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1. INTRODUCTION AND HISTORICAL NOTES

The goal of the present report is the development of the least-squares

theory and results in a purely geometrical manner. Because of possible

linearization of the adjustment models involved, the term "geometry" can be

understood as "differential geometry" in this context. The tool adopted in

perceiving the adjustment procedure through the eyes of geometry is tensor

analysis, although this preference may have been influenced by the author's

appreciation of the tensor approach as introduced to theoretical geodesy by

Antonio Marussi, El, and elaborated on by the late Martin Hotine, [2].

Little would be accomplished if the known adjustment formulas should

only be translated into tensor notations or if they should be rederived

following an old route with new notations. Instead, new geometrical concepts

will be introduced into the derivations in order to elucidate the least-

squares (L.S.) process and make its understanding compact. The derivation

of all the adjustment formulas needed in the parametric method (also called

the observation equation method) and in the condition method will be

accomplished simply by identifying certain tensors in a purely geometrical

situation with the vectors and matrices given in one or the other adjustment

setup.

In the closing paragraphs the geometrical approach will also serve to

illustrate the Hilbert-space approach to the L.S. adjustment. For example,

the contravariant and covariant tensor "spaces" can be identified with dual

Hilbert spaces, the scalar product of two vectors in tensor notations can be

identified with the same product in the Hilbert space, etc., so that the

-1-
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tensor formulation becomes in fact a classical Hilbert-space formulation.

This idea was inspired by Petr Van'cek's paper, "Diagrammatic Approach to

Least Squares", prepared for a public seminar at the University of Stuttgart,

August 19, 1982.

In order to acquaint himself with the basic premise of the present geo-

metrical approach, the reader can imagine that a certain "observational

vector" dx having contravariant components dx r is decomposed into two vec-

tors having contravariant components dx r and dx" r, the first lying in a

"model surface" and the second completing the system of equations

dxr = dx' r + dx "r (in [2] this is called "vectorequation"). The lengths of

these three vectors, denoted respectively as ds, ds' and ds", are tensor

invariants, i.e., quantities independent of the man-made coordinate system.

If the geometrical quantity ds" 2 is identified with the L.S. quadratic form

(often denoted VTPV) required to fulfill the familiar minimum condition, it

follows in the geometrical context that dx" must be orthogonal to the model

surface regardless of the mathematical formulation of the surface, the

nature of the space and surface coordinates, etc.

Upon extending this concept to an n-dimensional space and a u-dimensional

(hyper-) surface, dx" is seen to lie in the r-dimensional subspace orthogonal

to the model surface at a given point, where r=n-u. This subspace will be

called "second surface" for convenience. Clearly, in a three-dimensional

space such a "surface" would reduce to a straight line perpendicular to the

model surface; if the model "surface" were a straight line, the second surface

would be a plane perpendicular to it, upon considering a small neighborhood

of the point in question as implied in this study.

-2-



Admnittedly, the tensor mechanism is not the only tool leading to the

L.S. estimates via geometry. For example, the genqralized Hilbert-space

mechanism is no less "geometrical". The avenue one chooses to pursue

depends to a great extent on personal preference and background. In the

generalized Hilbert-space approach as used by the "Fredericton school"

(to be mentioned later in this chapter), a coordinate system is implied

through the Riemnannian metric but it is not used explicitly. Indeed, an

explicit coordinate system is not necessary in representing the geometrical

relations which are invariant under coordinate transformations.

However, the coordinate systems as used in the present geometrical

approach introduce neither limitations nor "excess baggage". The first

assertion follows from the fact that no particular coordinate system is

requir~ed by the derivations, only the existence of space and surface coordin-

ate systems is assumed. And the second assertion becomes apparent upon the

realization that the "coordinates" are linked directly to the desired L.S.

quantities. For example, the space coordinates x rare used in representing

the observations, the surface coordinates uoa implying the model surface are

used in representing the adjusted parameters, etc. In other approaches

such quantities have to be represented as well, only the means of their

identification vary.

The technique which is the cornerstone of this presentation consists in

the "vectorizatlon" of tensors. It is well known that a space tensor, such

as the second-order metric tensor, can be expressed by means of vectors

(first-order tensors) belonging to the same point in space. However, a set

of partial derivatives 3x r /Du( relating the space coordinates x r and the
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surface coordinates ua at a given point on the surface is also of

fundamental importance in tensor analysis. According to §3 and §12 in

Chapter 6 of [2], it is a tensor. In particular, it transforms like the

contravariant space components and the covariant surface components of a k
vector lying in the surface. The latter property can be illustrated by

considering each space coordinate as a scalar defined over the surface,

in which case the corresponding quantities in the set x r/u a form the

surface gradient of a scalar.

The tensor character of ax r/3ut implies that it can be subject to

covariant differentiation. Indeed, the surface covariant derivative of

this tensor is particularly useful in differential geometry. It is explained

in §19 on page 34 of [2] and used, for example, on the subsequent pages of

[2] containing the development of the standard results, such as the Gauss

equations of the surface, the Weingarten equations, the Mainardi-Codazzi

equations, or the Gaussian curvature of the surface. However, the tensor

character and, especially, the covariant derivatives of 3xr/u a are not

exploited in this presentation. The point which should be emphasized is

that the quantities such as ax r /aua can be vectorized.

It will be of great importance that 3x r/u a can be expressed by means

of orthonormal vectors lying in the surface and viewed in their space as

well as surface context (i.e., considered in both space and surface

coordinates). In order to find such a vectorized expression it is neces-

sary to make use of the extrinsic properties of the surface which relate

it to the surrounding space, in addition to the intrinsic properties

concerned with this surface as a space of certain dimensions in its own

-4-



right. Accordingly, several properties of u- and r-dimensional surfaces

embedded in an n-dimensional space will be developed, representing a

generalization and an extension of the properties encountered in [2], the

first part of Chapter 6, where u= 2 and n= 3.

The fundamental role in the geometrical development via the vectoriza-

tion technique is played by a set of orthonormal vectors divided into

those lying in the model surface and the remainder of the set (the latter

are thus lying in the second surface according to the earlier definition).

These vectors can serve to produce most of the L.S. results and relatior

ships in a simple and straightforward manner. In particular, adjustmen

formulas can be arrived at without algebraic operations such as the di'

ferentiation of the L.S. quadratic form with respect to the parameters u.

the introduction of the Lagrange multipliers, etc.

It should be pointed out that this geometrical approach is concerned

with the derivation of the L.S. estimates as well as of the corresponding

variance-covariances and weights, but does not attempt to draw any proba-

bilistic implications. Accordingly, no assumptions (such as normality)

are needed with regard to the error probability distribution in the obser-

vations. The initial geometrical setup is thus consistent with the

"geometrical interpretation" of Section 1.3 in [13) which will be briefly

discussed later in conjunction with Fig. 1.

The property allowing a very natural derivation of the L.S. results

via geometry -- not merely their geometrical interpretation -- is the

complete correspondence between the variance-covariance propagation on one

-5-
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hand and the "propagation" of the associated (contravariant) metric tensors

on the other hand. In the same context, the "propagation" of the (covariant)

metric tensors describes what could be termed the weight propagation. This

correspondence will eventually lead to new expressions and relationships,

such as the formulas giving the (singular) weight matrices for the adjusted

observations and for the residuals.

The correspondence between the weight matrix of the observations and

the space metric tensor is the key element allowing the earlier mentioned

representation of the L.S. quadratic form by the geometric quantity ds
'2 p

The adjustment problem can thereby be transformed into the geometrical

problem which will be formulated as the minimization of the length of the

residual vector in the space metricized by the weight matrix of the obser-

vations. The geometric derivation of the L.S. results will then follow

upon representing the remaining quantities of the L.S. setup by the appropri-

ate geometric quantities. It will also become apparent that the same L.S.

results can be obtained with the covariant and contravariant indices inter-

changed.

In the historical context, this study can be placed somewhere between

the "Fredericton school" represented by the works of Vanicek([3] and the

earlier mentioned Seminar), Mohammad-Karim ([4]) and others, and the "Delft

school" represented, over a period spanning more than two decades, by

Tienstra ([5], [6], [7]), Baarda (C81, [9], [10]), Kooimans ([11]) and a

number of others (for example, the editors of [71). It would probably be

more appropriate to place these two schools and the present study at the
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vertices of a triangle, due to significant differences in mathematical

tools, approach and scope. The Delft school is noted for its algebraic

approach using the principles and notations of tensor analysis, as well

as for the breadth and scope of its extensive publications. The Fredericton

school is noted for its diagrammnatic approach to the representation of

various L.S. methods and, as in the Seminar, for its Hilbert-space approach

to the L.S. adjustment. Finally, this report emphasizes the geometrical

approach with tensor structure to the L.S. adjustment theory. Although its

scope is limited to the parametric and condition methods, the current

approach can be expanded in the future to include other L.S. methods and

topics.

The trends followed by the above two schools are now briefly sunmmarized.

With regard to the publications of the Fredericton school, the subject of

£3] is limited to the parametric method which is also the most extensivelyI treated topic in the Seminar. However, the latter presents two additional

adjustment models as well (the condition method and the general method in-

volving several or all residuals in each equation). But the most prominent

feature that distinguishes the Seminar from [3J is the emphasis on Hilbert-

space interpretation. In particular, whereas £3] associates certain tensor

quantities with the corresponding vectors and matrices of the L.S. setup

and proceeds to a commuutative diagram, the Seminar also relates the tensor

operations to those in the Hilbert space. The reference [4) deserves

mentioning for its treatment of several adjustment models including colloca-

tion. It builds on the ideas put forth in £3) of which it could be con-

sidered a natural extension. With regard to the parametric method, only a
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few unessential features, such as an iterative scheme, distinguish it from

[3]. In both [3] and [4] the weight matrices (P. for the observations and

Px for the parameters) are represented by ti,, associated metric tensors,

see e.g. the statement on page 222 of (3] that "the metric tensors P, and

P are considered contravariant."x

In an earlier version of the present study the weight matrices, called

here P-matrices, were identified exclusively with the metric tensors (i.e.,

treated as covariant), whereas the variance-covariance matrices, called

here C-matrices, were identified exclusively with the associated metric

tensors (i.e., treated as contravariant). This was due especially to a

simple and convenient geometrical interpretation of the design matrix in

the parametric method. Since the conception of the idea linking certain

tensor notations and operations to the L.S. adjustment and mathematical

statistics, the Delft school has adhered strictly to this kind of identifi-

cation (with the exception of a scale factor) as is evidenced by [5) through

111i, hence the term "traditional identification". Although in [3)

Vancek broke with this tradition by reversing the covariant and contra-

variant indices in what will be called "new identification", in the Seminar

he reverted back to it. It is apparent that by trying to proceed in both

ways, Van' ek anticipated a perfect duality between the covariant and contra-

variant "spaces". Such a duality points to a close parallelism between the

tensor approach and the Hilbert-space approach to the adjustment theory

alluded to at the beginning of this chapter.

Indeed, when choosing the traditional identification of the given

P-matrix in the Seminar, Vanicek stated that whether P is "considered to
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correspond to covariant or contravariant metric tensor is a more or less

arbitrary decision". The present study fully supports this assertion in

an evaluation which is essentially a by-product of the vectorizations

mentioned earlier. In such a process all the pertinent relationships are

expressed as tensor equations since difficulties would arise if any

dependence on coordinate systems were introduced.

As will become clear, passing from the traditional to the new identifi-

cation entails either changing the rules for matrix multiplications or

transposing the matrices as they are substituted for the corresponding

second-order tensors. The latter is preferred by far. This interchange-

ability in identification will be demonstrated not only directly in tensor

form (the "weight propagation law" will be again seen to follow exactly the

same rules as the known variance-covariance propagation law), but also by

carrying out the L.S. adjustment in terms of the parametric and condition

methods with both kinds of identification. All the results between the two

versions will be shown to be identical and the corresponding commutative

diagrams will be seen to be mirror images of each other.

In the traditional identification the design matrix (A) of the para-

metric method is associated with the partial derivatives ax r/aua as intro-

duced earlier, with xr representing the space coordinates and ua representing

the model-surface coordinates. This association was originally inspired by

[3]. The geometrical pursuit of this concept leads to expressing the same

"model vector" both in space coordinates, in which case its contravariant

components are written as dx'r and correspond essentially to the adjusted

observations, and in model-surface coordinates, in which case its
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contravariant components are written as dua and correspond essentially to

the adjusted parameters. The appropriate second-order metric tensors

(gr and a for the P-matrices, girs and a L for the C-matrices) then
rs

follow from the geometrical setup. Most of the geometrical insight

offered thus far has been linked to the traditional identification, in which

the interpretation of the matrix A is particularly simple and natural. In

the new identification the covariant and contravariant indices would be

interchanged with regard to the P- and C-matrices as well as with regard to

various adjustment vectors; furthermore, the interpretation of the matrix A

would undergo a basic change.

Reasoning similar to the above, but with regard to dx" and the second

surface, leads to the (minus) residuals and the "adjusted parameters" for

the condition method as well as to the corresponding P- and C-matrices. It

should be noted that these "parameters" arise from purely geometrical con-

siderations and are linked to the other geometrical quantities in relation-

ships reminiscent of the parametric method; the different kinds of final

formulas stem merely from the different a priori design matrices. It should

also be noted that such "parameters" are not the Lagrange multipliers known

from the standard treatment of the condition method, although the two are

closely related and, in tensor notations, differ only in sign and by having

the contravariant and covariant indices interchanged. Clearly, the Lagrange

multipliers result from algebraic operations and are not needed in the

present approach. Nor do they lend themselves readily to a geometrical

interpretation.

The commutative diagrams, although inspired by [3], are used here on a
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broader basis than has been the case with the Fredericton school. In

particular, not only the final product (the adjustment scheme in terms of

vectors and matrices) is expressed in this way, but also the underlying

geometrical representation (the relationships in terms of vectors and

second-order tensors). In another extension to the Fredericton approach,

the special attention paid to the model vector dx' lying in the model sur-

face and to the vector dx" lying in the second surface leads to a new out-

come giving the corresponding singular P- and C-matrices as distinguished

from the nonsingular P- and C-matrices associated with the observational

vector dx. In the standard adjustment theory these two new C-matrices are

known as the C-matrices for the adjusted observations and the residuals,

respectively, but the corresponding P-matrices are not considered. Still

another addition to the adjustment theory of the Fredericton school is the

geometrical derivation of the C-matrices for linear functions of adjusted

parameters or adjusted observations.

A brief review of highlights in the Delft approach is in order,

especially for comparison purposes between the references L51 - [11] and

the present study. The difference in scope has been already mentioned, as

well as the adherence of the Delft school only to the traditional identifica-

tion. It has also been indicated that the Delft approach is basically

algebraic, an extensive use of tensor notations notwithstanding. This can

be noticed already in the differentiation of the L.S. quadratic form with

* respect to the parameters in the parametric method or in the introduction

of the Lagrange multipliers in the condition method. Although [5] - [11]

contain certain geometric illustrations, one of the main differences between
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the Delft approach and the geometrical approach pursued herein is that

the former does not exploit such concepts as the extrinsic properties of

surfaces. A corroboration of this statement will be made in conjunction

with [11].

Reference [51. This reference lays out the foundation of the Delft

approach, encompassing the traditional identification, the tensor notations,

etc. The derivations on the beginning pages show how the contravariant

components of vectors and the associated metric tensors are related in

linear transformations. The adjustment formulas are derived with

uncorrelated observations and then with correlated observations, where the

correlations are introduced by a linear transformation of the originally

uncorrelated variates. The condition method is treated first, followed by

the parametric method. The use of the Lagrange multipliers and the dif-

ferentiation of the L.S. quadratic form with respect to the parameters

form an essential part of [51. However, this has been already indicated in

the preceding paragraph and need not be repeated in the balance of the Delft

approach summary. The latter part of [51 treats the parametric method with

constraints and the general method based on the formulas already derived;

however, these topics go beyond the scope of the present study.

Reference [6]. Here the emphasis is put on the statistical concepts

such as theory of observations, distributions (normal, multivariate-normal),

correlation, residuals, etc. The L.S. properties are studied against the

background of the normal distribution of observations. A geometric inter-

pretation given in conjunction with the condition method views the obser-

vations as the n coordinates of the "observed point". It should be pointed

-12-



out that a similar philosophy is used, and elaborated upon, also in the

present report through the introduction of the observational vector dx

with n components. The solution for the condition method in [6) is pre-

sented in a standard form as well as in a form characterized by a unit

weight matrix as obtained from the original matrix through a coordinate

transformation.

One may notice that the use of concepts based on true errors, true

values, etc., is discouraged in [6]. Instead, the case is made in favor

of the physical reality of the observations. The present study could

easily avoid any mention of true values, etc., especially since it is not

statistically oriented. However, in a few isolated instances the term

"true" is used for illustration. Such a designation should be understood

in a loose sense, mainly as serving to describe certain relationships in a

given adjustment model. Although such "true" quantities will never be

known, their estimates -- which represent the outcome and the real purpose

of the adjustment -- have to satisfy the same relationships. One can thus

regard the mathematical formulation of an adjustment model in terms of

"true" values merely as a matter of convenience.

Reference [7]. In this reference the Delft approach is given a detailed

mathematical foundation. The first three chapters expand parts of the theory

outlined in [6], such as frequency distribution, normality characteristics

of observations, or multivariate-normal distribution free of correlation.

In Chapter 4 the correlations are introduced by linear transformations of

uncorrelated variates, similar to [5). Chapter 5 proceeds to an adjustment

-13-



of the condition method under the normality assumption, again in line with

[5]. In Chapters 6 and 7 computational algorithms are developed consistent

with the previous derivations, especially the algorithms for the condition

and parametric methods with uncorrelated and correlated observations. In

addition, the parametric method with constraints, the general method, and

the general method with constraints are treated; these topics are beyond

the scope of the present report, as are the topics developed in Chapters

8 and 9 dealing, for example, with the analysis of residuals.

Reference [8]. The initial steps in this reference are based on the

previous concepts established especially in [7]. The mathematical symbolism

is characterized by mixed tensor and matrix notations. Although the normal

distribution of observations is accepted for simplicity, other distributions

are not excluded. The previous work on adjustment in steps as well as on

statistical treatment of adjustment results and on other topics beyond the

scope of the present study is expanded, including testing of hypotheses,

non-linearity effects, etc. In spite of the differences between the Delft

approach and the geometrical approach, the formulas that can be compared

show a complete agreement. For example, Mr. P. Teunissen of the Technical

University of Delft showed, after some unessential notational changes, a

number of equivalences existing between this study and [8).

Reference [9]. In many respects this reference is an expansion and

continuation of [8]. Accordingly, the previous notations and conventions

are preserved. It is concerned with testing of hypotheses (null hypothesis,

one or more alternative hypotheses), analysis of variance, confidence

regions, reliability of geodetic networks, etc. Such statistical treatment
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of the adjustment outcome is not a part of the present report.

Reference (10). This reference, available only in Dutch, appears to

have been conceived as a textbook (in two volumes) addressing itself to

readers sufficiently familiar with statistical concepts in the adjustment

theory as well as with tensor notations and operations. It is based on

some of the material contained in [5) - [9) and proceeds to a substantial

expansion of this approach. For example, several initial formulas as well

as the notations correspond to Chapter 2 of [9]; the presentation of the

solution for the parametric and condition methods in Chapter 7 resembles

the first part of Chapter 2 in [8). The theory for these two methods is

recapitulated and broadened, indluding linear transformations, rank of

matrices, etc. The expanded and newly treated concepts (always in tensor

notations) going beyond the scope of the present study include ortho-

gonalization. application of the Choleski algorithm, adjustment in phases,

treatment of the parametric method with constraints as well as the general

method with and without constraints, treatment of non-linear models, etc.

Reference 111]. This reference, although dating back to 1958, is

left for the end of the list in order to illustrate, in concrete terms,

the most noticeable difference between the Delft approach and the geometrical

approach introduced in this report. The scope of 11]1 is limited to re-

capitulating some of the principal concepts in [5] - [7], as well as to

developing the condition method along those lines including a certain amount

of testing. The basic formulas for the parametric method are obtained upon

adopting a different mathematical form for the condition method. The point
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of interest lies here in the transformation formula for the associated

metric tensor. With slight changes in notations, this reference utilizes

-ab : -a i -b,..'l
g (3x /ax )(ax /ax)g' K

which is also one of the basic formulas in the present study, expressing

the associated metric tensor in xr coordinates based on the corresponding

tensor in xr coordinates; all the index letters pertain to an n-dimensional

space (i.e., they run from 1 to n).

In the adjustment context the above formula expresses the law of

propagation of variance-covariances. The present approach attributes to

this formula the same meaning as [11] in the category of the coordinate

transformations (from x r to x r coordinates) in one and the same n-dimensional

space. If more than one space is considered, the first (lower-dimensional)

being immersed in another (higher-dimensional), the above law can be extended.

Indeed, this avenue is followed herein upon identifying the former space

with a surface embedded in the latter. The formulas for the desired results

including variance-covariances and weights can then be obtained by utilizing

the extrinsic properties of surfaces and surface vectors instead of utilizing

the algebraic means as in the Delft approach.

The orientation of the present study in the historical context having

been established, it is useful to state clearly its limitations and summarize

its special features. With regard to the limitations, only the parametric

and condition methods are presented, with no consideration given to the

general method (with or without constraints) or collocation; the design
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matrix of the parametric method is considered to have the full column rank

so that the rank deficient systems usually associated with the adjustment

of free networks are not treated either. Another limitation concerns the

statistical concepts which are represented here only by the formulas giving

the variance-covariances and the corresponding weights; no consideration

is given to probability distributions of random variables, confidence

regions, testing of hypotheses, etc. Finally, no attempt is made to treat

nonlinear problems (here the power of tensor calculus could be particularly

useful). These three kinds of limitations indicate the topics which could

be addressed in the future by other studies, reports or papers based on the

geometrical approach. For example, properties of the point functions grs'

etc., could be exploited in a nonlinear (and non-linearized) L.S. problem

wherein the point to which these functions belong could be subject to dis-

placements.

The highlights of this study can be summarized as follows:

a) Differential geometry based on the tensor structure and notations

is used throughout; advantage is taken of the simplicity in expressing the

pertinent tensor quantities by means of orthonormal space and/or surface

vectors.

b) The geometrical concept is generalized to an n-dimensional space

and u-dimensional or r-dimensional surfaces; n is identified with the number

of observations, u with the number of parameters in the parametric method

and r with the number of condition equations in the condition method, where

n =u+r.
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c) The possibility of identifying the associated metric tensors

(contravariant) with C-matrices and the metric tensors (covariant) with

P-matrices is established, as is the possibility of the reverse identifi-

cation; the first identification is called traditional and the second is

called new.

d) Adjustment in terms of the parametric and condition methods is

associated with one and the same geometrical situation, in which a given

observational vector is decomposed into a model vector lying in the

(u-dimensional) model surface and a second vector orthogonal to this sur-

face; the adjustment formulas for either method follow from a direct trans-

cription of the corresponding geometrical relationships.

e) In expressing the geometrical relationships as well as their L.S.

counterparts, here the parametric and condition methods, the diagrammatic

representation is adopted; only one diagram is needed for the description

of both methods.

f) The parametric and condition methods are expressed in either type

of identification (traditional and new); the corresponding formulas are

identical and the corresponding diagrams are mirror images of each other,

implying duality between the two identifications similar to the duality

properties in Hilbert spaces.

g) Connection to Hilbert spaces is established by demonstrating that

the tensor approach to the L.S. adjustment is a classical case of a Hilbert-

space approach to the same problem; this could help to elucidate the Hilbert-

space theory for those who are familiar with a few basic principles of

tensor analysis.
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One of the main purposes of the geometrical development presented

herein is to describe the adjustment theory in a simple and plausible way.

The tools for carrying out this task have been reduced to a minimum, con-

sisting of tensor relations contained in the beginning sections. Yet they

are sufficient to make the derivations completely general. However, the

tensor approach alone cannot guarantee simplici:,v. For example, failing

to proceed via vectorization could complicate and significantly lengthen

the development. The present report is intended to be entirely self-

contained. The references are not needed for the derivations, their main

role is to establish a niche for the geometrical approach to the L.S.

adjustment in a field that has been explored decades ago and then again in

recent years.
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2, MATHEMATICAL BACKGROUND

This chapter is divided into two sections, the first describing the

space relations and the second introducing surfaces and surface vectors

used for the derivation of the L.S. formulas. All the relations are con-

sidered at a given point P.(not to be confused with P-matrices). The

n-dimensional space is spanned by n orthonormal vectors which can be

considered its base vectors. The first u vectors are denoted by the Roman

letters Z, j, etc., while the last r = n- u vectors are denoted by the

Greek letters v, etc. In either group dots will take place of the vectors

not written explicitly. The first u vectors are chosen to lie in the

u-dimensional model surface. Therefore, they can also be expressed in

surface coordinates and considered as orthonormal base vectors in such a

u-dimensional subspace. The space components of tensors (including vectors)

are designated by the lower-case Roman letters as indices. The surface

components are designated by the Greek letters as indices. Eventually, the

r-dimensional subspace orthogonal to the model surface at P will be

identified with a second surface and the upper-case Roman letters as indices

will be resorted to.

Most notations will be used consistent with [2]. Accordingly, the

space metric tensor is represented by grs (this notation also indicates its

r,s components) and the metric tensor for the model surface by a B; the

metric tensor for the second surface will be written in the form aLM. The

associated metric tensors have both indices raised. The basic notions of

tensor algebra need not be repeated since they can be found in standard
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textbooks, e.g., in the beginning chapters of [2]. Thus, the summation

convention for repeated (dummy) indices applies, a differential vector

divided by its length is a unit vector which may be identified by its

contravariant or covariant components and may be expressed in space or

surface coordinates (for example, 2r dx r/ds , are the contravariant space

components of a unit vector z lying in the model surface), all the metric

tensors are defined as symmetrical, etc. In addition to second-order

covariant tensors, such as grs' and contravariant tensors, such as grS

also second-order mixed tensors will be used, such as 6r (it equals 0 fors
rt s and 1 for r= s); the latter is known as the Kronecker delta and has

similar properties in any space or surface coordinates.

Although the concepts exposed in parts of the first six chapters of

[2) provide valuable background material, several formulas developed in

this study do not have an equivalent in [2], and several others are derived

in a different and independent manner. The two most noticeable differences

that distinguish the derivations herein from those in [2) are the higher-

dimensional approach to space and surface relationships (in [2], n=3 and

u=2), and the choice to carry out the derivations in general coordinates

rather than to base some of them on the results valid in Cartesian coordi-

nates (this choice is just as easy, and it removes any possible doubts one

may feel when relying on Cartesian coordinates with indistinguishable con-

travariant and covariant components, even though the relationships expres-

sed in tensor equations are valid in any coordinates and make the use of

the Cartesian system permissible).
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A minor remark may be added regarding the terminology. In £2], the

term "vector" is utilized to identify a physical entity (such as Z), as

well as its contravariant components (,r) or covariant components (ks),

see e.g. the statement on page 7 therein, "three mutually perpendicular

unit vectors Ar" Pr' Vro " In the present report a distinction is

made with regard to the above three characteristics.
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2.1 Basic Relations in Space

The differential coordinate changes in the x system based on such

changes in the -r system and vice versa constitute a simple starting point

in the derivations:

dxr = ,xr/ S)&x dx = (.i/axt)dx (la,b)

Upon dividing both sides of (la,b) by ds, the length of the vector dx,

these formulas are seen to hold true with regard to unit vectors; and

upon multiplying them further by a scalar they are seen to hold true with

regard to arbitrary vectors as well. The formulas (la,b) describe the

transformation of the contravariant components of vectors in a space of

arbitrary dimensions, such as n.

The square of ds for any vector dx is defined as

ds2 = g rs dxrdxs = gij d i dxJ  (2)

where the second equality stems from ds being an invariant. Upon replacing

dxi, d-j by the appropriate forms from (Ib), we obtain

[grs - 9ij( ir)(a J/axs)]dxrdxs 0

Since the metric tensor is symmetric, the expression inside the brackets can

have up to n(n+l)/2 distinct components in an n-dimensional space. The

product dxrdxs represents n(n+l)/2 independent coefficients (dx in either

factor is the same arbitrary vector) connecting in general the same number

of distinct components inside the brackets as has just been shown. In
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following the reasoning on page 11 of [2] for a general case (not only n=3),

one concludes that the expression inside the brackets must be zero, and thus

: (ai/axr)(aJ/axS) ij (3)

grs

Instead of expressing ds2 , (2) could have been used in conjunction with 1

two independent vectors dx, dy to produce a quantity called the scalar

product, also an invariant under coordinate transformation. Since the pro-

duct dxrdy s would now represent n2 independent coefficients rather than

n(n+1)/2, equation (3) would be arrived at even if grs were replaced by a

general non-symmetric tensor hrs* One can thus conclude that the condition

of invariance gives rise to the transformation formula such as (3) for any

second-order covariant tensor.

Next we define covariant components of an arbitrary vector according to

dxs =gsrdxr ,(4)

valid in any coordinates, i.e., also with all three tensor quantities

overbarred. According to (2) one can thus write

ds2 =dx dxs = dXd 5 
.S (5)

Upon utilizing (la) and (3) in (4) and taking advantage of the Kronecker

delta in

(aii/axr)(axr/a7t) = (a7i/at) = =t

after some rearranging of indices we obtain
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dx = (-/xr)d i = (3xt/xi)dxt  (6a,b)

where (6b) follows from (6a) upon interchanging the overbars and re-

arranging the indices. The formulas (6a,b) describe the transformation

of the covariant components of vectors. The comparison of (3) and (6a)

confirms that the covariant tensor components transform like the covariant

vector components for each index. As a manner of interest we observe that

if (6a) is contracted with the contravariant components Ar of an arbitrary

vector A (for the right-hand side these components are written in a form

similar to the right-hand side of la), the resulting product is confirmed

to be a tensor invariant. In [2], page 7, this invariance condition was

used to derive the covariant transformation (6a,b) itself.

In a formula parallel to (4), we define the (symmetric) associated

metric tensor g through

dx r = grsdx , (7)

valid again in conjunction with an arbitrary vector in any coordinates.

Using this and (5), we obtain an expression parallel to (2):

ds2 = grsdxrdxs = diJdi. . (8)

One can now proceed in a similar fashion that led to (3), except that (6b)

should take the place of (1b). The result is

grs = (axr/i x(9)

which also represents the transformation for a general second-order
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contravariant tensor hrs. Upon comparing it with (la), one confirms that

the contravariant tensor components transform like the contravariant vector

components for each index.

One could form an invariant using a general second-order mixed tensor

in conjunction with two independent vectors dx, dy as in

h dxrdy = fd-idyJ 

hrd r =

which leads, with the use of both (1b) and (6b), to

hr = Jx r/a.i(axJ/axS) F (10)

This quantity transforms in the manner of contravariant vector components

for the upper index and covariant vector components for the lower index.

If "h" is replaced by "6", the Kronecker delta is confirmed to be a mixed

tensor.

According to 51 on page 9 in [2], a matrix can be regarded as a tensor

if it transforms in the manner of vector components for each index. Since

the above transformations for the tensors "g" or "h" can be proven just as

easily for any number of indices, and since the space dimensions are now

arbitrary rather than three, the correspondences involving (3x3) matrices

could be generalized to correspondences involving higher-dimensional arrays.

Similar generalizations could be made with regard to other tensor quantities.

For example, axr/au t no longer corresponds merely to a (3x2) matrix as would

be the case in the context of [2]. Since these as well as more complicated

expressions having a higher number of indices may in turn be contracted
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with various tensors, an analogy with higher-dimensional array operations

could be established. The purpose of the foregoing has been to indicate

that tensor concepts can be greatly expanded and have potentially few

limitations. Although the present study is limited to second-order tensors

at the most, these tensors can be related to matrices of general dimensions

such as (nxn), (nxu), (uxu), etc., instead of merely (3x3), (3x2) and (2x2).

Since the tensors encountered herein will be expressed in terms of ortho-

normal vectors in space and/or surface coordinates, the interpretation and

treatment of the corresponding matrices will be particularly simple.

Due to the property of lowering or raising indices by the metric tensor

or the associated metric tensor, respectively, one can write for arbitrary

vectors A, B:

AiBi 6?'ApB i = AJB. - gPJA g. ,

*1 Ip p ~ Ji

and thus

Ji p(6? gPJgji)ApBO 0.

Since A and B are independent, Ap B represents n2 independent coefficients
2p

connecting the n2 components of the expression within the parentheses (it

is inconsequential whether some or all of the components are distinct). It

then follows that this expression must be zero for each component, that is,

gPJgji = (11)

That this and other tensor equations are valid in any coordinates can be

readily confirmed upon the multiplication by the appropriate transformation

factors.

-27-



The orthonormal vectors Z, j, ... , v, ... have the well-known

property,

£r~r = 1 * rr = 0 . rr = 0, .. (12

r r r
r 1 ri =0 Z V 0(12)

which stems from the definition of the scalar product in n dimensions in

analogy to its three-dimensional counterpart. In using these invariants,

an arbitrary space vector A can always be described through

Ar = a r + bjr + ... + kr +... , (13a)

r r ra= ZrA , b =jrA v k = A (13b)

which enables us to write

gArAs =_ A sAs = (Z r Zs + j ris +... +VrVs+...)AA(3
grsA~ A=(~ j +.. +v rs sr srs + .ArAS (13c)

When subtracting the right-hand side from the left-hand side in (13c),

we obtain a symmetric expression contracted by ArAs which should result

in zero (an invariant). Similar to the cases treated earlier we conclude

that this symmetric expression must be zero and, therefore, that

grs = Zrs +  s j + .. + Vrvs +.". (14)

Due to the above symmetry, the double contraction by the arbitrary vector

A in (13c) is sufficient without the necessity of bringing a second arbitrary

vector into the picture.

Upon interchanging the upper and lower indices in (13a-c), similarly

we obtain
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grs = Lr s + jr s + ... + r s + (15)

With the aid of (14) and (15), equation (11) yields

r + J Js + ... + Vr u  +.• (16)
S S S "

where use has been made of the orthonormal properties (12). If (la) is

applied to all of the orthonormal vectors, one can form

r- r- + r- =(Dxr/ )T-xrk + jt +...+r t +. t + js-t +...+ -- t

Upon taking advantage of (16) in 3r coordinates, this is written as

axrlx t = rlt + jr t + + Vr t + (17)

The reversed partial derivatives would follow from interchanging the overbars

in (17).
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2.2 Relations Involving Extrinsic Properties of Surfaces

We first rewrite some of the formulas derived in the preceding section t'.
which are immediately applicable in a u-dimensional space viewed here as a v
surface. In particular, (4), (7), (12), (14), (15) and (16) together with

(11) are transcribed, respectively, as

du, =aB duo, duo =a°du , (18a,b)

iOa =01 j =0,..., (19)

a = + j j + ... , a o = + joj + , (20a,b)

=a ay =aza + jo + (21)

where use is made of the orthonormal vectors Z, j, etc., written now in

terms of surface coordinates.

The same physical vector of length ds' lying in the surface can be

represented by space as well as by surface components, both contravariant

and covariant (one kind can be obtained from the other via the appropriate

metric tensor), as follows:

dx'r = air + bjr + , dx' = a s + bJs + ... , (22a,b)

du' =at" + bj +... , du, = a + ... ; (23a,b)

from here the scalar invariants a, b, etc., can be found through the self-

evident contractions of that vector with Z, j, etc., respectively. The

invariant ds'2 is given in several equivalent ways in the expression
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ds' 2 = dxrdx = grs "dxr'S = grsdxrndxm

= du u = a aduadu = aBdu adu = a2 + b2 + ... (24)

This could represent the first step in connecting space and surface tensors,

but we shall proceed along slightly different lines. One notices that the

result of (24) necessarily agrees with the Cartesian formulation which merely

introduces a special coordinate system for expressing Z, j, etc.

In Chapter 6 of [2], dealing with two-dimensional surfaces embedded in

a three-dimensional space, several forms describing a surface are presented.

The first, or Gauss' form, has the most general characteristics and is

adopted for the present development. It now expresses each of the n space

coordinates x r as some function of the u surface coordinates us, namely

xr  = xr(u,) ; r = 1,2,...,n ; c = 1,2,...,u

The ordinary rule of differentiation for this system of equations yields

the following linear relation between the space components dx' r and the

surface components du1 of a vector lying in the surface:

dx'r = (axr/Dua)dua (25)

This is essentially equation 6.01 of [2] adapted to the present context,

and it is a counterpart of (la) where the vector dx is unrestricted.

Since dx' is the same physical vector as du expressed in different

coordinates, the above is one of the basic formulas relating the space

and the surface components of such vectors. If we apply this formula to

Z, j, etc., in analogy to the steps that have lead to (17) we obtain
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+ jr + = axr/au

where (21) has been taken into account for the right-hand side. This

vectorized form closely resembles the tensor equation 6.09 in [2] where,

however, the derivation was based on a relation of the type (24). Clearly,

it transforms like a space tensor in the contravariant indices and like a

surface tensor in the covariant indices. Upon multiplying it (with the

index r changed to s) by dx' as given in (22b) and considering (23b), one
5

finds

du B : (xS/3u0)dx' , (26)

which resembles 6.08 in [2] derived again differently.

Introducing the notation Ar for the partial derivatives axr/aua
a

we have

Ar = axr/au = ,r, + jrj . , (27)a a a

whose components could be found explicitly from the Gauss' form of the

surface. Using this notation we write (25) and (26) as

dx'r = Ard ua , du =A sdx' , (28a,b)

which is confirmed also with the relations (22a)-(23b) together with (27).

Similar formulas can be written in terms of the vectors Z, j, etc., namely

•r Ari jr r.t

In considering an arbitrary vector dx" from the subspace orthogonal to the

surface, it follows that
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A dxs = 0. (29)

Next we define a different vectorized expression,

Qr r+ j Jr +  (30)

which transforms like a surface tensor in the contravariant indices and

like a space tensor in the covariant indices. Although "Q" may not be

given directly, it is linked to "A" in a simple relationship to be shown

later in this section. Upon changing the indices ot, r to (, s in (30),

n.ultiplying this equation by (23b) and considering (22b), one has (31a)

below, while the consideration of (30) and (22a), (23a) leads to (31b):

dX' = Q ~du, du' = Q'dx'r (31a,b)

With regard to the vector dx", it now holds that

r
Qrdx = 0. (32)

In considering the importance of the model surface in the upcoming

development, it is useful to introduce a symmetric tensor gr's having the

role of the space metric tensor, but only for the vectors restricted to

this surface:

grs £rZs + JrJs (33a)

Multiplying (22a) by this tensor yields (22b). Thus we see that (4) is

obtained with all three tensors primed and that the primes can similarly

be added to (2) and (5), etc., which confirms the desired characteristics

of (33a). We note that since grs lowers the indices in conjunction with
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any space vectors, the use of this tensor is sufficient -- but not

necessary -- for lowering the indices in conjunction with the vectors lying

in the surface. The tensor of the lowest rank to accomplish this is g

which can thus be said to be the "necessary metric tensor" in this context. K;

Similar statements with self-evident modifications can be also made

with regard to the tensor gr, namely

girs £rXs *r s + (33b)

which can be called the "necessary associated metric tensor". For example,

when this tensor is applied to (22b), equation (7) is recovered with all

three quantities primed, etc. It is worth mentioning that the orthonormal

vectors Z, j, etc., are not given, nor is it necessary to express them in

any way, but they are used as geometrical tools in unearthing the relation-

ships between various tensor quantities and formulating them in tensor

equations valid in any coordinates.

In using (27) and (30) together with the vectorized forms for the

(associated) metric tensors already encountered, the following identities

are readily established:

Ar = _,rsQ rs (34)

c g Qa =g Q

O= a a 9 aAS_ Bs 9(5Qr s = a ABg (35)

As well, due to (21) the identity below holds true:

Q(Ar 6 (36)
r~-4
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Recalling (33a,b) one also derives

Ar ^X

A Q r Zrt + j + . g rs (37)aX t t [s
The final (non-vectorized) formulas giving the metric tensor and the

associated metric tensor in surface coordinates as well as the final

formulas giving the "necessary" counterparts of these tensors in space

coordinates will be presented in the next chapter via a geometrical com-

mutative diagram. The subsequent chapter will utilize them in establishing

the link between certain tensor transformations and the law of the

variance-covariance propagation.
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3. GEOMETRICAL CONFIGURATION REFLECTING THE LEAST-SQUARES SETUP

In Section 2.2 only one surface has been considered, called the model

surface, to which all of the formulas (18a)-(37) have been related in

some way. Only equations (29) and (32) have featured a vector (dx") inde-

pendent of this surface, in particular, an arbitrary vector from the sub-

space orthogonal to the surface at the point P. Such a vector has not yet

been related to dx or to another surface. But if the vector dx is

decomposed into dx' and di, where the first lies in the model surface and

the second lies in some other surface, the formulas from Section 2.2 can be

adapted for dx and the related quantities. Clearly, the "other surface"

would have to be specified. The easiest configuration to handle occurs

when this surface is identified with the subspace orthogonal to the model

surface at P and becomes thus the "second surface" mentioned in Chapter 1.

The metric and the associated metric tensors in surface coordinates can then

be expressed in a vectorized form similar to (20a,b), where the orthonormal

vectors R, j, etc., are replaced by v, etc. Just as the former, the latter

also coincide with the physical vectors used earlier in the expressions of

space relations.

According to the above stipulation, dx is decomposed into two ortho-

gonal vectors. One, again denoted dx', lies in the model surface and the

other, denoted dx", lies in the second surface. This brings about a

number of advantages. For example, the relations (29) and (32) with this

particular vector dx" -- as opposed to some quite arbitrary vector dx" as

implied therein -- can be used to express dx' in surface coordinates
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directly from dx, etc. In using the counterparts of the formulas in

Section 2.2 with regard to the second surface, dx" can likewise be expres-

sed in surface coordinates directly from dx. All the relationships stenmming

from the present geometrical configuration will be seen as exceedingly

simple, especially if they should be compared with a procedure based on a

different second surface. But this configuration with all its advantages

and clearcut characteristics would be of little use in the adjustment

theory if it did not faithfully reflect the L.S. setup.

In order to prepare the ground for relating differential geometry to

the L.S. adjustment, dx is regarded as an observational vector. In the

absence of any errors, the observational vector would coincide with a "true"

vector restricted by the nature of the problem to what is called here the

model surface. In Fig. 1 showing a simplified situation in a three-

dimensional space (n=3, u=2), this "true" vector could be symbolized by an

t
arrow from P to Q . But since the "true" vector can never be known, it is

estimated by another vector which likewise must lie in the model surface

(this restriction is expressed by the pertinent mathematical model con-

sidered known). "ie such vector, called the model vector, could be

symbolized in Fig. 1 by an arrow from P to Q. An arrow from Q to Q

(parallel-transported to P) would then represent estimates of errors in

the observational vector and would be called the error vector. The

observational vector can thus be said to be decomposed into a model vector4 and an error vector, all belonging to the point P.

Within a small neighborhood of P considered, the model surface in
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Fig. 1 is approximated by a plane. This figure then corresponds to

Fig. 1.3.1 of [13], except that the observational vector (y) therein is

associated with the metric in Cartesian coordinates whereas the vector

dx above can be associated with a more general metric. But in other

respects the present geometrical representation of the L.S. setup, in-

cluding the notion of minimum length for the error vector as explained

in the next paragraph, is consistent with Section 1.3 of [13]. One may

notice that what is called here the second surface corresponds, according

to Definition 16 on page 384 of the same reference, to an orthocomplement

of the model surface at P in the underlying space.

aFigure 1

Symbolic representation of the observational vector dx,
model vector dx' and error vector dx"
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Because the model surface contains the all-important model vector,

the need for expressing certain extrinsic properties of this surface is 4
easily understood. However, the usefulness of introducing another surface

and its extrinsic properties into the derivations depends on the type of

adjustment one intends to apply to the observational vector. If one

stipulates that the length of the error vector should be a minimum, it

follows that this vector must be orthogonal to the model surface. It

thus lies in the second surface and is identified by the symbol dx" in

agreement with the second paragraph of this chapter. Under this stipula-

tion the decomposition of the observational vector is characterized by

dxs = dx' + dx" , dxr = dx'r + dx" r , (38a,b)

where the model vector dx' is the orthogonal projection of the observational

vector dx on the model surface and the vector dx" is the orthogonal pro-

jection of dx on the second surface. This type of adjustment was anticipated

in Fig. 1 (hence the point Q), where the second "surface" is represented by

the straight line through P perpendicular to the (two-dimensional) model

surface. The minimum condition for the geometrical quantity ds'12

s"2 = dx tgs dxir = dx.,grsdxl (39)

corresponds to the minimum L.S. criterion for V TPV in either of the two

identifications mentioned in Chapter 1. In particular, the first form in

(39) represents the traditional identification and the second form represents

the new identification.
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The remarkable consequence of the minimum property (39), and thus

of the introduction of the second surface and the decomposition (38a,b),

is that both the model vector and the error vector fulfill the same

relationships, except that two different surfaces -- and the corresponding

two sets of tensor quantities -- are present. Once all the desired

relationships involving the model surface are derived, their counterparts

involving the second surface can readily be transcribed using simple

changes in notations. The final formulas do not contain the vectorized

expressions whose main role has been to facilitate the derivations. There-

fore, such expressions need not be listed for the second surface, except

for the following four which can be used to derive several "cross" relations

involving both surfaces:

r araL r
S V L + "'" (40)

B r vLvr + "'" (41)

,,"rs r s

s =V + "'" , g r V + ... (42a,b)

Equations (40) and (41) are the counterparts of (27) and (30), respectively,

and the "necessary" tensors in (42a,b) are the counterparts of (33a,b). The

tensors in (42a,b) are related to dx" in the same way as the tensors in

(33a,b) have been related to dx'. Upon recalling the vectorized forms of

all the pertinent (associated) metric tensors, parallel to (38a,b) one can

write

= , + if grS rs Mrs
gsr gsr gsr '= g + g (43a,b)
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As an immediate consequence of the decomposition in (38a,b), we have

s o, ' r
du = A dx' = Asdx s , du' Q rdx = QrdX , (44a,b)

where (28b) and (29) have been used in (44a), and (31b) with (32) have been

used in (44b). Similar formulas could be written for duM and duL involving

the second surface. A number of other relations, including those for the

(associated) metric tensors, could be derived from the vectorized expres-

sions in conjunction with either surface. But such an exercise is avoided.

Instead, a geometrical commutative diagram is presented in Fig. 2 from

which all the final relationships in terms of first- and second-order tensors

can be read. Some have already been derived and all the others can easily

be verified by means of the usual vectorized expressions. The diagram

offers a clearcut illustration of the complete analogy between the formulas

pertaining to one or the other surface.

A detailed description of Fig. 2 is in order. First of all, the vector

components (marked in boxes) also represent the pertinent spaces or sub-

spaces. Thus the boxes representing dx' and dx" should be imagined as

completely filling the box representing dx in both the contravariant and

covariant versions. The second-order tensors acting as linear transformation

operators are designated by arrows. The heavier lines identify the quantities

which, in the corresponding L.S. setup, are considered known a priori. The

dashed a'rows identify the tensors regarded as intermediate, whose presence

may or may not be desired in the final results (if it is not desired, they

can be expressed by the appropriate contractions of other tensors). But

this diagram could be imagined just as well with all the lines drawn solid
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and of the same thickness. It would then illustrate even better the

analogy between the relationships involving the model surface and the

second surface.

The arrows with dots in Fig. 2 can be used in two ways, i.e., the

dots can either be considered as an integral part of the arrow (hence

"complete arrow") or be disregarded (hence "shortened arrow"). The heavy

vertical arrows g sr and grs are depicted as connecting the boxes repre-

senting dx. But since these boxes encompass both dx' and dx", the heavy

vertical arrows can be used in conjunction with any of dx, dx' or dx".

However, one has to make sure that both ends of these arrows pertain to

the same vector (this is not necessarily the case with the arrow g rs, for

example, whose tip corresponds to dx' but whose base may correspond to dx

as one of the two choices). Thus only the complete and not the shortened

g'- or g"-arrows can be substituted for by the corresponding g-arrows.

When working with the present diagram, one proceeds in general against

the direction of the arrow(s) when expressing one quantity in terms of

some other(s). When considering dx , for example, we notice that the tip
s

of only one arrow touches its box. Accordingly, it can be connected to

another quantity only through the arrow gsr whose base touches dxr . By

proceeding against the direction of this arrow dxs is expressed as in (4).

In seeking to express dxr one similarly obtains (7). In the same vein,

the diagram gives duB in terms of du", and duo in terms of du, as in (18a)

and (18b), respectively. The vector components duL and duM are expressed

in complete analogy to these equations, except that the left-hand side of

the diagram, rather than its right-hand side, is utilized. Due to such
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I.
analogies, we can concentrate on the right-hand side of the diagram when

explaining its functioning.

We notice that there are different ways available in formulating

certain vector components in terms of others. For example, du" can also

be written with the aid of the arrow Qr as in (44b), where the first and
r

second equalities correspond to the complete and shortened arrows,

respectively. The vector components dx'r can in turn be expressed by means

of the shortened arrow g rS in conjunction with dxs, or by means of the

complete arrow g rS in conjunction with dx' resulting in equation (7) with

all the quantities primed as was already mentioned following (33b). In

the latter case the complete g'-arrow can be replaced by the corresponding

g-arrow. Accordingly, dua can be written in terms of dx' through the
g-arrow. A cigy adu a brsor welltrm fdx'trog h

contraction of Qr and g or, equally well, through the contraction of Qr
rrr

and gr. Exploiting only some of the above possibilities, we write

o r ors ,rs. - ,rSd

dx'r = g sdx g Xs ' du" = Qrg sdx (45a,b)

as two examples of a great number of transformation formulas that can be

obtained with the aid of Fig. 2.

In assessing the generality of the present geometrical diagram, we

should be able to recover the correct relationships also when selecting

some very special paths. For example, one can choose to return to the

same box. In these and similar operations, the indices may be renamed but

must always be (re)arranged in such a way that the free indices do not

repeat themselves and the dummy indices repeat themselves only once. Thus,

if we strive to express dua in terms of itself by following the two shortest
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paths (first path: down and then up, second path: left and then right),

eror express dx in terms of itself, with the appropriate index changes we

have
a Ba~yU Q ^ArdU6  dx~r AQdx s i

du' = = Q r6du , = Ardxls (46a,b)

with (46a) verified by (21) and (36), respectively. In following the two

longest paths (without repeating any parts thereof) as another example

involving duc' , we can write

du= (QgIrs q)(Ap ,q duY "a(aAsg' (-'rPQYa )du (46c)r )AgpqAY)du (a y a sr) p y6

where any or all of the g'-arrows can be replaced by their unprimed counter-

parts. We note that the expressions in parentheses in (46c) are equal to

their counterparts in (46a), as can be readily asserted from the vectorized

forms. In fact, for the last terms in (46a,c) these equivalences have

already been established in (34) and (35). Two paths of intermediate length

could also be considered, one describing the quad counterclockwise (starting

and ending at dua) and the other describing it clockwise. Other paths are

possible, such as proceeding half way around the quad and returning to duo.

One could also adopt any of the paths just mentioned and lengthen it by

repeating some or all of the arrows. But such repeating arrows are of

little use in general.

The second-order tensors in the diagram can be expressed in terms of

others by starting at the tip of the arrow whose formulation is sought and

proceeding against any chosen arrows until the base of the original arrow is

reached. A simple application of this rule yields the indicated equalities
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between (46a) and (46c) as discussed below the latter. When applied to

and g'rS, this rule gives the formulas which are even simpler, in that V

only one set of equalities exists in either case.

In a somewhat more complicated application, an arrow could be expressed

in terms of itself. In most cases of this kind at least one arrow would

have to be repeated. For example, we have
(47a,b,cd)

= n(QcAPn)Q aa = (aaYa )a6 B Ar = Q As,  grS gqs

r p 6'r Y6 ' us 0 = pg

In (47d), g'rp could be replaced by grP, for example, so that no arrows on

the right-hand side would repeat themselves, but the g'-arrow would still

be written in terms of itself (see gqs on the right-hand side). If also

g'qs were replaced by gqs the g'-arrow would not be written in terms of

itself, but the g-arrow would be repeated. If we replaced all three g'-arrows

on the right-hand side by their unprimed counterparts, we would have to simi-

larly replace the g'-arrow on the left-hand side because of the following

simple rule: when no other arrow except the g-arrows are involved in an

expression, they can only represent the heavy vertical arrows of Fig. 2.

The examples treated in this paragraph have little use in practice, but

they have been presented in order to demonstrate that the diagram can

handle any combinations of arrows, including even their multiple repeti-

tions.

Another class of formulas can be obtained upon expressing a combination

4 of arrows forming one "long" arrow. Proceeding even here from the tip

toward the base we have, as two examples,

gIrsO= Araa a = g Ar
Qs ai s a srA
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where the g'-arrows can again be replaced by their unprimed counterparts.

Some useful relationships can be arrived at through special combinations

of arrows reaching the tip of the initial arrow. An example can be found

in (47a,b), where the expressions in parentheses are the same tensor.

According to (21) this tensor is 6, which then confirms (36). Another

example of this kind is equation (37). More complicated examples of these

special combinations can be found, such as using more than one arrow in

one sense and then returning to the tip in the opposite sense, etc.

Although such elaborate cases will not be needed in practice, it is com-

forting to verify that the diagram can handle them as well.

As the next step, we consider both surfaces when carrying out operations

which could be called "cross-contractions". It can be readily verified that

the contraction of a tensor (either order) associated with one surface by a

tensor associated with the other surface yields a zero tensor. In terms of

the diagram, when an arrow is followed by a box or an arrow across the

dashed vertical line, the result is zero. The heavy vertical lines are not

a part of such cross-contractions since they are considered to be associated

with both surfaces. Two examples of the cross-contractions are equations

(29) and (32). The counterparts of these examples follow when proceeding

from the second surface to the model surface. As other examples, we have

rs ' dxl'r 0 dxS rdxllr ,s .r dxd~

g'rs dx = , ... gsr dx gsrdx ''r = dx'dxrr = 0,

together with their counterparts obtained again by proceeding in the other

sense. As a consequence of the cross-contractions, a tensor belonging to

the model surface contracted with the components of dx' is equal to the
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same tensor contracted with the components of dx, as seen e.g. in (44a,b)

or (45a). This feature is embodied in the properties of the complete and

shortened arrows explained earlier.

With regard to the cross-contractions involving the arrows alone, we

can write a number of relations such as the selected six below:

BLAr = 0 Q rSr = 0 , Qcag'rsBM Qars BM = 0 ; (48a,b,c)
r a 'r L r s r S

gr1 0 r 0 g g = 0. (48d,e,f)

Similar to the preceding paragraph we can state that as a consequence of the

cross-contraction properties, a contraction of a tensor belonging to the

model surface with a complete g'-arrow is equal to the contraction of the

same tensor with the corresponding g-arrow. But the replacement of a com-

plete g'-arrow by its unprimed counterpart has also been explained earlier.

Clearly, the above rules hold just as well when the second surface is

considered in lieu of the model surface.

Due to the additive relations (38a,b) and (43a,b), various contractions

among the first- and second-order primed tensors can be added algebraically

to their double-primed counterparts, the result being the corresponding

expression without primes. The formulas (38a,b) themselves are the simplest

examples with regard to the vector components alone (without any contractions),

and the formulas (43a,b) themselves are the simplest examples with regard to

the second-order tensors alone. This rule is particularly easy to follow in

the diagram. For tensor-vector contractions we have

' dxr + g" dxsr = gdXr girSdxe + g"rSdx" = grsdx s  (49a,b)

sr x gsr g ,x gs -48
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where the g'- and g"-arrows could be replaced by their unprimed counter-

parts as usual. These equations are essentially (38a,b). And tensor-tensor

contractions result in

grst + gQgt + SrBL rsg r
s = Arat L t = g st = t(t

The above rule applies between the first and the third entity in (50). In

the first entity one of the g'-arrows and one of the g"-arrows could be

replaced by the appropriate g-arrows, but clearly not both (this also

transpires from the discussion that followed 47d). The first equality in

(50) is the result of a simple return to the tip performed for either

term, and the last equality in (50) is equation (11). Nothing new would be

gained in an expression resulting from the path "up and then down" as com-

pared to the path "down and then up" chosen in (50).

Finally, an expression for ds 2 is developed in conjunction with either

surface. Upon considering the model surface, the geometrical configuration

yields

ds 2 = ds _ ds

from which it follows that

ds 2 =dxsg sr - dudu, ds2  dx grsdx - du adua . (51a,b)

The first terms on the right-hand sides of (51a,b) are essentially (2) and

(8), respectively, while the second terms follow from (24). Expressing duB

in (51a) and du1 in (51b) from the diagram, we have
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(52a,b)

dsll 2 dx Sg dXr -du BAsg dx r , ds 12  dx g rsdx - du Q'g rsdx .F
sr a sr r s r s

In the second terms on the right-hand sides of (52a,b), the g-arrows could

have been written as gin-arrows and/or the dx vectors could have been written

as the dx' vectors. With regard to the second surface, a counterpart of

(24) yields

ds'2  du aM duL ds'2  du aL duM (53a,b)
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mI
4, TENSOR STRUCTURE AND THE LAW

OF VARIANCE-COVARIANCE PROPAGATION

We have seen in Chapter 1 that the traditional identification

represented by [11] has been limited to linking the variance-covariance

propagation law to the formula for the associated metric tensor based on a

coordinate transformation in one and the same n-dimensional space. This

concept will now be generalized and extended. First, we confirm the

propagation law in the above situation called n-n, representing the trans-

formation within the same space from n coordinates x
r to n coordinates xr

Next, the situation n-u is addressed, corresponding to the transformation

from n coordinates x r to u coordinates u0. In a subsequent step we treat

the situation u-n, corresponding to the transformation from u coordinates

ua to n coordinates xr. The last situation treated is u-n, corresponding

to the transformation from u coordinates u to n coordinates 0; the upper-

case Greek letters are introduced temporarily to distinguish the indices in

an n-dimensional space from those in the other spaces already encountered.

The situation u-u need not be treated because it is the same as n-n, except

that the one space considered is u- rather than n-dimensional. As well,

nothing new would ensue from replacing u dimensions by r, etc.

In order to supplement the links between the C-matrices and the

associated metric tensors, the P-matrices in all four situations above will

similarly be linked to the metric tensors. The resulting relationships will

unearth the fact that one can formulate the "law of weight propagation" in

a complete analogy to the well-known law of variance-covariance propagation.

The above statements apply to the traditional identification. In a

-51-



subsequent derivation the new identification will replace the traditional

one in all four situations. The outcome will reveal that with proper sub-

stitutions of second-order tensors and tensor-related quantities such as

i/ xr by matrices, exactly the same formulas for both C- and P-matrices

are recovered in either identification.

It should be pointed out that although in most cases the notations

introduced for vectors and matrices are similar to the notations used later

in describing the parametric method, the subjects of the variance-

covariance propagation and the "weight propagation" are presented independ-

ently of any L.S. considerations. Indeed, it is not important at this

point whether or not the decomposition of dx into two orthogonal vectors dx'

and dx" corresponds to the L.S. adjustment. The important property we wish

to expose is that for every encountered relationship between the vector

components there exists a relationship between the corresponding (associated)

metric tensors which fits perfectly the variance-covariance propagation law.

This in itself could constitute motivation for using differential geometry

with tensor structure in an analysis of various L.S. methods and their

properties.

-- i
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4.1 Metric Relations Corresponding tojVarious Types of Vector Relations

The vector relations depicting the first three of the four situations

described above are, in the same order, (ib), (6b), (44b), (44a), (28a)

and (31a). All except the first two can be read from the diagram of Fig. 2.
i i

With regard to the situation n-n, we introduce the notations Dr = 3 /ax r

and Es = axS/lax, and transcribe the formulas giving the (associated) metricm

tensors in (9) and (3), respectively, with the overbars interchanged. The

vector formulations below ars separated from their(associated)metric tensor

counterparts by a few dots. Although these three situations require no

more than a simple transcription, the foureh situation will necessitate

a separate derivation.

Situation n-n.

d i idxr ..... ;ij = irgs 0 (54a,b)

dX = ESdx ..... S r
mm gsr k (55a,b)

Situation n-u.

du = r = "Qdxr a = r = rQag rs' (56a,b)

Qar r rQc r r

u Adx' =Adx...... ,, Asg' Ar = As  Ar (57a,b)

du = xs xs a a sr sr a

Situation u-n.

dx' =Adua''.... AraoA, (58a,b)

dX' Qu ..... $ a Q . (59a,b)
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Situation u-n. Suppose now that i numbers grouped as contravariant
-,A

vector components dx are expressed via linear combinations of the com-

ponents dua. Such a relation can be written in a form similar to (58a)

with another new notation, A . We recall that Ar in (58a), in its matrix

representation, is assumed to have the "ull (column) rank u. If the rank
~A

of the new quantity A a is also u, the derivation can proceed without any

further delay (see the next paragraph). If this rank is smaller, the

indices A are extended as much as necessary through the addition of

essentially arbitrary components, resulting in an extended quantity AA

-,A
and, accordingly, extended vector components dx' . In matrix terminology,

arbitrary rows are being added until the rank of the extended matrix

reaches u. The reasons for the original rank deficiency do not matter

(the original number n could have been smaller than u, as one example).

In the final result the added (arbitrary) values will be discarded, but

the full rank is needed if the interpretation and the derivation should

proceed in analogy to (58a,b).

At this point the interpretation of the new (and possibly extended)

expression is similar to that of (58a), except that dx° and A are now

attributed the symbol "". In particular, dx' is an n-dimensional vector

lying in the surface and expressed in the space components, whereas du is

the same vector expressed in the surface components. The nature of the

n-dimensional space in which the surface is embedded is of little interest

here. The important fact is that the derivation of the desired associated

metric tensor can proceed along the same lines as the derivation of (58b).

This leads to the relationships closely resembling (58a,b). Next we drop
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the added dimensions and components, if any, and present the results as

dx'A = AAduo. i'c = AaoB (60a,b)
ctt

Clearly, the case where the components of di' are written as linear func-

tions of the components of dx' is included in (60a,b) because the com-

ponents of dx' are linear functions of the components of du as is shown

in (58a). In such a case we would write

dx A= HAdxrr ..... g'A = gA ,rsRs (60'a,b)
r rg

According to (58a), equation (60a) is equivalent to (60'a) with

AA = AA r

a rc'

which, together with (58b), shows that equation (60b) is equivalent to (60'b).

In analogy to the above development we can consider i components dk

expressed in terms of du , similar to (59a) with another new notation, QQ.

If the rank of the latter is smaller than u, an extension (this time in Q)

again takes place. The interpretation of the new (and, eventually, extended)

expression is similar to that of (59a); the description in the preceding

paragraph can be adopted here as well. Accordingly, the relationships

parallel to (59a,b) are obtained where the added dimensions and components,

if any, are dropped. The result reads

d; = ..... gL = Q~a,,Q, (61a,b)

Here again, the case of dx' written in terms of dx' is included in (61a,b).
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In such a case we would write

-~S -A -k9Irdx K .dx.' gK fgsrA (61'a,b)

According to (59a), equation (61a) is equivalent to (61'a) with

= Qs

which, together with (59b), shows that equation (61b) is equivalent to

(61'b).

Equations (60'a,b) and (61'a.,b) reveal familiar relationships between

the (associated) metric tensors even if none of the latter has the full

rank. The development of this case has proceeded, in principle, via the

(associated) metric tensors for the model surface, which are assumed to

have the full rank u.
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4.2 Traditional Identification

In this identification the contravariant components of vectors

correspond to the "regular" vectors in adjustment calculus. Although a

L.S. adjustment is not yet considered, some of the correspondences below

are made in anticipation of the notations used in the following chapter.

In identifying second-order mixed tensors and tensor-related quantities

with matrices, the contravariant index indicates the row and the covariant

index indicates the column. This is compatible with the convention used

in adjustment calculus and applied here tt Ar = axr/aua, see e.g. equationcc

(2.23) and the statement pertaining to the Jacobian on page 16 of [12].

With regard to other second-order tesors, contravariant or covariant, the

first and second indices refer to rows and columns, respectively.

In view of (54a)-(61'b), the correspondences between the tensor and

the adjustment notations in the traditional identification are

dxr ..... d9, grS ..... C

du ..... dx , ..... C ,

x
dx ...... d , g .....rs.

S. .(62)

dy , gC;

di 'A ..... d?. C
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dX s ..... dY*gr ...P ,
du . d*, as P ,

dx' ... d*, g

(63)

d m ..... dy*, Amk ..... Py
dx dP?

d6. . .... .dgf*... P

The symbol "*" has been introduced to indicate that the covariant, rather

than contravariant, components describe certain adjustment vectors. When

dealing with the weight matrices this symbol is no longer necessary (the

contravariant or covariant origins are distinguished by the letters C or P,

respectively).

The additional correspondences introduced in this section are

A r  ..... A

(64)

Qr ..... Q ;

Dr D , A . A A H; (65)
r .r

Es  E, k ... , (66)

Starting with the relationships involving the contravariant vector

components in all four situations, the formulas of Section 4.1 can now be

written as follows:
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d; = Od. C; = DCDT ,

d = Q0Qd .... C. = QCQT= QCQT

^ AT

dx = Adx C- = AC ;

(67)

d? = dx C AC^AT

d? = Hdi C? = HC T

The connection between the last three formulas is provided by

All of the formulas in (67) express the variance-covariance propagation

law known from adjustment calculus.

In continuing with the relationships involving the covariant vector

components in all four situations, the formulas from Section 4.1 are

written as

d* = ETd* ..... P^ = ET PE,

d * = A T dt^*  A AT d *  ..... P^ = ApTPA ATPA

di* = QT dx* ..... P^ = QT p^Q;

(68)
QTdx* P. QTpQ

d?* FTdi* ..... p? Tp , .
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Here the connection between the last three formulas is provided by

The formulas in (68) exhibit exactly the same structure as (67), this time

in conjunction with the weight matrices. Accordingly, the feature described

by (68) could be called the "weight propagation law".
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4.3 New Identification

In the new identification, the "regular" adjustment vectors are

described by the covariant components of the corresponding first-order

tensors. The indices of second-order tensors and tensor-related quanti-

ties follow the convention outlined at the beginning of Section 4.2. The

new identification entails the following correspondnces:

dx ..... d i ,s ..... C

duB dx aB Ĉ

dx' ..... d , gsr ..... 'i (69)5I

i Ĉd ..... dy g9 . .

dx ..... dfg A ..... Cf^

dxr ..... di* , grs p

duo dx*, a .. Px̂

dx 'r ..... d*, g P ;
(70)

d- i  ..... d*, Pij
-i

y

dx ..... d?* , g ..... P
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The symbol "*" now indicates the use of contravariant components in

identifying certain adjustment vectors. As in Section 4.2, this symbol

is no longer necessary when dealing with the weight matrices.

It will prove expedient to introduce new correspondences also with
regard to Ar and other second-order tensors and tensor-related quantities

appearing in (64)-(66). The matrix notations A, Q, etc., are again used,

but they should be considered completely independent from the matrices

which happened to have the same symbol in Section 4.2. The new correspond-

ences are

Ar QT

(71)
otT

r

Di ET -A T - .

r A ..... Hr ., (72)

s T sm ..... T ..... 4 Ku ..... H (73)

We note that Ar etc., in the above correspondences could have been written

S

equally well as Aa , etc., since in relating these quantities to matrices

the role of the indices is merely to indicate the rows and columns.

One can now transcribe the formulas from Section 4.1, starting with

the relations involving the covariant vector components in all four

situations and continuing with the relations involving the contravariant

vector components in all four situations. In the former case the derived

formulas would read exactly as (67), including the connecting relation that

followed. And in the latter case the formulas would read exactly as (68),
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again including the connecting relation. Thus, the convenient choice

of the matrix notations above has helped to save space, while confirming

the laws of variance-covariance propagation and of "weight propagation"

also in the new identification. This confirmation represents an

important step in establishing the duality between the contravariant

and covariant "spaces" in the L.S. problems as set forth in Chapter 1.
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4.4 Rank Considerations

At this stage of the development, it might be instructive to add a

few remarks concerning the rank of matrices corresponding to certain

second-order tensors. In order to present the results independently of the

two kinds of identification, the "regular" adjustment vectors and matrices

are represented by the corresponding tensor quantities in brackets (the

indices lose much of their role in such cases). First of all, the ranks

of grs and g are considered full, i.e., equal to n. This is immediately

evident from (15) and (14), respectively. In particular, from (15) it

follows that

[grs] = RRT, R = C [CJ] [jr] ... ... ] . (74a,b)

Thus, the matrix R of dimensions (nxn) is composed of the contravariant

components of the orthonormal vectors Z, j, ..., v, ... and has the full

rank n. Accordingly, the (nxn) matrix in (74a) is positive-definite

(symmetric). Similar reasoning reveals that

g gsr I= SST

is also positive-definite, with S having the same structure as R except

that the covariant vector components are used.

From (33b) we deduce

IgJrS = R'R' T , R' I J [jr ... , (75a,b)
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where R' of dimensions (nxu) is composed of the contravariant components of

the orthonormal vectors Z, j, ... , and has the full (column) rank u.

Accordingly, the (nxn) matrix in (75a) is positive semi-definite of rank

u. In recalling (33a), we reach a similar conclusion also for

Sgs = s sT,

where S' is formed as R', but in terms of the covariant components.

For the sake of completeness, one can also consider (42b) and deduce

[grs] R"R''T R" = [ [Vr] ... ] , (76a,b)

where R" of dimensions (nxr) has the full (column) rank r. Thus, the (nxn)

matrix in (76a) is positive semi-definite of rank r. As before, a similar

conclusion in conjunction with (42a) holds also for

gs1$ r] = S ,,S ,T

We can accordingly write in analogy to (43b,a):

rank~grs] = rankg 'rs] + rank[g''rs] = u + r : n , (77)

rank[gsr] = rank[g'] + ranktgsrl = u + r = n (78)

Using the same technique, from (20b) we deduce

aot= MM T M = [ I] [j] ... ] , (79a,b)

where M of dimensions (uxu) has the full rank u, making the (uxu) matrix in

(79a) positive-definite. Equation (20a) yieldsI i]
[a I - NN T
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which has the same dimensions and rank as the matrix in (79a) because N

has the same structure as M except that the covariant vector components

are used. With the newly introduced matrix notations (R, ... , N) we

can write from (27) and (30):

TA(Ar] = R'NT , (80)CI

[Qr] = Ms T (81)
r

Since N, M are square matrices of full rank, the rank of the (nxu) matrix

in (80) equals that of R' (namely u) and the rank of the (uxn) matrix in

(81) equals that of S' (also u). We can thus summarize the rank results

for the last four entities as

ranklaI0] = rank[a I = rank[Ar] = rank[Q] = u . (82)

a a r

As a matter of interest, we note from (36) and (37) that

trace[ArQt] = trace[QIA r] = u

due to the property that trace(AQ)=trace(QA), where QA is the unit matrix

of dimensions (uxu) as is seen from (36). In the same vein, we have

trace[SrBt] = trace[BLS r] = r
L:t r-M
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5. LEAST-SQUARES ADJUSTMENT IN TRADITIONAL IDENTIFICATION

5.1 Parametric Method

The underlying mathematical model for the parametric method can be

expressed as

= F(x) , (83)

where, in the adjustment notations, Z is the vector of n observables, x is

the vector of u parameters and F represents the relationship between the

two sets. The model (83) is occasionally thought of as relating some "true"

quantities Z and x, in which case the superscript "t" can be used. Although

the philosophy of utilizing the "true" values may be questioned, the useful-

ness of the model (83) is safeguarded by virtue of the consideration that

the adjusted values must satisfy the same relationships. In this context

the symbol "^" replaces the superscript "t". And when the same model

relates some initial values, the superscript "I" is used. Clearly, the

observables to (constants) are consistent with the initial parameters x°.

This could not be said of the actual observations denoted here as Y', which

in general (for n>u) are not consistent with any set of parameters.

Considering the model (83) in terms of the adjusted quantities, we

simplify it upon using only the linear terms of the Taylor expansion; the

usual assumptions regarding good initial values of the parameters, etc.,

can be found in standard textbooks on the subject and need not be repeated

here. The linearized adjustment model reads

Z Adx + o , (84)
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whe re

A- (BF/ax) , d - x° , ° -e F(x ° ) . (85a,b,c)

The adjusted values result from the observed values 2 minus the error

estimates denoted as C ; the -2 are often called (plus) corrections, or

residuals. Equation (84) can be transcribed as

dk = dz + , (86)

where

dt = i-2° , dQ - -to° = AdR , 2 = - i. (87a,b,c)

A more usual transcription of (84) in adjustment calculus would read

-c = Adx + (2° -

where - could also be denoted as V, dx as X, and i°-i as L - Lb-- L. How-

ever, the equivalent formulation (86)-(87c) is more readily adaptable to

the geometrical interpretation.

By using similar notations in a more explicit adjustment formulation

which we are about to explain, we are led to a geometrical analogue of the

above equations in a simple and natural manner. The main feature of these

notations is that the vectors in (83) are written in terms of their

individual components which, in anticipation of the traditional identifica-

tion, are designated by superscripts. We thus write equation (83) as

j r Fr(x)} , (88)
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where F1(x1 ,x2,..., xu), F2(x1,x2 ... ,xu), Fn(xl 2,... ,xu) can be

regarded as n coordinates Fr=,r expressed in terms of u coordinates x a

But this corresponds perfectly to Gauss' form of a surface as described

prior to equation (25), expressing each space coordinate (here Zr) as

some function of the u surface coordinates (here xo). We can now consider

the specific values of surface coordinates, x° , as describing a point in

the u-dimensional surface, and the corresponding values of space coordinates,

z or as describing the same point in the underlying n-dimensional space.

This point is denoted as P. The transcription of (84)-(87c) with the

present notations would be exceedingly simple, in that dx, ^ and x° would

be attributed the superscript "a" and all the other vector quantities would

be attributed the superscript "r". From (85a) we observe that the element

(r,) of the matrix A is 3Fr/axaE r/axa evaluated at the point P. Thus,

viewed in the context of coordinates, the partial derivatives in (85a)

correspond to the components of the tensor quantity within the parentheses

of (25) written in (27) as Ar.

The analogy between the setup and solution of the parametric method

on one hand, and the geometrical configuration featuring the model surface

on the other hand can now be completed. The discussion in the preceding

paragraph leads directly to the following correspondences between the adjust-

ment relations (86), (87b), and the tensor formulation of Chapter 3 (equations

38b, 28a):

d = di + ..... dxr = dxr + dxr , (89a)

dt = Adx ..... dx'r Arduo (89b)
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Since tensors in general are functions of position, the tensor forms

on the right-hand sides of (89a,b) must belong to a specific point.

Clearly, this point is P defined earlier. To see this for (89a) we only

have to notice (87a,b) containing 9° and implying that the vectors

represented by the components dxr and dx'r can indeed be associated with

P. The vector represented by the components dx" r completes the vector

equation in (89a) and, therefore, can likewise be associated with P. In

three dimensions, such a situation is depicted in Fig. 1. With regard

to (89b), duo is associated with P through the values x° in (85b) and A has

already been shown to be linked to P.

We notice that the correspondence shown in (89b) could have been arrived

at even without the benefit of the natural correspondence between A and the
r s

partial derivatives ax /auaEAr. In particular, one could have discarded any

reference to these partial derivatives and defined Ar as +jrjs+...'
a a a

where all of the vectors Z, j, ... are considered at P. That this definition

has both the necessary and sufficient properties follows from (22a) and (23a),

based on dx' and du being considered the same physical vector. But such an

approach is merely academic since we know from (27) that the partial deriva-

tives axr /aua and Ar as just defined are one and the same quantity. However,

a similar vectorized approach will be useful in the new identification,

where the tensor equivalent of A will not be expressed by means of any

partial derivatives. Since the design matrix A in adjustment calculus is

indeed composed of partial derivatives, one is compelled to appreciate the

traditional identification making the geometrical interpretation of the L.S.

formulation exceedingly straightforward.
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The solution of the present L.S. problem is derived from the familiar

minimum condition for

vTpv T (90)

Since the vector c corresponds to the components dx (see equation 89a),

from the first equality in (39) we confirm that P, the weight matrix of

observations, corresponds to gsr' All the correspondences between the

tensor notations in the traditional identification and the adjustment

notations can thus be adopted from the first three lines of (62) and from

(64). The solution and all the derived relations in the parametric method

can then be obtained from the right-hand side of the geometrical diagram

in Fig. 2. To facilitate this task, Fig. 3 has been constructed containing

the same diagram except that the adjustment notations have replaced their

tensor counterparts.

From the right-hand side of the above diagram we can extract most of

the standard results for the parametric method. Clearly, all the quantities

of interest should be expressed in terms of the known quantities identified

by heavy lines. Following the rules explained in Chapter 3, we can write

= Qdt = QdZ E CAATPdZ , (91)

x

where

C = P ,1  P^ = ATPA (92a,b)

The matrix P; has been listed in two forms in (68) but only the second form,

(92b), is useful in practice. Since Q can only be obtained from C^, it is
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not suitable for actual computations. But if it were expressed explicitly

it could be used for a straightforward verification of C- in (67). Withx

regard to the adjusted observations, as in (67) we have
(93a,b)

dk = Adx (EAQd =E AQdk), C- = AC^AT (QAQCQTAT AQCQTAT);

the equivalent relations in parentheses could be further extended. The

(singular) matrix P^ , not sought in the standard adjustment, can be expres-

sed as

P. = QTPQ PCtP , (93c)

whose first form has been listed in (68). Its second form also follows

from the diagram. The functions of d or dk, as well as their C-matrices,

can be computed as in the last two lines of (67). The P-matrices of these

functions, although listed in (68), cannot be computed under normal circum-

stances because Q and R are unknown. They have been listed in Chapter 4

mainly for the purpose of establishing the weight propagation law in

various configurations.

The error estimates (or minus the residuals), , as well as their C-

and P-matrices follow from the diagram as

=dz - d , C^ = C - C, P^ = P - P. (94a,b,c)

"2
Corresponding to ds , from (52a) we have

eTp^ = d9 Tpd9 - d^TATPdz a diTPdz + diTu , (95a)

where
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u = -A TPdz = A T p(L@ (95b)

In terms of the notations introduced following (87c), the last tern above

could be written as A TPL.

-73-



5.2 Condition Method

Let us consider the mathematical model G(2)=O, where G is a set of

known functions and z could represent an unspecified number of other

functions characteristic of a given problem (for example, the latter could

include all possible angles in a triangulation network, etc.). However,

in the condition method the set 9 is limited to the observables as intro-

duced in the parametric method (with regard to the example just mentioned,

only the angles slated for actual measurements would now be included).

We can thus write

G(9,) = 0 , =F(x) (96a,b)

But no matter what kind of parameters x are adopted to properly describe

the observables t in (96b), the equality (96a) holds true. Similar to

Section 5.1, symbols "t", "^" or "" can be used in conjunction with k

and x. Since equations (96a,b) allow us to view G as (composite) functions

of x, we have

(DG/ax)xo 0 , (97)

where the point of evaluation has been chosen to be x0.

In considering a well-defined problem with n observables and u para-

meters as in Section 5.1, the number of independent relations (96a) is

r = n - u. (98)

In particular, in such a problem there must exist u observables, called

"necessary", which can uniquely determine the u parameters. Therefore,
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the remaining r observables must be expressible in terms of the necessary

observables. Any one of these r observables minus its counterpart expres-

sed in terms of the necessary observables can be regarded as a new func-

tion, equal to zero. The totality of these new functions represents r

independent relationships (each involves a different set of r+1 observables

in general). We have thus arrived at an independent set of r functions

involving all n observables, which can be symbolized by (96a). This

heuristic reasoning could be made simpler if only linear functions were

considered in (96a,b). It would then become immediately apparent that

(96a) can represent no more than r independent functions, etc. However,

there is no need to expand this discussion whose sole purpose has been to

illustrate the well-known fact (98).

As a consequence of (98), the matrix in (97) has the dimensions (rxu).

In terms of (96a,b) one can express (97) as

BA = 0 , B = (aG/at)Zo , A = (3./ax) , (99a,b,c)

where the matrix B has the dimensions (rxn) and A, already encountered in

(85a), hts the dimensions (nxu). In line with Section 5.1, the partial

derivatives (99b,c) are associated with the point P. Since in practice

(96b) is usually not utilized in conjunction with the condition method alone,

to is not known andBin (99b) is computed with the actual observations Z replacing
to. If, in such cases, A could also be computed (and expressed as in 99c),

equation (99a) would be confirmed sufficiently well for most purposes, but

would not be completely rigorous. This stems from the fact that although

(96b) with the values "°" is a consistent system of equations, it is not so
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with i replacing Z° (i.e.,Q/F(x°), see also the first paragraph in

Section 5.1). Under these circumstances the matrix product BA is not

exactly the same matrix as the one appearing on the left-hand side of (97).

The linearization process via the Taylor expansion at P can be pre-

sented as follows:

G(i) = G(z° ) + ( aG/az) (- ) : 0 , (100)

where (96a) has been used for G(k). In using it also for G(z°), and re-

calling (99b) and (87b), equation (100) becomes

Bdi = 0 . (101)

If (86) is taken into account, (101) can in turn be written as

Bdi = BE.

If, in the expansion (100), t is replaced by 1, the result is a

vector w (often called "misclosures") rather than zero. Using the nota-

tion (87a), in this case we obtain

Bdk = w _ G( .

The relation following (101) can thus be completed to read

w = BE = Bdt . (102)

The first equality above resembles the usual setup for the condition method,

namely

B(- ) + w = 0 . (103)
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If B is evaluated with k° we call (103) or, equivalently, (102) the

theoretical" formulation, and if B is evaluated with ,we call (103)

the "practical" formulation. The differences in results between these

two formulations are likely to be insignificant. It should be pointed

out that the practical formulation entails no more approximations than

the theoretical formulation because it is again a consequence of an

expansion like (100), except that Zo is replaced by Z.

We notice that if the values ° -- and thus also dt and the "theo-

retical" B -- were available, the misclosures w would be computed as

Bdi according to (102) and not as G(i), except for verification purposes.

The computational drawback of this theoretical formulation lies in the

necessity of introducing parameters in the model, with which (96b) is

evaluated at Pin analogy to the parametric method. If the process of expressing

the observables in terms of parameters proved too cumbersome (esperially if

u is much largqr than r), we could compute the misclosures as G(i)

instead, etc., and disregard the parameters altogether. We would thus

be adopting the practical formulation. However, the geometrical approach

of Chapter 3 coincides with the theoretical formulation, in that it

treats the tensor quantities in both surfaces as belonging to the same

point P (BLAr=O holds exactly, etc.). Accordingly, we shall keep pursuingrct

the theoretical formulation and take advantage of the wealth of information

encompassed by the diagram of Fig. 2, including various interrelations

between the parametric and condition methods.

At this point one may be compelled to ask: How can we utilize the

formulas deried through the theoretical formulation if we wish to proceed,

in actual computations, without having to evaluate Z° and dt? Clearly, in
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the theoretical formulation dZ is considered as the basic known quantity

rather than w, which has this property in the practical formulation.

Fortunately, no essential relations in the theoretical formulation utilize

dX alone, but only in the combination BdZ which is w, the same in both

formulations. Other simple correspondences exist. For example, using the

theoretical formulation we can compute dt from dt and , as well as its

C-matrix. For the adjusted observations we then have

X0' + dk 2.. - . (104)

Although the first equality is of no use in the practical formulation, the

second equality serves our purpose just as well. Furthermore, as is the

case with 1 and dk, t and df differ only by a constant vector 9,° and,

therefore, the C-matrix for d is also the C-matrix for ^. In the same

vein, all the final formulas based on the theoretical formulation can find

their use in the practical formulation as well.

In view of the upcoming development we note that any "new" formula

(96a), obtained from the original one through the pre-multiplication by an

arbitrary nonsingular matrix D of dimensions (rxr), would represent merely

another set of r independent relations containing the same amount of infor-

mation as its original counterpart. The formulas such as (99a), (101),

(102) and (103) would hold true also in this new situation, except that the

new B and new w would be equal to their original counterparts pre-multiplied

by the same matrix D. Since it does not matter which set (96a) of r

independent relations constitutes the starting point for the condition

method, any matrix B can be used in the theoretical formulation (the
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appropriate w then follows from 102), provided it is obtained from some

"original" B through the pre-multiplication by D as defined above. We

need not distinguish between such "original" and derived matrices B. If

one is more suitable than another in the derivations, we can simply adopt

it and denote it by the same letter "B".

In relating the adjustment setup for the condition method (theoretical

formulation) to the geometrical configuration of Chapter 3, we focus our

attention on equation (101). Since in Section 5.1 di has already been

identified with the components dx 'r of the vector dx' lying in the model

surface, it follows that the r "rows" of the desired second-order tensor to

be identified with B must be formed by the space covariant components of

vectors q orthogonal to the model surface (hence lying in the second surface).

These vectors q are mutually independent due to the full (row) rank of B,

and must therefore be expressible as independent combinations involving all

of the r orthonormal vectors v, ... In the matrix form, the desired second-

order tensor can be written as KT, where the nonsingular matrix K of

dimensions (rxr) contains the coefficients of the "independent combinations"

above, and the matrix T of dimensions (rxn) has as its rows the space

covariant components of v, ... The following matrix D is admissible to

modify the "original" matrix B:

D = [ [vL1 ... I  ,

where [vL] , ... are the column-vectors of r elements each, representing the

surface contravariant components of v, ... Therefore, the desired second-

order tensor written in the matrix form is the product of two matrices,
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where the first (of dimensions rxr) has the components v ... as its

columns, and the second (of dimensions rxn) has the components vr

as its rows.

As a result of the above development, the (L,r) element of the matrix

representing the desired tensor is v vr+... This tensor is accordingly BL

as defined in (41). In analogy to (89a,b), we can now write two basic

correspondences for the condition method:

d = di + F ..... dxr = dx'r + dx''r, (105a)

Bdi 0 ..... B Ldx 'r = 0 (105b)r

where (105a) is the same as (89a). All the tensor quantities are again

associated with the point P.

In employing the reasoning and identifications parallel to those in (90)

and the text that followed, we can write the correspondences with regard to

the second surface and the condition method as

dr d ~ grsCdxr  ..... dX , .... C ,

L LMduL ..... w , aLM  Cw (106)

,,r , 8rs
dx ..... , g C^ ;

dxs  dk*, gsr P

duM w* a ML P w (107)

dx, ..... g
s  sr . E
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LB r ... B,

r ~ (108)

These correspondences are reflected on the left-hand side of the diagram in

Fig. 3.

The diagram of Fig. 3 leads us to appreciate the complete analogy

between the parametric and condition methods, whose final formulas differ

due to the dissimilar matrices known a priori (A versus B) and not to some

differences in their structure. The structural analogies between the two

methods are rooted in the analogies between their geometrical counterparts

in Fig. 2, the model surface and the second surface. Thus, the misclosures

w in the condition method correspond to the parameters dx in the parametric

method. This is confirmed by comparing equations (91) and (102). And as

in the parametric method, no Lagrange multipliers are needed in the present

geometrical representation of the condition method, either. It will become

apparent that the Lagrange multipliers used in the standard resolution of

the condition method correspond to -w* in Fig. 3, offering little insight

or advantage in the present context.

The left-hand side of the diagram in Fig. 3 enables us to extract most

of the standard results for the condition method. For w regarded as para-

meters we have

w =Bdk Cw = BCBT (109a,b)

where (109a) already appeared in (102), and where C wis sometimes denoted



as M in the standard adjustment approach. For the sake of interest we

also present

w* = P , Pw C 1  (llOa,b)

VO w

where the formulation of Pw through S has been avoided. Except for the

sign, w* above agrees with the standard formula giving the Lagrange multi-

pliers as K=-(BCBT )w. The functions of w or 2, as well as their C-matrices,

could be expressed using the appropriate "transliteration" of the last two

lines in (67). However, such quantities are not likely to be needed in

practi ce.

The error estimates c and their C- and P-matrices are deduced from

the diagram as

= Sw H CB Pw (-SBC - SBdk - CP-d9), (111a)

C SCwST  CBTPwBC (-SBc^BTs T = SBcBTsT = CP^C), (111b)

P= BTPwB (111c)

In expressing the L.S. quadratic form as ds" 2 in (53a), we have

CTp- wTPww w*Tw , (112)

which, in the standard L.S. approach, can be written as -K w.

A number of "cross-products" can be read from the diagram. In the

form matrix-vector we have, for example,

^2 p0 P T ^ diTp^ pj ̂

*0-0 ... a E E E :
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and several other products including their symmetric analogues (with

respect to the vertical dashed line). One of the more important relations

of this kind, used as a means of verification in the parametric method, is

ATk* A p 0 (113)

In the theoretical formulation one would also have Bd^=O; however, in the

practical formulation di would not be computed. With regard to the matrix-

matrix form, one can readily transcribe (48a-f), for example, of which the

first three relations now read

BA = , QS = , QC-BT QCBT , (114abc)

where (114a) has already appeared as (99a). We could similarly list the

zero products along the vertical lines, such as between P^ and C^ , etc.

A useful verification formula can be obtained using "cross-additions" such

as (50), whose counterpart in matrix notations is

CiP + C^P^ = AQ + SB = CP = I. (115a)

In expressing the matrices Q and S from the diagram, (115a) yields

AC ATP + CBTPwB = I (115b)

In terms of adjustment notations, the statement below (38a,b) can be

interpreted in the sense that AQ acts as an orthogonal projection operator

from the space onto the model surface (see equation 93a, second expression

inside the parentheses), and that SB acts as an orthogonal projection

operator from the space onto the second surface (see equation 111a, second
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expression inside the parentheses). From equations (114a,b) above we

readily confirm that these two operators are orthogonal to each other.

And equation (115a) confirms that their sum yields the identity operator.

Clearly, these as well as other L.S. formulas and properties implied in

this chapter (whether stated explicitly or not) are a natural rewrite of

their geometrical predecessors presented in Chapter 3 and a part of

Chapter 4.

-85-



6, LEAST-SQUARES ADJUSTMENT IN NEW IDENTIFICATION

6.1 Parametric Method

In the new identification, the basic correspondences between the

adjustment and tensor notations can be developed in analogy to (89a,b)

with two exceptions: the vector components are now covariant (one can

imagine the contravariant index r changed to the covariant index s),

and the tensor in (89b) is to be replaced by a different second-order

tensor. Since 2 in this identification corresponds to dx" , from (39)S

we confirm that the weight matrix P corresponds to grS. The task before

us is thus limited to finding the second-order tensor relating dx' and

du, , where dx' and du represent the same physical vector as before.

This relationship should correspond to the adjustment formula d2=Adx^.

It is already clear that the desired tensor has a for its contravariant

index and s for its covariant index. Since in the matrix form designates

the rows and s designates the columns according to the previous definition

(see section 4.2 and the mention of the reference [121), this tensor

could be associated with the adjustment matrix A in a direct manner only

upon changing the rules for matrix multiplication when dealing with the new

identification. A much more palatable procedure is to leave the multiplica-

tion rules intact and associate the desired tensor with AT instead. Under

such circumstances, the matrix product Adx will be expressed by the transpose

of the desired tensor in the matrix form, post-multiplied by [du 1, the

column-vector composed of the elements du5.
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In order to relate dx' and du, equations (22b) and (23b) are con-

sulted yielding a=dxs'S=du zB , etc., from which it follows that

dxs' (tots + jajs + .. )du = Q du . (116)

This result has already been presented as (31a). The desired second-order

tensor corresponding to AT is thus seen to be Qs. Similarly, the adjustment

formula (91) corresponds now to (44a), from which one can deduce that the

tensor A is associated with Q T. One can summarize the correspondences

pertaining to the model surface by rewriting the first three lines of (69),

the first three lines of (70), and (71):

dxs  ..... d , gsr ..... C

duB dx , a ... C , (117)
!x

dxs ..... dt, gsr ..... C;

dx r di*, g ..... P

du. d *, a B ..... PR (118)

r ..... girs.....
dx dg,* , 9. .. P ̂

Ar T

Q . . AT .} 
(119)

r
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With the above correspondences the right-hand side of the diagram in

Fig. 2 can be used to construct the right-hand side of the new diagram

presented in Fig. 4. In this process, (119) is to be understood in the

sense that if At is involved in a contraction with a tensor whose (con-

travariant) index is Y, it corresponds to QT; and if it is contracted

with a tensor whose (covariant) index is t, it corresponds to Q. The
Y

tensor Q is treated similarly with self-evident changes. Finally, the

arrows designating A and AT are drawn in heavy lines indicating the

quantities known a priori, while the arrows designating Q and QT (result-

ing from products of other matrices) are drawn in dashed lines. If the

right-hand sides of Figs. 3 and 4 are compared, it is apparent that not

only are all the relationships identical, but these two parts are

essentially mirror images of each other along the dashed horizontal line.

As well, the error estimates and their C- and P-matrices in the new

identification are identical to (94a,b,c), and the L.S. quadratic form

expressed with the aid of (52b) and the selected correspondences from

(117)-(119) is identical to (95a,b).
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6.2 Condition Method

An examination of this method in the new identification reveals that

two changes are needed in the correspondences of (105a,b): the vector

components are now covariant (the upper index r changes to the lower index

s), and the tensor in (105b) is to be replaced by a different second-order
tensor whose contravariant and covariant indices are s and M, respectively.

Using similar reasoning to that of the first paragraph in Section 6.1, we

conclude that this desired tensor will correspond to the adjustment matrix

BT. In order to find it we can proceed in a loose analogy to the part of

Section 5.2 dealing with the quasi-arbitrary matrix D. In view of the 4
adjustment formula Bd=O, the desired tensor in the transposed matrix form

post-multiplied by [dx'] equals the zero vector. Accordingly, the rows of

this transposed matrix consist of the space contravariant components of

vectors q orthogonal to the model surface (hence lying in the second sur-

face). Similar to the procedure used earlier, the vectors q can be expres-

sed by independent combination- involving all of v, ... , and thus the

above transposed matrix can be written as K'T', where K' is a nonsingular

matrix of dimensions (rxr) and T' is a matrix of dimensions (rxn) having

as its rows the space contravariant components of v, ... In using

[ [VM] ...] K'-1 as the D-matrix to modify the "original" B, the modified

* form of the desired transposed matrix is the product of two matrices, where

the first (of dimensions rxr) has the components vM , as its columns

and the second (of dimensions rxn) has the components vs, ... as its rows.

The above development implies that the (M,s) element of the desired
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transposed matrix is v S+... Therefore, the desired tensor itself is

SM according to the definition (40). Next we consider the adjustment

formula (111a) and seek a tensor corresponding to the matrix S. Since

the adjustment vectors c and w correspond now to the components dx" and
5

duM (representing the same physical vector), respectively, we are seeking a

second-order tensor which would relate the latter. In analogy to (116), we
Ms+ M

find it to be .., or Bs , according to the definition (41). The

same considerations as before imply that this tensor corresponds to the

adjustment matrix ST. In the new identification, the correspondences

paralleling (106)-(108) are listed as

dxs  ..... diz gsr ..... C

duM w , aML C , (120)

dx" ..... E , g" C^
s sr

dxr ..... dz*, grs ..... p

duL w* aLM Pw, (121)

,r A rsdx ... C 9 . .. P
C

L sT

Sr ..... BT (122)• S~L •
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With these correspondences the left-hand side of the diagram in Fig.

2 can be used to complete the diagram of Fig. 4. The interpretation of

(122) is similar to the interpretation of (119) described earlier. The

arrows designating B and BT in Fig. 4 are drawn in heavy lines while the

arrows designating S and ST are drawn in dashed lines, the reasons being

again similar to those given in Section 6.1. The comment regarding the

mirror images can likewise be repeated here, indicating that Figs. 3 and

4 in their entirety have this property. The error estimates and their

C- and P-matrices are necessarily the same as (111a,b,c), being just three

of all possible relationships identical between Figs. 3 and 4. Likewise,

the L.S. quadratic form expressed with the aid of (53b) and the selected

correspondences from (120), (121) is identical to (112).

-i
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7, CONCLUSIONS

Perhaps the most important outcome of this development has been the

geometrical commutative diagram of Fig. 2 built through the extensive

application of tensor algebra. By adapting the geometrical configuration

in a natural way (via the traditional identification) to the adjustment

setup, we have been able to construct the commutative diagram of Fig. 3

expressing most of the standard L.S. formulas as well as several new

relationships. Using another adaptation (via the new identification), we

have constructed the commutative diagram of Fig. 4 expressing all the

pertinent relationships as identical to those given by Fig. 3. In fact,

the two diagrams are essentially mirror images of each other. This

demonstrates the complete equivalence between the two identifications

which, in turn, underlines the possibility of linking the tensor approach

to the Hilbert-space approach in the treatment of adjustment theory.

An extensive discussion and evaluation of the present geometrical

approach in its relation to the L.S. adjustment has already been included

in Chapter 1. In this final chapter we concentrate on two main items:

1) summarizing, in an explicit form, the most important L.S. results, and

2) inspecting the analogy between the present approach and the Hilbert-

space approach to the L.S. adjustment theory. The first item will be

further subdivided into the parts pertaining to the parametric method,

to the condition method, and to verifications between the two methods.

All the formulas containing either of the weight matrices P^ and P-
L E

(or both) are new and do not appear to have an equivalent in the standard

adjustment literature.
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Parametric method. Presented below are several formulas which can

be transcribed from the latter part of Section 5.1 or, for the most part,

deduced directly from the right-hand side of the diagram in Fig. 3:

dx = (ATPA)-ATPdz , C^ = (APA)1 •
x

di = A(ATPA)-ATPdX , C^ = A(ATPA)'IA

P^ = PA(ATPA)- 1ATP

= di- d , C^=C -C

P =p - P^

df :Adx lt1d2., C C A C
di x = =-R C-= AC^A=ciT

f x 2
Tp2 = dTPd + dT u u =-ATPdk.

Condition method. The formulas below can be transcribed from the

latter part of Section 5.2 or, except for the L.S. quadratic form, deduced

directly from the left-hand side of the diagram in Fig. 3:

= CBT(BCBT)FIw , C- = CBT(BCBT)-'IBC

P= BT(BCBT)-FB ;

C := w*Tw W*Tp P w*w , w* =(BCBT)'Iw.

If the initial values Z' are not used (the usual procedure in practice),

one can express directly the adjusted observations I from the observed
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values iand the error estimates E^ as

Verification between the parametric and condition methods. The first

formula below serves most often as a verification for the parametric

method alone; all of the verification formulas can be transcribed from the

next to the last paragraph in Section 5.2 or, with the exception of ranks,

from the diagram in Fig. 3:

A = 0;

BA = 0;

A(AT PA)-1A T P + CBT (BCB TYB I B ;

C-P^ + C^P- I

The rank relationships behave as their matrix counterparts (the latter

have been included in the parametric method above). The rank values

corresponding to the first two lines below appear in the third line:

rank C-^ + rank CA rank C
z

rank P^+ rank =- rank P,

u + r = n.

Hilbert-space analogy. This part will be related to the Seminar pre-

sented by Van'cek and discussed to some extent in Chapter 1. Since this

Seminar is not yet available in open literature, the references to it will
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be stated explicitly. Clearly, one of the most important statements in

the Seminar from the point of view of the approach presented herein is,

"whether P (the weight matrix P) is considered to correspond to covariant

or contravariant metric tensor is a more or less arbitrary decision".

This has been confirmed via the traditional versus the new identification.

The identical outcome demonstrates the perfect duality between the

covariant and contravariant "spaces", thereby suggesting that the tensor

approach to the L.S. adjustment process can be considered as a classical

case of the Hilbert-space approach to the same problem.

We shall complete this statement by identifying the contravariant and

covariant tensor spaces with dual Hilbert spaces and describing selected

tensors and tensor operations in this context. In so doing, we shall

initially proceed along the lines of the Seminar (henceforth abbreviated

as [S1) and point out the correspondences with the tensor approach. For

example, in IS] the positive-definite matrix P, called weight on Hilbert

space X, induces the scalar product

<t,t°> = t T pt °

In the tensor approach (abbreviated as [TI), the Hilbert space Xcan be

represented by the contravariant space (containing tr and tor) with weight

gsr ' and the scalar product can be written as

<t,t > = tg srt r

The norm 11.11 and the distance d(.,.) have the same definition in both

IS] and IT], based on the scalar product. As an example in [TI, we have
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d(t,t) = lit - t ° II = /<t- t, t- to> = (tst°S)gsr(trtor)

IfZ* with weight C is the dual Hilbert space to 9, we can represent

X* by the covariant space with weight grs. In IS], P is the duality

operator from StoS*, as is g in IT]; we have, for example, gsrtrts

(which is indeed in h*). Furthermore, since PI= C exists by definition,

C in IS] is the inverse duality operator from Me* toe. The same holds,

of course, in IT] with regard to g rS. As in IS] the scalar product, norm,

and distance are now defined on the (dual) covariant space * as well; for

example, we write

<t~t ° > = trgrSts

which has the same value as the scalar product defined on 9. Similar to

IS], we can state that e* is isometric to j, as well as reflective (the

dual of Jt* is l). We also note that either of the contravariant or

covariant spaces in [T] could have been associated with c, etc.

In the sequel, we shall no longer present the definitions or deriva-

tions in the terminology of CS] with a subsequent interpretation in [T].

The close analogy between these two approaches makes it expedient to pro-

ceed directly according to T] and provide a brief Hilbert-space interpreta-

tion as needed. Another reason behind this decision stems from the fact

that in certain areas the derivations in CT] have gone beyond the topics

treated in [S. In pursuing [T] Fig. 2 proves helpful. As has been stated

earlier, the vector components (boxes in the figure) also represent the

pertinent spaces. This is indicated in the following correspondences:
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dxr ..... h dx s  . *

dua ..... X du .

Here X is the parameter space of dimensions u, andX, X' are defined to

have parallel structure to , J. Further we have

dx'r .. . dxs  . .

,

where ' is a subspace of l; M*' is then the corresponding subspace of Je*.

The tenser formulation in the Hilbert-space context can be adequately

illustrated by retracing a few steps in the parametric method. In

representing the tensor Ar by the matrix A, we confirm the rule mentioned

in [S] that while A is the linear operator from X intoZ' , AT is the

(inverse) linear operator fromM*' to X*. In particular, Fig. 2 yields

dx' r =Ar dut d S ,xd r= Ardu , duB :A( dxs .

Similarly, we deduce

duaL = Qrdx'r dx' = Qsdu

r ' s s ~

which means that if Q is a linear operator from Z' to X, QT is a linear

operator from X* to X*'. We also confirm that the Hilbertian orthogonal

complement S'+ of M' in S is a space of dimensions n-u populated by vectors

(in contravariant components) orthogonal to dx'.

Upon introducing the L.S. principle, dx"r is restricted to*' + and

+
dx" is similarly restricted toM*' , the Hilbertian orthogonal complement
5
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of X*' in V. Accordingly,

Adx" = 0, du =A dxs = Adx [a aS ~ s

Qrdx,,r=0, du =Qrdx r Q adx r
r du r r

Upon identifying the pertinent operators with matrices, the above shows that

the L.S. principle leads to the statement that AT is the operator not only

from Z*' to X*, but also from V to X*, and that Q is the operator not only

from AV to X, but also from S to X.

In continuing in this manner, most of our derivations could have been

readily transcribed in the Hilbert-space terminology. Since the present

tensor approach has all the ingredients of a classical Hilbert-space

approach, the latter can be carried out -- or at least understood -- in

terms of the "pictorial" differential geometry with few or no abstract

principles. This could help to elucidate the Hilbert-space theory and

applications for those who are familiar with a few basic principles of

tensor analysis.

9
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