-id - newo , (call it id-y)
user-id = . (matches any user-id)
command - "replace".
relation = "employee".
action = "range of Q2 is QUERY2

append to QUERY2(
clause-id = id-x.

type = "where".
att-fnl = Q2.att-fn2,
operator =

-7-
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att-fn2 - "30000")
where Q.att-fnl = "employee.salary")"

append to RULES2(
rule-id = id-y,
type = "target-list".
att-fnl = "employee.salary".
operator =
att-fn2 =)

Consider a transition integrity constraint that specifies that the maximum
salary increase is 20%s. This means that the new salary divided by the old salary

- * must be less than or equal to 1.2. This can be achieved by appending a single
tuple to RI:

append to RULES 1(
rule-id - newt).
user-id =.
command = "replace",
relation = "employee",
action = "range of Q2 is QUERY2

append to QUERY2(
clause-id = id-x.

type = "where".
att-fnl = Q2.att-fn2/Q2.att-fnl,
operator <=
att-fn2 ="1.2")

where Q2.att-fnl = "employee.salary....

As a last example of an integrity constraint, consider a referential con-
straint that a new employee must be assigned to an existing department. Such
a rule would be applied, for example, to the following query:

append to employee (name="Chris". dept = "Toy", mgr = "Ellen")

The corresponding tuples in QUERY2 would look like:

QUERY2

N clause-id type att-fnl1 operator att-fn2

id-z target-list employeename J Chri
id-z target-list employee.dept = Toy
id-z target-list employee.mgr = Ellen

Implementation of the constraint requires checking that the department given
in the target list of the append appears in the department relation. This is
accomplished with the following rule:

append to RULESI(
rule-id = new)'
user-id 0.
command = "append".
relation = "employee".
action = "range of Q2 is QUERY2

append to QUERY2(
clause-id = id-z,
type = "where".
att-fnl = "deptname",
operator =
att-fn2 = Q2.att-fn2)

#1 -8-
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where Q.att-fnl = eniployee.dept"

Lastly, protection is achieved primarily by making use of the RULE 1 rela-
tion, which pertains to the query "bookkeeping" information. Suppose we
wanted to ensure that no one could access the employee relation after- hours
(after 5PM and before 8AM). The following tuple would be added to the R1 rela-
tion:

append to RULESI(
rule-id = newo.
user-id =*
time = "17:01 - 7:59".
command = *.
relation = "employee",
terminal = *.
action = "range of Q1 is QUERY1

range of Q2 is QUERY2
delete Q1
delete Q2

If the query meets the conditions, the acticn removes the tuples in QUERY1 and
QUERY2 and thereby aborts the command.

V CONCLUSIONS
This paper has presented an initial sketch of a rules system that can be

embedded in a Relational DBMS. There are two potentially very powerful
features to our proposal. First, it can p;-ovide a comprehensive trigger and
alerter system. Real time data base applications, especially those associated
with sensor data acquisition, need such a facility. Second. it provides stored
DBMS commands and the possibility of parallel execution of triggered actions.
In a multiprocessor environment such parallelism can be exploited.

",. . There are also several deficiencies to the current proposal, including:

a) Rule specflcation is extremely complex. This could be avoided by a language
processor which accepted a friendlier syntax and translated it into the one in

-5, this paper.

b) The result of the execution of a collection of rules can depend on the order in
which they are activated. This is unsettling in a relational environment.

€) Rules trigger on syntax alone. For example, if we want a rule that becomes
activated whenever John's employee record is affected, we trigger on any query
having "employee.name = John" in the where clause. However if the incoming
query is to update all employees' salaries, this rule would not be triggered.

d) Commands with multiple range variables over the same relation, so called

reflexive joins, are not correctly processed by the rules engine.

e) Aggregate functions have not yet been considered.

f) As noted earlier, boolean OR is not treated correctly.

We are attempting to resolve these difficulties with further work.
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ABSTRACT

A reimplementation of the UNIX file system is described. The reimple-
mentation provides substantially higher throughput rates by using more flexible
allocation policies, that allow better locality of reference and that can be adapted
to a wide range of peripheral and processor characteristics. The new file system
clusters data that is sequentially accessed and provides two block sizes to allow
fast access for large files while not wasting large amounts of space for small
files. File access rates of up to ten times faster than the traditional UNIX file
system are experienced. Long needed enhancements to the user interface are
discussed. These include a mechanism to lock files, extensions of the name P
space across file systems, the ability to use arbitrary length file names, and pro-
visions for efficient administrative control of resource usage.
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File System -1- Introduction

1. sutresuctio
This paper describes the changes from the original 512 byte UNIX file system to the new

one released with the 4.2 Berkeley Software Distribution. It presents the motivations for the
changes, the methods used to affect these changes, the rationale behind the design decisions,
and a description of the new implementation. This discussion is followed by a summary of the
frults that have been obtained, directions for future work, and the additions and changes that
have been made to the user visible facilities. The paper concludes with a history of the
software engineering of the project.

The original UNIX system that runs on the PDP-I It has simple and elegant file system
facilities. File system input/output is buffered by the kernel; there are no alignment constraints
on data transfers and all operations are made to appear synchronous. All transfers to the disk
are in 512 byte blocks, which can be placed arbitrarily within the data area of the file system.
No constraints other than available disk space are placed on file growth [Ritchie74], [Thomp-son791.

When used on the VAX-il together with other UNIX enhancements, the original 512
byte UNIX file system is incapable of providing the data throughput rates that many applica-
tions require. For example, applications that need to do a small amount of processing on a
large quantities of data such as VLSI design and image processing, need to have a high
throughput from the file system. High throughput rates are also needed by programs with large
address spaces that are constructed by mapping files from the file system into virtual memory.
Paging data in and out of the file system is likely to occur frequently. This requires a file sys-
tem providing higher bandwidth than the original 512 byte UNIX one which provides only

.. about two percent of the maximum disk bandwidth or about 20 kilobytes per second per arm
[White80], [Smith8lb].

'S" Modifications have been made to the UNIX file system to improve its performance. Since
the UNIX file system interface is well understood and not inherently slow, this development
retained the abstraction and simply changed the underlying implementation to increase its
throughput. Consequently users of the system have not been faced with massive software
conversion.

Problems with file system performance have been dealt with extensively in the literature,
see [Smith81al for a survey. The UNIX operating system drew many of its ideas from Multics,
a large, high performance operating system [Feiertag7l]. Other work includes Hydra
[Almes78], Spice (Thompson801, and a file system for a lisp environment (Symbolics8 I a].

A major goal of this project has been to build a file system that is extensible into a
networked environment (Holler73J. Other work on network file systems describe centralized
file servers [Accetta8O, distributed file servers (Dion80], [Luniewski77], [Porcar82l, and proto-
cols to reduce the amount of information that must be transferred across a network
[Symbolics81 b], ISturgis80].

t DEC, PDP. VAX, MASSBUS. and UNIBUS are trademarks of Digital Equipment Corporation.
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File System -2- Old file system

2. Old File System
In the old file system developed at Bell Laboratories each disk drive contains one or more

file systems.1 A file system is described by its super-block, which contains the basic parameters
of the file system. These include the number of data blocks in the file system, a count of the
maximum number of files, and a pointer to a list of free blocks. All the free blocks in the sys-
temn are chained together in a linked list. Within the file system are files. Certain files are dis-
tinguished as directories and contain pointers to files that may themselves be directories. Every
file has a descriptor associated with it called an imode. The mnode contains information describ-
ing ownership of the file, time stamps marking last modification and access times for the file,
and an array of indices that point to the data blocks for the file. For the purposes of this sec-

* tion, we assume that the first 8 blocks of the file are directly referenced by values stored in the
mnode structure itself*. The inode structure may also contain references to indirect blocks con-
taining further data block indices. In a file system with a 512 byte block size, a singly indirect
block contains 128 further block addresses, a doubly indirect block contains 128 addresses of
further single indirect blocks, and a triply indirect block contains 128 addresses of further dou-
bly indirect blocks.

A traditional 150 megabyte UNIX file system consists of 4 megabytes of mnodes followed
by 146 megabytes of data. This organization segregates the mnode information from the data;
thus accessing a file normally incurs a long seek from its mnode to its data. Files in a single
directory are nttypically allocated slots in consecutive locations in the 4 megabytes of mnodes,
causing many non-consecutive blocks to be accessed when executing operations on all the files

- . in a directory.
The allocation of data blocks to files is also suboptimum. The traditional file system never

transfers more than 512 bytes per disk transaction and often finds that the next sequential data
block is not on the same cylinder, forcing seeks between 512 byte transfers. The combination
of the small block size, limited read-ahead in the system, and many seeks severely limits file
system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliability
and throughput. The reliability was improved by changing the file system so that all
modifications of critical information were staged so that they could either be completed or
repaired cleanly by a program after a crash [Kowalski78l. The file system performance was
improved by a factor of more than two by changing the basic block size from 512 to 1024 bytes.
The increase was because of two factors; each disk transfer accessed twice as much data, and
most files could be described without need to access through any indirect blocks since the direct
blocks contained twice as much data. The file system with these changes will henceforth be
referred to as the old file system.

This performance improvement gave a strong indication that increasing the block size was
a good method for improving throughput. Although the throughput had doubled, the old file
system was still using only about four percent of the disk bandwidth. The main problem was
that although the free list was initially ordered for optimal access, it quickly became scrambled
as files were created and removed. Eventually the free list became entirely random causing files
to have their blocks allocated randomly over the disk. This forced the disk to seek before every
block access. Although old file systems provided transfer rates of up to 175 kilobytes per
second when they were first created, this rate deteriorated to 30 kilobytes per second after a few
weeks of moderate use because of randomization of their free block list. There was no way of
restoring the performance an old file system except to dump, rebuild, and restore the file sys-
tem. Another possibility would be to have a process that periodically reorganized the data on
the disk to restore locality as suggested by IMaruyama76).

* t A file system always resides on a single drive.
The actual number may vary from system to system, but is usually in the range 5-13.

CSRG TR/7 July 27, 1983 McKusick, et. al.
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File sysiem -3- New file system

3. Now Bic system organizatlon
As in the old file system organization each disk drive contains one or more file systems.

A file system is described by its super-block, that is located at the beginning of its disk patti-
don. Because the super-block contains critical data it is replicated to protect against catastrophic
loss. This is done at the time that the fie system is created; since the super-block data does
not change, the copies need not be referenced unless a head crash or other hard disk error
causes the default super-block to be unusable.

To insure that it is possible to create files as large as 2132 bytes with only two levels of
indirection, the minimum size of a file system block is 4096 bytes. The size of file system
blocks can be any power of two preater than or equal to 4096. The block size of the file system
is maintained in the super-block so it is possible for file systems with e!'fferent block sizes to be
accessible simultaneously on the same system. The block size must be decided at the time that
the fie system is created; it cannot be subsequently changed without rebuilding the file system.

The new file system organization partitions the disk into one or more areas called cylinder
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associ-
ated with each cylinder group is some bookkeeping information that includes a redundant copy
of the super-block, space for mnodes, a bit map describing available blocks in the cylinder group,
and summary information describing the usage of data blocks within the cylinder group. For

* each cylinder group a static number of mnodes is allocated at file system creation time. The
current policy is to allocate one mnode for each 2048 bytes of disk space, expecting this to be far
more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be on
the top platter. Thus a single hardware failure that destroyed the top platter could cause the
loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping informa-
tion begins at a floating offset from the beginning of the cylinder group. The offset for each
successive cylinder group is calculated to be about one track further from the beginning of the
cylinder group. In this way the redundant information spirals down into the pack so that any

% single track, cylinder, or platter can be lost without losing all copies of the super-blocks. Except
% for the first cylinder group, the space between the beginning of the cylinder group and the

beginning of the cylinder group information is used for data blocks 1

3.1. Optmizing storage utilization
Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly

increasing file system throughput. As an example, consider a file in the new file system com-
posed of 4096 byte data blocks. In the old file system this file would be composed of 1024 byte
blocks. By increasing the block size, disk accesses in the new file system may transfer up to
four times as much information per disk transaction. In large files, several 4096 byte blocks
may be allocated from the same cylinder so that even larger data transfers are possible before
initiating a seek.

The main problem with bigger blocks is that most UNIX file systems are composed of
many small files. A uniformly large block size wastes space. Table 1 shows the effect of file
system block size on the amount of wasted space in the file system. The machine measured to
obtain these figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line
storage. The measurements are based on the active user file systems containing about 920
megabytes of formated space. The space wasted is measured as the percentage of space on the
disk not containing user data. As the block size on the disk increases, the waste rises quickly,

* to an intolerable 45.6% waste with 4096 byte file system blocks.

t while it appears that the first cylinder group could be laid out with its super-block at the "known" location.
* this would not work for file systems with blocks sizes of 16K or greater. because of the requirement that the
* cylinder group information must begin at a block boundary.

P. SRG TR17 July 27, 1983 McKusick, et. al.
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File System - 4- New file system

Space used % waste Organization
775.2 Mb 0.0 Data only, no separation between files
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary
828.7 Mb 6.9 512 byte block UNIX file system
866.5 Mb 11.8 1024 byte block UNIX file system
948.5 Mb 22.4 2048 byte block UNIX file system
1128.3 Mb 45.6 4096 byte block UNIX file system

Table 1 - Amount of wasted space as a function of block size.
To be able to use large blocks without undue waste, small files must be stored in a more

efficient way. The new file system accomplishes this goal by allowing the division of a single
file system block into one or more fragments. The file system fragment size is specified at the

* time that the file system is created; each file system block can be optionally broken into 2, 4, or
8 fragments, each of which is addressable. The lower bound on the size of these fragments is
constrained by the disk sector size, typically 512 bytes. The block map associated with each
cylinder group records the space availability at the fragment level; to determine block availabil-
ity, aligned fragments aeexamined. Figure Ishows a piece of a map from a 4096/1024 file
system.

Bits in map XXXX XXOO OOXX 0000
Fragment numbers 0-3 4-7 8-11 12-15
Block numbers 0 1 2 3

Figure I - Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use,
while a "0"' shows that the fragment is available for allocation. In this example, fragments
0-5, 10, and 11 are in use, while fragments 6-9, and 12-15 are free. Fragments of adjoining
blocks cannot be used as a block, even if they are large enough. In this example, fragments

* 6-9 cannot be coalesced into a block; only fragments 12-15 are available for allocation as a
block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is
* represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block.

If a file system block must be fragmented to obtain space for a small amount of data, the
remainder of the block is made available for allocation to other files. As an example consider
an 1 1000 byte file stored on a 4096/1024 byte file system. This file would uses two full size
blocks and a 3072 byte fragment. If no 3072 byte fragments are available at the time the file is
created, a full size block is split yielding the necessary 3072 byte fragment and an unused 1024
byte fragment. This remaining fragment can be allocated to another file as needed.

The granularity of allocation is the write system call. Each time data is written to a file,
the system checks to see if the size of the file has increased*. If the file needs to hold the new
data, one of three conditions exists:
I) There is enough space left in an already allocated block to hold the new data. The new

data is written into the available space in the block.
2) Nothing has been allocated. If the new data contains more than 4096 bytes, a 4096 byte

block is allocated and the first 4096 bytes of new data is written there. This process is
repeated until less than 4096 bytes of new data remain. If the remaining new data to be
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located, oth-
erwise a 4096 byte block is located. The new data is written into the located piece.

A program may be overwriting data in the middle of an existing file in which case space will already be allo-
cated.
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3) A fragment has been allocated. If the number of bytes in the new data plus the number
of bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The
contents of the fragment is copied to the beginning of the block and the remainder of the
block is filled with the new data. The process then continues as in (2) above. If the
number of bytes in the new data plus the number of bytes already in the fragment will fit
in three or fewer 1024 byte pieces, an unallocated fragment is located, otherwise a 4096

* . byte block is located. The contents of the previous fragment appended with the new data
is written into the allocated piece.
The problem with allowing only a single fragment on a 4096/1024 byte file system is that

data may be potentially copied up to three times as its requirements grow from a 1024 byte
fragment to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block.
The fragment reallocation can be avoided if the user program writes a full block at a time,
except for a partial block at the end of the file. Because file systems with different block sizes
may coexist on the same system, the file system interface been extended to provide the ability
to determine the optimal size for a read or write. For files the optimal size is the block size of
the file system on which the file is being accessed. For other objects, such as pipes and sockets,
the optimal size is the underlying buffer size. This feature is used by the Standard
Input/Output Library, a package used by most user programs. This feature is also used by cer-
tain system utilities such as archivers and loaders that do their own input and output manage-
ment and need the highest possible file system bandwidth.

The space overhead in the 4096/1024 byte new file system organization is empirically
observed to be about the same as in the 1024 byte old fie system organization. A file system
with 4096 byte blocks and 512 byte fragments has about the same amount of space overhead as
the 512 byte block UNIX file system. The new file system is more space efficient than the 512
byte or 1024 byte file systems in that it uses the same amount of space for small files while
requiring less indexing information for large files. This savings is offset by the need to use
more space for keeping track of available free blocks. The net result is about the same disk
utilization when the new file systems fragment size equals the old file systems block size.

In order for the layout policies to be effective, the disk cannot be kept completely full.
Each file system maintains a parameter that gives the minimum acceptable percentage of file
system blocks that can be free. If the the number of free blocks drops below this level only the

A system administrator can continue to allocate blocks. The value of this parameter can be
changed at any time, even when the file system is mounted and active. The transfer rates to be
given in section 4 were measured on file systems kept less than 90%6 full. If the reserve of free
blocks is set to zero, the file system throughput rate tends to be cut in half, because of the ina-
bility of the file system to localize the blocks in a file. If the performance is impaired because
of overfilling, it may be restored by removing enough files to obtain 10%k free space. Access
speed for files created during periods of little free space can be restored by recreating them
once enough space is available. The amount of free space maintained must be added to the
percentage of waste when comparing the organizations given in Table 1. Thus, a site running

* the old 1024 byte UNIX file system wastes 11.8% of the space and one could expect to fit the
some amount of data into a 4096/512 byte new file system with 5% free space, since a 512 byte
old file system wasted 6.9% of the space.

3.2. File system parausterkatlon
Except for the initial creation of the free list, the old file system ignores the parameters of

the underlying hardware. It has no information about either the physical characteristics of the
nm storage device, or the hardware that interacts with it. A goal of the new file system is to
purameterize the processor capabilities and mass storage characteristics so that blocks can be
allocated in an optimum configuration dependent way. Parameters used include the speed of the

V processor, the hardware support for mass storage transfers, and the characteristics of the mass
storage devices. Disk technology is constantly improving and a given installation can have
several different disk technologies running on a single processor. Each file system is
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parameterized so that it can adapt to the characteristics of the disk on which it is placed.
For mass storage devices such as disks, the new file system tries to allocate new blocks on

the same cylinder as the previous block in the same file. Optimally, these new blocks will also
be well positioned rotationally. The distance between "rotationally optimal" blocks varies
greatly; it can be a consecutive block or a rotationally delayed block depending on system
characteristics. On a processor with a channel that does not require any processor intervention
between mass storage transfer requests, two consecutive disk blocks often can be accessed
without suffering lost time because of an intervening disk revolution. For processors without
such channels, the main processor must field an interrupt and prepare for a new disk transfer.
The expected time to service this interrupt and schedule a new disk transfer depends on the
speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the
raeat which the disk spins. The allocation policy routines use this information to calculate the

number of milliseconds required to skip over a block. The characteristics of the processor
include the expected time to schedule an interrupt. Given the previous block allocated to a file,
the allocation routines calculate the number of blocks to skip over so that the next block in a
file will be coming into position under the disk head in the expected amount of time that it

* takes to start a new disk transfer operation. For programs that sequentially access large
amounts of data, this strategy minimizes the amount of time spent waiting for the disk to posi-
tion itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary
information includes a count of the availability of blocks at different rotational positions. Eight
rotational positions are distinguished, so the resolution of the summary information is 2 mil-.
liseconds for a typical 3600 revolution per minute drive.

The parameter that defines the minimum number of milliseconds between the completionI
of a data transfer and the initiation of another data transfer on the same cylinder can be
changed at any time, even when the file system is mounted and active. If a file system is
parameterized to lay out blocks with rotational separation of 2 milliseconds, and the disk pack is
then moved to a system that has a processor requiring 4 milliseconds to schedule a disk opera-
tion, the throughput will drop precipitously because of lost disk revolutions on nearly every

* block. If the eventual target machine is known, the file system can be parameterized for it
even though it is initially created on a different processor. Even if the move is not known in
advance, the rotational layout delay can be reconfigured after the disk is moved so that all
further allocation is done based on the characteristics of the new host.

* 3.3. Layout policies
The file system policies are divided into two distinct parts. At the top level are global pol-

* icies that use file system wide summary information to make decisions regarding the placement
of new mnodes and data blocks. These routines are responsible for deciding the placement of

* new directories and files. They also calculate rotationally optimal block layouts, and decide
when to force a long seek to a new cylinder group because there are insufficient blocks left in
the current cylinder group to do reasonable layouts. Below the global policy routines are the
local allocation routines that use a locally optimal scheme to lay out data blocks.I

Two methods for improving file system performance are to increase the locality of refer-
ence to minimize seek latency as described by [Trivedig~l, and to improve the layout of data to

mae larger transfers possible as described by [Nevalainen77). The global layout policies try to
imroe peormance by clustering related information. They cannot attempt to localize all data

rfrnebut must also try to spread unrelated data among different cylinder groups. If too4
much localization is attempted, the local cylinder group may run out of space forcing the data

to be scattered to non-local cylinder groups. Taken to an extreme, total localization can result
hE in a single huge cluster of data resembling the old file system. The global policies try to bal-

ance the two conflicting goals of localizing data that is concurrently accessed while spreading out
unrelated data.
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One allocatable resource is inodes. Inodes are used to describe both files and directories,
Files in a directory are frequently accessed together. For example the "list directory" corn-
mand often accesses the mnode for each file in a directory. The layout policy tries to place all-
the files in a directory in the same cylinder group. To ensure that files are allocated throughout I

* the disk, a different policy is used for directory allocation. A new directory is placed in the
cylinder group that has a greater than average number of free inodes, and the fewest number of
directories in it already. The intent of this policy is to allow the file clustering policy to succeed
most of the time. The allocation of mnodes within a cylinder group is done using a next free
strategy. Although this allocates the mnodes randomly within a cylinder group, all the mnodes for
each cylinder group can be read with 4 to 8 disk transfers. This puts a small and constant upper
bound on the number of disk transfers required to access all the mnodes for all the files in a
directory as compared to the old file system where typically, one disk transfer is needed to get

5' the mnode for each file in a directory.
The other major resource is the data blocks. Since data blocks for a file are typically

accessed together, the policy routines try to place all the data blocks for a file in the same
cylinder group, preferably rotationally optimally on the same cylinder. The problem with allo-
cating all the data blocks in the same cylinder group is that large files will quickly use up avail-
able space in the cylinder group, forcing a spill over to other areas. Using up all the space in a
cylinder group has the added drawback that future allocations for any file in the cylinder group
will also spill to other areas. Ideally none of the cylinder groups should ever become com-
pletely full. The solution devised is to redirect block allocation to a newly chosen cylinder
group when a file exceeds 32 kilobytes, and at every megabyte thereafter. The newly chosen
cylinder group is selected from those cylinder groups that have a greater than average number

% of free blocks left. Although big files tend to be spread out over the disk, a megabyte of data is
typically accessible before a long seek must be performed, and the cost of one long seek per
megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks.
The local allocation routines will always allocate the requested block if' it is free. It the

* requested block is not available, the allocator allocates a free block of the requested size that is
rotationally closest to the requested block. If the global layout policies had complete informa-
tion, they could always request unused blocks and the allocation routines would be reduced to
simple bookkeeping. However, maintaining complete information is costly; thus the implemen-
tation of the global layout policy uses heuristic guesses based on partial information.

If a requested block is not available the local allocator uses a four level allocation strategy:
1) Use the available block rotationally closest to the requested block on the same cylinder.
2) If there are no blocks available on the same cylinder, use a block within the same cylinder

group.
3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups look-

ing for a free block.
4) Finally if the rehash fails, apply an exhaustive search.

The use of quadratic rehash is prompted by studies of symbol table strategies used in pro-
gramming languages. File systems that are parameterized to maintain at least 10% free space
almost never use this strategy; file systems that are run without maintaining any free space typi-

1W - cally have so few free blocks that almost any allocation is random. Consequently the most
important characteristic of the strategy used when the file system is low on space is that it be
fast.
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4. Performanee
Ultimately, the proof of the effectiveness of the algorithms described in the previous sec-

tion is the long term performance of the new file system.
Our empiric studies have shown that the anode layout policy has been effective. When

running the "list directory" command on a large directory that itself contains many directories,
the number of disk accesses for anodes is cut by a factor of two. The improvements are even
more dramatic for large directories containing only files, disk accesses for anodes being cut by a
factor of eight. This is most encouraging for programs such as spooling daemons that access
many small files, since these programs tend to flood the disk request queue on the old file sys-
tem.

Table 2 summarizes the measured throughput of the new file system. Several comments
need to be made about the conditions under which these tests were run. The test programs
measure the rate that user programs can transfer data to or from a file without performing any
processing on it. These programs must write enough data to insure that buffering in the operat-
ing system does not affect the results. They should also be run at least three times in succes-
sion; the first to get the system into a known state and the second two to insure that the experi-
ment has stabilized and is repeatable. The methodology and test results are discussed in detail
in [Kridle83]t. The systems were running multi-user but were otherwise quiescent. There was
no contention for either the cpu or the disk arm. The only difference between the UNIBUS
and MASSBUS tests was the controller. All tests used an Ampex Capricorn 330 Megabyte
Winchester disk. As Table 2 shows, all file system test runs were on a VAX 11/750. All file
systems had been in production use for at least a month before being measured.

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU

old 1024 750/UNIBUS 29 Kbytes/sec 29/1100 3% 11%
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/1100 20% 43%
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/1100 21% 29%
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 73%
new SI 92/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 54%

Table 2a - Reading rates of the old and new UNIX file systems.

Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU

old 1024 750/UNIBUS 48 Kbytes/sec 48/1100 4% 29%
new 4096/1024 750/UNIBUS 142 Kbytes/sec 142/1100 13% 43%
new 8192/1024 750/UNIBUS 215 Kbytes/sec 215/1100 19% 46%
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323/1200 27% 94%
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 95%

Table 2b - Writing rates of the old and new UNIX file systems.

Unlike the old file system, the transfer rates for the new file system do not appear to
change over time. The throughput rate is tied much more strongly to the amount of free space
that is maintained. The measurements in Table 2 were based on a file system run with 10%
free space. Synthetic work loads suggest the performance deteriorates to about half the
throughput rates given in Table 2 when no free space is maintained.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of
the disk by the file system. An upper bound on the transfer rate from the disk is measured by
doing 65536" byte reads from contiguous tracks on the disk. The bandwidth is calculated by

t A UNIX command that is similar to the reading test that we used is, "cp file Idev/null". where "file" is
eight Meabytes long.

This number. 65536, is the maximal IO size supported by the VAX hardware, it is a remnant of the
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comparing the data rates the file system is able to achieve as a percentage of this rate. Using
.,~ .* this metric, the old fie systemn is only able to use about 3-4% of the disk bandwidth, while the

new file system uses up to 39% of the bandwidth.
In the new file system, the reading rate is always at least as fast as the writing rate. This

-. ., . is to be expected since the kernel must do more work when allocating blocks than when simply
reading them. Note that the write rates are about the same as the read rates in the 8192 byte
block fie system; the write rates are slower than the read rates in the 4096 byte block file sys-
tem. The slower write rates occur because the kernel has to do twice as many disk allocations
per second, and the processor is unable to keep up with the disk transfer rate.

In contrast the old fie system is about 50% faster at writing files than reading them. This
is emue te %isesystem call is asynchronous and the kernel can generate disk transfer

* requests much faster than they can be serviced, hence disk transfers build up in the disk buffer
cache. Because the disk buffer cache is sorted by minimum seek order, the average seek

.1. between the scheduled disk writes is much less than they would be if the data blocks are writ-
ten out in the order in which they are generated. However when the file is read, the read sys-
tem call is processed synchronously so the disk blocks must be retrieved from the disk in the
order in which they ame allocated. This forces the disk scheduler to do long seeks resulting in a
lower throughput rate.

The performance of the new file system is currently limited by a memory to memory copy
operation because it transfers data from the disk into buffers in the kernel address space and
then spends 40% of the processor cycles copying these buffers to user address space. If the
buffers in both address spaces are properly aligned, this transfer can be affected without copying
by using the VAX virtual memory management hardware. This is especially desirable when
large amounts of data are to be transferred. We did not implement this because it would
change the semantics of the fie system in two major ways; user programs would be required to
allocate buffers on page boundaries, and data would disappear from buffers after being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain together
kernel buffers. This would allow files to be allocated to contiguous disk blocks that could be
read in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors per track.

-~ The inability to use contiguous disk blocks effectively limits the performance on these disks to
less than fifty percent of the available bandwidth. Since each track has a multiple of sixteen
sectors it holds exactly two or three 3192 byte file system blocks, or four or six 4096 byte file
system blocks. If the the next block for a file cannot be laid out contiguously, then the
minimum spacing to the next allocatable block on any platter is between a sixth and a half a
revolution. The implication of this is that the best possible layout without contiguous blocks
uses only half of the bandwidth of any given track. If each track contains an odd number of
sectors, then it is possible to resolve the rotational delay to any number of sectors by finding a
block that begins at the desired rotational position on another track. The reason that block
chaining has not been implemented is because it would require rewriting all the disk drivers in
the system, and the current throughput rates are already limited by the speed of the available

~ .~.processors.

Currently only one block is allocated to a fie at a time. A technique used by the DEMOS
file system when it finds that a file is growing rapidly, is to preallocate several blocks at once,
releasing them when the file is closed if they remain unused. By batching up the allocation the

___ system can reduce the overhead of allocating at each write, and it can cut down on the number
of disk writes needed to keep the block pointers on the disk synchronized with the block alloca-
tion [Powell791.

system s PDP- I I ancestry.
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5.File system 10 unctional enhancements

The speed enhancements to the UNIX file system did not require any changes to the
smantics or data structures viewed by the users. However several changes have been generally
desired for some time but have not been introduced because they would require users to dump

systems be dumped and restored, these functional enhancements have been introduced at this
time.

5.1. Long file names
File names can now be of nearly arbitrary length. The only user programs affected by this

change are those that access directories. To maintain portability among UNIX systems that are
not running the new file system, a set of directory access routines have been introduced that

V. provide a uniform interface to directories on both old and new systems.
Directories are allocated in units of 512 bytes. This size is chosen so that each allocation

can be transferred to disk in a single atomic operation. Each allocation unit contains variable-
length directory entries. Each entry is wholly contained in a single allocation unit. The first
three fields of a directory entry are fixed and contain an mnode number, the length of the entry.
and the length of the name contained in the entry. Following this fixed size information is the

V.. null terminated name, padded to a 4 byte boundary. The maximum length of a name in a
directory is currently 255 characters.

Free space in a directory is held by entries that have a record length that exceeds the
space required by the directory entry itself. All the bytes in a directory unit are claimed by the
directory entries. This normally results in the last entry in a directory being large. When
entries are deleted from a directory, the space is returned to the previous entry in the same
directory unit by increasing its length. If the first entry of a directory unit is free, then its mnode
number is set to zero to show that it is unallocated.

5.2. File locking
The old file system had no provision for locking files. Processes that needed to synchron-

ize the updates of a file had to create a separate "lock" file to synchronize their updates. A
process would try to create a "lock" file. If the creation succeeded, then it could proceed with
its update; if the creation failed, then it would wait, and try again. This mechanism had three
drawbacks. Processes consumed CPU time, by looping over attempts to create locks. Locks
were left lying around following system crashes and had to be cleaned up by hand. Finally,
C ~processes running as system administrator are always permitted to create files, so they had to

use a different mechanism. While it is possible to get around all these problems, the solutions
are not straight-forward, so a mechanism for locking files has been added.

The most general schemes allow processes to concurrently update a file. Several of these
techniques are discussed in [Peterson83l. A simpler technique is to simply serialize access with
locks. -To attain reasonable efficiency, certain applications require the ability to lock pieces of a

file. Locking down to the byte level has been implemented in the Onyx file system by
IBassS I . However, for the applications that currently run on the system, a mechanism that
locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory
ez: locks. The primary difference between advisory locks and hard locks is the decision of when to

override them. A hard lock is always enforced whenever a program tries to access a file; an
advisory lock is only applied when it is requested by a program. Thus advisory locks are only
effective when all programs accessing a file use the locking scheme. With hard locks there
must be some override policy implemented in the kernel, with advisory locks the policy is
implemented by the user programs. In the UNIX system, programs with system administrator

S privilege can override any protection scheme. Because many of the programs that need to use
locks run as system administrators, we chose to implement advisory locks rather than create a
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Protection scheme that was contrary to the UNIX Philosophy or could not be used by system
41 administration programs.

The file locking facilities allow cooperating Programs to apply advisory shared or exclusive
locks on files. Only one process has an exclusive lock on a file while multiple shared locks may
be present. Both shared and exclusive locks cannot be present on a file at the same time. If
any lock is requested when another process holds an exclusive lock, or an exclusive lock is
requested when another process holds any lock, the open will block until the lock can be
gained. Because shared and exclusive locks are advisory only, even if a process has obtained a
lock on a file, another process can override the lock by opening the same file without a lock.

Locks can be applied or removed on open fies, so that locks can be manipulated without
needing to close and reopen the fie. This is useful, for example, when a process wishes to
open a file with a shared lock to read some information, to determine whether an update is

* required. It can then get an exclusive lock so that it can do a read, modify, and write to update
the file in a consistent manner.

A request for a lock will cause the process to block if the lock can not be immediately
obtained. In certain instances this is unsatisfactory. For example, a process that wants only to
check if a lock is present would require a separate mechanism to find out this information.
Consequently, a process may specify that its locking request should return with an error if a
lock can not be immediately obtained. Being able to poll for a lock is useful to "daemon"
processes that wish to service a spooling area. If the first instance of the daemon locks the
directory where spooling takes place, later daemon processes can easily check to see if an active
daemon exists. Since the lock is removed when the process exits or the system crashes, there
is no problem with unintentional locks files that must be cleared by hand.

I- Almost no deadlock detection is attempted. The only deadlock detection made by the sys-
temn is that the file descriptor to which a lock is applied does not currently have a lock of the
same type (i.e. the second of two successive calls to apply a lock of the same type will fail).
Thus a process can deadlock itself by requesting locks on two separate file descriptors for the
same object.

.5.3. Symbolic links
The 512 byte UNIX file system allows multiple directory entries in the same file system to

reference a single file. The link concept is fundamental; files do not live in directories, but
exist separately and are referenced by links. When all the links are removed, the file is deallo-
cated. This style of links does not allow references across physical file systems, nor does it sup-
port inter-machine linkage. To avoid these limitations symbolic links have been added similar to
the scheme used by Multics [Feiertag7 1].

A symbolic link is implemented as a file that contains a pathname. When the system
encounters a symbolic link while interpreting a component of a pathname, the contents of the
symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield
the resulting pathname. If the symbolic link contains an absolute pathname, the absolute path-
name is used, otherwise the contents of the symbolic link is evaluated relative to the location of
the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a pathname
that they are using. However certain system utilities must be able to detect and manipulate
symbolic links. Three new system calls provide the ability to detect, read, and write symbolic
links, and seven system utilities were modified to use these calls.

In future Berkeley software distributions it will be possible to mount file systems from
other machines within a local file system. When this occurs, it will be possible to create sym-
bolic links that span machines.
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5.4. Rename
Programs that create new versions of data files typically create the new version as a tem-

* porary file and then rename the temporary file with the original name of the data file. In the
old UNIX file systems the renaming required three calls to the system. If the program were

* interrupted or the system crashed between these calls, the data file could be left with only its
-~ temporary name. To eliminate this possibility a single system call has been added that performs

the rename in an atomic fashion to guarantee the existence of the original name.
In addition, the rename facility allows directories to be moved around in the directory tree

hierarchy. The rename system call performs special validation checks to insure that the direc-
* tor tree structure is not corrupted by the creation of loops or inaccessible directories. Such

corruption would occur if a parent directory were moved into one of its descendants. The vali-
dation check requires tracing the ancestry of the target directory to insure that it does not
include the directory being moved.

5.5. Quotas
The UNIX system has traditionally attempted to share all available resources to the

greatest extent possible. Thus any single user can allocate all the available space in the file sys-
tem. In certain environments this is unacceptable. Consequently, a quota mechanism has been
added for restricting the amount of file system resources that a user can obtain. The quota
mechanism sets limits on both the number of files and the number of disk blocks that a user
may allocate. A separate quota can be set for each user on each file system. Each resource is
given both a hard and a soft limit. When a program exceeds a soft limit, a warning is printed
on the users terminal, the offending program is not terminated unless it exceeds its hard limit.
The idea is that users should stay below their soft limit between login sessions, but they may
use more space while they are actively working. To encourage this behavior, users are warned

- .~-*when logging in if they are over any of their soft limits. If they fail to correct the problem for
too many login sessions, they are eventually reprimanded by having their soft limit enforced as

* their hard limit.
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6. Software engineering
The preliminary design was done by Bill Joy in late 1980; he presented the design at The

USENIX Conference held in San Francisco in January 1981. The implementation of his design
was done by Kirk McKusick in the summer of 1981. Most of the new system calls were imple-
mented by Sam Leffler. The code for enforcing quotas was implemented by Robert Elz at the

* . University of Melbourne.
To understand how the project was done it is necessary to understand the interfaces that

the UNIX system provides to the hardware mass storage systems. At the lowest level is a raw
disk. This interface provides access to the disk as a linear array of sectors. Normally this inter-
face is only used by programs that need to do disk to disk copies or that wish to dump file sys-
tems. However, user programs with proper access rights can also access this interface. A disk
is usually formnated with a file system that is interpreted by the UNIX system to provide a direc-
tory hierarchy and files. The UNIX system interprets and multiplexes requests from user pro-
grams to create, read, write, and delete files by allocating and freeing mnodes and data blocks.
The interpretation of the data on the disk could be done by the user programs themselves. The

-~ reason that it is done by the UNIX system is to synchronize the user requests, so that two
processes do not attempt to allocate or modify the same resource simultaneously. It also allows
access to be restricted at the file level rather than at the disk level and allows the common file
system routines to be shared between processes.

The implementation of the new file system amounted to using a different scheme for for-
mating and interpreting the disk. Since the synchronization and disk access routines themselves
were not being changed, the changes to the file system could be developed by moving the file
system interpretation routines out of the kernel and into a user program. Thus, the first step
was to extract the file system code for the old file system from the UNIX kernel and change its
requests to the disk driver to accesses to a raw disk. This produced a library of routines that
mapped what would normally be system calls into read or write operations on the raw disk.
This library was then debugged by linking it into the system utilities that copy, remove,
archive, and restore files.

A new cross file system utility was written that copied files from the simulated file system
to the one implemented by the kernel. This was accomplished by calling the simulation library
to do a read, and then writing the resultant data by using the conventional write system call. A
similar utility copied data from the kernel to the simulated file system by doing a conventional
read system call and then writing the resultant data using the simulated file system library.

* The second step was to rewrite the file system simulation library to interpret the new file
system. By linking the Dew simulation library into the cross file system copying utility, it was
possible to easily copy files from the old file system into the new one and from the new one to

* the old one. Having the file system interpretation implemented in user code had several major
benefits. These included being able to use the standard system tools such as the debuggers to
set breakpoints and single step through the code. When bugs were discovered, the offending
problem could be fixed and tested without the need to reboot the machine. There was never a
period where it was necessary to maintain two concurrent file systems in the kernel. Finally it
was not necessary to dedicate a machine entirely to file system development, except for a brief
period while the new file system was boot strapped.

The final step was to merge the new file system back into the UNIX kernel. This was
done in less than two weeks, since the only bugs remaining were those that involved interfacing
to the synchronization routines that could not be tested in the simulated system. Again the
simulation system proved useful since it enabled files to be easily copied between old and new
file systems regardless of which file system was running in the kernel. This greatly reduced the
number of times that the system had to be rebooted.

The total design and debug time took about one man year. Most of the work was done
on the file system utilities, and changing all the user programs to use the new facilities. The
code changes in the kernel were minor, involving the addition of only about 800 lines of code

4_1 , LCSRG TR/7 July 27, 1983 McKusick, et. al.
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Finding Files Fast
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ABSTRACT

A fast filename search facility for UNIX is presented. It consolidates two data compression methods with
a novel string search technique to rapidly locate arbitrary files. The code, integrated into the standard
find utility, consults a preprocessed database, regenerated daily. This contrasts with the usual mechan-
im of matching search keys against candidate items generated on-the-fly from a scattered directory

structure.
The pathname database is an incrementally-encoded lexicographically sorted list (sometimes referred to
as a "front-compressed" file) which is also subjected to common bigram coding to effect further space
reduction. The storage savings are a factor of five to six over the standard ascii representation. The list
is scanned using a modified linear search specially tailored to the incremental encoding; typical "user
time" required by this algorithm is 40%6-So% less than with naive search.

- "- Introducton

Locating files in a computer system, or network of systems, is a common activity. UNIX users
have recourse to a variety of approaches, ranging from manipulation of cd, h, and grep commands, to
specialized programs such as U. C. Berkeley's wherels and fleece, to the more general UNIX find.

The Berkeley fleece is unfortunately restricted to home directories, and whereis is limited to eke-
ing out system code/documentation residing in standard places. The arbitrary

find / -name " < filename >'" -print

'- " will certainly locate files when the associated directory structure cannot be recalled, but is inherently
slow as it recursively descends the entire file system to mercilessly thrash about the disk. Impatience

, has prompted us to develop an alternative to the "seek and ye shall find" method of pathname search.

?uueupotatleu
Why not simply build a static list of all files on the system to search with grep? Alas, a healthy

system with 20000 files contains upwards of 1000 blocks' of filenames, even with an abbreviated hi (vs.
Am) adopted for user home prefixes. Grep on our unloaded 30-40 block/second PDP 11/70 system
demands half a minute for the scan. This is unacceptable for an oft-used command.

Incidently, it is not much of a sacrifice to be unable to reference files which are less than a day
.7 old-ether the installer Is likely to be contactable, or the file is not quite ready for use! Well-aged files

originated by other groups, usually with different filesystem naming conventions, are the probable can-
-,'a didmes for search.

a. To speed acces for the application, one might consider binary search or hashing, but these
NIP schemes do not work well for partial matching, where we are interested in portions of pathnmes.
S.%

. . Though fast, the methods do not save space, which is often at a premium. An easily implementable
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space saving technique for ordered data, known as incremental encoding, has been adapted for the simi-
lhr task of dictionary compression [Morris/Thompson, 19741. Here, a count of the longest prefix of the
preceding name is computed. For example,

/usr/src
Iusr/src/cmd/aardvark.c
/usr/src/cmd/armadillo.c
/usr/tmp/zoo

transforms to
0 /usr/src
8 /cmd/ardvark.c

14 armadillo.c
S Imp/zoo

If we choose to delimit the pathname residue with parity-marked count bytes, decoding can be as sim-
ple as (omitting declarations):

fp - fopen ( COMPRESSED FILELIST, "r");
while ((count - (getc( fp ) & 0177)) !- EOF) 

for ( p - path + count; (Op+ + - etc ( fp )) < 0200;)
/0 overlay old path with new 0/

ungetc (--p, fp);
*p-- - NULL;
If ( match ( path, name) -- YES)

puts ( path);

where match is a favorite routine to determine if string path contains name.
In fact, since the coded filelist is about five times shorter than the uncoded one, and the decoding

is very easy, this program runs about three to four times as fast as the efficient grep on the expanded
Ale.

Speedier Yet
Useful as it is, there is still room for improvement. (Aside: this code is best inserted into the

distributed find. There is no need to burden UNIX with another command land manual page) when we
can improve an existing similar program. Conveniently, there is no two-argument form of find so we
can fill the vacuum with an unadorned

find name
to perform the function.)

Notice that the above code fragment still searches through all the characters of expanded list,
albeit in main memory instead of disk. It turns out that this can be avoided by matching the name sub-
string licfvI against a reversed pathname, until the boundary delineated by the repetition count.
Assuming amend points to the final character of a NULL-byte prefixed name, then replace match by

fr(s - p, cutoff - path + count; s > - cutoff; s--)(
If (es-n *namend) r 0 quick first char check 0/

0 fr(p- namend- I,q s- !;"p!- NULLp--,q.-)
If ( "q !- p)

break;
If ( p -- NULL) I

puts ( path );
break;

Volume 1, Number I March 1983 9
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This is more easily understood by considering three cases. If the substring lies wholly to the right of
the cutoff, the match will terminate successfully. If there is an overlap, the cutoff becomes "soft" and
the match continues. If the substring lies completely to the left of the cutoff, then a match would have
been discovered for an earlier pathname, so we need not search these characters! Technically, cutoff
must be re-anchored to path immediately after matches. This condition is omitted above for the sake
of clarity. Statistics on overlap have not been garnered, but a 40-40% speedup is consistently observed.

The author has not discovered this refinement in the literature.

Two Tier Tchlnique
4, Shell-style filename expansion without undue slowdown can be had by first performing the fast

search on a metacharacter-free component of name, then applying regular expression syntax "glob-
bing" to these selected paths via the slower recursive amatch function internal to find. Ergo,

puts ( path);
becomes

! If (globchars -, NO amatch (path, name))
puts ( path);

where globchars is set if name contains shell glob characters. Using wildcarc:ng, a primitive man com-
mand might be

vtroff -man 'find "man'"$1".1-91"

Diminishing Returns
Production find code at Ames exacts a further 20-25% space compression (entropy reduction) by

assigning single non-printing ascii codes to the most common 128 bigrams. ".c" and ".P" figure prom-
inently. Room for these codes is made by reserving only 28 count codes for the likeliest "differential"
counts (the interline difference between one prefix count and the next), along with a "switch" code for
out-of-range counts (remember the possible 1024 byte pathnames, courtesy BSD 4.2). Printable ascii
comprises the filename residue. We will not dwell on this rather ad hoc means, which barely reduces
search time.

Other algorithms to address the time-space complexity tradeoff such as Huffman or restricted vari-
ability coding (Reghbati, 19811 do not look promising-they only change an 1/0-bound process to a
compute-bound one. Some experiments were done with the inverted file programs mv and hunt.

. *' Here, process startup overhead (the fgrep call to disambiguate "false drops") and space consumption
(full pathnames plus an index) make imp invocations noncompetitive. Boyer-Moore sublinear search
[Boyer, 19771 or macro model methods [Storer/Szymanski, 19821 might be employed, but must con-
cern typically short 4-10 character patterns and equally short post-compression pathname content, for all
their added complexity.

To conclude, we are content to scan 19000 filenames in several seconds using 180 blocks and two
extra pages of C code.
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DATABASE PORTAL& A NEW APPUCATION PROGRAM ENT RFACE

Michal Stonebraker
Laurmwe A Rowe

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

1. EITJR)DUCTION

There have been several recent proposals for user interfaces whereby a

person can "browse" through a database [CATEO. IHER080. MARYBO, ROWE82.

SFON82. ZLO052. Such interfaces allow one to select data of interest (e.g.. "all

employees over 40") and then navigate through this data making ad-hoc

changes.

A simple illustration of a browsing program is described with the aid of

figure 1. This program allows a user to "edit" a relation. It is similar to a full

screen, visual text editor (e.g., vi [JOY?9] or EMACS [STAL81]) except that a rela-

tion is edited rather than a text fle. This example browser will be used to

motivate the need for a new programming language interface to a database

management system.

*"In figure 1 data from an employee relation is displayedL Since only a few

rows of the relation can fit on the screen at one time, cursor commands are pro-

vided to scroll forward and backward. In other words, the screen provides a

'portal" onto the employee relation which the user can reposition. Commands

are also provided so a user can edit the data on the screen. For example, Dave

Smith's salary can be changed by repositioning the cursor to the feld containing

; '' . ' ' •' ' - ' '' ' ' . . . .-.. , . •.. . - . . ° . A. - .~ .-. . . . ..*
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4. employee relation

name e salar dept
Ken Johnson 43 25000 sales
Sue Keller 40 28000 accounting
Dave Smith 52 30000 purchasing
Kathy Able 28 22000 accounting
George Toms 28 18000 shipping
Mike Baker 34 27000 sales

find insert delete update quit

F igure 1. Relation editor interface.

30,000 and entering a new value.

Other operations are listed at the bottom of figure 1. The flid operation

scans forward or backward through the data from the row the CRT cursor is on

until the first row is found that satisfies a user specified predicate. The imsert

and delete operations allow the user to enter or remove rows from the table.

The update operation commits changes to the database so they become visible

to other users. Lastly. the Vit operation exits the editor.

The data manipulation facilities supported by conventional programming

language interfaces [ALLM76, ASTR76. SCHM77, ROWE79. WASS79] allow a pro-

gram to bind a query to a database cursor.1 open it, and fetch the qualifying

tuples sequentially. Moreover, one can specify that a query or collection of

queries is to be a transaction [ESWA76. GRAY78]. The DBMS provides serializabil-

Ity and an atomic commit for such transactions.

There are several drawbacks to such an interface when used to implement a

browser such as the one discussed above. First, the relation editor can scroll

1A detabee aw is an embedded quey laugftae aecept not the cursr dislayed n a CRT.
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backwards, thereby requiring that the cursor be repositioned to a previously

fetched tuple. This feature is not supported by a conventional programming

language interface (PU). Second, current PU's return one record at a time.

When the user scrolls forward or backward, a browsing program would prefer

that the DBMS return as many records as will fit on the screen. The program

issues one request and receives several records. This protocol simplifies the

browsing program code.

Next. the browser must scan forward or backward to the first tuple that

satisfies a predicate. This function is needed to implement the find operation

described above. Of course, the predicate could be tested in the application

program but would duplicate function already present in the DBMS. A cleaner

and more efficient solution would be to use the DBMS search logic through a new

programming language interface.

Lastly, to implement the updafta operation, the relation editor must be able

to commit updates incrementally during the execution of a single query. Con-

ventional transaction management facilities do not support this kind of update.

This paper describes an application program interface that supports the

data manipulation and transaction management facilities required to implement

database browsers. The basic idea is to have the database management system

support an object, called a portal, that corresponds to the data returned by a

single query and allow a program to retrieve data from it. igure 2 shows a gen-

eral model for the proposed system. The DBMS manages portals and allows a

program to selectively retrieve or update data from the portal with a new collec-

ton of DBMS commands.

A portal can be thought of as a relational iew that is o,*dd. The query

that defines the portal retrieves the data in some particular sequence which

establisbes the ordering of tuples in the portal. Each tuple will have an extra

"0%• - - - ,
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[STOB~a]Fligure Z General Model for Portals.

field that contains a unique sequence number, called a line identifler (LID)

[STO82a]that represents the position of the tuple in the portal. Line

identifiers are automatically updated when tuples are inserted into or deleted

from the portal so the position of each tuple is always represented by the line

identifier.

Commands are provided which return collections of portal tuples to the

application program. For example, a program can request tuples which:

ematch a predicate (e.g., "all employees over 40").

*scroll from the current position of the cursor (e.g., the tuples whose LID

exceeds the LID of the tuple pointed at by the cursor by less than 24), or

* * surround a particular tuple in the portal (e.g., the tuples with an IM within

12 of the ID of the tuple corresponding to Jones)

Changes made to the data in a portal are propagated to the relations that

define it when the update is committed. Six commit modes are supported so
I.

1-...................
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that different forms of concurrency control can be implemented by an applica-

tion program. In addition to modes that low one or more queries to be treated

as an atomic transaction, a mode is provided that allows a transaction to be

committed incrementally.

This paper describes the design and one proposed implementation of this

new application program interface. Section 2 presents the design of the portal

abstraction. Section 3 describes a new collection of tactics that a database sys-

tem can use to implement portals. Section 4 discusses some issues in designing

versions of the language constructs for different programming languages and

contains some other comments on their implementation and use.

Z APPLJCATION PRWGRAM DnMVACE

The application program interface includes language constructs to define a

portal, to open and close a portal, to fetch tuples from a portal, to update tuples

In a portal, and to further restrict a portal. A portal is defined by specifying a

query that selects the tuples that are in it. The general format of a portal

defAnition is similar to the definition of a cursor ALASMR76] and is2

let portal be (target-list) [whore qualification]

where poota1 is the name of the portal torget-list is a comma separated list of

expressions that define the column3 or attributes in the portal, and qualification

is a predicate that determines which tuples arc in the portal. For example,

given an employee relation with the following attributes

EMP (name, address, age, salary, years-service, dept)

the command

le p be (EMP.name, EP.salary, birthyear - 1982 - ELNP.age)
where .P .silary > 25000

a[Z Lmheates that z is opUMI.

UV



defines a portal. named p. that contains the name, salary, and birthyear of

employees whose salary is greater than $25.000.

The query that defines a portal can be a multiple variable query. For exam-

pie, given a department relation

DEPT (dname, mgr, floor, budget)

' a portal that contains employee and department information can be defined by

let pl be (EMP.name, EMP.dept. DEPT.ftoor) where EMP.dept = DEPT.dname

This portal contains the name, department, and department floor for all employ-
'p.--. ees. The portal query can also include programming language variables so that

, it can be defined at run-time. For example, the following declaration

let p2 be (EMP.name) where EMP.salary > x and q

includes two program variables, z and q. that allow the employee's salary and

some other predicate (e.g., 'EMP.age < 20") to be substituted at run-time.

The definition of a portal causes the query to be parsed and stored by the

- ." DBMS. Then, opening a portal causes the values of run-time variables in the por-

tal query to be passed to the DBMS. Depending on the implementation tactic

1', chosen by the DBMS, the query might be executed and a temporary relation

* "created to store the portal data. Other implementation tactics are described in

the next section. For now. a portal can be thought of as a view. The open com-

mend also specifies the program variable into which data will be fetched and an

S./ optional lock mode that selects a concurrency control mechanism for the por-

tal. The general format of the open command is

open portal Into variable [with lock-mode = n]

where pofto isi the name of the portal, vw'labe is a program buffer, and n is an
integer that identifes a lock-mode. The program buffer is an "array of records"

[171. declared in the application program which determines the maximum number of

., "o ., . * . .. .. *..***.*..***~% V \' '~~ :u~ .- <
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tuples that can be retrieved from the portal by one command. Lock modes and

. transaction management are discussed below.

A portal remains open until it is explicitly closed by a close command. The

format of a close command is

close portal

Figure 2 shows a PASCAL program fragment that declares a buffer, defines a

portal, and opens it. The buffer, named buf, has a field with the same name as

each attribute in the portal. Notice that even though the line identifier was not

explicitly defined in the target-list of the portal definition, it is included in the

buffer record. A column, named LID, is implicitly defined for each portal

Data can be retrieved from the portal and stored in the program buffer by

the fetch command. For example, the command

fetch buf

fetches data from p and stores it into bur. When the program run-time environ-

but: ~ declare buffer |

vw- bu: array [1..10] of

ID: integer;
name: array [1..20] of char.
salary: real;
age: integer

end

let p ;e(EP.name. EMP.salary. EMP.age) ere EMPu.alary > 25000
open p Into but

and

PIgure 2. PASCAL program fragment that declares a portal.

.9 f.-. ;, , ... . .., . ,.. , , . -. . , , . . . . , .- . . . , .
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ment passes this command to the DBMS. it also passes the number of records

that can be stored in the buffer The DBMS returns the number of tuples

requested to the program. The attribute values returned from the portal are

automatically converted to the appropriate data types and stored in the buffer.

A built-in function is provided that indicates how many records were actu-

ally stored in the buffer by the last fetch command. The programmer can use

this function to determine if any data was returned or if the buffer is only par-

tially filled. For example, if the portal in figure 2 contained only 5 records, the

fetch command above would not fill the buffer. On the other hand, if the portal

contained 50 tuples, the command would fetch only the first 10 tuples because

only that number can fit in the buffer. The program can retrieve the next 10

tuples by executing a fetch command with a where-clause as follows:

fetch buf where p.LID > 10

This command fetches 10 tuples beginning with tuple number 11. Notice that

the portal name, in this case p, is used to reference tuples in the portal.

A fetch command can have an arbitrary qualification that will restrict the

tuples retrieved to those that satisfy a predicate. For example, the program

might want to retrieve employees under 20 who make more than $40,000. The

command to retrieve these records is

fetch buf where p.age < 20 and p.salary > 40000

The fetch command can also be used to retrieve data by position and to

search forwards or backwards. The general format of the fetch command is:3

fetch [previouu] buffer
1where I after I before I aroundl qualification]

Aposion fetch uses the keyword after, before, or around rather than where. A

fetch with an after-clause indicates that the first tuple that satisfies the

izb, indicats that z ory =t appear.

: .:,"- ' .*-,'.*',-**'.-. "*.- """. "" .. . .. . .. .. ". .". ".. . ..- * . .. * .' ..- .... ,. .-... C. .. -'-',..., .-,. , , , " - . ,-;..., ...,,. .. ., ",,' ',.. ,, ,.,,•,.- , . , ,. ,. , ,,.. " " ,..-.,, ,. ,°-.-,,,..,-
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qualification and the tuples immediately after it- in the portal ordering are to be
. retrieved. For example, if the following command was executed on the portal in

figure 2 it would retrieve 10 tuples beginning with tuple number 40.

fetch buf after p.LID = 40

". Tuples 40 to 49, if they exist, would be stored in buf. The tuple that satisfies the

qualification (i.e., tuple number 40) is stored in buffl]. Subsequent returned

tuples follow the selected one in LD order and do not necessarily satisfy the

qualification. In contrast, all tuples returned by a restriction fetch (ie., one

that includes a where-clause) must satisfy the qualification.

The keyword before indicates that the first tuple that satisfies the

qualification should be stored at the end of the buffer. Consequently, the buffer

>2will contain the qualifying tuple and the tuples that immediately precede it. The

keyword around indicates that the qualifying tuple should be stored in the mid-

die of the buffer and the tuples immediately before and after it will be fetched.

The qualification in a position fetch can be an arbitrary predicate such as

a... iftr p.UD > 10 and p.age < 25

which retrieves tuples beginning with the first one found after tuple number 10

that satisfies the qualification on age. This facility can be used to implement a

search operation which scans for the first record after the current one that

satisfies a user-specified predicate. The following command fetches the

appropriate data
.. .

fetch but around p.LJD > n and q

where n is the LID of the current record and q is a string variable that contains

the user-specified predicate. Most browsers also allow users to search back-

wards. The fetch preuimu command can be used to implement this function. It

scans backward through the portal rather than forward. For example. the com-

.-" -. '-." - *_ . . -. -.. '-'-' 2 .'- .. ".- • • -, ,'.i ..- • . ...
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rnand

fetch previous buf befo' p.LID < n and q

"' searches for the first record before the current one that satisfies a search

predicate.

The qualification in a fetch command can be any boolean combination of

terms involving portal variables (e.g., "p.age = 40") and application program

variables (.., "q from the example above"). It is also possible to support

qualifications involving join terms to other data base relations.

A command is provided which allows a programmer to restrict the portal to

a smaller subset of the data that it currently contains. The format of the res-

trict command is:

resbict portal where qualification

This command removes from the portal all tuples which do not satisfy the

qualification. For example.

restrict p whre p.age > 25

removes all employees 25 and under from the portal. A restrict command is
Sequivalent to defining a new portal with a qualification obtained by AND'ing the

new qualification to the one that defined the portal.

The portal abstraction also includes update commands to insert, delete.

."' and replace tuples in the buffer. Appropriate commands are also passed to the

DBMS which change the portal so that subsequent fetches will see the updated

• *ro data. When a transaction is committed, portal changes become visible to other

DBMS users.

Because portals are defined by queries, some updates cannot be unambigu-

ously mapped onto the underlying relations. This problem is Identical to theK problem of updating relational views [DAYA7B. rON75]. However. since portal

".4-"



* oq " -*. . . . . ..- _ . - .

"_ - ..-

updates affect single tuples only, several special purpose view update algorithms

appear possible for this restricted case.

-- - The general format of the replace command is

replace buffer-reference (target-list)

where buffer-reference is a program reference to a record in the buffer (e.g.,

. - bufJi]). For example, the following command changes the age of the tuple

stored at buI4]:

replace buf[4] (age = 25)

This command does not change tuple number 4; it changes which ever tuple was

last fetched into buf[4].

The insert command appends a tuple to the portal. The general format of

this command is:

insert (target-list) before buffer-reference

This command inserts the tuple before the buffer array element referenced.

The elements in the buffer are moved down to make room for the new data.

ASince the buffer is fixed size, the last record must be is removed from the

buffer. The new record is assigned the LID of the element it is being inserted

before. The LIDs of all records following the new element are incremented. The

new tuple and its LW are passed to the DBMS which updates the portal.

The last update command allows tuples to be deleted. The format of this

command is:

delete buffer-reference

7- The LID of the buffer element referenced is set to zero to Indicate that it has

been deleted. The MD's of all records that follow it in the buffer are decre-

mented. Then. the LiD and the deleted record value are passed to the DBMS

which updates the portal.

.-* .*> ... ,'.v.... . .e . ,.'.-'......',"...,..'-".'< .,-. , .<-:.-,- . . _ . . . . .
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Update commands are passed to the DBMS which records the changes so

that subsequent fetches will return the new data. The lock mode selected when

the portal is opened will determine when the update is committed to the data-

base. The following lock modes are provided.

1. The tuples returned by a fetch command are locked. and tuples locked by

the previous fetch command are unlocked. Updates are commitLed when

the next fetch command does not span the updated tuples.

2. This option is the same as number 1 except that each update is committed

immediately upon a replace, delete, or append command.

This option is a variant on optimistic concurrency control [BARGBO,

KUNGB1]. The browsing program does not lock a tuple until it is deleted or

% -. replaced. When a tuple in a portal is modified, the tuple(s) from the

relation(s) that define the portal are locked and the portal tuple is

:'V recreated. If the portal tuple to be modified is the same as the recreated

tuple, the update is comnitted. Otherwise, an error is returned to the pro-

gram. Append commands are committed immediately. This locking mode

allows a browsing application to set no long-term read locks during a ses-

sion.

4. This option is the same as number 3 except that all tuples returned by the

last fetch command are locked, refetcbed, and compared with the

recreated values. The update is committed only if they all are the same.

This mode is appropriate if an update is determined by data elsewhere in
the scope of the current fetch command.

." Transactions are defined explicitly by the program. A begin and end tran-

saction command are executed to delimit the beginning and end of the

transaction. A transaction can be an arbitrary collection of feteh, insert,

delete, and replace commands.

= . §:22-.:-i/mw~.>Y-...*..h *.
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. All commands between opening and closing a portal are considered one

transaction.

The conventional definition of a transaction is that it is a collection of reads

and writes which are atomically committed and serializable [GRAY?8, ESWA76].

* Lock modes 3-6 obey this model. For example. lock mode 4 can be implemented

* as follows:

begin transaction
recreate the most recently fetched tuples
f tuples changed

then abort the replace or delete
else update relation(s)

end transaction

Lock modes 1 and 2, on the other hand. do not correspond Lo any atomically

committed and serializable collection of reads and writes. They both require

that locks be held after the end of an atomically committed actior.

The next section describes several tactics for implementing portals.

IMPLEMDrAlON STRTEIS

This section describes four strategies for implementing the portal abstrac-

tion. It is expected that a data manager would implement most (or all) of them.

For each portal the DBMS would select one based on the estimated size of the

portal and hints from the user program. Selecting an implementation for a por-

tal is analogous to optimizing a query in a conventional relational system. This

section also describes the transaction management facilities needed to imple-

ment the six lock modes for portals.

1. Prta m ementa

The first strategy for implementing portals is to create an ordered tem-

porary relation that contains the portal data. Portal commands would then be

translated into conventional queries on this temporary relation. A tuple in the

a.2"
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temporary relation must contain a column for each attribute in the portal and a

disk pointer4 to each tuple used to construct it. For example, given the portal

let p be (EMP.narne, EMP.age, EMPP.dept, DEPT.mgr)

where EMP.dept = DEPT.dname

defined on the EMP and DEPT relations described in section 2, a temporary rela-

tion is created for this portal by executing the following query

retrieve into TEMP(EMP.name. EM .age, E. .dept, DEPT.mgr,
EMP.ID=EVP.TID, DEPTJID=DEPT.TID)

where EMP.dept = DEPT.dname

If TEMP is organized as an ordered relation [STONS2a]. the DBMS will automati-

cally create and maintain the LID attribute using an auxiliary storage structure

called an ordered B-t-ee (OB-tree). An OB-tree is similar to a B+-tree (i.e..

data is stored in the leaves of the tree and a multi-level index is provided to

access the data as indicated in figure 3). The leaf pages in the tree contain

pointers to the tuples in the relation (Le., TI/s). The LID ordering of the tuples

is represented by the order of the TIlls in the leaf pages. Hence, traversing the

leaf pages from left to right scans the tuples in L[D order (i.e., the first TID in

the leftmost page is the tuple with LID 1). Non-leaf pages contain a pointer to

the next level of the index or a leaf page and a count of the number of tuples in

that subtree.

The tree structure and the tuple counts can be effectively used by the DBMS

to retrieve or update tuples based on their LID. For example, to find the -tb

tuple, the DBMS begins at the root page and selects the subtree that contains

the tuple by performing a simple calculation. Assuming that i is the number of

tuples in the first i subtrees, i.e.,

% = coaint,
1

4 In a relstjolm DWiS, a pabst to a *.vle in a reJlatio is called a hqpb *ino (77D).

-7
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the subtree that contains the 1-th tuple is pointed to by the entry at

rmin s, < I is,

" This process is performed iteratively until the algorithm reaches a leaf page

which is guaranteed to contain the tuple. The calculation at intermediate levels

of the tree to select a subtree must take into account the number of tuples that

fw- precede the first tuple in the subtree. Assuming that this number is z, the cal-

culation to select the correct subtree for intermediate levels is

mi =x- < I m +s,

The value for z is st. at the next outer level. The TID for the L-th tuple is stored

in the leaf page at entry I -:.

For example, in figure 3 to find the tuple with LID 17, the algorithm will

examine page 1 and select the second subtree because 17 is between 11 (s.) and

18 (s.). Examining page 3 with z equal to 11. the algorithm selects page 10

because 17 is between 16 (z + s.) and 18 (z + s). Page 10 is a leaf and the T7D

for tuple 17 is stored in the first entry (I -z).

Insertions into an OE-tree are implemented by inserting a TID for a new

tuple into the appropriate leaf page and updating the counts. A standard B-tree

split algorithm is used if the leaf page is full [KVUT]73. Deletions and replaces

are implemented in a similar way. A complete description of these operations

and a prototype Impilementation of OB-trees are described in [LYNN82].

In the first implementation strategy, the DBMS executes portal commands
by transforming them into queries on the temporary relation. For example, the

fetch command

fetch buf wmhere p.age < 25

is implemented by executing the query

.. ." . .•.. .... .... % .:. .
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retrieve (TEMP.UD, TEMP.all) where TEMP.age < 25

Recall that the number of records that can fit in the program buffer is passed to

the DBMS along with the command so that only the requested number of tuples

are returned.

A position fetch is implemented by executing two retrievals. Suppose the

position fetch was

fetch but after p.LID > 10 andp.age < 25

and that the program buffer can hold n records. First, the following query is

executed to find the LID of the first qualifying tuple

retrieve (I min(TEMP.UD)) where TEMP.= > 10 and TEMP.age <25

Then the DBMS can execute a query to return -n tuples beginning with the L-th

tuple. The query to retrieve these tuples is

retrleve (TEMP. UD, TEMP.all) where 1 TEM.LID and TEMP.ID !s i+n-1

After and around position fetches can be implemented using a similar tech-

nique.

Fetch previous commands can be implemented by scanning the OB-tree

backwards. Fetch commands that include joins with other relations are easy to

implement because the portal is stored as a relation. Update commands on the

portal are Implemented by executing queries to update the temporary relation

and writing an intentions list that will be used by the transaction manager to

update the primary relation(s). Finally. restriction commands are implemented

by creating a new temporary.
The advantages of this implementation are that large portals can be

browsed and that forward and backward searching can be Implemented

efficiently. The disadvantages are the time and space it takes to create the tem-

porary relation.

L..
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A possible improvement to this strategy is to create the temporary relation

incrementally. At any time the temporary relation contains all tuples with LJDs

less than the maximum ZJD that has been fetched thus far. If the data required

by a fetch command is in the temporary relation, a retrieval is executed to fetch

it. Otherwise, the portal query is resumed to retrieve more data into the tem-

porary and the retrieval is executed. An update command can only modify data

that has already been fetched so the data to be changed must be in the tern-

porary.

Incrementally constructing the temporary reduces the time needed to open

the portal because the retrieval to create the temporary is deferred. However,

this implementation introduces more variability in the time to execute a fetch

.'.-, command because the portal query may have to be resumed. The space

required for the temporary will be reduced if the user speciftes a query that

generates a large portal but does not examine all of the data in it.

Another improvement is possible when the relation on which the portal is

Sdefined is already maintained by the DBMS as an ordered relation. If the portal

definition selects all fields from this relation with no restriction, then the DBMS

can directly utilize the underlying prmary relation structure and no copy is

required.

The second strategy for implementing portals is to store the temporary

relation in primary memory. The representation in memory can use an OB-tree
or a conventional data structure, such as an AVL-tree. b".sh table, or array. The

Implementation of portal commands is identical to that described above. The

advantage of this implementation is that portal commands will be tfster because

primary memory is faster than secondary storage. Update commands will also

be faster because only the intentions list has to be written to disk. The disad-

vantage of this implementation is that only small portals can be stored in pri-
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mary memory. Of course, a main memory implementation can also be incre-

mentally materialized to reduce space requirements.

The third strategy for implementing portals is to store pointers to the

tuples in the primary relations in the temporary relation (i.e.. the temporary is

a kind of secondary index). For example, given the portal definition

*P let p be (EMP.&al) where EMP.salary > 20000

the DBMS does not have to make a copy of the data in the EMP relation. The

ordered temporary relation could be defined by

retrieve into TEMP(EMP.T]D) where EUP.salary > 20000

Fetch commands that involve only the LID atLribute can be implemented by res-

tricting TEMP to the qualifying entries and using the TIrs to access the EMP

tuples. The advantage of this implementation is that it reduces the space

r.-,quired to store the temporary relation. The disadvantage is that it requires

an extra disk read to fetch the data so portal commands will be slower.

The fourth strategy for implementing portals is to materialize the portal

dynamically and to buffer only the amount of data needed by the current fetch

command. For example, suppose the browsing program issued a sequence of

fetch commwnds that scrolled forwards through the portal. The DBMS would

execute the portal query to generate tuples to be returned by the current com-

mand and would keep them in main memory buffers. The next fetch command

would be implemented by continuing the portal query and discarding the tuples

p! •buffered for the previous fetch. If the browsing program issues a fetch com-

mand that requires data that has already been discarded, the portal query must

be restarted at the beginning.

The advantage of this implementation is that very large portals can be

browsed without having to make a copy of the data. The disadvantages are that

some commands will be slow and that fetch previous commands cannot be

-!a e,%
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implemented efficiently. An obvious improvement to this strategy is to buffer

- more data than was returned by the last command which would allow some fetch

U, ..- previous commands to be implemented.

&I Concurrency Control

The implementation of the six lock modes for portals can use a conventional

transaction manager that locks physical entities and supports operations to

*,: begin, commit, and abort transactions. The general strategy is to update the

temporary relation when the update command is executed. In addition. updates

• -. for the primary relation(s) are generated and written to a log. These updates

are either committed immediately (lock mode 2) or at a later time (lock modes

1 or 3-8).

Lock modes 1 and 2 can be used only if the portal is implemented by

dynamic materialization (Le., strategy four discussed above). An update is com-

mitted when the tuple is not included in the next fetch command (i.e., it is

removed from the buffers). The DBMS locks tuples which are buffered in main

memory. Locks can be released immediately if the portal is defined on a single

primary relation. If a portal is defined by a join, the lock is released only if the

tuple is not used to construct another portal tuple which is currently locked.

For example, suppose the portal definition was

Wlt p be (EMP.name, EM.dept, DEPT.floor, DEPT.mgr)

where EMP.dept = DEPT.dname

and two employees. say Smith and Jones from the toy department, are in the

DBMS buffer. Consequently, the two EMP relation tuples and the DEPT relation

tuple would be locked. If Smith's tuple was removed from the portal, the lock on

his tuple in the EZP relation can be released. However, the lock on the toy

department tuple could not be released because it is used to construct Jones'

tuple in the portal. In other words, the buffer must be searched to see if the

-. . A ... ... . .. .+ ':' + : : . ... : ,.. -,, .. ....., . ... ,....,, ,, U ._. , .. . .,... , . ,
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department tuple is used elsewhere before that lock can be released.

Locks do not have to be released on every fetch. For example, it may be

advantageous to perform lock releases periodically. Releasing locks is analogous

to garbage collection of free space by a programming language run-time system.

However, in contrast to garbage collection which is performed when free space

is exhausted, a DBMS wants to release locks as soon as possible to increase

parallelism.

Lock mode 2 differs from lock mode 1 only in the time at which updates are

committed back to the underlying primary relation(s). Locking is implemented

the same way it is for lock mode 1.

Lock mode 3 which requires refetching the tuple being changed can be.9..

implemented as follows. The primary relation(s) are not locked. When a replace

or delete command is executed, the T'ifs in the temporary relation are used to

lock and refetch the values from the primary relation(s). The update is aborted

if the value in the primary relation is different than the value in the temporary

relation. Otherwise, the primary relations are updated and the locks are

released. Lock mode 4 can be implemented in the same way.

Lock mode 5 and lock mode 6 can be implemented in an obvious way. In

lock mode 5, the program indicates when the begin and commit operations

should be executed. In lock mode 6. the DBMS begins the transaction when the

,.- 2portal is opened and commits updates when the portal is closed.

4L In-CMON
This section discusses several issues concerning the design and implemen-

tation of the portal abstraction. Pirst, the language constructs presented in

section 2 map a portal-into a buffer which is a static 1-dimensional array. The

constructs can be generalized to dynamic and n-dimensional arrays. If the pro-
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gramming language Into which the constructs are embedded has dynamic

arrays. the size of the program buffer can be redefined at run-time. The DBMS

can pass a count of the number of records that will be returned by a fetch com-

"* mend before the records are returned. The run-time support routines in the

user program can dynamically allocate an array to hold the returned records.

This would relieve the program of executing multiple fetch commands when the

number of returned tuples exceeded the static buffer size.

Ordered relations can also be generalized to n dimensions [STON82a]. In

this case a relation can have several LIDs, one for each dimension. The language

constructs discussed in section 2 can be easily generalized to support a portal

with multiple LIDs which is mapped to an n-dimensional buffer. This feature

would be especially valuable to browsers such as SDMS [HERO80] which imple-

ment 2 dimensional scrolling.

The second design issue concerns how the portal commands are integrated

into existing query language embeddings that do not have an explicit open com-

mand (e.g.. EQUEL [AUlM76]). The basic idea is to generalize the notion of a

range variable to include portal constructs. For example, the command

rane of but Is p(P.all)
where IMP.eage <40
with lock-mode=3

would be equivalent to

let p be (EMP.a&l) where EMP.age < 40
open p Into buf with lock-mode=3

Lastly, a database system that implements portals must be able to save and

restore the currently executing query because programs can open multiple por-

tals and because several implementation strategies discussed in Section 3 are

based on restarting the portal query.
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,% A new application program interface to a relational database system has

- been described which makes it easier to implement database browsers. The

• interface is based on the concept of a portal that supports querying and updat-

ing an ordered view. Several lock modes were suggested that can be used to

implement browsing transactions with varying consistency and parallelism

requirements.
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An Implementation of Hypothetical Relations

by

John Woodfill and Michael Stonebraker
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BERKELEY, CA.

IV ABSTRACT

In this paper we develop a different approach to implementing

hypothetical relations than those previously proposed. Our design,

which borrows ideas from tactics based on views and differential files,

offers several advantages over other schemes. An actual implementation

is described and performance statistics are presented.

lo INTRODUCTION

The aotivation for, and applications of hypothetical relations

(HR's) were introduced in [STON8OJ. They can be used to support "what

if" changes to a data base and offer a mechanism for debugging applica-

tions programs on live data without fear of corrupting the data base.

The suggested implementation in [STON8OJ involved a differential file

Lsm76. In [STONB1, supporting HR's as views [STON751 of the form W

IN- (I UNION 3) - T was suggested. In this case an implementation only

requires extending a relational DBMS and its associated view mechanism

with the UNION and - operators. Moreover, R can be a read-only relation

while S and T are append only. As a result, hypothetical relations may
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offer cheap support for crash recovery and logging. Unfortunately,

there are problems with treating HR's an views. We first examine these

problems and show general solutions in Section 2. Next we combine these

solutions in Section 3 into a nov mechanism for supporting HR's. Our

proposal has several similarities but a different orientation from one

in [KCTZ82J. We then describe our implementation in Section 4. Finally

we analyze the performance of this implementation in Section 5.

2. PROBLEMS AND SOLUTIONS

Proposals for hypothetical relations as views contain various flaws

which must be removed before a realistic implementation can be

attempted.

2.1o A Known Problem

[STON81J points out that the implementatio-2 of hypothetical rela-

tions as W a (R UNION S) - T is flawed in the3 case where one wants to

re-append a tuple which has been deleted, as shown by the example in

figure 1. Initially there is a tuple in relation R corresponding to

Eric. Following the algorithm in [STONS1], the tuple can be deleted by

inserting it into relation T. Lastly a user re-appends Eric and an

appropriate tuple is inserted into S. Unfortunately, the resulting

relation, W does not contain the re-appended tuple, since (R UNION S) is

the same as R, and R - T is empty.

2.2. A Solution

As noted in LAgra82], this problem can be solved by adding a times-

tamp field to the relations S and T, and modifying the semantics of the

DIFFERENCE operator, -". There will be no timestamps for the relation

-2-
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R

'name salary

i I

.eric 100001------- ----

S• I I

oeric 100001
~II

-S.m

I

Figure 1.

R; hence these tuples can be thought of as having a timestamp of sero.

The timestamp field is filled in with the current time (from a sye-

tea clock, or any other monotonitaly increasing source of timestamps)

whenever a tuple is appended to 3 or T. For any relations A and B with

timestamps as described, the DIFFERENCE, A - B is defined as all tuples

a in A for which there is no tuple b in B such that

(1) DATA(a) - DATA(b)

and

(2) TIESTANP(a) < TI MSTAP(b)

The definition of R UNION S is unchanged, except for the addiion of a

tinestamp field in the result which contains either the timestamp of a

tuple in 8, or a sero timestamp for a tuple in R. If tuples with ident-

ical DATA appear in both R and S, the never timestamp (from S) is chosen

for the result tuple.

In the above example, the timestap of Eric's tuple in T would be

newer than that of Eric's tuple in 1 (sero), but would be older than the

timestamp of Eric's tuple in S; hence, (R UNION 3) - T would be

Ve

"" ""is. ,,- " , ' " " " " , - . .. - . . . . . . . . .
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equivalent to 5, and V would contain the re-appended tuple.

. . A New Problem

* The addition of timestamps solves the problem of appending deleted

tuples. However, this solution is not free from problems. Consider the

case of a second level hypothetical relation, VW - (W UNION S') - T, as

shown in figure 2. Suppose Eric was given a 20 percent raise in W' at

timestamp 10 which caused the indicated entries in S' and T. Since no

updates have occurred in V, S and T are empty. Now suppose a user gives

Eric a 50 percent raise in W at timestamp 20, which results in the

entries for S and T shown in figure 3. According to the algorithm

above, W' would contain two tuples for Eric, one with salary 15,000, and

4.. one with salary 12,000. The problem is that the tuple in T' no longer

functions to exclude Eric from V UNION S' and hence an unwanted Eric

tuple is present.

There are at least two choices for the proper semantics for W'

-.. under this update pattern:

R
Iname Isalary

I I

leric I 10olooo
I ------------- I

S T

name salary it-stamp ame !salary it-stamp
---------- I ------------------ ----------------------- I

---- ------------------------------

Iname !salary it-stamp! ! name !salary it-stamp!

eric 1 120001 101 jeric 1 100001 101
--- -a a aa n ----- - --- ---------------------

Figure 2, Eric's 20% raise in W".

4



I7

name Isalary I
I-.I

jeric I 100001I i
i" I,

S T1nme saar a nw

name-salary It-stp I - I

leric I 150001 201 jeric 1 100001 20
I I I I- - -- - -- - - ---- ------------------.. .---.... ...-

'name~~ ~ saar I'-tml nm salary I t-stamp i

' Figure 3, Erict's 50% raise :in V.

" 1) Eric's salary is set to the latest value, in this case the

+" "' 15. ,000 from V.

2) Eric's salary is set to 12,000, corresponding to the original

update of V'.

We choose to follow the latter choice, and specify the following seman-

tics:

Once a tuple has been changed at level N, changes at levels < N

cannot affect tuples at levels >- N.

!-.A. A New Solution

These semantics can be guaranteed by the addition of a tuple iden-

tifier, and modification of the DIFFERENCE operator. A tuple identif-

ier, TNAKE, must be given to each tuple in R. Each tuple inserted into V

(and thereby added to S) must also be given an identifier. Then, any

inserts to S or T, which are used to replace or delete a tuple in W,

must be marked with the identifier for the original tuple in R or S

which they replace or delete. For any relations A and B with timestamps

-5-
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and TNAKES as described, the DIFFERENCE, A - B is defined as all the

tuples a in A for which there is no tuple b in B such that

(1) TNAME(a) -TNANE(b)

and

(2) TINESTANP(a) < TIMESTAMP(b)

To guarantee that our chosen update semantics hold, tuples in A - B

are given timestamps of 5ero. Hence, at a second level, each tuple in

S' and T' ill have a never timestamp than its corresponding tuple in W.

In our example the identifier of all of the five Eric tuples from

figure 3 will be identical. Since the timestamp of the tuple in W is

treated as being older than that of the tuple in T', only Eric's tuple

from S' will be contained in W'.

A similar method is proposed in [KATZ82], to solve this problem.

2- ANECHAN[SN

Given t.ese modifications to S, T and the DIFFERENCE operator, an

HR of the form V - (R UNION S) - T no longer has its original conceptual

simplicity. Koreover, support for HR's becomes considerably more com-

plex than simply implementing UNION and - as valid operators in a DBMS.

Consequently, we have designed a mechanism based on differential file

techniques which builds on the above developments. The goal is to pro-

vide a single-pass algorithm with proper semantics that will support

arbitrary cascading of HR's. The next two sections describe our data

structure and algorithm in detail.,

I -6-

P ' - - , . . . . . - - - - . . .. . - . . . . . . . . .



-I ,, .-. - . - . , . - . -- . ' -. ! - -- .. P 1 .M. TO.• : . .. ' -- : ' ' - ,.- - - -

'.I. The Differential Relation

Each hypothetical relation W, built on top of a real or hypotheti-

cal relation B, has an associated differential file D, which contains

all columns from B plus plus five additional fields. For example, the

differential relation D for the base relation R from Section 2 is shown

in figure 4. *Name" and "salary" are the attributes from R. The fields

"mindate" and "maxdate" are both tiestamps. "Minaate" is exactly the

tiaestamp as defined above, while "amaxdate" is another timestamp to be

explained in section 4.2. The fields "level" and "tupnum" are used to

identify the tuple which this tuple replaces or causes deletion of. Each

hypothetical relation is assigned a level number as indicated in figure

5. All real relations are at level zero, and an HR built from a real

relation is assigned a level of one. Then an HR built on top of a level

one HR is given a level of two. Here the column "level" identifies the

level number of a particular tuple, while the column "tupnum" is a

unique identifier at that level. Together "tupnu" and "level" comprise

the unique identifier, TNAKE, of a tuple. Values for "tupnum" are just

a sequentially allocated integers. The last field in D, "type," marks

what form of update the tuple represents; thus, it has three values,

APPEND, REPLACE, and DELETE.

The following examples will illustrate the use of these extra

name c2
salary 4

= inindate i4
mazdate i4
tupnum i4
level i1
type ii

Figure 4.

• .- 7-



level 3
/ .D']

level 2 [w']I
/ \[I.]

level 1 [W]

/ ([D]
level 0 [,R]

Figure 5.

fields. A precise algorithm is presented in Sectio:a 3.2.

Suppose the relation R has the following data:

'name 'Isalaryai

ifred 1 40001 tupnum of this tuple is 0
lsally 1 60001 tupnum of this tuple is 1

Figure 6.

Initially W is identical to R, and D is empty.

Runnin8 the following QUEL command:

append to W (name - "nancy", salary - 5000)

would cause a single tuple to be inserted into D as follows:

name Isalarylaindate 1maxdate Itupnum Ilevel Itype

' , eI O1 1 IAPPEND'cy 5o ,,Inailcy 1 50001 301 *1 i 1PED'

Figure 7.

The 30 stored in "mIndate" is simply the current timestamp, and the

"type" is clearly APPEND. Since there is no corresponding tuple at

level 0, which the tuple replaces, the fields "level" and "tupnum" are

-8-
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set to identify the tuple itself (i.e. ,level , . ,up u" ,,)

i Suppose we now change the salary of Sally as follows:

range of v in V
replace w (salary = 8000) where v.name = sally"

After this update, D looks like:

"naMe isalarylmandate Imazdate jtupnum !level !type

Inancy I 50001 30 01l I IAPPEND
I sally i80001 401 ill1 OIREP-ACEI

Figure 8.

"indate" is 40, the current timestamp. The tuple which we are replac-

ing in R has an identifier of (level - 0, tupnum - 1) (see figure 6).

Suppose ye delete the tuple just replaced:

delete w where w.name - "sally"

The resulting form of D is:

;name Isalarylmindate Imaxdate Itupnum 'level Itype I

Inancy 150001 30* 0 IAPN
301 ol IPPN I

~sally 8=00I 401 **1' 11 QIREPLACEI
501 OI DELETE I,Jh. I . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 9.

Since this operation is a delete and "name" and "salary" are no longer

isportant, they are set to null. aTupnum" and "level" are the same as

zin in figure 8, since they refer to the same tuple.

Suppose ye now replace the tuple appended above; eg:

replace w (name - "billy") where w.name - "nancy"

The resulting form of D is:

7-9
',.
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nam !slarji-ae imaxdatie .upau3 !level. !type

Inancy 1 50001 3oi 01 1IAPPED
sally 80001 401 * QoIREPLACRI
I 1 0 501 1, O IDELETE I'
ibilly 1 50001 601 01 ,IREPLACEI

Figure 10.

"Tupnum" and "levela identify the original "nancy" tuple (see figure 7

above). At this point, R is unchanged, and W looks like:

name 'salary'

I B

,fred 1 40001 unchanged
jbilly 1 50001 billy replacing nancy

J.2. The Algorithm

There are two parts to the algorithm for supporting hypothetical

relations: accessing an HR, and updating an HR.

I.2.. Accessing Hypothetical Relations

The algorithm for deriving a level N hypothetical relation W from a

base relation R and a collection of differential relations DI, ... , DN

is a one pass algorithm which starts with the highest level differential

relation and proceeds by examining each tuple, passing through each

lower level, and finally passing through the level 0 base relation.

Figure 11 shows this processing order more clearly. MaxLevel is the

level N of the relation H.

An auxiliary data structure, which will be called "seen-ids," is

maintained during the execution of this algorithm. This data structure

- has one associated update routine, "see(level, tupnum)", and a boolean 7d

retrieval function, "seen(level, tupnua)". The routine see(level,

.10N .- '-' .'***1~



FOR physlevel - MaxLevel DOWN TO 0 DO
4 BEGIN

WHILE (there are tuples at level physlevel) DO
BEGIN

tuple :* cet-next-tuple(physlevel);

exaaine-and-process-tuple(tuple, physlevel);
END

END.

tupnum) inserts a TNAKE into the data structure if it as not been seen

before, while seen(level, tupnua) returns the value TRUE if <level, tup-

num> is in seen-ids, FALSE otherwise.

The examine-and-process-tuple routine takes one or both of the fol-

lowing actions: it can "accept" the tuple for inclusion in H and it can

call the routine "see" to place the identifier in "seen-ida". The

choice of actions is dictated by Table 1.

action action
levelOlnevestiseen !type jacceptl samelevel see

I-----------------------------------------------------------II I yeI

I 'Yes 1---yes ------- ,no --------- !no
2 'ys - no -------- yes --------- no
3 no -- .----------- no --------- no I
4 no, lys ye I------,no------------ Io 1

I I I

, yes no IDELETE ,no ,yen Ino 
6 InO !yes ino IREPLACE yes 1yes Ino
7 Ino fye5 jno IAPPEND yes yes no
8 112 1yes 1no iDELETE Ino Ino 1yes I
9 Ino yes 1no gREPLACEjyes gflO 1e

Table 1, Processing criteria for HR's.

In applying table 1, to a particular tuple t, "levelO" is a boolean con-

dition which is "yes" if physlevel from figure 11, is zero, "no" other-

wise. A tuple t at physlevel N is "newest" if (as in Section 2.4) there

is no tuple tb at level N such that

-1I -
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(1) (t.level * tb.level and t.tupnum tb.tupnum)
and

(2) ta.mindate ( tb.mindate.

A tuple t has been "seen" when the pair (t.level, t.tupnua) has already

been entered into "seen-ida". Fast tests for "newest" and "seen" are

presented in Sections 4.2 and 4.3. The "type" of tuple t is t.type.

"Samelevel" is a boolean field to indicate if physlevel is the same as

t.level. The examnin and processing of a tuple is shown in figure 12.

To demonstrate this processing we will generate W from D and R in

figures 6 - 10. The starting configuration is shown in figure 13. Pro-

ceasing starts wi.th MaxLevel - I and physlevel - 1 in the differential

relation D; hence, for all of this level, levelO will be false. Tuple

(1) is not "newest", since tuple (4) has the same identifier, and a

higher mindate. Since levelO is false, the tuple corresponds to line

(3) of table 1, and the tuple is neither "accepted" nor "seen."

Tuple (2) is riot "newest" either, because tuple (3) has the same

identifier, and a higher mindate, and so it also corresponds to line (3)

of table 1, and is neither "accepted" nor "seen."

Tuple (3) is "newest," because the only other tuple at this

physlevel with the same identifier, tuple (2) has a smaller mindate. It

has not been "seen," since seen-ida is empty and type is DELETE. We now

determine "samelevel" by comparing the level field with phyalevel. Both

are 1, so "samelevel" is true and line (5) is applied. Hence, the tuple

is neither "accepted" nor "seen".

Tuple (4) is also "newest," has not been "seen," and type is

REPLACE. Comparing level and physlevel, we find "samelevel" is false,

since the level field is 0, and physlevel is still 1. hence, (9) is the

S- 12-
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eamine.and-process-tuple (t, physlevel)
BEGIN

levelO : BOOLEAN;newest : BOOLEAN;
seen : BOOLEAN;

type : (APPEND, REPLACE, DELETE);
*1 ,samelevel : BOOLEAN;

levelO :- (physlevel - 0);

IF levelO then
BEGIN.

newest :- NULL;

seen ; seen(t.level, t.tupnum);

type : NULL;

sa elevel :- TRUE;
END ELSE
BEGIN

newest :" isnewest(t.mindate, t.level, t.tupnua);

seen ; seen(t.level, t.tupnum);

type : t.type;

samelevel :- (t.level - physlevel);
END;

IF table-accept(levelO, newest, seen, type) THEN

accept-tuple(t);

IF table-see(levelO, newest, seen, type, samelevel) THEN
see(t.level, t.tupnum);

END;

Figure 12, processing a tuple.

@130 ..



D
'name Isalaryla-indate AImaxdate Itupnum 'llevel A type
i --- - - - - - - - - - - - - -- - - - - - - - - - - - - -

1 juanci ' 50001' 301' "'1 01 jAPPEND I
2 Isally 8000, 401 ""I If OREPLACE
3 1 1 ,1 5o1 "I II OIDELETE I
4 ibilly 5000 601 01 PLACE

I -- - - - - - - - - - - - - - - - - - - - - - -

R
"name Isalaryl

5 "fred 1 40001 tupnum of this tuple is 0
6 'sally 1 60001 tupnum of this tuple is I

i-------- -------- I

seen-ids - I
Tuples "accepted"

Inme I salaryl

------------ I

Figure 13, Initial structures for processing W.

correct line in table I, and the tuple is both "seen" and "accepted".

.- ,_ * At this point, V and seen-ids look like:

'nae 'salary,'
m~ --.H-----.---n -- i

! billy 1 5000
.' . " I i

" seen-ids - 1<0, I>1

Physlevel nov changes to 0, "levelO" becomes true, and we start to

. scan the base relation. Only lines (1) and (2) of table 1 are relevant

differing in the value of "seen". To check whether a tuple has been

"seen," at level 0, we look for the pair <level, location> in seen-ide.

For tuple (5) this pair is (0, O> (see figure 6) which is not in seen-

ids. Hence, line (2) of table 1 is applied and we "accept" the tuple.
The pair <level, location> for tuple (6) is (0, 1>, which is in seen-

ids. The corresponding line is (1), so the tuple is not "accepted," and

-14-
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is not "seen.* We have reached the end of our scan, and have generated

the relation W as follows.

' name ',salary1

1billy 50001
ifred 4000j

.. 2. Updatin g Hymothetical Relations

All updates to an UR of level N require appending tuples to the

differential relation DN at level N. The contents of the different

fields in the appended tuple are specified as follows:

(A) For APPENDS and REPLACES, The data columns of DN, are filled

with new data. For DELETES, the fields are NULL.

(B) Nindate, is assigned the current timestamp. (Kaxdate is dis-

cussed in Section 4.2.)

(C) For APPENDS, tupnum and level are set to self-identify the

inserted tuple. For DELETEs and REPLACEs tupnua and level identify the

target tuple being deleted or replaced.

(D) T is the type of the update, APPEND, DELETE or REPLACE.

j.IMPLE(ENTATION

An implementation of HR's was done within the INGRES DBMS [STO76].

In order to create an HR, the following addition to QUEL was made:

DEFINE HYPREL newrel ON baserel

Once an HR has been defined, it can be updated and accessed just like an

ordinary relation. Since, "baserel" can be either a regular relation,

or an HR, an unlimited number of levels is allowed.

-15-
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,.1. Modifications

Within the INGRES access methods, a relation in accessed first by a

call to "find" which sets the range for a scan of tuples, and then "get"

is called repeatedly to access each tuple in this range. It is within

"geto that most of the HR algorithm is implemented. aGeto returns

tuples from each differential relation, and finally the tuples from the

base relation. The routines which perform REPLACES, DELETES, and

APPENDs are also modified to initialise and append the appropriate

tuples to the differential relation.

4.2. Newest

If tuples were appended to a differential relation at one end, and

the relation were scanned from the other direction, it would be possible

to tell when a tuple was the "newest" for a particular identifier by the

fact that it was the first one encountered. Unfortunately, INGRES

appends tuples and scans relations in the same direction. In order to

be able to tell from a single pass whether a tuple is "newest", an addi-

tional tinestamp field *maxdatew was added. When a tuple is appended,

maxdate is set to infinity. When the tuple is REPLACED or DELETED at

the same level, mazdate is updated. Thus a tuple is the "newest" if the

time of the current scan is between mndate and mazdate.

J.2. Ben-ids

The data structure, seen-ids is stored in a series of main memory

bit-maps, one for each level. Thus to see a tuple with tupnum Y at

level L, bit Y in bitmap L is set. The boolean function "seen(L, Y)"

tests whether the corresponding bit is set.

A-16-
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,..4. Optiisation

If the base relation is organized as either a random hash structure

or an ISAX structure, then the differential relations can be given a

similar structure and a sequential scan of the differential relation

avoided. To accomplish this, a correspondence must be established

between the pages in a differential relation and those in the base rela-

tion. If a tuple would be placed on a certain page of the base rela-

tion, then the tuple in the hypothetical relation must be placed on the

-" corresponding page in the differential relation.

To access a tuple in such a structured HR, the scan within each

relation is restricted to those pages corresponding to the key of the

query. For exaavle, suppose the relation R(naae, salary) is stored

hashed on name and the differential relation D is stored likewise.

Then, the query

range of v is V
ret-ieve (w.all) where v.name - "billy"

only requires accessing the appropriate hash bucket in both R and D.

There Is one complication with this performance enhancement, which

stems from the fact that a REPLACE command can change the hash key, and

hence the page location of a tuple in a structured relation. For exam-

ple, consider the following contents of R and D:

R D
Inaue I'salary, Inaae oalary otherl

hashbucket ------ - ---------------------
I ~ susy 1 30001 1 1 1
2 tandy 251'

I "g . .. ". . I .. . . g. .

Figure 14, R and D hashed on name.

. Then, suppose we do the following REPLACE:

-17-
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range of w is W
replace w (name = "tandy") where w.name = usy"

As a result, R and D would look like

: "'aR e  D

Snme 'salaryl Inane i salaryltype I,'
hashbucket -------------

IIUS suz 1301
2 itandy 1 2 51 tandy 1 30001REPLACE I

I I I I

Figure 15, problematic hashed replace.

and the query:

retrieve (w.all) where w.name - "suzy"

would generate the result:

"nae 'salary',"* ' I I

------------ -,susy 1 3000 1I I
I- ------------- I

Despite the fact that we changed suzy's name, she appears in the result

A because the algorithm indicates searching hashbucket I of D, wnere

there are no tuples, then searching hashbucket 1 of R, where susy's

tuple appears. This tuple in hashbucket I of R is "accepted", because

* no tuples have been mseen." Unfortunately, the algorithm never searches

hashbucket 0 of D to discover the correct tuple.

This problem can be solved by the addition of a fourth type of dif-

ferential tuple, FORWARD. An additional FORWARD tuple in appended in

hashed and ISA( differential relations whenever a REPLACE is done which

inserts a tuple in a different hashbucket (or ISAN data page) than that

of the target tuple. W;th this correction, D of figure 15 would look

.". I like:
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,.... " " 1 P ..7 "7 Y7
-~N --. 7.. . .

Iname 1salary lmindatelmaxdate Itupnumlevelitype
A hashbucket 1 ------ - -..........

i 11i a 01 100II ¥ mI ol oNFIowJDI
2 Itandy 1 30001 IOOIIBFIJITY1- 01 01REPL-ACEI'

---------

Figure 16.

The processing of the query would then start in hashbucket 1 of D in

,. figure 16, where a FORWARD tuple would be found, and the ordered pair

(0, 0> would be added to seen-ida. Next, hashbucket 1 of R would be

scanned, but since (0, O> is in seen-ida, Suzy's tuple, tuple 0 of R,

% would not be accepted.

i ... Functionality

With this refinement all QUEL commands have been made operational

on HR. for any INGRES storage structure. Such HR's could be used as the

basis for a crash recovery scheme as suggested in LSTONSIj with minor

modifications to the our algorithms. Moreover, "snap-shots" of the staie

of an HR at any point in the past can be generated by setting the scan

time to a time prior to the current time. Minor changes to the QUEL

syntax would allow a user to run retrieval commands against an HR as of

some previous point in time.

If at any time one wanted to make the changes in an HR permanent,

• "he can use a series of QUEL statements to update the base relation using

* the information in the differential relations. Alternately, a simple

utility could be constructed to perform the same function.

. ERFORMANCE MEASUREMENT AND ANALYSIS

Our performance analysis is aimed at comparing the performance of

standard QUEL commands on real relations versus the same ones on HRs and

-19-
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our tests were run on a single user VAX-11/780. The following four com-

sands are used to measure update performance for a real parts relation

part500(pnaum, phase, pweight, peolor) of 5000 tuples stores as a heap.

Baseparts will serve both as a real relation and an HR.

range of b is baseparts

range of p is parts5000

(a) append to baseparts (p.all)

- (b) delete b

(c) replace b (weight - b.weight + 1000)

(d) replace b (pnum - b.pnum * 1000)

- .... .

* Table 2 indicates the results of ruining commands a) - c) firit for a

real baseparts relation of 5000 tuples stored as a heap and then for

baseparts as an HR. In the latt,'r case it consists of an eupty dif-

ferential relation, D and a 5000 tuple real relation, R si;ored as a

heap. Command d) was not run in this situation because it should pro-

duce comparable results to command c) for unstructured relations.

Notice that real and hypothetical relations perform comparably.

To test retrieval performance we ran query (e) for four different

compositions of baseparts, including

range of b is baseparta
(e) retrieve (a max(b.veigkt))

a 10 tuple real relation, a 10000 tuple real relation, a 10 tuple HR and

a 10000 tuple HR. The hypothetical relations had sizes of differential

-20-
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query operation relation-type cputime elapsed

(a) append regular 24.47 secs 32 secs
(a) append hypothetical 26.57 secs 36 sees
(b) delete regular 24.38 secs 26 secs
(b) delete hypothetical 19.78 secs 25 secs
(c) replace regular 26.03 sacs 28 secs
(c) replace hypothetical 25.03 secs 35 sees

Table 2, updates on 5000 tuples unstructured.

query operation relation-type eputime elapsed

(a) append regular 74.68 sacs 268 secs
(a) append hypothetical 64.82 Pecs 226 sacs
(b) delete regular 20.15 secs 31 secs
(b) delete hypithetical 21.32 sacs 37 secs
(c) replace regular 42.32 secs 47 secs
(c) replace hypothetical 40.97 sees 59 secs
(d) replace regular 91.33 secs 345 secs
(d) replace hypothetical 89.63 sacs 422 sacs

Table 3, updates on 5000 tuples, hashed on salary.

'p relations, D, varying from 0 to 200% of the size of the R. Tables 4 and

5 show the results of these tests.

relation size of D cputime elapsed
type time

regular - 0.16 seecs 1 sec
hypothetical 0% 0.20 secs 1 sec
hypothetical 50% 0.26 sacs I sac
hypothetical 100% 0.26 secs 1 sec

Table 4, Query (e) run with 10 tuple base.

2
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relation sise of D oputime elapsed
type time

regular - 11.88 Boca 13 eeoc
hypothetical 0% 13.86 secs 15 socn
hypothetical 10% 14.40 sos 15 Boca
hypothetical 25% 15.22 sces 16 secn
hypothetical 50% 16.73 Boca 18 secs
hypothetical 100% 18.60 aocs 21 seas
hypothetical 200% 21.58 sos 30 5a5

Table 5, Query (e) run with 10000 tuple base.

Query (o) was also run against a second level HR based on a first

level HR with 50% of its tup.es replaced. The results of this test are

in table 6.

Lastly, we ran query (f) against a baseparts relation hashed on

pnumo

range of p is parts5000
range of h is RELATION

(f) retrieve (p.veight, h.veight) where p.pnua - h.pnum

In this case table 7 compares performance where RELATION is either a

5000 tuple real relation hashed on pnum, or a 5000 tuple HR hashed on

hypothetical size of D cputime elapsed
relation level time

1 50 16.73 secs 18 secs
2 0% 17.35 seca 18 sacs
2 10% 17.73 seec 19 socs
2 25% 18.52 secs 19 ses
2 50% 18.78 sees 21 secs
2 100% 20.75 Boc 24 Bocs

Table 6, Query (e) 10000 tuples, 2 levels.
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pnum, with 50% of its tuples replaced. Partas00 is an unstructured

Query (f)

relation type cputime elapsed

hashparts regular 131 sees 5.85 minutes
• hhashparts hypothetical 185 secs 9.88 minutes

Table 7, hashed access results.

5000 tuple relation.

Two comments are appropriate about the numbers in Table 7. First,

notice that INGRES is I/0 bound in both tests and elapsed time substan-

tially exceeds CPU time. The reasons include the particular query pro-

cesning tactic chosen for this query and the fact that a substantial

amount of data is printed on the output device. The second point is

that joins on hypothetical relations are les than a factor of two

slower than those on real relations.

Thus we can see that the performance of INGRES using hypothetical
relations in many types of query is never vorse than a factor of its

level number and usually much better. We assume that for more complex

queries involving an HR, the same general result would hold.

6. CONCLUSIONS

We have described a mechanism for supporting HR's which is shown

to overcome the problems of previous proposals. We have described an

implementation of HR's and provided performance data to show that per-

formance of HR'& is in general no worse than a factor of one per level

of HR. Moreover, in most cases, performance is considerably better than

'3
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Interactive Mathematical Manipulation, Typesetting, and
Graphics - a Progress Report

Gregg Feeter
Richard Faeman

Universty of California, Berkeley
July, 1983

1. RECENT WORK

We have developed and implemented a hierachical representation for mathematical expres-
sioms that includes display position, expression dimensions, font information, the notion of
super- and sub-expressions, sad access to the alget-rsic msaipulation system internal form
that is being represented. This is a psrticular representation technique which we believe can
be used in other problem domain and which will work in the context of a menu-driven win-
dow oriented user interface.

%' " 1. Strophe (pronounced "strob-fee", a musical term for putting new lyrics to old music) is a
system forthe representation of a tree of expression boxes. The boxes are frames with inher-
itance of font and position information. This is naturally done in Lisp, sad is convenient to
use on graphics workstations which provide immediate feedback. Lisp form representing
algebraic expressions (sums, products, powers, matrices, etc) in internal forms are accepted
and converted to box frames which can be displayed.

2. Strophe's representation of mathematical expressions is largely independent of any partic-
ular algebra system. It is currently usable by Macsyma and is being prepared for use by a
new mathematical representation and manipulation system (SCARAB) being developed at
Berkeley.

3. Strophe has been implemented in Lisp on Sun Workstations, but the design has been kept
as machine independent as possible.

4. We explored various ways of pointing at expressions and found the mouse (with keyboard
back-up) to be satisfactory. A mouse driven prototype sub-expression locator/highlighter
rMs on the Sun Workstations (much of this work was done by R.J. Anderson) and will be
merged with Strophe when address space limits are removed. The Strophe representation

.." makes it easy to identify expression-boxes from screen coordinates and to move up or down
in the expression tree.

• Summary

We can demonstrate hib quality real-time display of mathematical expressions and the ability to
acceft sub-express ons.

-: 3xamphe

s/b in Macuma is represeuted Internally as:

(frdims.esu *mp)p a sesimp) 6 -1).
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A schematic representation of one of the boxes (the outermost),
so printed by a Strophe debugging tool is:

fost: ROKN (normal)
h824 height: 12

""01 -:- idth: 12

, S out: oil
d 24 is: (b0607 b~0013 bO6012)

v.14 eap:
((tiaes slap) a ((aexpt slap) b -1))

The screen display is:

b

3. FUTURE WORK
Objoeivan

1. We wish to allow a user to preview sad compose expression forms in a readable format in
a interactive environment.

2. We wish to provide tools for a user of a symbolic mathematics system to point to any
piece of a displayed expression and specify its alteration by a combination of mouse and
keyboard commands.

3. We wish to formulate criteria for measuring the success of the SCARAB system design.

4. We wish to provide a user with more options (such as variant display formatting using
tables and multi-line displays) and relevant information about his interaction with the sys-
tem (such as a command history and the status of the system).

Plum

We mut develop the software tool to handle the increased display-representation/mathematics-
iuternal-representation interaction.

Requirements:

a. It mut be easy to refer to an identilfed expression (or super-/sub expressions) in the con-
text of manipulatory commands typed from the keyboard and indicated by the pointing
device. In the cae of commands which change the expression itself, these must be mapped
back to the mathematics internal fors and to the display.

b. Rapid redisplay with highlighting and smooth motion of selected aea must be sup-
Pored.

e. Subframes to other windows should be provided.

d. There mut be more and better fouts than are provided by the Sun graphics package.

..- c *.aa V C a. ",,a...,. a • .". - ". .. a. . . . .' C ~ ..'.'..._ . ..... -
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e. Expresion templates (a "f111 in the blanks "approach) should be explored.

f. It must be easy to get to command history, process status, and other "environmental
iaformatio".

Equtpment

1. The Sun Workstations run Strophe and have run pieces of Macyma and SCARAB. To
run Lisp, Strophe, and an SCARAB or Macsyma together we need more address space (16
megabytes rather than 2). Sun has promised delivery of SUN-0l boards with this address
space in the fall.

2. A Pixel 100/AP (68000 based) UNIX system has recently been used to bring up a full
Macsyma system but lacks the bitmap display capability. The performance of the 68000 is
no longer an open question: it is definitely faster than the VAX 11/780 on Lisp-based appli-
cations, and with tuning and a 12megahertz chip, it may outperform a VAX 11/780.

summar7

High quality real-time composition, manipulation, and typesetting of mathematical (and other)
expressions re possible using current technolog. Much of this can be demonstrated now.
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8. tatement of Work

.1. Operating Sydtema. Ditrlbuted Computing. and Programming Sys-
" " temll

- We will implement the interprocess communication and large file

access enhancements to UNIX and make them available as part of the

Berkeley Software Distributions. We will have a substantially complete

.. experimental version of the system with the large file access enhance-

ments documented in a technical report by March 1982. We will have a

*substantially complete experimental version of the system with the

-,. interprocess control enhancements documented in a technical report

by June 1982. We will have a complete system including the large file

access and interprocess control enhancements ready for distribution

by September 1982.

a We will implement a UNIX-based distributed computing environment in

the context of a network of personal workstations and larger comput-

ers not necessarily under a common administration. We will create

experimental versions of various components of such an environment

* -. and document them with technical reports throughout the contract

period. We will have an experimental version of the distributed system

documented in a technical report by March 1983. We will have an ini-

- -" tial version of a distributed system ready for distribution by Sep-

tember 1983.

a-We will construct a table driven code generator which takes input from

Sthe first pass of the Portable C Compiler, the Fortran 77 compiler and

the Berkeley Pascal compiler. A technical report describing the imple-

mentation and comparing its output to that of the existing compilers

will be provided by September 1982. We will explore techniques for

Improving the generated code, implement those which appear best,

and examine their impact in another technical report by September

1983.

-.
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* We will explore basic issues related to distributed computing

throughout the contract period and document our research results in

technical reports.

8.2. Information Management In Design and Decision Sapport Systems

* We will investigate how to extend the class of data representations

which can be processed by a relational database system. We will

extend INGRES to allow multiple representations of data items using

the techniques of descriptor based access methods and will document

the result in a technical report by September 1982. We will introduce

the notion of bins into INGRES to provide efficient processing of spatial

data; the bins will be implemented using a generalization of secondary

indices and will be documented by a technical report by March 1983.

We will investigate using a relational database system as an A] pro-
gramming tool by experimentally rewriting some existing Al programs

to use a version of INGRES which has been enhanced to allow storing

information which would have been stored using Lisp; the experiment

will be described in a technical report by September 1983.
We will explore the use of forms as an efficient interface for developing

various applications of database systems. The specification of a form

application development system will be provided as a technical report
by June 1982. A prototype system will be developed and documented
in a technical report by December 1982. During the remainder of the

contract period we will build a variety of applications using the proto-

type system in order to evaluate its interface.

5.3. Interfaces and Graphics

@ We will explore connection-based style of design including how to

represent and manipulate connections graphically. how to hide the

details of complex connections using the concept of bundles, and how

to deal with geometrical constraints. We will measure relevant aspects

of existing designs and design tools to provide a context for this

research. These measurements will be documented in a technical

report by June 1982. We will develop a simple connection-based design

""7
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system and describe it in a technical report by June 1983.

. We will study and build a prototype mathematical software environ-

ment based on workstations which communicate with remotei conmput-

eru. The workstations will be graphics based and will provide the user

with an integrated interface. The large computer will provide a large

-. .. ~*scale algebraic/numerical computation environment for effective

problem solving. The user interface to be provided by the workstation
will be designed and spelled out in a technical report by September

1982. A working user interface to Macsyma provided via a workstation

will be documented in a technical report by March 1983 and a system

with interactive and graphical enhancements will be documented in a

technical report by September 1983.

a We will conduct both theoretical and experimental research into the

applicability of Beta-splines for curve and surface representation in

computer graphics systems which allow the representation and

* modification of geometrical shapes. A basic experimental graphics

facility for use from within the UNIX environment will be constructed

and documented in a technical report by September 1982. A technical

report evaluating subdivision techniques for Beta-splines will be pro-

vided by September 1983.
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IMPLEMENTATION OF RULES IN 'RELATIONAL DATA BASE SYSTEMS
by

Michael Stonebraker, John WoodflMl and Erika Andersen

Dept of Electrical Engineering and Computer Science
University of California

Berkeley, Ca.

ABSTRACT
This paper contains a proposed implementation of a rules system in a rein-

tional data base system. Such a rules system can provide data base services
Including integrity control, protection. alerters. triggers, and view processing,.
Moreoever. it can be used for user specified rules. The proposed implementit-
tion makes efficient use of an abstract data type facility by introducing new data

-*. types which assist with rule specification and enforcement.

I INTRODUCTION
Rules systems have been used extensively in Artificial Intelligence applice.-

tions and are a central theme in most expert systems such as Mycin [SHOR7E]
and Prospector [DUDA78]. In this environment knowledge is represented as

5rules, typically in a first order logic representation. Hence, the data base for an
* '* expert system consists of a collection of logic formulas. The role of the data

manager is to discover what rules are applicable at a given time and then to

On the other hand. data base management systems have tended to
represent all knowledge as pure data. The data manager is largely a collection cf
heuristic search procedures for finding qualifying data. Representation of first
order logic statements and inference on data in the data base are rarely
attempted in production data base management systems.

The purpose of this paper is to make a modest step in the direction of sup-
porting logic statements in a data base management system. One could make
this step by simply adding an inference engine to a general purpose DBMS. How-
ever, this would entail a large amount of code with no practical interaction with
the current search codeof a data base system. As a result, the DBMS would get
much larger and would contain two essentially non overlapping subsystems. On

. -the other hand, we strive for an implementation which integrates rules into
DBMS facilities so that current search logic can be employed to control the
activation of rules.

The rules system that we plan to implement is a variant of the proposal in
[STON82]. which was capable of expressing integrity constraints, views and pro-
tection as well as simple triggers and alarms for the relational DBMS INCRES
[STON76]. Rules are of the form:

on condition
. then action

The conditions which were specified include:
the type of command being executed (e.g. replace, append)

~-1-



the relation affected (e.g. employee. dept)
the user issuing the command
the time of day
the day of week
the fields being updated (e.g. salary)
the fields specified in the qualification
the qualification present in the user command

The actions which we proposed included:
sending a message to a user
aborting the command
executing the command
modilfying the command by adding qualification or

changinj the rlation names or field names

Unfortunately, these conditions and actions often affect the command
which the, user submitted. As such, they appear to require code that manipu-
lates the syntax and semantics of relational commands. This string processing
code appears to be complex and has little function in common with other data
base faciities. In this paper we make use of two novel constructs which make
implementing rules a modest undertaking. These are:

1) the nc tion of executing the data
and
2) a sequence of QUEL commands as a data type for a relational data base sys-
tem

The remainder of this paper is organized as follows. In Section II we indi-
cate the new data types which must be implemented and the operations
required for them. Then in Section III we discuss the structural extensions to a
relational data base system that will support rules execution. Lastly, Section IV
and V contains some examples and our conclusions.

U RULES AS ABSTRACT DATA TYPES
Using current INCRES facilities [FOGC82, ONG82, STONB2a] new data types

for columns of a relation can be defined and operators on these new types
specified. We use this facility to define several new types of columns and their
associated operators in this section.

The first data type is a QUEL command. e.g.
range of e is employee
replace e(salary = 1.1*e.salary) where e.name - "John"

The abstract data type facility supports an external representation such as
that above for a given data type. Moreover. when an object of the given type is
stored in the data base it is converted to an internal representation. QUEL com-
mands are converted by the INGRES parser to a parse tree representation such
as the one noted in Figure I for the qualification "where 13. + employee.salary =
100". Consequently, a natural internal form for an object of type QUEL is a
parse tree. Eacb node in this parse tree contains a value (e.g. 13.) and a type

g. floati point constant).
The second new data type which will be useful is an ATTRIBUTE-FUNCTION.

*This is a notion in the QUEL grammar and stands for anything that can be
evaluated to a ionstant or the name of a column. Examples of attribute func-
tions include:

13.

..- -.-e- •
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RETBOOL

+- F4EQ o"I I
+-F4PLUS--+ 100.i I
13. F4VAR

1

The Parse Tree for the Qualification

Where 13. + employee.salary = 100

Figure 1

L. lemployee.salary +20

newsal

The external representation is the same string format used for objects of type
QUEL; the internal representation is that of a parse tree.

Two other data types of lesser significance are also needed, a TIME data
type to contain a time of day value and a COMMAND data type to contain a value
which is one of the QUMl. commands.

Current built-in INRES operators (e.g. . /, +, etc.) must be e .aended for
use with attribute functions. In addition, two new operators are alsa required.
First, we need a function newO which will operate with integer data types. When
called. it will return a new unique identifier which has not been previously used.
Second. we require a partial match operator. -. which will operate on a variety
of data types and provide either equality match or match the value "e*

M INGRES CHANGES
We expect to create two rules relation. RULES1 and RULES2, with the follow-

ing fields:
create RULES I(

rule-id a 4.
user-ld -F c 10.
time i time.
command = command.
relation = c12,
terminal a c2.
action = quel)

create RULES2 (
rule-id = 14.
type = CD.
att-fnI - attriltute-function
operatgr = c5,
att-fn2 = attribute-function)

For example, we might wish a rule that would add a record to an audit trail

*
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whenever the user 'Ifike" updated the'employee relation. This requires a row in
RULES1 specifted as follows:

append to RULESI(
rule-id = news.
user-id a "Mike".
command = "replace".
relation - "employee".
action = QUEL command to perform audit)

If additionally we wished to perform the audit action only when Mike
updated the employee relation with a command containing the clause "where
employee.name = "Fred'" we would add an additional tuple to RULES2 as follows:

append to RULES2(
rule-id = tht one assigned in RILES1
type = "where"
att-fnl = "employee.name"
operator "
attfn2 = "Fred")

We also require the possibility of executing data in the data base. We pro-
pose the following syntax:

range of r is relation
execute (r.fleld) where r.qualiflcation

In this case the value of r.fteld must be an executable QUEL command and
-hereby of data type QUEL. To execute the rule that was just appended to R1 we
could type:

range of r is R1
execute (r.action) where r.user-id = "Mike" and

r.command = "replace" and
r.relation = "employee"

When a QUEL command is entered by a user. it is parsed into an internal
parse tree format and stored in a temporary data structure. We expect to
change that data structure to be the following two main memory relations:

create QUERYI(
user-id z c1O.
command = command.
relation z c12.
time a time.
terminal= c2)

create QUERY2(
clause-id = 14.
type CIO.
att-fnl = attribute-function.
operator = c5.
att-fn2 = attribute-function)

If the user types the query:
range of e is employeeretrieve (em alary)

where (e.name a "Mike" or e.name a "Sally")

and e.salary > 30000

* -4-
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then INGRES will build QUERY1 to contain a single tuple with values:

GUERY1
user-id command I relation I time terminal

- current-user retrieve I emptoyee I current-time current-terminal

QUERY2 will have four tuples as follows:

"-".___QUERY2
clause-id type att-fnl operator att-fn2

id-x target-list employee.sala _e_- ,mployee.salary.
Id-y where employee.name -- Mike
id-y where emnloyee.name =Sall
id-z where employee.salary > _ 0000

Notice that QUERYl and QUERY2 contain a relational representation of the parse
tree corresponding to the incoming query from the user. The where clause of
the query is stored in conjunctive normal form. so that atrnic formulae which
are part of a disjunction have the same clause-id, while the atomic formulae and
disjunctions in the conjunction have different clause-ids.

Then we execute the QUEL commands in Figure 2 to identify and execute
the rules which are appropriate to the incoming command. These commands
are performed by the normal INGRES search logic. Activating the rules system
simply means running these commands prior to executing the user submitted
command. After running the commands of Figure 2. the query is converted
back to a parse tree representation and executed. Notice that the action part
of a rule can update QUERY1 and QUERY2; hence modification of the user com-
mand is easily accomplished. The examples in the next section illustrate several
uses for this feature:

range of rl is RULES1
range of r2 is RULES2
range of qI is QUERYI
range of q2 is QUERY2
retrieve into TEMP(rl.id, rl.quel) where

rl.user-id - ql.user-id and
rLcommand -ql.command and
rl.time - ql.time and
rl.terminal- ql.terminal

range of t is TEMP
execute (t.quel) where Lid C 0 or

(Lid = r2.rule-id and
set(r2.all-but-rule-id by r2rule-id)

a set(r2.al-but-clause-ld by r2.rule-id
where r2.aU-but-rule-id - q2.all-but-clause-id))

Rule Activation in QUEL
Figure .

The net functions are as defined in [HELD75]. The conditions for activating a
rule are:

(i) its tuple in RULESI matches the tuple in QUERY1

* . -6-
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and either
,. (i) each tuple for the rule in RUIES2 matches a tuple in QUERYZ

(1ii) there are no required matches in RULES2
(represented by rule-id < 0).

The second condition provides appropriate rule activation when both the user
query and the rule do not contain the boolean operator OR However, a rule
which should be activated when two clauses A and B are true will have two tuples
in RULES2. This rule will be activated by a user query containing clauses match-
ing A and B connected by any boolean operator. Under study is a more sophisti-
cated activation system which will avoid this drawback.

The commands In Flgure 2 cannot be executed directly because set func-
tions have never beep implemented in INGRES. Hence, we turn now to a pro-
posed implementation of these functions.

Suppose we define a new operator "I" to be bitwise OR. and "bitor0" to be an
aggregate function which bitwise ORs all qualifying fields. Then if we add the
attribute "mask" to RULES2, and give each tuple for a particular rule a unique
bit, the following query is correct:

range of t Is TEMP
execute (t.quel) where Lid < 0 or

(Lid = r2.rule-id and
bitor(r2.mask by r2.rule-id)
- bitor(rP mask by r2.rule-id

where r2.all-but-rule-id - q-all-but-clause-id))
This solution will be quite slow, since the test for each rule involves processing a
complicated aggregate. A more efficient solution involves generating masks for
all rules in parallel and writing special search code as follows:

range of rl is RULESI
range of r2 is RULES2
range of q1 is QUERY1
range of q2 is QUERY2
retrieve into TEMP(rl.id, rl.quel. mask = 0) where

rl.user-id - ql.user-id and
rl.command - ql.command and
rl.tUme - ql.tme and
rl.terminal- ql.terminal

range of t Is TEMP

foreach q2 do begin
replace t (mask = t.mask r2.mask)

where t.id = r-rule-id and
r2.all-but-rule-id - q2.all-but-cLause-id

and foreach

execute (Lquel) where Lid < 0 or
(Lid = r2.rule-id and

bitor(r2.mask by rZrule-id)
a Lmask)

Since the value of "bitor(r2-mask by r2.ruleid)" remains constant, the perfor-
mance of this llgorithm can be further improved by including the value of
"bitor(r2.mask by r2.ruleid)" in RULESI and copying it into TEMLP as the
"acceptmask". The third query would then become:

I!4-



execute (t.quel) where Lid a r2.rule-id and
Lacceptmask = Lmask

Notice the case where there are no tuples in RULES2 for a particular rule is han-
dled with an acceptmask of zero.

Either a variable length abstract data type "bitstring" or a four byte integer
can be used to store the mask. The abstract data type solution has the advan-
tage of allowing an unlimited number of conditions for specifying rule activation,
while the four byte integer solution has the advantage of simplicity and speed.
but can only represent 32 conditions.

IV EXAMPLES
We give a few examples of the utility of the above constructs in this section.

First, we can store a nommand in the data base as follows:
append to storedqueries (id = 6,

quel = "range of e is employee
retrieve (e.salary)
where e.name = "John.")

We can execute the stored command by.
range of s is storedqueries
execute (s.quel) where s.id = 6

The following two examples will pertain to the q'iery:
range of e is employee
replace e(salary = salary*l.5) where e.name = '%rika"

-*.-. To represent this query INGRES will append the following tuples to the QUERY1
and QUERY2 relations:

QUERY1
I user-id I command relation I time terminal
current-user I replace employee I current-time current-terminal

QUERY2Iclause-id I t1e ttI operator I att-fn2
id-z I target-list employee.salary - I employee.salary*l.5
id-x where employee.name - Erika

Suppose we want to implement the Integrity contraint to insure that
employee salaries never exceed $30,000. Using query modification [STON75] we
would add the clause "and employee.salary*l.5 <= 30000". to the user's
qualification with the following rule:

append to RULES1(
* rule-id = newo. (call it id-y)

user-id = 0, (matches any user-id)
command = "replace".
relation = "employee".
action = "range of Q2 is QUERY2

append to QUERY2(,F.- clause-id = id-x.
type -"where".
att-fnl Q2.att-fn2.

',. operator =
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att-fn2 - "30000")
where QZ att-fnl = "employee.salary")"

append to RULES2(
rule-id a id-y.
type = "target-list".
att-tnl = "employee.salary".
operator = "W',
att-fn2 a 0)

Consider a transition integrity constraint that specifies that the maximum
salary increase is 20%. This means that the new salary divided by the old salary
must be less than or equal to 1.2. This can be achieved by appending a single
tuple to RI:

append to RULEBi(
rule-id a newt).
user-id =.
command = "replace".
relation = "employee".
action - "range of Q2 is QUERY2

append to QUERY2(
clause-id a id-x.

type = "where".
att-fnl a Q2.att-fn2/Q2.att-fnl.
operator =
att-fn2 = "1.2"')

where Q2.att-fnl = "employee.salary'"'

As a last example of an integrity constraint, consider a referential con-
straint that a new employee must be assigned to an existing departmenL Such
a rule would be applied, for example, to the following query:

append to employee (name="Chris", dept = "Toy". mgr = "Ellen")
The corresponding tuples in QUERY2 would look like:

QUERY2
clause,-id e att-fn1 operator att-fn2

id-z tar et-list employee.namne = Chris
id-z target-list employee.dept - Toy
ld-z target-list employcc. r = Ellen

Implementation of the constraint requires checking that the department given
In the target list of the append appears in the -department relation. This is
accomplished with the followir rule:

append to RULES I(
rule-id = news.
user-id =
command = "append".
relation = "employee".
action * "range of Q2 is QUERY2

append to QUERY2(
*clause-id = id-z,

type a "where".
att-fnl a "dept.name".
operator z--=,att-fn2 = Q2.att-fn2)



where Q.att-fnl -employee.dept"

Lastly, protection is achieved primarily by making use of the RULE I rela-
tion. which pertains to the query "bookkeeping" information. Suppose we
wanted to ensure that no one could access the employee relation after- hours
(after 5PM and before SAM). The following tuple would be added to the RI rela-

append to RUm if.
rule-id -newt),
user-id -
time = "17:01 - 7:59".
command = 0.
relation = "employee".
terminal = 0..
action = "'range of Q1 is QUERY1

Srange of Q2 is QUERY2
delete Q1
delete Q2

If the query meets the conditions, the action removes the tuples in QUERY1 and
QUERY2 and thereby aborts the command.

V CONCLUSIONS
,, p This paper has presented an initial sketch of a rules system that can be

embedded in a Relational DBMS. There are two potentially very powerful
features to our proposal. First, it can provide a comprehensive trigger and
alerter system. Real time data base applications, especially those associated
with sensor data acquisition, need such a facility. Second. it provides stored
DBMS commands and the possibility of parallel execution of triggered actions.

. "In a multiprocessor environment such parallelism can be exploited.
There are also several deficiencies to the current proposal, including:

a) Rule specfication is extremely complex. This could be avoided by a language
processor which accepted a friendlier syntax and translated it into the one in
this paper.

b) The result of the execution of a collection of rules can depend on the order in
which they are activated. This is unsettling in a relational environment.

c) Rules trigger on syntax alone. For example, If we want a rule that becomes
activated whenever John's employee record is affected, we trigger on any query
having "employee.name - John" in the where clause. However if the incoming
query is to update all employees' salaries, this rule would not be triggered.

O, d) Commands with multiple range variables over the same relation, so called

-reflexive joins, are not correctly processed by the rules engine.
a) Aggregate functions have not yet been considered.

-) As noted earlier, boolean OR is not treated correctly.

We are attempting to resolve these difficulties with further work.
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ABSTRACT

This document provides an introduction to the interprocess communica-
tion facilities included in the 4.2bsd release of the VAX* UNIX" system.

It discusses the overall model for interprocess communication and intro-
duces the interprocess communication primitives which have been added to the
system. The majority of the document considers the use of these primitives in
developing applications. The reader is expected to be familiar with the C pro-
gramming language as all examples are written in C.
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* 4.2bsd IPC Primer -2- Introduction

1. INTRODUCTION

- One of the most important parts of 4.2bsd is the interprocess communication facilities. These
£- facilities are the result of more than two years of discussion and research. The facilities pro-

vided in 4.2bsd incorporate many of the ideas from current research, while trying to maintain
the UNIX philosophy of simplicity and conciseness. It is hoped that the interprocess communi-
cation facilities included in 4.2bsd will establish a standard for UNIX. From the response to the
design, It appears many organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to
- the 4.2bsd facilities, the only standard mechanism which allowed two processes to communicate

were pipes (the mpx files which were part of Version 7 were experimental). Unfortunately,
pipes are very restrictive in that the two communicating processes must be related through a
common ancestor. Further, the semantics of pipes makes them almost impossible to maintain
in a distributed environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction.
The majority of the problems have been related to the fact these facilities have been tied to the

• - UNIX file system; either through naming, or implementation. Consequently, the ipc facilities
provided in 4.2bsd have been designed as a totally independent subsystem. The 4.2bsd ipc
allows processes to rendezvous in many ways. Processes may rendezvous through a UNIX file
system-like name space (a space where all names are path names) as well as through a network
name space. In fact, new name spaces may be added at a future time with only minor changes
visible to users. Further, the communication facilities have been extended to included more
than the simple byte stream provided by a pipe-like entity. These extensions have resulted in a
completely new part of the system which users will need time to familiarize themselves with. It
is likely that as more use is made of these facilities they will be refined; only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the
new system calls and the basic model of communication. Section 3 describes some of the sup-
porting library routines users may find useful in constructing distributed applications. Section 4
is concerned with the client/server model used in developing applications and includes exam-
pies o the two major types of servers. Section 5 delves into advanced topics which sophisti-
cated users are likely to encounter when using the ipc facilities.

I
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2. BASICS

The bode building block for comncton is the sokeL A socket is an endpoint of
comuictin o whc amea be Eac soke in use has a We and one or more

i n on -as Sockets exist within ciiuwunkatk oans. A communication domain is
Wbtato introduced to bandle common properties of processes communicating through

sockets. One sach property is the scheme used to nam sockets. For example, In the UNIX
eM-u- ato domai, sockets awe maimed with UNIX path names, e.g. a socket may be named

"/dsv/foo". Sockets normally exchane data only with sockets In the -am domain (it may be
possible to cross domain boundaries, but only If some translation process is performed). The
4.2bsd lpc supports two serate communication domains: the UNIX domain, and the Internet
domain is used by processes which communicate using the the DARPA standard comtmunica-
dion protocols. The underlying communication failities provided by these domains have a
significant Influence as the Internal system Imlmntto a well a the Interfae to socket
6faciities available to a user. An example of the latter Is that a socket "operating"' in the UNIX
domain sees a subset of the possible erro conditioms which are possible whn operating in the
Internet domain.

Sockets are typed according to the communication properties visible to a user. Processes
are presumed to communicate only between sockets of the same type, although there is nothing
that prevents comncto between sockets of different types should the underlying com-
mismication Protocols support this

Three types of sockets currently are available to a user. A smrem socket provides for the
bidirectional, ftliable, sequenced, and unduplicated flow of data without record boundaries.
Aside from the blietoaiyof data flow, a pair of connected stream sockets provides an
interface nearly identical to that at plpes.

A aeftm socket soppoirts bidirectional flow of data which is not promised to be
sequenced, reliable,or unduplicated. That i,a proes receiving messages onsadatagram socket
my Aind messages duplicated, and, possibly, In an order different from the order in which it
wa sent. An important characteristic of a datagrarn socket Is that record boundaries in date are
preserved. Datagramz sockets closely model the facilities found In many contemporary packet
switched networks such as the Ethernet.

A aw socket providles uasersams to the underlying communication protocols which sup-
-Port socket abstractions. Thes sockets are normally datagram oriented, though their exact

ebaactritic ae dependent on the interface provided by the protocol. Raw sockets are not
Intended for the general use, they have been provided mainly for those interested in develop-
ing new comuiato protocols, or for pining aces to some of the more esoteric facilities
of an existing protocol. The use of raw sockets is considered in section S.

Two potential socket types which have interesting properties are the xWqced packet
socket and the reldsbly Alwed messae socket. A sequenced packet socket Is identical to a
strum socket with the exception that record boundaries are preserved. This interface as ver
soma to that provided by the Xerox MS Sequenced Packet protocol. The reliably delivered
miessage socket has similar properties to a datapram socket, but with reliable delivery. While
diese two socket types have been loosely defined, they are currently unimplemented in 4.2bsd.
As sock, In this document we will concern ourselves only with the three socket types for which

Ob*UNI da es m do urn we Mmal ad. a on m~ht szpea. pipm hove bms bmpke-
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.2.2. Saa Crei
To create a socket the socket system call is used:

s - socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified
W. A prticular protocol may also be requested. If the protocol is left unspecified (a value of

0), the system will select an appropriate protocol from those protocols which comprise the com-
munication domain and which may be used to support the requested socket type. The user is
returned a descriptor (a small integer number) which may be used in later system calls which
operate on sockets. The domain is specified as one of the manifest constants defined in the file
<VIbokeLh>. For the UNIX domain the constant is AF UNIX; for the Internet domain
AF INET. The socket types are also defined in this fie and one of SOCK-STREAM,
SOCKDGRA.'4, or SOCK RAW must be specified. To create a stream socket in the Internet
domain the following call might be used:

s - socket(AJ=_INET, SOCKSTREAM, 0);

This call would result in a strum socket being created with the TCP protocol providing the
underlying communication support. To mate a datagram socket for on-machine use a sample
a0 might be:

a - socket(AF UNIX, SOCK DGRAM, 0);

To obtain a particular protocol one selects the protocol number, as defined within the
communication domain. For the Internet domain the available protocols are defined in
<netiW/in.h> or, better yet, one may use one of the library routines discussed in section 3,
such s ueoo*.sinr

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#nclude <etdb.h>

pp - stpotobyname(tcp");
s - socket(AF_ NEl, SOCKSTREAM, pp->pjroto);

There ae several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting
protocol (EPROTOTYPE).

2.3. Blndln mmes

A socket is mated without a name. Until a name is bound to a socket, processes have no
way to reference it and, consequently, no messages may be received on it. The bond call is used
to m a name to a socket:

bInd(s, name, nomelen);
The bound name is a variable length byte string which is interpreted by the supporting
potocol(s). Its interpretation may vary from communication domain to communication
domain (this is one of the properties which comprise the "domain"). In the UNIX domain
=mss am path names while in the Internet domain names contain an Internet address and port
number. If one wanted to bind the name "/dev/foo" to a UNIX domain socket, the following
wouMl be used:
Thea'o uaamm - md AF yh.Uw ws they kinte te "ddirfu format" to um, inm pmret-
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blnd(s. */devlfoo' sieo (*Idevlfoo) - 1);
(Note how the null byte in fth naue is not counted a part of the namn,.) In binding an Inter-
ne address things become more complicated. The actual call is simple,

ginclude <Ws/typuhb>
glAClude <aetinot/Inh>

but the selection of what to place In the address sfi requires some discussion. We will come
back to the problem of formulating Internet addresss in section 3 when the library routines
used in ame resolution wre discussed.

2A Cessation establisseent
With a bound socket it is possible to rendezvous with an unrelated proess. This opera-

% tion is usually asymmetric with one p ress a "'client" and the other a "server". The client
requets services from the srver by initiating a "connection" to the sver's socket. The
server, when willing to of1cr its advertised services, passively "listens" on its socket. On the

-~ client side the connier call is used to initiate a connection. Using the UNIX domain, this might
appear an,

ceinnect(s. eseverneme, sho (oservernsmeU);

while In the Internet domain,
struct sockaddr in server,
connect(, Server, sdzuo (server));

If the client proccess's socket is unbound at the time of the connect call, the systemn will
automatically selec and bind a on to the socket; c1f section 5.4. An erro is returned when
the connection was unsuccessul (any name automatically bound by the system, however.
remains). Othewise, the socket is associated with the server and data transfer may begin.

Many erron an be returned when a connection attempt fails. The most common are:
ETDAEDOUT

After falin to establish a connection for a period of time, the smstm decided there was
so point In retrying the connection attempt my more. Thi suwally occur. because the
destinaton hoat is down, or because problems In the network resulted in transimsons

IECONNREFUSED
The host rfused service for some muson. When connecting to a host running 4.2bsd this
bs usually due to a server proes no being present at the requested nme.

EI4EZDO'WN or EHOSTDOWN
These operational error. we returned besed on statue informastion delivered to the client
hos by the underlying; communication services.

ENETUNREACH or EHOSTU14REAOI
Ibm operational errors -o occur eithr because the network or host is unknown (no
nowt to the network or host Is present), or because of status inforumation returned by
intermediate peways or switching sodas. Many tim the status returned is not
sufficlent to distnguish a network being down from a host bein dow . In thes asss the
s"stem is conservative and indicates the entire network is unreachable.
For the server to receive a client's connection It must perform two stps after binding its

socket The Ams is to indicate a willingness to listen for incoming connection requests:
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Ilisten(s, 5);

The second parameter to the listen call specifies the maximum number -of outstanding connec-
dons which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual

-. .*.. messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error, the client would be unable to tell
if the server was up or not. As it is now it is still possible to get the ETIMEDOUT error back,

-. + though this is unlikely. The backlog figure supplied with the listen call is limited by the system
-. to a maximum of S pending connections on any one queue. This avoids the problem of

processes hogging system resources by setting an infinite backlog, then ignoring all connection
requests.

With a socket marked as listening, a server may accept a connection:
fromlen - sizeof (from);

anew - accept(s, Wfrom, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the
server wishes to find out who its client is, it may supply a buffer for the client socket's name.
The value-result parameter from/en is initialized by the server to indicate how much space is
associated with from, then modified on return to reflect the true size of the name. If the
client's name is not of interest, the second parameter may be zero.

% Accept normally blocks. That is, the call to accept will not return until a connection is
S...;.i available or the system call is interrupted by a signal to the process. Further, there is no way

for a process to indicate it will accept connections from only a specific individual, or individuals.
- It is up to the user process to consider who the connection is from and close down the connec-

tion if it does not wish to speak to the process. If the server process wants to accept connec-
S.dons on more than one socket, or not block on the accept call there are alternatives; they will

. be considered in section 5.

2.5. Data transfer
With a connection established, data may begin to flow. To send and receive data there are

a number of possible calls. With the peer entity at each end of a connection anchored, a user
can send or receive a message without specifying the peer. As one might expect, in this case,

' then the normal read and wite system calls are useable,
- write(s, buf, sizeof (buf));

read(s, buf, sizeof (buf));
In addition to read and write, the new calls send and &Vn may be used:

send(s, buf, sizeof (buf), fags);
recv(s, buf, sizeof (buf), flags);

While end and rev are virtually identical to read and wra, the extra flags argument is impor-
tant. The flags may be specified as a non-zero value if one or more of the following is required:

SOF_OOB send/receive out of band data
.- . ,,SOFPRE VIEW look at data without reading

SOFDONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
*. consider. The option to have data sent without routing applied to the outgoing packets is
- .- currently used only by the routing table management process, and is unlikely to be of interest

to the casual user. The ability to preview data is, however, of interest. When SOF PREVIEW
*' Is specified with a rwv call, any data present is returned to the user, but treated as still
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'Nutad. That is, the next nrod or mvv call applied to the socket Will reurn the data previ-
may -"ID

2A Disaring "do"i
Ormca sokt s onge of iret, it aybe d iscardedby applying a damto the

domeC.);
V d@ta bs associsaed with a socket which promises reliable delivery (e.g. a streamn socket) when a
done takes, place, the system will continue to attempt to Uranse the data. However, afte a
birty long Period of time, If the data Is stil undelivered, It will be discarded. Should a user
havensouse forany pending data, It may perform a siUmdown an the socket prior to closing it.

sbutdouua66 bow);
where howIs 0 f the user is nolonger interested in feding data, I If no more data will be sent,
or 2 If no data is to be aent or received. Applying shutdown to a socket causes any data queued
ao be immediately discarded.

2.7. Cmmede2lesoetus
To this point we have been concerned mostly with sockets which follow a connection

orinte model. However, there is also support for connectionless interactions typical of the
datagram facilities found in contemporary packet switched networks. A datagram, socket pro.
vides a symmetric Interface to data exchange. While processs we still likely to be client and
server, therb isno requirement for connection establishment. Infsead each message includes

-~ the destination address.
Datagram sockets ate created as before, and each should have a name bound to It In order

that the recipient of a message may identify the sender. To send data, the sen~o primitive is
used

sendto(s, buf, boon, lAgs, Itto, tolen);
Mwea s.V We ein, and jfwg parameters wre used as before. The to and tokn values are used to
Indicate the intended recipient of the message. When using an unreliable datagramn interface, it
is unlikely any errors will be reported to the sender. Where information is present locally to
recogniz a message which may neve be delivered (for Instance when a network is unreach-

able). the call will return -1 and the global value a will contain an error number.
To receive messages on an unconnected datagram, socket, the uvtlw primitive Is pro-

vided:
recvfron(s, buf, bufon, flags, Mfom, &fromlen);

Onm again, the kfnmrur parameter Is handled in a value-result fashion, initially contain the
duz of the Jto.. buffer.

In addition to the two calls mmentioned above. datagrami sockets may also use the concr
uf0 to asciate a socket with a specific address. In this am, any data sent on the socket will
uitomaticaily be addressed to the connected peer, and only data received from that peer will be
deuivered to the user. Only one connected address is permitted for each socket (iLe. no multi-
eanin*) Connect requests on datagram sockets return immediately, as this simply results in
de systm recording the peer's address (as compared to a streamn socket where a connect
reques initiates establishment of an end to end connection). Other of the lu. important
istall of detagram, sockets aedescribed In section S.

..

DRAFT of July IM,1 Laeftr y/Joy



4.2bed IPC Primer -8- Basics

2.8. Input/Output MuItiplezing
*One last facility often used in developing applications is the ability to multiplex i/o

requests among multiple sockets and/or files. This is done using the getkci call:

*'' • select(nfds, &readfd, &writefds, lexecptfds, Atimeout);
Sec takesa arguments three bit masks, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and
one for which exceptional conditions are pending. Bit masks are created by or-ing bits of the
form 411 < < fd". That is, a descriptor j is selected if a is present in the fi'th bit of the
mask. The parameter gUr specifies the range of file descriptors (i.e. one plus the value of the
largest descriptor) specified in a mask.

A timeout value may be specified if the selection is not to last more than a predetermined
period of time. If smmort is set to 0, the selection takes the form of a po/l returning immedi-
ately. if the last parameter is a null pointer, the selection will block indefinitely*. Sekct nor-
mally returns the number of file descriptors selected. If the serkt call returns due to the
timeout expiring, then a value of -1 is returned along with the error number EINTR.

Sel-c provides a synchronous multiplexing scheme. Asynchronous notification of output
completion, input availability, and exceptional conditions is possible through use of the SIGIO
and SIGURG signals described in section 5.

f.-

To be tnwe specfic, a return takea place only when a descriptor is selectble. or when a signal is feceived
by the aller, ittenupstf the systemn call.
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3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the nterprocess communication facilities in a distributed environment.
To aid in this task a number of routines have been added to the standard C run-time library.

-, In this section we wil consider the new routines provided to manipulate network addresses.
While the 4.2bd networking facilities support only the DARPA standard Internet protocols,
tse mutines have been daesigned with flexibility in mind. As more communication protocols
become available, we hope the -r user interface will be maintained In accessing network-
related address data bes. The only difference should be the values returned to the user.

.-. Since these values ae normally supplied the system, users should not need to be directly aware
of the communication protocol and/or naming conventions in use.

Locating a service on a remote host requires many levels of mapping before client and
server may communicate. A service is assigned a name which is intended for human consump-
don; e.g. 'the fin ar on host monet". This name, end the name of the peer host, must
then be translated into network addnv which are not necessarily suitable for human con-
_w .mption. Finally, the address must then used in locating a physical loton and route to the
service. The specifics of these three mapping is likely to vary between network architectures.
For instance, it is desirable for a network to not require hosts be named in such a way that their
physical location is known by the client host. Instead, underlying services in the network may
discover the actual location of the host at the time a client host wishes to communicate. This
ability to have host named in a location independent manner may induce overhead in connec-
tion establishment, as a discovery process must take place, but allows a host to be physically
mobile without requiring it to notify Its clientele of its current location.

-:. Standard routines are provided for: mapping host names to network addresses, network
names to network numbers, protocol names to protocol numbers, and service names to port
numbers and the appropriate protocol to use in communicating with the server process. The
Me <arz&h> must be included when using any of these routines.

3.1. not name
A bost name to address mapping is represented by the Aosirn structure:

struct bostent I
char "hnaime; /S official name of bost 1
char h.tliases; re aias list 1
It hddrtype; / host amdress type "I
int hength; P length of address1
Char 0"_addr, / address 1

The official name of the bot and its public aliases are returned, along with a variable length
address and type. The routine swtabynr(3N) takes a host name and returns a hos-
sewi structur, while the routine Aosryedi(3N) maps host addres into a houent structure.
It is possible for a host to have many addrs, all having the me name. GCethembyeme
mtunm the first matching entry in the data bse file kx/hosts If this is unsuitable, the lower
level routine serhosuenON) may be used. For example, to obtain a hostent structure for a host
m a particular network the following routine might be used (for simplicity, only Internet
ddre sae considered):
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#include <sys/typesh>
#include <sys/socket.h>
#include <netinet/in.h>

.- #include <netdb.h>

Struct hostent
pthostbynameandnet(name, net)

char name;
int net;

register eruct bostent *hp;
register char "cp;

"ethostent(0);
while ((hp - gethostentO) !- NULL)

if (hp->haddnyp!- AFNET)
~, *~continue;

if (strcmp(name, hp->h name)) {
for (cp - hp->haiases; cp && *cp -NULL; cp+ +)

if (strcmp(name, cp) -- 0)
goto found;

continue;

found:
if (in netof((struct inaddr °)hp->haddr)) -- net)

- break;

indhostent(O);
return (hp);

*' *- (In _rej1/3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network ames
As for host names, routines for mapping network names to numbers, and back, are pro-

vided. These routines return a went structure:
/.
• Assumption here is that a network number
0 fits in 32 bits - probably a poor one.
0/

eruct netent
char nname; I' official name of net 01
char naliases; " diis list "
-nt knamtp ; /0 net address type "1
int nnet; / network # 0/

The routines geneynanr(3N), Vinebynumber(3N), and gefnuan3N) are the network coun-
torports to the host routines described above.

... -.?

.. 3. Preost lmls
For protocols the potoenr structure defines the protocol-name mapping used with the rou-

.pt nest geptooyamn (3N), gerprotobynumbe,(3N), and geleoron,(3N):
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"uct protcet I
char pnome; /r official protocol name 0I
char "pJHUe, /r alna list /
bat pjroto; r protocol 0/

3" hy m

" ~ 3 Ba.lrd" stooals

bnformation regarding services is a bit more complicated. A service is expected to reside
at a specific "port" and employ a particular communication protocol. This view is consistent
with the Internet domain, but inconsistent with other network architectures. Further, a service
may reside on multiple ports or support multiple protocols. If either of these occurs, the higher
level library routines will have to be bypassed in favor of homegrown routines similar in spirit
to the "gethostbynameandnet" routine described above. A service mapping is described by the
MnVWa stulcture,

Oft s ovnt
Cher °8 name; /0 Official service name 0/
Char "saWUsm ; 10 alis list 01
bt sPort; /0 port # 0/
char s-prow; ' protocol to ue /

Tbe routine searvnameo3N) maps service names to a servant structure by specifying a ser-
vice name and, optionally, a qualifying protocol. Thus the call

sp- s e lnet', (char 0)0);
returns the service specification for a telnet server using any protocol, while the call

sp - etervbyame(tenet', "cp');
tturns only that telnet server which uses the TCP protocol. The routines georvbpopr3N)

ad eutasrnri3N) ar also provided. The euervtypon routine has an interface similar to that
provided by pew4vbw A an optional protocol name may be specified to qualify lookups.

3.5. Mlsilaas
With the support routines described above, an application program should rarely have to

deal directly with addresses. This allows services to be developed as much a possible in a net-
work independent fashion. It bs clear, however, that purging all network dependencies is very
difficult. So long as the user is required to supply network addresses when naming services and
sockets there will always some network dependency in a program. For example, the normal
code included in client programs, such s the remote login program, is of the form shown in
Figure I. (This example will be considered in more detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols and
addressing scheme we would be forced to add a layer of routines which masked the network
depend nt aspects from the mainstream login code. For the current facilities available in the
system this does not appear to be worthwhile. Perhaps when the system is adapted to different
mstwork architectures the utilities will be reorganized more cleanly.

Aside from the addres-related data base routines, there are several other routines avail-
able n the rum-time library which are of interest to users. Thew re intended mostly to im-
Ilify manipulation of names and addresses. Table 1 summarIzes the routines for manipulating
vriable length byte strings and handling byte swapping of network addresses and values.

The byte swapping routim we provided bemuse the operating M m expects addresses
lo be supplied in network order. On a VAX, or machine with similar architecture, this is usu-
dly rvers Consequently, programs we sometimes required to byte swap qumntities. The
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#include <systypeshb>
#include <syslsocket.h>
finclude <netinet/in.h>

#include <stdio.h>
*include <netdb.h>

main(argc, argv)
chat *argvD;

struct sockaddrjn sin;
struct servent 0ap;
strud hostent *hp;
int r;

sp - getservbyname ('ogin'. 'tcp);
if (sp - -NULL) (

fprintf(stdefr, 'rlogin: tcp/login: unknown service\n');

hp - gethostbpne(argvlll);
if (hp -- NULL)

fprintf(sidenf, 'rlogin: %s: unknown host\n', argvlI);
exit(2);

bner((char *Asin, sizeof (sin));
bcopy(hp. >haddr, (char )&sin.sin addr, hp- >h-length);

* uan.sinjamily - hp->h-addntype;
min.sinport - sp-> sport;
5 W socket(AF NESOCK-STREAM, 0);
if (s<0) 1

perror(*rlogin: socket");
exit(3)

f(connect(s, (char )&sin, sizedf (sin)) < 0)1
perror('rogin: connect');
exit(S);

Figure 1. Remote login client code.

call Synopsis
bcmp(sl, s2, n copare byte-strings; 0 if same, not 0 otherwise
bcopy(sI, s2. n) copy n bytes from si to s2
biero(base. n) zero-fill n bytes starting at base
htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohi (val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table 1. C run-time routines.
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lbry routines which return network addresses provide them In network order so that they
aysimply be copied into the structures provided to the system. This implies users should

encounter the byte swapping problem only when iswpefing network addresses. For example, if
Internet port is to be printed out the following code would be required:

pdn(pon number %"', ntohs(sp.>sjpon)); P
- O mchin. other than the VAX then routines are defined a null macros.

o yo

-o S

-

%

'%'

5%
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4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the
dient/server model. In this scheme client applications request services from a server process.
This implies an asymmetry in establishing communication between the client and server which
has been examined in section 2. In this section we will look more closely at the interactions
between client and server, and consider some of the problems in developing client and server
applications.

Client and server require a well known set of conventions before service may be rendered
(and accepted). This set of conventions comprises a protocol which must be implemented at
both ends of a connection. Depending on the situation, the protocol may be symmetric or
asymmetric. In a symmetric protocol, either side may play the master or slave roles. In an
asymmetric protocol, one side is immutably recognized as the master, with the other the slave.
An example of a symmetric protocol is the TELNET protocol used in the Internet for remote
terminal emulation. An example of an asymmetric protocol is the Internet file transfer proto-
col, FTP. No matter whether the specific protocol used in obtaining a service is symmetric or
asymmetric, when accessing a service there is a "client process" and a "server process". We
will first consider the properties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clog-
ging the system while remaining dormant most of the time. The Xerox Courier protocol uses
the latter scheme. When using Courier, a Courier client process contacts a Courier server at
the remote host and identifies the service it requires. The Courier server process then creates
the appropriate server process based on a data base and "splices" the client and server
together, voiding its part in the transaction. This scheme is attractive in that the Courier server
process may provide a single contact point for all services, as well as carrying out the initial
steps in authentication. However, while this is an attractive possibility for standardizing access
to services, it does introduce a certain amount of overhead due to the intermediate process
involved. Implementations which provide this type of service within the system can minimize
the cost of client server rendezvous. The portal notion described in the "4.2BSD System
Manual" embodies many of the ideas found in Courier, with the rendezvous mechanism imple-
mented internal to the system.

S..-,-* 4.1. Servers
In 4.2bsd most servers are accessed at well known Internet addresses or UNIX domain

names. When a server is started at boot time it advertises it services by listening at a well know
location. For example, the remote login server's main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp - getservbyname(aloin, "9W");
f (sp-- NULL) !

fprintf(stderr, "rogind: tcp/iogin: unknown service\n');
exit(l);

I

This definition is used in later portions of the code to define the Internet port at which it listens
for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its invoker. This is

important as the server will likely not want to receive signals delivered to the process group of
the controling terminal.
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.ain(nrgc, Ov)

c ar rv

smnt ArpOnoc sonddrIn froM
* A: stuct servent 01p;

S- pservyn.'lo ', "cp');

Msp itL)If (I MW tULm) I
ftplntf(sidurr, 'rlogind: tcp/login: unknown service\o);
e-.t(l);

#ifndef EBUG
< <disasociate server from controlling terminal> >

.sinjor - w->sjo-

Sf'- socket(AFNWT, SOCKSTREAM. 0);

9; (bind(r, (caddrf)&sin, azof (sin)) < 0) 0

for (;) l
.,t a. in -sdzeof (from);

wmacest(f, Afrom, Woen);Vr(S< o)

9 (era ! INO
pe1or('rlogind: acce);

continue;
Se. . I

.,r fkO MWo)(
doseff);
dolt(s, from);

INI

dose(s);

. Figure 2. ReImote login server.

Once a servr bm sablised a pristine environment, It create$ a socket and begins
meepelo seIN e V quests The bkd .10 is required to insure the server listens at its expected
balom. The main body of the loop Is fairly simple:

-- U,
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for(;;)1
int s, len sizeof (from);

. - accept(f, &from, lien);
if ( <) 

if (ermo - EINTR)
perror(rlogind: accept);

continue;

f (forkO -- 0)1
dose(f);
doit(g, &from);}I

los(s);iI
An accept call blocks the server until a client requests service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5).
'Therefore, the return value from accept is checked to insure a connection has actually been
established. With a connection in hand, the server then forks a child process and invokes the
main body of the remote login protocol processing. Note how the socket used by the parent for
queueing connection requests is closed in the child, while the socket created as a result of the
accept is closed in the parent. The address of the client is also handed the doit routine because
it requires it in authenticating clients.

4.2. Clients
The client side of the remote login service was shown earlier in Figure 1. One can see the

separate, asymmetric roles of the client and server clearly in the code. The server is a passive
entity, listening for client connections, while the client process is an active entity, initiating a
connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the
server process the first step is to locate the service definition for a remote login:

sp - getservbyname(*iogin*, "tW);
If(sp -- NULL) I

fprintf(stderr, "rlogin: tep/ogin: unknown service\n');
exit(l);I

Next the destination host is looked up with a tehosibyname call:

hp - 8ethostbyname(argvlll);
If (hp -- NULL) I

fprintf(stderr, "rlogin: %s: unknown host\n*, argvll);
eit(2);

With this accomplished, all that is required is to establish a connection to the server at the
mquested host and start up the remote login protocol. The address buffer is cleared, then filled
In with the Internet address of the foreign host and the port number at which the login process
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hsero((char *)&uin, dudeo (sin));
'C.bcopy(hp->hajddr, (char *)sin-*uin t addr bnO

ssknfamly - bp->ILddrtype;
sin-ulnort - wpsujort;

A socket is creted, aid a connection initiated,

a - socket(hp->haddrtype, SOCILSTREAM, 0);
9 (a <0)(

perr ("logln: socket!);
@Zito3);

lf(cmct(a, (char -)&sin, sizedf (sin)) < 0)1
- . pet. or Crogin: connect');

* - ezlt(4);

The dMails of Ohe remote login protocol will not be considered hare.

Whil connection-based services are the norm, aone services are based on the wse of
datapan sockets. One, in particular, bi the "rwho" service which provides users with status
Ifoaio for boats connected to a local ae network. Thi service, while predicated o h

abilty to broaAws information to all hosts connected to a particular network, is of interest a
-n example usage of datagram sockets.

A am an any machine rnnins the rwho server may Aind out the currnt status of a
machine with the rupe(l) pora. The output generated is illustrated in Fgure 3.

* *S up 9:43, 5 silsioad 1.15, 1.39, 1.31
codup 2+12:04. 3 users, load 4.67, 5.13, 4.59

older up 10:10, 0 user., load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users load 1.04, 1.20, 1.65
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41
off up 5+00-05, 0 users, load 1.51, 1.54, 1.56
amni down 0.24

Gem:16 dow 17:0od4:3,2:6 3

mdm up 3+06:18, 0ues od 00,00,OO
.4meda up 3 +09:39, 2 users, load 0.35, 0.37, 0.30

merlin down 19+15S:37
mniro up 1+07:20, 7 users, load 4.59, 3.21, 2.12
MGMe up 1+00:43, 2 users, load 0.22, 0.09, 0.07

em dOwn 16:09
81atva up 2+15:57, 3 uers, load 1.52, 1.31, 1.86
10110az up 9.34, 2 users, load 6.01, 5.16, 3.23

Figlure 3. nuptni output.

Itaus information for each bost is periodically broadcast by fwho server prcese on
each machine. The sun server p rm alo receives the status Information and usm It to
update a database. This database is then interpreted to generate the status informnation for each
__ m. Servers operate autonomnously, coupled only by the local network and its broadcast caps-
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* The fwbo server, In a simplified form, is pictured in Figure 4. There are two separate
tasks performed by the server. The first task Is to ast as a receiver of status information broad-
cast by other hosts on the network. This job is carried out in the main loop of the program.
Packets received at the rwho port are interrogated to insure they've been sent by another rwho
server process, then are time stamped with their arrival time and used to update a file indicating
the status of the host. When a host has not been heard from for an extended period of time,
the database interpretation routines assume the host is down and indicate such on the status
reports.hi algorithm is prone to error as a server may be down while a host is actually up,
but serves our current needs.

malnO

sp getservbyname(who. audp);
net -getnetname~locainet');
insin addr - Inetjnakeaddr(INADDR-.ANY, net);

sinsinjiort - up->sport;

a = socket(AfJNET, SOCKDGRAM, 0);

ind(s, &sin, sizeof (sin));

sigset(SIGALRM. nl)
onairmO;
for (;

struct whod wd;
int cc, whod, fen - sizeof (from);

cc - recvfrom(s, (char *Awd, sizeof (struct whod), 0, Afrom, Wien);
if (CC <_0) 1 EN

if (cc <( 0& efrno EI- R
perror(*rwhod: recv);

'a- continue;

'V. if (from.sin~port !- wp>sprt)
fprintf(stderr, wrwhod: %d: bad from port~n",

* . ntohs(from.sinjort));
continue;

If(verify(wd.wd hostname))
fprintf(stderr, 'rwhod: malformed host name from %x\n",

P % b atohi (fromsinasddr-saddr));
continue;

(void) sprlntf(path, "%s/whod.%s, RWHODIR, wd.wd hostname);
wbod - open(path, FWRONLYWCREATE TRUNCAftE, 0666);

(void) time (&wd.wd -ecvtime);
(void) write(whod, (chiar )&wd, cc);
(void) close(whod);

Figure 4. rwbo ser ver.
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The scond task performied by the server k to supply information regarding the status of
ins host. This Involves periodically acquiring systm status information, packaging it up in a
message and broadcasting It on the local network for other rwho servers to hear. The supply
function Is trigere by a tinmer ad runs off a signal. Locating the system status information is .

somewhat Involved, but uninteresting Deciding where to transmit the resultant pocket does,
howevier, indiates some problems with the current protocol.

Scttu Information h. broadcast an the local network. For networks which do no support
fte notion of broadcast another scheme must be used to simulate or replace broadcastirng. One

possibility bs to enumerate the known neighbors (based on the status received). This. unfor-
tunately, require some bootstrapping information, a a server stated up on a quiet nework
will have no known neighbors and thus never receive, or send, any status information. This is
the Identical problem faced by the routing table management process in propagating routing
status information. The standard solution, unsatisfactory a it may be, is to inform one or
moore savers of known neighbors and request that they always communicate with these neigh.
bors. If each server ha at leas one neighbor supplied it, status Infomation may then pro-
pagate through a neighbor to hosts which are not (possibly) directly neighbors. If the srver is
able to support networks which provide a broadcast capability, as well a those which do not,

dinnetworks with an arbitrar topology may share status informatimo.
The second problem with the current scheme is that the rwho process services only a sin-

Sklocal! network, and this network Is found by reading a fle. It is important that software
operating in a distributed environment not have any site-dependent information compiled into
It. This would require a separate copy of the server at each host and make maintenance a
severe headache. 4.2bod attempts to isolate host-specific information from applications by pro-
viding system calls which return the necessary informationt. Unfortunately, no straightforward
mechanism currently exists for finding the collection of networks to which a host is directly
connected. Thus the rwho server performs a lookup in a fle to find its local network. A
better, though still unsatisfactory, scheme used by the routing process is to interrogate the sys-
tem data structures to locate those directly connected networks. A mechanism to acquire this
information fromn the system would be a useful addition.

On =w. homavu. b on sladaowt -boo". Thut k. 9 a host b omodiesd to mullipls netwwki6 k
wo rgwjva min fonnmhfom bI. This m Iad tor W ldWau waawful, eachaSe of bfonumodom.

U ~t An annla 9f mah a INm mo b the guiog'ma(2) ml whs etua dhe boalas "okil" mama.
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5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the ipc the mechan-
isms already described will suffice in constructing distributed applications. However, others will

.N find need to utilize some of the features which we consider in this section.

5.1. Out of band data
The stream socket abstraction includes the notion of "out of band" data. Out of band

data is a logically independent transmission channel associated with each pair of connected
stream sockets. Out of band data is delivered to the user independently of normal data along
with the SIOURG signal. In addition to the information passed, a logical mark is placed in the
data stream to indicate the point at which the out of band data was sent. The remote login and
remote shell applications use this facility to propagate signals from between client and server
processes. When a signal is expected to flush any pending output from the remote process(es),
all data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reli-
able delivery of at least one out of band message at a time. This message may contain at least
one byte of data, and at least one message may be pending delivery to the user at any one time.

• For communications protocols which support only in-band signaling (i.e. the urgent data is
delivered in sequence with the normal data) the system extracts the data from the normal data
stream and stores it separately. This allows users to choose between receiving the urgent data
in order and receiving it out of sequence without having to buffer all the intervening data.

To send an out of band message the SOFOOB flag is supplied to a send or sendo calls,
while to receive out of band data SOF00B should be indicated when performing a revfrom or
-" ' call. To find out if the read pointer is currently pointing at the mark in the data stream,
the SIOCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, Ayes);

If yes is a I on return, the next read will return data after the mark. Otherwise (assuming out
.-. .,of band data has arrived), the next read will provide data sent by the client prior to transmis-

sion of the out of band signal. The routine used in the remote login process to flush output on
receipt of an interrupt or quit signal is shown in Figure S.

5.2. Signals and pr roups
Due to the existence of the SIGURG and S10l0 signals each socket has an associated

process group (just as is done for terminals). This process group is initialized to the process
group of its creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

DRAFT of July 27, 1983 Leffier/Fabry/Joy
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oobO

Intout -1+1;
char te CDOUFSWZ, mork;

ignal(SIOURO, ob);
P Blush local terminal input and output1
WWIl~. TIOCFLUSH. (char *Aout);
far .;,) (

V (Iocl(rem. SIOCATMAMK Azmk) -c 0)1

break;
(void) mred waste, izeof (waste));

Mev(rm,. Amark 1. SOF.0031);

Figur 5. Flushing terminal i/o on receipt of out of band data.

V loct~s, SIOCSPORP, &pgrp);

A similar loch, SIOCOPOIP, is available for determining the current press group of a socket.

L.3. Fuse. termdmals
Many program will not tmcton properly without a terminal for standard input and out-

lout. Sinc a socket is not a terminal, it is often necessary to hive a process communicating
oae the network do so through a peudo wmiaL A pseudo terminal is actually a pair of dev-
lees, master and slave, which allow a prcI to serve a an active agent in communication
between procss es and users. Data written on the alave side of a pseudo terminal is supplied as
input to a p roes reading from the masteir aide. Dat written on the maste side is given the
slave a input. In this way, the process manipulating the master side of the pseudo terminal his
control over the information read and written on the slave side. The remote login server uses
pseudo terminals for remote login sessions. A user logging in to a machine across the network
Is provie a shell with a slave pseudo terminal a standard input, output, and error. The
server pr cess then handles the comunication between the programs invoked by the remote

* shbell sad the user's local client proess When a user sends an interrupt or quit signal to a pro.
-es executing on a remote machine, the client login program traps the signal, sends an out of

bead message to the ser prcess who then uses the signal number, snt a the data value in
the out of band message, to perform a kdM(2) on the appropriate Proes group.

5.4 IM"eme aWress Wadi
Binding addresses to sockets in the Internet domain can be fairly complex. Communicat-

kog prIse -arwe bound by an mem An association Is composed of local and foreign
addesssand local ad foreign ports. Port numbers are allocated out or separate spaces, one

for esuh Internet protocol. Associations ae always unique. That is, there my neve be dupli-
mue (protocol, local address, local port, foreign address, foreign Port> tuples.

The bin sysem all allows a p rcs to specify half of an association, <local address,
* local Port>, while the connect and accept primitives are used to complete a socket's associa-

don. Since the association is rated in two step the association uniqueness requirement indi-
sed above could be violated unles wae Is taken. Further, It Is unrealistic to expect user
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4.2bod IPC Primer -22- Advanced Topics

programs to always know proper values to use for the local address and local port since a host
may reside on multiple networks and the set of allocated port numbers is not directly accessible

i to a Usr.

To simplify local address binding the notion of a "wildcard" address has been provided.
When an address is specified as INADDRANY (a manifest constant defined in
<netinet/in.h>), the system interprets the address as "any valid address". For example, to
bind a specific port number to a socket, but leave the local address unspecified, the following
code might be used:

#include <ss/types.h>
#include <netinet/in.h>

struct sockaddrin sin;

S- socket(AF INET, SOCKSTREAM, 0);
sin.sinfmily - AfNET;
sIn.sinaddr.s addr - INADDRANY;
sin.sinport - MYPORT;
bind(s, (char )Asin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port
number, and addressed to any of the possible addresses assigned a host. For example, if a host

* is on a networks 46 and 10 and a socket is bound as above, then an accept call is performed,
*, the process will be able to accept connection requests which arrive either from network 46 or

network 10.
In a similar fashion, a local port may be left unspecified (specified as zero), in which case

the system will select an appropriate port number for it. For example:

i ina _ddr.saddr - MYADDRESS;
sin.sinport - 0;
bind(s, (char )&sin, sizeof (sin));

The system selects the port number based on two criteria. The first is that ports numbered 0
through 1023 are reserved for privileged users (i.e. the super user). The second is that the port
number is not currently bound to some other socket. In order to find a free port number in the
privileged range the following code is used by the remote shell server:
D2e

4.

"p.

P

4R
* , %

.. %



4.2bud IPC Printer . 23- Advanced Topics

sawc sockaddra b n;

-pr = PPRRSRE - 1;
ddr.s~addri MENADDRANY;

for (,

simjort - hron((u shorthlport);
If (bndo" (csddrt )sn sho Wn >- 0)

beak;
Ur (erroo I- EADDRINUSE "A siro 1- EADDRNOTA VAIL)

perro(msocketo);

if Oport -- IPPORT..RESERVED/2)I
fprintf(stdorr, *socket: All ports in use\n7);

The restriction on allocating ports was, done to alow processes executing In a "scure"' environ-
ant to perform authentication hased on the originating address and port number.

In certain cases the algorithm used by the system in selecting port numbers bs unsuitable
for an application. This is due to association being created In a two stop prcess For exam.

* ple, the Internet Wie transfer protocol, FIP, specifies that data connections must always oni-
ginate from the .ame local port. However, duplicate msoclationa ame avoided by connecting to
differenit foreign ports. In this situation the system would disallow binding the same local
address and Port number to a socket if a previous data connection's socket were around. To
override the default port selection alorthm then an option call must be performed prior to
addres binding:

uelaockop(s, SOL SOCKCET, SO REUSEADDR, (char 1O. 0);
bind(s, Wcha %;6l, emnd (sn));

With the above call, local addresses may be bound which are already in use. This does not
violate the uniqueness requirement sa the system still checks at connect time to be sure any

I %Jother sockets with the sam local address and port do not have the same foreign address and
port (if an ssociation already eists, the eror EADDRINUSE is returned).

J ~i o a adrs iding by the ystem iscurrntly done somewhat haphzrdy whn host

dated with the network through which a peer was communicating. For instance, if the local
host Is connected to networks 46 and 10 and the foreign boot is on network 32, and traffic from
network 32 were arriving via network 10, t local address to be bound would be the host's
addrmss on network 10, not network 46. Thi unfortunately, is not always the cae. For rea-
sams too complicated to discus here, the local address bound ay be appear to be chosen at
inodam. This property of local address binding will normally be invisible to users unless the

hr~phostdons no aursand ho to reach the addres seictea.

V ~For mmmupe, I aeue 4 wet mknw m the og wn mewet 32. ad the beat addru Twt uId to
dobaed wm atwet 4C. don evis thsqh a fmut betwe *ae two hem aimed tihti newor 10 a
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$.. DrSadcasting and datagran sockets
By using a datagram socket it is possible to send broadcast packets on many networks sup-

ported by the system (the network itself must support the notion of broadcasting; the system
provides no broadcast simulation in software). Broadcast messages can place a high load on a
network since they force every host on the network to service them. Consequently, the ability
to send broadcast packets has been limited to the super user.

To send a broadcast message, an Internet datagram socket should be created:

-" a - socket(AF JNET, SOCKDGRAM, 0);
end at least a port number should be bound to the socket:

.ln.sikfamily - AFJNET;
•in.sin addr.saddr - INADDR ANY;
sin.sinjiort - MYPORT;
bind(s, (char )&sin, sizeof (sin));

Then the message should be addressed as:

dst.sin family - AFJNET;
dst.sin addr.s addr - INADDRANY;
dse.sinjort -; DESTPORT;

and, finally, a sendto call may be used:

sendto(s, but, buflen, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagramn sockets are
anchored before a message is allowed to go out).

S.6. SIgnlS

Two new signals have been added to the system which may be used in conjunction with
the interprocess communication facilities. The SIGURG signal is associated with the existence
of an "urgent condition". The SIGIO signal is used with "interrupt driven i/o" (not presently
implemented) SIGURG is currently supplied a process when out of band data is present at a

. socket. If multiple sockets have out of band data awaiting delivery, a select call may be used to
determine those sockets with such data

An old signal which is useful when constructing server processes is SIGCHLD. This sig-
nal is delivered to a process when any children processes have changed state. Normally servers
use the signal to "reap" child processes after exiting. For example, the remote login server
loop shown in Figure 2 may be augmented as follows:

DRAFT of July 27, 193 LeMer/Fabry/Joy
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t'4

lot rnlpeO;

sipet(SIGCHLD. reaper);
ausen(r. 10);

ntglen - dzof(from);

. - acept(F, Aro. , l,en 0);
If(s < 0)

if (errno !- EJNTR)
continue;

::: I

#include <waiLh>

i I I union Wait status;

while (wait3lstatus, WNOHANG, 0) > 0)
II

If the part serve.r Pocess fails to reP Its children, a large number of "zombie"
proces may be created

.f

9'
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ABSTRACT

This report describes the internal structure of the networking facilities
developed for the 4.2BSD version of the UNIX* operating system for the
VAXt. These facilities are based on several central abstractions which struc-
ture the external (user) view of network communication as well as the internal
(system) implementation.

The report documents the internal structure of the networking system.
, The "4.28SD System Manual" provides a description of the user interface to

the networking facilities.

UNIX is a trademark of Dl Laboratories.W t DEC. VAX, DECnet. and UNIBUS mre trademarks of Digital Equipment Corporation.
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'Networking Implementation 1 - Introduction

1. Introduction
* This report describes the internal structure of facilities added to the 4.2BSD version of the

UNIX operating system for the VAX. The system facilities provide a uniform user interface to
networking within UNIX. In addition, the implementation introduces a structure for network
communications which may be used by system implementors in adding new networking facili-
ties. The internal structure is not visible to the user, rather it is intended to aid implementors

. ed" communication protocols and network services by providing a framework which promotes
code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system inter-
face, as described in the 4.2BSD System Manual IUoyS2a]. Basic understanding of network corn-
munication concepts is assumed; where required any additional ideas are introduced.

* The remainder of this document provides a description of the system internals, avoiding,
when possible, those portions which are utilized only by the interprocess communication facili-
ties.

Nw.
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Networkin Implementation - 2- Overview

.. 2. Overview
If we consider the International Standards Organization's (ISO) Open System Interconnec.

tion (OSI) model of network communication 1S0811 [Zimmermann80], the networking facili-
ties described here correspond to a portion of the session layer (layer 3) and all of the transport
and network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal
addressing structure. Addressing at this level is normally host to host, with implicit or explicit
routing optionally supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and
service addressing are normally included. Reliability is usually managed by explicit ack-
nowledgement of data delivered. Failure to acknowledge a transfer results in retransmission of
the data. Sequencing may be handled by tagging each message handed to the network layer by
a wquence number and maintaining state at the endpoints of communication to utilize received
sequence numbers in reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into for-
mats required by the transport layer, service authentication and client authentication, etc. Vari-
ous systems also provide services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility
• *' routines, then examine the internal layering. The contents of each layer and its interface are
a considered. Certain of the interfaces are protocol implementation specific. For these cases

examples have been drawn from the Internet [Cerf78] protocol family. Later sections cover
routing issues, the design of the raw socket interface and other miscellaneous topics.

S." ]

Shy

MCSRO T36 Leffler, et. aW..,.

0- SR R/ e *lr et.al



Networking Implementation -3- Goals

3. Goas
The networking system was designed with the goal of supporting multiple protocolfamilies

and addressing styles. This required information to be "hidden" in common data structures
which could be manipulated by all the pieces of the system, but which required interpretation
only by the protocols which "controlled" it. The system described here attempts to minimize
the use of shared data structures to those kept by a suite of protocols (a protocol famiv). and
those used for rendezvous between "synchronous" and "asynchronous" portions of the system
(eg. queues of data packets are filled at interrupt time and emptied based on user requests).

%- A major goal of the system was to provide a framework within which new protocols and
hardware could be easily be supported. To this end, a great deal of effort has been extended to
create utility routines which hide many of the more complex and/or hardware dependent chores
of networking. Later sections describe the utility routines and the underlying data structures
they manipulate.

.

.4.-
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4. Internal address representation
Common to all portions of the system are two data structures. These structures are used

to represent addresses and various data objects. Addresses, internally are described by the
smkaddr structure,

struct sockaddr
short aafamily; r data format identifier "/
char adata[14]; r address 0/"':: I;

All addresses belong to one or more address families which define their format and interpreta-
don. The sajmiy field indicates which address family the address belongs to, the sa data field
contains the actual data value. The size of the data field, 14 bytes, was selected based on a
study of current address formats'.

.-

L ar vrions of the system support veriable lenth addresses.
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,: S. Memory management
A single mechanisnm is used for data storage: memory buffers, or n&bs. An mbuf is a

structure of the form:

ur trut mbuf "mn next; 1 next buffer in chain 0/

uJong noff; r offset of data 0/
short nlen; / amount of data in this mbuf 0/
short metype; /0 mbuf type (accounting) 01
uchar mdat[MLEN]; /0 data storage 0/
struct mbuf *mact; 1 link in higher-level mbuf list *1

The muex field is used to chain mbufs together on linked lists, while the m act field allows
lists of mbufs to be accumulated. By convention, the mbufs common to a single object (for
example, a packet) are chained together with the mnext field, while groups of objects are
linked via the m act field (possibly when in a queue).

Each mbuf has a small data area for storing information, m dst. The mtlen field indicates
the amount of data, while the m 0f field is an offset to the beginning of the data from the base
of the mbuf. Thus, for example, the macro mtedW, which converts a pointer to an mbuf to a
pointer to the data stored in the mbuf, has the form

#define mtod(x,t) ((t)((int)(x) + (x)- mofi))

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assign-
ment).

In addition to storing data directly in the mbuts data area, data of page size may be also
be stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for
this purpose and manipulate a private page map for such pages. The virtual addresses of these
data pages precede those of mbufs, so when pages of data are separated from an mbuf, the
mbuf data offset is a negative value. An array of reference counts on pages is also maintained
so that copies of pages may be made without core to core copying (copies are created simply by
duplicating the relevant page table entries in the data page map and incrementing the associated
reference counts for the pages). Separate data pages are currently used only when copying data
from a user process into the kernel, and when bringing data in at the hardware level. Routines
which manipulate mbufs are not normally aware if data is stored directly in the mbuf data array,
or if it is kept in separate pages.

The following utility routines are available for manipulating mbuf chains:
m - m opy(mO, off, len);

The .ncopy routine create a copy of all, or part, of a list of the mbufs in mO. Len bytes of
data, starting off bytes from the front of the chain, are copied. Where possible, reference
counts on pages are used instead of core to core copies. The original mbuf chain must
have at least off + n bytes of data. If kn is specified as M COPYALL, all the data
present, offset as before, is copied.

at(m, u);
The mbuf chain, a, is appended to the end of m Where possible, compaction is per-
formed.

milad(m, diff);
The mbuf chain, m is adjusted in size by 4dfbytes. If diris non-negative, do'bytes are
shaved off the front of the mbuf chain. If dff is negative, the alteration is performed
from back to front. No space Is reclaimed in this operation, alterations are accomplished
by changing the m~fn and mjIfield of mbufs.

M - m-pullup(mO, size);
After a successful call to mjullp, the mbuf at the head of the returned list, m, is

CSRG TR/6 Leffler, et. al.
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guaranteed to have at least site bytes of data in contiguous memory (allowing access via a
pointer, obtained using the mood macro). If the original data was less than size bytes long,
kn was greater than the size of an mbuf data area ( 12 bytes), or required resources were
unavailable, m is 0 and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid
packet header are present at the head of the list of mbufs representing the packet, the
remaining 8 bytes may be "pulled up" with a single mjpullup call. If the call fails the

..- invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the
", mbuf associated with a data area by masking off the low bits of the virtual address. This allows

modules to store data structures in mbufs and pass them around without concern for locating
the original mbuf when it comes time to free the structure. The dtom macro is used to convert
a pointer into an mbuf's data area to a pointer to the mbuf,

#define dtom(x) ((struct mbuf *)((int)x & (MSIZE-1)))

Mbufs are used for dynamically allocated data structures such as sockets, as well as
memory allocated for packets. Statistics are maintained on mbuf usage and can be viewed by
users using the netsta(l) program.
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6. Internal layering

The internal structure of the network system is divided into three layers. These layers
correspond to the services provided by the socket abstraction, those provided by the communi-
cation protocols, and those provided by the hardware interfaces. The communication protocols
are normally layered into two or more individual cooperating layers, though they are collectively
viewed in the system as one layer providing services supportive of the appropriate socket
abstraction.

The following sections describe the properties of each layer in the system and the inter-
faces each must conform to.

6.1. Secket layer
The socket layer deals with the interprocess communications facilities provided by the sys-

tem. A socket is a bidirectional endpoint of communication which is "typed" by the semantics
of communication it supports. The system calls described in the 4.2BSD System Manual are
used to manipulate sockets.

A socket consists of the following data structure:
-... struct socket {

short so_type; /0 generic type 0/
short so options; " from socket call IV
short so linger; /0 time to linger while closing "1
short so state; r' internal state flags 0/
caddr.t solcb; /0 protocol control block 0/
struce protosw soproto; /0 protocol handle 0/
struct socket sOhead; /0 back pointer to accept socket 1
struct socket "soqO; / queue of partial connections */
short soqOlen; I" partials on soqO 0/
struct socket so_q; queue of incoming connections "

' short soqlen; /* number of connections on soq/
short soqlimit; I* max number queued connections /

: struct sockbuf so snd; I" send queue */
struct sockbuf sojcv; I" receive queue V
short so.imeo; /" connection timeout V
ushort soerror; /P error affecting connection 1
short SUooobmark; /0 chars to oob mark 0/
short sopgrP; I" parp for signals V}I;

Each socket contains two data queues, sojrcv and so snd, and a pointer to routines which
provide supporting services. The type of the socket, soype is defined at socket creation time
and used in selecting those services which are appropriate to support it. The supporting proto-
col is selected at socket creation time and recorded in the socket data structure for later use.
Protocols are defined by a table of procedures, the protosw structure, which will be described in
detail later. A pointer to a protocol specific data structure, the "protocol control block" is also
present in the socket structure. Protocols control this data structure and it normally includes a
beck pointer to the parent socket structure(s) to allow easy lookup when returning information
to a user (for example, placing an error number In the so error feld). The other entries in the
socket structure are used in queueing connection requests, validating user requests, storing
socket charactWistics (e.g. options supplied at the time a socket is created), and maintaining a
socket's state.

Processes "rendezvous at a socket" in many instances. For instance, when a process
wishes to extract data from a socket's receive queue and it is empty, or lacks sufficient data to
satisfy the request, the process blocks, supplying the address of the receive queue as an "wait
channel' to be used in notification. When data arrives for the process and is placed in the
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socket's queue, the blocked process is identified by the fact it is waiting "on the queue".

6.1.1. Socket state
A socket's state Is defined from the following:

#define SSNOFDREF OX001 / no file table ref any more /
#define SS.ISCONNECTED Ox002 /0 socket connected to a peer I/
#define SSISCONNECTING 0x004 P in process of connecting to peer *I/
#define SSISDISCONNECTING xOB P in process of disconnecting /
#define SSCANTSENDMORE 0x010 P can't send more data to peer I/
#define SSCANTRCVMORE 0x020 /0 can't receive more data from peer /
#define SSCONNAWAITING 0x040 /0 connections aw-iting acceptance 0/
#define SSRCVATMARK 0x080 0 at mark on input I/

#define SS PRIV 0X100 P privileged I/
#define SS NBIO 0x200 /I non-blocking ops I/
#define SSASYNC 0x400 /1 async i/o notify "/

The state of a socket is manipulated both by the protocols and the user (through system
calls). When a socket is created the state is defined based on the type of input/output the user
wishes to perform. "Non-blocking" 1/0 implies a process should never be blocked to await
resources. Instead, any call which would block returns prematurely with the error EWOULD-
BLOCK (the service request may be partially fulfilled, e.g. a request for more data than is
present).

if a process requested "asynchronous" notification of events related to the socket the
SIGIO signal is posted to the process. An event is a change in the socket's state, examples of
such occurances are: space becoming available in the send queue, new data available in the
receive queue, connection establishment or disestablishment, etc.

A socket may be marked "priviJedged" if it was created by the super-user. Only
priviledged sockets may send broadcast packets, or bind addresses in priviledged portions of an
address space.

6.1.2. Socket data queues
A socket's data queue contains a pointer to the data stored in the queue and other entries

-., related to the management of the data. The following structure defines a data queue:

struct sockbuf I
short sbcc; /0 actual chars in buffer I/
short sb.hiwat; / max actual char count "

- short sb mbcnt; P chars of mbufs used /
short sbmbmax; r max chars of mbufs to use I/
short aiowat; P low water mark /1
short sb_timeo; P timeout I/

- [. struct mbuf "sbmb; P the mbuf chain I/
truct proc 'sIkgel; P process selecting read/write 1

shott sbjheags; P flags, see below I

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as
. .Fe. high and low water marks are used by the protocols in controlling the flow of data. The socket

routines cooperate in implementing the flow control policy by blocking a process when it
requests to send data and the high water mark has been reached, or when it requests to receive
data and less than the low water mark is present (assuming non-blocking I/O has not been
specfed).

.
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When a socket is created, the supporting protocol "reserves" space for the send and
receive queues of the socket. The actual storage associated with a socket queue may fluctuate
during a socket's lifetime, but is assumed this reservation will always allow a protocol to acquire
enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing
various portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flasp used in synchronizing access to the data and in
acquiring resources;

#define SBLOCK 0x0l /' lock on data queue (sorcv only)"/
*, #define SBWANT 0x02 /0 someone is waiting to lock 0/
#define SB WAIT 0304 I* someone is waiting for data/space */
#define SB.SEL 0x08 /0 buffer is selected 01
#define SB COLL 0x10 /0 collision selecting /

The last two flag are manipulated by the system in implementing the select mechanism.

6.1.3. Secket connection quemuin
In dealing with connection oriented sockets (e.g. SOCK-STREAM) the two sides are con-

sidered distinct. One side is termed active, and generates connection requests. The other side
is called passiv and accepts connection requests.

From the passive side, a socket is created with the option SO ACCEPTCONN specified,
creating two queues of sockets: so q0 for connections in progress and so q for connections
already made and awaiting user acceptance. As a protocol is preparing incoming connections, it
creates a socket structure queued on so qO by calling the routine sonewconnO. When the con-
nection is established, the socket structure is then transfered to soq, making it available for an
accept.

If an SOACCEPTCONN socket is closed with sockets on either soq0 or soq, these
sockets are dropped.

6.2. Protocol layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics,
some of which are used in deciding which socket type(s) they may support.

An entry in the "protocol switch" table exists for each protocol module configured into
the system. It has the following form:

CSRG TR/6 Leffler, et. al.
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struct protosw
short I.ype; P socket type used for 0/
short Ixfamily; /"1 protocol family "/
short pr-protocol; /0 protocol number 01
short pr-Igs; /* socket visible attributes /

/0 protocol-protocol hooks 0/
int (pr input) 0; /* input to protocol (from below) 0/
int (*pr output) 0; /* output to protocol (from above) S/
int (*prctlinput) 0; / control input (from below) /
int (*prctoutput) 0; /P control output (from above) /

.P user-protocol hook */
int (*pr-usrreq) 0; /* user request /

/0 utility hooks 0/
int (*pr init) 0; / initialization routine */
int (*prfasttimo) 0; /0 fast timeout (200ms) */
int (*prslowtimo) 0; /* slow timeout (S00ms) S/
int (*-drain) 0; / flush any excess space possible /

A protocol is called through the pr init entry before any other. Thereafter it is called
every 200 milliseconds through the prjasnimo entry and every 500 milliseconds through the
pr sowtimo for timer based actions. The system will call the pr lrain entry if it is low on space
and this should throw away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the p-input and
proutput routines. Prnput passes data up (towards the user) and prouput passes it down

(towards the network); control information passes up and down on pr ctlinput and prctloutput.
The protocol is responsible for the space occupied by any the arguments to these entries and
must dispose of it.

--.. The pr userreq routine interfaces protocols to the socket code and is described below.

The pr.ags field is constructed from the following values:

#define PRATOMIC 0x01 /" exchange atomic messages only /
#define PRADDR 0x02 /" addresses given with messages "/
#define PR CONNREQUIRED 0x04 /" connection required by protocol "
#define PRIWANTRCVD 0x08 /" want PRURCVD calls */
#define PRRIGHTS OxlO / passes capabilities"/

Protocols which are connection-based specify the PRCONNREQUIRED flag so that the socket
routines will never attempt to send data before a connection has been established. If the
PR WANTRCVD flag is set, the socket routines will notfiy the protocol when the user has
rem~oved data from the socket's receive queue. This allows the protocol to implement ack-
nowledgement on user receipt, and also update windowing information based on the amount of
space available in the receive queue. The PRADDR field indicates any data placed in the
socket's receive queue will be preceded by the address of the sender. The PR ATOMIC flag
specifies each user request to send data must be performed in a single protocol send request; it is
the protocol's responsibility to maintain record boundaries on data to be sent. The
PR IGHTS flag indicates the protocol supports the passing of capabilities; this is currently
sed only the protocols in the UNIX protocol family.

When a socket is created, the socket routines can the protocol table looking for an
appropriate protocol to support the type of socket being created. The potype field contains one
of the possible socket types (e.g. SOCKSTREAM), while the prfamily field indicates which
protocol family the protocol belongs to. The prprotocol field contains the protocol number of
the protocol, normally a well known value.

CSRG TR/6 Leffler, et. al.
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6.3. Netweirk-laterface layM
Ea&ch network-anterface configured into a system defines a path through which packets

may be seat and received. Normally a hardware device is associated with this interface, though
there is no requirement for this (for example, all systems have A softwar "loopbAck" Interface
used for debugging and performance analysis). In addition to manipulating the hardware dev-
Ice, an interface module is responsible for encapsulation and deencapulation Of Any low level
header information required to deliver a mesage to It's destination. The selection of which
interface to use in delivering packets isa&routing decsion carried out at ahigher level than the
network-Interface layer. Each interface normally identifies itself at boot time to the routing
module so that it may be selected for packet delivery.

* An interface is defined by the following structure,
- -struct ifnet, 

10char O1f name; P* name, e.g. "e" or'"o
short if~unit; /0 sub-unit for lower level driver/
short Ifmtu; /* maximum transmission unit S/
int ifjrnet; /0 network number of interface
short IClags; /0 up/down, broadcast, etc. */
short V timer; P* time 'til if wthog called V
int Ifhost[21; r local net host number/
struct sockaddr if addr; /P address of interface V
union (

strct sockaddr ifu-broadaddr;
atruct sockaddr fu-dstaddr;

* )i ifu;
struct ifqueue if and /0 output queue/
inmt (if init) 0; P* mit routine */
int (if output) 0; 0 output routine/V
it ( jocto)o; /0 ioctl routine */
int (Oifreset) 0; P* bus reset routine 0/
int (if watchdog) 0; /P timer routine V
int lfjackets; /* packets received on interface V
int if ierrors; /0 input errors on interface .
int Ifopackets; P* packets sent on interface V1
int Ifoerrors; /0 output errors on interface V

-ry Int Ifcolliions; r collisions on csma interfasces
struct Wfnet Oinext;

E.ach interface has a send queue and routines used for initialization, (fihl, And Output,
* ~ ~ t .- o aWu. If the interface resides on a system bus, the routine (f reset will be called after a bus

reset has been performed. An interfasce MAY also specify a timer routine, if wafchdo:, which
should be called every iftinwr seconds (if non-zero).

The state of an interface and certain characteristc are stoe in the if s field. The fol-
Z 'lowing values are Poesible:

fdefle IFFJJP? Oxi r interface is UP 0/
#define IFF!ROADCAST 0x2 /0 broadcast address valid V
#define IFFPEDUG 004 r turn on debugging V1

Sdefln IF9:OUM Oxe P routing entry installed V ~n
#defln wF Mi poiNT xIO P interface is point-to-Point ln

#define IFFNpoTRAILERS W0x 0P avoid use of trailers V
.1#define IFFJUNNINO 000 /0 resources allocated V/k~ If the Intelface is connected to a network which supports transmission of broadcast packets, the

ISO RJ Leffler, et. al.
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IFF BROADCAST flag will be set and the jf_broadaddr field will contain the address to be used
in mending or accepting a broadcast packet. If the interface is associated with a point to point
hardware link (for example, a DEC DMR-11), the IFF_POINTOPOINT fla will be set and

ads*ad& will contain the address of the host on the other side of the connection. These
addresses and the local address of the interface, Uf'_ddr, are used in filtering incoming packets.
The interface sets IFFRUNNING after it has allocated system resources and posted an initial
read on the device it manages. This state bit is used to avoid multiple allocation requests when
an interface's address is changed. The IFFNOTRAILERS flag indicates the interface should
refrain from using a trailer encapsulation on outgoing packets; trailer protocols are described in
section 14.

The information stored in an #Wet structure for point to point communication devices is
S-not currently used by the system internally. Rather, it is used by the user level routing process

in determining host network connections and in initially devising routes (refer to chapter 10 for
more information).

--I Various statistics are also stored in the interface structure. These may be viewed by users
using the netstat(1) program.

The interface address and fla may be set with the SIOCSIFADDR and SIOCSIFFLAGS
loctls. SIOCSIFADDR is used to initially define each interface's address; SIOGSIFFLAGS can
be used to mark an interface down and perform site-specific configuration.

6.3.1. UNIBUS Interfaces
All hardware related interfaces currently reside on the UNIBUS. Consequently a common

set of utility routines for dealing with the UNIBUS has been developed. Each UNIBUS inter-
face utilizes a structure of the following form:

struct ifubs I
short ifu uban; /" uba number /
short ifujhlen; /" local net header length 0/
struct uba regs ifu-uba; /" uba rep, in vm "/
struct ifrw {

caddr,,t ifrwaddr; / vin addr of header
int ifrw-bdp; I" unibus bdp/
imt ifrwinfo; /" value from uballoc /
imt frw_proto; /* map register prototype /
struct pte "ifrw mr;/" base of map registers "/

, ifu r, ifu w;
struct pte ifuwmapIIFMAXNUBAMR);/* base pages for output /
short ifuxwapd; /0 mask of clusters swapped /

-> short ifujls; / used during uballoc's/
struct mbuf "ifu-xtofree; / pages being dma'd out /

-' The if uba structure describes UNIBUS resources held by an interface. IF NUBAMR
. map registers are held for datagram data, starting at & mr. UNIBUS map register nmn-1]

maps the local network header ending on a page boundary. UNIBUS data paths are reserved
for read and for write, given by ibdp. The prototype of the map registers for read and for
write is saved in t*.proo.

When write transfers are not full pages on page boundaries the data is just copied into the
pages mapped on the UNIBUS and the transfer is started. If s write transfer is of a (1024 byte)
page size and on a page boundary, UNIDUS page table entries are swapped to reference the
pages, and then the initial pages are remapped from 0( pmap when the transfer completes.

ON When read transfers give whole pages of data to be input, page frames are allocated from
a network page list and traded with the pages already containing the data, mapping the allocated

CSRO TR/6 Lefmier, et. al.
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pages to replace the input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers, all
use the #kua structure described above.

.fubainit(ifu, uban, hlen, nmr);
V_1ubein* allocates resources on UNISUS adaptor uban, and stores the resultant Informs.
don in the (bba structure pointed to by #b. It is called only at boot time or after a

. UNIBUS reset. Two data paths (buffered or unbuffered, depending on the O(A.,ags field)
am allocated, one for reading and one for writing. The nmr parameter indicates the
number of UNIBUS mapping registers required to map a maximal sized packet onto the

UNIBUS, while Oin specifies the size of a local network header, if any, which should be
mapped separately from the data (see the description of trailer protocols in chapter 14).
Sufficient UNIBUS mapping registers and pages of memory are allocated to initialize the
input data path for an initial read. For the output data path, mapping registers and pages
of memory are also allocated and mapped onto the UNIBUS. The pages associated with
the output data path are held in reserve in the event a write requires copying non-page-
aligned data (see iwubaput below). If if uboini, is called with resources already allocated,
they will be used instead of allocating new ones (this normally occurs after a UNIBUS
reset). A I is returned when allocation and initialization is successful, 0 otherwise.

m - ifrubaget(ifu, totlen, offO);
if ru(L get pulls read data off an interface. wden specifies the length of data to be
obtained, not counting the local network header. If oj) is non-zero, it indicates a byte
offset to a trailing local network header which should be copied into a separate mbuf and
prepended to the front of the resultant mbuf chain. When page sized units of data are
present and are page-aligned, the previously mapped data pages are remapped into the
mbufs and swapped with fresh pages; thus avoiding any copying. A 0 return value indi-
cates a failure to allocate resources.

if wubaput(ifu, m);
f wubopur maps a chain of mbufs onto a network interface in preparation for output. The

chain includes any local network header, which is copied so that it resides in the mapped
and aligned 1/0 space. Any other mbufs which contained non page sized data portions are
also copied to the I/0 space. Pages mapped from a previous output operation (no longer
needed) are unmapped and returned to the network page pool.

S.." e
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7. Socket/protocol Interface
The interface between the socket routines and the communication protocols is through

the p usneq routine defined in the protocol switch table. The following requests to a protocol
module are possible:

#define PRU ATTACH 0 P attach protocol/
#define PRU-DETACH I / detach protocol 0/
#define PRU BIND 2 / bind socket to address "
#define PRU LISTEN 3 / listen for connection /
#define PRU CONNECT 4 / establish connection to peer /
#define PRUACCEPT 5 / accept connection from peer /
#define PRU DISCONNECT 6 P' disconnect from peer "/
#define PRU SHUTDOWN 7 P won't send any more data /
#define PRU RCVD 8 /' have taken data; more room now /
#define PRU.SEND 9 / send this data */
#define PRU ABORT 10 /0 abort (fast DISCONNECT, DETATCH) 0/
#define PRUCONTROL 11 P control operations on protocol /
#define PRU.SENSE 12 I" return status into m 0/
#define PRU RCVOOB 13 /* retrieve out of band data /
#define PRU.SENDOOB 14 /* send out of band data0/
#define PRU SOCKADDR 15 / fetch socket's address"/
#define PRU PEERADDR 16 /* fetch peer's address "/
#define PRU CONNECT2 17 /* connect two sockets /
/" begin for protocols internal use */
#define PRUFASTTIMO 18 /" 200ms timeout */
#define PRUSLOWTIMO 19 /* 500ms timeout*/
#define PRU PROTORCV 20 /* receive from below /
#define PRUJPROTOSEND 21 /* send to below /

A call on the user request routine is of the form,

error - (protoswn.pr usrreq) (up, req, m, addr, rights);int error; struct socket *up; int re q, struct mbuf Om, *rights; caddr-t addr,

The mbuf chain, m, and the address are optional parameters. The rights parameter is an
optional pointer to an mbuf chain containing user specified capabilities (see the sendmsg and
recmsg system calls). The protocol is responsible for disposal of both mbuf chains. A non-
zero return value gives a UNIX error number which should be passed to higher level software.
The following paragraphs describe each of the requests possible.

PRU ATTACH
-When a protocol is bound to a socket (with the socreate system call) the protocol module
is called with this request. It is the responsibility of the protocol module to allocate any
resources necessary. The "attach" request will always precede any of the other requests,
and should not occur more than once.

PRUDETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted.
The protocol module may deallocate any resources assigned to the socket.

PRU_IND
When a socket is initially created it has no address bound to it. This request indicates an
address should be bound to an existing socket. The protocol module must verify the
requested address is valid and available for use.

FRULISTEN
The "listen" request indicates the user wishes to listen for incoming connection requests
on the associated socket. The protocol module should perform any state changes needed
to carry out this request (if possible). A "listen" request always precedes a request to
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accept a connection.
PRULCONNECTtoa-The "connect" request indicates the user wants to a establish an association. The adwr

parameter supplied describes the peer to be connected to. The effect of a connect request
may vary depending on the protocol. Virtual circuit protocols, such as TCP (Postel80bl,
use this request to initiate establishment of a TCP connection. Datagram protocols, such
as UDP [Postel79], simply record the peer's address in a private data structure and use it
to tag all outgoing packets. There are no restrictions on how many times a connect
request may be used after an attach. If a protocol supports the notion of mufi-casuing, it is
possible to use multiple connects to establish a multi-cast group. Alternatively, an associ-
ation may be broken by a PRUDISCONNECT request, and a new association created
with a subsequent connect request; all without destroying and creating a new socket.

" PRUACCPT
Following a successful PRULISTEN request and the arrival of one or more connections,
this request is made to indicate the user has accepted the first connection on the queue of
pending connections. The protocol module should fill in the supplied address buffer with
the address of the connected party.

PRU DISCONNECT
Eiminate an association created with a PRUCONNECT request.

PRU SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the addr parameter
indicates the direction of the shutdown, as encoded in the soshuidown system call). The
protocol may, at its discretion, deallocate any data structures related to the shutdown.

PRU RCVD
This request is made only if the protocol entry in the protocol switch table includes the
PR WANTRCVD flag. When a user removes data from the receive queue this request
will be sent to the protocol module. It may be used to trigger acknowledgements, refresh
windowing information, initiate data transfer, etc.

PRU SEND
Each user request to send data is translated into one or more PRU SEND requests (a pro-
tocol may indicate a single user send request must be translated into a single PRU SEND
request by specifying the PR ATOMIC flag in its protocol description). The data to be
sent is presented to the protocol as a list of mbufs and an address is, optionally, supplied

* .*., in the addr parameter. The protocol is responsible for preserving the data in the socket's
end queue if it is not able to send it immediately, or if it ay need i1 at some later time
(e.g. for retransmission).

" PRU ABORT
. -This request indicates an abnormal termination of service. The protocol should delete any

existing association(s).
FLU CONTROL

The "control" request is generated when a user performs a UNIX iocrl system call on a
socket (and the loctl is not intercepted by the socket routines). It allows protocol-specific
opetions to be provided outside the scope of the common socket interface. The addr
parameter contains a pointer to a static kernel 'ata area where relevant information may
be obtained or returned. The m parameter contains the actual ocd request code (note the
ison-standard calling convention).

PRU)SE
The "sense" request is generated when the user makes an ,stt system call on a socket. it
requests status of the associated socket. There currently is no common format for the
status returned. Information which might be returned includes per-connection statistics,
protocol state, resources currently in use by the connection, the optimal transfer size for
the connection (based on windowing information and maximum packet size). The addr
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parameter contains a pointer to a static kernel data area where the status buffer should be
F:- Placed.

PR ICVOOI
Any "out-of-band" data presently available is to be returned. An mbuf is passed in to
the protocol module and the protocol should either place data in the mbuf or attach new
mbufs to the one supplied if there is insufficient space in the single mbuf.

IPRU.SENDOOB
Like PRU.SEND, but for out-of-band data.

PIUSOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The
address format (protocol specific) is returned in the add, parameter.

PRU PEERADDR
The address of the peer to which the socket is connected is returned. The socket must be
in a SS ISCONNECTED state for this request to be made to the protocol. The address
format (protocol specific) is returned in the .ddr parameter.

PRU CONNECT2
The protocol module is supplied two sockets and requested to establish a connection
between the two without binding any addresses, if possible. This call is used in imple-
menting the system call.
The following requests are used internally by the protocol modules and are never gen-

erated by the socket routines. In certain instances, they are handed to the prusrreq routine
solely for convenience in tracing a protocol's operation (e.g. PRUSLOWTIMO).
PRU FASTTIMO

A "fast timeout" has occured. This request is made when a timeout occurs in the
protocol's pr Jstimo routine. The addr parameter indicates which timer expired.

PRU.SLOWTIMO
A "slow timeout" has occured. This request is made when a timeout occurs in the
protocol's prsoimo routine. The addr parameter indicates which timer expired.

PRU PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests
reception of data destined for the protocol and not the user. No protocols currently use
this facility.

*. -.' PRU PROTOSEND
This request allows a protocol to send data destined for another protocol module, not a

0: user. The details of how data is marked "addressed to protocol" instead of "addressed to
user" are left to the protocol modules. No protocols currently use this facility.

,i
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-" 8 s. Protocol/protocol Interface
The interface between protocol modules is through the pewusreq, pr_/ut, proutput,

pctinpiut, and prctouimt routines. The alling conventions for all but the pr_wre routine
are expected to be specific to the protocol modules and are not guaranteed to be consistent
across protocol families. We will examine the conventions used for some of the Internet proto-

mob in this section as an example.

-9 IS. p_eotputThe Internet protocol UDP uses the convention,

error M udpoutput(inp, m);
.nt error; struct inpcb "inp; struct mbuf 'm;

where the isp, "itermet ,rotocol control Mock", passed between modules conveys per connec-
tion state information, and the mbuf chain contains the data to be sent. UDP performs con-
sistency checks, appends its header, calculates a checksum, etc. before passing the packet on to
the IP module:

error - ip_output(m, opt, ro, allowbroadcast);
int error; struct mbuf 'm, *opt; struct route ro; nt allowbroadcast;

The call to IP's output routine is more complicated than that for UDP, as befits the addi-
lioal work the IP module must do. The m parameter is the data to be sent, and the opt param-
eter is an optional fist of IP options which should be placed in the IP packet header. The to
parameter is is used in making routing decisions (and passing them beck to the caller). The
bal parameter, allowbroadcast is a flag indicating if the user is allowed to transmit a broadcast
packet. This may be inconsequential if the underlying hardware does not support the notion of
broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occured
which could be immediately detected (no buffer space available, no route to destination, etc.).

9..' Both UDP and TCP use the following calling convention,

(void) (oprotoswO.prinput) (m);
struct mbuf Om;

Each mbuf list posed is a single packet to be processed by the protocol module.
The IP input routine is a VAX software interrupt level routine, and so is not called with

any parameter. It instead communicates with network interfaces through a queue, pintrq,
which is identical in structure to the queues used by the network interfaces for storing packets
awaiting tranmussmon.

.3. pethput

This routine is used to convey "control" information to a protocol module (i.e. informa-
tion which might be passed to the user, but is not data). This routine, and the pr ctloutput rou-
im, bve not been extensively developed, and thus suffer from a "clumsiness" that can only
be improved as more demands are placed on it.

The common calling convention for this routine is,

(void) ('protoawO.pr.ctlinput)(req. info);
int req; caddrt info;

The nq parameter is one of the following,

L.. &
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#define PRCIFDOWN 0 r interface transition 1
#define PRCROUTEDEAD I /. select new route if possible 1
#define PRCQUENCH 4 r some said to slow down 0/
#define PRCHOSTDEAD 6 / normally from IMP "
#define PRCHOSTUNREACH 7 P ditto 0I
#define PRCUNREACHNET 8 /0 no route to network 0/
#define PRC UNREACH HOST 9 r no route to host "I
#define PRCUNREACH"PROTOCOL 10 I" dst says bad protocol I
#define PRCUNREACHPORT 11 /- bad port # 'I
#define PRCMSGSIZE 12 r message size forced drop "
#define PRCREDIRECTNET 13 r net routing redirect V
#define PRC.REDIRECTHOST 14 r host routing redirect V
#define PRCTIMXCEEDINTRANS 17 /" packet lifetime expired in transit 0/

. #define PRCTIMXCEEDREASS 18 " lifetime expired on reass q /
#define PRCPARAMPROB 19 / header incorrect /

while the info parameter is a "catchall" value which is request dependent. Many of the
requests have obviously been derived from ICMP (the Internet Control Message Protocol), and
from error messages defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist
to convert control requests to UNIX error codes which are delivered to a user.

- 8.4. prtloutput
*This routine is not currently used by any protocol modules.

.L ,
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9. rtocol/network-nterface Interface
The lowest layer in the set of protocols which comprise a protocol fmnily must interface

Itself to one or more network interfaces in order to transmit and receive packets. It is assumed
that any routing decisions have been made before banding a packet to a network interface, in
fact this Is absolutely necessary in order to locate any interface at all (unless, of course, one
uses a single "hardwired" interface). There are two cases to be concerned with, transmission
of a packet, and receipt of a packet; each will be considered separately.

9.1. Packet transmdlsslem
Assuming a protocol has a handle on an interface, 0, a (struct ifnet 0), It transmits a

fully formatted packet with the following call,

error - (*ifp->if output)(ifp, m, dst)
int error; struct ifnet Oifp; struct mbuf *m; struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dis address, or
returns an error indication (a UNIX error number). In reality transmission may not be
immediate, or successful; normally the output routine simply queues the packet on its send
queue and primes an interrupt driven routine to actually transmit the packet. For unreliable
mediums, such as the Ethernet, "successful" transmission simply means the packet has been
placed on the cable without a collision. On the other hand, an 1822 interface guarantees proper
delivery or an error indication for each message transmitted. The model employed in the net-
working system attaches no promises of delivery to the packets handed to a network interface,
and thus corresponds more closely to the Ethernet. Errors returned by the output routine are
normally trivial in nature (no buffer space, address format not handled, etc.).

9.2. Packet receptlon
Each protocol family must have one or more "lowest level" protocols. These protocols

deal with internetwork addressing and are responsible for the delivery of incoming packets to
the proper protocol processing modules. In the PUP model [Boggs78] these protocols are
termed Level I protocols, in the ISO model, network layer protocols. In our system each such
protocol module has an input packet queue assigned to it. Incoming packets received by a net-
work interface are queued up for the protocol module and a VAX software interrupt is posted
to initiate processing.

Three macros an available for queueing and dequeueing packets,

IFENQUEUE(ifq, m)
This places the packet m at the tail of the queue f.

IF IEQUEUE(ifq, m)
This places a pointer to the packet at the head of queue in m. A zero value will be
returned in m if the queue is empty.

IFPKEPEND(ifq, m)
This places the packet n at the head of the queue f.
Each queue has a maximum length associated with it as a simple form of congestion con-

Vol. The macro IF_QFULL(fq) returns I If the queue is filed, in which case the macro
V DROPifq) should be used to bump a count of the number of packets dropped and the

ending packet dropped. For example, the following code fragment is commonly found in a
Metork interface's input routine,

If (F..QFULLInq)) (
EFDROPO();

* *jretem(m);

IFNQUEUB(inq, m);

CSRO TR/6 Leffler, et. al.
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i0. Gateways and routing Issues
The system has been designed with the expectation that it will be used in an internetwork

environment. The "canonical" environment was envisioned to be a collection of local area
networks connected at one or more points through hosts with multiple network interfaces (one
on each local area network), and possibly a connection to a long haul network (for example, the
ARPANET). In such an environment, issues of gatewaying and packet routing become very
important. Certain of these issues, such as congestion control, have been handled in a simplis-
tic manner or specifically not addressed. Instead, where possible, the network system attempts

*" to provide simple mechanisms upon which more involved policies may be implemented. As
some of these problems become better understood, the solutions developed will be incorporated
into the system.

This section will describe the facilities provided for packet routing. The simplistic
mechanisms provided for congestion control are described in chapter 12.

10.1. Routing tables

The network system maintains a set of routing tables for selecting a network interface to
use in delivering a packet to its destination. These tables are of the form:

struct rtentry
uJong rthash; P hash key for lookups/
struct sockaddr rt.dst; /0 destination net or host 0/
struct sockaddr rtJteway;/" forwarding agent "
short rtfhlas; r see below "/
short rt refcnt; /" no. of references to structure "
ujong rtuse; /0 packets sent using route 0/
struct ifnet "rtifp; / interface to give packet to "/I;

The routing information is organized in two separate tables, one for routes to a host and
one for routes to a network. The distinction between hosts and networks is necessary so that a
single mechanism may be used for both broadcast and multi-drop type networks, and also for
networks built from point-to-point links (e.g DECnet IDEC80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calcu-
lated by routines defined for each address family; one based on the destination being a host,
and one assuming the target is the network portion of the address. Each hash value is used to
locate a hash chain to search (by taking the value modulo the hash table size) and the entire
32-bit value is then used as a key in scanning the list of mutes. Lookups are applied first to the
routing table for hosts, then to the routing table for networks. If both lookups fail, a final
lookup is made for a "wildcard" route (by convention, network 0). By doing this, routes to a
specific host on a network may be present as well as mutes to the network. -This also allows a
"fall beck" network mute to be defined to an "smart" gateway which may then perform more
intelligent muting.

Each routing table entry contains a destination (who's at the other end of the mute), a
gateway to send the packet to, and various flags which indicate the route's status and type (host
or network). A count of the number of packets sent using the route is kept for use in deciding
between multiple routes to the same destination (see below), and a count of "held references"
to the dynamically allocated structure is maintained to insure memory reclamation occurs only
when the mute is not in use. Finally a pointer to the a network interface is kept; packets sent
uing the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as "direct" or "indirect".
The host/network distinction determines how to compare the rrdst field during lookup. If the
route is to a network, only a packet's destination network is compared to the ntdu entry stored
In the table. If the route is to a host, the addresses must match bit for bit.

CSRO TR/6 Leffer, et. al.
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The distinction between "direct" and "indirect" routes indicates whether the destination
is directly connected to the source. This is needed when performing local network encapsuls-

otin. If a packet is destined for a peer at a host or network which is not directly connected to
the source, the nternetwork packet header will indicate the address of the eventual destination,
while the local network header will indicate the address of the intervening gateway. Should the
destination be directly connected, these addresses are likely to be Identical, or a mapping
between the two exists. The RTF GATEWAY flag indicates the route is to an "indirect" gate-

", way agent and the local network header should be filled in from the rt.ptewy field instead of
.tdu, or from the internetwork destination address.

- It is assumed multiple routes to the same destination will not be present unless they are
deemed equal in cost (the current routing policy process never installs multiple routes to the
same destination). However, should multiple routes to the same destination exist, a request for
a route will return the "least used" route based on the total number of packets sent along this
route. This can result in a "ping-pong" effect (alternate packets taking alternate routes).
unless protocols "hold onto" routes until they no longer find them useful; either because the
destination has changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table
entries as well as dynamically create new routing table entries. On hosts where exhaustive rout-
ing information is too expensive to maintain (e.g. work stations), the combination of wildcard
routing entries and routing redirect messages can be used to provide a simple routing manage-
ment scheme without the use of a higher level policy process. Statistics are kept by the routing
table routines on the use of routing redirect messages and their affect on the routing tables.
These statistics may be viewed using

Status information other than routing redirect control messages may be used in the
future, but at present they are ignored. Likewise, more intelligent "metrics" may be used to
describe routes in the future, possibly based on bandwidth and monetary costs.

10.2. Routing table Interface
A protocol accesses the routing tables through three routines, one to allocate a route, one

to free a route, and one to process a routing redirect control message. The routine ralloc per-
forms route allocation; it i called with a pointer to the following structure,

struct route (
struct rtentry Orort;
struct sockeddr ro dst;

The route returned is assumed "held" by the caller until disposed of with an roe call. Proto-
cols which implement virtual circuits, such as TCP, hold onto routes for the duration of the
circuit's lifetime, while connection-less protocols, such as UDP, currently allocate and free
routes on each transmission.

The routine rtedirect is called to process a routing redirect control message. It is called
with a destination address and the new gateway to that destination. If a non-wildcard route
exists to the destination, the gateway entry in the route is modified to point at the new gateway
supplied. Otherwise, a new routing table entry is inserted reflecting the information supplied.
Routes to interfaces and routes to gateways which are not directly accesible from the host areIgnored.

10.3. User level rasing pelde
91 Routing policies implemented in user processes manipulate the kernel routing tables

through two Wilcolls. The commands SIOCADDRT and SIOCDELRT add and delete routing
entries, respectively; the tables are read through the /dev/kmem device. The decision to place
policy decisions in auer pof ne implies routing table updates may lag a bit behind the
Identfication of new routes, or the failure of existing routes, but this period of instability is

CSRG TR/6 Leffler, et. al.
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normally very small with proper implementation of the routing process. Advisory information,
such as ICMP error messages and IMP diagnostic messages, may be read from raw sockets
(described in the next section).

One routing policy process has already been implemented. The system standard "routing
daemon" uses a variant of the Xerox NS Routing Information Protocol [XeroxS2] to maintain
up to date routing tables In our local environment. Interaction with other existing routing pro-
bocols, such as the Internet GOP (Gateway-Gateway Protocol), may be accomplished using a

*ml Pres.
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u1. Raw sockts
A raw socket is a mechanism which allows users direct access to a lower level protocol.

Raw sockets are intended for knowledgeable proceses which wish to take advantage of some
protocol feature not directly accessible through the normal interface, or for the development of
new protocols built stop existing lower level protocols. For example, a new version of TCP
might be developed at the user level by utilizing a raw IP socket for delivery of packets. The
raw EP socket interface attempts to provide an identical interface to the one a protocol would
have If it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possibly) aug-
mented by protocol-specific processing routines. This section will describe the core of the raw'..;"" i '+ socket interface.

11.1. CMtmi blocks
Every raw socket has a protocol control block of the following form,

stnact rawcb (
struct riwcb "rcbnext; /* doubly linked list "1
struct rawc *rcbpev;
struct socket "rcb socket; /0 back pointer to socket 0/
struct sockaddr rcb faddr; /0 destination address /
struct sockaddr rcb-jaddr; /0 socket's address 01
caddrj rcbpcb; /0 protocol specific stuff 0/
short rcbflgs;

All the control blocks are kept on a doubly linked list for performing lookups during packet
dispatch. Associations may be recorded in the control block and used by the output routine in

-- preparing packets for transmission. The addresses are also used to filter packets on input; this
..will be described in more detail shortly. If any protocol specific information is required, it may

be attached to the control block using the rcb.cb field.
A raw socket interface is datagram oriented. That is, each send or receive on the socket

requires a destination address. This address may be supplied by the user or stored in the con-
trol block and automatically installed in the outgoing packet by the output routine. Since it is
not possible to determine whether an address is present or not in the control block, two flags.
RAW LADDR and RAW FADDR, indicate if a local and foreign address are present.
Aother flag, RAW DONTROUTE, indicates if routing should be performed on outgoing pack-
ets. If it is, a route is expected to be allocated for each "new" destination address. That is,
the first time a packet is transmitted a route is determined, and thereafter each time the desti-
nation address stored in rch .mte differs from rbjaddr, or rc1roue.ro rr is zero, the old route
is discarded and a new one allocated.

31.2. Input procassiug
Input packets ae "assgned" to raw sockets based on a simple pattern matching scheme.

Each network interface or protocol gives packets to the raw input routine with the call:

raw input(m, proto, arc, dst)
struct mbuf Om; sruct sockproto *proto, struct sockaddr "src, "dst;

The data packet then has a eneric header prepended to it of the form

struct raw..header
struct sockproto raw_proto;
Osruct swocadr raw dst
struct sockaddr raw arc;

CSRO TR/6 Leffler, et. a.
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and it is placed in a packet queue for the "raw input protocol" module. Packets taken from
this queue are copied into any raw sockets that match the header according to the following
rules,

1) The protocol family of the socket and header agree.
2) If the protocol number in the socket is non-zero, then it agrees with that found in the

packet header.
3) If a local address is defined for the socket, the address format of the local address is the

same as the destination address's and the two addresses agree bit for bit.
4) The rules of 3) me applied to the socket's foreign address and the packet's source address.
A basic assumption is that addresses present in the control block and packet header (as con-
structed by the network interface and any raw input protocol module) are in a canonical form
which may be "block compared".

11.3. Output processing
On output the raw pr usrreq routine passes the packet and raw control block to the raw

protocol output routine for any processing required before it is delivered to the appropriate net-
work interface. The output routine is normally the only code required to implement a raw
socket interface.
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12. Buffering and congestion eontrol
One of the mnjor factors in the performance of a protocol is the buffering policy used.

Lack of a proper buffering policy can force packets to be dropped, cause falsified windowing
information to be emitted by protocols, fragment host memory, degrade the overall host perfor-
mne, etc. Due to problems such a these, most systems allocate a fixed pool of memory to
the networking system and impose a policy optimized for "normal" network operation.

The networking system developed for UNIX is little different in this respect. At boot
time a fixed amount of memory is allocated by the networking system. At later times more
system memory may be requested as the need arises, but at no time is memory ever returned
to the system. It is possible to garbage collect memory from the network, but difficult. In
order to perform this garbage collection properly, some portion of the network will have to be
"turned ofr' as data structures are updated. The interval over which this occurs must kept
small compared to the avenge inter-packet arrival time, or too much traffic may be lost,
impacting other hosts on the network, as well as increasing load on the interconnecting medi-
ums. In our environment we have not experienced a need for such compaction, and thus have
left the problem unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be
given of the allocation mechanisms, and policies used by the protocols in performing connec-
tion level buffering.

12.1. Memory management
The basic memory allocation routines place no restrictions on the amount of space which

may be allocated. Any request made is filled until the system memory allocator starts refusing
to allocate additional memory. When the current quota of memory is insufficient to satisfy an
mbuf allocation request, the allocator requests enough new pages from the system to satisfy the
current request only. All memory owned by the network is described by a private page table
used in remapping pages to be logically contiguous as the need arises. In addition, an array of
reference counts parallels the page table and is used when multiple copies of a page are present.

Mbufs are 128 byte structures, 8 fitting in a 1Kbyte page of memory. When data is placed
in mbufs, if possible, it is copied or remapped into logically contiguous pages of memory from
the network page pool. Data smaller than the size of a page is copied into one or more 112
byte mbuf data areas.

12.2. Proecol buffering policies
i Protocols reserve fixed amounts of buffering for send and receive queues at socket cres-
tion aime. These amounts define the high and low water marks used by the socket routines in
deciding when to block and unblock a process. The reservation of space does not currently
result in any action by the memory management routines, though it is clear if one imposed an
upper bound on the total amount of physical memory allocated to the network, reserving
memory would become important.

Protocols which provide connection level flow control do this based on the amount of
space in the associated socket queues. That is, send windows are calculated based on the
amount of free space in the socket's receive queue, while receive windows are adjusted based
on the amount of data awaiting transmission in the send queue. Care has been taken to avoid
Mne "silly window syndrome" described in [Clark82] at both the sending and receiving ends.

123. Queue Nuttingt
Incoming packets from the network are always received unless memory allocation fails.

However, each Level 1 protocol input queue has an upper bound on the queue's length, and
any packets exceeding that bound are discarded. It is possible for a host to be overwhelmed by
excessive network traffic (for instance a bot acting as a gateway from a high bandwidth net-
work to a low bandwidth network). As a "defensive" mechanism the queue limits may be

CSG TRJ6 Leffler, et. at.

.. '.



Networking Implementation .26- Buffering and congestion control

adjusted to throttle network traffic load on a host. Consider a host willing to devote some per-
centage of its machine to handling network traffic. If the cost of handling an incoming packet
can be calculated so that an acceptable "packet handling rate" can be determined, then input
queue lengths may be dynamically adjusted based on a host's network load and the number of
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a
problem such as this (simply dropping packets is likely to increase the load on a network); the
queue lengths were incorporated mainly as a safeguard mechanism.

12.4. Patkel ferwarlftg
When pockets can not be forwarded because of memory limitations, the system generates

a "source quench" message. In addition, any other problems encountered during packet for-
warding are also reflected back to the sender in the form of ICMP packets. This helps hosts
avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early
stage of network development, broadcast packets were forwarded and a "routing loop" resulted
in network saturation and every host on the network crashing.
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-. 13. Out of band data
Out of band data is a facility peculiar to the stream socket abstraction defined. Little

g rmeent appears to exist as to what its semantics should be. TCP defines the notion of
"urgent data" as in-line, while the NBS protocols (Burrasus1l and numerous others provide a
fully independent logical transmission channel along which out of band data is to be sent. In
addition, the amount of the data which may be sent as an out of band mesage varies from pro-
tocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest reasonable
common denominator (at least reasonable in our minds); clearly this Is subject to debate. Out

. of band data is expected to be transmitted out of the normal sequencing and flow control con-
straints o the data iram. A minimum of I byte of out of bandata and one outstanding out
o" band menage are expected to be supported by the protocol supportinlg a stream socket. It is
a protocols perogative to support larger sized messages, or more than one outstanding out of
band mensage at a time.

Out of band data is maintained by the protocol and usually not stored in the socket's send
queue. The PRUSENDOOB and PRU RCVOOB requests to the p_u&m routine are used in
sending and receiving data.
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I.Trailer protocols
Core to core copies can be expensive. Consequently, a great deal of effort was spent in

minimizing such operations. The VAX architecture provides virtual memory hardware organ-
ized in page units. To cut down on copy operations, data is kept in page sized units on page-
aligned boundaries whenever possible. This allows data to be moved in memory simply by
remapping the page instead of copying. The mbuf and network interface routines perform page

*1* table manipulations where needed, hiding the complexities of the VAX virtual memory
hardware from higher level code.

Data enters the system in two ways: from the user, or from the network (hardware inter-
face). When data is copied from the user's address space into the system it is deposited in
pages (if sufficient data is present to fill an entire page). This encourages the user to transmit
information in messages which are a multiple of the system page size.

Unfortunately, performing a similar operation when taking data from the network is very
difficult. Consider the format of an incoming packet. A packet usually contains a local network
header followed by one or more headers used by the high level protocols. Finally, the data, if
any, follows these headers. Since the header information may be variable length, DMA'ing the
eventual data for the user into a page aligned ares of memory is impossible without a priori
knowledge of the format (e.g. supporting only a single protocol header format).

To allow variable length header information to be present and still ensure page alignment
of data, a special local network encapsulation may be used. This encapsulation, termed a trailer
protool places the variable length header information after the data. A fixed size local network
header is then prepended to the resultant packet. The local network header contains the size of
the data portion, and a new trailer protocol header. inserted before the variable length informs-
don, contains the size of the variable length header information. The following trailer protocol
header is used to store information regarding the variable length protocol header:

struct
short protocol; /0 original protocol no. 0/
short length; /0 length of trailer *1

The processing of the trailer protocol is very simple. On output, the local network header
indicates a trailer encapsulation is being used. The protocol identifier also includes an indica-
tion of the number of data pages present (before the trailer protocol header). The trailer proto-
col header is initialized to contain the actual protocol and variable length header size, and
appended to the data along with the variable length header information.

On input, the interface routines identify the trailer encapsulation by the protocol type
stored in the local network header, then calculate the number of pages of data to find the
beginning of the trailer. The trailing information is copied into a separate mbuf and linked to
the front of the resultant packet.

Clearly, trailer protocols require cooperation between source and destination. In addition,
they are normally cost effective only when sizable packets are used. The current scheme works
because the local network encapsulation header is a fixed size, allowing DMA operations to be
performed at a known offset from the first data page being received. Should the local network
header be variable length this scheme fails.

Statistics collected indicate a much as 200Kb/s can be gained by using a trailer protocol
with 1Kbyte packets. The average size of the variable length header was 40 bytes (the size of a
minimal TCP/IP packet header). If hardware supports larger sized packets, even greater gains

mnay be realized.
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The internal structure of the system is patterned after the Xerox PUP architecture

-!oggP79], while in certain places the Internet protocol family has had a great deal of influence
a the design. The use of software Interrupts for process invocation is based on similar facilities
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