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I.

INTRODUCTION AND SUMMARY

This annual report summarizes work performed on the Adaptive
Decentralized Control project (under contract F4920-81-C-0051) during the
period June 1982 - July 1983. The objective of this research effort is the
development of a new concept for the design of decentralized controllers for
- large scale systems.

~a The modeling, analysis and control of large-scale systems is an
in¢creasingly important problem in such diverse areas as defense systems,
- communication and computer networks and transportation systems. The size and

e complexity of many systems make it difficult or impractical to use centralized

. control structures. Furthermore, considerations of communication costs,

- system reliability, computational requirements and response time provide
strong incentives for the use of distributed control architectures. The basic

E; focus of our research is on a framework within which decentralized controller
structures can be analyzed and developed. The motivation for our proposed

= approach which we named ADCON (for Adaptive Decentralized CONtrol) comes from

. the following observations about the current status of control theory.

N

o An important aspect of centralized control has been the study of systems

with unknown or uncertain (time varying, random) parameters. The
y fnvestigation of this problem led to an extensive literature on adaptive
control (also called: 1learning or self-organizing systems). The natural
:3 progression in developing centralized controllers was from the non-adaptive
case to the more difficult problems addressed by adaptive techniques.

q

:f The study of decentralized control seems so far to be almost exclusively

., devoted to non-adaptive techniques. A possible explanation of this state of

N affairs is the fact that the area of decentralized control of completely known
systems still has many unresolved fssues and some basic problems are yet to be

jﬁ answered. Under these conditions, there seemed to be 1ittle incentive to

* tackle the more complex adaptive case which deals with partially known

l systems. However, this 1ine of thinking is based on the experience gained in

4 centralized control and it may be inapplicable in the context of the

decentralized problem, which has radically different characteristics. 1In
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fact, adaptive techniques have a central role in decentralized control, which
is of a somewhat different nature than the role they play in the centralized
problem.

To understand the interrelation between adaptive and decentralized
control, we have to re-examine the basic issues underiying the need for
decentralized control strategies. The main motivation for considering such
strategies arises in the context of complex, large-scale systems where a
centralized controller usually requires excessive computational requirements
and excessive information gathering networks to make such a controller
feasible. 1In such a system, it is recsonable to assume that the local
controller {i.e., the controller of one subsystem in the large system) has
only partial information about the rest of the system. Even if the structure
of the whole system (i.e., the state equations of all subsystems and their
interactions) can be made available to each local controller, the sheer
complexity of the problem often limits the usefulness of this information. 1In
fact, attempting to use too much information may be one of the principal
stumbling blocks of conventional approaches to decentralized control. Most of
these approaches try to solve the (optimal) centralized problem, and then to
find clever ways of decentralizing the solution. The shortcomings of this
technique and the need for a different point of view are by now widely
recognized.

The basic idea underlying our approach is to assume that from the
subsystem's point of view, the rest of the system is not exactly known. Thus,
the subsystem is aware of its own structure, but it has only an approximate
knowledge of the rest of the system, for example, in the form of a reduced
order model. (Different subsystems will use different models of the "outside
world".) The local controller is then designed on the basis of this partial
information. The modeling uncertainty inherent in this procedure makes it
necessary to consider robust or adaptive control structures. Note that the
uncertainty here is due to the complexity of the system rather than to lack of
knowledge or to random effects, which are the traditional sources of
uncertainty in centralized control. The idea of replacing a complex
deterministic problem by a simple stochastic model is by no means new, and has
been used in a variety of physical problems (e.g., statistical
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thermodynamics).
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The use of reduced order models and partial information greatly

»

simplifies the design and implementation of the decentralized controllers. It

i ;3 raises, however, many difficult questions regarding the conditions under which i
\ such a scheme will lead to satisfactory system behavior. What is needed is a b
& theory for the control of interconnected subsystems in the presence of model E
i = uncertainties. In an earlier report [36] and in some related papers we made a A
3 preliminary study of some of these issues. E
) ) An even more difficult set of questions arises with regard to the H
‘S ZS . operation of adaptive controllers in the presence of uncertainty. Currently -
”i ) available adaptive control algorithms have been shown to experience severe 3*
. :Q difficulties in the presence of unmodeled plant dynamics. We were able to -
N - derive conditions which guarantee that the adaptive controller will have
;2 N specified performance despite plant uncertainty and unmodeled dynamics. These
;3 N conditions provide guidelines for the analysis and design of robust adaptive
q - controllers. A combination of results from robust control and adaptive
A lI control theory was used to prove the main theorem. The main theorem was
ﬁ 'A\ applied to a number of well-known adaptive structures: the direct adaptive
g ;é controller, an adaptive observer, the indirect adaptive controller, and a
YR general form of the model reference adaptive controller [40]. We believe that
. this work represents a significant advance in the field of adaptive control.
< &0
.E - In the next section we present an input-output approach for analyzing the
fj ﬂE global stability and robustness properties of adaptive controllers to
unmodeled dynamics. The concept of a tuned system is introduced, i.e., the
- ;? control system that could be obtained if the plant were known. Comparing the
z adaptive system with the tuned system results in the development of a generic
) ;3 adaptive error system. Passivity theory is used to derive conditions which
_’ = guarantee global stability of the error system associated with the adaptive
LR controller, and ensure boundedness of the adaptive gains. Specific bounds are
$ F& presented for certain significant signals in the control systems. Limitations
§ - of these global results are discussed, particularly the requirement that a
» ig certain operator be strictly positive real (SPR) -- a condition that is

v g
a "al

unlikely to hold due to unmodeled dynamics. The work summarized in this
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section was performed jointly with Dr. Robert L. Kosut, and will be published
in the IEEE Transactions on Automatic Control.

.
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;: B In section 3 we briefly describe some ongoing research, which will be
ﬁg ;;‘ reported more fully at the completion of the current project.
- =
& E
.j,_: AR
N
N
n.\:- L}

| LA

va -
-.~ .-"
& .
'~ ‘\
=Y

¥

A .-

S O R A R NS SR SR ot MmN AN Tt LTt N et et o Sy sl el e e - - .
B o8 N 2{ AN IEINNG et el Caxa s e T PPN, L, AL AP PR .A_::A_X.L{““_:L_ .L'.\..'.\:': PRy

.l
"
AN
v
.¢,~‘
C
s
-
¢ .-
[] “
woow
’ -
" -
. -
'Y o
35 B
3
- "
ey
" s
WL
l.. K
I
s
o
YR
.y
g
.J
N [N 3
ANEEESN ]
\‘ v, ]
4! o
N 4 ]
N ]
4 ,,_,' )
L
5 - :
3 ’
K ]
A TR

detestadododind oS00 00 ndeednch

sabateldd sttt o o

pry




AP

s

N y
s b o s 4
'-‘.".u.’":"'
l.l -

[ Y]

N4

"‘c“\‘ '.I

AL

I1. ROBUST ADAPTIVE CONTROL: CONDITIONS FOR GLOBAL STABILITY

1. INTRODUCTION

1.1 Background

The analysis and design of adaptive control systems has been the subject
of extensive research in the past two decades [1]-[10]. Adaptive techniques
provide a way of handling plant uncertainty by adjustiné the controller
parameters on-line to optimize system performance. An alternative method for
handling uncertainty is tc use a fixed structure controller designed to
provide acceptable perfonmahce for a specified range of plant behavior. In
principle, adaptive controllers can provide improved performance compared to
fixed robust controllers, since they are tuned to the uncertain plant.
However, adaptive controllers sometimes exhibit undesirable behavior during
the tuning or adaptation process. For example, unmodeled dynamics can cause a
rapid deterioration in performance and even instability [11],[12]. This
problem is not resolved by increasing the order or complexity of the model.
Since the model of any dynamic system, by definition, is not the actual
system, it can therefore be argued that unmodeled dynamics are always present,

ad infinitum.

The main reason for these difficulties with adaptive controllers seems to
be that robustness to unmodeled dynamics was not considered as a design
criterion in the development of the adaptive control algorithm. The design
objective is global stability of the closed-loop system, e.g., [7], [9] and
various assumptions on the structure of the plant are required to achieve that
objective. 1In particular, it i{s necessary to assume that the plant is linear
and time invariant (LTI), that the relative degree of the transfer function is
known as well as the sign of the high frequency gain. Such requirements are
not practical since real plants are often nonlinear and time-varying and can
be accurately represented only by high order (sometimes infinite order [13])
complicated models.

The need for robustness to plant uncertainty is not unique to adaptive

control. The problem of robustness is ubiquitous in control theory and has
been studied in the context of fixed (nonadaptive) control [14]1-(17]. These
studies rely on the input/output properties of systems, e.g., [18],[19]. The




MM E AL C A RS RO SR O IR AR TN ATATE T TR L L L L

B 152K
¥

=
r“'
N
e

. -

predominant reason to examine robustness issues in this way is that the

m

characteritics of unmodeled dynamics, such as uncertain model order, are

easily represented. Lyapunov theory, on the other hand, is not well suited

L : ’ for this type of uncertainty. Typically, plant uncertainty is characterized
; by assuming that the plant belongs to a well defined set. For examp1e,.a set

- description of an uncertain LTI plant is to define a "ball" in the frequency

%¥:: = domain. The center of the ball is the nominal plant model, and the radius
;S . defines the model error. This set model description is one type of a more
;,& 'é general set description, referred to as a conic-sector [15]. The uncertainty

h in the plant induces an uncertainty in the input/output map of the c¢losed-loop
f:ﬁ :3 system which can, again be charagterized by a conic sector. Performance
- D) requirements for the control system can be translated into statements on the
isi 5 conic sector which bounds the closed-l1oop systems, making it possible to check
2l - whether a given design meets specifications, and providing guidelines for
?:; | robust controller design.
ne
1:5 v In this study we use the input/output approach to analyze the global
N stabfility and robustness properties of continuous-time adaptive controllers
oo Iu with respect to unmodeled dynamics (although we consider only continuous-time
:25 R algorithms, the input-output formalism can be readily extended to the
SO discrete-time case). By global we mean that no specific magnitude constraint
:j (other than boundedness) is placed on any of the external inputs or in{itial

n :} conditons. We develop an adaptive error system of a general form, by
‘;3 ) comparing the actual adaptive system with a tuned system, i.e., the control
‘:il ;; system that could be obtained if the plant were known. This error system is
NN similar to the type used in [7],(8] where the tuned system error output is
::. - zero, due to the assumption of perfect modeling. By relaxing this assumption
::5 fjl we show that the non-zero outputs of the error system are the inputs to a
*‘:j . nonlinear feedback error system consisting of the adaptive algorithm and two
;2? k: feedback (interconnection) operators,denoted by Hev and sz .
::; a

An important consequence of this structure is that the existence of

R

solutions (e.g., tuned system performance) is separated from the stabiity

jﬁ y analysis (e.g., stability of the nonlinear error system). In general, the ‘
o ii adaptation law is passive; consequently, if Hay is strictly positive real
o (SPR), then application of passivity theory [19]1-[21], provides global

e A w T
PR W KJ:LA‘.LJ'. n'j
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Lz-stability of the map from the tuned system output to the actual adaptive
system output, even though the adaptive parameters may grow beyond all

bounds. We provide other conditions (e.g., sz stable) to insure the
L~ boundedness of the adaptive gains. Similar results are developed to
insure L -stability of the error system by using an exponentially weighted

passivity theory [19]. These results are summarized in Theorems 1A and 18.

As a by product of the input/output view we also obtain specific bounds
on the L2 and La norms of significant signals in the adaptive system. The
results are summarized in Corollary 1.

The results in Theorem 1 and Corollary 1 are not essentially new (see
e.g., [7],[8]), although they do provide some extentions to previous
results. The main contribution, however, is the fact that all the results can
be obtained from a generic error system and from the application of nonlinear
stablity theorems based on input-output properties. As a consequence of this
approach, it is to be expected that conditions for robustness will arise in a
natural way. Such robustness results are obtained, but unfortunately,they
have a 1imited practical use. The main limitation is that the global theory
(Theorem 1) requires that Hev ¢ SPR , which in turn places an upper bound on
the size of the unmodeled dynamics in the plant. The details are contained in
Lemmas 4.1 and 5.2. This bound is quite restrictive and is easily violated by
even the most benign model errors, thus, verifying the results obtained in
{111, [12]. To over come this 1imitation, we construct an SPR compensator,
based on the scheme proposed in [22] in the context of robust (non-adaptive)
control., Although in the adaptive case the supporing arguments are heuristic,
an example simulation shows a positive result.

The input/output analysis presented here provides a generic framework
within which it is possible to analyze the robustness of adaptive robust
controilers. We believe that this framework can be used to develop practical
adaptive control algorithms that can be more readily applied to real systems,
than the class of algorithms currently in use.

Since this study merges ideas from several areas, it is necessary to
introduce a number of definitions and concepts.
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2. SOME PRELIMINARIES
2.1 Notation

The input/output formulation of multivariable systems is the principal
view taken throughout this paper and the notation and terminology used is
standard (see e.g. [18],[19]). The input and output signals are assumed to be
imbedded in either the normed function space

n n
Lp = {X : [0,=) » R | Hx“p < =}

or its extention

n n
Lpe = [x 2 [0.TT = R fIxllg) <=y T <o

The respective norms |.||p and || |Tp are defined as follows:

[ix[l, = vim ||x]]
p Tico Tp

T 1/
([ Ixte)|Pdt)*’P | p e [1,a)
0

iy, =
sup _ |x(t)], p ==
te[0,T]
where |.| is the Euclidean norm on R"., Hence, L; is an inner product
space, with inner product <x,y>; of elements x, y ¢ Lge defined by

T

X,y>p = £ x(t)'y(t)dt

and so ||x|l,, = (<x,x>.r)1/2 . If T » = then Lg is an inner-product space
with inner product <x,y> = 1im<x,y>

T-co

T B}
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2.2 Stability

Systems considered in this paper are described by input/output equations
of the form y = Gu where G:Lme » L"e is a causal map from u into y, also
denoted y » y . The system G is said to be Lp-stable (or simply stable) if G
maps u ¢ Lm into y¢ L" and if there exists finite constants k and b such
that IlGuYITp <k IIuIITp +b, for a1 T > 0 and al UeLme . The smallest
k that can be found is referred to as the Lp-gain (or simply gain) of G,

denoted yp(G) . -

Because we often encounter LTI systems it is convenient to introduce the
following notation. Let R(s) and Ro(s) denote the proper and strictly proper
rational functions, respectively. Let S and So denote functions in R(s) and

Ro(s) , respectively, whose poles all have negative real parts. Thus,

S and § are the stable, Tumped, LTI systems. Denote multivariable systems
0 nxm . nxm

with transfer function matrices, by R(s) , S , etc. For example,
G e ngm means that all elements of G belong to So , and so on.

1f 6 e S™ then the following Lp-gains are obtained,

v, (6) < v (8) = [ 3T6(t)]dt (2.4)
® 0

YZ(G) = sup olG(Jjw)] (2.5)
weR

where G(A) denotes the maximum singular value of the matrix A, defined as the
positive square root of the maximum eigenvalue of A*A, where * is the
conjugate transpose of A. In (2.4), (2.5) G is the operator, G(ju) the
transfer function matrix, and G(t) is the impulse response matrix.

2.3 Passivity

The following definitions follow those in [191,[21]. Let
G:LTe > LTe and let y, o be constants with u >0, Then, ¥ uce Lge :

10

s c.2 >a
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G is passive if,

<u, G W > p (2.6)

G is input strictly passive if,

<u, Gu> . >p * ueul L, (2.7a)

G is output strictly passive if,

<u, Gu 2ot uuGuuT2 (2.7b)

(4 and o are not the same throughout). When G ¢ S™™ satisfies (2.7), G is
said to be strictly positive real (SPR), denoted G ¢ sPR™ . Because SPR
systems play a crucial role in the proof of stability of adaptive systems, we
introduce the following subsets:

SPR} = {G ¢ s"""“m% [6(jw) + 6(-Ju)'] - ul) > 0, YuweR} (2.8a)

SPRy = {G ¢ s'g"“‘h_(%[e(jm) + Gl=3w)'] = u 6(-ju)'G(ju)) > O, VueR} (2.8b)
where A(A) denotes the smallest eigenvalue of A. Thus, whenever G ¢ ST ,
conditions (2.7) can be tested in the frequency domain. Moreover, SPRg and
SPRT , respectively, separate the strictly proper SPR functions from the
proper, but not strictly proper, SPR functions. 1In the scalar case, the’
frequency domain conditions simplify because A[G(jw) + G(-ju)']=

2 Re(G(Jjw)].
Certain unstable systems in R(s)™™ can be passive by virtue of (2.6).
In particular, GeR(s)mxm is passive 1f G(s) is positive real. The transfer
function matrix G(s) is positive real if: (i) it has no poles in Re(s) > O,
(11) poles on the jw axis are simple with a non-negative residue, and (iii)
for any w ¢ R not a pole of G(ju) + G(-Ju)' > .

N

S T G s W i W A i A Y Ry T Y \"\‘:\'-."~."\‘:~.‘:-.';~.‘:'.‘:-."-.‘:-.‘” e
. .
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- 2.4 Model Error $
(N ] — ]
I~ X
_: - The cornerstone of robust control design is a quantifiable bound on the :
SN error between the model used for control design and the actual plant to be K
N controlled. In the adaptive control case considered here the model is a )
‘ !E parametric model, where the parameters are not known exactly. The structure f
; '2 of the parametric model can be obtained analytically from physical laws, but

v o this invariably results in a complicated model. Often a simple structure is

N :%; selected because it is more convenient for analysis and synthesis.

. T
x E: Let P denote the plant to be controlled. In the broadest sense P is a ;
‘S ) relation in Lme X Lge , f.e., the set of all possible ordered pairs

< %: (u,y)eLTe x Ly, Of fnputs e LTe and outputs ygL?e that could be generated

N - by the plant [18]. The uncertainty in the plant is denoted by (u,y) ¢ P .

S

Yt Let Pa:Lge - L;e denote a parametric model of the plant P with h
> o parameters g ¢ Rk . The parameters can be selected so as to minimize any .
) . discrepancies between the model and the plant, i.e.,

j;

: o 1nfkuy-Pau|Tp = 1y-Poungg (2.9) A
W 7 aeR i

!E We will refer to q*eRk as the tuned model parameters and to P =P _ as the ]

N . tuned parametric model of the plant. In general, P, is denend::t on the ;
h && input/output sequence. Q
< "' Most of the previous work on adaptive control deals with the case where ?
vf‘ R for every (u,y) ¢ P there exists a tuned parametric model P, such that -
§ . P.=P. In this paper we consider the presence of ummodeled dynamics, thus, ?
& :ﬁ the uncertain plant P cannot be perfectly modeled by any parametric model
Y

Pa . Since we will deal exclusively with LTI plants P ¢ R(s)™™ , it is
convenient to describe this model error in the frequency-domain. Let

)
-.0 -
.32

’l.'

a Bs(r) denote a "ball" in S of radius r, defined by
b o :
3 Bg(r) := (G e ™™ F[6(J)] < rlu), w ¢ R} (2.10)
s ',
4 e,
s ¢
4 12
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Let the plant to be controlled be described by

P=(I+a)p, (2.11a)

where P ¢ R(s)™™ is the plant, Pe ¢ R(s)nxm is the tuned parametric model,
and 5 ¢ S"™*" denotes the unmodeled dynamics. Further, the only knowledge
available about a is that it is bounded such that

A e BS(S) (2.11b)

where &(y) 1s known for all frequencies. In other words, while the operator
A is not precisely known, we do know a bound on its effect. This model
description (2.2) is used throughout the paper to precisely define the plant
to be controlled in an adaptive system. Following Doyle and Stein [16] we
will refer to (2.11b) as an unstructred uncertainty. Note that although 4 is
stable, P and P» need not be stable. Hence, the parametric model is
implicitly required to capture all unstable poles of the plant. Although this
is not severly restrictive - at least on practical grounds - nonetheless, it
can be eliminated by definng model error as {stable) deviations in (stable)
coprime factors of the plant [23]. As the subsequent analysis is not
substantially effected by this choice, we will remain with (2.11) for purposes
of illustration.

2.5 Persistent Excitation
From [31], a regulated function F(.) = R, » RMM s persistently
exciting, denoted F ¢ PE , if there exists finite positive constants
ays @95 and a3 such that
S+G3

> [ FOFesa 1, ¥seR, (2.12)

%2 1

The usefulness of a persistently exciting signal is in establishing the
exponential stability of the following differential equation which arises in
many adaptive and identification schemes, i.e.,

13
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X = -BFHF'X + w , x(0) ¢ R" (2.13)

It is shown in [31] that 1f B¢ R™™, 8 =8' >0, He SPR) or SPR), and
FePE, then (w, x(0) | x is exponentially stable, i.e., 3 m, 1 > O such
that

Ix(t)] < me™F |x(0)] + }:me'k(t'r) Iwi<)ide - (2.14)
0
we will utilize this latter result in section IV in our proof of stablity of
the adaptive system,
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3. ADAPTIVE ERROR MODEL
In this section we develop a generic adaptive error model which will be
used in the subsequent analysis. This requires defining the notions of robust
control and tuned control.

Robust and Tuned Control

Consider, for example, the model reference adaptive control (MRAC)
depicted in Figure 3.1, consisting of the uncertain plant P, a reference model
He, and an adaptive controller C(é) , where 5 is the adaptive gain vector, r
is a reference input, d is a disturbance process, and n is sensor noise.
Denote by H(g) the closed-1loop system relating the external inputs w = (r',
d', n')' to the output error e, as depicted in Figure 3.2.. Also, let we W
denote the admissable class of input signals.

The objective of the adaptive controller is twofold: (1) adjust ¢ to a
constant g, ¢ RK such that H(e,) has desireable properties; and (2) during
adaptation, as 8 is adjusted, the error is well behaved. 1In the usual
formulations [7] only (1) is considered and further it is assumed that there
exists a matched gain, denoted by ¥ ¢ Rk , such that

H(Z) = 0 (3.1)

The presence of uncertain unmodeled dynamics in the plant eliminate the chance
of satisfying the matching condition. Thus, it is more appropriate to define

a tuned gain, denoted by o, ¢ Rk , corresponding to each (u,y,w) e P x W ,
such that

Hg, )w < H{e)w , ¥ 9 e RK (3.2)

The error signal e, := H(a, )w is referred to as the tuned error. Note that
each (u,y,w) ¢ P x W engenders a possibly different o, . Also, it is

important to distinguish the tuned gain g, , from the robust gain 8, € rK .
where

sup H(eo)w < sup H(e)w , ¥ 8¢ Rk (3.3)
PxW P xW
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The error signal e° = H(eo)w is referred to as the robust error. It follows
from these definitions that the tuned error is always smaller in norm than the
robust error, thus ¥ we W,

e, = Hla Iw <« e, = Hlg )w, (3.4)

The tuned controller is, unfortunately, unrealizable since it requires prior
knowledge of the actual system H(g) (or equivalently, the plant P) and the
input w. A practical adaptive controller is likely to have a larger error
norm,

Structure of the Adaptive Control

In summary, we consider the multivariable adaptive system, shown in
Figure 3.2, and described by

e = H(g)w . (3.5)

where e(t) ¢ R" is the error signal to be controlled, w(t) ¢ RY is the
external input restricted to some set W, and a(t) € Rk is the adaptive

gain., The class of adaptive controllers considered here are such that the
adaptive gains multiply elements of internal signals z(t) ¢ Rk , referred to
as the regressor, to produce the adaptive control signals,

fi = 51 Zi ’ e [lom] (3°6)

where 81 and z; are ky-dimensional subsets of the elements in 6 and z,
respectively. Thus,

m
k=t Kk, (3.7)

i=1
Define the adaptive gain error, .
8(t) := o(t) -, (3.8) 5
k X
where g, ¢ R 1is the tuned gain (3.4)., Also, define the adaptive control N
error signals, N
N
18 +
%%
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i=1, ..., m (3.9)

v=17"g (3.10a)

where the time-varying matrix Z is defined by
Z = block diaglzy, zp, . . ., z4) (3.10b) |
To describe the relations among the signals e, z, v, and w we introduce

the interconnection system Hp (w,v ) » (e,z) , as shown in Figure 3.3. In
)(m+k)x(m+0)

particular, let HI e R(s ,» and where Hp is defined by,

e w Hew -Hev w

:= H = (3.11)

W r4

In effect, this structure serves to isolate the adaptive control error v, from
the rest of the system. When the adpative control is tuned, 9 =0 and v = 0;
consequently, the tuned error signal (3.4) is,

e, := Hla, Jw = Ho (3.12)
We can also define a tuned regressor signal,

2, = H W (3.13)

In general, all the subsystems in H; are dependent on the tuned gains o, .

The interconnection system can also be written as,
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e=e, - H Vv (3.14a)

222z, -H,V (3.14b)

with v given by (3.10). To complete the error model requires describing the
adaptative algorithm, i.e., the means by which §(t) is generated. We will
consider two typical algorithms. A constant gain (gradient) algorithm [7]:

g=rZe (3.15)

where T ¢ RkXK, r=r'">0, and a similar but nonlinear gain algorithm:
; « rize - o(8)e) (3.16a)

where , : Rk > R+ is a retardation function, whose purpose is to prevent

g from growing too quickly in certain situations. Although many functions
will suffice we will select the one proposed in [24], namely:

(181 /c - 1)2, 168 > € = maxyo,l
olg) := (3.16b)
0 , 181 < C

The complete adaptive error system, is shown in Figure 3.4. Note that

the error system is composed of two subsystems: a linear subsystem ¢
non-1inear subsystem g

L and a

N .
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4. CONDITIONS FOR GLOBAL STABILITY

The theorems stated below give conditions for which the adaptive error
system (Fig. 3.4) is guaranteed to have certain stability and performance
properties. Proofs are given in Appendix A, Heuristically, however, the
basis for the proofs is application of the Passivity Theorem ([19], pg. 182).
It turns out that the map e + v is passive. Thus, if H_  is SPR™ |, then
the map e, » (e,v) is Ly-stable even though z and/or 3 can grow without
bounds. Further restrictions, provided below, cause 6 and z to be bounded.
(We use the notation "x - 0 (exp.)" to mean that x(t) » 0 (exponentially) as

t+> )

Theorem A: Global Stability

For the adaptive error system shown in Figure 3.4, assume that:

(A1) The system is well-posed in the sense that all
inputs w ¢ W produce signals e.v,z, 8 , and

g in Lwe .
(4.1a)
kxm
(A2) sz € So (4.1b)
(A3) W, e SPR] (4.1c)
Under these conditions:
(1) If (e, &) ¢ L) NL" =b &, —0) and (z,, 2,) ¢ L® then with
algorithm (3.15) or (3.16):
: - k o k k .
(i-a) (@,0) e l_, 8¢ Ly, AL, , and ¢ 0. (4.3)
(1'b) ec L;‘ml.:‘; ) € LT, and e-e, -» 0. (4.2b)
(1-c) velynll,Vell, andv 0. (4.2¢)
23
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(i-d)  (z,%) ¢ Li , (z-2,, 2-2,) ¢ LgﬁLt , and z-z, =» 0 exp.
(4.2d)

(i-e) 1If, in addition, e, = 0 (matched) and z, ¢ PE then
(e, 8, e-e,, v, z-2,) —& 0 exp.
(4.2e)

If (e, 'e,,)eL:' and (z,, 2z,) ¢ L: , then with algorithm (3.15):

ze X (4.3)

With the addition of either algorithm (3.16) or z ¢ PE it follows
that the elements of ¢, 8, e, &, v, Vv, and z are in L, -

(4.4)
Theorem 1B8: Global Stability
Replace (A3) in Theorem 1 by
(A3)' H,, e SPRy (4.5)

If (er, &) e LpNLD (> e, —=»0) , and (z,, 2,) ¢ LK then witn
algorithm (3.15) or (3.16)

k

(1-a) (s, 3de LK, & c L5NLE | 390 (4.6a)
(1-b)  eelhNL] , 2c LD, e- e (4.6b)
(i-¢)  (v,¥) ¢ L:' (4.6¢)
(1-d) (2,3) ¢ X, (2z-2,, 2-2) e 5O LY,

and z-z —»0 . (4.6d)

(i-e) If, in addition, e, = 0 (matched) and 2z, PE ,
then (9, v)—#0 exp. (4.6e)
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(it) If (e,, &) ¢ Lf and (2, 2,) ¢ Lt , then with algorithm (3.15):
(ii-a)

(ii-b) With the addition of either 2:PE or algorithm (3.16), the
elements of o, 4, e, & v, v, and 2 are in L_.

ZeL:

- Corollary 1: Performance Bounds

(4.7d)

(4.7b)

Suppose 2z, and e, satisfy the conditions in (i) of Theroems 1A or 18.

(1) Let H , e SPRY , i.e., Jy, vy > 0 such that ¥ueR ,
-_ . 1 N 3 \
O[Hev(Jm)] < y and Z.[Hev(.]w) + Hev( Jw) ] > Im
Then, bounds on |e|2 and uenw can be obtained from:

1e-eyl, < %;-[le*nz + (le*ug + 25 08(0)'

+ ’

IG'P-IOIQ < 8(0)' r"la(0) + 2tenyne-e,n,/y

NTSIRG

(4.8a)

(4.8b)

(4.8¢)

(1) Let H_ ¢ spR'g , 1.e., 3y, q, k>0 such that ¥y e R ,

M Heylda) g (=3u)'] su gy (=du)" Hy, (Ju)

%{Gev(jw) + Gev(-.]'m)'] >k I

Gev(S) = (1 + qs) Hev(S)

Then, bounds on |e2| and 1es_ can be obtained from:

1er, < zaé{le**Qé*l + (le*+qé*|§ + Zkzue(o)‘r'ls(o))

19't”

Lg

1 < 8(0)'r"a(0) + é-ue*+qé*nzne|2

1/2

]

(4.9a)

(4.9b)

(4.9¢)

(4.9d)

(4.9¢)
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n Discussion

(1) Theorems 1A and 1B give conditions under which the adaptive error
system is globally stable. Essentially, conditions are imposed on the
interconnection subsystems in HI . In particular, Hev ¢ SPR™ and

d sz € Ssxm are direct requirements, whereas the restrictions on the tuned

N

T signals e, and z_ , indirectly impose requirements on Hew and sz . These
- latter requirements are dependent on knowledge about we W . For example, if

e w is a constant, then the assumption that e, + 0 (Theorem 1A-i) requires
that the tuned feedback system is a Type-l robust servomechanism, i.e., the

A transfer junction H, (0) = 0 for all (u,y) e P .
o (2) Corollary 1 gives explicit bounds on signals in the error system.
o

These bounds can be used to evaluate the adaptive system design. Moreover,
the bounds allow a coarse determination as to the efficacy of adaptive control

e vs. robust control. By comparing, for example, the adaptive error 1en, from
(4.8) with the robust error |e°u2 from (1.5), it is possible to obtain a

i} quantifiable measure of performance degradation during adaptation.

?i (3) Although Theorems 1A and 18 are essentially the same, there are

slight difference worth noting. These differences arise because in 1A,
HevESPRT"° Hev(s) is proper but not strictly proper, whereas in 1B,

;; HeVSSPRg‘=° Hev(s) is strictly proper. Thus, comparing part (i) in 1A and
_ 18, we see that in 18, v, ¥ ¢ L whereas in 1A, v is additonally in
;.\_ L'; and v-»0 .
:; (4) The use of persistent excitation or gain retardation is seen in part
- (i) of theorems 1A and 1B to provide the means to guaranty bounded signals.
- Other schemes based on signal normalizations or dead-zones can provide similar
22 results, e.g. [32],0[33]. The effect of these conditions is to provide an
L -stability which is not present otherwise. The persistent excitation
?i co:dition actually supplies exponential stability, which is stronger than

La-stab111ty, as provided, for example, by the gain retardation (see proof in
A Appendix A).

(5) The persistent excitation requirements in parts (i) and parts (ii)
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are different. In parts (i), 2,ePE , whereas in parts (i), 2zePE . The

different assumptions arise because in parts (i) we enforce the matched
condition e,=0 . Hence, 2,ePE » 2¢PE . This follows from (i-d) where

z -2 -+ 0 expoentially., Also, with e = 0, a bounded disturbance added to
the reference can cause 2z ¢ PE without forcing, e el . In parts (ii),
which is more realistic, we disallow the matched condition, and hence,

e el . Thus, ze PE is the weakest assumption to make. However, since 2z
is inside the adaptive loop, it is very different to guarantee 2z ¢ PE by
injecting external signals. Note also (in both parts(ii)) that without
retardation or PE it is possible for the regressor to remain bounded even
though the adaptive parameters may grow unbounded. Similar results have been
reported elsewhere, e.g. [24].

Robustness to Unmodeled Dynamics

Since the theorems impose requriements on the input/output properties of
the interconnection system, it follows that the effect of model error on these
properties determines the stability robustness of the adaptive system. For
example, both theorems require that Hev e SPR™ . Suppose, however, that

Hev has the form,

Hay = (1 +H (4.10)

ev)Hev
where ﬁev is the projection onto Hev of the plant uncertainy operator 4 ;

and ﬁ;v is the nominal transfer function when there is no uncertainty, {.e.,
when A =0 . Thus, ﬁ;v is a function of the tuned parametric model P, and

the tuned controller gains o, . (See Section V for more specific formulae,

e.g. (5.5).)

Conditions to insure that Hev € SPRT despite uncertainty in Hay 1s
provided by the following:

Lemma 4.1: Let H,y be given by (4.3). Then Hay € SPRT if the following

conditions hold:

(1) Fev € SPRT (4.11a)
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-‘\ . (11) Flevg Bg(k) where ¥ w ¢ R, (4.11b) |
= Kla) < 3 A[Hy, (Ju) + Hyy(=du)']/a[Fy, (Ju)] (4.11¢) ;
...‘o \i
-\l -
:-.'*' Proof: Define ,(.): ¢™™ L R by
= Lo
:j - p (A) = 'Z'X_(A“'A ) ]
N
-:j o where * denotes conjugate transpose. Then, using definition (2.8) with (4.10) {
N - (4.11) we obtain k
\‘ .
~3 § u[Hg ()] = ulH (G0) + A (0)H ()] 1
-
. '. . T 'y - s s
-7 - > l[Hev(Jm)] - a(Hev(jm)]?[Hev(Jm)] >0 . 3’
N ‘.,
3 y Hnece, H, e SPR .
{
. Comments
A
©h .
N ,
N (1) In order to apply Lemma 4.1 it is necessary to have a detailed
"‘ e description of how the plant uncertainty 4 propagates onto the 3
) interconnection uncertainty Hev . This type of uncertainty propagation was i
5 E explored in depth by Safonov [25] and more sophisticated expressions then !
3'.: (4.4b) are available to describe the uncertain operator Hev . Section §
S contains more detail on this issue.
:‘ ., {
oy
~ (2) In the scalar case (4.1lc) becomes !
SR 1
\“ ™ . - . ‘
::: o k(w) < Re[Hev(Jm)]”Hev(Jm” b
-, l _ (4.12) -
= cos 3 [H,, (Ju)]
. Since ﬁev e SPR™ by assumption, k(w) is always positive for 4 ¢ R ; but ‘
- because of the cosine function, k{w) < 1 . In Section 6 we show that this 4
‘ t4 Timitation on the effect of model error is easily violated by even the most !
.q o benign type of unmodeled dynamics in the plant. Methods which overcome this ]
a ::' L
‘J :
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limitation are discussed in Section 7. The requirement that k{w) < 1 also
holds for any multivariable ﬁev € SPRm . To see this let H;v have the polar
decomposition,

Hay = G Moy = o B (4.13)
whe:g G, > G, are Hermitian and Wey is unitary. Since
g(H ) =5(6) =3(G ) , it follows that
ew L r

k(w) < oW, (Ja)] <1 (4.14)

In the case of scalar systems, the condition k(w) < 1 can be interpreted in
terms of a limitation on relative degree of Hev(s) . A necessary condition
for Hev e SPR is that the relative degree of Hev(s) does not exceed one
i.e., phase limited to +90°. Rohrs, et al. [12] show that this necessitates
precise knowledge of plant order, and hence, is not a feasible reguirement in
the presence of an unstructured uncertainty (2.12), where the order is
unknown. In the multivariable case 1t is awkward to talk about relative
degree or phase, however, {4.14) expresses the same 1limitation.

(3) In several instances, e.g., [9],[26]1,[27], it has been reported that
the SPR condition has been eliminated. In each case, however, it can be
verified that the operator Hev = positive constant , which is SPR. But,
these studies do not account for unmodeled dynamics, thus, in the notation of

(4.10), only ﬂ;v = positive constant ., Lemma 4.1 then provides the means to
evaluate the effect of unmodeled dynamic.
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5. APPLICATION TO MODEL REFERENCE ADAPTIVE CONTROL

Consider the model reference adaptive control (MRAC) system, shown in
Figure 5.1, consisting of: an uncertain scalar plant P ¢ Ro(s) ; a
reference model Hr € S0 ; and filters with F ¢ séxl . The plant is
affected by a disturbance d and a reference command r. The system eaquations

are:
e =y -y, (5.1a)
Yo = H. T (5.1b)
y =d+Pu (5.1c)
u =-8'z= -(sizl + 5&22) (5.1d)
z, = F u, z, = Fly-r) (5.1e)

Assume that the adaptive law is given by (3.15), thus,
a
e=rze (5.1F)

Let the plant uncertainty be described by(2.12), i.e.,

P-Py
-A :=—F*—e BS(G) (5.19)

where P_ ¢ Ro(s) is a tuned parametric model for P. Let the filter dynamics
be given by

Fis) = (v , 1 st (5.1h)
s (ETET s CTsT » +++» LTST ) .

where L(s) is a stable monic polynomial of degree ¢ . Thus,
él(t), sz(t) e R* and so a(t) ¢ R2% | Using the definition of tuned gain
(3.2) we get,
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u=-g'z= -(0,+9)'2
a -(g' 2z +0' 2)-v, v:i=9'z from (3.6)

-., | *171 *272
2 oM *2
O s ut T (ry) - v
N AR
SO
XN Finally,
!
RS L
oy
.~::J" = *2 1 = - - 1 5.2
:'::. .,.-: u m (r-y) - m v C.f(f‘ _Y) lTA:17L' v (5. )
ACS
.
'_f;j 1‘,}. where A, and A«y are polynomials, each of degree ¢-1 , whose coefficients are
TZ:Z: the elements of the tuned gains 81 and 84, , respectively; and C« denotes
Lo the tuned controller. The tuned system ( =0 ) is shown in Figure 5.2,
)
Ad |
;-_'C: In terms of the uncertain plant P, the adaptive error system (Fig. 3.4)
:% > corresponding to this MRAC system, has tuned signals:
¢
y
N i e, = (1 +pc,)"1d + [(14pC,)2pC, M Jr (5.32)
i * * * * r
N % F(1+pC,)"1c, (r-d)
.:‘\: b Z* = 1 (503b)
. F(14PC,) " (d-r)
.-:: .\l
:jq and interconnections:
Nf: .~
b - -1 -1 (5.3¢)
R o Hev = (1+PC*) p(1+A*1/L) «3C
=
S
N
S, -1 ‘1
'_C-_:'_, s, F(1+pPC,) (1+A*1/L)
ORI H = (5.3d)
Noy = v -1 -1
= F(1+PC,) P(1+A*1/L)
:,3 The error system can also be described so as to highlight the model error
S5 o . The following definitions are convenient:
T, = (1+p,C07p,C, = 1 - s, (5.4a)
32
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K 1= Hy| = (140,07 1P, (1m0 7! (5.4b)

A=0

Thus, the error system (5.3) can be also be expressed as:

ew = Su(14aT,) 70 + (T, (1+a) (14aT, )" Lett e (5.5a)
- | 5,0, (1+aT,) " (r-d)

2, - }5.5b)
F S, (1+aT,) H(d-r)

Hgy = Kal142) (14aT,)"! (5.5¢)
F K, Pl (14aT,)]

H = (5.5d)

v

F K, (1+a)(14aT,)

The result that follows in Lemma 5.1 gives conditions under which
Hev € SPRo and sz € S§2XI , despite model error; thus conditions (Al)-(A3)
of Theorems 1A and 2B are satisfied. Additional requirements are necessary to

establish the class of tuned signals e« and z» as given by (5.5a) and (5.5b),
respectively. These requirements are discussed following Lemma 5.1.

Lemma 5.1: For the adaptive system (5.3) or (5.5) Hev € SPRo and

H v € ngxl if the following conditions are all satisfied:

z
n-1 n-2
gls™ "+ 8.8 "+ ...+ ) N, ('s)
(i) Pe(s) = - }‘_1 n-1 =7 :5) (5.6a)
] +c15 + .. * an *
(11) N.(s) is a stable monic polynomial (5.6b)
(111} g> 0 (5.6¢)

g Kl(S) .
(iv) Kels) = —E;TET_ e SPR, where ,(s) and K,(s) are monic stable

L4
LR




- polynomials.
ll (5.6d)

(v) 2 = deg L(s) > n + deg Kl(s) -1 (5.6e)

(vi) s ¢ Bs(s) is such that

iy
4
4
1

] _ _ .
sla) < Tlw) := nlw){nle)ITulda)| + 18,050} 1]7! ;
. ¥weR, -
“ nlw) = cos ¥ [K _(ju)) , ]
= (5.6) o
'.
o Proof: See Appendix 8. :
. g
~ Discussion J
a '3
. (1) Condition (i)-(v) of Lemma 5.1 are restatements of known results, R
\ -3
- but normally they apply to the actual plant P, e.g. [7]. In Lemma 5.1, S
” however, these conditions apply to the parametric model Px -- not to the -]
ll actual plant. As such, they are easier to satisfy, since the parametric model '?
is somewhat arbitrary. This flexibility is penalized by an increase in model -
:E error. For example, if the actual plant has a relative degree of 2, then j
v choosing a parametric model of relative degree 1 -- as required by condition
l‘ (1) -- incrases the high frequency model error,

(2) Condition (vi) imposes an upper bound T on the model error

[

33 associated with the chosen parametric model. This condition simultaneously
insures that Hev € SPR° despite model error, and that the tuned system is
:E stable (see proof in Appendix B).

w (3) 1t is easily verified that 3(w) < 1 , as was discussed following
i Lemma 4.1. In fact, even the "optimally tight" bound (see [25] for details on
this calculation) given by,

3
o
=, 1 2 1/2
g T = e (11T # (J1471% + 40 Re(kT/IK]) 2 (5.7)

is also restricted to be less than 1. This limitation severely restricts the
type of admissable model error. This issue is pursued in Section 6,

.............................
.......................................
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(4) To guarantee global stability using the adaptive law (5.1f),

property (i) of Theorem 1 requires that e, » 0 and 2z, %, ¢ L21 for all r
and d. For example, let r and d be any bounded signals such tha:

r + constant and d » constant as t + » . Property (i) of Theorem 1 is
satisfied if:

§(0) =0 (5.8a)
T,.(0) = Hr(O) =1 (5.8b)

Zero model error at DC (5.8a) is certainly to be expected from even the most
crude tuned parametric model.

{5) Let r be bounded such that r » constant as t + » , but let d be
just bounded, 1.e., d¢ Lo . In this case it is not possible to guarantee
e, + 0 , but we can guarantee that e, ¢ L . To obtain global stability in
this case, requires the introduction of themretardation term (3.16) into the
adaptive law (5.1f), see part (ii) of Theorems 1A or 18.

(6) 1t is possible to obtain versions of Lemma 5.1 for adaptive systems
of different forms, e.g., indirect adaptive [5]. Also, the use of
"multipliers"”, e.g. (4], can be accounted for as well. The multiplier
effectively makes use of the availability of 3 as a signal; and this allows
rel deg (Px) = 2 rather than 1 as required by condition (i) of Lemma 5.1.

36

">

s

PRI LT N T I WD T B A




P Wy v T
L “J‘Al-.'s\."s.’

-
RO RN
PR
s o
c‘.;“". a's

P

S

DR,

l. d .
B A

.ﬁ?{

0
LI T I -

ettt

.‘l"‘l“'.‘.‘l

»
2

0 o &
“.;‘.’ "‘\J“.l~4“'

h)
4

ARRAARRR[ B

-

6. LIMITATIONS IMPOSED BY THE SPR CONDITION

The fact that the model error bound given in condition (vi) of Lemma 5.1
can not exceed one has unfortunate consequences.

Example 1

Consider a plant with transfer function,

i ab
P(s) = P.(s) IO (6.1)
where P+ is the parametirc model, with two unmodeled stable poles at -a and
-b. Suppose,also, that b is much greater than a, and that a is much greater
than the bandwidth of P_{s) . This situation seems benign -- and most 1ikely
a certainty. Comparing (6.1) with (5.19) gives,

[ wls (a+0)? 2,

(wi+a?)(5 +b°)

§(w) = w

for all frequencies 4 > (ab/2)1/2 , thus, condition (vi) of Lemma 5.1 is
violated, and global stability cannot be guaranteed. The following example
illustrates this point.

Example 2

Consider the example MRAC system (Fig. 5.1) studied by Rohrs et al. [12],
where:

2 229
P(s) =
s*1 (641502 + 4
Hols) = 3
R s+3
u =-81y+92r‘
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@ . 8, = ye, 91(0) = .65 ]
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W s, = -re, 8,0 =1.14 '
RN %2 re % ' ]
1 b
IJ Let r = constant and d = 0. Thus, e, » O exponentially when the tuned gains !
SR :
P are such that (5.8) is satisfied, i.e., ]
‘(_ -
R, 20, :
. T*(O) s Fz—a*—1= HF(O) =1 i
o Even though (e*l, 6*2) exist to satisfy this, H_ (s) fs not SPR, and so :
T
global stability is not guaranteed. Simulation runs with r = .4 and r = 4.0 %
s f§ are shown in Figures 6.1 and 6.2, respectively. With the small input (Figq. .
- 6.1) we see a stable response which tracks the reference very well. With the !
2 large input (Fig. 6.2) the response is still stable, but large oscillations y
- 53 are taking place. Larger inputs will eventually drive the system unstable, ]
NI e.g. [12]. ]
w‘ ii i
In this example, if the tuned model is taken to be P_(s) = 1/(s+l) then \
o S it is easily verified that model error &§(w) fs greater than one at some )
S frequency. ]
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Figure 6.1 Response to r = .4
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g 7. SPR COMPENSATION
o 0
;ij . In this section we heuristically develop a means to obtain global robust
M, :? adaptive control. Since the SPR condition is violated whenever model error
?33 exceeds one, a natural scheme is to construct an SPR compensator which
! ;? alleivates the problems by “filtering" the plant output; thus, avoiding the
SO trouble. However, direct filtering does not change the size of model error.
LK
}:}2 . For example, with the plant p = (1+o)Px , let y, denote the output of the
ﬂ;f; o filtered plant, where
.- ‘ -‘?
SN y =Wy = Wd + (1+a)WP_u (7.1)
\.:_\' b w
~°N
Uy -
:é; oY Thus, model error is uneffected. Even filtering Hev directly by W offers no
F\
_ - help, since the bound (4.4c) is still less than one, i.e.,
A
e Rl < Re(w . )/IW A, | <1 (7.2)
WO ev! ¢ ev ev

for any stable W. What we seek is an SPR compensator which only effects the

[ e P

;:?: unmodeled dynamics, but leaves the paramtric model intact.
_3._1 o
N

A compensation scheme, which offers some promise as an SPR compensator,

o m is that proposed in [22], as shown in Figure 7.1. To see the desired result
Eg - suppose that P = (1+A)Pm with 4 ¢ Bs(s) . Then, the compensator is
:ﬁ} equivalent to a plant which maps (u,d) into yc where
7

Y ‘e =

~ - 'YC Wd + PCU (7.2a)
RN P.-P

N “

J o) .a c'nm .

'::t_‘ AC . Te BS(WS) (7.2b)
1'..: f..

¥ 2 Thus, whenver &§(w) > 1 , select W(s) such that |w(jy)ls(w) <1 . The filter
‘*fﬁ W acts 1ike a "frequency switch" whose function is to insure condition (vi) of

,2= T Lemma 5.1.

. There are two ways to implement this compensator in an adaptive system.
The first way is to use a fixed model of the plant for Py, 1.e., P = P .

:E}f - The second way is to replace P with an adaptive observer, f.e., P =0 .
| :f m m

S o
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Figure 7.1
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In either case, to obtain the benefit of the SPR compensator, the signal to be

controlled is the compensator output Yo o not the plant output y. Both of
these compensators will now be examined.

Fixed SPR Compensator

Let Pm = P , a fixed model, and let the actual plant be given by (2.17),
P = (1+a)P_ with a ¢ Bs(s) . Then the fixed compensator plant equivalent
model error (7.2b) is:

PP

'Ac = —p—* € BS(GI) (7.36)
where
P(J) P, (ju)
spw) = (W) f8lw) + 11 = W) |+ |—pmgey— (7.3b)

This scheme is motivated by the fact that at low freauencies the tuned
parametric model Px is close to P; thus & is small and W ~ 1 . At high
frequencies § 1{s large but (P - P }/P, {s small, W ~ 0 and so 51 is
small. Of course the compensator is 1imited if there is large model error at
intermediate frequencies.

Example 2

Example 1 is modified to include a fixed SPR compsnator with W(s) =
1/(s+1) and P{s) = 2/(s+l) . Simulation results with the large step command
(r=4) are shown in Figure 7.2. Comparing these to Figure 6.2, without
compensation, it is readily verified that the instability tendencies are

eliminated. Also, direct calculations reveal that Hev € SPR° , thus global
stability is insured.

Adaptive SPR Compensation

An adaptive SPR compensator, together with the adaptive controller, is
shown in Figure 7.3. The adaptive controller is described by,
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u * 802, » 2. = (Feu, Fily.-r)) (7.4a)

1 §

8¢ TTeZe & & %Y Yy (7.4b)
) = nC-l -

Fc(s) (1/Lc(s),...,s /Lc(s)) » N, = deg Lc(s) (7.4¢)

and the adaptive observer is described by,

y = eé z, z& = (Fé u. -Foy) (7.4d)
x ~

9, TToZg8y » € =Y - (7.4d)
g no-l

Fols) = (1L ,(s), vooy s © /L (s)) , n = deg L (s) (7.4F)

where Lo(s) and Lc(s) are both monic and stable. To generate the error
system interconnection operators associated with this system, let e*c and

e*o denote the tuned parameters with respective gain errors, ec and eo s and
Tet vC 1= eézc and vo 1= e;zo be the corresponding adaptive control errors
(3.6). By analogy with the procedure used in Section 5 we get,

_ 1
u = Culr-y.) - i Ve (7.5)
y =-]T'd+(1-—L;A)P*U+VO (7.6)
where
A*Z/Lc
C* - mrc (7-7)
By,/L gN
P, =~ =" (7.8)
I+B*17E° Dy

and where (A*l, Axp) are polynomials whose coefficients are the parameters in
B 3 (B*I’B*z) are polynomials whose coefficients are the parameters in

Owg and Nu, Px and g are as defined by (5.6a). The adaptive error model is
given below in terms of T_, S , and K, as defined in (5.4). In additon,
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R 1 + (W-1) D
=1 + (W= T

0
};} The tuned signals are:

S, (14aRT,) IR d + (T,(L+aR) (14aRT,) " oH e (7.10a)

m
*
[}

poL;t (1rarT ) 1 + D, T a(10aRT ) e (7.10b)

L4
*
[]

F gl 2125 K (1+aRT,) "L (r-R0)
2y, = . {7.10¢)
| F Su(144RT,) " (Rd-r) R
¢ AL ez, (14arT ) (e Rd) |
o' *2be Ta BaliTARTx -
Z,o ® (7.10d)
FoTul14aRT,) 7N (d - (140)r)
o L J
PN
o~
(Al
¥ E The interconnections are:
v, .
",
d
SRR K, (1+aR)(1+4RT, )"} ~(1-0)S, { 1+4RT, )"}
i‘-.ﬂ o * * *
N Hy, = (7.11a)
- ¢ KD, L a(1+aRT,) "] 1+(1-W)T,D0,L L (1+arT,) !
RS *V %k * W Usl o ARV,
.; -,
. e o, - - - - -
y & FePilKa(144RT, )7 Fohegl o P3lK, (1-H) (144RT,)
. N = (7.11b)
o Zev -1 -1
A F K, (1+aR)(1+aRT,) -F S, (1-W)(1+aRT,)
N c c
X

-
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g
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14
'~ NJ. o . ) . . . —
q FoPa Ka(14aRT,) ! FoAupla Pa K (1-H) (14aRT,) !
O Hz . (7.11¢)
J -

The factor (1<|»ART,1,,)'l appears in all the terms above. The transfer
function R (7.9) reduces the effect of unmodeled dynamics; however not exactly
l; by the amount anticipated, vis a vis (7.2). This is due to additonal model
R error introduced by the adaptive observer. Nonetheless, the model error
attenuation is greater than with the fixed SPR compensator. In particular, at

L PLPSPRPUTS 1Ty VW

:“l’._l

low frequencies a = 0 and at high frequencies R = 0 , since

W~ 0 and D*L;1 =~ 1 . Without further testing of Hev (7.11a) it is not
possible to state that Hev € SPR° at intermediate frequencies. Note,
however, that the nominal value of Hev is:

K* ‘(I“N)S*
" = (7.12)
ev 0 1 .

which is SPR, provided that K, ¢ SPR and
Re K, (Juw) > }r!(l-w(ju»))S*(jmnz , weR (7.13)

Applying (4.11) to (7.11a), a tedious procedure, would give an upper bound on
model error to insure Hev € SPRO .
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8. CONCLUSIONS

This study has presented an fnput/output view of multivariable adaptive
control for uncertain linear time invariant plants. The essence of the
results are captured in Theorems 1A and 2B which provide conditions that
guarantee global stability. Corollary 1 also give specific L2 and L_ bounds
on significant signals in the adaptive control system. These bounds, for
example, can be used to guarantee that the adaptive system performs as well as
a robust (non-adaptive) system using the same structure, but with fixed
gains. By distinguishing between a tuned system and a robust system, we
establish formulae which can be used to restrict the minimum performance
improvement possible with the same control structure.

Although the stability results {Theorem 1A, 1B) are not entirely new (see
e.g., [71,(8]), the input/output setting provides the means to directly
determine the system robustness properties with respect to model error. The
type of model error examined can arise from a variety of causes, such as
unmodeled dynamic¢s and reduced order modeling. It is very difficult to treat
this type of “"unstructured" dynamic model error by using Lyapunov theory,
since the system order may not be known -- in fact, it may be infinite.
Although infinite dimensional (distributed) systems were not considered here,
Theorem 1 can be modified to include them, e.g., [26].

The structure of Theorems 1A and 1B require that a particular subsystem
operator, denoted Hev , 1s strictly positive real (SPR). This requirement is
not unique to this presentation - passivity requirements, in one form or
another, dominate proofs of global stability for practically all adaptive
control systems, including recursive identification algorithms.

Unfortunately, although Hev e SPR is robust to model error {Lemma 4.1), the
bound on the model error is too small to be of practical use. Even the most
benign neglected dynamics violate the bound.

Although this study is concerned with continuous-time systems, the
theorems carry over virtually intact to discrete-time systems. This is a
direct consequence of the portable nature of the input/output view. However,
there 1s an important issue unique to discrete-time systems: plant
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uncertainty {s critical to where performance is actually measured, which is in
continuous-time, not at the sampled-data points. As a consequence, it may be
necessary to map the discrete portions of the adaptive system (most likely the
controller) into continuous-time, i.e., the Lp-gains of the discrete-time
operators in the interconnection map, which are associated with the adaptive
discrete-time controller, would be needed rather the discrete-time zz-gains .

Another area worth pursuing is the adaptive control of non-linear
plants. The plant uncertainty description (2.11) does not exclude non-linear
plants. Note that slowly drifting parameters in an otherwise perfectly known
LTI plant could yield the same uncertainty description as a non-linear plant
approximated by a parametric LTI model. A1l that is required is that there
exists a (possibly) infinite dimensional LTI system which matches the
input/output bet “*~= af the plant for each possible input/output pair. Of

course, if the = ear, then the tuned control is likely to

A\

be non-linear, wHich ratses soiie + interesting issues for further research.

One final remark: the stability results presented here, as well as other
known results, provide global stability. This is achieved by requiring
H ¢ SPR , a condition which is difficult to maintain in normal

ev
circumstances. On the other hand, this is a sufficient conditon; violation of

which does not necessarily lead to instability. The simple example presented
here in Figure 6.1-6.2, illustrates the point. Other examples of this
phenomena abound, e.g., [12]. It would appear then, that a more valid
approach to providing a system-theoretic setting for adaptive control is to
develop local stability conditions, which, hopefully, do not require that

Hev ¢ SPR . Preliminary results on local stability supoort this hope, e.q.,
(331, [34].
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ITI. WORK IN PROGRESS

The ADCON concept involves many different issues, as can be seen from the
earlier discussion and from [36]-[38]. So far we have addressed the problem
of designing a controller for a single subsystem, when the rest of the system
is fixed. This represents only one step in an iterative procedure in which
each subsystem performs its own controller design. We are currently
investigating extensions of the theory of raobust control and adaptive control
to the case of interconnected subsystems, in which local controllers are

_ designed sequentially (iteratively) or simultaneously. A number of different

information structures are being considered. It seems that by providing each
subsystem with structural information in addition to an aggregate (reduced
order) model of the rest of the systems, it is possible to obtain simpler
design schemes.

We are also investigating the application of lattice structures to the
adaptive control problem. Our earlier work in this area seemed to have
generated a considerable amount of interest (cf. [41]-[46]). This class of
algorithms is especially well suited for large scale problems of the type
considered in this project.
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APPENDIX A

PROOF OF THEQREMS 1 AND 2

Preliminaries

The main ingredient in the proof is to show stability by means of
passivity. Although there are many variations on this theme, a general result
is given by the following.

Theorem A.1 ([21], [35]

Consider the feedback system of Figure A.l1 below with causal operators

G1 and Gz .

Fiqure A.1 Feedback System

Suppose there exists real constants €4 61, a5 i=1,2 , such that
<X,G, x>, > nxlz + §.:16 x|2 + ¥t > 0, ¥ x ¢ L,[0,t] (A.1)
9487 2 el T 0§92 T %4 ’ € totY :

for i=1,2. Then the following holds ¥ t » O,

2 2
(52"'51)Iy1lt2 + (Ef"ﬁz)leltz < |yl|t2(lu1|t2 + 2|€2|‘|U2|t2)

2
* 1Yol po(tugl ) * 2"1"'"1't2) + |e1|-lu1|tz + |e2| . uuzliz
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Proofs of both theorems also rely on well known results for systems
nxm
HeS

0o ° The results required here are summarized in the following.

Theorem A-2 [see [19], Thm. 9, pg. 59]
Let He ngm ; then:

(1) If ue Lg , then y = Hue LD L: , Ve Lg , y is continuous, and
y(t) »0as t+» =,

(1) If ue L], then y
continuous.

Hu ¢ L: . Ve L: , and y is uniformly

e

(11i) If u e LT and u(t) » constant c ¢ R™as t » = , then
y(t) » H(O)c exponentially as t » = .

In order to simplify notation we drop the superstrict on Lg which
indicates vector size.

We will establish Theorem 1A first. Some of the steps will be repeated
for 1B. Also, without loss of generality, the matrix T in the adaptation law

(3.15),(3.16) is set to identity. Corollary 1 is established as a by-product.

Proof of Theorem 1A

Part (1)
Identify Gl’ G2 in Figure A.1 with e .+ v and Hev respectively. Also,
let u1 = e, u2 = 0, e1 z e, y1 = e2 = v, and yz = Hevv. . Using adaptive

law (3.15) we obtain,

<e,v>; = <e,l'g>;p = <le,>; = <8, 9>1 (A.4)
= 5 16(Mh? - 5 1at0n? (A.5)
> - 18(0n? (A.6)

A-2
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Thus, using (A.1) gives,

ey = 6, %0, ap = - 51000 (A.7)

Since G2 = Hev € SPR+ by assumption, 3y, v > 0 such that ¥ x ¢ L2e’

<KGH X073 uiXiqg, 'Hevx'TZ < YUXip, Hence, from (A.1),
€2=U) 62=62=0 (A.S)

Using Lemma A.l, together with (A:4)-(A.8) gives,

WVip, < %:[ne*l.rz + (le*u$2 + 2u|6(0)|2)1/2] (A.9)
1e-e,iq, < YIVIL, (A.10)
lo(1)1% < 16(0)1% + 21exr, 1vipy (A.11)
The bounds shown in (4.8) follow using the assumption e, ¢ L2 . Hence,

e,vel andeeL’.

2
i Having fstabHshed that v ¢ L2 , Theorem A-2 == 7.= 2-z, ¢ L,OL_, E LY
z+ 0, and z is continuous. Since z,, z, ¢ L by assumption, it follows
that 2z ¢ L' and % ¢ L_(a) z is uniformly conat'inuous). Using v = Z'g with
z,8' el = vel . Using e-= e,-Ho v with e el and H e S (by
assumption), and v ¢ L“-) ec L.. . Hence, § = Ze ¢ L," g 1s uniformly

continuous =» v = Z's is uniformly continuous (since z is)=> v » 0 since

Ve L2 is established. Using v » 0= e - e 0, and since e, + 0 by
assumption, e + 0 . Furthermore, v » O=» z o 0 exp. and
S sZesZe+Ze+0,because zand e+ 0 . Using v = Z's + 2'3 with
2,8,0 el = :Ie“L' - Hence, e* =2 -H, Yel_,becausee, cl by

assumption. Thus, g = 2a + Ze ¢ L, - This establishes properties (i-a)-

(i-d).

To show (i-e) consider (3.15) written as:




»

7 | XS AN |-

I RRAAAR

S |
Yoy N

L .\ Ny N IP.H 3, 0 - ¥ RN 3 VAR . R A R R I SN O IR g L
AN N !'-l\l‘w \j.. .'.\ NN 1‘.‘\\".. [ W N) vy, v [N ARy l. ".'4".' " ‘( Loy Vo -.. Yy . '\..

"
.

s
]

N

¢
[y

'L’\. A.’ '-ﬁ {

AL |

Vo

BEa's

.‘.‘
L

0= -7, Hev 1,0 +w

(A.12)
wi= -(Z,Hevi' +1 Hoy Iv * i Hay i')e
Since we have already established that 2 + 0 exp. and g ¢ L, > it follows

that w » 0 exp. Since 2 ¢ PE by assumption (provided e, =0, wrpo is exp.

stable by (2.15). Hence, 5~ 0 exp. ™ §, v+ 0 exp.=» e-e, » 0 exp. This
completes the proof of part (i) with adaptive law (3.15).

To show that {i-a)-(i-a) hold with adaptive law (3.16) requires showing
that Glze -> v {s passive. Consider the typical time interval,

(1= (te gt 16(th < c}

I = . (A.13)
112 = {te [ty,t,)] 18(th > ¢ > maxuo.i}

Hence,

<e,v>_ = <@;v>_ + <a,v (A.14)
I I 1
Thus,
<e,V>I1 = 4, e>Il =~% ue(tl)u2 - %-ue(to)uz (A.15)
ey = b+ (1 -aa1/e)? 4, 0 (A.16)
2 2

= g relt,n? - aalen? + (1 - ar/e)a, o1, (A.17)
> 3 1alth’ - 3 ralen? (.18)

because <g, 6>, > 0 from,
2

A-4

-----------
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'1;. alt)' o(t) = a(t)'[a(t)-0,]
. - .

a R < roten? - ate) e,
‘.)1' DA ~ 2 Iy

2 > 16(thy - s(the

i = 1a(thilralt)i- ¢) > 0, Vtel, . (A.19)
P

‘.V

“~ -

‘s -2 Thus,

G ¥
. 1 2 1 2

R <e,v>; > aelty i - yaeltyh (A.20)
) Repeating the above procedure recursively,we eventually conclude that

o ; <e,v>; > - %— |e(0)|2 as before (A.6), and hence, Gie -»v is passive. The
tf results in (i) now repeat for adaptive law (3.16). This completes the proof
.'s = of part(i).

q4-. Proof of Theorem 1A,Part (ii)

‘Sj i Theorem 1A, Part (if) is essentially an L_-stability result. The method
ézj gj of proof requires the notion of "exponential weighting" which is a means to
:: ) obtain Ln-stab11ity of a system from the Lz-stabi1ity of an exponentially
weighted version of the system (see e.g., [19], Chapter 9). We require the
% - following:
o |
: o Definition: Given a real number o define the exponential weighting operator
~
N A
< -~
e () = Ex(t) (A.21)
2l
- e
j;: = Consider the system y = Gu. An exp. weighted version of this system is
Y denoted by y“ := 6® u* . Note that if G is a convolution operator with
:: transfer function G(s) then G* is also a convolution operator with transfer
function G(s-a) . Thus, the corresponding exponentialy weighted error system
RN
éi corresponding is described by

Lo
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1. e
by > v: = 7%
8% = 4% + 2% - p($)§°
o
::" -
o where o > O such that
LN~
}\ o
\ L]
o X m a kxm
‘ Ke\' € SPR+ and sz € So (A.23)
- Using Theorem A-1, identify G, with e* » v® and G, with HZ . Note that it is

always possible to find some qo > 0 such that (A.23) holds. We now examine
the passivity of G: e® » v® . Thus,

a [+ a [*3 [+ a
~ <e,v>T=<e,Z'e>T-<Ze,e>T

A0, 8 8 » ’ 22"
NVPIIYL. XAXARNOG
h'

-
A

= <@, 8% - a8” + ple)e™>¢

1 27 2 1 2 o 2
=zec 18T - zel0n” + <p(a)e“, 8™>r-a18”17,

2
AT 1 2T 2 1 2 a2
A >z e 18(Th® - 5 18(00” - are®iy, (A.24)
T The last line follows from (A.19), hence, (A.24) holds with or without the
L" = retardation term in the adaptive law. At this point there are two
R
}': possibilities: efther o ¢ L_ or lg(t)] + mas t» = . If g ¢ L then 3
< =» o D
N - constant co such that e < ¢ Then
. =4
R e, v > +cTe(tn? ) - Lislon?
& <
- .. Alzs
- > -%ezﬂcﬁ °%‘|9(0)I2 (A.25)
o
:3 e If Je(t)] » = 23s t +» = then it is always possible to select an arbitrarily
':. v large T such that 1g(T)i= te1; . Hence, for this T, (A.24) becomes,
)
3 N 1 2T 2 2, .1 2
~ <€, ¥ 5 2 (10(Th” - 1a17,) - 7 16(0)s
2 (A.26)
’:J ¢ = - %‘ IG(O)IZ
2
phy - A<6
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Thus,for some arbitrarily large T, (A.25) and (A.26) have the general form,

i.e.,
<ea’ vu>T ?> -cl EZQT - C2 = -C(GT)
where cl. c2 are non-negative constants. Hence,

= 6 = 0, Gl = -C(GT)

€ " p

Since G, = "Fev e SPR,_, = constants s y > 0 such that

2
<X, H:v X>¢ > piXiT,

IH:V Xy € Y MXig,

Then,

Using (A.2), we get

1%, <—§:{|e2|T2 + (ue2u$2 + c(aT))l/z]

Since e, ¢ L_ by assumption,

1€it,, < e“T(Za)'l/zne*nn
Thus,
1oy, < Egligﬁl:ifz-[le*n. + (ue*uf + 4 e'Z“Tuc(aT))l/z]
Since H;v € S:xm , we obtain

- T
lz(T)] = | 6 HZV(T-t)V(r)dTI

= [e7oT £TH“ (T-)v®(
gy{T=TlV 1 )de|

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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< e'“Tlﬂ‘;v(-)ll . |v"‘|T2 (A.36)

where H‘;v(t) is the impulse response matrix associated with H:v .
Substituting (A.33) and (A.27) into (A.36) and noting that

e'z“Tc(uT) <CteC, ,we obtain,

- -1/2
l2(T)] < -(é-z——— R (Vg o [rena + (ne*nz + 4au(c1+c2))1/2] (A.37)

Since the right hand side is independent of T, and since T can be selected to

be arbitrarily large, it follows that 2z ¢ L, - Assuming there is no
retardation or persistent excitation, this completes the proof of (ii-a) to

(1i-d).

Assume now that 2z ¢ PE , which is a noncontradictory assumption since we
have already shown that 2z ¢ LQ . Hence,

§=-ITH, I' o0+ le, (A.38)
Since 2 ¢ PE, H, e SPR_and 2z, ¢, ¢ L_, it follows from (2.15) that

(Ze,, 6(0)) ~»o is exp. stable, thus, g, § ¢ L, . The remaining results in
(ii-e) follow immediately.

Suppose now that the adaptive law is given by (3.16). Then, we can
write,

* ~ ~ -~ ~ ~
g=2e-pla)e = Z[e,-HevZ'(e-e*)] - olale
~ - A (A-39)
= wa-1 HevZ' 8 - ple)e

where w :=Ze, +ZH 7's, el ,because z, e, cl_ . Consider the
candidate Lyapunov function v:u_..é'(t).Z . Hence,

Y=2we-0"2 He '8 = o(8) (A.40)

Suppose |§(t)| + 235 t+ e . Then there exists a time T > 0 such that

A-8
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;8(r)| = |5|T. = VT > ¢ . Hence,

V: < am, 1/2 IZI YolHey ¥y - (1 - V1/2/c) (A.41)

Clearly, there exists a finite constant N such that whenA VT > cl, VT <0.
Therefore, g can not grow beyond all bounds, and hence, g ¢ L, - So then is
9 and § , and again the result of (ii-e) follow. This completes the proof of
" Theorem 1A. Note that in this case we do not obtain specific bounds on e,

because the proof proceeds by contradition.

Proof of Theorem 18

Part (1)

Since Hev € SPR , there exists q > 0 such that Gev = (1 + qs)Hev ¢ SPR
and furthermore, G 1 e S . As a result we can write (3.14a) as,

2 =2 -1 a
e=-Hy ¥, ¥y=V- Gev(e* +q a,)
Referring to Lemma A-1, let G1 PV e, G2 = Hev . u1 =0, and

u, = -Ggé(e* + qe,) . Using (A.2) together with (A.42) and the passivity
properties of Hev gives,

verr, < z{iugigy + (1updy + 2ulet0)13)1/) (A.43)

lo(T)] < le(0)] + 21enyy « vusi, (A.44)

where , is defined in (4.9a). Using (4.9b) gives,

Tl 1y € (1/k)1e, + qé,sz . This together with (A.43), (A.44) and the
assumption e, &, ¢ L, gives the bounds shown in (4.9). Hence,
e Lz, 0 L. . However, we can not conclude that v ¢ L2 as fn Theorem 1A,
part (). From (A.42), we can conclude that (1 + qs)'1 Vel, . Since

Ezv iz (1 + qs)Hz € S , 1t follows from Lemma A-2 that

Z:% 2-2, ¢ Lzrﬁ L_ . z € LZ and z » 0 . Repeated use of Lemma A-2 and the
error equatfons (3.14) gives the results (i-a) - (i-d). (i-e) follows from

the arguments in the proof of Theorem 1A, part (1).
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Part (11) \

The proof is entirely analgous to that of Theorem 1A, part (11}, where \
again we use exponential weighting. |
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APPENDIX B

. PROOF OF LEMMA 5.1
:8 The proof utilizes the following known results: 1
b, .
¥ Definition: Let J denote a subset of S, consisting of functions in S whose %
A2 inverse is also in S. .
;ﬁ Fact [29]): 1If G is any scalar transfer function in R(s), then G has a coprime

‘factorization in S, i.e., there exists N, D, A, and B in S such that

. G =N/D and AN + BD = 1,

Lemma B-1: Consider the tuned adaptive system of Figure 5.2. Let
- Py € Ro(s) and C, ¢ Rols) have coprime factorizations in S given by
P, = Np/D and ¢, = N./D. - respectively. Then, the elements of the
transfer matrix from (r,d) into (e,, z,,y, u) all belong to S, if:

. (1) Q := DpDc + Nch ed, (from [29]) (8.1)
i and
-
Lo

(11) slw)|Teldu)]l <1, ¥uweR, (from [16])
- where
1
A T, o= Nch/Q := P C(14P,C.)° (8.2)
-
- Using the definition of Q we can write Hev and sz from (5.5) as,
2 Mo, = N Q (1) (14aT,) (8.3)
o ev p * *
N
N F0,0"1 (147,071
. H = (8.4)
3 2 enarhaea) (1T,

p
4
A

2! B~1

L4

%

i ¥
L LA ua
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e From the definition of K, (5.4b), we also obtain ;i
L .
(] :
- &) Y -1 .
3 Q = NS (8.3) b
: “ .
3 :
M Proof of Lemma 5.1 4

| R .
N
\} We first show that (i), (ii), and (iv) = Qe J . Let P, = N /D be a
» i: coprime factorization of Px such that rel deg Dyls) = 0. Since (1) => rel deg n
2 Pe(s) = 1, it follows that rel deg Np(s) = 1. Moreover, (iv) = :
X < rel deg K«(s) = 1, and that Ki(s) and Kp(s) are stable. This, together with ;
-Ii - (i1) and (B.3) establishes that Q¢ J . R
& . .
3¢ -.- sz € So follows immediately by inspection of (B.2), since: F ¢ so by X
‘ assumption; Dp, ND € S; Qed; ace$S by assumption (vi); and finally (vi)

}‘; ph => ({{) of Lemma B-1 = (1+AT*)-1 €S .
b . Conditions (iv) and (vi) = Hev € SPRo . This follows from Lemma 4.1

l by letting H‘ev = K, and letting 1 + Hev = (1+A)(1+AT*)‘1 . Thus, (4.4a3) is

2. satisfied since K, e SPR_from (iv). Also, from (4.4b),

LA

v

kla) = 1Ay (Ju)l = 1alin)Seldn)[1-a0iu)Talin)] 2] (8.4)

§(w) 1S, () |

"t

o e L
- N - 10N
A A

5 ::3 B = I memI < Xw) = nlw) (8.5) f
VI

y - The last inequality comes from conditions (vi) and the definition of

¥ X(w) from (4.4b).

3 The final step fn the proof of Lenmma 5.1 is to show that there are a

- ' sufficient number of parameters in o, to fnsure a solution exists. This is

; :‘: guaranteed by satisfaction of condition (v). To see this combine (B.3) with

-;: <y the definition of Q from (8.1) to get

bt Q ;= NN_+00D_ =NK (8.6)
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From (5.2), let Nc = A*Z/L and Dc =] + A*l/L be a coprime factorization of

Cx, and let Np = g N*/L and D, = 1 + D«/L be a coprime factorization of Px»
where P, ig as defined in (i). With Kx given by (iv), (B.6) becomes the
polynomial equation,

Aug KDy + ALK N, = LIK N KD,) (8.7)
Since deg(K,N,) = deg(KID*) and K, , K,, N,, and D, are all monic, it follows
that deg(L(KZN*-KID*] = deg(L) + deg(Kl) + deg(D,) - 1 . Then, using known
results on polynomial equations, e.g. [30], it can be shown that (v) implies
that (B.7) has a solution (A,;, A.,) -
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