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.:~ yI. INTRODUCTION AND SUMMARY

This annual report summarizes work performed on the Adaptive

Decentralized Control project (under contract F4920-81-C-OO51) during the

period June 1982 - July 1983. The objective of this research effort is the

development of a new concept for the design of decentralized controllers for
large scale systems.

The modeling, analysis and control of large-scale systems is an

* increasingly important problem in such diverse areas as defense systems,

conmmunication and computer networks and transportation systems. The size and

complexity of many systems make it difficult or impractical to use centralized
control structures. Furthermore, considerations of conmunication costs,
system reliability, computational requirements and response time provide

strong incentives for the use of distributed control architectures. The basic
focus of our research is on a framework within which decentralized controller

structures can be analyzed and developed. The motivation for our proposed

~, approach which we named ADCON (for Adaptive Decentralized CONtrol) comes from

the following observations about the current status of control theory.

An important aspect of centralized control has been the study of systems

with unknown or uncertain (time varying, random) parameters. The

investigation of this problem led to an extensive literature on adaptive
% control (also called: learning or self-organizing systems). The natural

% 4 progression in developing centralized controllers was from the non-adaptive

%; case to the more difficult problems addressed by adaptive techniques.

The study of decentralized control seems so far to be almost exclusively

devoted to non-adaptive techniques. A possible explanation of this state of

affairs is the fact that the area of decentralized control of completely known

systems still has many unresolved issues and some basic problems are yet to be

!~ ansered. Under these conditions, there seemed to be little incentive to
L,l 

anweed

tackle the more complex adaptive case which deals with partially known

systems. However, this line of thinking is based on the experience gained in

centralized control and it may be inapplicable in the context of the

decentralized problem, which has radically different characteristics. In



fact, adaptive techniques have a central role in decentralized control, whichg is of a somewhat different nature than the role they play in the centralized

* problem.

To understand the interrelation between adaptive and decentralized

control, we have to re-examine the basic issues underlying the need for

decentralized control strategies. The main motivation for considering such

strategies arises in the context of complex, large-scale systems where a
* centralized controller usually requires excessive computational requirements

-~ and excessive information gathering networks to make such a controller

feasible. In such a system, it is re,:tonable to assume that the local

controller (i.e., the controller of one subsystem in the large system) has

only partial information about the rest of the system. Even if the structure

of the whole system (i.e., the state equations of all subsystems and their

interactions) can be made available to each local controller, the sheer

.. ~ :. ~ complexity of the problem often limits the usefulness of this information. In
fact, attempting to use too much information may be one of the principal

stumbling blocks of conventional approaches to decentralized control. Most of

U these approaches try to solve the (optimal) centralized problem, and then to
find clever ways of decentralizing the solution. The shortcomings of this

technique and the need for a different point of view are by now widely
recognized.

The basic idea underlying our approach is to assume that from the

subsystem's point of view, the rest of the system is not exactly known. Thus,

" the subsystem is aware of its own structure, but it has only an approximate

knowledge of the rest of the system, for example, in the form of a reduced

~ "I'order model. (Different subsystems will use different models of the "outside
world".) The local controller is then designed on the basis of this partial
information. The modeling uncertainty inherent in this procedure makes it
necessary to consider robust or adaptive control structures. Note that the

a. . ~ uncertainty here is due to the complexity of the system rather than to lack of

knowledge or to random effects, which are the traditional sources of

uncertainty in centralized control. The idea of replacing a complex
tJ deterministic problem by a simple stochastic model is by no means new, and has

been used in a variety of physical problems (e.g., statistical

-. 4 2



thermodynamics).

SThe use of reduced order models and partial information greatly

simplifies the design and implementation of the decentralized controllers. It
raises, however, many difficult questions regarding the conditions under which

such a scheme will lead to satisfactory system behavior. What is needed is a

theory for the control of interconnected subsystems in the presence of model

Iuncertainties. In an earlier report [361 and in some related papers we made a

preliminary study of some of these issues.

An even more difficult set of questions arises with regard to the

operation of adaptive controllers in the presence of uncertainty. Currently

available adaptive control algorithms have been shown to experience severe

difficulties in the presence of unmodeled plant dynamics. We were able to
do derive conditions which guarantee that the adaptive controller will have

specified performance despite plant uncertainty and unmodeled dynamics. These

1 conditions provide guidelines for the analysis and design of robust adaptive

controllers. A combination of results from robust control and adaptive

control theory was used to prove the main theorem. The main theorem was

applied to a number of well-known adaptive structures: the direct adaptive

controller, an adaptive observer, the indirect adaptive controller, and a

general form of the model reference adaptive controller [401. We believe that
pthis work represents a significant advance in the field of adaptive control.

4 .. In the next section we present an input-output approach for analyzing the

* .~ global stability and robustness properties of adaptive controllers to

unmodeled dynamics. The concept of a tuned system is introduced, i.e., the

control system that could be obtained if the plant were known. Comparing the

adaptive system with the tuned system results in the development of a generic
I adaptive error system. Passivity theory is used to derive conditions which

~ guarantee global stability of the error system associated with the adaptive

*...controller, and ensure boundedness of the adaptive gains. Specific bounds are

~ .'*presented for certain significant signals in the control systems. Limitations

of these global results are discussed, particularly the requirement that a

certain operator be strictly positive real (SPR) -- a condition that is

unlikely to hold due to unmodeled dynamics. The work summarized in this

3
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section was performed jointly with Dr. Robert L. Kosut, and will be published
in the IEEE Transactions on Automatic Control.

-~ In section 3 we briefly describe same ongoing research, which will be
-~ reported more fully at the completion of the current project.
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'II. ROBUST ADAPTIVE CONTROL: CONDITIONS FOR GLOBAL STABILITY

1. INTRODUCTION

1.1 Background

The analysis and design of adaptive control systems has been the subject

P of extensive research in the past two decades [il-rio). Adaptive techniques

provide a way of handling plant uncertainty by adjusting the controller
parameters on-line to optimize system performance. An alternative method for
handling uncertainty is ta use a fixed structure controller designed to
provide acceptable performance for a specified range of plant behavior. In

principle, adaptive controllers can provide improved performance compared to
fixed robust controllers, since they are tuned to the uncertain plant.

However, adaptive controllers sometimes exhibit undesirable behavior during

the tuning or adaptation process. For example, unmodeled dynamics can cause a

rapid deterioration in performance and even instability [111,[121. This

problem is not resolved by increasing the order or complexity of the model.

Since the model of any dynamic system, by definition, is not the actual

system, it can therefore be argued that unmodeled dynamics are always present,
ad infinitum.

'a, -The main reason for these difficulties with adaptive controllers seems to

be that robustness to unmodeled dynamics was not considered as a design

criterion in the development of the adaptive control algorithm. The design
objective is global stability of the closed-loop system, e.g., [7), [9] and

various assumptions on the structure of the plant are required to achieve that
objective. In particular, it is necessary to assume that the plant is linear

and time invariant (LTI), that the relative degree of the transfer function is
known as well as the sign of the high frequency gain. Such requirements are

not practical since real plants are often nonlinear and time-varying and can
be accurately represented only by high order (sometimes infinite order [13])
complicated models.

The need for robustness to plant uncertainty is not unique to adaptive

control. The problem of robustness is ubiquitous in control theory and has

been studied in the context of fixed (nonadaptive) control [141-[171. These
studies rely on the input/output properties of systems, e.g., [181,[191. The

5
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predominant reason to examine robustness issues in this way is that the
Scharacterittcs of unmodeled dnmcsuch asuncertain model odr r

easily represented. Lyapunov theory, on the other hand, is not well suited

for this type of uncertainty. Typically, plant uncertainty is characterized

by assuming that the plant belongs to a well defined set. For example, a set

description of an uncertain LTI plant is to define a "ball" in the frequency

domain. The center of the ball is the nominal plant model, and the radius

( defines the model error. This set model description is one type of a more

- .- general set description, referred to as a conic-sector [151. The uncertainty

in the plant induces an uncertainty in the input/output map of the closed-loop

."i ' system which can, again be characterized by a conic sector. Performance
-" ;' requirements for the control system can be translated into statements on the

£ _ conic sector which bounds the closed-loop systems, making it possible to check
-- whether a given design meets specifications, and providing guidelines for

robust controller design.

i " In this study we use the input/output approach to analyze the global

- -4stability and robustness properties of continuous-time adaptive controllers

' I with respect to unmodeled dynamics (although we consider only continuous-time

. algorithms, the input-output formalism can be readily extended to the

,_ .:.;discrete-time case). By global we mean that no specific magnitude constraint

=' (other than boundedness) is placed on any of the external inputs or initial
• conditons. We develop an adaptive error system of a general form, by

"" comparing the actual adaptive system with a tuned system, i.e., the control

' : .. system that could be obtained if the plant were known. This error system is
..similar to the type used in [71,[8] where the tuned system error output is

zero, due to the assumption of perfect modeling. By relaxing this assumption

i.! we show that the non-zero outputs of the error system are the inputs to a

nonlinear feedback error system consisting of the adaptive algorithm and two

"-feedback (interconnection) operators,denoted by H and H. - ev zv "

preoAn important consequence of this structure is that the existence of

solutions (e.g., tuned system performance) is separated from the stabiity

analysis (e.g., stability of the nonlinear error system). In general, the

adaptation law is passive; consequently, if Hev is strictly positive real

(SPR), then applcation of passivity theory [19-[21, provides global



L 2~-stability of the map from the tuned system output to the actual adaptive
system output, even though the adaptive parameters may grow beyond all
bounds. We provide other conditions (e.g., H stable) to insure the

resltsaresumazedi hoesl n B

Lboundedness of the adaptive gains. Similar results are developed to
insure L -stability of the error system by using an exponentially weighted

As byprouctofthe input/output view we also obtain specific bounds
on te Land . nrmsof significant signals in the adaptive system. The
resuts ae smmarzedin Corollary 1.

TheresltsinTheorem 1 and Corollary 1 are not essentially new (see

e~g. [7,[8), lthughthey do provide some extentions to previous

results. The main contribution, however, is the fact that all the results can

be obtained from a generic error system and from the application of nonlinear

.,, stablity theorems based on input-output properties. As a consequence of this

approach, it is to be expected that conditions for robustness will arise in a

natural way. Such robustness results are obtained, but unfortunately,they

C have a limited practical use. The main limitation is that the global theory

(Theorem 1) requires that H ev SPR , which in turn places an upper bound on

thesiz ofth unodeeddynamics in the plant. The details are contained in

Lemmnas 4.1 and 5.2. This bound is quite restrictive and is easily violated by

%A even the most benign model errors, thus, verifying the results obtained in
[11], £12). To over come this limitation, we construct an SPR compensator,

-- ~ based on the scheme proposed in £22] in the context of robust (non-adaptive)
control. Although in the adaptive case the supporing arguments are heuristic,

- an example simulation shows a positive result.
7:

The input/output analysis presented here provides a generic framework

within which it is possible to analyze the robustness of adaptive robust
controllers. We believe that this framework can be used to develop practical

adaptive control algorithms that can be more readily applied to real systems,

than the class of algorithms currently in use.

Since this study merges ideas from several areas, it is necessary to

introduce a number of definitions and concepts.

7
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S2. SOME PRELIMINARIES

2.1 Notation

The input/output formulation of multivariable systems Is the principal

view taken throughout this paper and the notation and terminology used is

-' standard (see e.g. r18],[19]). The input and output signals are assumed to be

imbedded in either the normed function space

1.n Ix [ Rn < (2.1a),,, -. p = x :r , ) l lp

or its extention

L, T < (2.1b)

4"- .- •

SThe respective norms 11'11, and 11-11Tp are defined as follows:

*lxil lim l xIITp (2.2a)

with

T
C

."f j x(t) jPdt) I /  P 1I,=1

- xlTp = (2.2b)
sup Ix(t)l, p =

. c '- t OT]
n n

where 1.1 is the Euclidean norm on Rn. Hence, L-e is an inner product
r2e n

space, with inner product <x,y>T of elements x, y £ Le defined by
"2e

<X,Y>T f x(t)'y(t)dt (2.3)
0

a s x1Tr2 2T) n is an inner-product space
with inner product <x,y> = lim<xy>

T

A.9
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2.2 Stability

Systems considered in this paper are described by input/output equations

of the form y IGu where G:L + L is a causal map from u into y, alsope pe
denoted u + y The system G is said to be LP-stable (or simply stable) if G

maps u e Lm into y . Ln  and If there exists finite constants k and b such
that IIGuIp k 1lul + b , for all T > 0 and all ucLm . The smallest

thtJ~ ?Tp Tp pe
k that can be found is referred to as the Lp-galn (or simply gain) of G,

denoted (G)
4p

Because we often encounter LTI systems it is convenient to introduce the

following notation. Let R(s) and R (s) denote the proper and strictly proper

rational functions, respectively. Let S and S denote functions in R(s) and
-' "0

R 0 (s) , respectively, whose poles all have negative real parts. Thus,

S and S are the stable, lumped, LTI systems. Denote multivariable systems
with transfer function matrices, by R(s) nxm , Snxm  , etc. For example,

G S 5o means that all elements of G belong to So- and so on.
0

If G S nxm then the following Lp-gains are obtained,

ya(G) y(G) = f -[G(t)]dt (2.4)
0

Y2(G) = sup -[G(jw)] (2.5)

where T(A) denotes the maximum singular value of the matrix A, defined as the

positive square root of the maximum eigenvalue of A*A, where * is the

conjugate transpose of A. In (2.4), (2.5) G is the operator, G(jW) the

transfer function matrix, and G(t) is the impulse response matrix.

2.3 Passivity

The following definitions follow those in [191,[211. Let

G:Le Lie and let 1, p be constants with v > 0 . Then, V u L :

C 10

lO2U



G is passive if,

-. < u, G V>T  P (2.6)

G is input strictly passive if,

4 < u, Gu > T > P + ulUT2 (2.7a)

- - G is output strictly passive if,

< u, Gu >T ; p + UiGUIT 2  (2.7b)
i " mxm

-" (v and p are not the same throughout). When G S satisfies (2.7), G is

said to be strictly positive real (SPR), denoted G e SPRm . Because SPR

systems play a crucial role in the proof of stability of adaptive systems, we
introduce the following subsets:

* SPR = {G & S mXml [G(w) + G(-Jw)'] - pl) > 0, VweR} (2.8a)

m 5mxm1mxSPR0 2 {G e 0 JL [G(jw) + G(-iw)] -u •G(-j)'G(jw)) 0, VwcR} (2.8b)

. smxm
where x(A) denotes the smallest etgenvalue of A. Thus, whenever G e S

conditions (2.7) can be tested in the frequency domain. Moreover, SPR o and

SPRm , respectively, separate the strictly proper SPR functions from the

'. proper, but not strictly proper, SPR functions. In the scalar case, the

frequency domain conditions simplify because x[G(jw) + G(-Jw)']-

2 Re[G(jw)].

Certain unstable systems in R(s)mxm can be passive by virtue of (2.6).

" In particular, GeR(s)mx m  is passive if G(s) is positive real. The transfer

function matrix G(s) is positive real if: (I) it has no poles in Re(s) > 0,
(ii) poles on the jw axis are simple with a non-negative residue, and (iii)

for any w £ R not a pole of G(jw) + G(-Jw)' .

R 11 N
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g 2.4 Model Error

The cornerstone of robust control design is a quantifiable bound on the

error between the model used for control design and the actual plant to be

controlled. In the adaptive control case considered here the model is a

parametric model, where the parameters are not known exactly. The structure

"" of the parametric model can be obtained analytically from physical laws, but

this invariably results in a complicated model. Often a simple structure is

. ." selected because it is more convenient for analysis and synthesis.

7. .Let P denote the plant to be controlled. In the broadest sense P is a
relation in Lm  xL , i.e., the set of all possible ordered pairs

-e Lie le
L i and Outputs yL e that could be generatedl' e xle inusu le an £le

by the plant [181. The uncertainty in the plant is denoted by (u,y) e P

et. L :Lm + Ln denote a parametric model of the plant P witha Pe k pe
parameters a e R . The parameters can be selected so as to minimize any

discrepancies between the model and the plant, i.e.,

inf -y- uu.. a,,*
n ly-P UTp Tp (2.9)

, ... czcRk

We will refer to (,e Rk as the tuned model parameters and to P = P, as the

tuned parametric model of the plant. In general, P, is dependent on the

NI input/output sequence.

-. Most of the previous work on adaptive control deals with the case where

for every (u,y) e P there exists a tuned parametric model P*, such that

- P=P. In this paper we consider the presence of unmodeled dynamics, thus,

the uncertain plant P cannot be perfectly modeled by any parametric model

P . Since we will deal exclusively with LTI plants P . R(s)nxm , it is

convenient to describe this model error in the frequency-domain. Let

Bs(r) denote a "ball" in S of radius r, defined by

zS
Bs(r) :{G e S -GlJ.)] nr(.), w R} (2.10)

12
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Let the plant to be controlled be described by

P - (I + A)P. 12.11a)

where P e R(s) nxm is the plant, P. e R(s) nxm is the tuned parametric model,

.1 '- and A €Snxn denotes the unmodeled dynamics. Further, the only knowledge

s available about A is that it is bounded such that

e B(&) (2.11b)

where S(W) is known for all frequencies. In other words, while the operator

]" A Is not precisely known, we do know a bound on its effect. This model

description (2.2) is used throughout the paper to precisely define the plant

to be controlled in an adaptive system. Following Doyle and Stein [16] we

will refer to (2.11b) as an unstructred uncertainty. Note that although a is

stable, P and P* need not be stable. Hence, the parametric model is

implicitly required to capture all unstable poles of the plant. Although this

is not severly restrictive - at least on practical grounds - nonetheless, it

can be eliminated by definng model error as (stable) deviations in (stable)

coprime factors of the plant [231. As the subsequent analysis is not

substantially effected by this choice, we will remain with (2.11) for purposes

of illustration.

.2.5 Persistent Excitation

SFrom [31), a regulated function F(.) = R Rnxm is persistently

exciting, denoted F e PE , if there exists finite positive constants

', '29 and a3 such that

M2 1 n f F(t)F(t)'dt ) c1 1 V s e R (2.12)* .; s n +9 2.2

The usefulness of a persistently exciting signal is in establishing the

, exponential stability of the following differential equation which arises in

* Li many adaptive and identification schemes, i.e.,

13
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-.-. Vr r r .C .

"c - -BFHF'x + w x(O) R n  (2.13)

',It is shown in [31] that if B R S'- > 0 ,H e SPR 0or SPR+ , and

F PE then (w, x(O)j-* x is exponentially stable, i.e., a m, x > 0 such

that

Ut
i-- Ix(t)l met jx(O)l + f me"Mt-r) Iw(r)d- * (2.14)

0

.- We will utilize this latter result in section IV in our proof of stablity of

the adaptive system.

F
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3. ADAPTIVE ERROR MODEL

In this section we develop a generic adaptive error model which will be

, used in the subsequent analysis. This requires defining the notions of robust

"- control and tuned control.

0
Robust and Tuned Control

Consider, for example, the model reference adaptive control (MRAC)

depicted in Figure 3.1, consisting of the uncertain plant P, a reference model

Hr, and an adaptive controller C(e) , where a is the adaptive gain vector, r

is a reference input, d is a disturbance process, and n is sensor noise.

Denote by H(;) the closed-loop system relating the external inputs w = (r',

d', n')' to the output error e, as depicted in Figure 3.2.. Also, let w e W

denote the admissable class of input signals.

The objective of the adaptive controller is twofold: (1) adjust e to a

constant e. e Rk such that H(8.) has desireable properties; and (2) during

adaptation, as 5 is adjusted, the error is well behaved. In the usual

formulations [7] only (1) is considered and further it is assumed that there
." Rk

* exists a matched gain, denoted by " € R, such that

* H(T) = 0 (3.1)

The presence of uncertain unmodeled dynamics in the plant eliminate the chance

of satisfying the matching condition. Thus, it is more appropriate to define
, Rk

a tuned gain, denoted by e. e , corresponding to each (u,y,w) e P x W

such that

H(8*)w 4 H(e)w V 9 e Rk (3.2)

The error signal e. := H(e.)w is referred to as the tuned error. Note that
each (u,y,w) e P x W engenders a possibly different e . Also, it is

important to distinguish the tuned gain e. , from the robust gain 8o Rk
where

sup H(eo )w , sup H(a)w V 8 e R (3.3)
P x W P x W

*2 15
* ~' %~. ~jw ~ .4.-U- 4..-...-- -2":. .,



rr

d e

-a+

r +

Figure 3.1 A Model Reference Adaptive Controller

16



H~e) e

Figure 3.2 Closed-Loop System

4' p.17



wr 1C. W% i% W. -.. W .

iJ

-. The error signal e: H(e )w is referred to as the robust error. It follows

from these definitions that the tuned error is always smaller in norm than the
.-. robust error, thus V w W,

-'.)

e. = H(8.)w e°  = Heo)W (3.4)

, The tuned controller is, unfortunately, unrealizable since it requires prior

.. ,- knowledge of the actual system H(e) (or equivalently, the plant P) and the

input w. A practical adaptive controller is likely to have a larger error

norm.

Structure of the Adaptive Control

In summary, we consider the multivariable adaptive system, shown in

Figure 3.2, and described by

e = H(;)w . (3.5)

where e(t) R m is the error signal to be controlled, w(t) is the
+ Rk

external input restricted to some set W, and ;(t) e R is the adaptive

gain. The class of adaptive controllers considered here are such that the
k

adaptive gains multiply elements of internal signals z(t) R , referred to

as the regressor, to produce the adaptive control signals,

fi =81 z ' i C [1,m] (3.6)_ •i °Z

where e and zi are ki-dimensional subsets of the elements in e and z,

respectively. Thus,

m
k= k (3.7)

i-1

Define the adaptive gain error,

8 (t) :=e(t) - 6, (3.8)

Rk
where 6 R is the tuned gain (3.4). Also, define the adaptive control

error signals,

*' 18
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. vi : z , i = 1, ... , m (3.9)

'" -An equivalent expression is,

v = z'o (3.0a)
'e4

where the time-varying matrix Z is defined by

Z x block diag(zl, z2 , . .. , Zm) (3.10b)

To describe the relations among the signals e, z, v, and w we introduce

.i "the interconnection system Hi: (w,v) * (e,z) , as shown in Figure 3.3. In

particular, let H R(s) , and where HI is defined by,

e1 : HI  := (3.11)

I ;"H -H V
. Z ZW zv

In effect, this structure serves to isolate the adaptive control error v, from
the rest of the system. When the adpative control is tuned, 9 = 0 and v = 0;

. .'consequently, the tuned error signal (3.4) is,

e. :- H(e*w = H w (3.12)', ew

We can also define a tuned regressor siqnal,

z : H w (3.13)

In general, all the subsystems in HI are dependent on the tuned gains o. •

The interconnection system can also be written as,

19C.
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we e-HevY (3.14a)

z z. - Hz v (3.14b)

with v given by (3.10). To complete the error model requires describing the

adaptative algorithm, i.e., the means by which e(t) is qenerated. We will

consider two typical algorithms. A constant gain (gradient) algorithm [7):

e a r Z e (3.15)

where r £ Rkxk, r = r' > 0 , and a similar but nonlinear gain algorithm:

e = r(Ze - p(e)e) (3.16a)

- .. where R : R+ is a retardation function, whose purpose is to prevent

e from growing too quickly in certain situations. Although many functions

will suffice we will select the one proposed in [24), namely:

{ ([Iel/c - i8/ , 1I9 > c := maxioe(
'44 ., 4

- p(e) :ai (3.16b

- The complete adaptive error system, is shown in Figure 3.4. Note that

-, the error system is composed of two subsystems: a linear subsystem rL and a

* non-linear subsystem EN
SN

.% "..

. .%4
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4. CONDITIONS FOR GLOBAL STABILITY

The theorems stated below give conditions for which the adaptive error

V.- system (Fig. 3.4) is guaranteed to have certain stability and performance

properties. Proofs are given in Appendix A. Heuristically, however, the

basis for the proofs is application of the Passivity Theorem ([191, pg. 182).

It turns out that the map e + v is passive. Thus, if H is SPRm , then-'--+ev

the map e* + (e,v) is L2-stable even though z and/or a can grow without

bounds. Further restrictions, provided below, cause a and z to be bounded.

"; ' (We use the notation "x - 0 (exp.)" to mean that x(t) + 0 (exponentially) as

Theorem A: Global Stability

For the adaptive error system shown in Figure 3.4, assume that:

(Al) The system is well-posed in the sense that all

inputs w e W produce signals e.v,z, e , and

Sf in L
.e

(4.la)

) Hzv Skxm (4.1b)

" (A3) Hey £ SPRm (4.1c)

Under these conditions:

~m m L

(i) If (e., e.) e L2 n L e.--'O) and (z,, L) then with

algorithm (3.15) or (3.16):

k. kok

(i-a) (,e) €L , e L knL , and --0. (4.a)

S(i-b) e LmLm; e m, and e-e. -Io 0.V+ (i )2 ama 
(4.2b)

O (i-c) v £L n Lm L ' 0 , and v -0 . (4.2c)

23
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(i-d) (z.) £ L! (z-z., n L and z-z.-- O exp.

(4. 2d)

(i-e) If, in addition, e. = 0 (matched) and z. € PE then
.' (8 , e e-e ., v, z-Z .) - so, 0 exp.

(4.2e)

m k(ii) If (e., e.)cLm and (z., ) L , then with algorithm (3.15):

-. (i-a) z eL (4.3)

(il-b) With the addition of either algorithm (3.16) or z e PE it follows

that the elements of e , e, v, , and i are in L •
- A.(4.4)

•.. . 5*

Theorem IB: Global Stability

Replace (A3) in Theorem 1 by

,5-' (A3)' Hey e SPRO (4.5)

mm
. 2 (ib LCO m € e-e.eO(.b

alortmL3.5 or4(3.16
(i-a) (e - C , LkflL. k w (4.6a)

5'(i-b) e fLm Lm ,e Lm ,e -e*-*.0 (4.6b)

(i-c) (v, ) e (4.6c)

(i-d) , (z-z., z-z.) £ L n L

and z-z.--1O . (4.6d)
iiJ

t (i-e) If, in addition, e. * 0 (matched) and z.¢ PE

then (9, v)- 0 exp. (4.6e)

dr 24
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1it) If (e., ) € Lm and (z., ) Lk then with algorithm (3.15):

(11-a) z e c (4.7d)

(ii-b) With the addition of either zcPE or algorithm (3.16), the
w,.. elements of e, , e, e, v, v , and i are in L.

(4.7b)

, Corollary 1: Performance Bounds

., Suppose z. and e. satisfy the conditions in (i) of Theroems 1A or 1B.

(i) Let Hev € SPR m  i.e., : 3 , y > 0 such that VweR

7 [Hev(J)] y and {Hev(jw) + He (-j=)' ] > j Im  (4.8a)

Then, bounds on met 2 and isn can be obtained from:

I ' ['e.m2 + 2 + 2u e(O)' r-l (O)) (48b)

me'r'ei. 4 e(O)' r-'9(0) + 21em2 ue-e*' 2 /Y (4.8c)

(ii) Let Hey e SPRO , i.e., 3 , q. k > 0 such that V w e R ,

*4 Hev(Jw) +Hev(-Jw)'] >u Hev(-jw)' Hey (W) (4.9a)

*Gev(jw) + Gev( "jw)'] > k Im (4.9b)

G (s) := (1 + qs) H (s) (4.9c)ev ev

Then, bounds on le 2m and tet can be obtained from:

+ ere2 4 -2 e*+qe*m + (=e+~ + 2k velO)'r' 9(O)) (4.9d

25
e... .e*i2  (4.9c)

+ m~e'r- ai. 4 elOl'r'l8(o) + T e.+Q;.32oe' 2 (49),,

-'25
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:.? .. 1) Theorems 1A and 1B give conditions under which the adaptive error

-;'- .?system is globally stable. Essentially, conditions are imposed on the

.

.".

-".'. interconnection subsystems in HI  In particular, He SPRm and

H €S k x  are direct requirements, whereas the restrictions on the tuned

""signals e, and z, . indirectly impose requirements on H ew and H zw . These
'i {' latter requirements are dependent on knowledge about w e W . For example, if

w is a constant, then the assumption that e, + 0 (Theorem 1A-i) requires

1 that the tuned feedback system is a Type-I robust servomechanism, i.e., the

,,transfer junction H )(0) 0 for all (u,y) e P•
,°w

, '. "Z,(2) Corollary 1 gives explicit bounds on signals in the error system.
di These bounds can be used to evaluate the adaptive system design. Moreover,

-.... ,.the bounds allow a coarse determination as to the efficacy of adaptive control
".vs. robust control. By comparing, for example, the adaptive error lei 2 from

.

(4.8) with the robust error Ueo 2 from (1.5), it is possible to obtain a

. . quantifiable measure of performance degradation during adaptation.

(3) Although Theorems 1A and 1B are essentially the same, there are

slight difference worth noting. These differences arise because in tA,

eSPRm Hne sy) is proper but not strictly proper, whereas in 1
ev +

• '-HeveSPRO= Hev (s) is strictly proper. Thus, comparing part (i) in 1A and

1B, we see that in rB, v, L m whereas in rA, v is additonally in
L anm and v-T-

.4-.

ta4n The use of persistent excitation or gain retardation is seen in part

(ii) of theorems A and 18 to provide the means to guaranty bounded signals.

Other schemes based on signal normalizations or dead-zones can provide similar
results, e.g. [32 B,[33i. The effect of these conditions is to rovde an

" L -stability which is not present otherwise. The persistent excitation

condition actually supplies exponential stability, which is stronger than

L -stablty, as provided, for example, by the gain retardation (see proof in

Appendix A).

4..

ev.1) T hey(e)sistriexcty pre. huse compin g p t () ilA and s(

,' ev

, '.;',,'',. 18'w;, we ee,"a in,,..",,1..%, v,' ,. .-. ,.. .,. whe ea in. ,. lA.,.., v,. i , adi..ton l in,".',",-}"-", - ,.- . - :.
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4.

are different. In parts (M), z*cPE , whereas in parts (ii), zePE . The

I different assumptions arise because in parts () we enforce the matched

condition e.=O . Hence, z.cPE -> zzPE . This follows from (i-d) where

z - z . 0 expoentially. Also, with e. = 0 , a bounded disturbance added to

the reference can cause z e PE without forcing, e. * L . In parts (ii),
which is more realistic, we disallow the matched condition, and hence,

e. e L.. Thus, z e PE is the weakest assumption to make. However, since z

4- .is inside the adaptive loop, it is very different to guarantee z £ PE by

injecting external signals. Note also (in both parts(ii)) that without

retardation or PE it is oossible for the regressor to remain bounded even

' though the adaptive parameters may grow unbounded. Similar results have been

reported elsewhere, e.g. [24].

Robustness to Unmodeled Dynamics

Since the theorems impose requriements on the input/output properties of
4. the interconnection system, it follows that the effect of model error on these

properties determines the stability robustness of the adaptive system. For

m
- example, both theorems require that Hey e SPR m . Suppose, however, that

H has the form,- *, ev

'H ev (1 + R -v'e (4.10)
Hey ev)Hev

where is the projection onto H of the plant uncertainy operator A
ev ev

A and H is the nominal transfer function when there is no uncertainty, i.e.,
ev

- ' ~:when A = 0 . Thus, H is a function of the tuned parametric model P, and
-: ev

the tuned controller gains e*. (See Section V for more specific formulae,
M = e.g. (5.5).)

.e'g

" -€ :.. Conditions to insure that Hey SPR m despite uncertainty in Hey is

provided by the following:

' .! Lemma 4.1: Let Hey be given by (4.3). Then Hey £ SPR m if the following

conditions hold:

1M1 H £SPRm  (4.11a)
ev +

2 27
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1(t) i~evC Bs(k) where V w e R , (4.11b)

1-
"". k(w) < [eVOW) + Hev-)(4.1evJ( 1c)

Proof: Define P(.): Cmxm R by

1 *, _ (A) = x(A+A )

where * denotes conjugate transpose. Then, using definition (2.8) with (4.10)

- (4.11) we obtain

:i,: i _He(j.)] =1 W(J) + R (jw)Hev(JW)
ev ev ev

"> ulHev(JW)J a 1Iev (Jw)]°[ev(J')l > 0

Hnece, Heyc SPRm

Comments

.. (1) In order to apply Lemma 4.1 it is necessary to have a detailed

description of how the plant uncertainty a propagates onto the

4' interconnection uncertainty Rev . This type of uncertainty propagation was

3 Cexplored in depth by Safonov [25] and more sophisticated expressions then

(4.4b) are available to describe the uncertain operator 1 ev Section 5

, contains more detail on this issue.

(2) In the scalar case (4.11c) becomes

4- k(w) < Re( ev(jw)]/I'ev(jw)l
= cos (4.12)

Since 1v £ SPRm by assumption, k(w) is always positive for w e R ; but
ev

because of the cosine function, k(w) 4 1 . In Section 6 we show that this

limitation on the effect of model error is easily violated by even the most

S.benign type of unmodeled dynamics in the plant. Methods which overcome this

28



limitation are discussed in Section 7. The requirement that k(w) r 1 also

holds for any multivariable v € SPRm . To see this let RW have the oolar
ev ev

decompositi on,

H -GW =W G (4.13)
ev zev ev r

where G , Gr are Hermitian and Wev is unitary. Since

(H ) -(G ) -aG ) , it follows that

k(w) a[W ev(JW)] 1 (4.14)

In the case of scalar systems, the condition k(w) < 1 can be interpreted in

* terms of a limitation on relative degree of Hey (s) . A necessary condition
for H e SPR is that the relative degree of H (s) does not exceed one

ev ev
,• i.e., phase limited to *900. Rohrs, et al. [12] show that this necessitates

precise knowledge of plant order, and hence, is not a feasible requirement in

the presence of an unstructured uncertainty (2.12), where the order is

unknown. In the multivariable case it is awkward to talk about relative

degree or phase, however, (4.14) expresses the same limitation.

(3) In several instances, e.g., [91,[261,[27], it has been reported that

the SPR condition has been eliminated. In each case, however, it can be

verified that the operator Hey - positive constant , which is SPR. But,

these studies do not account for unmodeled dynamics, thus, in the notation of

(4.10), only WT = positive constant . Lemma 4.1 then provides the means to
ev

evaluate the effect of unmodeled dynamic.

%
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5. APPLICATION TO MODEL REFERENCE ADAPTIVE CONTROL

Consider the model reference adaptive control (MRAC) system, shown in

Figure 5.1, consisting of: an uncertain scalar plant P £ RO(s) ;a

reference model H e S0 ; and filters with F e S .41 The plant isr 00
0 affected by a disturbance d and a reference command r. The system eouations

are:

e = y Yr (5.la)

rp

SYr Hr r (5.1b)

y = d + Pu (5.1c)

u = - -(;izl + ;z 2 ) (5.ld)

z= F u, z = F(y-r) (5.1e)1 2
, Assume that the adaptive law is given by (3.15), thus,

e = r z e (5.1f)

Let the plant uncertainty be described by(2.12), i.e.,

P-P*_e :..T..8% (5.1g)

where P, Ro(s) is a tuned parametric model for P. Let the filter dynamics
0

be given by

I s st-"3 F~) = 'L-('s ' "' )'(5.1h) :

where L(s) is a stable monic polynomial of degree .. Thus,

"t), (t) e R and so g(t) e R2L. Using the definition of tuned gain

(3.2) we get,

30
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u - - -(.+e)'z
""= -(e~Z 1 + e,2z2) - v , v := e 'z from (3.6)

S. A A,2
- U + (r-y) v

Finally,

-'" '~ A/iiS1 v C(r-y) 1 v (5.2)
... I+A. I/L' (r I +A.I/L7 I+A. 1 /L

where A* and A.2 are polynomials, each of degree Z-1 , whose coefficients are

the elements of the tuned gains a*, and 9*2 , respectively; and C* denotes

the tuned controller. The tuned system ( e=O ) is shown in Figure 5.2.

In terms of the uncertain plant P, the adaptive error system (Fig. 3.4)

corresponding to this MRAC system, has tuned signals:

e. = (1 + PC*)l'd + [(l+PC.)'Ipc*-Hr r (5.3a)

(1+PC*)-lC*( r'd
Z. = (5.3b)

F( +PC.)'1(d-r)

and interconnections:

Hey = (1+PC.)' 1(I+A.I/L) "  (5.3c)

"" ] , ~~F( I+PC.)'IIAIL)-

H = J (5.3d)

The error system can also be described so as to highlight the model error

4.' . . The following definitions are convenient:

T: (1+P.C.)'IPC. := - S (5.4a)

32
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Hey IAO (1+P*C*) 4lP*(1+A*1/L)-1 (5.4b)

I Thus, the error system (5.3) can be also be expressed as:

e = S.(I+AT.)'d + (T*(I+A)(I+T*)--Hr )r (5.5a)

F S*C*p1+&T*)-lr-d)
z L )5..5b)

F S,(l+AT,)- (d-r)

Hey K,(I+A)(l+AT,*)' (5.5c)

F K*PI(1+aT*

HZ= (5.5d).. ,/ -. zv
* F K(I+A)(l+AT)-

The result that follows in Lemma 5.1 gives conditions under which

H £ SPR and H e S2xxl . despite model error; thus conditions (Al)-(A3)
ev 0 zv o

* of Theorems 1A and 28 are satisfied. Additional requirements are necessary to

establish the class of tuned signals e* and z* as given by (5.5a) and (5.5b),
respectively. These requirements are discussed following Lemma 5.1.

- Lemma 5.1: For the adaptive system (5.3) or (5.5) H e SPR andev o

H S2zxl if the following conditions are all satisfied:
zv 0 no

g(s n-+ 01sn2 ... + On-l)  gN, ls) (5.6a)
( P(S) ., ln sn-i (..6a

(ii) 1 N(s) is a stable monic polynomial (5.6b)

(iii) g > 0 (5.6c)

g K1(s)
(iv) K(S) K2 (S) here K (s) and K2(s) are monic stable

%34
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* pol ynomi al s.

(5.6d)

*(v) .= deg L(s) n + deg Kl(s) - I (5.6e)

(vi) a e BS(a) is such that

.-t (w) < '(w) :W n(w)[nlW)IT*(Jw)1 + IS*(jw)] " R
.',,,n(w) :=cos [K,(jw)]

-. -- (5.6f)

. I-

Proof: See Appendix B.

Discussion

(1) Condition (i)-(v) of Lemma 5.1 are restatements of known results,

but normally they apply to the actual plant P, e.g. [7]. In Lemma 5.1,

however, these conditions apply to the parametric model P* -- not to the

actual plant. As such, they are easier to satisfy, since the parametric model

is somewhat arbitrary. This flexibility is penalized by an increase in model

error. For example, if the actual plant has a relative degree of 2, then

choosing a parametric model of relative degree 1 -- as required by condition

M(I -- incrases the high frequency model error.

(2) Condition (vi) imposes an upper bound T on the model error

associated with the chosen parametric model. This condition simultaneously

insures that H ev e SPR0 despite model error, and that the tuned system is

stable (see proof in Appendix B).

" (3) It is easily verified that T(w) 4 1 , as was discussed following

Lemma 4.1. In fact, even the "optimally tight" bound (see [25] for details on

this calculation) given by,

T 1 [-1-TI + (I1+TI2 + 4n Re(KT/IKI) 12(5.7)

td is also restricted to be less than 1. This limitation severely restricts the

% type of admissable model error. This issue is pursued in Section 6.
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-. (4) To guarantee global stability using the adaptive law (5.1f),

Si property Mi of Theorem 1 requires that e* + 0 and z*, 1* e LU2 for all r
and d Forexample, let r and d be any bounded signals such that

r + constant and d + constant as t + Property (i) of Theorem 1 is

satisfied if:

S(0) 0 (5. 8a)

T,(0) = H (0) 1 (5.8b)
r

Zero model error at DC (5.8a) is certainly to be expected from even the most

crude tuned parametric model.

(5) Let r be bounded such that r + constant as t + ,but let d be

just bounded, i.e., d e L .In this case it is not possible to guarantee

e* + 0 , but we can guarantee that e, e L. . To obtain global stability in

this case, requires the introduction of the retardation term (3.16) into the

* adaptive law (5.1f), see part (ii) of Theorems 1A or 18.

(6) It is possible to obtain versions of Lemma 5.1 for adaptive systems

of different forms, e.g., indirect adaptive [5]. Also, the use of
"multipliers", e.g. [4], can be accounted for as well. The multiplier

-. .effectively makes use of the availability of a as a signal; and this allows

rel deg (P*) =2 rather than 1 as required by condition MI of Lemmna 5.1.

~3



6. LIMITATIONS IMPOSED BY THE SPR CONDITION

The fact that the model error bound given in condition (vi) of Lemma 5.1

can not exceed one has unfortunate consequences.

Example 1

Consider a plant with transfer function,

P(s) = P"(s) ab (6.1)
= (s+a M5+b)

where P* is the parametirc model, with two unmodeled stable poles at -a and

- "-b. Supposealso, that b is much greater than a, and that a is much greater

*w than the bandwidth of P,(s) . This situation seems benign -- and most likely

a certainty. Comparing (6.1) with (5.1g) gives,

i61 ,2+ (a+b)' 1/2

2222 ) i(W +a2)(W +b )

for all frequencies w > (ab/2) I/2 , thus, condition (vi) of Lemma 5.1 is

violated, and global stability cannot be guaranteed. The following example

. illustrates this point.

Example 2

Consider the example MRAC system (Fig. 5.1) studied by Rohrs et al. [121,

where:

P-s) 2 229. j .".P(s) = +l S)2
(s+15) + 4

W j% 3

HR(s) -s+

u - 1y +82 r

J..
- 37
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81 -ye, e1 (0) - .65

82  =-r e, e - 1.14

Let r = constant and d 0 0. Thus, e. .0 exponentially when the tuned gains

are such that (5.8) is satisfied, i.e.,

T~0 29*2=H()=T(O) 1+29*1 Hr'(O )  I

Even though (a. , e*.) exist to satisfy this, H (s) is not SPR, and so
*1' *2ev

global stability is not guaranteed. Simulation runs with r = .4 and r = 4.0

are shown in Figures 6.1 and 6.2, respectively. With the small input (Fig.

6.1) we see a stable response which tracks the reference very well. With the

large input (Fig. 6.2) the response is still stable, but large oscillations

are taking place. Larger inputs will eventually drive the system unstable,

e.g. [12].

In this example, if the tuned model is taken to be P.(s) = l/(s+l) then

it is easily verified that model error 6(w) is greater than one at some

frequency.

d

8,
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7. SPR COMPENSATION

In this section we heuristically develop a means to obtain global robust
.% .V?

adaptive control. Since the SPR condition is violated whenever model error

exceeds one, a natural scheme is to construct an SPR compensator which

alleivates the problems by "filtering" the plant output; thus, avoiding the

trouble. However, direct filtering does not change the size of model error.

. ?For example, with the plant p a (1+A)P* , let Yw denote the output of the
filtered plant, where

"- "Yw :- Wy = Wd + (1+A)WP~u (7.1)

V, Thus, model error is uneffected. Even filtering H directly by W offers no
ev

*help, since the bound (4.4c) is still less than one, i.e.,

(7.2

IHevl I Re(W ITev)/IW R*ev ( 1 (7.2)

-'. for any stable W. What we seek is an SPR compensator which only effects the

unmodeled dynamics, but leaves the paramtric model intact.

A compensation scheme, which offers some promise as an SPR compensator,

is that proposed in [22], as shown in Figure 7.1. To see the desired result

suppose that P = (l+A)Pm with A e BS(6) . Then, the compensator is

equivalent to a plant which maps (u,d) into y where

Yc Wd + Pcu (7.2a)

P -PA c m E B (Wd) (7.2b)
m

Thus, whenver 6(w) > I , select W(s) such that IW(jw)j6(w) < 1 • The filter

W acts like a "frequency switch" whose function is to insure condition (vi) of

Lemma 5.1.

S. -. There are two ways to implement this compensator in an adaptive system.

The first way is to use a fixed model of the plant for Pm, i.e., Pm=
The second way is to replace P with an adaptive observer, i.e., p = p

m 1

,41
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In either case, to obtain the benefit of the SPR compensator, the signal to be

controlled is the compensator output yc , not the plant output y. Both of

these compensators will now be examined.

Fixed SPR Compensator

Let Pm = P , a fixed model, and let the actual plant be given by (2.17),

P (1+&)P. with a BS (s) . Then the fixed compensator plant equivalent

model error (7.2b) is:

PcP (7.3a)

c S

where

61(w) IW(Jw)Id(w) + 11 W(J) l-P(J) (7.3b)

This scheme is motivated by the fact that at low freouencies the tuned

9) .parametric model P. is close to P; thus 6 is small and W - 1 . At high

m frequencies S is large but (W- P*)/P, is small, W - 0 and so s1 is

small. Of course the compensator is limited if there is large model error at

intermediate frequencies.

Example 2

Example 1 is modified to include a fixed SPR compsnator with W(s) =

1/(s+l) and 7is) - 2/(s+l) . Simulation results with the large step command

(r=4) are shown in Figure 7.2. Comparing these to Figure 6.2, without

compensation, it is readily verified that the instability tendencies are

eliminated. Also, direct calculations reveal that H £ SPR , thus global

. ,.stability is insured.

. - Adaptive SPR Compensation

An adaptive SPR compensator, together with the adaptive controller, is

S. .shown in Figure 7.3. The adaptive controller is described by,

43
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FA

u a -e 'zc , (Fcu F(Yc-r)) (7.4a)

a rc zc ec ec=YcYr (7.4b)

F'1/) :"" nc-iFc (1/L(S),...,s /L(s)) , nc = deg Lc(S) (7.4c)

and the adaptive observer is described by,

y = z , = (F; u. -F; y) (7.4d)

I A

80 =roze0  , e = y -y (7.4d)

-1
F;(s) = (P/Lo(s), ... , s /Ao(s)) , no = deg Lo(s) (7.4f)

where Lo(s) and L (s) are both monic and stable. To generate the error

system interconnection operators associated with this system, let c and

8*o denote the tuned parameters with respective gain errors, ec and e° ; and
let v := e'z and v := e'z be the corresponding adaptive control errors

C c c 0 00c (3.6). By analogy with the procedure used in Section 5 we get,

u =C*(r-Y) - 1+A*1/L c v c(75

_ B*I B
y = d + (1 - -L a)P*u + vo  (7.6)

0 0

where

A*2/Lc

B. 2/L0  gN('* '"*2 (7.8)

and where (A.I, A*2 ) are polynomials whose coefficients are the parameters in

e*c; (B.,B. ) are polynomials whose coefficients are the parameters in

... ;and N., P* and g are as defined by (5.6a). The adaptive error model is
given below in terms of T., S., and K. as defined in (5.4). In additon,
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def ine:

IR :1 +(w-1) r_(.)
0

The tuned signals are:

e = S*(l+A&RT*)V R d + (T*(1+&R)(l+&RT*)V -Hr~ 7l

e~ * 1(1+aRT*) ld + D*L T*,(1+ART*) lr (7.10b)

F L:2L-1P1'K*i1+&RT*) '(r-Rdfl(.lc

FS*(l+aRT*)- (Rd-r)J

-1 - -1

z*o FTL::7 R2Z:1:;d&-T2+:;r (7.10d)

The interconnections are:

H~ L: *D*L 1 a(l+&RT X1 1sN1-W)T*D*L-l (1+aRT*) X1(.1a

Fc;K(1ATY F c P'K*(l1W)(l+ART*)-

H~ ~ rFK(l+aR)(1+&RT*)- -1 - (l-W )(+&RT*) -1

46
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-- 1

The factor (1+&RT.) appears in all the terms above. The. transfer

function R (7.9) reduces the effect of unmodeled dynamics; however not exactly

by the amount anticipated, vis a vis (7.2). This is due to additonal model

error introduced by the adaptive observer. Nonetheless, the model error

4 -, attenuation Is greater than with the fixed SPR compensator. In particular, at

- low frequencies a - 0 and at high frequencies R 0 , since

W - 0 and D.Lo - 1 . Without further testing of H (7.11a) it is not
0ev

.- possible to state that H c SPR at intermediate frequencies. Note,
ev 0

however, that the nominal value of H is:," ev,.4

"- -(I-W)S.

Tev = (7.12)

*. I

iL

" "which is SPR o provided that K. e SPR and

Re K*(jiw) > i-Wj))S(jw) R (7.13)

Applying (4.11) to (7.11a), a tedious procedure, would give an upper bound on

.. / model error to insure H £ SPR oev.47
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8. CONCLUSIONS

4, This study has presented an input/output view of multivariable adaptive

* control for uncertain linear time invariant plants. The essence of the

results are captured in Theorems 1A and 28 which provide conditions that

guarantee global stability. Corollary 1 also give specific L 2 and L. bounds
on significant signals in the adaptive control system. These bounds, for

example, can be used to guarantee that the adaptive system performs as well as

a robust (non-adaptive) system using the same structure, but with fixed

gains. By distinguishing between a tuned system and a robust system, we

* establish formulae which can be used to restrict the minimum performance
* improvement possible with the same control structure.

Although the stability results (Theorem 1A, 1B) are not entirely new (see

e.g., [71,[81), the input/output setting provides the means to directly

* *~ determine the system robustness Droperties with respect to model error. The

type of model error examined can arise from a variety of causes, such as

unmodeled dynamics and reduced order modeling. It is very difficult to treat

this type of "unstructured" dynamic model error by using Lyapunov theory,

since the system order may not be known -- in fact, it may be infinite.

.*Although infinite dimensional (distributed) systems were not considered here,

* Theorem 1 can be modified to include them, e.g., [261.

The structure of Theorems 1A and 1B require that a particular subsystem

operator, denoted He is strictly positive real (SPR). This requirement is
not unique to this presentation - passivity requirements, in one form or

another, dominate proofs of global stability for practically all adaptive

control systems, including recursive identification algorithms.

Unfortunately, although H e SPR is robust to model error (Lenmma 4.1), the
bound on the model error is too small to be of practical use. Even the most

benign neglected dynamics violate the bound.

Although this study is concerned with continuous-time systems, the 1
*theorems carry over virtually intact to discrete-time systems. This is a

direct consequence of the portable nature of the input/output view. However,

there is an important issue unique to discrete-time systems: plant

49



uncertainty is critical to where performance is actually measured, which is in

S continuous-time, not at the sampled-data points. As a consequence, it may be

necessary to map the discrete portions of the adaptive system (most likely the

1. controller) into continuous-time, i.e., the L2-gains of the discrete-time

'. operators in the interconnection map, which are associated with the adaptive

discrete-time controller, would be needed rather the discrete-time z,2-gains

Another area worth pursuing is the adaptive control of non-linear

plants. The plant uncertainty description (2.11) does not exclude non-linear

plants. Note that slowly drifting parameters in an otherwise perfectly known

LTI plant could yield the same uncertainty description as a non-linear plant

- approximated by a parametric LTI model. All th'at is required is that there

exists a (possibly) infinite dimensional LTI system which matches the

input/output bet n-~'f the plant for each possible input/output pair. Of

course, if the iear, then the tuned control is likely to
be non-ier whc as ' interesting issues for further research.

One final remark: the stability results presented here, as well as other

Eknown results, provide global stability. This is achieved by requiring

-H ev SPR , a condition which is difficult to maintain in normal

circumstances. On the other hand, this is a sufficient conditon; violation of

which does not necessarily lead to instability. The simple example presented

here in Figure 6.1-6.2, illustrates the point. Other examples of this

phenomena abound, e.g., [12). It would appear then, that a more valid
approach to providing a system-theoretic setting for adaptive control is to

k develop local stability conditions, which, hopefully, do not require that

H ev SPR .Preliminary results on local stability supoort this hope, e.g.,

£33), £34].
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III. WORK IN PROGRESS

l The AOCON concept involves many different issues, as can be seen from the

earlier discussion and from [36]-[381. So far we have addressed the problem

of designing a controller for a single subsystem, when the rest of the system

is fixed. This represents only one step in an iterative procedure in which

Ueach subsystem performs its own controller design. We are currently

investigating extensions of the theory of robust control and adaptive control

-. to the case of interconnected subsystems, in which local controllers are

"- -designed sequentially (iteratively) or simultaneously. A number of different

information structures are being considered. It seems that by providing each

- subsystem with structural information in addition to an aggregate (reduced

order) model of the rest of the systems, it is possible to obtain simpler

- design schemes.

We are also investigating the application of lattice structures to the

adaptive control problem. Our earlier work in this area seemed to have

. generated a considerable amount of interest (cf. [41]-[46]). This class of

* algorithms is especially well suited for large scale problems of the type

considered in this project.

.. ,

-A
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p.' APPENDIX A

PROOF OF THEOREMS 1 AND 2

Prel imi nari es

'- The main ingredient in the proof is to show stability by means of

passivity. Although there are many variations on this theme, a general result

is given by the following.
7-

-' Theorem A.1 1211, [351

Consider the feedback system of Figure A.1 below with causal operators

G1 and G2 .

i

2U

2 U e2

Figure A.1 Feedback System

Suppose there exists real constants ei ' 6ts i i=1,2 such that

<xGiX>t > IZX 2 + 2G xm + I' Vt 0, V x L [0,t] (A.1)

for 1-1,2. Then the following holds V t ) 0,

-(e2 61  t2 + (ei+62 )my2 a2 yl lt2(ul1I.2 + 21c 2 1.au2at2)

2+ 1y2t2 (lu2lt 2 + 2k11.mUimt 2 ) + Icl1 .luza t I21 *=u2't2

'-I + I11 + I(A.2

A-I

74



Proofs of both theorems also rely on well known results for systems

SH nxm . The results required here are summarized in the following.
0

Theorem A-2 [see [193, Thn. 9, pg. 59]

Let H Snxm ; then:
0

(1) If u c L , then y Hu e L L , e € L , y is continuous, and

y(t) + 0 as t + a

(ii) If u e Lm nthen y Hu LM e L and y is uniformly

- continuous.

(iii) If u e Lm and u(t) + constant c e as t + a then
y(t) + H(O)c exponentially as t +

4 In order to simplify notation we drop the superstrict on L which
p

indicates vector size.

- .We will establish Theorem 1A first. Some of the steps will be repeated

for 1B. Also, without loss of generality, the matrix r in the adaptation law

(3.15),(3.16) is set to identity. Corollary 1 is established as a by-product.
.*

Proof of Theorem IA

Part (i)

let Identify G1, G2 in Figure A.1 with e + v and Hey respectively. Also,

letu = e0, u2  0, el = e, Y = e2 = v, and y2 = H v.. Using adaptive1,'_ "- '* u2' ev

law (3.15) we obtain,

<e,v>T = <e,Z'e>T = <Ze,o> T = <e, G>T (A.4)

S1 2 1 2
-e(T)i e(0)1 (A.5)

- e(O) (A.6)

-~ A-2

-V="



Ld

4.

Thus, using (A.1) gives,

.. 91 = 1 =0, ( " - SM e(O)g 2  (A.7)

Since G - H £ SPR by assumption, au, y > 0 such that V x £ L2e,2 ev 2 +2e
<xHev X>T P ujXI.2, iHevXT 2 4 yxilT 2 . Hence, from (A.1),

N2 = 0,2
=

2 0 (A.8)
.... ,

Using Lemma A.1, together with (A.4)-(A.8) gives,

1" 2 12 1/2
IT2 le.1T2+ + 2vl(O) ] (A.9)

"e-en T2  Y T2 (A.10)

2.(To + 21es (A.11)
TeT 2 IvT2

The bounds shown in (4.8) follow using the assumption e. £ L2 . Hence,

e,v e L and e e L

** , Having established that v e L Theorem A-2 i:= z-z. e L2nL. , z L

Thoe2- : -, 9 L2 q 2 £

z 0 0, and z is continuous. Since z., . L by assumption, it follows

that zeL and I L z is uniformly continuous). Using v = Z'e with
Pz, e' L v £ L . Using e = e-H evv with e. e L. and Hev e S (by

assumption), and v c L - e e L . Hence, 6 - Ze e L = is uniformly
continuous-* v = Z' is uniformly continuous (since z ts)-, v + 0 since

v c L2 is established. Using v 0 ,- e e. 0 , and since e. + 0 by
assumption, e + 0 . Furthermore, v + 0.-o z 0 exp. and

.4 = -Ze = Ze + Ze + 0 , because z and e + 0 . Using = Z' + Z'4 with

z, -, CL 1v£ Lai. Hence, e" =.-Hev L , because e. e L" by

assumption. Thus, a " te + Zi z La * This establishes properties (i-a)-

S..(-d1.
.%J

To show (i-e) consider (3.15) written as:

A-3
01



- 7 T(A.12)

W:- -(Z*H ev' + H ey Z + He 

, Since we have already established that z . 0 exp. and a c L. it follows

that w + 0 exp. Since z. c PE by assumption (provided e. a 0) , w F-lpe is exp.

stable by (2.15). Hence, e-. 0 exp.') , v + 0 exp.4 e-e + 0 exp. This

completes the proof of part (I) with adaptive law (3.15).

To show that (i-a)-(i-a) hold with adaptive law (3.16) requires showing

77 that GI:e -> v is passive. Consider the typical time interval,

'I = {t C [to,t1) i8(tn < c}
= (A.13)

I2 = {t e Etl,t 2)I 1 (t) > c > maxi6.}(

..9

7 7Hence,

<e,v> = <e;v> + <e,v> (A.14)

112

? -~ rhus,

1 -2 (A.17)

1 1

*4<e,v> 1  4 + (1- 18e1/c) 8, V> (A. 16)

18()12 1 1t)12 + (1- 1;/ 24- (A.17)

2. 2.' 1 212
> I u(t 2 )1 - r (tll (A.18)

because <, 8>I  > 0 from,

2

" A-4

'-

L- 4
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me~t6, -

.*" % .;-

"". ,.

U2
* uetWs - e(t)'e*

S 2
"18 ( <e - -e( c

rs (t)(e(t)i- c) 0, Vt 312). (A. 19)

Thus,

5' .5<e,v> 1  (A.20)

Repeating the above procedure recursively,we eventually conclude that
<ev> -1 2

ib <ev>eT(0)i as before (A.6), and hence, G ie i-W~v is passive. The
results in M1 now repeat for adaptive law (3.16). This completes the proof

of part(i).

Proof of Theorem 1A,Part (ii)

Theorem 1A, Part (ii) is essentially an L -stability result. The method

of proof requires the notion of "exponential weighting" which is a means to

obtain L -stability of a system from the L2-stability of an exponentially
weighted version of the system (see e.g., [191, Chapter 9). We require the

following:

. .~ Definition: Given a-real number a define the exponential weighting operator

by

NxL(t) := ¢ tx(t) (A.21)

ZConsider the system y a Gu. An exp. weighted version of this system is

denoted by yl :- GI ul . Note that if G is a convolution operator with

transfer function G(s) then G is also a convolution operator with transfer

function G(s-a) . Thus, the corresponding exponentialy weighted error system

corresponding is described by

,-.,

A-5



z za H va (A.22)e - Z. -HZ

i

. me L Z-e '

- " where a > 0 such that

- 0y SPRm and Hczv SkXm (A.23)

" .

"...Using Theorem A-1, identify GI with e l + vcL and G' with Hc' Note that it is

, . .
ev e

Salways possible to find some = > 0 such that (A.23) holds. We now examine

~the passivity of GI: ea + v'm . Thus,

V .<eCL va >T  <ea, Z'ea> < Ze", a T

= <e ,  . ae + P e)^>T

i_= 1 C Tie(T)I 2- 1" l 8 ( O ) 1 + <P(;)eC= , OL>T-CL 2

S> ana(T)I 8(0) Me iT2 (A.24)

The last line follows from (A.19), hence, (A.24) holds with or without the

' retardation term in the adaptive law. At this point there are two

.-, possibilities: either ae €L, or letl -as t +-•If 9e €L. then =

constant c 0< - such that 181 4 c 0. Then,

",. "<ea ,  %A > T 1 C 2cT (Ie(T) 12 c 2 1 1 (O)i 2

1 2aT 2 1 2 (A.25)
=~c -Z r- co  e ( O)'

af a(t)l + as t n then at s always possible to select an arbitrarily
large T such at I(T)I =  iIT.. Hence, for this T, (A.24) becomes,

1~a 21 2 2 12

S<eO. v T C ( e(T), ,6,T. ) - eT(0)i2

(A.26)

t(i 18(0)1 2 1 T

i tm in t~he(A

Apsiie: ete6 Lo etI*. st*-.I e£Lte



. :, ...

.- "Thusfor some arbitrarily large T, (A.25) and (A.26) have the general form,

<e, va>r c) - 2C T c2 := -c(aT) (A.27)

where c1 , c2 are non-negative constants. Hence,

-I = 61' = 0 - -c(aT) (A.28) ?

Since G2  e € SPR+, 3 constants 1, y > 0 such that

~<x, HLx>T > UIXIT

(A. 29)
IH' 1 4 a

ev lIT 2 ( y IXIT2

Then,

e' 0 (A.30)

Using (A.2), we get

IviIT2 4(le:'T2 + (ieol2 + 2u c(T))1/2 (A.31)
T, 2 2 ,+2 ~ )

. Since e. e L by assumption,

aaT

I': le .T ; e T12a)- 1/2 1 e*.. (A.32)

Iq Thus,

2 2aT 1/2
IVOlT 2 4 ¢-T.z-)'-/2 [ie.I + (ie~aI + 4a £ vc(aT)) / ] (A.33)

4,u44

Since HGkxmSince zv So we obtain

Iz(T)I - Hzv(T-lvld (A.34)

-aT TG-le T 0Hv(T-T)v(T)d l (A.35)

A-7
4..-
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e-*T i (.) ,  IV 1aT2 (A.36)

where Hzv(t) is the impulse response matrix associated with H .zy zv
Substituting (A.33) and (A.27) into (A.36) and noting that

e'cT c(cT) c1 + c 2 ,we obtain,

Iz(~l (=11/2 a e. + 2 1/I2
z(T) IH zv(.)l • (ie. + 4u(c1 +c2)) ] (A.37)

Since the right hand side is indeoendent of T, and since T can be selected to

be arbitrarily large, it follows that z e L . Assuming there is no

retardation or persistent excitation, this completes the proof of (ii-a) to

(ii-d).

Assume now that z e PE , which is a noncontradictory assumption since we

have already shown that z e L . Hence,

-. Za

z -Z HeZ 0 + Ze. (A.38)i cv

Since z e PE, Hey cSPR+ and z, e. e L , it follows from (2.15) that

- (Ze., e(O)) -we is exp. stable, thus, e, e L The remaining results in
(ii-e) follow imediately.

- Suppose now that the adaptive law is given by (3.16). Then, we can

.. write,

N P Z e -ple)e = Z[e*-HevZ(-6-*)] -p(ee
ql"" ,,(A.39)

= w - Z HevZ - p(q)e

where w :z Z e. + Z H evZ' .  L , because z, e. € I . Consider the

candidate Lyapunov function V:ti-wIe(t)i2 . Hence,

2 we - a' Z H vZ'e - P(O)V (A.40)

cv

* Suppose 1e(t)l * - as t . a • Then there exists a time T > 0 such that

A-8

.. ;t-. ................
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I {T) = IT. VT/Z c •Hence,

H/2 2 V (e T V/2 /c) 2 VT (A.41)
VT421w'.VT + IZIy (H )T T (1T

Clearly, there exists a finite constant c1 such that when VT > c, VT < 0 J
Therefore, ; can not grow beyond all bounds, and hence, e L . So then is

a and and again the result of (ii-e) follow. This completes the proof of

Theorem 1A. Note that in this case we do not obtain specific bounds on e,

because the proof proceeds by contradition.

Proof of Theorem 1B

Part (I)

Since H e SPR , there exists q > 0 such that G (1 + qs)H e SPR+ ,

ev 0 ev ev
and furthermore, G-1 S . As a result we can write (3.14a) as,-. ' ev

-1e = -Hev y, y = v - G v(e. + q &.) (A.42)

Referring to Lemma A-i, let G : v -4e, G =H , u =Oand
12 ev 1

u = -Gel(e* + qE,) . Using (A.2) together with (A.42) and the passivity2 cv =
properties of H gives,

ev

ItelT 2  ti,2mT2 + (mu2 ,T 2 + 2ule(O)I 2) 1 12 ] (A.43)

le(T)l c Ie(o)l + 21eiT 2 * IU2IT2 (A.44)

where u is defined in (4.9a). Using (4.9b) gives,

lU2 IT2 € (1/k),e, + qeiT2 . This together with (A.43), (A.44) and the

assumption e,, e £ L2 gives the bounds shown in (4.9). Hence,

e c L2 , e e L . However, we can not conclude that v e L2 as in Theorem 1A,

part (i). Fr4m (A.42), we can conclude that (1 + qs) v L2  Since

G : (1 + qs)H £ S , it follows from Lemma A-2 that.zv z 0 '
z :- z-z. c L2 nL , z c L2 and z + 0 . Repeated use of Lemma A-2 and the

error equations (3.14) gives the results (i-a) - (i-d). (i-e) follows from

the arguments in the proof of Theorem 1A, part Mi).

A-9
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Part (ii)

The proof is entirely analgous to that of Theorem 1A, part (ii), where
again we use exponential weighting.

JA-10
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APPENDIX B

PROOF OF LEMMA 5.1

The proof utilizes the following known results:

Definition: Let J denote a subset of S, consisting of functions in S whose

inverse is also in S.

" Fact [29]: If G is any scalar transfer function in R(s), then G has a coprime

factorization in S, i.e. there exists N, D, A, and B in S such that

: G N/D and AN + BD1

Lemma B-i: Consider the tuned adaptive system of Figure 5.2. Let

P. R0 (s) and C. £ Ro(s) have coprime factorizations in S given by

P. Np/D p and C. Nc/Dc respectively. Then, the elements of the

transfer matrix from (r,d) into (e., Z*,y, u) all belong to S, if:

(I) Q :- D Dc + NpNc  J , (from [29)) (B.1)

and
4. I

(ii) 6(w)IT.(Jw)l < 1, V w c R , (from [16])

where

T. : N Nc /Q :- P.C.(1+P.C.) "  (B.2)

'4

Using the definition of Q we can write H and H from (5.5) as," ey zv

H N Q (1+&)(l+&T,) (B.3)
4 . v p

FO PQ'1(1+tT*)' 1
.4. * J(B.4)

B-1
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Lj

.,

From the definition of K. (5.4b), we also obtain

Q N K;' (3.3)

p

Proof of Lemma 5.1

We first show that (i), (ii), and (iv) 2> Q c J . Let P* N /D be a

coprime factorization of P* such that rel deg DO(s) 0 0. Since (1) => rel deg

P*(s) - 1, it follows that rel deg Np(s) a 1. Moreover, (iv) 2>

rel deg K.(s) - 1, and that Kj(s) and K2(s) are stable. This, together with

(ii) and (B.3) establishes that Q e J

Hzv e S follows immediately by insoection of (8.2), since: F e S0 by

assumption; 0p, N p e S ; Q € J; a c S by assumption (vi); and finally (vi)

Z> (ii) of Lemma B-1 -> (1+&T.) € S

Conditions (iv) and (vi) H> H e SPR . This follows from Lemma 4.1

by letting W aK. and letting 1 + if - (= +.)(I+&T.)-. Thus, (4.4a) is

satisfied since K. € SPR from (iv). Also, from (4.4b)~0'

k(,) -IevlJW)l I(Jl)S*(JW)[1-&(Jl)T*(Jw)] 1  (8.4)

e (vIS.(4))I

< "() = n(w) (8.5)

The last inequality comes from conditions (vi) and the definition of

1t(w) from (4.4b).

The final step in the proof of Lemma 5.1 is to show that there are a

sufficient number of parameters in e. to insure a solution exists. This is

. guaranteed by satisfaction of condition (v). To see this combine (B.3) with

-. the definition of Q from (B.1) to get

Q :a NN +0 NK 1  (8.6)

c p p c p*

B-2
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• ._.-From (5.2), let N = Az/L and D a1 + A*l"L be a coprime factorization of

C*, and let Np = g N*/L and 0p = 1 + D*/L be a coprime factorization of P*,

where P, is as defined in (M). With K* given by (iv), (8.6) becomes the

polynomial equation,

A*I KID * + A.2K N*  L(K2 N-K D) (8.7)

- Since deg(K2 N. ) = deg(K 1D.) and K1 , K2 , N., and D. are all monic, it follows

that deg(L(K N.-K D.1 = deg(L) + deg(K 1) + deg(D.) - 1 . Then, using known
2* 1*

results on polynomial equations, e.g. [30], it can be shown that (v) implies

that (8.7) has a solution (A*1 , A.2 )

,8 ,-

.. . ,

4.-3
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