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Abstract

The primary result of this research effort has been the

development of an image algebra that can serve as the foundation

of a common algebraically based image processing language. In

comparison to other existing image algebras, this algebra is

capable of expressing common image processing algorithms and

transforms in terms of its operators.
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Introduction

Current image processing algorithm development is not based

on an efficient mathematical structure that is designed

specifically for image manipulation, feature extraction and

analysis. In general, each researcher develops his own set of

ad-hoc image processing tools, thereby increasing research and

development costs accordingly. The vast increases in image

processing activities throughout the military, industrial and

academic communities are resulting in an immense proliferation of

different operations and architectures that all too often perform

similar tasks. There are probably as many image processing

languages as there are architectures, and all of them differing

in capabilities.

In view of this ever-increasing diversity of image

processing architectures and languages, the principal

investigator proposed to develop a standard image processing

algebra to serve as a mathematicai basis for a common image

processing language. The relational formalism of an algebraic

image processing language would constitute an invaluable aid in

the design, development, optimization and testing of image

processing algorithms and hardw3re configurations.

This research effort succeeded in defining a universal ir,-ge

algebra that could serve as the origin from which a common image

processing language could evolve. As compared to other existing

image algebras, no problems ha:'? been encountered in translating

common image processing opera .... into the language of this
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algebra. Because of this enormous success, research efforts are

now continuing on four fronts: (1) Further theoretical

development of the algebra; (2) Formulation and compilation of a

new image processing language based on this algebra; (3)

Optimization of FLIR algorithms; (4) Design of reconfigurable

VLSI architectures for image processing based on this algebra.

Technical Aspects of the Research and Research Results

This research, under Air Force grant No. AFOSR-83-0065, has

been involved with the development of a rigorous formulation of a

mathematical foundation for image processing algorithms and

operations. The research proceeded along the following

guidelines:

(1) Investigation of existing algebraic structures for image

processing.

(2) The cataloguing, according to task similarity of

existing image processing operations.

(3) Investigation of the relationships between the basic

components of the catalogued operations.

(4) Extraction of a minimal set of operators in order to

tform an algebra capable of expressing all image
transform operations.

(5) Establishment of some basic relationships and theorems

governing the algebra.
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(6) Investigation of the algebra's potential to serve as a

foundation of a common algebraically based image

processing language.

The investigation of existing image algebras turned out to

be somewhat disappointing. Extracting the mathematical and

conceptual core of existing algebras (ref. 6,11,12), resulted in

only one structure mathematicians would dare call an "algebra".

This structure is equivalent to the Minkowski algebra of sets

(4). Although the literature abounds with so called new

techniques - i.e. erosions, dilation closings, openings, rolling

ball algorithms, etc. - the algebraic relationship provided by

these techniques can all be found or easily derived from the

algebraic relationships in (4).

Even though many neighborhood operations can be expressed in

terms of the Minkowski algebra, the algebra is extremely limited

in performance (6), incapable of expressing global transforms and

various neighborhood transforms and can, therefore, never serve

as a universal image algebra. It became clear at the initial

stage of this research that a new algebra needed to be defined.

In order to accomplish this task, c3taloguing and investigating

existing image operations became a ;,ecessity.

Fiecause of the "one year" tir' constraints some image

transforms were more thoroughly investigated than others. In

particular, emphasis was placed on linear transforms, non-linear

smf !thing and enhancement techniques, edge detection schemes,

i- ', sr<gmentation and background removal. W.K. Pratt's book on



digital image processing (7) proved to be the most valuable

resource for this particular task.

Investigation of the basic components of the various image

transforms made it clear that we were dealing with only four

basic operations, namely two arithmetic and two logic operations.

However, these four operations are applied differently in

cellular (neighborhood) processing than in non-cellular

processing, resulting in an algebra of eight binary operators.

The definition of these operators can be found in Appendix 2 and

details concerning the algebra are given in (8).

In order to demonstrate the potential of this algebra to

serve as a basis for a common image processing language, we

showed that the algebra is capable of describing all commonly

used image processing functions. We considered such diverse

processing operations as linear transforms (Fourier transforms,

Walsh transforms, etc.), non-linear filtering and enhancement

techniques, a variety of well-known edge detection algorithms,

gray scale averaging, thresholding, and histogram equalization.

In order to minimize the number of operations in the algebraic

formulation of algorithms, we also established some basic

relationships governing the algebra. As mentioned earlier, no

great difficulties were encountered when translating image

operations into our algebraic formulation. A special bonus of

the translation task was the discovery of some new and powerful

image enhancement techniques (9).
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Discussions with my colleague Dr. S. Chen of the National

Science Foundation led to the discovery that the algebra is an

"image processing machine" in the abstract sense, and can thus be

used to define and model real architectures. Building on this

idea, we defined a language based systems architecture where the

algebraic algorithms are expressed as data flow graphs that are

mapped to a reconfigurable distributed system (3). In view of

recent advances in VLSI technology, such architectures are now

feasible.

In our system, the user inputs image data through a front-

end computer to a distributed network which leads to various

operation modules. The active operation modules drive parallel

processing elements that carry out the elementary algebraic

operations and transformations. Configurations for our variable

neighborhood definition are formed through the control of

arbitration networks. Modularity and redundancy will enable the

system to be fault tolerant and expandable.

The main improvement of this system over some existing

architectures, such as the cytocomputers or the CLIP series, is

the ah-!ity to handle variable neighborhoods and to perform

certai4 image processing algorithms in parallel that are not

feasihir. on current cellular array computers.

.ide benefit of this research was the development of

software for the VAX-11/780 computer to enable the printing of

gray level images on standard dot-matrix printers. The extremely

low resolution, spatial distortion and slowness of the print

routines provided by Government furnished print routines
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necessitated this development. This software will be made

available to AFATL personnel at Eglin AFB. Appendix 1 provides

examples of the improved image displays.

Finally, this one-year research effort resulted in four

publications (1,2,9,10) and four invited talks and lectures. In

October 1983, the principal investigator was an invited speaker

and session chairman at the IEEE International Conference on

Computer Design held in New York. At the 1984 annual Spring

meeting of the Mathematical Association of America's Florida

section in Tampa, an invited lecture was given on the connection

between digital topology and the image algebra. Two talks

concerning the algebra were given in April 1984, one at the

Conference on Intelligent Systems and Machines in Rochester,

Michigan, and the other at the 1984 Southeast Regional ACM

Conference in Atlanta, Georgia.



Summary and Recommendations

We constructed an algebra for image manipulations consisting

of eight binary operators. All image processing techniques

investigated during this research were expressible in terms of

this algebra, and it is our opinion that most, if not all,

current image manipulation techniques are translatable into the

language of this algebra. However, this needs to be more

thoroughly documented.

Since very little is known about algebraic structures

containing more than two operators, theorems, corollaries,

identities, and laws concerning compositions of different

operations need to be established. Such laws will not only be

useful in terms of algorithm simplification but also provide

deeper insight and a better understanding of the algebra.

Following the establishment of such relationships and laws, a

natural "next step" could be the application of these algebraic

relationships for the optimization and testing of Government

furnished FLIR algorithms, and also as an aid in the development

of new image processing algorithms. The importance of such a

fully developed algebra with regard to military applications

cannot be overestimated.

I
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Th.Z tA)4CUALE OF MASSIVZLY PAILALLEL. IMAGE PkOCXSSINC OUKFUTEUS

Gerhard X. Ritter

Department of Miathematics

University of Florida
Gainesville,* Florida 32611

ARSTRAC?

In this paper we define an image algebra
whose operators serve as the basis of a new Image
processing language. In comparison to other e %
exssing Image algebras, this algebra Is capable%
of expressingj moat common Image processing &lgor-%
ithms and trans~forms In terms of Its operators.
The development of this algebra has been influ- I %J

enced by the architectures of massively parallel
liage processing systems.

1. lWTMIDUCTION

About 25 years ago. U~nger (16) proposed that s,
algorithms for image processing and analysis could % .

be ImplementeJ In parallel using 'cellular array'- ',
ccnputers. Recent advances In VLSI technology now
permits the realization of such array computers.
A detailed desaript ion concerning the diversity Cellular i,.gt protossir.; auiositon of identital prctssors
and genealogy of cellular array computers can be sith niarest neiqt.bor connection
found in (10).

For our purposes It Suffices to observe that
cellular architectures implement variations of von Figure I
NeuSmflfls automaton (15).

%-ASA's massively p3rallel processor or MPUsing these types of hardwired comzunication
(2). &ad the CLIP series of computers developed by links between neighboring processors, tact, pro-
Duff (4) represent the classic embodiment of von esrirepnbl fo oepxl(roed-
Neu=nan's original automaton. The CLIP- which tso orsosbefroepxl(roeee
constitutes the latest in the series of CLIP ment of the image), and is capable of perfor=Ing
computers, consists of an rray of 9216 (91,s96) operations on the Image via its communications
processors. Employing VSL7 technology. sets of links. These local operations can bt cxprebbed in

eigh prcesingelentzareIntgraed n aterms of neiphhnrhood operators or -_: rhood
siciht prcingetsaeitgrtdo funtions and are performed In parsile. -. the
* sigle hip.whole Images and neighborhoods (i.e. -: -irages

The .M'P also ti:r-.rAtes eight processing Induced by the local windows). In this senbe then
elements per chip In * ssemblage of 1

28
x132 array processors impose a natural a]E,!!a on the

proceising elements. 1 r. distinction to the CLIP, set of Images and window configurations.
wh~ere each processini, *-znt has the capabil1itySera ag albasepoi :tle

of cm~.nictingwit. eghtimmeiat negh-concepts already exist. Among the, ..t are
bar%, an MPP proicess:, -tent has connection to only the tha Iahmtcaswudcl

solyd fours inigue 1. asidcte-ytealgebras- (7,13.14). H~owever, cdespitt their
solid lnes inFigureprofound accomplishments, these a td.are not

capable of expressing most commor ic..-( processing
operations such as Fourier transforra:ions, gray
scale averaging, and various edge dt:,-czion
t echniques. In fact. the failure of tlese
algebras to express a fairly straightforward U.S.
Covernmenrt furnished FLIR algorithm tlas bten well
documeiited (8).



In contrast. the image algebra developed by as cVc' - ax(r(c),r(c')J
this uthor is capable of expressing most comson and cAc' - minjr(c),r(c')), respectively.

iaoge processing operations in terms of its

operators. The development was motivated by the DEFINITION 2.3
Air Force's need for translating Image processing
algorithms into a common mathematical language for (1) The gray level sum of a and a' Is defined
performance characterization, documentation, and as 9(+)s' - (xypz+ez' and the
algoritha saimplification. gray level product as s(x)s - (xy,:z°).

In the next section we provide a rigorous (2) The maximum of a and s' is defined as
mathematical definition of this algebra, en- ( - . S) end the the minimug 55

dowing it with sufficient flexibilty for s(&)ja - (xyzz').
implementation on future reconfigurable

neighborbood computers (3) as well as con- (3) If f Is a real or complex valued function
woclonal serial Image processing machines.

on C. then the pixel functionf induced by f is

defined as f(s) - (xyf(z)). In particular,

2. FUBAWIntL TERM we denote the absolute value or magnitude of a

by 1s - (x.ydjl). and exponentiation and
Hencefortb. Z and C shall denote the sets of scaler multiplication by a complex number c by

integers and complex numbers, resrectively.
Although we could just as well'have used the set sc - (x,y,zc) and co - (x,ycz), respectively.

of reals Instead of complex numbers, we obtain a For finite subsets of S we also define
marhematically more useful and extensive structure the following four operations.

by employing the latter.

DEFINITION 2.1. (4) s(+)A - s(+) (!A)s

(1) S - ((x.y.z): x.yCZ, C .C). (5) *(x)A - six) (jx)a

(2) P(S) - (A: AC S).

(6) s(V)A s(V)( V )&
The power set P(S) will represent our &CA

universe oi discourse. In particular, images will
be viewed as elements of P(S). (7) s(A)- a(&)(-

Henceforth s - <xy,z) and a' - (x',y',z') 7

will denote elements of S and A, B subsets of S. Here the operation (+)& means to ad using (+),

DEFINTrOf 2.2. all of a EA. &EA

Several com--ents are in order. First,

a and s' are said to be related, denoted observe that the operations defined in (1) and (2)
are not co=tutative. To further clarify (3),

by a - s?, if x - x' and y - y', otherwise a is consider examples such as sin(s) (xy,sinz)
not related to s', which is denoted by exp(s) - (x,y,exp(z)) and Ln(s) - (x,y,lnz).

Finally, note the order in which the a's are added

a ' s'. in (4) is Immaterial since s is added on the

left-. Thus, if A - {ab,cl, then s(4)A -

(2) AS- seA: a * b for any beBl s()a(+)b(+) c - s(+)c(+)a(+)b. The &ame
bbservation holds for operations (5) through (7).

and A -.a A: a - b for son, bCB a. DEFINITION 2.4

A neighborhood function or neirhborhood for S
(3) A is related to 9, denoted by is a func:ion N:S * P(S). The mathematical image

B A H(s) of a point s cS is called the N neighborhood
A - B if A . A and B . B. of s or, simply, a neirhhnrhood of s. The

restriction of N to a subset A of S will be
denoted by NA and Is called a neighborhood for

A. The deleted neir 'trhood N'(s) Is defined as
(4) A called an ima.p. if wht.n.ver abE A N'(s) - h(s) - Is).

aod a-b then&a- b. We are ncw ir the position of defining a
universal alj' bra .hich operates on subset& of S.

If c is a complex number then the cagnitude
of c will be denoted by IcI and the real part of c
by r(c). Civen two cuomplex numbers c and c', we 3. IMGE A1ZEBRA

define the maxim" and nimum of c and c' As r n earlier, the operands of our
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The algebra C. defined in the previous pendently developed by P.E. Killer (7), J. Serra
section, initially evolved from the four neighbor- (13) and S. Sternberg (14). The two fundamental
hood operations (Definition 3.3) as a need for operators of this algelbra correspond to the
smathe.stically describing twge processing rout- Hinkoweki addition and subtraction of sets in
ines that are 'natural' to cellular architectures. Euclidean space (12) and (5). In the Image
Addition of the remanling four arithmetic-logic processing literature the Hinkowaki operations are
operators, however, yields a more flexible commonly referred to s the expansion or dilation
algebra. 10 fact. the extended algebrs provides a and the erosion or shrinking operators. It turns
uniform method for describing most standard ItAs out that if Nis any neighborhood configuration
transforms and Image processing techniques in and A ,. Image, then the dilation of A by N
terms of algebraic formulae involving only images tranlates Into A(M)N and the erosion of A by N
and the operations defining the algebra. This isf N(s) - 1 0 ,a
'accomplished by analyzing the basic components and into AW. For example f026()

operations constituting a given manipulation or and A Is as shown in Figure 2(a). then A(V)N
transform and then translating them into the and A(W)N are as shown in Figure 2(b) and (c).
language C. Due to limited space, we present It follows that our algebra generalizes the
translationa of only a few well-known techniques, Hinkowski Image algebra.
omitting more complicated algorithms, proofs and
verifications. all of which can be found on (10). Two of the moat basic and far reaching

combinations of the Minkowski operations have

become known as the closing and opening

4.1 EWE DgTICTIom operations. A closing Is an expansion followed by
a shrinking while an opening ts a shrinking

The edge detectioc ad enha:.cenent techniques followed by an expand. For A and N as in the last
described in (8) are easily translated Into &example, the closing of A by N correspnds to
languged of 4. We provide tworanaed examthe (A(V)N)(A)N and is shown In Figure 2(d). Observe
language of . le provide two standard ex~anplea, that the result of a closing is a smoother image,

Defining the deleted neighborhood function B with the interior 'holes' (zeros) removed. In
by )) - M (a)many cases the closing filter exceeds the local

by 1a3 ..1...17(a) averaging filter on performance (1).

permits us to express the Kirsch edge detection
algorithus (6) as 00000000000000 00000010000000

f O000000000000 00000111101100
0• 0 111 001111111111090O lll llO

K - IV( 7, )1 A(+)8' - Al), i 000111i11111000 01111111111100

i- .0000011i111100 0000111111111000000000010000 0000011 111100
00000000000000 00000000010000

where K denotes the enhanced Image obcained from
A. The logarithmic edie detection scheme as (a) (b)
defined by 6allia (.p.

4 8 9
) translates into:

00000000000000 00000000000000
3 00000000000000 00000010000000

3 00000010000000 00000111101100

1 00000000000000 00001111111000
00000000010000 00000111111100
00000000000000 00000000010000

where A and W denote z:e input and output images, 00000000000000 00000000000000
respectively. (c)

Figure 2

4.2 TRE.LSHOLDIIC 4.5 THE FOURI-Ek TfLASFOR.M

Since (rIA).!A -
1
(a.b.rc): (a,b.c) Al. the As a final exa=pie we exacine the discrete

image obtaloed from thresholding A st r given by Fourier teansorm (VF0Tr of a nxn image array. The

5 (rlA).A. usual definition of tt.e UFT Is given by

n-I n-
4.3 AVELAzIC FILTER F(uv) - (l/n) I I {f(x,y)

x-O y-O

Sjppose N(s) denotes the window with with

center pixel a used for averiging A. Then
since A(.)N' - aa(i)N'€): a CA), the averaging e>p+-r./n)(uyvy))),

filter can be translated as B - n- I(A(+)N'), where
n represents the nunber of pixels in the window N where f(x,y) represents the Fray level at position
and 9 the output obtained fro the image A. (x.y).

In order to exsrems this transformation In
4.4 z C ri.T"it tertu of whole ImaFes, we no-ed to define some

special i.ages and neighborhoods:

As mentioned in the Introduction, a fairly

successful Boolean Image neighborhood algebra.
base on two fundamental operators. was .nde-
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algebra vwl be Images and neighborhoods (sub- AxA- 
I IA 

and A - AxAx...xA, vhere n is a
Im-ides and windows). Before defining the positive inteper and the product consists of
operators of this algebra, we have need to define n-factors. Further properties and theorems
certain special laages. concerning these operations can be found in (10).

The next met of operations we are about to
DJINOM .. define Is a special set of neiphborhood

operations. However, we point out that the neigh-
(1) The zero image Is defined borhood N could be replaced by any subset B of S.

as 0 - (z.y.,) ES: z - 0. DEFINITION 3.3

(2) The unit insee Is defined as Let N be a finite neighborhood of A. The
neighborhood sumn maximum and minimum of A and II

I " (x.y,z)CS: z - I. are respectively defined as:

(3) If f Is a real or complex valued (I) A(+)N - fa(*)N(a): .aA)

function on C. then the induced (2) A(x)N - [a(x)N(s): aCA)

imae function F on P(S) is defined as
(3) A(V)N - (a(V)N(a): seA)

F(A) - L(a): a CA). for each subset

(4) A(A)N - fa(J)N(,): as A).

A of S.
The universal image algebra is now defined as

Here f denotes the pixel function induced by f. the pair 0 - (J.T) where T
Thus ExpCA) - exZCa): & A) and Ln(A) - (V),(a)) and J denotes the set of images and
tln(a): aEA). In particular. the magnitude of neighborhoods. Various properties of this algebra

A is given y JI - Jn1 &;A. have been explored in (10) and (11). The next
section provides but a small glance at the

Ica: ,CA) and A' - Jac: , AI, where cC. potential of this algebra. The examples we give

Thus, -A - : a Al - [(Ky,-z): should also provide sufficient insight into the
natural interaction of this algebra with the

(x.y.z) CA] and A7- [a-': a - architecture and operations of cellular array
{(xy.Ie):(z.y.z) &Al. %ote that the latter is co=puters. This Is parrIculary evident when

considering the last four neigborhood operations.,

defined only If A n-O - 4.

We are now ready to define the first four 4
binary operators of our algebra.

DEFITIfON 3.2 Eight-neighbor logic operations are some of
the most common operations used in image pro-

Let A and I be !mages and E - cessing. These operations lend themselves
BA3  A." particulary well to the type of array processor

architecture portrayed in Figure 1. The VP.

(1) The prav level sum of A and B Is accomplishes eight-neighbor operations by shifting
over the entire array. We let X(a) denote the 3 x

defined as A + B a Z AI. 3 neighborhood configuration corresponding to this
wiring, where 'a" denotes the center pixel. The

b , and a - b) ' E. links of a processor to the immediate neighbor

(2) The erav level product of A and B .hoods can usually be controlled by on-off switch-
es, allowing the configurations of different sub-

is defined as A3 - j a CA. neighborhoods. It will be convenient to label the
a(x)b: Acorresponding bubsets of M(a) by the counterclock-

b CB, and a - b} - E. wise nu=bering convention, illustrated by the

(3) The mxinum of A and B is defined following fijres:

as ATB - (a( )b: a C , b CB and 3 I' 1 1

a - bi E. M(a) 4 6 0 ?017 (a) " a 0

(4) The minim of A and B is 7 7

is defined as A..b fa(L)b: 2

a cA. bZ8 and a b) E. (,246(a) 4 a 0

6

In contrast to t0e operations defined in In parttcu:, - N0 1 2  corresponds to CLIP's
Section 2 all the at ,Ie oareraions are - 0 7 e t

coanuative and associative. In fact, neighborhood circuitry, while '246 to the neigh-
A - A A A A , A' ) A , borhood arra -iE T'nt of the YYP.

: i



19

11. C.X. Rlitter, 'On the Foundation of a Common

(1) 1 - J(ay.z) cSz a- x) and Image Processing Language Algebra," TR. USAJ?
Armament Div., EO Terminal Guidance Branch,

T - 3(x.y,z) s; z - y) Eglin ARD, FL., 1983.

(it) E(u.v) - Expj(-2ti/n)(uX*vY)), 12. C.X. Rlitter, 'An Image Processing Algebra,'
Preprint.

where. u.v (Z.
13. J. Serra, Image Analysis and Mathematical

The Fourier neighborhood function of an Morphology, Academic Press. London, 1982.

su image Is defined as the function FloA
- F(S). where F (u .O) - AE(yv). 14. S. Sternberg, -Languages and Architechtures

A for Parallel Image Processing, Proc. Conf. on

The Fourier transformed image, F(A). of A can Pattern Recoxition in Pratice, North-Holland

them be expressed by the simple formula Pub1., 1980.

F(A) "0 A(+lFA. IS. J. von Neumann, 'The General Logical Theory of

Automata, Cerebral Mechanism in Behavior! The

Hixon Symposium, Wiley and Sons, New York,
S. ACKXOWIXDCE r 1951.

The support of the U.S. Air Force Office of 16. S.H. Unger 'A Computer Oriented Toward Spatial

Scientific Research under Contract F83-OO-65 I* Problems," Proc. IRE. 46,1958, 1744-1750.

greatly ackmowledged.

IFJ'RILRES

1. L.A. Ankeney and C.X. Ritter, -Applications of

Cellular Topolog 4n Image Processing.' Int J.

of Cc=uter and Inf. Science, 12(6) 1983, 433-
-56. 1

2. .. Ba tcher, "Design of a Massively Parallel

Processor.' IEEE Trans. Computers, 29(9).

1980, 83o-840.

3. S. Chen and C.X. Rlitter. lmage Processing

Architectures and Languages," Proc. IEEE Intl

I Conf. on Conzuter Desien: VLSI in Coop. New
ork. 1933, 123-726.

4. T.J. Fountain "CLIP4: A Progress Report,"
.anruaces and Architectures for Imape

Processing, Academic Press, London. 1981.

5. V. Hiadwiler, Vorlesunren ueb.-_ Inhal..
Cterflaeche un d Isoteri=etrie. Springer
.erlag. Berlin, 1957.

6. i. Kirsch, "Cocputer Determination of the
'uristituent Structure of Biological Imagea.
-ruter ane tlo=edical Reasearch, 4(3), 1971,

315-328.

7. P.E. .ltler, An Investigation of Boolean
'ansfotrations. Ph.D Thesis, Ohio State

.erslty, Columbus. OH. 1978.

8. P.E. Miller. 'Development of a Mathematical

Structure for Image Processing.' Perkin-Elmer
C;t1cal Div.. Tk. Danbury, CT, 1983.

9. V.K. Pratt, Dleltial 7mAee Processing, Wiley

and Soas. New lork, 1978.

10. K. Preston, -Cellular Logic Computers for

Pattern Recognition,' Computer, 16(1), 1983,
3*-47.


