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THE APPROXIMATE SOLUTION OF A SIMPLE CONSTRAINED SEARCH PATH
MOVING TARGET PROBLEM USING MOVING HORIZON POLICIES

Presented here are the results of applying moving horizon

policies to solve approximately a moving target problem, where
both the searcher and the target have constraints on their paths.
Thé solution procedure can be viewed as an approximation of the
optimal dynamic programming method of Eagle (1982). This approx-
imation may be useful if limits on available computer storage

or computer time do not allow calculation of the optimal solution.

Only one problem geometry was examined. The problem was

selected to keep the computer computations feasible rather than
to be representative of any real-world search. It is possible
that the patterns observed in the solution are specific to this
problem geometry. Further work is required to establish the gen-

erality (or lack thereof) of these results.

1. The Problem
The target and searcher both move in discrete time among the

9 cells shown in Figure 1. The searcher starts in cell 1, and

the target starts in cell 9. 1In each time period the searcher
can move from his current cell to any adjacent cell. Cells are
adjacent if they share a common side. The searcher can also
choose to remain in his current cell. The target moves from cell
to cell according to a specified Markov transition matrix. The

probability of the target remaining in any cell i, given it was

in cell i in the previous time period, is .4. The probability
that the target transitions to any cell adjacent to i is .6/ci,

where c, is the number of cells adjacent to i. So the target




transition matrix is

(4 3 g 3 g 8 5 B B
2 4 .2 g .2 [} 2 ') [}
§ 3 .4 8 5 .3 g g 9
2 ) g .4 .2 g .2 ] g
g .15 g .15 .4 .15 @ .15 ¢
g g .2 g .2 .4 g g .2
'/ g g .3 '] g .4 .3 g
B 9 g B .2 # .2 .4 .2
s 8 @ 8§ .3 9 3 .4

If the searcher chooses the cell occupied by the target, then the
target is detected with probability .5. If the searcher chooses

a cell not occupied by the target, then the target can not be
detected during that time period. The searcher has T time periods
in which to search. His problem is to select that T-time period
search path which minimizes the probability of target non~detec-

tion (PND).

1 2 3
4 5 6
7 8 9

Figure 1. 9-cell search grid.




2. Moving Horizon Policies

The problem presented was solved approximately using m-time

period moving horizon (m-TPMH) policies. Such a policy is

defined as follows: When T time periods remain in which to
search and T > m, the m-TPMH policy selects as the next search
cell that cell which would be optimal if m time periods remained

in the problem. When T < m, the optimal search path is selected.

The 1-TPMH policy is called the myopic policy.

Moving horizon policies were introduced for the Markov deci-
sion process by Shapiro (1969) and have been recently suggested
for search applications by Stewart (1984).

For this investigation, dynamic programming was used to con-
struct the (m+l)-TPMH policy from the m-TPMH policy. The details

are in Appendix A and Eagle (1982).
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3. Experimental Results

A total of 320 cases were examined using problem lengths T
(T=1,2,...,40) and m-TPMH policies (m=1,2,...,8). In addition,
the optimal solutions were obtained (using dynamic programming
and total enumerication) for T from 1 to 15 time periods. Figures
2 through 7 illustrate some observations suggested by the data
collected.

Observation l: For the moving horizon and optimal policies

examined, the decrease in PND with increasing T was "almost
asymptotically geometric."”

Figures 2 through 6 illustrate "almost." 1In Figure 2, PND
is plotted on a logarithmic scale against T. It appears here
that PND for the myopiq solution, the 8-TPMH solution, and the
optimal solution are very nearly asymptotically geometrically
decreasing. It is also apparent that the 8-TPMH policy generates
a PND which decreases more rapidly than that generated by the
myopic policy. Figures 3 and 4 show, however, that there is
some fine structure in the graphs of PND which is not apparent in
Figure 2. 1In Figure 3, the ratio PND(T)/PND(T-1l) is plotted for
the myopic and 8-TPMH policies. Figure 4 is a similar plot with
an expanded y-axis scale. It appears that while the myopic
policy is asymptotically geometric, the 8-TPMH policy is not.
Graphs of PND(T)/PND(T-1) for the other moving horizon policies
tested show an "almost asymptotically geometric" pattern similar
to that of the 8-TPMH policy, (See Figures 5 and 6.)

Observation 2: It is possible for an ml—TPMH policy to produce

a smaller PND than a m, ~TPMH policy when m; < m,.
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T NE Ay e

e o

*Aot1od Tewr3zdo pue (L ‘9 = W) SITOTTO4d HWAL-W I03F (T-L)ANd/(L)ANd °9 @anbia

$
o ot o o Om
!
\ |
e 2
o
[y =
3
Z
Q
—~
e7
2=
8
NOILMOS TYNILO
h h o0
o ot oz (1] Om [ 4 ot oz ot Om
o X \ oV
b X
o d < B o’ hamn 4 S -~
3 3
] ]
~~
o 7 s
I 2=




In general, m-TPMH policies performed better as m increased
from 1 to 8, but there were some exceptions. Figure 7 illustrates.
Here the difference in PND produced by the 3- and 4-TPMH policies
is plotted against problem length T. A negative value of this
difference indicates that the 3-TPMH policy performed better than
the 4 TPMH policy for that particular value o. T. For example,
for T=11, the 3-TPMH policy produced a PND of .4426, while the
4-TPMH policy gave .4434. The difference of -.0008 is plotted
in Figure 7.

Observation 3: For T < 15, the optimal and 8-TPMH policies

produced identical PND,

This is not to suggest that the 8-TPMH policy is optimal (It
is not optimal, - The 6-TPMH policy produced smaller values of
PND for some T.), but rather that it may be a good approximately

optimal policy for this problem.
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4. Looking for a Lower Bound to PND :

<
2N

Moving horizon policies provide an upper bound to the optimal

\
AN

PND. It would be useful to construct a lower bound as well. If

————
=

for all T greater than or equal to some f, the optimal policy
produced a non-decreasing PND(T)/PND(T-1l) (as does the myopic

policy in this example for T = 3), then

PND (T) (T=T)
PND (T~1)

e ERRONN

PND(T) > PND(T) (

for all T > T. Unfortunately, the optimal policy in this example

did not generate non-decreasing PND(T)/PND(T-1l). (See Figures

4 and 6.) The strongest statement about the optimal PND that

the data collected can support is apparently the following:
For all T € (1,2,...,15) there exists a maximum Y(@) >0

satisfying

PND(T)

(-0 = YT -

T<T< 15>

That is, for each @, there was some maximum positive constant,
Y(@), which defined the tightest geometrically decreasing lower
bound to PND(T), T > T. ,

In addition, the data allow the following additional obser-
vation concerning the moving horizon PND.

Observation 4: For the m-TPMH policies examined with T > 10,

PND (T) , PND(10)
PND(T-1) = PND(®)  °

!

That is, for T > 10, the l-time period geometric decrease in the moving

horizon PND(T) was bounded below by PND(10)/PND(9). If this

12

|
w




observation also holds for the optimal policy, then for T'z 15

we have for the optimal policy,

PND(16) PND(17) PND (T)

PND (T) PND (15) PND(15) PND(18) ° ° ° PND(T-1)

v

(T-15)
e (15) (ENDUO))

.3308 .9281 (T-15) (1)

v

If (1) is a lower bound for this problem, it is a fairly tight
~one. This possible lower bound is plotted in Figure 2. Figure 8
shows the difference between this possible bound and the PND pro-
duced by the 8-TPMH, 2-TPMH and myopic policies. Figure 8 also
suggests that increasing m from 1 to 2 resulted in considerably

more policy improvement than did increasing m from 2 to 8.
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Appendix A: The Dynamic Programming Procedure for Determining
Moving Horizon Policies

We make the following definitions:

C = set of all cells = {1,2,...,N} ,

Cj = set of all cells accessible in 1 time period to a searcher

in cell j ,

qj = P {target detection|target in cell j and search conducted
in cell j} ,

Piy = P {target transitions in 1 time period from cell i to
cell j} ,

= St f o — NxN

P = target transition matrix = [pij] € R ,

dn = the cell searched when n time periods remain in the
problem,

§° = (dpr dp_qr---+dy) = an n-time period search path,

"j = probability that the target is in cell j ,

T = (nl,nz,...,nN) = target probability distribution over C.

With any n~time period search path, Gn, there can be associ-
ated a vector a ¢ R' such that a; = P{target detection|s” is
followed; target in cell i when search begins}. The probability
of detection when 8" is followed and the initial target distri-
bution is 7 is then ma. Now let A(n,i) be the set of vectors
associated with all possible §°, given the searcher is in cell i
when n time periods remain. Then the maximum obtainable n-time

period probability of detection given an initial target distri-

bution of m is

Vn(w,i) = max mTa . (Al)
a € A(n,i)




And the optimal n-time period search path is that 6" associated
with the maximizing a ¢ A(n,i).

The dynamic programming problem is then to construct the
vector sets A(n+l,1l), A(n+l,2),...,A(n+1l,N) from the vector sets
A(n,1), A(n,2),...,A(n,N). Also, each a ¢ A(n+l,i) must have
associated with it an (n+l)-time period s=arch path.

Let a be any element of A(n,j) and 6" be the n-time period
search path associated with a. Now the N-vector associated with

the (n+l)-time period search path (j,dn) is

= e, g. + P,
a eJ qJ PJ a ,

where ej € RN is the j-unit vector and Pj € RNXN

is P with row j
multiplied by (l1-gy). To see this, the components of a and a
are interpreted as probabilities of detection when n+l and n
searches respectively remain in the problem. The entire set

A(n+l,i) is then

{a € RNfa = e, q. + P,

5 9 Ja;]éci&aéA(nrJ)}.(AZ)

The dynamic programming process begins by setting
A(0,i) = 0 ¢ RN, i=1,2,...,N. One iteration gives the myopic

solution. Specifically, applying (A2) when A(0,i) = 0 yields

A(l,i) = e, g, i = L,...,N,

with an associated l-time period search path of 61 = dl = i.

Continued application of (A2) allows recursive construction of
the sets A(n,i) with an n-time period search path associated

with each vector in each set.

A
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The set A(n,i) constructed in this manner from the sets
A(n=-1,3), J ¢ Ci' may contain some vectors which will never max-

imize (Al) for any Earget distribution m. The & associated

with each of these "dominated" vectors can not be an optimal
n-time period search path. To test whether a vector a ¢ A(n,i)

is dominated, the following linear program is solved:

min x - n%

TeX

s.t. x > ma, a ¢ A(a)
mel

where A(a) is the set A(n,i) less the vector a, and

M= {nc¢ RNIWi > 0 and E m; = 1}. Whenever the minimal value
of x - ma is non-negative, a is dominated and can be removed
from A(n,i). Only the non-dominated vectors in A(n,i) need be

used to construct A(n+l,j). Letting B be the convex hull of

A(a), Eagle (1982) showed that a is dominated if and only if
there exists some b ¢ B such that b > a.

A simpler domination procedure is to remove a from A(n,i)
wherever there exists a vector a € A(a) such that a > a. This

method is easier to implement than the linear programming pro-

cedure, but does not reduce A(n,i) to its minimum size. Thus
more computer storage is required to save A(n,i) in each stage
of the dynamic program.

Once the vector sets A{(m,i), i =1,...,N, have been con-

structed and a ™ has been associated with each a ¢ A(m,i), then
the m-TPMH policy is available. Assume n > m time periods remain

in the problem, the searcher is in cell i, and the target

17
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distribution is n. Then the m-TPMH policy picks as dn the first
element of Gm, where §™ is the m-time period search path asso-
ciated with
argmax ma . (A3)
a ¢ A(mll)
If the target is not detected in time period n, the target dis-
tribution given a Bayesian update for the unsuccessful search
and (A3) is used again to determine dn-l‘ When the problem

solution progresses to the point where m time periods remain,

the m-TPMH policy picks the optimal §™ for the remaining time

periods.
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