6

AD-A142 151

FILE COPY

2

# PARTS ON DEMAND

# EVALUATION OF APPROACHES TO ACHIEVE FLEXIBLE MANUFACTURING SYSTEMS FOR NAVY PARTS ON DEMAND

#### VOLUME II

## **APPENDICES**



# SCIENCE APPLICATIONS, INC.

This document has been approved for public release and sale; its distribution is unlimited.

### PARTS ON DEMAND

### EVALUATION OF APPROACHES TO ACHIEVE FLEXIBLE MANUFACTURING SYSTEMS FOR NAVY PARTS ON DEMAND

#### **VOLUME II**

### APPENDICES

#### Submitted to

Naval Supply Systems Command and Office of Naval Research

February 1984

Prepared Under

Contract: N00014-82-C-0845 Modification: P00001

Robotics and Automation Division Science Applications, Inc. 1710 Goodridge Drive McLean, Virginia 22102





SCIENCE APPLICATIONS, INC.

Post Office Box 1303, 1710 Goodridge Drive, McLean, Virginia 22102, (703) 821-4300

This document has been approved for public release and sale; its distribution is unlimited.

# PARTS ON DEMAND VOLUME II APPENDICES

### Appendix A Program Definition

- Project Work Plan Synopsis
- Planning Meetings and Activities

# Appendix B Survey and Analysis of Navy Parts

- POD Questionnaire Responses from Inventory Control Points
  - SPCC Data Responses
  - ASO Data Responses
- TRIP Report to ASO and SPCC
- Federal Supply Classification
  - Federal Groups and Classes
  - Representative Parts
- MARK Classification System
  - Unit Demand vs. Unit Cost
- POD Methodology for Parts Survey
  - Definable Areas of Inventory
  - Additional Samples
  - Four Factors Fully Crossed Design
  - First Sample
  - Selection Process
- Candidate Parts Recommended by ASO and SPCC

Appendix C-Survey and Analysis of Manufacturing Technology

- Active R&D Programs
- CAD/CAM and FMS Systems
- Intellectual Resources and Centers of Excellence

# Appendix D'Economic and Operations Analysis

- Inventory Data Baseline
  - Consumable and Repairable Data, October 1982
  - 5-Year Trend of ICP-Managed Items
- Cost Analysis Procedure for Holding Cost and Ordering Cost Breakdown
   Cost Analysis Illustration of Sample Part

CP5/G1

- Cost Comparison FMS for POD
  - White Paper

- Alternative Technologies for "Oil Flinger"
- SAI Case Study Worksheets for Cost Analysis
  - Case Study B
  - Case Study C
  - Detailed Explanation of Cost Analysis Worksheets
- POD Program-Economic Analysis & Methodology
  - Economic Evaluation Procedures for POD Investment Program
  - System Approval Considerations
  - POD Investment Program
  - Potential Improvement Areas for POD
  - Example Cost Categories and Determinants

# Appendix E Long Range R&D Planning,

- Conceptual POD Program Network
  - Network Diagram
  - POD Machining of Mechanical Parts
- POD System Planning Schedule
  - Dictionary Sort
- Navy Logistic R&D Project Recommendations
  - Five Projects for Automated Spare Parts Manufacturing/Repair
  - Technical Approach
  - 56 Key Initiatives and Funding Profiles
- Investment Strategy for Integrated Circuits Diminishing Sources of Supply
  - Problem Scope
  - Approach
  - Alternatives
  - Proposed Initiatives

**CP5/G2** 

200

#### Appendix A Program Definition

- Project Work Plan
- Planning Meetings and Activities

The project work plan, milestones and schedule is included in the first monthly progress report submitted for the period 28 February - 31 March 1983. A summary of the input and output for these tasks is illustrated in Figure A-1.

A synopsis of the planning meetings, project reviews and work sessions is also included in the monthly progress reports. Figure A-2 summarizes the key meetings and briefings.

CP5/C-4

| INPUT                                                                                                                                                              | SAI POD Project                                                       | Output                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Readiness and performance<br/>requirements</li> <li>Problem areas</li> <li>Current logistic system,<br/>database</li> <li>Survey/questionnaire</li> </ul> | TASK 1:<br>Survey and Analysis<br>of Navy Parts<br>(Mech and Elect)   | <ul> <li>POD Part selection criteria</li> <li>Grouped lists of parts</li> <li>Candidate parts</li> </ul>                                                                        |
| <ul> <li>SAI database</li> <li>Focused literature/<br/>patent search</li> <li>Survey/questionnaires</li> <li>Robotic conferences</li> </ul>                        | TASK 2:<br>Survey and Analysis<br>of State-of-the-Art<br>Technologies | <ul> <li>Technology capabilities<br/>current and projected</li> <li>Candidate support<br/>organizations</li> </ul>                                                              |
| <ul> <li>Selection methodology</li> <li>Institutional barriers<br/>and issues</li> </ul>                                                                           | TASK 3:<br>Economic and Oper-<br>ations Analysis<br>of POD            | <ul> <li>Rank-ordered POD<br/>projects</li> </ul>                                                                                                                               |
| <ul> <li>Long-Range Navy<br/>requirements</li> <li>R&amp;D candidate<br/>technologies and<br/>POD systems</li> <li>Identification of<br/>players</li> </ul>        | TASK 4:<br>Long-Range R&D<br>Planning and Goals                       | <ul> <li>Investment requirements</li> <li>Development schedule</li> <li>Industrial base integration<br/>and options</li> <li>Navy coordination<br/>requirements</li> </ul>      |
| <ul> <li>Evaluation of high priority<br/>project areas</li> <li>Solicit Proposals</li> <li>Determine budget<br/>requirements</li> </ul>                            | TASK 5:<br>Near-Term Imple-<br>mentation Plan                         | <ul> <li>Prototype and demonstration projects (6.2, 6.3, 7.8)</li> <li>Prune less promising efforts</li> <li>Phase in new breakthroughs</li> <li>Technology transfer</li> </ul> |

# 345/9H4

1

# Figure A2. Key POD Meetings and Briefings

| DATE       | ACTIVITY                                                                 | POD PARTICIPANTS                                                                                                      |
|------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 3/1/83     | Navy Robotics Group,<br>Crystal City                                     | NAVSEA, ONR, NRL, NSWC<br>NSRDC, NOSC, NAVAIR,<br>NAVSUP, SAI                                                         |
| 3/4/83     | AMRF Presentation,<br>National Bureau of<br>Standards                    | NBS, PMS 400, NAVSEA<br>NAVSUP, OASD (MRA&L),<br>NAVMAT, CSDL, SAI                                                    |
| 3/7-9/83   | Electronics Manufacturing<br>Workshop,<br>National Science<br>Foundation | NSF, NCSU, IBM,<br>Hughes, Battelle,<br>Westinghouse, GCA,<br>DoC, SAI                                                |
| 3/8-10/83  | 50 <sup>th</sup> MORS Symposium<br>POD Presentation                      |                                                                                                                       |
| 3/9/83     | Boeing Briefing on<br>Emulation,<br>NBS                                  | NBS, NAVSUP, OSAD,<br>Boeing, SAI                                                                                     |
| 3/10/83    | POD Project Review<br>Science Applications, Inc.                         | NAVSUP, SAI                                                                                                           |
| 3/14/83    | POD Work Session<br>Science Applications, Inc.                           | NAVSUP, NBS,<br>CSDL, SAI                                                                                             |
| 3/15/83    | IMIP Discussion<br>American Defense<br>Preparedness Assoc.               | OUSDRE, SAI                                                                                                           |
| 3/17/83    | POD Status Briefing<br>Office of Naval Research                          | ONR, NAVSUP, SAI                                                                                                      |
| 3/23-24/83 | POD Work Session<br>Science Applications, Inc.                           | DTNSRDC, NBS, CSDL,<br>NAVSEA, NAVAIR,<br>NAVMAT, NAVSUP, SAI<br>Navy Productivity Office<br>Battleship Modernization |

CP5/C-5

# Figure A2. Key POD Meetings and Briefings

| DATE       | ACTIVITY                                                                                  | POD PARTICIPANTS                                                    |
|------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 3/28-29/83 | POD Briefing<br>ASO/SPCC                                                                  | NAVSUP, ASO,<br>SPCC, SAI                                           |
| 3/31/83    | POD Work Session<br>Draper Labs                                                           | NAVSUP, NBS, NAVMAT,<br>ONR, CSDL, SAI                              |
| 4/7/83     | POD Briefing for Logistics<br>National Bureau of Standards                                | NAVSUP, NAVSEA, SEASOX<br>NAVELEX, ASO, SPCC,<br>DTNSRDC, NBS, SAI, |
| 4/13/83    | Microelectronics Briefing<br>Science Applications, Inc.                                   | SAI Inhouse                                                         |
| 4/17-21/83 | Robot 7 Conference                                                                        | SAI Attended                                                        |
| 5/2/83     | Center for Automation Research<br>University of Maryland                                  | SAI Attended                                                        |
| 5/6/83     | POD Project Review<br>Science Applications, Inc.                                          | NAVSUP, NBS, ONR<br>CSDC, DTNSRDC,                                  |
| 5/24/83    | POD Progress Review<br>National Bureau of Standards                                       | NAVMAT, OSD, SAI<br>SAI, NBS, NAVSUP                                |
| 5/25-26/83 | Automating Intelligent Behavior<br>Conference<br>IEEE and National Bureau of<br>Standards | SAI Attended                                                        |
| 5/27/83    | Weapon Support & Logistics R&D<br>Naval Supply Command                                    | NAVSUP, SAI                                                         |
| 5/28/83    | MANTECH Meetings<br>National Bureau of Standards                                          |                                                                     |
| 6/2/83     | NBS                                                                                       |                                                                     |
| 6/23/83    | POD Project Review<br>Science Applications, Inc.                                          | ONR, NAVSUP, NAVMAT,<br>CSDL, NBS, OSD,<br>IDA, SAI                 |
| 6/27-29/83 | ACM IEEE Design Automation<br>Miami Beach, Florida                                        | SAI Attended                                                        |

CP5/C-6

| DATE    | ACTIVITY                                                       | POD PARTICIPANTS        |
|---------|----------------------------------------------------------------|-------------------------|
| 6/29/83 | Robotics Round Table<br>General Motors                         | SAI Attended            |
|         | Powder Metallurgy<br>NBS TOUR                                  |                         |
| 7/15/83 | Navy Investment Strategy<br>NAVSUP                             | NAVSUP, SAI<br>FAI, AMS |
| 7/20/83 | POD Strategy Planning<br>Science Applications, Inc.            | SAI, CSDL, NBS          |
| 7/22/83 | Input for POM 86<br>AMS                                        | SAI, NAVSUP,<br>AMS     |
| 7/29/83 | POD Investment Strategy Briefing<br>Science Applications, Inc. | NAVSUP, SAI             |
| 8/10/83 | Investment Strategy Review<br>Science Applications, Inc.       | SAI, NBS                |

## Appendix B Survey and Analysis of Navy Parts

- POD Questionnaire Responses from Inventory Control Points
- TRIP Report to ASO and SPCC
- Federal Supply Classification
- MARK Classification System

- POD Methodology for Parts Survey
- Candidate Parts Recommended by SPCC

POD Questionnaires

Ş

#### SPCC DATA RESPONSE

### To SAI Questionnaire

1. What is the total number of Navy SPCC managed line items on the inventory records as of 1 April, 1983?

369,739 NIIN LINE ITEMS \*<u>163,515</u> NICN LINE ITEMS 533,245 Total

2. What is the total number of Navy SPCC managed line items that are:

| Repairables | 75,762           | NIIN  |
|-------------|------------------|-------|
|             | * <u>8,595</u>   | NICN  |
|             | 84,357           | Total |
| Consumables | 293,977          | NIIN  |
|             | * <u>154,920</u> | NICN  |
|             | 448,897          | Total |

3. What is the total number of Navy SPCC managed line items that have not had a demand in the last 12 months?

| Repairables | N/A | Dollar Values \$739M |
|-------------|-----|----------------------|
| Consumables | N/A | Dollar Values \$735M |
|             |     | Total \$1.4 Billion  |

4. What is the total number of Navy SPCC managed line items on backorder?

| Repairables | 8,095         |
|-------------|---------------|
| Consumables | <u>15,156</u> |
| Total       | 23,251        |

\*Navy Inventory Control Number items. Navy is not IMM of these items.

5. What is the total number of part numbered items on backorder (W/O NSN's)?

| <b>Repairables:</b> | Question is invalid                          |
|---------------------|----------------------------------------------|
| Consumables:        | Part numbered items are processed for direct |
|                     | delivery only and not backordered.           |

6. What number of Navy SPCC managed line items that are blank, blank or equal to Mark "0" insurance items?

#### Insurance NIINS

| COG#  | Repairable | Consumables |
|-------|------------|-------------|
| 1H ·  | 321        | 216,216     |
| 7H    | 36,668     | 89          |
| 7G    | 11,902     | 68          |
| Total | 38,891     | 216,373     |

7. What is the total number of Navy SPCC managed line items identified in Question 6 that are held because of safety level only?

Repairables Question is not valid Çonsumables

8. What is the total number of Navy SPCC managed items (documents) turned into disposal in the last 6 months?

8 3. C . Sal

Data not available at SPCC

CP5/F4

3

9. What is the average order ship time (OST) on Navy SPCC managed items for the last 6 months.

Repairables Consumables System uses standard of 30 days in conus 45 days overseas

10. What is the total number of line items recovered from dispoasl in the last 6 months?

#### Not available at SPCC

11. Identify mechanical parts in your inventory that you consider should not be stocked by SPCC?

#### ZERO

- a. What FSC are they in? N/A
- b. Why do you think they should not be stocked? N/A
- 12. Identify electrical/electronic parts in your inventory that you consider should not be stocked?

#### <u>ZERO</u>

- a. What FSC are they in? N/A
- b. Why do you think they should not be stocked? N/A
- 13. How many Navy SPCC items have been reported on CASPEP reports in the last 6 months?

NMCS \*April 82 to March 83 PMCS \*COG 1H NMCS/PMCS for last 12 months 4866 demands Total NIIN's 2916

# 14. What is the average turnaround time of Navy SPCC managed items from rework?

| a. | Depot repairables: | Assumed at 30 days |
|----|--------------------|--------------------|
|    |                    |                    |

- b. Field repairables: <u>Don't collect</u>
- 15. What is the total number of Navy SPCC managed items shipped direct delivery (vendor to field activity) during last 6 months?

2 months data available March 83 2006 April 83 1595 Value all Navy APCC managed items with MARK 0 as follows: <u>FSC</u> 2010 2040 4310 5961 5962 5963 No. Lines 6900 6077 938 2355 2353 567

Total 6 FSC's 19,190 Line Items

79.5% of All Navy SPCC managed items are MARK "0" MARK "0" items can be separated in groups as:

- 1) Insurance items
- 2) Provisioned items
- 3) Replenishment items

CP5/F6

ŧ:

3

# ASO Data Response to SAI Questionnaires

1. What is the total number of Navy ASO managed line items on the inventory records as of 1 April 1983? Total with assets?

- a. 249,682
- b. with assets unknown
- 2. What is the total number of Navy ASO managed line items that are?

Repairables 78,331 Consumables 171,351

3. What is the total number of Navy ASO managed line items that have 1 or less demands in the last 12 months?

| Repairables | 25,000  | approximately |
|-------------|---------|---------------|
| Consumables | 100,000 | aproximately  |

4. What is the total number of ASO managed line items on backorder?

| Repairables      | 5,436  | NSF |  |  |
|------------------|--------|-----|--|--|
| Consumables      | 11,391 | NSF |  |  |
| Excluding CLAMPS |        |     |  |  |

- 5. Question is invalid.
- 6. What number of Navy ASO managed line items have a Stock Level and Safety Level of the quantity of 5 or less? Question changed to read number of insurance items? See Question #7.

| 7. | What number of | Navy managed | insurance items | are repairable. | consumable? |
|----|----------------|--------------|-----------------|-----------------|-------------|
|    |                |              |                 |                 |             |

| MARK                   | COG 1R  | <u>2R</u> |   |                              |
|------------------------|---------|-----------|---|------------------------------|
| 0 -                    | 100,000 | 25,000    |   |                              |
| 1 -                    | 10,376  | 12        |   |                              |
| 2 -                    | 2,053   | 0         |   |                              |
| 3 -                    | 27,246  | 10,925    |   |                              |
| 4 -                    | 18,193  | 5,200     |   |                              |
|                        | 157,868 | 41,137    | = | 199,005                      |
| don't appear in Mark L |         |           |   | <u>    50,677</u><br>249,682 |
|                        |         |           |   |                              |

8. What is the average order ship time (OST) on Navy ASO managed items received in the last 6 months?

Repairables Data Not Available

9. What is the total number of Navy ASO managed items (documents) turned into disposal in the last 6 months?

1180

10. What is the total number of line items recovered from disposal in the last 6 months?

39

11. Identify mechanical parts in inventory that should not be stocked?

No response

CP5/F8

,

12. Identify electrical/electronic parts in the inventory that should not be stocked?

## No response

ŧ

CP5/F9

13. How many Navy ASO items have been reported on NMCS/PMCS reports in the last 6 months?

| NMCS  | 44,046 | 6 5% | Oct 82 |
|-------|--------|------|--------|
|       |        |      | to     |
| PMCS  | 23,629 | 35%  | Mar 83 |
| Total | 67,675 | "R"  | COG's  |

- 14. What is the average turnaround time of Navy ASO managed items from rework?
  - a. Depot repairables 55 days CLAMP, 6 days NON-CLAMP overall average, 60.9 days.
  - b. Field repairables (not available)

# Trip Reports of ASO and SPCC

CP5/E10

# Trip Report by A. Smith and H. Stuntz

### 4 May 1983

Subj: POD; Data Collection at ASO, Philidelphia

- 1. Met with Don Factor and Joe Quinn in Rm 3018, Bldg 1 at 0930, 4 May 1983 to discuss the parts selection process for the parts on demand effort.
- Joe Quinn provided the following statistics: Of a universe of approximately 250,000 items in which the Navy has inventory Management, Mark 0 items account for 50%

Consumables (2R) 100,000 Repairables (1R) 25,000

Mark 0 = Parts that have 1 or less hits per year.

3. Met with Robert Zoglio WMB 3 Division head

| Hi Evans             | Technical   |
|----------------------|-------------|
| John Bormath         | Specialists |
| Al Layton            | Inventory   |
| Bob Marr             | Managers    |
| Al Layton (442-2061) | Ŭ           |

- (a) Robert Zoglio provided a brief of the technical staff problems which included the following items:
  - DAR lays down firm guidelines that Item Managers must follow. These guidelines may have to be rewritten for a POD system to exist.
  - Microcircuits of all types are becoming an increasing problem. The toy manufacturers are controlling the market, not defense. Sources of supply for microcircuits built for older weapon systems are diminishing. The Navy has to buy up front spares for life of system which uses microcircuits, or face redesign of a system in near term when microcircuits fail and no supply source is available. Management of microcircuits by DESC can be improved.

- Technical Packages are a major problem
- According to DAR regulations, orders of under \$6000 dollars do not receive a technical review.
- The technical personnel spend more time in other categories than the 100 movers (Mark  $\phi$ ) one and two.
- Criteria necessary to be considered for an FSN is 3 hits or more a year and/or a field request.
- ASO manages a limited number of repairables (2R) and consumables
   (IR) in the following categories:

| 1615 Generators | 5985 Antennae, Wave guides, etc.        |
|-----------------|-----------------------------------------|
| 1630 Hydraulics | 6110 Electrical - Circuit Breakers etc. |
| 2995 Engines    |                                         |

- (b) John Bormath stated that technical packages for items are usually not available because NAVAIR does not procure in procurement a production package. He recommended all items (that have been) assigned a PB code (PB source code = small buy 1 or 2 at most) be candidates for our effort.
- (c) Al Layton recommended parts in the GSE area (4920 class) for consideration for POD program.
- (d) Hi Evans recommended a look at items in the BHJ category (1 time buys) for consideration. He displayed examples from BHI categories (BHJ is a code for problem parts) such as pressure gauges, support equipment and wire rope assembly.

- 4. Met with Eugene Szymkowiak, WSB-6 Asst Power Plants Head. His branch is concerned with such items as engines and props.
  - He recommended looking into Air Frames parts as slow movers, items bought for insurance.
  - Provided 4 examples of RET 20 engine repairables.
  - Brought to our attention items which are reclaimed in lieu of procurement (RILOP). Excess material which is broken down to individual items or component to satisfy existing needs.

NOTE: Narf Norfolk was visited by Dan Whitney.

- Visited Ollie Atene, WSD3 (Joe Dividio is Branch Head and was not available). Marge Stroman sat in on the discussion and was introduced as the new branch head.
  - Section WSD3 handles Part No. Items only.
  - This section has approximately 37 members (approx. 7 clerical, 30 staff)
  - They clear approx. 2000 MILSTRIP part no. referred to SPCC (last resort). Their present backlog is 8000 items. Backlog rises and falls. At present, they are clearing 2000 a week and biting at the backlog. An example shown to us was a MILSTRIP/Referred from NSC Oakland to ASO. Referrals to ASO can be caused by: (a) Information problem (b) Part not identifiable at Oakland
  - Stated that approximately 10 to 20% of items that make up an aircraft system are stock coded. Do not expect to supply the remaining items with stock numbers. All items have manufacturer part numbers.

- On single buys of items referred to ASO, the contractor may impose a buy limited of 10 to 20 items vice one.
- Naval Air Technical Service Facility (NATSF), right across the street from ASO, is used as the expert in Technical Documents and Engineering Drawings. NARFs depend upon NATSF.
- Discussed BH (J,R,K) Category demand recording. BH items do not have stock numbers. If a BH item is purchased 3 or more times in a 6 month period a request is sent to the technical branch to consider item for an NSN.
- Source code MD is the code used by ASO for parts manufactured at NARFs.
- We should request ASO to pull out source code MD items with X number of hits.
- Part No. items picture is not complete within ASO alone. Individual supply centers can buy part numbered items without notifying ASO.
- Revisited Joe Quinn. Discussed MARK items as follows:
   MK Ø items less than .25 demands per quarter
   MK 1+2 items less than 5 demands but more than .25
   MK 3 + 4 items more than 5 demands per quarter

| <u>MK</u> | Consumable (IR) | Repairable (2R) |
|-----------|-----------------|-----------------|
| 1         | 10,376          | 12              |
| 2         | 2,053           | Ø               |
| 3         | 27,246          | 10,925          |
| 4         | 18,193          | 5,200           |

The above breakdown of MARK items was obtained from Joe Quinn.

CP5/F13

\_

:

- Stated that velocity value for MK1+2 items could drive the item up into the MK3 or 4 category.
- All items do not go through levels computation. Those items that do not include insurance items, obsolete items and coded items no longer procureable.
- Visited CDR Milt Weaver (215 697-3561) to obtain information on NMC and PMC items. NMC - Not Mission Capable PMC - Partially Mission Capable. Cdr. Weaver is at Aviation Support Control Center (ASCC). He will obtain information for us of 2 yr A/C NMC/PMC history.
- 8. Revisited Don Factor and Joe Quinn for Wrap up.
  - Don stated that 95% of item managers are at ASO. There are a few at NAVAIR. ASO has approximately 450 item managers and approximately 150 equipment specialists.
  - The equipment specialists are concerned with provisioning, considering parts for NSNs, consumable and repairable determinations, and reviewing drawings.
  - The computer is programmed to initiate buys for low value items.
  - There are approximately 2300 personnel at ASO 589 are in Don Factor's department including all item managers and most specialists.
  - His department processes over 100,000 requisitions a month, spending billions of \$ annually. Dollars are supplied by NAVAIR (APN), NAVSUP (NSF), and NAVAIR Repair (OMN) controlled by NALC.
  - His department handles items for Navy aircraft, Marine A/C and Foreign A/C.

- 9. Requested the following information be sent by Joe Quinn to SAI:
  - (a) Contact CDR Weaver at ASCC and obtain tape run of 2yr Aircraft NMC/PMC history. Take tape and add stock status report (SSR) information, then send print out to SAI.
  - (b) Contact SD section and obtain printout of all PB items for SAI.
  - (c) Obtain training manual for stratification for SAI.
- The questionnaire telecopied to ASO on 15 April was reviewed by Don Factor and Joe Quinn with SAI reps. The questionnaire with ASO-supplied answers is attached as Enclosure (1).
- 11. The hard copy information obtained at ASO includes the following:
- (a) Computer Print of STK NR items under review for 9 Demands and still not procured.
- (b) In complete list of data on SAI Questionnaire
- (c) ASO Structural and staffing directory
- (d) Consolidated Status report of items having source problem and receiving item from relop program (Cylinder and Piston)
- (e) Stock determination reviews
- (f) Tech data inquiry for (9) part numbered items
- 12. Visit at ASO was completed at 1800 4 May 1982.

#### CP5/F15

5

1.1

# Trip Report by A. Smith and H. Stuntz

5 May 1983

Subj: POD; Ships Parts Control Center (SPCC) Data Collection Visit

- Arrived at SPCC, Mechanicsburg, PA, at 0830 for meeting with Ron Rau, Code 051, in his office in building 312. Art Smith and Harley Stuntz, SAI Reps. presented a short brief on the parts on demand effort, the parts selection process, and the reason for this data collection visit. Brief hardcopy is Enclosure (1).
- 2. Several meetings were held with Ron Rau throughout the day totalling about 2 hours. At other times Ron Rau's assistant, Bill Stawitz, accompanied SAI reps to various offices within SPCC to discuss effort and collect data. The following paragraphs are summarizations of the comments exchanged with the various SPCC offices.
- 3. During the meetings with Ron Rau the following information was discussed:
  - (a) His department is primarily concerned with hull, mechanical and electrical ship systems. This includes responsibility for initial provisioning and interaction between program management and inventory managers. Daily concerns are generally centered on filling parts demands, provisioning problems and program management problems.
  - (b) 2 people from Code 05 visited the NBS Briefing.
  - (c) SPCC is governed by a rigid set of rules of what parts they (Navy) can maintain and what has to be sent to DLA. Parts which are Navy managed fall into several categories, two of which are repairable items and items

requiring rigid QA. Criteria for this guidance is set forth in SPCCINST 4400.46 Item Management Criteria, and DoD 4100.26M Defense Integrated Management Manual.

- (d) Technical parts data is a major problem. The Navy does not own a lot of this data. In order to keep the price down and to be as competitive as possible, the Navy does not normally procure needed technical data. Even if the data were procured, they presently don't have the experience to ascertain whether the data is complete.
- (e) Ships keep changing configuration of items on board without informing SPCC.
- (f) The questionnaire sent by SAI or 15 Apr to Ron Rau at SPCC posed some good questions. Answers to the questions were not readily available! What answers were obtained had to be done manually. If the answers were required from the ADP section, a 3 week to one month waiting period could be expected. The questions were being answered the day of our visit. Bill Stawitz collected the answers during various meetings.
- 4. Bill Stawitz (x6208) was the host and accompanied SAI throughout SPCC during data collection. The following information summary was exchanged during Bill's presence:
  - (a) Discussion on the Questionnaire led to deleting Question #5, combining Questions #6 and #7, and adding the words "safety to insurance items".
  - (b) Bill S. and most of SPCC personnel referred to Mark Ø items as blank blank items. The SPCC Navy cog No. used a four digit number in which the 2nd and 3rd digits recognized the level. MARK Ø (or blank blank) items and not recognized at SPCC until the inventory reaches zero. When more items are needed, spot buys are made. SPCC does not back order MARK Øitems.

CP5/F17

٩

7

- (c) Major Cog items recommended for our effort fall into three categories 7H, 7G and 1H.
  7H items are NAVSEA items
  7G items are NAVELEX items
  1H Common Cog for consumables.
- (d) Of all the requisitions that are processed by or through autodin, 45% of them flow through untouched for execution or buys.
- (e) Non-stocked items are managed by demand and answered by spot buys, no back ordering. An inventory of non-stocked items was not available.
- (f) Received two(2) pages on criteria for retaining items under Navy Management or DLA Management.
- 5. Ted Dempco, one of SPCC reps to the NBS conference, discussed Navy manufactured parts.
  - (a) Items manufactured in house at Navy shipyards, are usually older parts, parts with incomplete drawings, or parts with no supply source available. Such parts are in the categories of propeller assemblies, special tools, gages for propellers, shafts and sleeves.
  - (b) There is no supply source code at SPCC for parts manufactured in house. In other words, a computer run calling out such items cannot be made. Stock buys and/or requisitions can receive a reject code of T1 in the processing. T1 has many different definitions. This reject code triggers a manual review of the particular item by the technical staff. The technical staff manually reviews the procurement history on file for the individual item. This is usually on microfiche. If the previous history indicates that no one has made the item in the past, or that is was last manufactured in house, or no manufacturers are available, the technician makes a subjective decision to have the part made in house. Parts manufactured in house

are not normally advertised for contractor assistance. There are approximately 30 or 40 SPCC technicians available in this process. Each technician keeps private records. Out of 5 technicians contacted by Ted Dempco, approximately 20 items were discovered that required in house manufacturing.

3

- 6. Lt. Ron Elkins (717 790 4451) and Cdr Parker discussed the CASREP Statistics.
  - (a) They provided SAI reps with a copy of the most recent CASREP Brief, a copy of selected CASREP reporting data, the last 3 years of mean requisition response times and 2 months of mean shipping times.
- 7. John Cackovics (717-790-2294) provided the information that 2006 non stocked items were purchased in April 1983 for direct delivery.
- 8. Bob Reid, Branch head Code 04211, in charge of the data processing branch, stated that he could assist SAI reps with some information, but required a written request from NAVSUP. The information Bob thought may be helpful to the effort follows:
  - (a) MDF run items added prior to the last 5 years that have not had a demand
    - value of inventory
    - number of items
    - list of FSC.
  - (b) Stock Status and Cyclic reports on 50 MKØ items of each of the below listed groups
     FSC 2010, 2040, 4310, 5961, 5962 and 5963.
  - (c) and Request sample of 100 non-stocked items in last 12 months that had 1 or 2 hits.

Bob Reid's telephone no. is (a) 430-2911 or (C) 717-730-2911.

9. For information on disposal items the name Bill Hafer of NAVSUP (225-1123) was offered by Bob Reid.

For information an average order time and shipping time, Capt. Don Irvine of NAVSEA suggested that SAI reps contact Capt. Bill Jarrett of NAVSUP.

i.

1

- 10. A list of the hard copy information obtained at SPCC is listed as follows:.
- (a) Cognizance of Navy Material table
- (b) Activity Account Code list by COG
- (c) CASREP list by Frequency for 1 and 2 demands from Apr 1982 thru Mar 1983
- (d) CASREP Brief as of 21 April 1983
- (e) SPCC organizational Manual
- (f) CASREP Mean Requisition Response Time Jan 1980 thru Feb 1983
- (g) Secondary Item Statistical Report as of 15 April 1983
- (i) Item management coding criteria filter chart from DOD 4100,26M
- (i) CASREP mean shipping time for Jan and Feb 1983
- (j) A complete copy of SAI Questionnaire with data

# Federal Supply Classification

~

No. 1

Ť,

CP5/E11

ł,

ļ

## Federal Groups and Classes Provided

- 1280 Aircraft Bombing Fire Control Components Airframe Structural Components 1560 Helicopter Rotor Blades, Drive Mechanisms and Components 1615 2010 Ship and Boat Propulsion Components Marine Hardware and Hull Items 2040 Gasoline Reciprocating Engines, Aircraft, and Components 2810 4310 Compressors and Vacuum Pumps Semiconductor Devices and Associated Hardware 5961
- Joi Semiconderor Devices and Absociated in
- 5962 Microcircuits, Electronic
- 5963 Electonic Modules

| Mechanical  | 1 <i>5</i> 60 | 4310 |
|-------------|---------------|------|
|             | 1615          |      |
|             | 2010          |      |
|             | 2040          |      |
|             | 2810          |      |
| Electrical  | 5961          |      |
| Electronic  | 5962          |      |
|             | 5963          |      |
| Mechanical/ |               |      |
| Electrical  | 1 <b>28</b> 0 |      |

The Federal Supply Classification (FSC) structure consists of 78 Groups which are subdivided into 615 Classes. Consumables and Repairables considered as Potential POD items came from 15 Groups and 20 Classes as follows:

| 1015 | Guns, 75 mm through 150 mm                                                  |
|------|-----------------------------------------------------------------------------|
|      | Includes: Breech Mechanisms; Mounts; Rammers                                |
| 1020 | Guns, over 125 mm through 150 mm                                            |
|      | Includes: Breech Mechanisms; Power Drives; Gun Shields.                     |
| 1045 | Launchers, Torpedo and Depth Charge                                         |
|      | Includes: Depth Charge Tracks; Torpedo Tubes.                               |
| 1210 | Fire Control Directors                                                      |
| 1440 | Launchers, Guided Missiles                                                  |
|      | Includes: Airborne and Nonairborn Guided Missile Launchers.                 |
|      | Excludes: Aircraft Launchers; Rocket Launchers.                             |
| 1610 | Aircraft Propellers                                                         |
|      | Includes: Propeller Governers; Propeller Spinners; Propeller Synchronizers; |
|      | Propeller Hubs; Propeller Blades and Cuffs; Propeller Power Units; Propel-  |
|      | ler Integral Oil Control.                                                   |
| 1630 | Aircraft Wheel and Brake Systems                                            |
| -    | Includes: Skis; Floats; Tracks; Landing Wheel Skid Detectors; Valves        |
|      | specifically designed for use with hydraulic or pneumatic wheel and brake   |
|      | systems; Helicopter Rotor Brake System Components.                          |
|      | Excludes: Landing Gear Axles.                                               |
| 1650 | Aircraft Hydraulic, Vacuum, and De-icing System Components                  |
|      | NOTE: This class includes only those components specifically                |
|      | designed for aircraft use.                                                  |

CP5/F24

ŧ

Includes: Hydraulic and Pneumatic Accumulators, Pumps, Motors, Actuating Cylinders, and Filters; De-icing Boots; Fluid Type De-icing Pumps, Valves and Filters; Vacuum System Oil Separators; Pneumatic.

- 2010 Ship and Boat Propulsion Components
   Includes: Propulsion Shafts; Ship Propellers; Marine Transmissions,
   Reverse and Reduction Gear Type.
- 2040 Marine Hardware and Hull Items Includes: Anchors; Grapnels; Sea Anchors; Watertight Doors; Ship Ventilators; Hatches; Manholes; Scuttles; Air Ports; Fenders; Sea Chests; Scuppers; Rudders; Stern Tubes; Chain Pipes; Hawse Pipes; Boiler Uptakes and Stacks; Chocks; Mast and Boom Fittings; Oars; Paddles; Oarlocks.
- 2825 Steam Turbines and Components Includes: Mercury Vapor Turbines.
- 2830 Water Turbines and Water Wheels; and Components
- Gas Turbines and Jet Engines, Except Aircraft; and Components
   Includes: All Gas Turbines and Jet Engines except Aircraft and Guided
   Missile Prime Moving; Airborne auxiliary and Ground Gas Turbine Power
   Units for Aircraft Engine Starting.
   Excludes: Engine Accessories
- 2995 Miscellaneous Engine Accessories, Aircraft Includes: Engine Dynafocal Suspension Mounts Engine Cowling Mounts; Engine Control Quandrants; Pneumatic Starters; Control Assemblies, Push-Pull; Specially
- 3010 Torque Converters and Speed Changers
   Includes: Fluid Couplings; Nonvehicular Clutchers and Couplings; Horizontal Right Angle Drive Gear Units.

Excludes: Automotive Torque Converters; Vehicular Power Transmission Components; Rotary Aircraft Transmission Gear Units.

- 3020 Gears, Pulleys, Sprockets, and Transmission Chain
   Includes: Power Transmission Chain; Matched Gear Sets.
   Excludes: Reduction Gears
- 3040 Miscellaneous Power Transmission Equipment
- 4310 Compressors and Vacuum Pumps
   Includes: Truck Mounted and Trailer Mounted Compressors.
   Excludes: Refrigeration Compressors.
- 4920 Aircraft Maintenance and Repair Shop Specialized Equipment

Includes: Maintenance stands designed for support of aircraft assemblies during repair or overhaul; Test Stands and Test Equipment specially designed for maintenance and repair of aircraft components such as: engines, generators, hydraulic systems, armament, automatic pilot, fire control, flight control and navigational systems.

Excludes: Hand Tools; Airfield Maintenance Platforms; Basic types of electrical and electronic test instruments, including those specially designed, such as ammeters, voltmeters, ohmmeters, multimeters, and similar instruments, as shown in the indexes to the FSC; Test Apparatus used for both communications and other electrical and electronic equipment.

## 5365 Rings, Shims, and Spacers

Includes: Externally Threaded Rings; Keyed and Serrated Lock Rings; and Dee Rings; Shim Sets and Assortments; Spacers, Plate, Ring, Sleeve, and Stepped; Spacer Assortments and Sets; Bushings, Machine Thread; Plugs, Machine Thread.

Excludes: Piston Rings, Bearing and Bearing Closure Shims; Shim Stock; Electrical Cable Spacers.

| 5810 | Communications Security | Equipment and | Components |
|------|-------------------------|---------------|------------|
|------|-------------------------|---------------|------------|

- 5840 Radar Equipment, Except Airborne NOTE: Radar assemblies and subassemblies designed specifically for use with fire control equipment or guided missiles are excluded from this class and are included in the appropriate classes of group 12 or group 14.
- 5961 Semiconductor Devices and Associated Hardware Includes: Rectifying Crystals; Photoelectric Cells; Transistors; Semiconductor Device Sockets; Rectifiers, Semiconductor Device. Excludes: Microcircuits.
- 5962 Microcircuits, Electronic
   Includes: Integrated Circuit Devices; Integrated Circuit Modules; Integrated Electronic Devices: Hybrid, Magnetic, Molecular, Opto-Electronic, and Thin Film.
   Excludes: Single Circuit Elements such as capacitors; Resistors; Diodes and Transistors; Printed Circuit Boards and Circuit Card Assemblies; and filters and Networks.
- 5985 Antennas, Waveguide, and Related Equipment Includes: Aerial, Mast, and Tower Equipment Excludes: Tower Structures

6110 Electrical Control Equipment NOTE: This class includes circuit breakers with a voltage rating above 600 volts.

6130 Converters, Electrical, Nonrotating NOTES: This class includes devices employing a means other than mechanical rotation for changing electrical energy from one for to

another (i.e., AC, DC to DC, AC to DC, and DC to AC). Excluded from this class are rectifying crystals (class 5961) and transformers (classes 5960 and 6120).

Includes: Complete Battery Charging Equipment, Nonrotating; Power Supplies, Multiapplication.

Excludes: Rectifying Tubes; Rotating Equipment; Semiconductor Devices and Associated Hardware.

6320 Shipboard Alarm and Signal Systems

# 6605 Navigational Instruments

Includes: Azimuths; Sextants; Octants; Compasses; Plotting Boards; Underwater Log Equipment; Air Position Indicators; Drift Meters.

6685 Pressure, Temperature, and Humidity Measuring and Controlling Instruments

> Includes: Thermometers, including Engine Thermometers; Pressure Gages; Thermocouple Leads; Resistance Bulbs.

> Excludes: Clinical Thermometers; Therostatic and Differential Pressure Switches; Meteorological Instruments.

# 7035 ADP Support Equipment

NOTE: This class includes various devices and associated control units which are designed for use in combination or conjunction with an ADPE configuration but are not part of the configuration itself.

CP5/F28

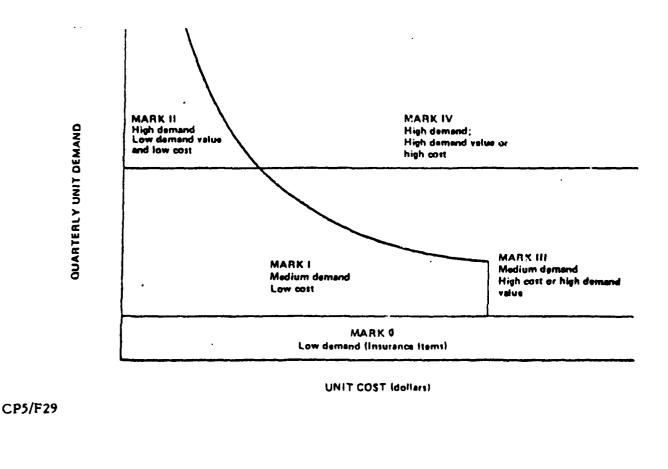
and a second second

Ì

# MARK Classification System

CP5/E12

a serve a serve a


#### MARK Classification System

The MARK classification system divides the Navy items into five inventory categories depending on an item's demand, replacement price, or replacement value of demand (replacement price x demand, sometimes referred to as the velocity value):

|  | Mark 0: | Low Demand | (insurance) |
|--|---------|------------|-------------|
|--|---------|------------|-------------|

- Mark I: Medium Demand/Low Cost
- Mark II: High Demand/Low Demand Value/Low Cost
- Mark III: Medium Demand/High Cost or High Demand Value
- Mark IV: High Demand/High Demand Value or High Cost

The following chart shows the general boundaries for the five categories depending on how much an item costs and how many are ordered each year. It does <u>not</u> represent inventory volume e.g. MARK 0 items represent about 50% of the inventory managed by ASO and SPCC, but unit cost and demand is low.



POD Methodology for Parts Survey

CP5/E13

The state of the s

ŧ

#### METHODOLOGY FOR PARTS SURVEY

All Navy managed and interest items (DLA, GSA other DoD managed) on 30 September 1982 consisted of 2,174,725 line items as portrayed by NAVSUP on 3 March 1983.

To effectively survey parts for a POD System then we <u>must explore defineable areas</u> of the inventory having some measureable impact if changed and reduce the overall range of parts for consideration by limiting the survey to only Navy managed items. This deletes DLA managed items consisting of 1,353,935 or 62.2%, GSA managed items consisting of 29,766 or 1.4% and other DoD managed items consisting of 90,308 or 4.2%. Navy SYSCOM managed items consist of 16,905 or .8%. Since the majority of these items are principal/major end items (i.e. ships, aircraft, weapons, vehicles, etc) and not repair parts and they are not considered a part of the survey.

Therefore the remaining Navy managed assets of Aviation Supply Office (ASO's) 287,336 line items and the Ship Parts Control Center (SPCC) assets of 396,475. These Navy ICP managed line items are the base line for survey.

The exploration of defineable area's of the inventory selected are identified as follows:

- Mark Zero items
- Critical items of supply (NMCS/PMCS)
- Diminished sources (Navy manufacured parts & others)
- Non stocked (part numbered) items
- <u>Mark Zero Items</u> Low demand or no demand and low cost insurance or replenishment items: (Provisioning items not considered because of minimum 24 month of stabilized demand period) Mark Zero items appear to represent three fourths of the Navy managed inventory. If parts are selected from this category for parts on demand sysetm then cost savings could occur if the number of line items is significant.

- Critical Items of Supply Items which are in short supply due to oversight or items requisitioned to satisfy a high priority maintenance/unit requirement such as not/partial mission capable supply (NMCS/PMCS) requiring immediate availability of the part as readiness has been degraded. Satisfaction of this requirement from every possible available source, regardless of cost, suggests parts on demand program, if time frames can be met.
- Diminished Source of Supply For any item of supply that a manufacturing source has been reduced, limited or lost and a new manufacturing source cannot be found. In many cases alternative sources are being used to satisfy the requirement without addressing the problem. Therefore samples of these area are being looked at: examples, Navy manufactured part at shipyards and NARF's, and selective interchange programs like RELOP.

Non Stocked Items - Items not provisioned or stocked and require support in the form of part numbered REGN's, which may generate NICN's and technical support.

Samples can now be taken from a range of items at ASO at 144,001 line items and 284,530 at SPCC in the same major categories just discussed. However Mark 0 category will not be sampled by Federal Group and Class (FSC).

15 Federal Supply Groups (FSG's) and 30 Federal Supply Classes (FSC's) were selected from the total of 78 (FSG's) and 615 (FSC's). This spread was used to achieve a workable but wide range of mechanical, electrical and electronics parts to survey.

1015 1650 3020 5961 7035 1020 2010 3070 5962 1045 2040 4310 5985 1210 2825 4920 6110 1440 2830 5265 6130 1610 2835 5865 6320 1630 2995 5810 6605 3010 5840 6685

#### ADDITIONAL SAMPLES IN POD PARTS SELECTION PROCESS

## FOR FACTORS NOT CONTROLLED IN THE FIRST SAMPLE

- 1. Non Stocked versus Stocked Items
- 2. Diminished Sources versus Available Sources
- 3. NMCS/PMCS versus Not NMCS/PMCS
- 4. Mark 0 Replenishment versus Other categories (including other Marks)

Because these factors are not controlled in the first sample, we are to assured that a significant number of items will be sampled which have these characteristics of interest. Consequently, additional samples are desired which are specifically selected to insure that these four (4) factros are observed. A concpetually simple (and also reasonably efficient) sampling design would be to cross each of these four binary factors, giving the 16 combinations (cells) shown in Table 1, Note that combinations (cells) 2, 4, 6, 8 are impossible-leaving 12 combinations to be considered. Use of this sampling design would require ASO and SPCC to classify the parts inventory into the indicated cells and chosse a random sample from each cell. Unfortunately, it appears that the time and effort required of ASO and SPCC programmers and system support staff to conduct this sampling would be prohibitive. Hence an administratively simpler approach was chosen. Under this revised approach, the four high interst factors are used individually to select four separate samples. Each sample can be used to make estimates (both point and confidence limit) of parameters of interest. Parameters to be computed include percentages such as percent of sample technically capable of Parts on Demand production and means such as estimated life cycle value of POD production for an item. With this sampling procedure, it is not possible to conduct standard analysis of variance tests (i.e. Confidence limit tests) of estimated differences such as the differences between the average life cylce value of Parts on Demand (POD) production for diminished source items versus the value for non diminished source item. It should, however, be possible to conduct an unbalanced analysis of variance, especially if the data from the first sample is included. Having stated how

| TABLE I |                                   |   |         |        |   |               |   |               |       |   |
|---------|-----------------------------------|---|---------|--------|---|---------------|---|---------------|-------|---|
|         | FOUR FACTORS FULLY CROSSED DESIGN |   |         |        |   |               |   |               |       |   |
|         | NONSTOCKED                        | 1 | DIM SC  | URCE   | 1 | NMCS/PMCS     | 1 | OTHER         | 1     |   |
|         | vs.                               |   | vs.     |        |   | VS            |   | VS            |       |   |
|         |                                   |   |         |        |   |               |   | MARK 0        |       |   |
|         | STOCKED                           | 0 | AVAIL S | OURCE  | 0 | NORMAL DEMAND | 0 | REPLENISHMENT | 0     |   |
| 1.      | NON STOCKED                       | 1 | DIM. SO | URCE   | 1 | NMCS/PMCS     | 1 | OTHER         | 1     |   |
| 2.      | NON STOCKED                       | 1 | DIM. SC | URCE   | 1 | NMCS/PMCS     | 1 | REPLENISHMENT | 0 N/2 | A |
| 3.      | NON STOCKED                       | 1 | DIM. SO | URCE   | 1 | NOR. DEM.     | 0 | OTHER         | 1     |   |
| 4.      | NON STOCKED                       | 1 | DIM. SC | URCE   | 1 | NOR. DEM.     | 0 | REPLENISHMENT | 0 N/# | A |
| 5.      | NON STOCKED                       | 1 | AVAIL.  | SOURCE | 0 | NMCS/PMCS     | 1 | OTHER         | 1     |   |
| 6.      | NON STOCKED                       | 1 | AVAIL.  | SOURCE | 0 | NMCS/PMCS     | 1 | REPLENISHMENT | 0 N/2 | A |
| 7.      | NON STOCKED                       | 1 | AVAIL.  | SOURCE | 0 | NOR. DEM.     | 0 | OTHER         | 1     |   |
| 8.      | NON STOCKED                       | 1 | AVAIL.  | SOURCE | 0 | NOR. DEM.     | 0 | REPLENISHMENT | 0 N/2 | A |
| 9.      | STOCKED                           | 0 | DIM. SO | URCE   | 1 | NMCS/PMCS     | 1 | OTHER         | 1     | I |
| 10.     | STOCKED                           | 0 | DIM. SO | URCE   | 1 | NMCS/PMCS     | 1 | REPLENISHMENT | 0     |   |
| 11.     | STOCKED                           | 0 | DIM. SC | URCE   | 1 | NOR. DEM.     | 0 | OTHER         | 1     |   |
| 12.     | STOCKED                           | 0 | DIM. SC | URCE   | 1 | NOR. DEM.     | 0 | REPLINISHMENT | 0     |   |
| 13.     | STOCKED                           | 0 | AVAIL.  | SOURCE | 0 | NMCS/PMCS     | 1 | OTHER         | 1     |   |
| 14.     | STOCKED                           | 0 | AVAIL.  | SOURCE | 0 | NMCS/PMCS     | 1 | REPLENISHMENT | 0     |   |
| 15.     | STOCKED                           | 0 | AVAIL.  | SOURCE | 0 | NOR. DEM.     | 0 | OTHER         | 1     |   |
| 16.     | STOCKED                           | 0 | AVAIL.  | SOURCE | 0 | NOR. DEM.     | 0 | REPLENISHMENT | 0     |   |
|         |                                   |   |         |        |   |               |   |               |       |   |

از

. .

the sample data using additional factors will be utilized, it must be noted that the inefficiency of the sampling plan results in an excessive total sample size over that required in the design shown in Table 1. For instance, to estimate the proporation of POD suitable parts among each of the sub populations established by the four factors listed with a maximum standard deviation of  $0.2 = \frac{P(1-P)}{N} = \frac{.5x.5}{6}$  for NMCS/PMCS and diminished sources and 0.25 for non-stocked and replenishment items would require a total sample size of 12 under the fully crossed design (one each from each of the 12 cells). In contrast, by not using Table 1, to obtain equivalent precision using the four separate samples would require a sample size of 20 (4 non stocked, 6 diminished sources, 6 NMCS/PMCS and 4 replenishment), i.e., a 66% larger sample. This data will almost inevitably be harder to draw conclusion from because of what may be a fairly severly unbalanced design. Note also that estimation of "interaction effects" is more difficult though not necessarily impossible.

It should be noted that a comparable sampling inefficiency is suffered as a result of drawing 5 separate samples i.e., with a fully crossed design of all 5 factors, a sample size of 156 would be required for a standard deviation of less than 0.144 for each FSC class and .05 for each of the additional factors, whereas a sample size of as much as 416 would be required for equivalent precession using the separate samples.

## FIRST SAMPLE

<u>Controlled</u> (what factors specified in selecting parts)

Federal Groups and Classes 13 FSC's.

Cognizance Symbols 1H, 1R, 7H, 7G only.

Parts selection from ASO and SPCC (CO-VARIANT with FSC/COG symbol).

Selection of MARK (Restricted to MARK-ZERO). Selection of parts from Mark 0 subcategories-Replenishment, Insurance and Provisioning items (restricted to insurance).

Part Number vs. NSN/NICN (Restricted to NSN/NICN because of limitation to MARK

0 insurance)

<u>UNCONTROLLED</u> (factors not mentioned in parts selection process)

Non Stock vs. Stocked

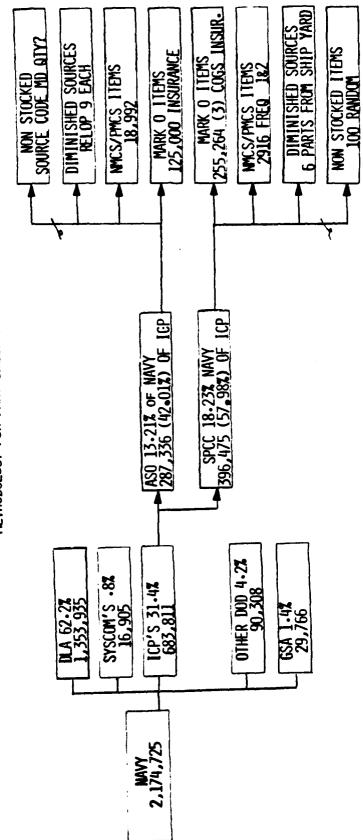
Diminished Source vs. Available Source

Not Mission Capable Supply (NMCS)/Partial-Mission Capable Supply (PMCS)

Consumable vs. Repairable

<u>AFFECTED BUT NOT CONTROLLED</u> (Insurance items within Mark 0 category selected regardless of demand or non-demand status)

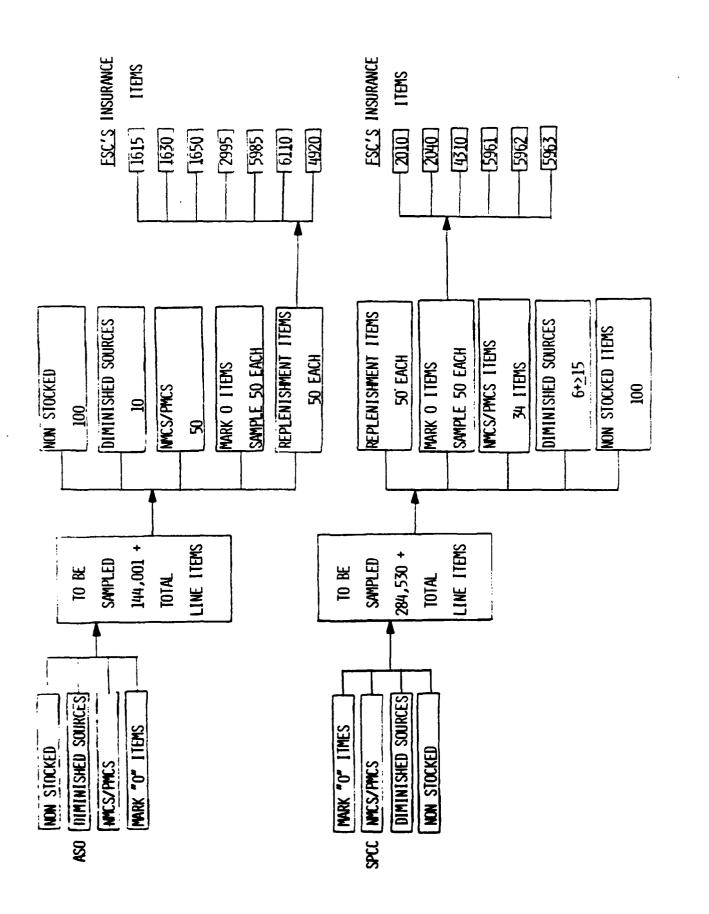
Demand vs. Non Demand


(Insurance Items have a higher percentage of Non Demand)

PARTIALLY CONTROLLED (Cog symbol limited to 4 categories for parts selection,

however the percentage of each cog symbol is not controlled)

COG within (1H, 1R consumable)


(7G, 7H repairable)



METHODOLOGY FOR PART SELECTION

,

Alfor T



.

1.

ŧ

Candidate Parts

CP5/E14

1

3

1

# CANDIDATE MECHANICAL AND ELECTRONIC SPARE PARTS FOR POD DEMONSTRATIONS

Panel Weapon Control Seal Assembly Aircraft Hinge Hinge Pin Shaft, Varying Housing, Rotary Wing Housing Head Rotary Nozzle Shaft, Stub Shaft Gear Pinion Gear Shaft Propulsion Cover Propeller Blade Plate Assembly Armo Stopper Grip Cable **Cleat Rope** Windlock, Door Roller Cable and Conduit Assembly Fairing Assembly

Bushing Adapter Stop Valve Shell Assembly Ring Set Piston Compressor Unit Fitting Assembly Separator Trip Assembly Aftercooler Semiconductor Device Transistor Microcircuit Linear Microcircuit Digital Microcircuit Assembly Oscillator Noncryst. Circuit Card Assembly Electronic Module

Subject: Candidate Parts

The following parts represent items recommended by SPCC for inhouse manufacturing. Basically the source for the item has been lost, and one of the shipyards was determined to have the capability to produce it.

The technical data packages received from Ted Dempco, Tech Rep Section of SPCC, were taken by Art Smith to Dave Bettwy of NBS to evaluate their feasibility for POD.

- Ring assembly for ship propeller. Priority 06; need 8; estimated cost: 26K each; NSN. Complex
- Packing assembly for controllable pitch propeller. Priority 03; need 2; estimated cost: 3K each; (LCN). Complicated by assembly requirements for rubber components.
- 3. Stud for propeller assembly. New item and drawings classified confidential. Estimated cost: \$100.
- 4. Washer key for propeller assembly. LCN. Estimated cost \$250.
- 5. Spring for shafting. Priority 02; need 28; LCN.
- 6. Ring for crank on controllable pitch propeller.
- 7. Hoist cylinder assembly for antenna.
- 8. Needle valve assembly with plug and vent.

# Appendix C Survey and Analysis of Manufacturing Technology

- Active R&D Programs
- CAD/CAM and FMS Systems
- Intellectual Resources and Centers of Excellence

## Active R&D Programs

- Military MT Programs
- IMIP: Industrial Modernization Improvement Program
- USAF ICAM: Integrated Computer-Aided Manufacturing
- Army Missile Command ECAM: Electronics Computer-Aided Manufacturing, Tri-service CAD/CAM
- VHSIC: Very High Speed Integrated Circuits
- NBS AMRF: Automated Manufacturing Research Facility
- NASA IPAD: Integrated Program for Aerospace Vehicle Design
- NAVCIM: Naval Computer Integrated Manufacturing Program
- Aerospace ICAD: Integrated Computer-Aided Design
- CAEDOS: Computer-Aided Engineering and Documentation System, China Lake Naval Weapons Center
- FMS: Flexible Manufacturing System Program at Waterveliet Arsenal
- PMC: Precision Machining Commercialization, part of Tri-Service Machine Tool Program Sponsored by USAF, Wright Aeronautical Labs
- IGES: Initial Graphics Exchange Specification
- CAM-I: Computer-Aided Manufacturing International (Generative Process Planning)

- AIMS: Automated Integrated Manufacturing System, Grumman
- ICAMP: Integrated Computer Aided Manufacturing of Propellers, Navy
- IMOD: Flexible Machining Cell, Vought
- MTIAC: Tri-Service Information Center

### CAD/CAM and FMS Systems

- General Electric, Locomotive Plant in Erie, PA
- Ingersoll Milling Machine Company, Rockford, IL
- General Motors Corporation, Automotive Plant, Orion, MI (Material handling, automated welding, tooling, and process control systems)
- Honeywell, Inc. Martial Guidance and Control, Clearwater, FL
- Rockwell International, Rocketdyne Division, Canoga Park, CA (CAD/CAM Interactive Graphics)
- Kingsport Foundry and Manufacturing Corporation, Blacksburg, VA (Shop Floor Control System)
- Hitachi Limited, Japan (Shop Floor Control System)
- Deere & Company, Harvester Works, East Moline, IL
- Westinghouse Electric Corporation, Columbia, MD
- Fijitsu Fanuc Electric Motor Facility
- Mazak Corporation
- Isuzu Automotive Plant, Japan
- Harris Corporation, Kennedale, TX
- Ingersoli
- Cross and Trecker

## Intellectual Resources

- National Machine Tool Builders Association
- Cast Metals Federation—founding and casting R&D
- Electronics Industries Association
- MTAG Manufacturing Science Panel
- National Science Foundation
- Manufacturing Studies Board
- Metal Powder Industries Federation
- Society of Manufacturing Engineers
- American PM Institute, Princeton, NJ
- Robotics International Association
- Rockwell International Science Center
- Illinois Institute of Technology, Flexible Automated Manufacturing Technical Evaluating Center
- National Bureau of Standards, AMRF
- IPA, Stuttgart University, West Germany
- Production Engineering Research Association

CP5/C-13

- Swedish Institute of Production Engineering Research
- ITCR, Bulgaria
- Fern Universitat, West Germany
- MITI, Japan
- Rensselear Polytechnic Institute, Center for Manufacturing and Productivity

1

- Georgia Institute of Technology-Material Handling Research Center
- University of Rochester
- University of Maryland, Automation Research Center
- CAM laboratory, Lehigh University
- Charles Stark Draper Labs
- Carnegie-Mellon University
- Science Applications, Inc., Robotics and Automation Division
- Ford Motor Company-Robotics and Automation Application Center
- IBM Manufacturing Technology Center

### Automation/Technology Research

University Rochester - Production Automation Case Western - Force & Tactile Sensors Stanford - Vision Systems Fairchild - Al, Semiconductors Purdue University - Precision Engineering North Carolina State - Precision Engineering Pennsylvania State University - Group Technology University Rhode Island - Robotic Transport Systems Cornell University - Injection Molding Texas A&M - Manufacturing Simulation

#### Machine Intelligence

University Massachusetts at Amherst - Design for Manufacturability Lehigh University - CAPP MIT - AI Stanford University - AI NYU - Control Systems University Wisconsin - Database Management SRI - AI -University Kansas/University Florida - Process Planning University Michigan - Control Multirobot Assembly System

# Appendix D Economic and Operations Analysis

- Inventory Data Baseline
- Cost Analysis Procedure for Holding Cost and Ordering Cost Breakdown

Contraction of the second s

- Cost Comparison FMS for POD
- SAI Case Study Worksheets for Cost Analysis
- POD Program-Economic Analysis & Methodology

CP/4S-1

# INVENTORY DATA BASELINE: CONSUMABLE AND REPAIRABLE DATA STATUS

8

October 1982

|            |            |              | Number of  |       | Averag | ge Lead | Time (Days) |
|------------|------------|--------------|------------|-------|--------|---------|-------------|
| ICP        | COG*       | <u>\$M</u>   | Line Items |       | PLT    | ALT     | TOTAL       |
|            |            |              |            |       |        |         |             |
| SPCC       | IH         | 1170         | 290,000    |       | 402    | 146     | 548         |
|            | 7COG       | <u>2905</u>  | 62,965     |       | 460    | 128     | 588         |
|            |            | 4075         | 352,965    | (avg) | 431    | 137     | 560         |
|            |            |              |            |       |        |         |             |
| ASO        | IR         | 1264         | 220,400    |       | 479    | 119     | 598         |
|            | 2R         | <u>5139</u>  | 55,586     |       | 553    | 138     | 691         |
|            |            | 6403         | 275,986    | (avg) | 516    | 128     | 644         |
|            |            |              |            |       |        |         |             |
| Navy ICP 1 | OTAL       | 10,478       | 628,951    | (avg) | 472    | 133     | 606         |
|            |            |              |            |       |        |         |             |
|            | -Consumat  | oles (IH&IR) |            |       | 440    | 132     | 572         |
|            | -Repairabl | es (7COG&2R) |            |       | 506    | 133     | 639         |
|            |            |              |            |       |        |         |             |

\*Note: Only the COGS listed were used; they represent the majority of the inventory of mechanical, electrical and el∈ ronic parts of interest to POD.

CP/4S-2

Cost Analysis Procedure

1

CP5/E2

## Cost Analysis Procedure

The Cyclical Stock Status Reports (CSSR) were the basis for the data taken from the Master Data Field (MDF). The data obtained included the Data Element Number (DEN), the name of the item, the replacement unit price of the item (DEN-B055), holding costs, and ordering costs. Figure D-1 illustrates the cost analysis procedure for a Cylinder and Piston.

The holding cost breakdown involved the following elements.

- Storage Cost: 1% of Replacement Unit Price
- Obsolescence Rate: (DEN-B057)+17%
- Procurement Time Preference Rate: (DEN-V101)=10%

The order cost breakdown involved the following elements:

- Cost to Order (DEN-V042 or B058) \$309.89
- Number of QTR's = 4
- Quarterly Demand Forecast: (DEN-B074) 41.25
- Gross System Demand End of Leadtime: (DEN B023D) 25.563

The equation used is as follows:

Square Root of ((8) x (V042) + (B058) x (B023D)<sup>0</sup> (Holding Cost Rate x (B055))

CP/4S-3

# Figure D1 Cost Analysis for Sample Part Candidate

<u>NSN</u>

NOMENCLATURE

| FSC  | NATO | NIIN    |                     |
|------|------|---------|---------------------|
| 2810 | 01   | 0233173 | Cylinder and Piston |

Replacement Unit Price

\$10,496.17

Holding Cost:

ł

| \$10496.17 x .01 = | 104.96     |
|--------------------|------------|
| \$10496.17 x .17 = | 1,784.34   |
| \$10496.17 x .10 = | \$1,049.61 |

Total Holding Cost

\$2,938.91

1

Ordering Cost:

$$= \frac{51131.85}{\sqrt{\frac{-8 \times (309.89) \times 25.563}{.28 \times 10,496.17}}} = \frac{51131.85}{4.64}$$

Total Yearly

CP/4S-4

\$13,958.70

Cost Comparison--FMS for POD

CP5/E3

ŧ

•

# POINT PAPER ON FLEXIBLE MANUFACTURING IN THE PARTS-ON-DEMAND PROGRAM

<u>Question:</u> What would it cost to produce a part by flexible manufacturing as compared to a current job shop?

Background: DOD and the Navy have been interested in investing heavily in the recent developments of manufacturing technology in order to improve life cycle cost, readiness and mobilization effectiveness.

**Discussion:** Based on recent experience at the National Bureau of Standards (NBS) in the production of an "Oil Flinger", a comparison between a current job shop and flexible manufacturing is made. The "Oil Flinger" is a part, not in inventory and unavailable from a current source of supply, required by recently recommissioned WWII Battleships. NBS, using the technical documentation on the part supplied by the Navy, in their project on Flexible manufacturing systems, was asked to demonstrate how such a part could be produced using advanced technology. NBS has implemented Computer Aided Design (CAD) system (FMS) is not operational, hence the actual production of the part was manufactured using a conventional job shop approach. While the NBS experiment is not complete, Table 1, alternative techniques, presents a preliminary assessment of the results to date.

Table 1 Discussion:Line 3 is the actual hours for CAD and best guess for the<br/>production effort. Line 1 contains hour estimates for a job shop<br/>without either CAD or Numerically Controlled Machine.<br/>Line 2 contains hour estimates for a conventional job shop with<br/>a numerically controlled machine and without CAD.

CP/45-6

Line 4 is an estimate of resources required in an NBS like facility for CAD and FMS.

The dollar figures are based on economic assumptions provided in Notes (1) and (2).

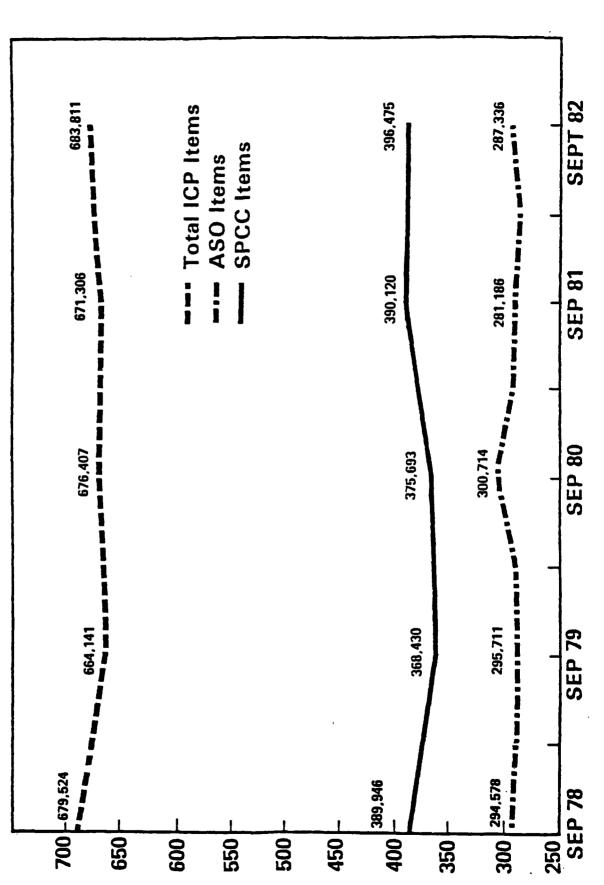
## Conclusions:

- (1) Table 1 indicates that investing in CAD and FMS:
  - (a) Saves on labor costs (design and production).
  - (b) Increases computer costs.
  - (c) Reduces production machinery cost (note: no extra costs were assigned for any extra machinery needed for FMS).
- (2) The basic question and "Oil Flinger" part example are of limited usefulness in evaluating these techniques and the broader DOD/Navy R&D efforts:
  - The "Oil Flinger" specs call for tolerances in excess of modern NC machine capabilities without the addition of elaborate manual labor inputs to complete the part to specification (i.e. 7 out of 10 hours). Table 11 shows the percentage savings in labor cost are small.
  - Production design for a CAD and FMS are performed one time and stored. Column J shows the comparison of the "second batch".
  - NBS personnel (assumed to be typical of industry in general) had little intuitive "feel" for the design of the part, in particular, whether the high tolerances were really necessary.

CP/4S-7

- The part did not demonstrate or require any special capabilities of Robotics or material handling equipment (i.e., environment hazard, weight handling, etc.).
- In the broader context of Parts on Demand, the following two most interesting cases are not adequately addressed in this example.
  - Planning a parts procurement during the life cycle of the weapons systems, to make the most use of front end logistics investment and procuring parts production data along with their logistics data.
  - -- Enhancing mobile logistics support force capabilities.
- (3) Continued investment in Parts-on-Demand continues to look positive.

CP/4S-8


Five Year Trend of ICP-Managed Items

t

;

•

1



A STATE OF A

TARGE 1 - ALTERNATIVE TECHNOLOGICAL TECHNIQUES FOR

PRODUCING AN "OIL FLINGER"

| ŋ          | 051               | HTTH.      | STORED DESIGN  | \$7612.50                                    | \$6637.50                                    | \$6337,50                                                   | \$5703,75                     |
|------------|-------------------|------------|----------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------|
| 1          | TOTAL.            | COST COST  | (6 units)      | \$7612.50                                    | \$6637.50                                    | \$6563.85                                                   | \$6231.90                     |
| н          | MACITINE          | CONST      | (\$18.75/hr)   | \$2812.50                                    | \$2437.50                                    | \$2437.50                                                   | \$2193.75                     |
| U          | COMPUTER          | 0.05T      | (\$45.45/hr)   | N/N                                          | N/N                                          | \$136.35                                                    | \$318.15                      |
| <u>a</u> . | LADOR             | COST       | @\$30/hr       | \$4800                                       | \$4200                                       | 0666\$                                                      | \$3720                        |
| E.         | TUTAL             | TIME       | (STINU 3)      | 160hra                                       | 140hrs                                       | 133hrs                                                      | 124hrs                        |
| ٩          | PARTS             | PRODUCTION | (6 IINITS)     | 130 hrs                                      | 60hrs                                        | 60hrs                                                       | 54hrs                         |
| ر          | PROCETS           | SET UP     | (1st UNIT)     | 20hrs                                        | 70hrs                                        | 70hrs                                                       | 63hrø                         |
| œ.         | INTEGRATED        | PRODUCTION | PLAN           | N/N                                          | N/N                                          | N/N                                                         | 4 hrs<br>(estimate)           |
| ~          | PRODUCTION DESIGN |            | DISK & DRAWING | NKN-CAD 10 hrs<br>no NC Mach. (Drawing only) | 10 hrs<br>(By hand)                          | 3 hrs<br>(computer)                                         | 3 hrs<br>(computer)           |
|            | -                 |            | ALTERNATIVES D | 1. NGN-CAD<br>no NC Mach. (                  | 2. NUM-CAD 10 hrs<br>with NC Mach. (Ny hand) | <pre>3. Artual CAD 3 hrs<br/>with NC Mach. (computer)</pre> | 4. Future CAD<br>FMS estimate |

MATES: (1) All hours in columns A thru D are machine hours. Labor hours assumed to be equal to machine hours and

valued at \$30 per hour.

(2) Cost assumptions for columns G and H:

Computer

Machine

| 100K           | 5 yrs.            | 20K/yr (20%) | 6hwkg/yr  | 2          |                  |
|----------------|-------------------|--------------|-----------|------------|------------------|
| 100K           | 10 YES            | 5K/yr (54)   | 12 wks/yr | 2          |                  |
| Fquipment Cost | Life of equipment | Maintenance  | Idle time | Multiplier | (Facilities/GEA) |

(3) CAD = Computer Aided Design; NC Mach = Numerically Controlled Machine.

Contraction of the second second second

~のまでと、記録書

# SAI Case Study Worksheets

1

CP5/E4

| 06-A  | ug-83 5:54                                            |                              |          |              |                                  | Page    |
|-------|-------------------------------------------------------|------------------------------|----------|--------------|----------------------------------|---------|
|       |                                                       |                              |          |              | CAS                              | E STUDY |
| Nori. | sheet: (2) DIL FLINGER                                | Range:                       | A1F103   |              |                                  |         |
| 1     | ALTERNATIVES                                          | 1<br>NDN-CAD<br>no NC Mach W |          |              | 4<br>CAD with<br>FNS<br>(future) |         |
|       |                                                       |                              |          | (NBS actual) | (future)                         |         |
|       | PRICES                                                |                              |          |              |                                  |         |
| 2     | Equipment Cost<br>(FNS includes<br>allocated MH cost) | \$100000                     | \$200000 | \$200000     | \$530000                         |         |
| 3     | Stations                                              | 2                            | 2        | 2            | 2                                |         |
| 4     | Equipment Life<br>(3 shift use, yrs)                  | 10                           | 10       |              | 10                               |         |
| 5     | Maintenance (%/yr)                                    | 5.0 X                        | 5.0 %    | 5.0 %        | 5.0 Z                            |         |
| 6     | Idle Timeequipment                                    | 13.0 Z                       | 13.0 2   | 13.0 Z       | 10.0 Z                           |         |
| 7     | 0/H Multiplier                                        | 2                            | 2        | 2            | 2                                |         |
|       | Equipment Price<br>(\$/hr of mach tm)                 | \$2.76                       | \$5.53   | \$5.53       | \$14.16                          |         |
|       | Computer Cost                                         | \$0                          | \$100000 |              | \$100000                         |         |
|       | Computer Life<br>(3-shift use, yrs)                   | 5                            | 5        | 5            | 5                                |         |
|       | Maintenance (/yr)                                     | 20.0 X                       | 20.0 X   |              | 20.0 X                           |         |
|       | Idle Timecomputer                                     |                              | 15.0 %   |              | 5.0 %                            |         |
|       | 0/H Multiplier                                        | 2                            | 2        | -            | 2                                |         |
| 14    | Computer Price<br>(\$/hr of comp tm)                  | \$0.00                       | \$15.08  | \$15.08      | \$13.50                          |         |
| 15    | Labor Price (\$/hr)                                   | \$28.00                      | \$28.00  | \$28.00      | \$28.00                          |         |
|       | DESIGN COST                                           |                              |          |              |                                  |         |
|       | Prod Design labor                                     | 10                           | 10       |              | 0                                |         |
| 17    | Production Design<br>(mach inst \$<br>drawings, hrs)  | 0                            | 0        | 3            | 3                                |         |
| 18    | Integrated                                            | 0                            | 0        | 0            | 4                                |         |
|       | Production Planhrs                                    |                              |          |              |                                  |         |
| 19    | Ratio-Manhrs/comphrs                                  |                              |          | 100.0 X      | 100.0 %                          |         |
| 20    | Design Cost                                           | \$280                        | \$280    |              | \$290                            |         |
|       | BATCH COST                                            |                              |          |              |                                  |         |
|       | Set Up Toolinghrs                                     | 4                            | 70       |              | 30                               |         |
|       | Ratio-Manhrs/tooling                                  | 100.0 %                      | 100.0 %  |              | 10.0 %                           |         |
|       | Ratio-Comp/tooling                                    | 0.0 Z                        | 0.0 7    |              | 100.0 2                          |         |
| - 24  | Batch Cost                                            | \$123                        | \$2347   | \$2347       | \$914                            |         |

3

B

|r-

# PRODUCTION COST

7

Ť.

| 25         | Production Time       | 26             | 10         | 10         | 9        |
|------------|-----------------------|----------------|------------|------------|----------|
|            | (hrs/addl part)       |                |            |            |          |
| 21         | Ratio-Manhrs/prod-tm  | 100.0 2        | 100.0 2    | 100.0 %    | 2.0 X    |
|            | •                     |                |            |            |          |
|            | Ratio comp/Equiptm    | 0.0 %          | 0.0 %      | 0.0 %      | 100.0 %  |
| 28         | Prod cost († unit)    | \$800          | \$335      | \$335      | \$254    |
|            |                       |                |            |            |          |
|            | COST SUMMARY(1 unit)  |                |            |            |          |
|            |                       |                |            |            |          |
| 20         | Equip Time (1 unit)   | 30             | 80         | 80         | 39       |
|            |                       | <del>.</del> - |            |            |          |
|            | Computer Tm (1 unit)  | 0              | 0          | 3          | 46       |
| 31         | Labor Time (1 unit)   | 40             | 90         | 83         | 10       |
|            |                       |                |            |            |          |
| 32         | Equip cost (1 unit)   | \$82.89        | \$442.09   | \$442.09   | \$552.08 |
| 33         | Comp Cost (1 unit)    | \$0.00         | \$0.00     | \$45.25    | \$620.78 |
| 34         | Labor Cost (1 unit)   | \$1,120.00     | \$2,520.00 | \$2,324.00 | \$285.04 |
| - ·        |                       | •••,•=••••     |            | -2,02      |          |
|            | COST WITH NO STORED D | FETEN          |            |            |          |
|            | COST WITH NO STORED D | COTON          |            |            |          |
| •-         | N                     |                |            |            |          |
|            | Marginal Cost(1n 28)  | \$800          | \$335      | \$335      | \$254    |
| 36         | Fixed Cost(1n 20+24)  | \$403          | \$2627     | \$2476     | \$1204   |
|            |                       |                |            |            |          |
| 37         | Total cost (1 unit)   | \$1203         | \$2962     | \$2811     | \$1458   |
| 38         | (2 units)             | \$2003         | \$3297     | \$3147     | \$1712   |
| 39         | (5 units)             | \$4402         | \$4303     | \$4152     | \$2474   |
|            |                       |                | \$9332     |            |          |
| 40         | (20 units)            | \$16400        | \$9352     | \$9181     | \$6282   |
|            | · · · · · · · · ·     |                |            |            |          |
|            | Unit Cost (2 units)   | \$1001         | \$1649     | \$1573     | \$856    |
| 42         | `(3 units)            | \$934          | \$1211     | \$1161     | \$655    |
| 43         | (5 units)             | \$880          | \$861      | \$830      | \$495    |
| 44         | (20 units)            | \$820          | \$467      | \$459      | \$314    |
| •••        |                       |                |            | ••••       |          |
|            | Min Time to Produce   |                |            |            |          |
|            |                       | 40             | 90         | 07         | • /      |
| 45         |                       |                |            | 83         | 46       |
| 46         | (hrs for 2 units)     | 66             | 100        | 93         | 55       |
|            |                       |                |            |            |          |
|            | HINIHUH COST WITH STO | RED DESIGN     |            |            |          |
|            |                       |                |            |            |          |
| 47         | Marginal Cost(ln 28)  | \$800          | \$335      | \$335      | \$254    |
| 48         | Fixed Cost (1n 24)    | \$123          | \$2347     | \$2347     | \$914    |
|            |                       |                |            |            | •••      |
|            | Total Cost (1 unit)   | \$923          | \$2682     | \$2682     | \$1167   |
|            |                       |                |            |            |          |
| 50         | (2 units)             | \$1723         | \$3017     | \$3017     | \$1421   |
| 51         | (5 units)             | \$4122         | \$4023     | \$4023     | \$2183   |
| 52         | (20 units)            | \$16120        | \$9052     | \$9052     | \$5992   |
|            |                       |                |            |            |          |
| 53         | Unit Cost (2 units)   | \$861          | \$1509     | \$1509     | \$711    |
| 54         | (5 units)             | \$824          | \$805      | \$805      | \$437    |
| 55         | (20 units)            | \$806          | \$453      | \$453      | \$300    |
| JJ         | (2V UH163/            | 70V0           | 5664       | ****       | *300     |
|            | Md . 72 A             | ·              |            |            |          |
| <b>.</b> . | Min-Time to Produce   | ÷              |            | <b>-</b>   |          |
| 56         | (hrs for 1 unit)      | 30             | 80         | 80         | 39       |
| 57         | (hrs for 2 units)     | 56             | 90         | 90         | 48       |
|            |                       |                |            |            |          |

i,

. 06-Aug-83 6:56

2

Paige 1-CASE STUDY C

Worksheet: (5) FIGA dust cover Range: C1..E103

| 1      | ALTERNATIVE S                        | 1<br>NON-CAU<br>no NC Mach wit |               | 3<br>CAD with<br>NC Nach |
|--------|--------------------------------------|--------------------------------|---------------|--------------------------|
|        | · .                                  |                                |               | (Draper                  |
|        | PRICES                               |                                |               | actual)                  |
| 2      | Equipment Cost                       | \$20000                        | \$50000       | \$50000                  |
|        | (FMS includes                        |                                |               |                          |
| -      | allocated NH cost)<br>Stations       | •                              | 1             |                          |
| 3<br>4 | Equipment Life                       | 1<br>10                        | 10            | 1                        |
| 7      | (3 shift use, yrs)                   |                                | ĨV            | 10                       |
| 5      | Maintenance (/yr)                    | 5.0 Z                          | 5.0 X         | 5.0 X                    |
|        | Idle Timeequipment                   | 13.0 X                         | 13.0 X        | 13.0 X                   |
|        | O/H Multiplier                       | 2                              | 2             | 2                        |
| 8      |                                      | \$1.11                         | \$2.76        | \$2.76                   |
| -      | (\$/hr of mach tm)                   | ••••                           |               | ~                        |
| 9      | Computer Cost                        | · N/A                          | N/A           | N/A                      |
| 10     | Computer Life                        | N/A COM                        | puter cost b  | based on                 |
|        | (3 shift use, yrs)                   |                                | e shared use  | e of a                   |
|        | Maintenance (/yr)                    | , N/A ned                      | lium size ma: | in-frame                 |
|        | Idle Timecomputer                    |                                | puter.        |                          |
|        | 0/H Multiplier                       | N/A                            | N/A           | N/A                      |
| 14     | Computer Price<br>(\$/hr of comp tm) | \$20.00                        | \$20.00       | \$20.00                  |
|        |                                      |                                |               |                          |
| 15     | Labor Price (\$/hr)                  | \$40.00                        | \$40.00       | \$40.00                  |
|        | DESIGN COST                          |                                |               |                          |
| 16     | Prod Design labor                    | 44                             | 144           | 2                        |
|        | Production Design                    | 0                              | 0             | 48                       |
|        | (mach inst &                         |                                |               |                          |
|        | drawings, hrs)                       |                                |               |                          |
| 18     | Integrated                           | 0                              | 0             | 0                        |
|        | Production Planhrs                   |                                |               |                          |
|        | Ratio-Manhrs/comphrs                 | 100.0 2                        | 100.0 2       | 100.0 Z                  |
| 20     | Design Cost                          | \$1760                         | \$5760        | \$2960                   |
|        | BATCH COST                           |                                |               |                          |
|        | Set Up Toolinghrs                    | 30                             | 6             | 6                        |
|        | Ratio-Manhrs/tooling                 | 100.0 Z                        | 190.0 %       | 100.0 X                  |
| 23     | Ratio-Comp/tooling                   | 0.0 %                          | 0.0 2         | 0.0 Z                    |
|        | Batch Cost                           | \$1233                         |               |                          |

. 1 2

# PRODUCTION COST

| 25 Production Time                                 | 30.00     | 2.25    | 2.25         |
|----------------------------------------------------|-----------|---------|--------------|
| (hrs/addl part)                                    | ••••      |         |              |
| 26 Ratio-Manhrs/prod-te                            | 100.0 2   | 100.0 % | 100.0 2      |
| 27 Ratio comp/Equipte                              | 0.0 Z     | 0.0 Z   | 0.0 X        |
| 28 Prod Cost (1 unit)                              | \$1233    | \$96    | \$96         |
|                                                    |           |         |              |
| COST SUNMARY(1 unit)                               |           |         |              |
| 29 Equip Time (1 unit)                             | 60        | 8       | 8            |
| 30 Computer Tm (1 unit)                            | 0         | 0       | 48           |
| 31 Labor Time (1 unit)                             | 104       | 152     | 58           |
|                                                    |           |         | <b>*</b> 0.7 |
| 32 Equip cost (1 unit)                             | \$66      | \$23    | \$23         |
| 33 Comp Cost (1 unit)                              | \$0       | \$0     | \$960        |
| 34 Labor Cost (1 unit)                             | \$4160    | \$6090  | \$2330       |
| COST WITH NO STORED DES                            | IGN       |         |              |
|                                                    | \$1233    | \$96    | \$96         |
| 35 Marginal Cost(ln 28)<br>36 Fixed Cost(ln 20+24) | \$2993    | \$6017  | \$3217       |
| 36 F1X00 LOSU(10 20+247                            | 42775     | ••••    |              |
| 37 Total cost (1 unit)                             | \$4226    | \$6113  | \$3313       |
| 38 (2 units)                                       | \$5459    | \$6209  | \$3409       |
| 39 (5 units)                                       | \$9159    | \$6498  | \$3698       |
| 40 (20 units)                                      | \$27656   | \$7941  | \$5141       |
|                                                    |           | _       |              |
| 41 Unit Cost (2 units)                             | \$ 27 30  | \$3105  | \$1705       |
| 42 (3 units)                                       | \$2231    | \$2102  | \$1168       |
| 43 (5 units)                                       | \$1832    | \$1300  | \$740        |
| 44 (20 units)                                      | \$1383    | \$397   | \$257        |
| Nin Time to Produce                                |           |         |              |
| 45 (hrs for 1 unit)                                | 104       | 152     | 56           |
| 46 (hrs for 2 units)                               | 134       | 155     | 58           |
| NININUM COST WITH STOR                             | ED DESIGN |         |              |
|                                                    |           |         | <b>AO</b> (  |
| 47 Marginal Cost(ln 28)                            | \$1233    | \$96    | \$96         |
| 48 Fixed Cost (ln 24)                              | \$1233    | \$257   | \$257        |
| 49 Total Cost (1 unit)                             | \$2466    | \$353   | \$353        |
| 50 (2 units)                                       | \$3699    | \$449   | \$449        |
| 51 (5 units)                                       | \$7399    | \$738   | \$738        |
| 52 (20 units)                                      | \$25896   | \$2181  | \$2181       |
| AT ITA MHTADA                                      |           |         |              |
| 53 Unit Cost (2 units)                             | \$1850    | \$225   | \$225        |
| 54 (5 units)                                       | \$1480    | \$148   | \$1.48       |
| 55 (20 units)                                      | \$1295    | \$109   | \$109        |
|                                                    |           |         |              |
| Nin Time to Produce                                |           | 8       | 8            |
| 56 (hrs for 1 unit)                                | 60<br>90  | 10      | 10           |
| 57 (hrs for 2 units)                               | 70        | 10      |              |

「日」

# EXPLANATION OF COST ANALYSIS SHEET

# Line No. Explanation

- 2-8 Information needed to compute the price per hour of fabrication equipment.
  - 2 Equipment Cost: Aggregate cost of equipment used to fabricate, assemble or transport the part. Computer cost omitted unless it is an inherent part of the tool. For partial analysis, only include costs of those machines, out of a larger facility, actually involved in production and an estimated allocation of other shared costs (such as the transport system).
  - 3 <u>Stations</u>: Number of major work stations, i.e. number of work items that could be worked on simultaneously, within the equipment aggregate defined above.

Assumption: The work stations are roughly of equal cost, or processing time is split evenly between the workstations. Relaxing this assumption would require detailed info on equipment costs and processing time on each equipment station.

- 4 <u>Equipment Life</u>: Time until equipment must be replaced, after being used on a 5 day/week 3-shift basis. Scrap value = 0.
- 5 <u>Maintenance (%/year)</u>: Percentage of line 2.
- 6 <u>Idle Time Equipment</u>: % of life (line 4) that equipment is unavailable for productive work either because of down time or scheduling (i.e. management or demand) conflicts. Does not include time equipment is actively being used to set up for a batch run. Rate given (13%) may be much lower than experienced with other kinds of equipment.

<u>O/H Muliplier</u>: The overhead (O/H) rate by which the equipment price must be multiplied to find a "fully loaded" rate, covering charges for facilities, G&A, interest, profit, etc.

2

7

- 8 Equipment Prices: Price per hour of equipment needed to produce a part. Price = L7/L3 \* L2 \* (1 + L4 \* L5)/(8hrs \* 3 shifts \* 5 days \* 52 wks \* L4 \* (1 - L6)). Note: L7 means "Line 7" from above, etc.
- 9-14 Information needed to compute the cost per hour of computer equipment.

Note: The assumption in lines 9-14 is that the computer supporting design and production is a relatively inexpensive minicomputer dedicated to supporting the production facility. If a large main frame is used on a time-shared basis (as in the case of Draper Lab's Dust cover) this estimating procedure is not valid and estimates of the time sharing costs should be used directly.

- 9 <u>Computer Cost</u>: aggregate cost of computer equipment used for CAD and production planning and process control. Excludes machine specific controllers (embedded in robots, machines etc.) already included in line 2 above. Computer costs include software.
- 10 Computer Life: same as line 4.
- 11 Maintenance: same as line 5.
- 12 Idle Time: Similar to line 6.
- 13 O/H Multiplier: same as line 7.
- 14 Computer Price: same as line 8, except station concept omitted = L13 \* L9 \* (1 + L10 \* L11)/ (6240 \* L 10 \* (1 - L12)).

Note: asterisk (\*) denotes multiplication.

- 15 <u>Labor Price</u>: average fully loaded (with overhead, fringe, G&A and profit) hourly charge rate for employees connected with the parts production in process.
- 16-20 <u>Design Cost</u>: cost of performing the design tasks needed to initiate a production run. Includes manhours and computer resources to analyze the specification information, create needed engineering drawings, prepare a production approach and plan and prepare operator and/or machine control instructions, though not necessarily in the order given. Some or all of these setups may have been done at some time and saved for future use - this analysis shows, below, the maximum effect of such "storing" of the production design information.
  - 16 <u>Prod Design Labor</u>: Labor hours spent on production design tasks unassisted by the computer. Might include engineering drawings, process planning, or preparing numerically controlled (NC) machine plans/programs/input.
  - 17 <u>Production Design</u>: Computer hours required for development of machine instructions (and possibly drawings) for production of the part.
  - 18 Integrated Production Plan: Computer hours required to develop a plan for use of an integrated production facility.
  - 19 <u>Ratio-Manhrs/Comphrs</u>: Ratio of manhours required for each hour of computer time needed in lines 17 and 18 above.

- 20 <u>Design Cost</u>: This is the sum of computer and labor costs needed to create design information.
- 21-24 <u>Batch Cost</u>: This is the cost associated with initiating production of batch, whether the batch is one unit or many units.
  - 21 Set Up Tooling -- hrs: The number of hours the equipment must be tied up while setup is performed. The assumption, not necessarily valid, is that only 1 station is tied up in this effort at a time.
  - 22 <u>Ratio-Manhrs/Tooling</u>: Percentage of setup tooling hours (line 21) that must be accompanied by labor time. Can be greater than 100% if more than one person is required.
  - 23 <u>Ratio-Comp/tooling</u>: Percentage of setup tooling hours (line 21) that must be supported by the computer.
  - 24 <u>Batch Cost</u>: Set up cost for a batch of this part = L21 \* (L8 + L22 \* L15 + L23 \* L14).
- 25-28 <u>Production Cost</u>: These lines compute the "marginal" production cost, the cost producing one additional unit.
  - 25 <u>Production Time</u>: The number of hours of a single equipment stations time spent on producing this part (reminder: all equipment stations are assumed to have the same price per hour).
  - <u>Ratio-Manhrs/prod-tm</u>: The percentage of Production Time (line 25) that must be accompanied by labor.
     <u>Ratio-Comp/Equip-tm</u>: The percentage of production Time (line 25) that must be accompanied by use of the computer.

| 28    | <u>Prod Cost (1 Unit)</u> : The marginal cost of producing<br>one unit = $L25 * (L8 + L26 * L15 + L27 * L14).$                                                                                                    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ••    |                                                                                                                                                                                                                   |
| 29    | Equip Time: L21 + L25.                                                                                                                                                                                            |
| 30    | <u>Computer Tm</u> : L17 + L18 + L23 * L21 + L27 * L25.                                                                                                                                                           |
| 31    | <u>Labor Time</u> : L16 + (L17 + L18) * L19 + L21 * L22 +<br>L25 * L26.                                                                                                                                           |
| 32    | Equip Cost: L29 x L8.                                                                                                                                                                                             |
| 33    | Comp Cost: L30 * L14.                                                                                                                                                                                             |
| 34    | Labor Cost: L31 * L15.                                                                                                                                                                                            |
| 35-46 | <u>Cost with No Stored Design</u> : The cost of providing<br>batchs of parts when the design costs must be<br>incurred, i.e. the design information has not been<br>previously created and stored for future use. |
| 35    | Marginal Cost: line 28.                                                                                                                                                                                           |
| 36    | Fixed_Cost: L20 + L24.                                                                                                                                                                                            |
| 37-40 | Total Cost: L36 + L35 * # of units.                                                                                                                                                                               |
| 41-44 | Unit Cost: 2 units = L38/2                                                                                                                                                                                        |
|       | 3 units = (L36 + L 35 * 3)13                                                                                                                                                                                      |
|       | 5 units = (L 39/5)                                                                                                                                                                                                |
|       | 20 units = (L40/20)                                                                                                                                                                                               |
| 45-46 | Min Time to Produce:                                                                                                                                                                                              |
| 45    | 1 unit = MAX (L16, L17) + L18 + L21 + L51.                                                                                                                                                                        |
| 46    | 2 units = L45 + L51.                                                                                                                                                                                              |
|       | Note: This is only one way of computing time to produce - it is not necessarily accurate for alternative circumstances.                                                                                           |
| 47-57 | Minimum Cost with Stored Design: this is the same<br>as lines 35-46 except it leaves off the cost and<br>time necessary for design, on the assumption that                                                        |
|       | •                                                                                                                                                                                                                 |

this time and cost could be saved if the design information was stored. It is "minimum" since it is unlikely that <u>all</u> design information could be effectively reused later.

48 Fixed Cost = L24.

56

Min Time (1 unit) = L21 + L25

POD Program—Economic Analysis and Methodology

## POD PROGRAM ECONOMIC ANALYSIS

Question: What would be required to do an economic analysis of proposed Parts-on-Demand (POD) investments, including short term immediate evaluation of the program, and in the longer run, detailed evaluation of the various portions of the program?

<u>Response</u>: Tables 1 through 5 list the areas necessary to be analyzed and a path to follow in the conduct of an Economic Analysis of the POD investment program.

> Table 1, economic evaluation procedures for POD, reviews the steps necessary to conduct the short run Economic Analysis of the POD investment program. Detailed step-by-step evaluations would be similar in procedure but normally more limited in scope and utilize more accurate and specifically relevant data.

Table 2, system. approval considerations, extracted from the latest DODI 5000.2, indicates those factors which need to be considered at each stage of development of a coordinated R&D program. In general, but not entirely, these considerations are applicable to a Parts-on-Demand investment program. However, POD is atypical of DOD 5000.1 orientation in several significant ways:

- It does not lead to the procurement of a special item (Weapon System) not otherwise attainable from the civilian market; rather the hope is to simply speed up the incorporation of new technology into those portions of the civilian market that supply DOD (this is true of the POD Program as a whole certain portions, however, such as enhancements to the Mobile Logistic Force (MLF) and other GOGO facilities have a more traditional orientation).
- It is not limited to the development of one, or a small class, of items. Rather there is an exceedingly large class of "Payoff Areas" or objectives for the Research area, most of which are reasonably near term. An analogy with the Navy Federal Computer project is probably appropriate - the NEC developed (and is developing) a wide range of "standard" computers along with new H/W&S/W standards, and regulations to ensure their proper use. The scope of POD is correspondingly large and its goals even more diverse.

The POD investment program to be evaluated is based on the DODI 5000.2 procedures and considerations, along with an assessment of the current state of technology and its consequent investment opportunities.

Table 3, the Parts on Demand Investment Program, shows the various investment and policy inplementation areas that would be affected by the investment program (currently being formulated), grouped according to the investment area and according to the various technical investment stages proposed (including implementation, and deployment). In the body of the table, "I" indicates R&D expenditures efforts,

Cardina solo

"P" indicates policy formulation efforts (and/or policy testing and implementation), "O" indicates other major DOD expenditures, while blank cells indicate that the investment technique is probably not applicable to the particular investment area. Some of the areas marked with an I or P might be dropped from further consideration based on preliminary analysis; conversely other investment techniques, investment areas or cells might be added to the investment plan. Those cells marked with an "X" are in a sense, the "payoff" cells: The models of cost and logistic effectiveness necessarily concentrate on these implementation and development cells.

Table 4, Potential Improvement Areas for POD Investment, goes into some more detail on those factors where improvement is sought within some of the technical investment areas. POD cuts across many areas and is going to require a diverse set of investment actions. Not only that, but time and money limitations will not permit exploring all possible investment targets. Hence sample data from individual R&D efforts will have to be extrapolated (as usual) to draw conclusic.is about related areas. The factors shown in Table 4, applying as they do across many technical areas will be the focus of attempts to systematically model and then extrapolate Engineering (and, hence, economic) knowledge from the limited data our dollars will permit us to gather. Once the technical data is pulled together and used as discussed for Table 4, then the economic cost models are employed to calculate life cycle cost and other logistic factors.

1

£

Table 5, Example Cost Categories and Determinants, is an example of cost categories and determinants that might be used to evaluate the life cycle cost of a particular part as proposed under a POD facility and its cost under a base line facility.

ŧ,

## TABLE 1-ECONOMIC EVALUATION PROCEDURES FOR POD

The short run evaluation requires:

- a. A clear statement of the operational objectives of the POD R&D program (including the subsequent implementation of the concepts) and the time frame to be considered.
- b. An evaluation of the natural path of development of the affected areas in the absence of government R&D investment.
- c. Estimates of the incremental R&D investment sums to be expended/(including indirect expenditures on IR&D and policy studies).
- d. Determination of those cost factors likely to be affected by a POD development program, preferably broken down by the various portions of the program (i.e. a cost model).
- e. Estimation of absolute costs (or, if necessary, relative cost differentials) for the areas to be influenced. Also compute cost differentials and measures of cost effectiveness such as discounted present value. Base these cost estimates (and model specification) upon engineering evaluations of supply system data on sample parts drawn from the supply system, along with data on results of part and ongoing demonstrations of POD techonology.
- f. Determine suitable measures of readiness, and surge capacity (including measures of mobile logistic force effectiveness).
- g. Evaluate effects on readiness and range capacity.
   These estimates would be based on the same data as the cost estimates.

- h. Evaluate the trade-offs of cost vs the other measures of effectiveness.
- i. Formulate principal conclusions.
- j. Identify the sensitivity of the conclusions to the key data and assumptions.
- k. Formulate recommendations.

TABLE 1 - ALTERNATIVE TECHNOLOGICAL TECHNIQUES FOR

3

A STATEMENT

|                                |                                              |                     | ЪЧ      | PRODUCING AN "OIL FLINGER" | L FLINGER" |                 |              |                    |                    |               |
|--------------------------------|----------------------------------------------|---------------------|---------|----------------------------|------------|-----------------|--------------|--------------------|--------------------|---------------|
|                                | ¥                                            | æ                   | υ       | ٥                          | ß          | ß.              | U            | H                  | 1                  | ŗ             |
|                                | PRODUCTION DESIGN                            | INTEGRATED          |         |                            | TOTAL      | LABOR           | COMPUTER     | MACHINE            | TVLOL              | COST          |
|                                |                                              | PRODUCTION          | PROCESS | PARTS                      | TIME       | uso             | uso.         | TSCD               | 00ST               | HLIM          |
| ALTERNATIVES                   | DISK & DRAWING                               | PLAN                | SET UP  | PRODUCTION                 | +(LINN I)  | <b>@\$30/hr</b> | (\$45.45/hr) | (\$18.75/hr)       | (1 unit)*          | STORED DESIGN |
| 1. NON-CND<br>no NC Mach.      | NCN-CND 10 hrs<br>no NC Mach. (Drawing only) | N/A                 | 4hrs    | 26hrs                      | 40hrs      | \$1200          | N/A          | \$562.50           | \$1762.50          | \$1762.50     |
| 2. NON-CAD<br>with NC Mach     | with NC Mach. (By hand)                      | ¥                   | 70hrs   | 10hrs                      | 90hrs      | \$2700          | N/A          | \$1500.00          | \$ <b>4</b> 200.00 | \$4 200.00    |
| 3. Actual CAD<br>with NC Mach. | 3 hrs<br>h. (computer)                       | N.                  | 70hrs   | 10hrs                      | 83hrs      | \$2490          | \$136.35     | \$1500.00          | \$4126.35          | 00"066£\$     |
| 4. Puture CAD<br>PMS estimate  | 3 hrs<br>e (computer)                        | 4 hrs<br>(estimate) | 63hrs   | 9hrs                       | 79hrs      | \$2370          | \$318.15     | \$1350 <b>.</b> 00 | \$4038.15<br>.25   | \$3720.00     |

NUTES: (1) All hours in columns A thru D are machine hours. Labor hours assumed to be equal to machine hours plus computer hours and valued at \$30 per hour.

(2) Cost assumptions for columns G and H:

| Computer | 100K<br>5 yrs.<br>20K/yr (20%)<br>8mks/yr<br>2                                                    |
|----------|---------------------------------------------------------------------------------------------------|
| Machine  | 100K<br>10 yrs<br>5K/yr (5%)<br>12 wks/yr<br>2                                                    |
|          | Bquipment Cost<br>Life of equipment<br>Maintenance<br>Idle time<br>Nultiplier<br>(Pacilities/GLA) |

(3) CAD = Computer Aided Design; NC Mach = Numerically, Controlled Machine.

(4) The last "Oil Flinger", for a Battleship, was purchased in 1981 at a unit

cost of \$1240.44.

\*(5) Cost variation with batch size

| HILES TONES |                                                      | c                 |                                                             | -               | Ξ.                                             |                                  | Ξ                 |
|-------------|------------------------------------------------------|-------------------|-------------------------------------------------------------|-----------------|------------------------------------------------|----------------------------------|-------------------|
| PHASE.      | CONCEPT FORMULATION                                  |                   | CONCEPT FORMULATION                                         |                 | CURRENT VALIDATION                             | THUL SCALE DEVELOPMENT           |                   |
|             | Prepare Justification for<br>Mainr Systems New Start | APPROVE<br>INSNSs | _                                                           | AP FROVE<br>SCP | Prepare Dectation APPRIAVE<br>Generation DCF I | Prepare Neclaton<br>Concelharten | AFFROVI<br>DCF_11 |
|             |                                                      |                   |                                                             |                 | Paper (DCP)<br>Deserves Sectores               | Paper (DCP)<br>• Hudato DCP I    |                   |
| •           | • Incutty elements of<br>Pafener Cuidance to         |                   | e heserroe systems                                          |                 |                                                |                                  |                   |
| . ,         | which system responds                                |                   | <ul> <li>Provide history of<br/>Project Actional</li> </ul> |                 | • Update hlatory of<br>Punhel Actional         | • Refine Cost and<br>Schedule    |                   |
| •           | Precribe role of sys-                                |                   | Declalona                                                   |                 | heelylour                                      |                                  |                   |
| ~           | tem in minsion area                                  |                   | • Drerrike Mission                                          |                 | • Reflac Magion                                |                                  |                   |
| •           | Describe Alternatives                                |                   | area and role of                                            |                 | area and role                                  | • Prepare training fian          |                   |
| -           | to be considered in                                  |                   | , aystems                                                   |                 |                                                | • Firm up Industrial             |                   |
| J           | concept exploration                                  |                   | • Define overational                                        |                 |                                                | Rase                             |                   |
| •           | Puscribe System                                      |                   | concept                                                     |                 | syntem                                         | • նոբլուշելոբ նշոշերբում         | -                 |
| -           | Policy Improvements                                  |                   |                                                             |                 |                                                | Hadels (Pollvery/leat)           |                   |
|             |                                                      |                   | • Describe                                                  |                 | • PHACHER ALTERNALIVES                         | 2                                |                   |
| •           | Discuss maturity of                                  |                   | Inadequacies of                                             |                 | researcher non-                                |                                  |                   |
| -           | technology planned                                   |                   | System                                                      |                 | selection                                      |                                  |                   |
| •           | Discume manufacturing                                |                   | • Discuss Alternatives                                      |                 | <ul> <li>Hpdate Operational</li> </ul>         |                                  |                   |
| -           | processes and risks                                  |                   | • Describe exteriou                                         |                 | concept                                        |                                  |                   |
|             | Discuss Affordability                                |                   | alternative actions                                         |                 | <ul> <li>Undate and describe</li> </ul>        |                                  |                   |
|             |                                                      |                   | (affordability, read)-                                      |                 |                                                |                                  |                   |
| •           | Djacuma Contraints                                   |                   | ness, standardization,                                      |                 | (affordability, readi-                         |                                  |                   |
| •           | <b>Provide Acquisition</b>                           |                   | sustainability, man-                                        |                 | ness, standardtzatlen,                         |                                  |                   |
| •           | Strategy                                             |                   | pover)                                                      |                 | gualainabiiity, man-                           |                                  |                   |
|             |                                                      |                   | • Identify key areas of                                     |                 | proces ( toward                                |                                  |                   |
|             |                                                      |                   | technological tink                                          |                 | <ul> <li>Discuss TAE results</li> </ul>        |                                  |                   |
|             | ×                                                    |                   |                                                             |                 | ahwwing all algaificant                        | /• Identify decisions needed     | Ē                 |
|             |                                                      |                   | atrateov for entire                                         |                 | risks resolved                                 | • Preare MIP                     |                   |
|             |                                                      |                   | proeram                                                     |                 | <ul> <li>Verify technology in</li> </ul>       |                                  |                   |
|             |                                                      |                   |                                                             |                 | hand, only engineering                         | • Conduct Developmental          |                   |
|             |                                                      |                   |                                                             |                 | rffort remains                                 |                                  |                   |
|             |                                                      |                   | reading to mart                                             |                 | <ul> <li>Acquitation strateny</li> </ul>       | · Identify Industrial Base       | 5<br>1<br>1<br>1  |
|             |                                                      |                   |                                                             |                 |                                                | - Lead time                      |                   |
|             |                                                      |                   |                                                             |                 | nequialtion strategy                           |                                  |                   |
|             |                                                      |                   | • Identify and discuss                                      |                 | - Discusa detail stra-                         | - Froduction rais                |                   |
|             |                                                      |                   | 1.55.063                                                    |                 | נינא לייד איתיניילומה                          | - 201150                         |                   |
|             |                                                      |                   | <ul> <li>Hentify deciniqua</li> </ul>                       |                 | to next milentene                              | •                                |                   |
|             |                                                      |                   | needed.                                                     |                 | <ul> <li>Program atructure</li> </ul>          |                                  |                   |
|             |                                                      |                   | - NIT                                                       |                 | - Vertly Inture cost                           |                                  |                   |
|             |                                                      |                   |                                                             |                 |                                                |                                  |                   |
|             |                                                      |                   |                                                             |                 |                                                |                                  |                   |
|             |                                                      |                   |                                                             |                 | <ul> <li>Identify and Discuss</li> </ul>       |                                  |                   |
|             |                                                      |                   |                                                             |                 | kry framma                                     |                                  |                   |
|             |                                                      |                   |                                                             |                 |                                                |                                  |                   |

TARLE 2 - SYSJERI AFFROVAL, CONSTRUCTIONS

1

のたいとうというないのとうとう

.

ŧ

ŧ

?

ş

TARLE 3 - PARTS ON DEMOND INVESTMENT FRAMMAN

1-2 1. V. 1.0 17 1711 S Ľ, 2 3/11% 4/03 Riv/F ACOX. T/OX 3(1)X 5 25 AL BALACTION CONTRACTOR OF A CONTRACT OF A C 1/1 × 4 × Prover Provide Ł 6 ۰. L 6 ٤. INDI IN -٤ 6 • ۵ 6-5 4 ž je. ٤. 6 Ŀ -**6**-۴. ٩ ۲ 5-۰. 11 TEST H 6 THAT IN TO THENT TO THENT TO THE PROC POLICY ۵ £. ۵. • ۵ ٤., ۲ . ۵. ۰. ۵ <u>س</u> 2 ٤. ۵. ₽. 4 4 --£., -••• -۹., --.... --CONCEPT VALIANTION INDUSTRY NILF STANIARDS DEND DEND TURNOR -H н. н -------TECH DEMO A.J. \* CONCELT FORMULATION TECH. NEMO . RED ----IRGU ----5. FROMATICALOE NATE PARTS SUPPLY SYSTEM (ICP) ISSACE, DATA STORAGE & USAGE MAN NOT UNE OF ICS AND/OR ASSEMBLY OF ELECTRO NECH 1. MACHINING OF MECH. PARTS ABSEMPLY OF MUCH PARTS ACQUISITION MILESTONES POD STANDARDS FOR DATA & H/W INVESTMENT ARFAS CERTIFICATION & QUALIFICATIONS AFPROACHES ÷ 2

LEGEND

AGD INVESTMENT REQUIRED
 CUINANAVY FOLICY CHANGE REQUIRED
 MAF - MOBILE LAGISTICS FORCE
 OTHER EXFENDITURES REQUIRED
 TAVOT CELLS

A DE LA DE L

<

Table 4 - Potential Improvement Arnas for Parts on immany Program

;

r

|                     |                  | DNTA AQUISITION | DNTN S   | DNTA STOINGE,      | FMS   | PROCESS INSTRUMENT | oi string   | <b>B</b> dSNI | FUNCTIONS | NUISI      |
|---------------------|------------------|-----------------|----------|--------------------|-------|--------------------|-------------|---------------|-----------|------------|
| FARTS MANJENCTURING | CND CMI CAPP CAT | TECINIQUES      | USAGE, 1 | JSAGE, TRANS TIXII | STINI | CUTIFR IN DEV      | FOR FMS (1) | TEST          | DESIGN    | SIGHEROUNI |
| PROCESSES           |                  |                 |          |                    |       |                    |             |               |           |            |

1. MACHINING OF

MECINNICAL PARTS

2. ASSEMILY OF

MECHANICAL PARTS J. ASSEMBLY OF ELECTRO MFCHANICAL

PARTS

4. MAUFACTURE OF

ICS NU/OR PABA

5. PROTECTION OF

MECHANICAL PARTS

TO NEAR NET SUMPE

NOTE: (1) COMPLEXITY, MANUFACTURING PROCESSES, MATERERIAL, etc.

ういう

# TABLE 5 - EXAMPLE COST CATEGORIES AND DETERMINANTS (1)

## COST CATEGORIES

### COST DETERMINANTS

Ordering Cost Extension Storage Cost Extension Marginal Product Cost Extension Setup Cost Extension Design Investment Extension Design Conversion Extension Design Maintenance Extension Design Facility Investment Extension Design Facility Maintenance Allocation Design Facility

Product Facility Investment Extension

Product Facility Maintenance Extension

Beginning Inventory New Demand Backorders Discount Factor Order Size Ordering Cost Response Time Storage Cost Marginal Product Cost Setup Cost per Order Product Design Investment Design Conversion Product Sites Added Design Maintenance Design Facility Investment Design Sites Added Design Facility Maintenance Design Facility Allocation % Product Facility Investment # Added Product Sites Product Facility Maintenance Product Facility Allocation %

NOTE: (1) Example Cost Categories and Determinants to calculate the Life Cycle Cost of a single part.

# Appendix E Long Range R&D Planning

- Conceptual POD Program Network
- POD System Planning Schedule
- Navy Logistic R&D Project Recommendations
- Investment Strategy for Integrated Circuits Diminishing Sources of Supply

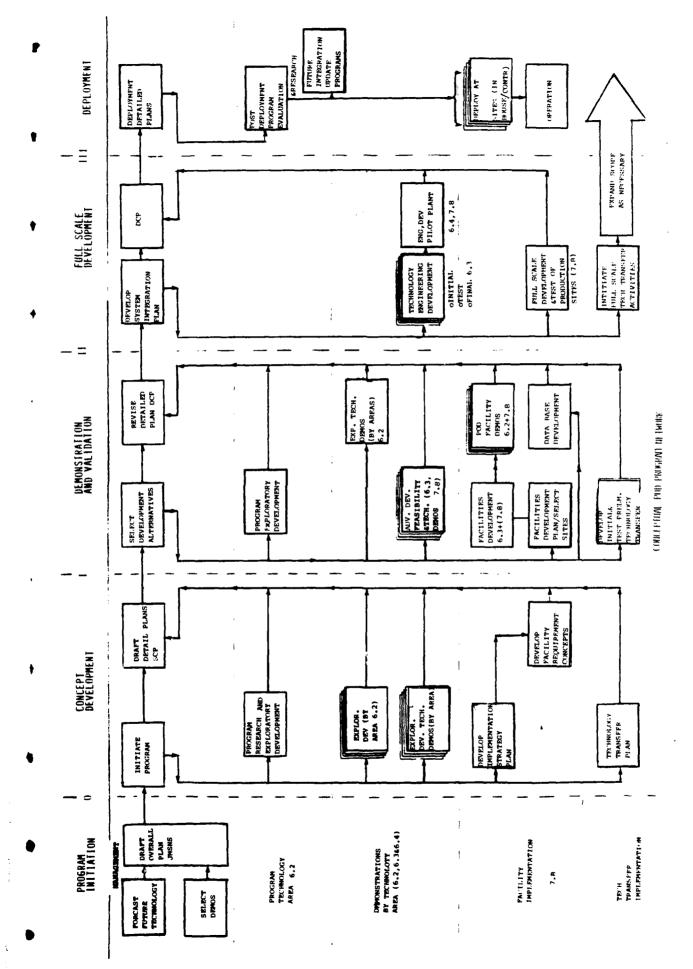
CP5/C-16

Conceptual POD Program Network

CP5/E6

#### Conceptual POD Program Network

Figure El represents a POD network diagram designed to give a conceptual view of how project activity and management control would interact within the Navy/DOD DSARC (Defense Systems Acquisition Review Council) process.


Note that this version of the POD program involves five separate technical areas (management, mechanical machining, assembly, near-net shape fabrication, and IC manufacturing). For planning purposes they have been merged into two larger groups addressing electronics and mechanical parts.

Each technical area has a some what different schedule due to perceived differences in their current readiness for POD development and the difficulty of R&D effort required. As a result, the schedule of the different technical areas will overlap and make the actual distinction between DSARC Phases more fuzzy than indicated in the diagram.

The top part of the network shows the DSARC milestones and the primary management actions needed to control program progress from phase to phase. The next "zone", marked "Program Technology Area", is made up of those R&D activities of a broad nature (such as data standards) needed to support all technology areas. The zone marked "Demonstration by Technology Area" is the main body of R&D effort to demonstrate and selectively enhance POD capability within individual technology areas (and with integrated areas, when possible). The zone marked "facility implementation" is concerned with conducting the planning and preparation for in-house and industry "deployment" of POD capability and then the conduct of that deployment (if any). The bottom zone is the preparation for and conduct of technology transfer activities. The "6.2, 6.3 etc" numbers are suggestive of the type of money required, but not meant to be constraints.

The hand-drawn schedule shown in Figure E2 represent a breakout of the network for FY84 and FY85 for one of the technical areas, POD Machining of Mochanical Parts.

CP5/C-17



and the second state of th

ALL ITIONAL TECH DEVELOPHINT REPORT ACT NOV DES JAN FEB MAR APR MAY JUN JUL AUS SEP OCT NOV DES JAN FEB MAR AR MAY JUN JUL AUS SEP DEC LUTES DREPORT SELECT ABLITTIL THUTTAL COMMUN REDENOR DEV LALEP. CHED ULE FUAL TECH DENO REPORT REVIEW/ TLET AND EVALUATION TUTTLE MAY I TELY EUGR DEVELOP MACHINING OF MENTANICAL PARTY AEPFORM ANTINE TECH DETTAS UPDATE FACILITIES DESIGN ILUT MACH SYSTEMS ROWTS PELECT PSELECT d N PHONE PHONE SELECT ALLITIOUAL EHS SPERUM SELECT ALAL PEPORT DEV D REPORT REPORT THILINE KIT TN PUT PERFORM INTIAL TECH DEHOS DATA ASSEMBLE GROUP TECHLOLOGY DATA Pol REVIEW STAS PLALEH TECH PORECOST REPORT REPORT FY84 REVIEW PARTS STO SELECT SELECT RTD T FUTURE SELECT J TECH LE REWEW LRIFT PLAN APACH CLASS

a ded attack

POD System Planning Schedule

A March 1.

1

A LAND BUT A

CP5/E7

Ż

1

Ż

POD SYSTEM PLANNING SCHEDULE

n m 062 22 178 TOTAL FIDAT 35 281 155 198 198 138 064 064 2 781 184 537 2 : 198 7:06 pm MON 19-5FP-1983 198 3 001 83 30 SFP B3 16 NOV 83 15 NOV-83 20- AUG-84 21- AUG-84 20- AUG-84 31- AUG-84 3- SEP-84 31- AUG-84 3- SEP-84 31- AUG-84 50 57-0CT-R3 28-0CT-83 16-N0V-83 29-N0V-83 28-001-83 30-N0V-83 29-N0V-83 42 3 001-83 22 NOV 83 12 NOV-84 8 JAN-85 25-JAN-85 24-JAN-85 25-JAN-85 24-JAN-85 31-0CT-83 28-0CT-83 27-NOV-84 26-NOV-84 21 31-001-83 28-NOV-83 22 NOV-84 25 DEC-84 21 26-MAY-R6 23-JUN-R6 26 MAY-R6 23 JUN-86 0 24-3UN-86 23-3UN-86 24 JUN-86 24 JUN-87 AU13-86 0 21 AUG-86 20 AUG-86 21 AUG-86 20 AUG-86 3 0CT-93 30-9FP-93 16-N0V-63 15-N0V-83 9 NOU- 84 2-AUG-85 2--AUG-85 2- SFP-R5 2-SEP-85 28-NDV--83 26-DEC-84 25-DEC-R4 9-MAY-R4 22-MAY-84 12 DEC-84 25-DEC-R4 22° MAY- 84 26° DEC-84 25° DFC-84 B-JAN-BC R-JAN-B5 6 FFR--RG R JAN-85 24-JAN-85 23-JAN-85 P- AUG-85 2- AUG-85 5-AUG-R5 1 001-85 **MAY-86** 26-MAY-86 23 MAY-86 2-001-85 1 001-85 15-4VH 30 NOV-BJ 212 NOV 813 - 7 JAN 85 - 8 JAN- 81, LAUSH 42 24 JUN-86 20 AUG 86 24 JUN 86 20 2-001-84 23 PT AUG RA 27 2 DCT-83 30 SFP-83 12 NDV-84 2--AUG--R5 22-JUL--85 9 FFR-84 10-FFR-84 2 AUG-85 5-AUG-85 5--AUG--85 2 SFP-85 3 SEP-85 8-JAN-85 26-DFC-84 8- JAN--85 9--JAN-85 7-FFR-85 59-344.-85 5-- AHG - HS I AIT START 28 ·DEC-84 27 DFC-84 B JAN-B5 20 AUG- 85 2 OCT-84 30-0CT-84 30-001-84 27 DFC--04 20- AUG-BS 12110 21-AUG BA 22 MAR 91 2 -9FP - 85 REPORT DATED: I ARLY 10-FER-84 22- JUL-05 3- SEP-85 26- DEC-R4 5--AUG-85 5 AUG-R5 1.68 78-DEC-84 29-VOV-25 31-001-84 0 21- AUG-85 31-001-83 23-MAY-84 7- JAN-B5 AP 34-001-84 7-JAN-85 7-JAN-85 DUR START • c 2 2 5 a -¢ c 20 10 c c e 10 ~ ¢ • 6 c (DICTIONARY SORT) PRELEMINARY TECHNOLOGY TRANSFER DEVELOPMENT CONSOLIDATE INITIAL TECH DEMO RESULTS DRAFT PROGRAM MANAGEMENT DETAJL PLAN CONSOLIDATE TECH AREA DITAIL PLANS UPDATE TECHNOLOGY TRANSFER PLAN DEVELOP SYSTEM INTEGRATION PLAN CONSOLIDATE TECH DEMO RESULTS REVIEW/APPROVE PLAN (NAUSUP) INITIAL CONTRACT FOR DEMOS SELFCT DEVELOPING AGENTS REVIEW TECH DEMO REPORTS REVISE DETAILED PLAN REVISE DETAJLED PLAN CONTRACT FOR DEMOS PROGRAM INITIATION SYSTEM INTEGRATION PROGRAM CONCLPT 1 DESCRIPTION PREC SUCC 1130 1210 060 1100 1100 1110 1100 1700 1110 1130 120 1130 1130 1400 130 1500 1150 1160 160 1170 1170 1180 1180 1185 185 1190 1000 1200 080 1090 090 1478 070 1650 200 1210 1000 1170 1185 1070 1090 1100 1110 1150 1160 1180 1200 0201 1060 1080 1120 1130 1190

4

FULL SYSTEM PLANNEND SCHEDULE

1

•

ŧ

٩

\$

1

CLAUSE & AVAID LED LOT OF

| PREC SUCC | DESCRIPTION                             | DAR STORT LARLY LARLY L                                    |
|-----------|-----------------------------------------|------------------------------------------------------------|
| 1210      | REVISE POD PROCRAM CONCEPT              | 24 9 JAN 85 6 (1) 85 9 JAN 85 6 11.8 85 9 JAN 85 6 11.8 85 |
| 1210 1300 | -                                       | 0 2 FEB-05 6 FEB 85 2 FFB-85 6 FEB-85                      |
| 1250      | REVIEW SFLECTED ADDITIONAL DEMOS        | 24 2001-04 400000 84 53 NOV-84 11 DEC-84 30                |
| 1250 1260 | -                                       | 0 31 001-84 30 001-84 42 0FC-84 11 0FC-84 30               |
| 1260      | MONITOR DEMOS                           | 548 31-001-014 21 JUN-85 32-01 C-84 2-AUG 85 30            |
| 1260 1090 |                                         | 0 2:4 JUN-85 23 JUN-85 5-400-85 2-400-85 30                |
| 1300      | DRAFT JMSNS                             | 21 2 - FER-RS 7 - MAR - RS 7 - FER-RS 7 - MAR - RS         |
| 1300 1310 |                                         | 0 8 MAR-85 7 MAR-85 8-MAR-85 7-MAR-85                      |
| 1310      | JMSNS APPROVED                          | 0 8 MAR-8% 7° MAR-85 8° MAR-85 7° MAR-85                   |
| 1310 1510 |                                         | 0 0 -MAR85 7, MAR85 8MAR85 7MAR85                          |
| 1310 1608 | _                                       | 0 8-MAR-85 7-MAR-85 8-MAR-85 7-MAR-85                      |
| 1350      | PROCURE BASELINE DATA                   | 240 2-001-04 22-30L-85 2-001-84 22-30L-85                  |
| 1350 1785 |                                         | 0 52-10F-82 55 10F-92 53-10F-82 55 10F-82 0                |
| 1408      | DEVELOP MIP                             | 21 9-JAN-85 6-FEB-85 7-FEB-85 7-MAR-85 21                  |
| 1400 1310 |                                         | 0 7-FEB-85 & FEB-85 8 MAR-85 7-MAR-85 21                   |
| 1418      | REVISE MIP                              | 21 4-JUL-R5 1-AUG-85 4-JUL-85 1-AUG-85                     |
| 1410 1420 |                                         | 231 2-AUG-85 20-JUN-86 2-AUG-85 20-JUN-86                  |
| 1420      | REUJSE MIP                              | 71 23-JUN-86 21-JUL-86 23-JUN-86 21-JUL-86                 |
| 1450      | DEVELOP INTEGRATION REQUIREMENTS        | 23 2-0CT-84 30-0CT-84 5-JUL-85 2-AUG-85 (98                |
| 1450 1460 |                                         | 0 31-001-84 30-001-84 5-400-85 2-A00-85 198                |
| 1460      | DEVELOP REVISED FACTLITTES REQUTREMENTS | 24 30 NOV-R4 20 DFC-R4 5-AUG-85 20 SEP 85 176              |
| 1460 1470 |                                         | 0 31-DEC-84 20 DEC-84 3 SEP-85 2-SEP-05 176                |
| 1470      | PRFLIMINARY FACILITIFS DESIGN           | 1.47 3-SEP+85 26 MAR-86 31 SFP-85 26 MAR-86                |
| 1470 1480 |                                         | 0 27-MAR-B6 26 MAR-B6 22-MAR-B6 26-MAR B6                  |
| 1480      | REVJEW/REVISE FACILITIES DESIGN         | 21 27 MAR-86 24-APR 86 27 MAR-86 24 APR 86                 |
| 1480 1498 |                                         | 0 255-4PR-86 24 APR-86 25 APR-86 24 APR-86                 |
| 1490      | UPDATE FACILITIES DESIGN                | 21 25 APR-86 23 MAY-86 25 APR-86 23 MAY 86                 |
| 1490 1580 |                                         | 0 26-MAY-86 23-MAY-86 26-MAY-86 22 MAY-80 22 MAY-86        |
| 1495      | CONTINUED FACILITY DEVELOPMENT          | 5200-29-JAN-85 4-SEP-89-29 JAN-85 4-SEP-89                 |
| 1500      | DRAFT ACOUISITION STRATECY PLAN(ASP)    | 24 9 JAN-RY 20 FEB 85 24 JAN-RS 2 MAR 85 1                 |
| 1500 1310 | -                                       | 0 21 FEB-85 20 FEB 85 81 MAR 85 2 MAR 85 1                 |
| 1510      | REVISE ASP                              | 21 B MAR-R5 V APP RT R MAR R5 11 APR R5                    |
| 1510 1520 | -                                       | 2:34 R APR-R1 24 FER R6 R APR R5 24 LEP-R6                 |
| 1520      | REVISE ASP                              | 24 27 FEB-405 27 MAR 90 24 FEB 906 24 MAR 906              |
|           |                                         |                                                            |

A DESCRIPTION OF THE PARTY OF T

POD SYSTEM PLANNING SCHEDULE

l ti

k

9

ŧ

\$

CLAUS ABUNDLELED

| PREC SUCC<br>NODE NODE DE |                                                  | DUR START LARLY LARLY LAIL TOTAL DUR START LIAUSH LAUGT |
|---------------------------|--------------------------------------------------|---------------------------------------------------------|
| 1530 RF                   | REVISE ASP                                       | n7 12 FFB 07                                            |
| 1538 1540                 |                                                  | 231 33-MAR 87 29-JAN-88 33 MAR-87 29 JAN 88             |
| 1540 RE                   | REVISE ASP                                       | 24 1 FEB-08 22 FFB-80 1 FFB-88 29 FFB-88                |
| 1548 1558                 |                                                  | 124 1-HAR-BB 12 JAN R9 1-MAR-BB 17-JAN-B9               |
| 1550 RE                   | REVISE ASP                                       | 18 JAN-87                                               |
| 1688 DR                   | DRAFT SYSTEM CONCEPT PAPER                       | 8:4 8 MAR-85 3 JUL-85 8 MAR-85 3-JUL-85                 |
| 1600 1410                 |                                                  | 0 4- 101-82 3 JUL-85 4- 101-82 3- 301-82                |
| 1600 1610                 |                                                  | 0 4~2NT-82 3~2NT-82 4~2NT-82 3~2NT-82                   |
| 1410 RE                   | REVISE SCP                                       | 2:9 4 -JUL-85 1 - ANG-85 4 - JNL-85 1 ANG-85 1          |
| 1610 1620                 |                                                  | 215.0 2~AUG~85 22~MAY~86 2~AUG~85 22~MAY-86             |
| 1620 AP                   | APPROVE SCP                                      | 21 23-MAY-86 20-JUN-86 23-MAY-86 20-JUN-86              |
| 1620 1625                 |                                                  | 2:50 23-3UN-86 50-APR-87 23-JUN-86 50-APR-87            |
| 1625 RF                   | REVISE SCP                                       | 21 13 APR-R7 11-MAY-R7 13-APR-R7 11-MAY-87              |
| 1625 1630                 |                                                  | 231 12-MAY-87 29-MAR-88 12-MAY-87 29 MAR-88             |
| 1630 RE                   | REVISE SCP                                       | 21 30°MAR-08 27-APR-88 30-MAR-88 27.APR-88              |
|                           | EVALUATE INITIAL TECH DEMOS                      | 71 3-SEP-84 1-0CT+84 3-SEP-84 1-0CT-84 (                |
|                           |                                                  | 0 2:0C1-84 3-0C1-84 5-JUL-85 4-JUL-85 43                |
|                           |                                                  | 0 2-001-84 5 001-64 53-NOV-64 12-NOV-64 30              |
|                           |                                                  | R 2 OCT-84 \$+0CT+84 2=0CT-84 \$=0CT-84 0               |
|                           |                                                  | 0 2-001-84 4-001-84 5-JUL-85 4-JUL-85 198               |
|                           |                                                  | 0 2-001-84 1-001-84 20-JUL-85 19-JUL-85 209             |
| 2250                      |                                                  | 0 2-001-84 5 001-84 55-NDV-84 14 NDV-84 32              |
|                           | RECOMMEND FUTURE RAD/ENGR DEVELOPMENT            | A2 2.001-04 20 NOV-84 22-JUL-85 17 SEP-05 209           |
| 1670                      |                                                  | 0 274-NOV-84 218-NOV- 84 58-SEP-85 12 SEP-85 209        |
|                           | PREI JMINARY RAD/ENGR DEVFLOPMENT                | 560 29-NOV-04 22 JUL-85 50-SEP-85 9-MAY-86 209          |
| 1688                      |                                                  | 0 23-JUL-85 32 JUL-85 32-MAY-86 9 MAY-86 209            |
|                           | ANALYZE PRELTMINARY RADZENGR DEVELOPMENT RESULTS | 10 23-JUL-85 5 AUG-85 32-MAY-86 23-MAY-86 209           |
| 1180                      |                                                  | 0 & AUG-BT 5 AUG-BT 50 MAY-B6 23 MAY-B6 20              |
|                           | DRAFT PARTS DATA DEFINITION INFORPDI)            | 10 31 0CT-03 11-NOV-03 30 NOV-03 13 DEC-03 22           |
| 1708 1718                 |                                                  | R 14-NOV-83 11-NOV-83 14 DFC-83 13 DFC-83 22            |
|                           | DRAFT POD SYSTEM TECH DR REQUIREMENTS            | 21 14 DEC-R3 11 JAN R4 14 DEC-R3 11 JAN R4              |
|                           |                                                  | 0 12 JAN-84 11 JAN 84 24 118-84 23 FFR-84 3             |
| 1710 1740                 |                                                  | 0 52 JAN-R4 11 JAN-R4 12 JAN-R4 15 JAN-R4 15 JAN-R4     |
| 1720 RF                   | REVIEW/UPDATE TECH DE REGUTREMENTS               | 24 12 JAN-RA 2 FEB 84 24 FEB 84 23 MAR 84 34            |
| 1728 1718                 |                                                  |                                                         |

3

1

POD SYSTEM PLANDING SCHEDULE Other seed

:

8

8

1

Į

?

| PREC SUCC<br>NODE NODE DESC | DESCRIPTION                                    | UNR START FORMER START FAREN FORME                    |
|-----------------------------|------------------------------------------------|-------------------------------------------------------|
| 1730 FINA                   | FINAL POD SYSTEM TECH DR REQUIREMENTS          | 134 2 APR 134 26 MAR 134 23 APR 134                   |
| 1730 1770                   |                                                | 0 50-APR-84 - 7 APR-84 24 APR-84 23 APR-84 5          |
| 1740 DEVE                   | DEVELOP TECH DATA PROCURFMENT REQUIREMENTS     | 42 52-JAN-84 2 MAR-84 12 JAN-84 7 MAR-84              |
| 1740 1730                   |                                                | 0 \$20MAR-84 \$ MAR-84 \$60MAR084 \$30MAR084 \$0      |
| 1748 1750                   |                                                | 0 12° MAR-84 2 MAR 84 12 MAR-84 2° MAR-84             |
| 1758 REVI                   | REVIEW/UPDATE TECH DATA PROCUREMENT REDMIS     | 25 12-MAR-84 2 APR 84 12 MAR 84 2 APR 84              |
| 1750 1760                   |                                                | 0 10 APR-84 7 APR-84 10 APR 84 7 APR 84               |
| 1750 1820                   |                                                | 0 10-APR-84 9 APR-84 12-DFC-84 11-DFC-84 13           |
| 1768 FINA                   | FINAL TECH DATA PROCUREMENT REQUIREMENTS       | 10 10 APR-84 23"APR-84 10"APR-84 23 APR-84            |
| 1768 1778                   |                                                | 0 24-APR-84 23-APR-84 23-APR-84 24-APR-84 23 APR-84   |
| 1770 DEVE                   | DEVELOP TECH DATA PROCUREMENT PLAN             | 21 24-APR-84 22-MAY-84 24-APR-84 22-MAY-84            |
| 1778 1358                   |                                                | 0 23-MAY-84 22-MAY-84 2-001-84 1-001-84 5             |
| 1770 1780                   |                                                | 0 23 MAY-84 22-MAY-84 23-MAY-84 22-MAY-84             |
| 1780 DEVE                   | DEVELOP REOMTS FOR GENERATIVE PROCESS PLANNING | 21 23: MAY-84 20-JUN-84 23: MAY-84 20-JUN-84          |
| 1780 1810                   |                                                | 0 21-JUN-84 20 JUN-84 21-JUN-84 21-JUN-84 20-JUN-84   |
| 1785 REVI                   | REVISE TECH DB REQUIREMENTS                    | 21 23+JUL-05 20-AUG-85 23-JUL-85 20-AUG-85            |
| 1785 1790                   |                                                | 0 21-AUG-85 20-AUG-85 21-AUG-85 21-AUG-85 20-AUG-85   |
| 1790 PROC                   | PROCURE TECHNICAL DATA                         | \$200 21-AUR-85 27-MAR-90 21 AUR-85 27 MAR 90         |
| 1800 REVI                   | REVIEW INITIAL OPTION/SELECTION CRITERIA       | 50 28 NOV-84 51-DFC-84 20 NOV-84 11-DFC-84            |
| 1800 1820                   |                                                | 0 12-DEC-84 11-DFC-84 12-DEC-84 15-DEC-84             |
| 1810 SELE                   | SELECT SOURCES FOR GENERATIVE PROCESS PLANNING | 21 21 JUN-R4 19-JUL-R4 21-JUN-84 19-JUL-84            |
| 1818 1812                   |                                                | n 20-JUL-84 12 JUL-64 20 JUL-64 19 JUL-84             |
| 1812 INI1                   | INITIATE GENERATIVE PROCESS PLANNING           | \$26 20-JUL-84 11 JAN-85 20-JUL-84 11-JAN-85          |
| 1812 1814                   |                                                | 0 14-JAN-85 11-JAN-65 14 JAN-655 14 JAN-655 11 JAN 85 |
| 1814 EVAL                   | EVAL GENERATIVE PROCESS PLANNING & REPORT      | 21 14-JAN-R5 11-FFR-R5 14 JAN-BS 11-FEB-85            |
| 1814 1180                   |                                                | 0 12 FER-85 11 FFR-85 26 MAY-86 23 MAY -86 334        |
| 1814 5816                   |                                                | 0 12-FEB-85 11 FFB-85 12 FEB-85 11 FEB-85             |
| ters cont                   | CONTINUED GENERATIVE PROCESS PLANNING          | 1200 12-FER-85 18 SEP-02 12 FCR-85 18 SEP-89          |
| 1820 FINA                   | FINAL REVIEW DEMO OPTION/SELECTION CRITERIA    | 50 12~DEC-84 25 DEC-84 12 DEC-84 25 DEC-84            |
| 1820 1830                   |                                                | 0 24 DEC-84 25 DEC 04 26 DEC-84 25 DEC 84             |
| 1830 DEMO                   | DEMO SCLECTION COMPLETE                        | 0 26 DEC-84 25 DEC-84 25 DEC-84 26 DEC-84 26 DEC-84   |
| 1830 1130                   |                                                | N 26 DEC-84 25 DEC 84 26 DEC 84 26 DEC-84 25 DEC 84   |
| tasa Faci                   | FACILITIES BASELINE ANALYSIS                   | 24 45 NDV-R3 27-DLE R3 4-001 R4 12 NOV R4 229         |
| 1850 1860                   |                                                | 0 28 DEC-03 27 DEC-03 43 43 NOV-04 42 NOV-04 229      |
| IRAN TECH                   | TECHNOLOCY & CATLETY INTEDEACES                | 24 TO REPLACE TAN DA 1 NON-OA 11 NEE DA 230           |

PUD SYSTEM PLANDERS SCHEDULT

:

1.27

£

 .

•

3

.

(Laus, Aava011.110)

|                          | (Laus, Aavagit, j.j.d.)                    |                                                        |
|--------------------------|--------------------------------------------|--------------------------------------------------------|
|                          |                                            | REPORT DATED: 7:02 PH                                  |
| PRFC SUCC<br>NODE NODE 1 | CR LPT TON                                 | DUR STORT FORMER SAGET FORMER FOOD                     |
| 1840 1870                | ·····································      | •                                                      |
| 1878                     | ANALYSIS REPORT ON INTERFACED FACTLITTES   | 50 26 JAN-04 R FEB 04 12 DEC-04 25 DEC-04 225          |
| 1878 1138                |                                            | 0 9-FEB-84 8 FFB-84 26 DFC-84 25 DFC-84 229            |
| 1870 1450                |                                            | 0 2 FEB-84 8 FFB 84 5 JUL-85 4 JUL-85 366              |
| 1900                     | DEVELOP TECHNOLOGY TRANSFER REQUIREMENTS   | 23 12 MAR-84 23-APR 84 11 0CT 84 27 NOV 84 155         |
| 1908 1918                |                                            | 0 24-APR-84 23 APR-64 27 N0V-84 26 N0V-84 26           |
| 1910                     | DRAFT TECHNOLOGY TRANSFER PLAN             | 21 24-APR-84 22 MAY-84 27 NOV-84 25-DEC-84 155         |
| 1918 1138                |                                            | 0 23-MAY-84 22-MAY-84 26-DFC-04 25-DEC-84 455          |
| 1910 1150                |                                            | 0 23+MAY-84 22+MAY-84 5+JUL-85 4+JUL-85 252            |
| 2008                     | DRAFT MACH INPUTS TO DETAIL PLAN           | 50 3-0CT-03 54-0CT-03 3-0CT-83 54-0CT-83 6             |
| 2000 1100                |                                            | 0 17-001-83 14-001-83 16-N0V-83 15-N0V-83 22           |
| 2008 2018                |                                            | 0 17-0CT-83 14-0CT-83 17-0CT-83 14 0CT-83 0            |
| 2008 2108                |                                            | 0 17-0CT-83 14-0CT-83 9-0CT-83 9-0PR-64 6-0PR-84 125   |
| 2000 2200                |                                            | 0 17-001-83 14 001-83 17-001-83 14-001-83              |
| 2000 2300                |                                            | 0 17 OCT-83 14 OCT-83 17 OCT-83 14 OCT-83              |
| 2008 2400                |                                            | 0 17-0CT-83 14-0CT-83 15-NOV-83 14-NOV-83 24           |
| 2010                     | DETERMINE MIN MACH TECH REDMTS FOR TECH DR | 42 17-001-63 13-0EC+83 17-001-83 13-0EC-83 0           |
| 2010 1710                |                                            | 0 14-DEC-83 13-DFC-83 14-DEC-83 13 DEC-83 0            |
| 2100 1                   | REVIEW CURRENT PARTS SPEC STANDARDS        | 4.3 17 UCT-83 11-JAN-84 9-APR-84 4 JHR-84 175          |
| 2100 2110                |                                            | 0 12-JAN-84 11-JAN-84 51-JAN-84 5-JUL-84 4-JUL-84 125  |
| 2119                     | DRAFT PARTS SPEC STANDARDS                 | 21 12-JAN-04 9-LFB04 5-JUL84 2-AUG-84 125              |
| 2110 2120                |                                            | 0 \$0 FEB-84 9 FER-84 3 AUG-84 2 AUG 84 125            |
| 2120 1                   | REVIEW/APPROVE PARTS SPEC STANDARD         | 21 10-FER-84 9 MAR-84 3 AUG-84 31 AUG 84 425           |
| 2120 2130                |                                            | 0 12° MAR-84 9° MAR-84 3° SEP-84 31° AUG-84 125        |
| 2130                     | PUBLISH/DISTRIRUTE PARTS SPEC STANDARD     | 21 12 MAR-R4 9 APR-R4 3 SEP-84 1 OCT-R4 125            |
| 2130 1350                |                                            | 0 10-APR-84 9-APR-84 2-0CT-04 1-0CT-84 125             |
| 2130 2150                |                                            | 0 10 APR-04 9 APR-04 15 NOV-04 14 NOV-04 (57           |
| 2140                     | DETERMINE GROUP TECHNOLOGY CLASSIFICATIONS | 21 1 -001-84 29-001-84 17-001-84 14-N00-84 12          |
| 2140 2150                |                                            | 0 20-001-84 29-001-84 45 NOV-84 44 NOV-84 44 NOV-84 42 |
| 5150                     | REVISE PARTS SPFC STANDARD                 | 58 30 001-84 12 NOV 84 15 NOV 84 28 NOV 84 22          |
| 2150 2160                |                                            | R 13 NOV-R4 12 NOV-R4 27 NOV-R4 21 NOV R4 12           |
| 2160 ,                   | ASSEMPLE GROUP TECHNOLOGY DATA             | 54.8 53-NDV 84 4 JUL 85 29 NOV 84 22 JUL 85 22         |
| 2160 1785                |                                            | 0 5 JUL-85 4 JUL-85 23 JUL-85 27 JUL-85 12             |
| 2170                     | REVIEW MACH INTEGRATED SYSTEMS REGMES      | 23 1 0CT-04 29 0CT 84 56 0FC 85 13 JAN 86 315          |
| 2170 2180                |                                            | 0 30 001-84 22 001 84 14 JAN 86 13 IAN 86 315          |
|                          |                                            |                                                        |

.

FULD SANSTEIN FLEWARDARDARD SCHEDDULLS (DECHORER SORT)

•

3

:

;

8

1

| (DITTURES CORT)                                      |                                                  |
|------------------------------------------------------|--------------------------------------------------|
|                                                      | RUPORT DATED: 7:07 pm MON 19 SET                 |
|                                                      |                                                  |
| 2180 DETERMINE SOA OF INTEGRATED MACH SYSTEMS        | 42 30 101 84 26 01 0 84 14 JAN 86 12 MAR 86 315  |
| 21BA 2190                                            | 0 22-DEC-84 26 DEC-84 12 MAR-86 12 MAR-86 315    |
| 2190 DEV FUTURE INT MECH SYSTEMS RAD/FNGR REV REPORT | 21 27 DEC+84 24-JAN-85 13 MAR-86 10 APR-86 315   |
| 2198 2195                                            | 0 25-JAN-85 24-JAN-85 11 APR-86 10-APR-86 315    |
| 2195 REVIEW/PLAN INTEGRATED MICH SYSTEMS DEVELOPMENT | 10 25-JAN-85 7-FFR-85 11 APR-86 24-APR-86 315    |
| 2195 1490                                            | 0 8 FEB-85 7 FEB-85 25 APR-86 24 APR-86 315      |
| 2200 SELECT INITIAL MACH DEMO PERFORMANCE CRITERIA   | 42 17-001-83 13-DEC-83 17-001-83 13-DEC-83 0     |
| 2200 1800                                            | 0 14-DEC-83 13-DEC-83 28-NOV-84 27-NOV-84 250    |
| 2208 2210                                            | 0 14-DEC-83 13-DEC-83 14-DFC-83 13-DEC-83 0      |
| 2210 SELECT INITIAL MACH TECH DEMOS                  | 42 34+ DEC-R3 9+ FEB84 34+ DEC83 9+ FLB+ 84 0    |
| 2210 1950                                            | 0 10-FEB+84 9-FER-84 10-FER-84 9-FER-84 0        |
| 5210 2220                                            | 0 10 -FEB-84 9 -FEB-84 10 -FEB-84 9 -FEB-84 0    |
| 2220 PERFORM INITIAL MACH TECH DEMOS                 | 105 10-FEB-84 5-JUL-84 10-FEB-84 5-JUL-84 0      |
| 5550 5230                                            | 0 6-JUL-84 5-JUL-84 6-JUL-84 5-JUL-84 5-JUL-84 0 |
| 2230 REVIEW/ANALYZE MACH TECH DEMO REGULTS           | 21 6-JUL-84 3-AUG-84 6-JUL~84 3-AUG-84 0         |
| 5530 S240                                            | 0 6AUG-84 3-AUG84 6AUG-84 3AUG-84 0              |
| 2240 PREPARE MACH TECH DEMO REPORT                   | 10 6AUG-R4 17-AUGB4 6-AUG-84 17-AUGB4 0          |
| 2240 1070                                            | 0 20-AUG-84 17-AUG-84 20-AUG-84 17-AUG-84 0      |
| 2240 2350                                            | 0 20-AUG-84 17-AUG-84 20-AUG-84 17-AUG-84        |
| 2250 SELECT ADDITTONAL MACH TECH DEMOS               | 24 2-0001-84 30-001-84 15 NOV-84 13-060-84 32    |
| 2250 1060                                            | 0 31-0CT-84 30-0CT-84 25-JAN-85 24-JAN-85 62     |
| 5528 55 <b>8</b> 0                                   | 0 31-001-84 30-001-84 14 DFC-84 13-DFC-84 32     |
| 2260 PERFORM ADDITIONAL MACH TECH DEMOS              | 105 31-001-84 26-MAR-85 14-DEC-84 9-MAY 85 32    |
| 2260 2278                                            | 0 27-MAR-85 26-MAR-85 10-MAY-85 9-MAY-85 32      |
| 2270 REVIEW/ANALYZE ADDITIONAL MACH TECH DEMOS       | 21 27-MAR-85 24-APR-85 10-MAY-85 7-JUN-85 32     |
| 2270 2280                                            | 0 25-APR-85 24-APR-85 10-JUN-85 7 JUN-85 32      |
| 2280 PREPARE REPORTS ON ADDITIONAL MACH TECH DEMOS   | 21 25-APR-85 23-MAY-85 10-JUN-85 8-JUL-85 32     |
| 2280 1080                                            | 0 24-MAY-85 23 MAY-85 22-JUL-85 19-JUL-85 41     |
| 2284 2290                                            | 0 24-MAY-85 23 MAY-85 9-JUL-85 8-JUL-85 32       |
| 2290 SELECT MACH FINGR DEVELOPMENT TECHNOLOGIES      | 24 24 MAY-85 24 JUN-85 9 JUL-85 6 AUG-85 32      |
| 5540 5523                                            | 0 24 JUN-85 21 JUN-85 2 AUG-85 6 AUG-85 32       |
| 2295 FUTURE MACH ENGR DEUCI OPMENT                   | 1000 7-AUG-855 6-JUN 85 7-AUG-855 6-JUN-89 0     |
| 2300 REVIEW OF EXISTING MACH TECHNOLOGY              | 42 47-001-03 43 010 03 47 401-83 43 010 83 0     |
|                                                      | 0 14 DEC-83 13 DEC 83 14 DEC-83 13 DEC 83 0      |
| 2300 7310                                            | 0 14 DEC-03 13 DEC 83 18 JUN-84 17 JUL 84 155    |

... ... E.

POD SYSTEM PLANNING SCHEDULE

е́е.

.

1

ŧ

|                                                       | REPORT DATED: 7:07 pm MIN 19-SEP-1983              |
|-------------------------------------------------------|----------------------------------------------------|
|                                                       | I ARLY LA                                          |
| 2300 2330                                             | 1 14 DEC 83 13 DEC 83 15 DET-84 12 DET-84 218      |
| 2310 FORFCAST FUTURE MACH TECHNOLOGY                  | 42 14 DEC-83 7 FEB-04 10 JUL-84 13 SEP-84 155      |
| 2310 2320<br>7                                        | 0 10 FEB-84 9 FFB-84 14 SEP-84 13 SEP-84 155       |
| 2320 PREPARE MACH FORECAST REPORT                     | 21 10-FEB~84 9-MAR-84 14-SCP-84 12 0CT-84 155      |
| 2320 1900                                             | 0 12-MAR-84 9 MAR-84 15-001-84 12-001-84 155       |
| 2320 2140                                             | 0 12 MAR-84 9 MAR-84 12-001-84 16-001-84 155       |
| 2330 DETERMINE FUTURE MACH RAD REQUIREMENTS           | 42 14-DEC-83 9-FER-84 15-0CT-84 11-DEC-84 218      |
| 2330 1120                                             | 0 10~FEB-84 9~FEB-04 12~DEC-84 11-DEC-84 218       |
| 2350 DEVELOP DETAILED TECH DEVELOPMENT PLAN           | 21 20~AUG-84 17~SEP~84 20~AUG-84 17-SEP-84 0       |
| 53E2 85E2                                             | 0 18-SEP-84 17-SEP-84 15-001-84 12-001-84 3        |
| 2350 2360                                             | 0 18-SEP-04 17-SEP-04 10-SEP-04 17-SEP-04 0        |
| 2355 FINALIZE MACH DEV PERFORMANCE CRITERIA           | 21 10-SEP-84 16-00T-84 15-00T-84 12-N0V-84 19      |
| 2355 2380                                             | 0 17-0CT-84 14-0CT-84 10-JUN-85 7-JUN-85 168       |
| 2355 2420                                             | 0 17-0C1-84 16-0CT-84 13-NOV-84 12-NOV-84 19       |
| 2360 SELECT MACH DEVELOPMENT SOURCES                  | 21 18-SEP-84 16-OCT-84 18-SEP-84 16-OCT-84 0       |
| 5360 2370                                             | 0 17-0C1-84 16-0C1-84 17-0CT-84 16-0CT-84 0        |
| 2370 INITIAL MACH TECH DEVELOPMENT                    | 168 17-0CT-84 7-JUN-85 17-0CT-84 7-JUN-85 0        |
| 2370 2380                                             | 0 10-1104-85 7-1104-82 10-1004-82 7-104-82         |
| 2380 INITIAL MACH TECH TEST & EVALUATION              | 25 10-JUN-85 R. JUL-85 10-JUN-85 8: JUL-85 0       |
| 2380 2390                                             | 0                                                  |
| 2390 PREPARE INITIAL MACH TECH DEV EVALUATION REPORT  | 21 7-JUL-85 6-AUG-85 9 JUL-85 6-AUG-85 0           |
| 5368 5562 B652                                        | 0 7AUG-85 6AUG-85 7AUG-85 6-AUG-85 0               |
| 2368 2395                                             | 0 7AUG-85 6-AUG-85 7-AUG-85 6AUG-85 0              |
| 2395 MACH SYSTEM LEVEL INTEGRATION                    | \$200 7+AUG-85 13-MAR-90 7-AUG-85 13-MAR-90 0      |
| 2400 .DETERMINE MACH INTERFACE ROMIS WITH OTHER TECH  | 21 12-12-001-83 14 NOV-83 15-NOV-83 13-DEC-83 21   |
| 2400 5850                                             | 0 \$5~NOV-83 \$4~NOV-83 \$~001-84 28 \$61 \$84 729 |
| 2400 2170                                             | 0 15-NOV-83 14-NOV-83 16 DEC-85 13-DEC-85 544      |
| 2408 2210                                             | 0 15 NOV-03 14 NOV-03 14 DEC-03 13-DEC-83 21       |
| 2410 DETERMINE CURRENT FMS COMMUNICATION CAPARJUJITES | 50 1.0CT-84 52-0CT-84 30-0CT-84 52-NOV-84 21       |
| 2410 2420                                             | R 15-001-84 12 001-84 13-N0V-84 12-N0V-84 22-      |
| 2420 DETERMINE MACH COMM RAD/FNGR DEV REQUIREMENIS    | 25 13-NOV-84 11-DEC-84 13-NOV-84 15-DEC-84 0       |
| 2420 5400                                             | 0 12-0EC-04 11-DFC-04 Z-FFR-05 6-FER-05 41         |
| 2420 2440                                             | n 12 DEC-84 11-DFC-84 12 DEC-84 11-DEC-84 0        |
| 2430 DEVELOP FMS COMMUNICATION SPECIFICATIONS         | 33 1 001-84 12 NOV-84 1 001-84 12 NOV-84 0         |
| 2430 2420                                             | 0 13 NOV-84 12 NOV-04 13 NOV 04 12 NOV-84 0        |
|                                                       |                                                    |

8

£

PUD SYSTEM PLANNING SCHEDULE

· · ·

£

ŧ

4

5

CLICITONARY SARTE

| (DICTIONARY SART)                                      |                                                        |
|--------------------------------------------------------|--------------------------------------------------------|
|                                                        | REPORT DATED: 7:07 pm MUN 19 SEP 1983                  |
| PREC SUCC<br>Node Node Description                     | DUR START TARTY LATE LATE TOTAL DUR START TINGEN START |
| 2440 SELECT MACH COMM RAD/ENCR DEV SOURCES             | 42 12 DEC 94 7 THE 05 12 DEC 94 7 FEB-85 0             |
| 2440 2450                                              | 0 BIEB-05 ZIEB-05 BIEB-85 ZIEB-87 0                    |
| 2450 INITIAL MACH COMM RAD/FNCR DEVELOFMENT            | 147 8-FER 89 20 SUP-85 8 FER-87 20 SEP 85 0            |
| 2450 2468                                              | 0 2 36P-85 2°SFP-85 3°SFP-69 2°SEP 80                  |
| 2460 CONTINUED MACH COMM RAD/ENGR DEVELOPMENT          | 5200 3-SEP-855 9 APR-90 3 SEP-85 9 APR-90 0            |
| 3000 DRAFT IC MANUF INPUTS TO DETAILED PLAN            | 50 3 0CT-R3 54-0CT-83 3-0CT-83 54 0CT-83 0             |
| 3006 1100                                              | 0 17 -0CT-83 14-0CT-83 16-NOV-83 15-NOV-83 22          |
| 3000 3100                                              | 0 1.7-0C1-83 14-0C1-83 17-0C1-83 14-0C1-83 0           |
| 3006 3208                                              | 0 12-001-03 14-001-83 12-001-83 14-001-83              |
| 3008 3300                                              | 0 \$7+0CT-83 \$4+0CT-83 \$7-0CT-83 \$4+0CT-83 0        |
| 3006 3400                                              | 0 17-0CT-83 14-0CT-83 15-NOV-83 14 NOV-83 21           |
| 3006 3506                                              | 0 17-001-83 14-001-83 15-NOV-83 14-NOV-83 21           |
| 3100 DETERMINE MIN IC MANUT REDMTS FOR TECH DB         | AP 47-97-0CT-83 43-DEC-83 47-0CT-83 43-DEC-83 0        |
| 3100 1710                                              | 0 \$4-DEC-83 \$3-DEC-83 \$4-DEC-83 \$3.DEC-83          |
| 3200 REVIEW DF EXISTING IC MANUF TECHNOLOGY            | 42 12-001-03 13-DEC-03 17-001-03 13-DEC-03 0           |
| 3206 3210                                              | 0 14-DEC-83 13-DEC-83 15-001-84 12-001-84 218          |
| 3206 3226                                              | 0 14-DEC-83 13-DEC-83 23-APR-84 20-APR-84 93           |
| 3200 3410                                              | 0 14-DEC-83 13-DEC-83 14-DEC-83 1.4-DEC-83 0           |
| 3210 DETERMINE FUTURE IC MANUF R&D REQUIREMENTS        | AP \$4-DEC-83 9-FER-84 \$5-001-84 \$5-060-64 258       |
| 3210 1120                                              | 0 10-FEB-84 9-FEB-084 12-DEC-84 11-DEC-84 218          |
| 3220 FORECAST FUTURE IC MANUE TECHNOLDGY               | A2 14-DEC-03 9-FER-84 23-APR-84 19-JUN-84 93           |
| 3226 3230                                              | 0 10-FEB-84 9-FEB-04 20 JUN-84 19-JUN-64 93            |
| 3230 PREPARE IC MANUF FORECAST REPORT                  | 25 10-FEB-84 9-MAR-84 20-JUN-84 18-JUL-R4 93           |
| 3230 3360                                              | 0 52-MAR-84 9-MAR-84 19 JUL-84 18-JU 84 93             |
| 3300 SELECT INITIAL IC MANUF TECH PERFORMANCE CRITERIA | 42 17-001-03 13-0FC-03 17-001 83 13 0FC 03 0           |
|                                                        | 0 14-DEC-83 13 DFC-83 28 NOV-84 22 NOV 84 250          |
| 3300 3310                                              | 8 14-DEC-83 13 DEC-83 14-DEC-83 13-DEC 83              |
| 3310 SFLECT INITIAL IC MANUE TECH DEMOS                | 24 44-DEC-R3 25 JAN 84 44 DEC-B3 25 JAN 84 0           |
| 3310 1050                                              | 0 26 JAN-84 25 JAN-84 18 FFR-84 9 FFF 84 11            |
| 3310 3320                                              | 0 26-JAN-84 25 JAN-84 26-JAN-84 25-JAN 84              |
| 3320 PREPARE IC MANUE TECH DEMO SELECTION REPORT       | SU PG-JAN-RA RITER RA PG JAN-RA RIFER RA               |
| 3320 3330                                              | 0 9 FEB-84 N FFR-84 9. FFR N4 N FFR 84 0               |
| 3330 PERFORM INITIAL IC TECH DEMOS                     | RA 7 FERMA 5 JUNARY 9 FERMA 5 JUNARY 0                 |
| 3330 3340                                              | 0 6 JUN-84 5 JUN 84 6 JUN-84 5 JUN 84 0                |
| 3340 REVIEW/ANALYZE INITIAL IC TECH DEMO REPORTS       | 2.9 6-JUN-814 4 JUH 84 6 JUN 84 4 JUL 84 0             |
|                                                        |                                                        |

いう

FOD SYSTEM PLANNING SCHEDULE

ļ

-

Ľ

2

| PUDD (2010) PUDD (2011) PUDD (2011) PUDD (2011) PUDD (2011) PUDD (2011) |                                                     |
|-------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                         | REPONT DATED: 7:07 PM MON-19-5CP-1983               |
|                                                                         | <b>₹</b> 2                                          |
| 3348 3350                                                               | 0 5-300, 84 4 300, 84 5 300, 84 4 300-84 0          |
| 3350 PRODUCE INITIAL IC TECH DEMO REPORT                                | 10 5 -JUL-84 18 JUL-84 5 JUL-84 18-JUL-84 0         |
| 3356 1080                                                               | 0 19 JUL-84 18 JUL-84 22 JUL-85 19 JUL-85 262       |
| 3356 3360                                                               | 0 19 JUL-84 10 JUL-84 19-JUL-84 18-JUL-84 0         |
| 3369 SELECT IC RAD/FNGR DEVELOPMENT TECHNOLOGIES                        | 23 19-JUL-84 16-AUG-84 19-JUL-84 16-AUG-84 0        |
| 3360 1400                                                               | 0 17AUG-84 16AUG64 7FEB-85 6FEB-85 124              |
| 3360 3370                                                               | 0 17-AUG-84 16-AUG-84 17-AUG-84 16-AUG-84 0         |
| 3360 3384                                                               | 0 17-AUG-84 16 AUG-84 28-JAN-85 25-JAN-85 116       |
| 3360 3395                                                               | 0 17AUG-84 16 AUG-84 26-FEB-85 25-FEB-85 137        |
| 3370 RAD IC SUBSYGTEMS                                                  | 105 17-AUG-84 10-JAN-85 17-AUG-84 10-JAN-85 0       |
| 3370 3380                                                               | 9 11-JAN-85 10-JAN-85 11-JAN-85 10-JAN-85 0         |
| 3380 INITIAL IC SUBSYSTEM ENGR DEVELOPMENT                              | 126 11-JAN-85 5-JUL-85 11-JAN-85 5-JUL-85 0         |
| 3380 3381                                                               | 0 8~1NT-82 2~1NT~82 8-1NT-82 2~1NT~82 0             |
| 3381 CONTINUED IC MANUF ENGR DEVELOPMENT                                | 1200 8-JUL-85 9-FEB-90 8-JUL-85 9-FEB-90 0          |
| 3384 INITIAL IC SUBSYSTEM FNGR DEVELOPMENT                              | EIA 17-AUG-EIA 12-DEC-EIA 28-JAN-EIS 23-MAY-EIS 116 |
| 3384 7386                                                               | 0 13-DEC-84 12-DEC-84 24-MAY-85 23-MAY-85 116       |
| 3386 INITIAL IC DEVELOPMENT TEST & EVALUATION                           | 21 13 DEC-84 10-JAN-85 24-MAY-85 21-JUN-85 116      |
| 3386 3399                                                               | 0 11-JAN-85 10-JAN-85 24-JUN-85 21-JUN-85 116       |
| 3390 IC TAE REPORT DEVELOPMENT                                          | 10 11-JAN-85 24-JAN-85 24-JUN-85 5-JUL-85 116       |
| 3390 3381                                                               | 0 25-JAN-85 24-JAN-85 8-JUL-85 5-JUL-85 116         |
| 3395 PURCHASE IC MANUE TEST, SUBSYSTEMS                                 | 63 17-AUG-84 13-NOV-84 26-FEB-85 23-MAY-85 137      |
| 3395 3386                                                               | 0 14-NOV-84 13-NOV-64 24-MAY-85 23-MAY-85 137       |
| 3400 DETERMINE IC SYSTEM CONFIGURATION REQUIREMENTS                     | 21 17-0CT-83 14-NOV-83 15 NOV-83 13-DEC-83 21       |
| 3408 3448                                                               | 0 15-NOV-83 14-NOV-83 14-DEC-83 13-DEC-83 21        |
| 3410 DESIGN IC MANUF SYSTEM CONFIGURATION                               | 6.3 14-DEC-83 7 MAR-84 14-DEC-83 9-MAR-84 0         |
| 3420                                                                    | 0 12 MAR+84 9 MAR-84 12 MAR-84 9 MAR-84 0           |
| 3420 REVIEW IC MANUE SYSTEM CONFIGURATION DESIGN                        | 21 12-MAR~84 9-APR-84 52-MAR-84 9-APR-84 0          |
| 3420 3430                                                               | 0 10APR-84 9 APR-84 10APR-84 9APR-84 0              |
| 3430 MODEL IC MANUF SYSTEM PROTOTYPE                                    | 42 10 APR-R4 6-JUN-R4 10 APR-84 6-JUN-84 0          |
| 3430 3440                                                               | 0 7 JUN-84 6 JUN-54 7-JUN-84 6-JUN-84 0             |
| 3440 ANALYZE MODEL PROTUTYPE RESULTS                                    | 21 7 JUN-84 5 JUL-84 7 JUN-84 5 JUL-84 8            |
|                                                                         | 0 6 JUL-84 5 JUL-84 12 JUL-84 58-300-84 9           |
| 3450                                                                    | 0 6 JUL-84 5 JUL-84 6 JUL-84 5 JUL-84 0             |
| 3450 REVIEWREVISE IC SYSTEM CONFIGURATION                               | 2° 6 JUL-84 3 SEP-84 6 JUL 84 3 SEP-84 0            |
| 3450 (460                                                               | 8 4 SEP-84 3 SEP 84 4 SEP 84 3 SEP 84 0             |

1

POD SYSTEM PLANNING SCHEDULE (DICIDMARY SURD

r • ŧ ŝ ŧ

10 mm 1

ŧ

ł

|              | (FURTERNARY SURF.)                                        | 0.10            | D'thist AATT B. |                     | 2.07 MAN 40 CFN 4003 | 2007  |
|--------------|-----------------------------------------------------------|-----------------|-----------------|---------------------|----------------------|-------|
| PREC SUCC    |                                                           | I ARI Y         |                 |                     |                      | 101AL |
| NODE NODE DE | DEGCRIPTION                                               | DUR START       | L INISH         |                     |                      | FLOAT |
| 346A DE      | DEVELOP IC MANUFACTURING FACTLITY REGMIS                  | 63 4 St P84     | 29 NOV-84       | 4-56P84             | 29 NOV-84            | 0     |
| 3460 1460    |                                                           | 0 30-NOV-84     | 1. 29- NDV84    | 5 -AUG-85           | 2 - AUG-85           | 176   |
| 3460 3470    |                                                           | 0 30-NOV-84     | 29 NOV-84       | 30~NDV-84           | 29- NOV84            | 8     |
| 3470 DE      | DEVELOP IC FACILITIES DEVELOPMENT PLAN                    | 21 30-NOV-84    | 28- DEC- 84     | 30 NOV-84           | 28 -DEC-84           | 0     |
| 3470 3488    |                                                           | 0 31-DEC-84     | 28DFC84         | 31~DEC-84           | 28-DEC-84            | 0     |
| 3480 RE      | REVIEW/APPROVE FACILITIES DEVELOPMENT                     | 21 31 DEC-84    | 28 JAN-85       | 31- DEC-84          | 28-NAL-85            | 0     |
| 3488 1495    |                                                           | 0 29-JAN-85     | 20- JAN85       | 29-JAN-85           | 28-JAN-85            | 9     |
| 3480 3490    |                                                           | 0 29-JAN-85     | 28 JAN85        | 29-JAN-85           | 28-JAN-85            | 0     |
| 3490 CO      | CONTINUED IC FACILITIES DEVELOPMENT                       | 1200 29-JAN-85  | 4SEP-B9         | 29-JAN-85           | 4SEP89               | 0     |
| 3200 DE      | DETERMINE IC MANUF INTERFACE REQMIS WITH OTHER TECH       | 21 17-001-83    | 14-NOV-83       | 15-NOV-83           | 13-DEC-83            | 21    |
| 3500 1850    |                                                           | 0 15-NOV-83     | 14 NOV-83       | 1-001-84            | 28-5EP-84            | 523   |
| 3500 3310    |                                                           | 0 15-NOV-83     | 14NUV83         | 14-DEC-83           | 13-DEC-83            | 12    |
| 4000 DR      | DRAFT NEAR NET SUAPE INPUTS TO DETAILED PLAN              | 10 3-0CT-83     | 14-0C1-83       | 2NOV83              | 15NOV83              | 22    |
| 4000 1100    |                                                           | 0 17-001-83     | 14-0CT-83       | 16-NOV-83           | 15NOV83              | 25    |
| 4000 4100    |                                                           | 0 17-001-83     | 14 OCT-83       | 31-AUG-84           | 30 - AUG-84          | 229   |
| 4100 DE      | DETERMINE NEAR NET SHAFE INTERFACE REQMIS WITH OTHER TECH | 21 17-001-83    | 14-NOV-83       | 31-AUG-84           | 285EP84              | 622   |
| 4100 1850    |                                                           | 0 15-NOV-83     | 14NUV83         | 1-001-84            | 28-5EP-84            | 522   |
| 4200 RE      | REVIEW CURRENT NEAR NET SHAPE TECHNOLOGY                  | 42 1-0CT-84     | 27NOV84         | 1 · 0CT-84          | 27-NOV-84            | 0     |
| 4200 4220    |                                                           | 0 28-NOV-84     | 27NDU84         | 28-N0V-84           | 27N0V84              | 0     |
| A210 SE      | SELECT INITIAL NEAR NET SHAPE DEMO PERF CRITERIA          | 42 1-001-84     | 27-NUV-84       | 1-0CT~84            | 27-NOV-84            | 0     |
| 4210 1800    |                                                           | 0 28-NOV-84     | 27-NUV-84       | 28~NDV~84           | 27-NOV-84            | 0     |
| 4210 4220    |                                                           | 0 28-NOV-84     | 27-NOV-84       | 28 -NUV-84          | 27NOV84              | •     |
| 4220 SE      | SELECT INITIAL FORMING TECH DEMOS                         | 42 28-NOV-84    | 24JAN85         | 28-NOV-84           | 24-JAN-85            | 0     |
| 4220 1060    |                                                           | 0 25-JAN-85     | 24-JAN-85       | 29-JAN-85           | 24-JAN 85            | 0     |
| 4220 4230    |                                                           | 0 25 JAN-85     | 24-JAN85        | 25-JAN-85           | 24JAN85              | 0     |
| 4230 PE      | PERFORM INITIAL FORMING TECH DEMOS                        | 84 25-JAN-85    | 27 - MAY 85     | 25~JAN~05           | 22-MAY-85            | 0     |
| 4230 4248    |                                                           | 0 23 MAY-85     | 22 - MAY- 85    | 23- MAY-85          | 20 MAY85             | C     |
| 4240 RE      | REVIEW/EVALUATE INITIAL FORMING TECH DEMOS                | 24 23 MAY-85    | 20 JUN 85       | 23- MAY85           | 20 JUN 85            | •     |
| 4240 4250    |                                                           | 20-NUL 19 0     | 20-JUN-82       | 28~NUC 13           | 20 JUN 85            | c     |
| 4250 PR      | PREPARE INITIAL FORMING TECH DEMO REPORT                  | 28-NUC 12 12    | 58 - MIC - BE   | 29 JUN 85           | 19- JUL-85           | 0     |
|              |                                                           | 18- INF 131 0   | 19 JUL - 84     | 727 JBL-85 19-      | 19- JUL -84          | •     |
| 4250 4260    |                                                           | 910-101 JUL 8   | 12 JUL 61       | 22, 301-05-17       | 58- INE - 61         | 8     |
|              | SELECT TNITTAL FORMING RADZENGE DEV TECHNOLOGIES          | 143 JUL 512 512 | 19 AUC - 05     | 22 JUL 84 19        | 19 AUG 85            | 8     |
|              |                                                           | R 78 AUG-84     | 2<br>4          | P.G. MAY-816, P.S.  | 2.3 MAY~86           | 199   |
| 4260 4780    |                                                           | 0.20.406-85.45  |                 | AUC R. 20 AUC R. 12 | 19 AUG 85            | -     |

1.1

POD SYSTEM PLANNING SCHEDULE

4

Contract of

1

.

| MET SIMAE GROUP TECH DE REONTS         DIM SIMAT         TOTT TAL         TOTT TAL <t< th=""><th></th><th>REPORT DATED: 7:07 DM MON 19-SEP -1983</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | REPORT DATED: 7:07 DM MON 19-SEP -1983   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|
| INVESTIGATE MERGE WAY START FED TO                            | SUCC<br>NODE DESCRIPTION                         | BTART LARTY LAN BIAKT FINISH             |
| 2160         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         81         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INVESTIGATE NEAR NET SUAPE GROUP TECH DB REDATS  | 1.40CT_84_22_0CT-84_33_0CT-84_28_N0V-84  |
| DETENDING REGARING REGARD IN FACULTY DESIDIA         DETENDING REGARD IN FACULTY DESIDIA         DETENDING REGARD IN FACULTY DESIDIA         Conctrance 2 and concers 2 and conc                                                      | 4278 2160                                        | 30-001-84 29 001-84 29-NOV-84 28-NOV-84  |
| 1410         0.00177.0.1.0.1.0.1.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DETERMINE FORMING REDNTS IN FACILITY             | (1-JAN-24-21 00.1-76 12-001-84 2-AUG-85  |
| CMITAUGE FORMULY TRUNK FIGNER       1200 CONTAUGE FORMON TO BETALLED PLAN       12 3 0CT-03 3 10 CT-03 3 10 CT-03 3 14 CT-03 3 10 CT-03 3 14 CT-03 3 10 CT-03 3 14 CT-03 14 CT-03 3 14 CT-04 14 CT-                                                     |                                                  | 22-001-76 21-001-76 5-AUG-85 2-AUG-85    |
| Image:                            |                                                  | 20-AUG-85 26 MAR-90 20-AUG-85            |
| 1100       117-001-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031       10.17-031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | 3- 0CT-83 44-0C1-83 3 0CT-83 14 0CT-83   |
| 5200       612-007-031 A 007-103 7. MAY-94 A10 MAY-94         5200       RVIFU OF EXISTING ASGEMULY FECHNOLOGIES       617-007-031 A 007-103 1. A007-04 30. A006-94         5300       RVIFU OF EXISTING ASGEMULY FECHNOLOGIES       617-057 A10 A07-04 30. A006-94       77-1001-031 7. A006-94         5313       617-053 A1 077-131 A106-74 30. A006-94       77-1001-031 7. A006-74 30. A006-94       77-1001-04         5313       617-053 A100-761 51 8. A006-74 37 A106-74       77-001-031 7. A006-74 37 A106-74       77-001-04       72-001-04         5313       5500       084 X1315/REPORT ON ASSEMULY FECHNOLOGIES       014-066-731 31 050-64 27-4004-74       77-001-04       72-010-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-001-04       72-011-04       72-011-04       72-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | 14-0CT-83 16-NOV-83 15-NOV-83            |
| 8200       0.17-001-03.314.0010-03.15.314.0010-04       31.47010-03.314.0010-04       31.47010-03.314.0010-04         8101       81.110       81.110       81.110       81.110       81.110       81.110         8113       81.110       81.110       81.110       81.110       81.110       81.110       81.110         8113       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110       81.110 </td <td></td> <td>14-0CT-83 21-MAY-84 18-MAY-84</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | 14-0CT-83 21-MAY-84 18-MAY-84            |
| S200       REVIEW OF EXISTING ASSEMBLY TECHNOLOGIES       0       17       0011-03       310-0400-041       0014-061       31-0400-041       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-0401-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04       21-041-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | 170CT-83 14 0CT-83 17-0CT-83 14-0CT-83   |
| RFUTEN OF EXISTING ASSEMULY FECHNOLOGIES       R2 17 00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 17~0CT-83 14 0CT-83 31-AUG-84 30-AUG-84  |
| 5110       9 14-BEC-83 13 BFC-83 19 B-JUL-84 12-JUL-84         5213       52-BEC-83 31 B-CC-83 13 B-CC-83 13 B-CC-84 12-GUL-84 12-GUL-84         5120       6 14-BEC-83 31 B-CC-83 13 B-CC-84 12-GUL-84 12-GUL-84         5120       8 MAYCHISTERORT ON ASSEMBLY TECHTORECAST       2 14-BEC-83 31 B-CC-83 13 B-CC-84 12-GUL-84 12-GUL-84         5130       513       9 14-BEC-83 31 B-CC-83 13 B-CC-84 12-GUL-84 12-GUL-84         5130       BANYTISTERORT ON ASSEMBLY TECHTORECAST       2 10-FEB-84 9 FTE-84 12-GUL-84 12-GUL-84         5130       BETERNINE FUTURE ASSEMBLY TECHTORECAST       2 10-FEB-84 9 FTE-84 12-GUL-84 12-GCL-84         5130       BETERNINE FUTURE ASSEMBLY TECHTORECAST       2 10-FEB-84 9 FTE-84 12-GUL-84 12-GCL-84         5130       BETERNINE FUTURE ASSEMBLY TECH DERORS       0 10-FEB-84 9 FTE-84 12-GCL-84 12-GCL-84         5140       BELECT INITIAL ASSEMBLY TECH DERORS       0 10-FEB-84 12-GCL-84 12-GCL-84         5101       BELECT INITIAL ASSEMBLY TECH DERORS       0 10-FEB-84 12-GCL-84 12-GCL-84 12-GCL-84         5210       BELECT INITIAL ASSEMBLY TECH DERORS       0 10-FEB-84 12-GCL-84 12-GCL-84 12-GCL-84         5210       BELECT INITIAL ASSEMBLY TECH DERORS       0 10-FEB-84 12-GCL-84 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REVIEW OF EXISTING ASSEMILY TECHNOLOGI           | 17-0CT-83 13-DEC-83 21-MAY-84 17-JUL-84  |
| 513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       513       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | 14~DEC-83 13~DEC~83 18~JUL-84 17~JUL-84  |
| 550       0       14-DEC-83       35 DEC-63       27-DEC-64       27-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | 14-DEC-83 13 DEC-03 15-0CT-84 12-0CT-84  |
| FORECABL FUTURE ASSEMBLY FECHMOLICIES         S: 14-DEC-R3         9-FEB-04         13-SEP-04         13-SEP-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | 14-DEC-83 13 DEC-83 28-DEC-84 27-DEC-84  |
| 5120       0       10       FEB-94       9       FFB-04       13-5EP-04       13-5EP-05       13-5EP-04       13-5EP-05       13-5EP-05 <td< td=""><td></td><td>14-DEC-R3 9-FEB-84 18-JUL-84 13-SEP-84</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | 14-DEC-R3 9-FEB-84 18-JUL-84 13-SEP-84   |
| ANALYSIS/REFORT ON ASSEMPLY TECH FORCAST         23         30-FEB-94         14-SEP-94         15-SCT-94         12-SCT-94         12-SCT-93         13-SCT-93         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5120                                             | 10.FEB-84 9.FEB-84 14-SEP-84 13-SEP-84   |
| 5130       0       17-MAR-04       5-MAR-04       15-MCT-04       12-MCT-04       12-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | 9 MAR-84 14 SEP-84 12-0CT-84             |
| DETERMINE FUTURE ASSEMBLY REDUIREMENTS         A:         PAX-BA         B         MAY-BA         S:-OCT-BA         S::OCT-BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | 9-MAR-814 15-0001-84 12-001-84           |
| 1120       0       9-MAY-BA       8       MAY-GIA       50-ECC-84       11-DECC-83         1120       5ELECT INITIAL ASSEMBLY IECH PERFORMANCE CRITERIA       0       9-MAY-BA       8       MAY-GIA       50-ECC-83       13-DECC-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | B-MAY84 15-001-84 11-DEC-84              |
| SELECT INITIAL ASSEMBLY TECH PERFORMANCE CRITERIA       42       17-0057-83       13-0650-83       73-0657-83       13-0650-83       73-0677-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0650-83       73-0670-83       13-0600-84       76-6680       75-000-84       76-6680       75-000-84       76-6680       75-000-84       76-6680       75-000-84       76-6680       75-000-84       76-6680       75-000-84       76-100-84       76-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75-100-84       75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | 9-MAY-84 8 MAY-84 12 DEC-84 11-DEC-84    |
| 1800       1.4 - bEC - B3       1.3 DEC - B3       1.3 DEC - B3       1.3 - bEC - B3       1.4 - bEC - B1       1.4 - bEC - B3       1.4 - bEC - B3       1.4 - bEC - B3       1.4 - bEC - B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SELECT INITIAL ASSEMPLY TECH PERFORMANCE         | 17-001-93 13-DEC-83 17-001-83            |
| 5210       A       Decensities       3.3. Decensities <th< td=""><td></td><td>14-DEC-83 13 DEC-83 28-NOV-84 27-NOV-84</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | 14-DEC-83 13 DEC-83 28-NOV-84 27-NOV-84  |
| SELECT INITIAL ASSEMBLY TECH DEMOS       AC       14-DEC-83       9-FEB-84       14-DEC-83       9-FEB-84       5-JUL-84       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5210                                             | 14 -DEC-83 13-DEC-83 14-DEC-83           |
| 105       PERFORM INITIAL ASSEMBLY TECH DEMOS       0       10 : FEB-84       7       7: UI : 84       0: FEB-84       9: FEB-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | 14-DEC-83 9-FEB-84 14-DEC-83             |
| 5.220       6       10       FEB-84       7       10       FEB-84       10       FEB-84       5       5       10L-84       5       5       5       10L-84       10L-84       10L-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | 10-FEB-84 9-FEU-84 10-FER-84             |
| PERFORM INITIAL ASSEMBLY TECH DEMOS       10 FER-04       5 JUL-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 10 FEB-84 9 FEB-84 10 FEB-84             |
| 5230       6-JUL-84       5-JUL-84       5-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 10-FEB-84 5 JUL-84 10-FEB-84             |
| REVIEW/ANALYSIS OF INITIAL ASSEMPLY TECH DEMOS       73       6-3UL-84       3       AUC-84       6       JUL-84       3       AUC-84       5       JUL-84       3       AUC-84       5       C       6 <td></td> <td>5 JM84 6 JM84</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | 5 JM84 6 JM84                            |
| 5240       5.240       5.405-84       3.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-84       5.7405-83       5.7405-83       5.7405-84       5.7405-83       5.7405-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REVIEW/ANALYSIS OF INITIAL ASSEMINLY TO          | 3 AUG~84 & JUL-84                        |
| PRFPARE INITIAL ASSEMBLY IFCH DEMORPORT         50         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         64.4         50.05         50.05         64.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | 3 AUG+ 84 6 AUG+ 84 3                    |
| 1070       1070       17 AUG 84       18 AUG 84       17 AUG 84       18 AUG 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | 6 AUG 84 17 AUG 84 6 AUG 84 17           |
| 5440<br>DLTERMINE ASSEMINY INTERACE REQMES WELFIED REPORTED FOR REPORTED REPOR |                                                  | 20 AUG-84 17 AUG 84 20 AUG 84 17         |
| DLIERMENE ASSEMBLY INTERACE REQMES WELFTERHERE RECH. 24-57 DCI 8.3 (A NUV 8.3    | 5440                                             | 28 AUG-84 17 AUG 84 20 AUG-84 17         |
| 0 1/1 NIV-BUT 14 NIV BUT 14 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DETERMENE ASSEMBLY INTERLACE REQMENDENTING THE R | 57 DCJ 83 14 NUV 83 31 AUC 84 28 SI P 84 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.308 1450                                       | NUV 8.3 1 OCF R4 28 SUP-84               |

The state section of the section of the

あるとが見たいにあるとないたのであるとないがあるという

2

.

ŧ

| PREC S<br>NODE N | E DESCRIPTION                                | DUR                                                 |
|------------------|----------------------------------------------|-----------------------------------------------------|
| 5410             | DETERMINE ASSEMBLY REGNIS IN FACILITY DESIGN | 42 1 DUCT 84 27 NDV 84 24 NDV-84 25 JAN-85          |
| 5410 1           | 1460                                         | 0 28 NOV-84 27 NOV-84 5 AUG-85 2 AUG-85 178         |
| 5410 5           |                                              | 0 28-NDV+84 27 NDV-04 28 JAN-85 25-JAN-85           |
| 5420             | DETERMINE ASSEMBLY STDS READ FOR TECH DH     | 21 1-0CT-84 29-0CT-84 24-3UN-85 22-JUL-85 190       |
| 5428 1           | 1785                                         | 0 20-0CT-84 22 0CT-84 23 JUL-85 22-JUL-85 190       |
| 5430             | DETERMINE REOMTS FOR CAT INTEGRATION         | 21 28-NOV-84 26-DEC-84 28 JAN-85 25-FEB-85          |
| 5430 5           | 5480                                         | 0 27-DEC-84 24 DEC-84 26 FEB-85 25-FEB-85           |
| 5440             | SFLECT ADDITIONAL ASSEMALY TECH DEMOS        | 213 20 AUG-04 17 SEP -84 20 AUG-84 17-SEP-84        |
| 5440 1           | 1060                                         | (* 18-5EP-84 17-5FP-84 25-JAN-85 24-JAN-85          |
| 5440 S           | 0542                                         | u 18-SEP-84 17 SEP-84 18-SEP-64 17-SEP-84           |
| 0545             | PERFORM ADDITIONAL ASSEMBLY TECH DEMOS       | 84 10.5EP-04 11 JAN-05 10 5EP-04 11-JAN-85          |
| 5450 S           | 5,460                                        | 8 14-JAN-85 11-JAN-85 14 JAN-85 14 JAN-85 11-JAN-85 |
| 5468             | REVIEW/ANALYZE ASSEMBLY TECH DEMO RESULTS    | 21 14 JAN-85 11 FER-85 14 JAN-85 11-FEB-85          |
| 5468 5           |                                              | 0 12 FEB-85 11 FEB-85 12 FEB-85 11-FEB-85           |
| 5470             | PRODUCE ASSEMBLY TECH DEMO REPORT            | 10 12 FEB-05 25 FEB-05 12-FEB-05 25 FEB-05          |
| 5478 1           | 1089                                         | 0 26 FEB-85 25 FEB-85 22 JUL-85 17 JUL-85 104       |
| 5478 5           | 5,480                                        | 0 20-LEB-83 242 FEB-05 26 FEB-83 25-FEB-83          |
| 0845             | SFLECT ASSEMPLY RARVENGR DEV TECHNOLOGIES    | 21 26-FEB-85 26-MAR-85 26-FEB-85 26-MAR-85          |
| 5480 1           | 1180                                         | 8 27-MAR-85 24-MAR-85 24 4 4-86 23-MAY-86 303       |
| 5 084S           | 5490 .                                       | 0.27-MAR-85.26.MAR-85.26.MAR-85.26-MAR-85           |
| 5480 5           | 5:568                                        | 0 27-MAR-85 26 MAR-85 27 MAR-85 26-MAR-85           |
| 5490             | INITIAL ASSEMALY R&D                         | 105 27-MAR-85 20 AUG-85 27-MAR-85 20-AUG-85         |
| 5490 5           | 5495                                         | 0 21 AUG-85 20 AUG-85 21 AUG-85 20 AUG-85           |
| 5495             | REVIEW/ANALYZE INITIAL RAD RESULTS           | 21 21-AUG-05 10 SEP-05 21-AUG-85 10-SEP-85          |
| 5 3645           | 5496                                         | (1.12~5EP-85 10 SFP-85 19 SFP-85 10 SEP-85          |
| 5496             | CONTINUED ASSEMPLY R&D EFFORTS               | 1000 19-SEP-05 12 JUL-02 19-05 P-05 19-JUL-89       |
| 5500             | INVESTIGATE INHOUSE ASSEMALY RAD EFFORTS     | 42 14 DEC-03 9 FEB-04 28 DEC-04 25-FFB 05 272       |
| 5500 5           | 5,480                                        | 0 10 FEB-84 9 FER-04 26 FER-85 25 FER-85 272        |
| 5560             | DEVELOP DETASLED ENGINFRING DEVELOPHENE PLAN | 23 22 MAR+85 24 APR-85 27 MAR 85 24 APR 85          |
| 5560             | 2570                                         | 0.2% APR-8% 24 APR-8% 2% APR-8% 2%                  |
| 5570             | CONTINUED ASSEMALY ENGINEERING DEVELOPMENT   | 1000 25-APR 39, 22 11R-82 24, APR-87, 22 11F 89     |

T. B. Shinks Line

4

1

## Navy Logistics R&D Project Recommendations

The attached input was provided under Task 4 efforts on September 15, 1983 to support NAVSUP R&D funding requests for POM86. It includes five major projects for Automated Spare Parts Manufacturing and Repair and addresses the following areas:

- Overall POD Support, Technology, and Technical Data Base Development
- Demonstrate POD Capability for Machining of Metal Parts
- Develop Automated Systems for POD Assembly and Subassembly
- Support Advanced Technology for Forming to Near Net Shape
- Develop POD Capability for Integrated Circuit Manufacturing

The funding profile covers FY84 through FY90, suggests funding categories and recommends an investment of about \$250 million for 56 projects, demonstrations and full deployment.

## INPUT TO

## PLAN OF THE PLAN POM 86

- Overall POD Support, Technology, and Technical Data Base Development
- Demonstrate POD Capability for Machining of Metal Parts
- Develop Automated Systems for POD Assembly and Subassembly
- Support Advanced Technology for Forming to Near Net Shape
- Develop POD Capability for Integrated Circuit Manufacturing

Submitted by:

Science Applications, Inc. Robotics and Automation Division 1710 Goodridge Drive McLean, Virginia 22102 (703) 821-4339

September 15, 1983

## NAVY LOGISTICS R&D PROJECT

- 1. TECHNOLOGY AREA: Automated Spare Parts Manufacturing/Repair
- 2. PROJECT TITLE: Parts on Demand (POD) Program
- 3. <u>NEED ADDRESSED/PROBLEMS/SHORTFALL</u>: The availability of spares and parts over the lifetime of weapon systems is critical to maintain peacetime readiness and surge/mobilization capability. Currently the unit costs to manufacture small quantities of parts are considerably higher than those for high volume production. In addition many weapon system parts have lost their original manufacturing sources and require long procurement lead times to generate a source for remanufacturing those parts. Repair parts requirements for low demand items cannot be known accurately over long time periods, and insurance stocking is a costly solution creating large inventories. Historically only 15-20% of these parts are used. These problems diminishing sources, long lead time and ncreasing procurement and holding costs are problems which can be alleviated by a parts-on-demand system.

The commercial world has solved similar problems in the industrial setting and using these techniques will help. However, and commercial flexible manufacturing systems (FMS) are not specifically designed to economically handle military low volume requirements for a wide range of spares and replacement parts over the long lifetime of weapon systems. The principal need for military focus is on greater use of evolving computer technology to enhance the diversity and capability of manufacturing systems to produce low volumes of spare parts on demand as needed by ships and aircraft in the Fleet. The technology base requirements and procedures need to be focused on developing more flexible parts-on-demand manufacturing systems than currently available. The key enabling technologies need to be continuously assessed and advanced systems demonstrated and integrated to prove the generic relevancy of POD systems for low volume spares/parts production.

- 4. <u>OTHER SERVICE OR GOVERNMENT APPLICATION</u>: Applies to all military departments and other government departments. The Navy has been assigned responsibility to coordinate tri-service efforts in low volume, automated manufacturing of parts on demand.
- 5. TECHNICAL APPROACH: The POD program objective is to develop and demonstrate systems and facilities capable of producing a constantly changing mix of parts using advanced flexible, low volume, automated manufacturing Design and development aspects of POD systems need to be technology. focussed on Navy spare/replacement part requirements. The technical approach is structured to demonstrate technological capability and stimulate manufacturing modernization. The program has been scoped to provide spare parts over the lifetime of weapon systems, keep inventories to a minimum, and assure the availability of critical parts as needed. Early demonstrations will emphasize evaluation and proof of effectiveness leading to implementation. A number of leading organizations have been identified where early demonstratons and aggressive R&D projects can be implemented. Technology transfer activities will be actively funded throughout the program to encourage industrial development involvement, throughout the industrial base.

The attached chart (Figure 1) illustrates the performance milestones for the five major program elements: 1) Technology Base, 2) Machining, 3) Assembly, 4) Integrated Circuits Production, and 5) Forming to Near Net Shape. The areas for development focus on three types of spares and parts (mechanical, electrical, and electronic) and the four key manufacturing processes used to produce them (forming, machining, processing, and assembly). Figure 1 also gives a general overview of the overall goals and products of the program.

The key generic technologies to be developed for a Parts on Demand facility are based on computer-aided technology: computer-aided-design (CAD), -process planning (CAPP), -manufacture (CAM), and -testing (CAT). General baseline design requirements and POD system integration need to address the following basic areas:

- a. Planning and control systems to provide real time data processing, instructions and balanced work load for production systems.
- b. Computer-aided design systems to provide direct design capability and analysis.
- c. Centralized control to monitor systems, provide optimum production capability, and tie systems into an integrated information network.
- d. System control and diagnostic capability to assure maximum flexibility, reliability, and quality control.

The technology base to be developed must address the minimum manufacturing database requirements for POD systems. For example, a technical data package for spare parts should provide a part number so it can be reordered from the vendor or a performance specification so it can be procured; design data if it is to be built, process data to qualify production, and manufacturing processing data for captive production.

Computer data driven process planning and generative process planning can use artificial intelligence and expert systems to manage the complexity and flexibility required of POD systems. Coupling expert systems with database management systems for POD is a long term project. The expert system needs to be based on a well defined knowledge base of production domain facts and heuristics associated with low volume manufacturing. The power of the system lies in the specific knowledge of the problem domain and the most powerful and efficient system is the one with the most knowledge. A POD expert system could be developed in perhaps 5 years, but complex systems are apt to take as long as 10 years.

The development and integration of sensor systems into a POD facility can provide orientation and monitoring information for on-line production and inspection systems, material handling, assembly, and process control. In the near term these systems can be used to reduce skilled operator requirements or obtain higher equipment output. Longer term goals are to develop systems using AI, sensors and robotics that are

CP3/A4

capable of sensing conditions, deciding on a solution, writing a program and following the program.

The following tasks form the basis of the program to be funded and the technical approach to be taken.

- A. PROGRAM MANAGEMENT AND COORDINATION: This task encompasses a broad range of activities including laying out the program, defining the required R&D, evaluating the results, documenting and justifying the funding and support requirements, developing the PMP (Program Management Plan), and transferring technology.
- B. DATA BASE AND STANDARDS REQUIREMENTS: This task focuses on the development of the manufacturing database requirements; technical data procurement requirements; and materials, standards, and interface requirements. It also provides for a continuing assessment of evolving key enabling technologies and the detailed characterization of parts and classes of parts relevant to a POD system as well as economic analysis of system capabilities and options.
- C. ENABLING TECHNOLOGY DEVELOPMENT: This task focuses on the generic, cross-cutting technologies that are required for the development of POD systems. Commercial flexible manufacturing systems (FMS) need to be modified and made more flexible to handle the wide variety of low volume parts required to maintain military systems economically.

Computer-aided systems, realtime information processing, off-line programmers, advanced programmable robotic systems, artificial intelligence/expert systems, and generative process planning are key initiatives requiring funding for the development of POD facilities.

Group technology is the basic production method used to group similar parts with appropriately similar manufacturing processes to make a family

of parts. Efforts here will focus on the development of a code/classification system to identify appropriate families of parts for POD.

- BASELINE DESIGN DEVELOPMENT: This task provides the baseline D. concept and design development of facilities in each of the four manufacturing areas. This will require layout of what is envisioned as a normal parts-on-demand facility, what the entire facility will look like including types of manufacturing equipment and computers, physical layout, interfaces between the machines and computers, manpower requirements, storage areas, management requirements and choices, etc. On the basis of such a detailed layout the parts-on-demand concept will begin to take shape and the funding requirements will become better focused. Modifications and refinements will evolve and be systematically analyzed for economic demonstrations envisioned for each of the four areas. During the design process for the separate areas of forming, machining, processing, and assembling consideration will be given to the trade-offs between separate facilities and combined facilities for military requirements. Baseline design studies will also focus on other options such as minimum/maximum variations and families of parts that makes sense for a Parts on Demand facility in order for that facility to provide maximum flexibility.
- E. POD SYSTEM INTE GRATION: This task focuses on the advanced engineering development required to integrate the hardware and software in each of the manufacturing areas. The planning and control systems, CAD/CAM/CAT, and on-line, in-process material handling and inspection systems are key areas to be developed.
- F. POD DEMONSTRATIONS AND DEPLOYMENT: This task addresses the strategy and demonstration approach to be used in implementing the POD program. A team approach is planned and participants will include universities, R&D centers, industry, and government.

Initially, technology demonstrations, and prototype production lines in each of the four manufacturing areas will be used to prove operational and technical capability of existing, off-the-shelf technology to produce parts on demand. Available organizations with in-place facilities will be used to evaluate and prove the effectiveness of equipment adapted to the POD concept. Parts will be fabricated and the process documented and analyzed to provide a precise definition of the process and basic data requirements. The results of these demonstrations will be fed back into the R&D projects to focus on areas that need to be funded to push the technology. Figure 2 identifies some representative centers of excellence capable of demonstrations and DoD activities to perform RD&D througput the program.

Economic demonstrations are designed to put POD production systems in an industrial setting. Not only will these demonstrations be used to test operational requirements and economics involved, but are part of the technology transfer plan to stimulate hand-on experience and training in new technologies for Navy suppliers of spare parts. This supplier base includes primary secondary and teriary tiers of the industrial base. Parallel demonstrations in Navy organic facilities such as the NARFS/Shipyards will provide opportunities to determine the developmental path to be taken in eventual deployment decisions, i.e., the Navy's obligation to develop POD facilities versus providing industrial incentives to improve capabilities of the industrial base.

POD deployment, pilot plant installations and location decisions will be based on results of earlier demonstrations and R&D project successes. Principal suppliers will be selected for joint industry/Navy cost-sharing demonstrations. POD facilities fielded in forward areas (US base, foreign base, tenders) and transportable POD units to upgrade platform and escort ships tool shop capabilities are among the options to be evaluated. The integration of the POD system with the Inventory Control Points at SPCC and ASO and the existing procurement system for spares and parts will be a significant and basic factor in deployment decisions. For example, the POD technical information data requirements should

CP3/A7

1 - 3 R . . .

be controlled at the ICP and bidders lists for POD suppliers generated through ASO/SPCC.

<u>ار ا</u>

The specific demonstrations under this program will be based on the four manufacturing areas to be developed for POD systems: machining, assembly, processing, and forming to near net shape. The first of the early technology demonstrations is being carried out at the National bureau of Standards which is testing and calibrating equipment for machining small mechanical parts on demand. NBS is curently negotiating with IBM to demonstrate assembly capability for parts on demand. Two additional early demonstrations are needed for integrated circuit production and advanced technology such as powder metallurgy for forming to near net shape. Proposals in these areas have been received from Boeing, Carnegie-Mellon University, and Sutherland, Sproull, and associates.

Economic demonstrations and full deployment cost sharing demonstrations are specified in the program element writeups are specified in the programs element writeups included in Attachment A.

- 6. <u>ANTICIPATED IMPROVEMENTS</u>: The benefits and payoffs from developing a parts-on-demand system can be significant.
  - Improved and more responsive logistics and support,
  - Reduced production, procurement and inventory costs for spares and parts.
  - Inventories kept to a minimum.
  - Availability of critical parts assured.
  - Stimulation of manufacturing modernization in the industrial base.
- 7. ORGANIZATION RESPONSIBLE FOR IMPLEMENTATION: Project Sponsor OP-04, Project Managers NAVMAT-064 and NAVSUP-033.
- 8. <u>R&D POINT OF CONTACT</u>: Dr. Robert Elwood, NAVSUP 033B

**CP3/A8** 

ŧ

- 9. <u>FUNDING PROFILE</u>: (attached) Specific task profiles and funding is included as Attachment A which provides details on the five program elements.
- 10. <u>BENEFITS DATA</u>: Commercial flexible manufacturing system results and initial POD demonstrations at NBS have shown a 50% reduction in production time for machined parts. It is projected that fully operational POD systems can reduce long lead times by about 33%, can reduce inventory costs by 10%, can reduce annual procurement expenditures by 15%, and can help assure part availability when needed.

## 11. RELATED EFFORTS AND REFERENCES:

- Air Force Integrated Computer-Aided Manufacturing (ICAM) Program in which initial emphasis has been on sheetmetal fabrication and assembly.
- U.S. Army Electronics Computer-Aided Manufacturing (ECAM) program which is now entering the development stage to improve batch manufacturing for military electronics with modular systems and techniques.
- Computer Aided Manufacturing International (CAM-I), a not for profit consortium of industry, governments, and academe which has sponsored much group technology-related work and integrated software programs.
- Mantech funding for generic manufacturing/processing methods sponsored by OP987.
- Navy Computer-Integrated Manufacturing (NAVCIM) which is dedicated to the production of small machinable parts and is being built around the core of the NBS Automated Manufacturing Research Facility.
- NASA Integrated Program for Aerospace Vehicle Design.
- 12. PROJECT STATUS: Ongoing
- 13. PRIORITY:

9. FUNDING PROFILE (\$K)

|       | 84     | 85     | 86     | 87     | 88             | 89     | 06     | TOTAL   |
|-------|--------|--------|--------|--------|----------------|--------|--------|---------|
| 6.1   | 00 tr  | 2,000  | 1,900  | 1,900  | 1,900          | 1,900  | 1,900  | 11,900  |
| 6.2   | 3,650  | 3,150  | 3,250  | 3,000  | 2 <b>,</b> 000 | 1,105  | 700    | 16,900  |
| 6.3   | 5,200  | 13,250 | 18,450 | 19,450 | 13,500         | 6,600  | 2,000  | 78,450  |
| 6.4   | ł      | 500    | 1,950  | 3,800  | 5,000          | 4,000  | 1,800  | 17,050  |
| NGO   | 2,500  | 4,500  | 12,600 | 24,000 | 40,800         | 25,200 | 19,400 | 129,200 |
| TOTAL | 11,750 | 23,400 | 38,150 | 52,350 | 63, 195        | 38,805 | 25,800 | 253,400 |

CP2/L2

## ATTACHMENT A

## DETAILED DESCRIPTION OF PROGRAM ELEMENTS FOR THE PARTS ON DEMAND PROGRAM

- 1. POD Management, Coordination, and Generic Technology Requirements
- 2. Machining Metal Parts on Demand

CP3/A10

- 3. Automated Assembly of Parts on Demand
- 4. Advanced Technology Development for Forming to Near Net Shape

ALTERNAL CONTRACTOR

5. Integrated Circuit Manufacturing for Parts on Demand

## NAVY LOGISTICS R&D PROJECT

- 1. TECHNOLOGY AREA: Automated Spare Parts Manufacturing/Repair
- 2. <u>PROJECT TITLE</u>: Parts on Demand (POD): <u>Program Element 1</u> POD Management, Coordination, and Generic Technology Requirements
- 3. <u>NEED ADDRESSED/PROBLEMS/SHORTFALL</u>: The parts on demand concept is based on using advanced manufacturing technology to reduce cost and lead time in small batch productio. It can be used to satisfy production requirements for a broad mix of parts. The Parts on Demand Program uses flexible manufacturing to foster a transition to POD manufacturing by encouraging changes in manufacturing technology throughout the industrial base and in supply system policy and practices.

The general requirements of this element of the program are to provide program management and to determine and develop the generic technology base requirements. Key initiatives include generative process planning, planning and control systems, baseline design requirements, and AI advancement/expert systems.

4. OTHER SERVICE OR GOVERNMENT APPLICATION: Applies to all military departments and other government departments.

## 5. TECHNICAL APPROACH:

A. Program Management and Evaluation.

Develop the Program Management Plan (PMP) and detailed schedule and milestones for POD projects. Manage, monitor and coordinate program activities.

B. Generative Process Planning

This has been identified as a key enabling technology for POD. Perform basic research necessary to develop equipment models so computer can generate and evaluate alternative assembly procedures, tooling designs, floor plans, material flow routing, etc. Design systems to assure optimium production capability and flexibility for broad mix of parts in POD facilities. A POD system must be able to suit changing manufacturing requirements.

C. Technology Transfer

Develop technology transfer plan and implement activities to assure that information, hands-on experience and training in new technologies reach a broad spectrum of users throughout the industrial base including Navy prime supply contractors and subcontractors.

D. Key Enabling Technologies Assessment

Perform structured studies and assessments of evolving automation technology to determine exact relevancy to POD systems and state-of-the-art breakthroughs that might be applicable. In addition special studies of advance technologies such as biotechnology can be assessed to determine methods of using appropriate microorganisms and biomaterials to make replacement parts faster and cheaper under less stringent processing conditions.

E. Manufacturing Database Requirements

Perform studies and analyses to determine minimum techniques database requirements for POD systems, develop requirements for direct design capability.

## F. Technical Data Procurement Requirements

Perform studies and analyses to determine legal restrictions and ramifications regarding proprietary rights in duplicating patented parts. Determine the minimum technical database requirements needed for a POD system and determine cost tradeoffs with other options.

G. Materials and Standards Requirements

Perform studies and analyses, on material substitution and establish interface standards by which the various equipment can communicate with each other.

H. Planning and Control Systems

Develop and demonstrate POD planning and control systems to provide routing and equipment selection, sequence, and priorities real time data processing, instructions, balanced work load monitoring and an integrated information network for POD operations.

I. Baseline Design System Integration

Design and develop POD systems/facilities in each of the four manufacturing areas to include basic layout, equipment and controls, interfaces and alternative approaches. Tradeoffs and option of separate and combined facilities will be compared.

J. Advancement/Expert Systems

Computer data driven process planning and generative process planning can use artificial intelligence and expert systems to manage the complexity and flexibility required of POD systems. Coupling expert systems with database management systems for POD is a long term project. The expert

system needs to be based on a well defined knowledge base of production domain facts and heuristics associated with low volume manufacturing. The power of the system lies in the specific knowledge of the problem domain and the most powerful and efficient system is the one with the most knowledge. A POD expert system could be developed in perhaps 5 years, but complex systems are apt to take as long as 10 years.

÷.

ار. بر

The development and integration of sensor systems into a POD facility can provide orientation and monitoring information for on-line production and inspection systems, material handling, assembly, and process control. In the near term these systems can be used to reduce skilled operator requirements or obtain higher equipment output. Longer term goals are to develop systems using AI, sensors and robotics that are capable of sensing conditions, deciding on a solution, writing a program and following the program.

- 6. <u>ANTICIPATED IMPROVEMENTS</u>: The benefits and payoffs from developing a parts on demand system can be significant based on improved and more responsive logistics and support, and reduction production, procurement and inventory costs for spares and parts.
- 7. ORGANIZATION RESPONSIBLE FOR IMPLEMENTATION: Project Sponsor OP-04, Project Managers NAVMAT-064 and NAVSUP-033.
- 8. R&D POINT OF CONTACT: Dr. Robert Elwood, NAVSUP 033B
- 9. FUNDING PROFILE: (attached)
- 10. <u>BENEFITS DATA</u>: Commercial flexible manufacturing system results and initial POD demonstrations at NBS have shown a 50% reduction in production time for machined parts. It is projected that fully operational POD systems can reduce long lead times by about 33%, can reduce inventory costs by 10%, can reduce annual procurement expenditures by 15%, and can help assure part availability when needed.

## 11. RELATED EFFORTS AND REFERENCES:

- Air Force Integrated Computer-Aided Manufacturing (ICAM) Program in which initial emphasis has been on sheetmetal fabrication and assembly.
- U.S. Army Electronics Computer-Aided Manufacturing (ECAM) program which is now entering the development stage to improve batch manufacturing for military electronics with modular systems and techniques.
- Mantech funding for generic manufacturing/processing methods sponsored by OP987.
- Navy Computer-Integrated Manufacturing (NAVCIM) which is dedicated to the production of small machinable parts and is being built around the core of the NBS Automated Manufacturing Research Facility.
- NASA Integrated Program for Aerospace Vehicle Design.
- 12. PROJECT STATUS: Ongoing
- 13. PRIORITY:

CP3/A22

1

9. FUNDING PROFILE (\$K)

1

ŧ

MARIN

# PROGRAM MANAGEMENT AND GENERIC TECHNOLOGY DEVELOPMENT

|                                            | 118   | 85    | 86          | 87           | 88    | 89    | 06    |
|--------------------------------------------|-------|-------|-------------|--------------|-------|-------|-------|
| 6.1                                        |       |       |             |              |       |       |       |
| PROGRAM MANAGEMENT AND<br>EVALUATION       | 400K  | 500K  | 400K        | 400K         | 400K  | 400K  | 1100K |
| GENERATIVE PROCESS PLANNING                | 1500K | 1500K | 1500K       | 1500K1500K   | DOK   | 1500K |       |
| 6.2                                        |       |       |             |              |       |       |       |
| TECHNOLOGY TRANSFER                        | 50K   | 200K  | 300K        | 500K         | 500K  | 500K  | 300K  |
| KEY ENABLING TECHNOLOGIES<br>ASSESSMENT    | 500K  | 300K  | 200K        | 200K         | 200K  | 150K  | 100K  |
| MANUFACTURING DATABASE<br>REQUIREMENTS     | 800K  | 500K  | 300K        |              |       |       |       |
| TECHNICAL DATA PROCUREMENT<br>REQUIREMENTS | 300K  | 100K  | 50K         |              |       |       |       |
| MATERIALS & STANDARDS<br>REQUIREMENTS      | 300K  | 100K  | 50 <b>K</b> |              |       |       |       |
| 6.3                                        |       |       |             |              |       |       |       |
| PLANNING AND CONTROL SYSTEMS               | 200K  | 500K  | 400K        | 200 <b>K</b> |       |       |       |
| BASELINE DESIGN/<br>SYSTEM INTEGRATION     | 500K  | 2000K | 1000K       | 500K         |       |       |       |
| AI ADVANCEMENT/EXPERT SYSTEMS              |       | 800K  | 1000K       | 1000K        | 2000K | 1000K | 1000K |

in such

CP/2K1

## NAVY LOGISTICS R&D PROJECT

- 1. TECHNOLOGY AREA: Automated Spare Parts Manufacturing/Repair
- 2. <u>PROJECT TITLE</u>: Parts on Demand (POD): <u>Program Element 2</u>-Machining Metal Parts on Demand
- 3. <u>NEED ADDRESSED/PROBLEM/SHORTFALL</u>: About 60% (520,000 line items) of the Navy inventory of manufactured spares/parts are mechanical. This represents an estimated inventory value of \$3.5B. Many of these parts are single source items or low demand items with diminished sources and high costs or have a long lead time. Of the parts held in inventory as insurance items, only about 15-20% are ever used.

At the core of manufacturing is the machining process, removing unwanted material so the part takes on the required size and shape. Basic machining processes will not change fundamentally but the infrastructure and modes of communication can be improved dramatically. Information handling costs, in general, are estimated to be 70% of production costs. Commercial FMS systems need to be modified and and made more flexible to handle the wide variety of low volume parts required to maintain military systems economically.

- 4. <u>OTHER SERVICE OR GOVERNMENT AGENCY APPLICATION</u>: All military departments and other government agencies. The Navy has been assigned responsibility to coordinate tri-service efforts in low volume, automated manufacturing of parts on demand.
- 5. <u>TECHNICAL APPROACH</u>: Computer-aided Development of POD facilities to manufacture metal parts.
  - A. <u>Minimum Data Base Requirements</u> Perform analysis focused on minimum technical data required to machine various shapes, sizes and complex parts.

CP3/AII

.\*

- B. <u>Parts Specification</u> Develop standards for part specifications that can be used in current and evolving systems. Develop standards against which actual performance can be judged. Determine how flexible the standards should be and basis for data computations. Develop part digitization methods using optical and contact probes. Develop models using solid geometry and non-geometric information.
- C. <u>Group Technology</u> Develop code/classification system using group technology methods to identify family of parts for POD batch production.
- D. <u>CAD/CAM Development</u> Develop CAD/CAM prototype systems to design and manufacture a variety of parts based on application requirements.
- E. <u>Smart Material Handling</u> Develop improved material handling system and warehousing procedures for loading/unloading, transportation, bin picking, part recognition and orientation, random access capabilities. Assess manufacturing and warehousing applications of advanced sensor technology, guided vehicle and robot control requirements and feedback mechanisms to determine impact of material handling on quality of part produced.
- F. <u>Advanced Robotic Hardware</u> Develop multipurpose manipulators, end effectors, and industrial robots. Incremental improvement if parameters and reduction lf limits (strength, precision and speed) need to be addressed and integration with computer control and sensor/vision technology.
- G. <u>Advanced NC&Robotic Programming</u> Develop off-line programming for NC machines and robots. Flexibility of reprogramming amd real time control key research areas.
- H. <u>Machining Fixtures</u> Determine machining fixture and workholding requirements for POD system based on critical mating surfaces, holding parts to assure proper alignment, accommodating lead in and torque requirements

of equipment, and minimizing part damage due to shock, accleration and finishing blemishes. Programmable jigs and fixtures for multipurpose machining operations and programmable parts feeder are key research areas for development.

- Intelligent Sensor Systems The applications of intelligent sensor techno-I. logy to POD systems has as its goal system/sensor through the coupling of vision, tactile, acoustic, proximity or other sensors with computers to allow decision making based on external data rather than preprogrammed directions. A key research area is the development of a tool control, tool changing and replacement system based on the ability to self-diagnose problems. A sophisticated adaptive control system and related tool monitoring capability will be largely dependent upon developing appropriate sensors. Reliable tool wear sensors and diagnostic devices will be developed to predict failure just before it occurs rather than identifying a component that has failed. Troubleshooting procedures will use sensory data, perhaps embedded in fixtures, to determine the source of difficulty. The system can then self-compensate or self-adjust by calling for appropriate off-line information.
- J. <u>Computer-Aided Process Planning (CAPP)</u> Develop distributed process planning system based on database and network requirements. Design/
   emulation of production processing using graphic tools for workstation selection, sequence, program operations, and selection of raw material blanks, tools and holders, end effectors/grippers, probes, and lubricants. Integrate production function with inventory, transfer and inspection requirements. A key goal is to reduce unproductive machine time setup.
- K. <u>Planning and Control Systems</u> Develop software needed for prototype systems. Among the algorithms needed are routines for scheduling resources; coordinating and sequencing the machining and support processes; collecting, analyzing and diagnosing internal events; storing and distributing programs; and providing interface with higher level computers.

A hierarchial control concept will be used to reduce complexity and allow errors to be resolved and decisions made at the lowest possible level while retaining control at the highest level needed. In ascending order, these controls will handle the equipment, the workstation, the cell, the shop and the facility.

- L. <u>Machining Centers</u> Develop machining centers for six basic areas of metal cutting: boring, gearcutting and finishing, grinding and polishing, lathing and turning, milling, and advanced metalcutting technologies. Develop optimum centers capable of variable functions to minimize number of machines on the plant floor. Interchangeable tooling and transfer systems will be tested to determine optimum design flexibility within a machining center and between machining centers to reduce part handling and transfer time. Nontraditional cutting processes will be integrated into the system to help reduce manufacturing costs and improve workpiece quality. These include laser beam machining, electrical discharge machining and plasma arc machining.
- M. <u>Machining Systems for complex and Large Parts</u> Develop POD system capability to handle larger and more complex parts. POD capability will progressively be tested to fabricate plane surfaces, cylindrical parts, prismatic and double curved surfaces, and contour parts. System requirements for larger parts must also be determined and evaluated.
- N. <u>On-Line In-Process Inspection Systems</u> An integrated POD inspection system must have the equipment to perform a number of duties that are planned, in-process, and trimed operations. Specifically it will be used to maintain quality control by measuring the part in relation to its design specifications. Inspections are made on incoming parts and raw materials, in-process parts, and finished products. Testing measures the function and performance of the product, critical for military end items. Both contact and noncontact inspection which can speed the process in a POD system by

avoiding the need to reposition the part and eleminate wear on mechanical probes (such as programmed coordinate measuring machines-CMM). Inprocess inspection points will be determined by a parts program coupled with actual shop experience and feedback. The amount of inspection needed will be based on continuous inspection results stored in memory.

- O. <u>Technology Demonstrations</u> Organizations with in place facilities will be used to test the capability of existing, off-the-shelf state-of-the-art technology to produce low volume parts on demand. The processes used will be documented and analyzed to provide data requirements and economic feasibility as well as a determination of the R&D needed to push the technology to low volume manufacturing for POD. NBS has already tested the capability of existing equipment to produce an oil flinger. Future demonstrations are planned at other facilities on additional and more complex parts.
- P. <u>Economic Demonstrations</u> Based on results from early technology demonstrations, and R&D successes in enabling technologies such as process planning, sensor systems, programmable robotic systems, etc., economic demonstrations are planned. These will put POD production systems in an industrial setting and will be used to test operational effectiveness and economics of systems designed to produce parts on demand. In addition, they will be part of the POD technology transfer plan to stimulate handson-experience and training in new technologies for Navy suppliers of spare parts.
- Q. <u>Full Deployment</u> Deployment decisions will be based on the results of earlier demonstrations and R&D project successes. Location options include shipyards, forward areas and ships where tool shop facilities can be upgraded.

E STAR

- 6. <u>ANTICIPATED IMPROVEMENTS</u>: The benefits and payoffs from developing a parts-on-demand system can be significant.
  - Improved and more responsive logistics and support.
  - Reduced production, procurement and inventory costs for spares and parts.
  - Inventories kept to a minimum.
  - Availability of critical parts assured.
  - Stimulation of manufacturing modernization in the industrial base.
- 7. ORGANIZATION RESPONSIBLE FOR IMPLEMENTATION: Project Sponsor OP-04, Project Managers NAVMAT-064 and NAVSUP-033.
- 8. <u>R&D POINT OF CONTACT</u>: Dr. Robert Elwood, NAVSUP 033B.
- 9. <u>FUNDING PROFILE</u>: (attached) Specific task profiles and funding is included as Attachment A which provides details on the five program elements.
- 10. <u>BENEFITS DATA</u>: Commercial flexible manufacturing system results and initial POD demonstrations at NBS have shown a 50% reduction in production time for machine parts. It is projected that fully operational POD systems can reduce long lead times by about 33%, can reduce inventory costs by 10%, can reduce annual procurement expenditures by 15%, and can help assure part availability when needed.

## 11. RELATED EFFORT AND REFERENCES:

- Navy Computer-Integrated Manufacturing (NAVCIM) which is dedicated to the production of small machinable parts and is being built around the core of the NBS Automated Manufacturing Research Facility.
- Air Force Integrated Computer-Aided Manufacturing (ICAM) Program in which initial emphasis has been on sheetmetal fabrication and assembly.

- Material Handling Research Corporation, Georgia Tech and Industry consortium for reasearch in material handling.
- Mantec funding for generic manufacturing/processing methods sponsored by OP987.
- ONR and NSF sponsored research programs in percision engineering and automated manufacturing.
- Machine tool association and industrial R&D focused mostly on hardware development.
- NASA Integrated Program for Aerospace Vehicle Design.
- 12 PROJECT STATUS: Ongoing
- 13. PRIORITY:

ţ

ł

9. FUNDING PROFILE (\$K)

!

ł

Ì

•

1

## MACHINING OF MECHANICAL PARTS

|                                      | 84    | 85    | 86    | 87    | 88                                                                                              | 89    | 06   |
|--------------------------------------|-------|-------|-------|-------|-------------------------------------------------------------------------------------------------|-------|------|
| 6.2                                  |       |       |       |       | 1<br> <br> |       |      |
| MINIMUM DATABASE REQUIREMENTS        | 250K  | 200K  | 100K  |       |                                                                                                 |       |      |
| PARTS SPECIFICATTION STANDARD        | 250K  | 250K  | 150K  |       |                                                                                                 |       |      |
| 6.3                                  |       |       |       |       |                                                                                                 |       |      |
| GROUP TECHNOLOGY CLASS.              | 500K  | 300K  | 600K  | 500K  | 300K                                                                                            |       |      |
| CAD/CAM DEVELOPMENT                  | 800K  | 800K  | 1500K | 1000K | 1400K                                                                                           |       |      |
| SMART MATERIAL HANDLING              | 200K  | 200K  | 100K  | 800K  | 400K                                                                                            |       |      |
| ADVANCED ROBOTIC HARDWARE            |       | 500K  | 800K  | HOOK  |                                                                                                 |       |      |
| ADVANCED NC & ROBOTIC<br>PROGRAMMING |       | 300K  | 800K  | 1000K | 800K                                                                                            | 500K  |      |
| MACHINING FIXTURES                   | 300K  | 300K  | 500K  | 150K  |                                                                                                 |       |      |
| INTELLIGENT SENSOR SYSTEMS           |       | 300K  | 800K  | 800K  | 800K                                                                                            | 800K  |      |
| COMPUTER-AIDED PROCESS PLANNING      | 1500K | 1500K | 1500K | 1500K | 1500K                                                                                           | 1500K |      |
| 6.4                                  | -     |       |       |       |                                                                                                 |       |      |
| PLANNING AND CONTROL SYSTEMS         |       | 500K  | 700K  | 400K  |                                                                                                 |       |      |
| MACHINING CENTERS                    |       |       | 500K  | 800K  | 800K                                                                                            | 500K  | 300K |

-

CP/2K2

 ł

÷

1

1

ŧ

## 9. FUNDING PROFILE (CONTINUED)

## MACHINING OF MECHANICAL PARTS

|                                                  | 84   | 85    | 86    | 87    | 88    |       | 06    |
|--------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| MACHINING SYSTEMS FOR COMPLEX<br>AND LARGE PARTS |      |       | 150K  | 500K  | 800K  | 800K  | 500K  |
| ON-LINE IN-PROCESS INSPECTION                    |      |       |       | 500K  | 800K  | 800K  | SOOK  |
| 7.8                                              |      |       |       |       |       |       |       |
| TECHNOLOGY DEMONSTRATIONS                        | 800K | 800K  | 1500K | 1500K | 800K  |       |       |
| ECONOMIC DEMONSTRATIONS                          | 200K | 1000K | 4000K | 6000K | 2000K |       |       |
| FULL DEPLOYMENT                                  |      |       |       |       | 5000K | 5000K | 5000K |

CP/2K3

EN - - - - -

## NAVY LOGISTICS R&D PROJECT

- 1. TECHNOLOGY AREA: Automated Spare Parts Manufacturing/Repair
- 2. <u>PROJECT TITLE</u>: Parts on Demand (POD): <u>Program Element 3</u>-Automated Assembly of Parts on Demand

3. <u>NEED ADDRESSED/PROBLEM/SHORTFALL</u>: This project is part of the overall Parts on Demand program, which addresses the logistics problems of cost and production lead time in the Navy/DOD. Additional items being addressed are costs associated with the \$7 billion Navy inventory, production of critical items falling within the NMCS/PMCS categories, obsolescence of parts, and diminishing sources of supply.

Within the overall context of producing parts-on-demand, certain goals have been established. These include a reduction in procurement lead times from the current average of 600 days to an average of 400 days and the ability to control costs both in new procurements and inventory. The POD program addresses the basic production areas of forming, machining, fabrication, and assembly. This specific project addresses the area of assembly. Automated assembly techniques are currently under development within commercial industry. Normally these techniques involve batch production of relatively large numbers. The Parts on Demand program is considering batch production to as low as one or two parts. In this project the R&D efforts needed to handle assembly down to batches of one or two will be carried out.

- 4. <u>OTHER SERVICE OR GOVERNMENT APPLICATION</u>: All military departments and other government agencies.
- 5. <u>TECHNICAL APPROACH</u>: Assembly of equipment can be broken into those with electronic, electrical, or mechanical components. In most cases, relatively precise handling and assembly of a variety of parts is needed. Industry has been moving towards the use of precision robots which can be reprogrammed readily

from a preexisting data base, which provides the information necessary for warehouse retrieval, kitting, assembly and testing for a given part. The usual conveyors, automated storage and retrieval, sensors for providing necessary feedback, robots, inspection stations, testing stations, and overall computer control are also required. In some cases, namely production of circuit card assemblies, (sometimes called printed wiring board assemblies) the state-of-theart for very small batch production is accelerating. Several facilities already exist or are under development which have the ability to fabricate a broad range of assemblies using the technologies mentioned above. Some early work is being done in the assembly of mechanical systems including disk drives, printers, and the like. What is needed at this stage is to bring together the technology which already exists and some further development of other technologies to make assembly in small batches a reality.

The basic elements in the Parts on Demand assembly project consist of the following:

- A. Establish data requirements necessary for a Navy/DoD Parts on Demand facility
- B. Establish interface standards by which the various (equipment manufacturers and the equipment) can communicate with each other.
- C. Develop generative process planning and computer-aided process planning methods which will allow a centralized computer to determine the routing and equipment necessary for assembly of a family of parts.
- D. Determine the classes of parts that can readily fit into Parts on Demand facilities.
- E. Develop of CAD/CAM systems and software to facilitate the design of parts which may allow for more efficient manufacturability, assembly and improved product maintainability and reliability. Journe work is already

going on at several universities and in industry looking at the question of redesign of assemblies to reduce the parts count and to make each of these parts substantially simpler for automated manufacturing.

- F. Develop and standardize high level control commands for assembly robots
- G. Develop techniques for off-line programming and program verification of machines and robots needed in the assembly task.
- H. Development of advanced sensory systems which can provide the needed feedback for a machine such as a robot to perform its function efficiently and quickly. This is especially important in a Parts on Demand facility where little time can be allocated to teaching a robot or machine its task since it may only see that part once or twice. The advanced sensor system will also be required for rapid and efficient inspection of completed subassemblies and assemblies.
- I. The final inspection needs to be handled in an automated fashion. Computer-aided testing (CAT) developed in conjunction with the CAD/CAM programs can provide more efficient and well defined testing programs.
- J. Because batches of as few as one or two may be produced in the Parts on Demand facility, warehousing, automated storage and retrieval, buffer storage and, work holding are important issues to be addressed in terms of flexibility and rapid response.
- K. In order to handle the fine degree of precision needed for assembly it will be necessary to develop robot metrology, adaptive control, special grippers, sensors and other hardware.

Early demonstrations of the current technologies need to be funded. Concurrent with these early demonstrations should be the research and development (R&D) necessary to improve upon the technology and to make

the facilities efficient and cost effective. As experience is gained in the demonstrations further R&D will be defined. This R&D should be funded and the results fed back to the facility for further improvement.

- 6. <u>ANTICIPATED IMPROVEMENTS</u>: Experience has shown that automated assembly techniques can substantially reduce the manufacturing time by approximately 35%, while greatly increasing the yield and improving the reliability of the assembled parts. Substantial cost reduction has not yet been experienced. However, even at the same manufacturing cost, the ability to produce parts in substantially shorter periods of time with increased yields and reliability represents major savings to the Navy/DoD. The facilities and techniques developed under this project will allow the overall Parts on Demand program, including forming, machining, processing, and assembly, to achieve the goal established.
- 7. ORGANIZATION RESPONSIBLE FOR IMPLEMENTATION: Project Sponsor OP-04, Project Managers NAVSUP-033 and NAVMAT 064.
- 8. POINT OF CONTACT: Dr. Robert Elwood, NAVSUP 033B
- 9. FUNDING PLAN: See attached.
- <u>BENEFITS DATA</u>: Manufacturing production time as demonstrated by POD prototype systems and commercial FMS systems can be improved by more than 50%. In addition POD systems can reduce long lead times by 33%, inventory costs by 10%, and annual procurement expenditures by 15%.
- 11. <u>RELATED EFFORTS AND REFERENCES</u>: There are two projects within the Department of Defense which impact strongly upon circuit card assembly. Recently IBM was awarded a contract through China Lake with NAVMAT funds for the automated assembly of circuit card assemblies. In this project bare boards and components enter the plant and completed tested assemblies leave the plant.

In the other project, funded by the Air Force, Westinghouse has already built a facility in College Station, Texas, for small batches of circuit card assemblies using automated techniques. This facility utilizes a centralized MRP system, a computer-oriented process planning system, stored data bases for all of the circuit card assemblies to be fabricated, automated inspection and testing, and robotics for kitting and stuffing of components. It is anticipated that in the first year of operation, the Westinghouse College Station facility will be able to fabricate over 350 different circuit card assemblies which have the necessary data stored in the computers.

- 12. PROJECT STATUS: Ongoing
- 13. PRIORITY:

9. FUNDING PROFILE

ALC: NOT

## ASSEMBLY OF MECHANICAL AND ELECTROMECHANICAL PARTS

|                                   | tı 8         | 85    | 86           | 87            | 88    | 89             | 06            |
|-----------------------------------|--------------|-------|--------------|---------------|-------|----------------|---------------|
| 6.2                               |              |       |              |               |       |                |               |
| DATA BASE REQUIREMENTS            |              | 200K  | 100K         | 100K          |       |                |               |
| STANDARDS DEVELOPMENT             |              | 300K  | 300K         | 100K          |       |                |               |
| 6.3                               |              |       |              |               |       |                |               |
| CAD/CAM MANUFACTURABILITY         |              | 300K  | 500K         | 500 <b>K</b>  | 400K  |                |               |
| CENTRAL TOOL CONTROL              |              | 100K  | 500 <b>K</b> | 800K          | 400K  |                |               |
| HIGH LEVEL CONTROL LANGUAGE       | 1000K        |       |              |               |       |                |               |
| OFF-LINE PROGRAMMING              | 800K         | 800K  | 800K         | 800K          | 800K  | 800K           |               |
| CAT INTEGRATION WITH DATA<br>BASE |              | 500K  | 500K         | 500 <b>K</b>  | 200K  |                |               |
| INTELLIGENT SENSORS               | 200K         | 350K  | 500 <b>K</b> | 500 <b>K</b>  | 250K  |                |               |
| INTEGRATED WAREHOUSING            |              | 500K  | 100K         | 800K          | 400K  |                |               |
| FLEXIBLE WORKHOLDING              | 20 <b>0K</b> | 200K  | HOOK         | 600K          | HOOK  |                |               |
| ADVANCED ROBOTIC HARDWARE         |              | 200K  | 500 <b>K</b> | 500K          | 250K  |                |               |
| 6.4                               |              |       |              |               |       |                |               |
| ASSEMBLY SYSTEMS INTEGRATION      |              |       |              | 50 <b>0K</b>  | 1500K | 1 00 <b>0K</b> | 500K          |
| 7.8                               |              |       |              |               |       |                |               |
| TECHNOLOGY DEMONSTRATIONS         | 500 <b>K</b> | 1500K | 1500K        | 1500K         | 1000K |                |               |
| ECONOMIC DEMONSTRATIONS           |              |       | 11000K       | 600 <b>0K</b> | 2000K |                |               |
| FULL DEPLOYMENT                   |              |       |              |               | 5000K | 5000 <b>K</b>  | 5000 <b>K</b> |

CP/2K4

اند ا

### NAVY LOGISTICS R&D PROJECT

- 1. TECHNOLOGY AREA: Automated Spare Parts Manufacturing/Repair
- 2. <u>PROJECT TITLE</u>: Parts on Demand (POD): <u>Program Element 4</u>-Advanced Technology Development for Forming to Near Net Shape
- 3. <u>NEED ADDRESSED/PROBLEM/SHORTFALL</u>: This project is part of the overall Navy Parts on Demand program, which will allow the Navy to obtain spare parts at reasonable costs and in substantially less time than currently experienced.

Currently the Navy has approximately \$7 billion in inventory including insurance items which must be available in the event of an emergency. Approximately 85% of the insurance items are never used. Current average lead time for Navy spare parts procurement is over 600 days. This long lead time is principally caused by manufacturing lead time (2/3 of the problem). Advanced manufacturing technology using data driven systems could substantially shorten the time needed for production of spare parts. Production areas includes forming, machining, processing, and assembling. Machine time needed for production of mechanical parts could be greatly reduced if the piece to be machined had a form which was close to the shape of the final product. Labor, machine time, and raw materials would all be saved.

- 4. <u>OTHER SERVICE OR GOVERNMENT APPLICATION</u>: The techniques to be developed here will be broadly applicable to all service needs and other government agencies. The Navy has been assigned responsibility to coordinate tri-service effort in low volume automated manufacturing of Parts on Demand.
- 5. <u>TECHNICAL APPROACH</u>: Near net shape techniques have been applied in industry for some time. These include use of powder metals in dies with hot isostatic presses, rotary hammer forging (both hot and cold), investment casting, and hammer forging. Other techniques such as laser sculpting and implosion techniques are not yet in use but are currently under development. Each of the

technologies mentioned above have their own advantages and disadvantages when viewed from a Parts on Demand facility in which very small batches (as low as one or two) are to be manufactured. The research and development projects described below are intended to apply the technologies to this small batch production mode. The advantages and disadvantages in R&D to be done for each of the technologies are shown in the table below.

ł

| Technology                                                    | Advantages                                                                                                      | Disadvantages                                                       | Research and<br>Development for<br>Parts on Demand                                         |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Powder Metallurgy                                             | <ul> <li>More durable</li> <li>Unique materials<br/>Stronger</li> <li>No storage of<br/>stock shapes</li> </ul> | <ul> <li>Expensive dies</li> <li>Needs special press</li> </ul>     | • Develop<br>Programmable<br>die CAD/CAM<br>for die design                                 |
| Hot and Cold<br>Hammer<br>forging                             | <ul> <li>NC machine</li> <li>Material saved</li> <li>Reduced machining</li> <li>Stronger</li> </ul>             | <ul> <li>Shapes limited<br/>to axially sym-<br/>metrical</li> </ul> | • Application to<br>small batch pro-<br>duction. Inves-<br>tigate inner<br>surface forming |
| Investment Casting                                            | <ul> <li>Can produce</li> <li>odd shapes</li> </ul>                                                             | <ul> <li>Expensive dies</li> <li>Long lead times</li> </ul>         | <ul> <li>CAD/CAM for<br/>die design</li> <li>Develop flexible<br/>dies</li> </ul>          |
| Advanced Techniques,<br>Laser Sculpting,<br>Implosion forming | • Cheap<br>• Flexible                                                                                           | • Limited Application                                               | <ul> <li>Develop basic<br/>methods</li> </ul>                                              |

There are several supporting efforts needed so that the techniques can be successfully applied in Parts on Demand facilities. These are as follows.

• For each technology an appropriate set of parts which can be formed needs to be selected. These parts should fit within families, therefore allowing a much broader range of part numbers to be produced.

HL3/D-2

- An overall facility concept needs to be developed. For example, should the facility contain only one of the technologies or should it be a multi-functional facility?
- Part specifications, including shapes and size can be generated using CAD/CAM to generate both the designs and the tapes which would be used in producing the dies.
- Expert systems for materials substitution will be needed.
- Methods need to be developed which will select the appropriate forming technique.

Initially the program should utilize existing centers of excellence for each of the technologies to demonstrate capabilities currently available and how they can be adapted to the parts-on-demand concept. These same centers of excellence would then define further research and development needed to push the technology to smaller batches. Concurrently, research and development projects which are evidently needed, such as programmable dies for powder metal, should be funded and the technology developed fed into the demonstration facility. These demonstrations should concentrate on the production of Navy/DoD parts currently in the inventory. Ultimately as the R&D progresses and the facilities for forming to near-net-shape become better defined, economic demonstrations need to be carried out. Most likely these should be done in conjunction with advanced Parts on Demand machining and assembly facilities.

- 6. <u>ANTICIPATED IMPROVEMENTS</u>: The benefits and payoffs from developing a parts-on-demand system can be significant based on improved and more responsive logistics support and reduced production, procurement, and inventory costs.
- 7. ORGANIZATION RESPONSIBLE FOR IMPLEMENTATION: Project Sponsor OP-04 and Project Managers MAT-064 and SUP-033.

HL3/D-3

### 8. <u>R&D POINT OF CONTACT</u>: Dr. Robert Elwood, NAVSUP 033B

### 9. FUNDING PROFILE: See Attached

- 10. <u>BENEFITS DATA</u>: Commercial results have shown that savings on materials using advanced forming techniques can be as much as 50%. Furthermore, reductions in labor hours for machining can be significantly greater than 50%, and the time reductions for fabrication of a part can be 75% or greater. These savings will produce an overall savings in labor and machine costs and could result in net savings of floor space of as much as 25%. Production lead time may be shortened by up to 75%.
- 11. <u>RELATED EFFORTS AND REFERENCES</u>: To our knowledge no other work is currently on going in which the aforementioned technology is being developed for small batch production with a special Navy/DoD significance.
- 12. PROJECT STATUS: Ongoing
- 13. PRIORITY:

9. FUNDING PROFILE (\$)

.

\$

٠

۱

4

NEAR NET SHAPE PRODUCTION

|                               | 118 | 85     | 86    | 87    | 88    | 89    | 06    |
|-------------------------------|-----|--------|-------|-------|-------|-------|-------|
| 6.2                           |     |        |       |       |       |       |       |
| MATERIAL SUBSTITUTION         |     |        | HOOK  | BOOK  | 400K  |       |       |
| GROUP TECHNOLOGY              |     | 300K   | 500K  | 500K  | 500K  | BOOK  |       |
| ROTARY FORGING APPLICATIONS   |     |        | MOOK  | HOOK  | 200K  |       |       |
| 6.3                           |     |        |       |       |       |       |       |
| CAD/CAM & DIE DESIGN          |     | 300K   | HOOK  | 600K  | 400K  |       |       |
| POWDER METALS/FLEXIBLE DIES   |     | 500K   | 1000K | 1000K | 800K  | 600K  | HOOK  |
| ADVANCED LASER FORMING        |     |        | 50K   | HOOK  | 800K  | 800K  | 600K  |
| INVESTMENT CASTING            |     |        | 200K  | 600K  | XOOt  |       |       |
| 6.4                           |     |        |       |       |       |       |       |
| INTEGRATED SYSTEMS            |     |        | 300K  | 600K  | 600K  | NOOK  |       |
| ON-LINE IN-PROCESS INSPECTION |     |        | 300K  | 500K  | 500K  | 500K  |       |
| 7.8                           |     |        |       |       |       |       |       |
| TECHNOLOGY DEMONSTRATIONS     |     | \$400K | 800K  | 1200K | 1200K | 80 OK | HOOK  |
| ECONOMIC DEMONSTRATIONS       |     |        |       | 3000K | 6000K | HOOOK | 4000K |
| Full Deployment               |     |        |       |       | 5000K | 5000K | 5000K |

.

### NAVY LOGISTICS R&D PROJECT

- 1. TECHNOLOGY AREA: Automated Spare Parts Manufacturing/Repair
- 2. <u>PROJECT TITLE</u>: Parts on Demand (POD): <u>Program Element 5</u>-Integrated Circuit Manufacturing for Parts on Demand
- 3. <u>NEED ADDRESSED/PROBLEM/SHORTFALL</u>: Rapid advances in integrated circuit technology have left most Navy parts several generations behind mainstream commercial ICs. The military no longer dominates the IC market; it now buys only about 5% of the dollar value of the U.S. market. The capital intensity and competitiveness of IC manufacturing force manufacturers to discard older, low volume, small profit technologies, so many Navy systems face spares and replacement parts shortages and complete production stoppages for their critical electronic parts years before the systems are due to be phased out.

The problem is exacerbated by inadequate or lack of information on many parts: the circuit design itself, the semiconductor technology, in what assembly or systems it is used, or even who made it. Many ICs are bought through prime contractors from 3rd or 4th tier vendors, and many vendors refuse to hand over detailed circuit information for fear of competition.

The near term alternatives and solutions include:

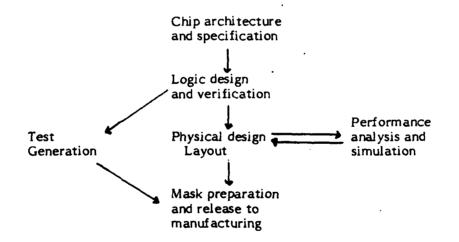
- Buy out
- Emulation/Redesign of IC
- Subsystem Redesign
- Alternative Sources
- Waiver for a similar commercial IC
- Cannabalize
- Foreign Sources

CP5/D-1

大いちょう ちょうちょう シー・・・

Buy out expenditures are approaching \$100 million per year for the DoD, not including holding costs for the large inventory created by buyouts. Often there is little warning for an intelligent estimate of future needs before production halts. Buy outs also encourage future production halts, since the vendor knowr the military must have the parts, and one last large production run is much better for the vendor than small runs spread over years. On the other hand the part will be readily available, provided the buy out was large enough.

Waivers and substitutions often result in operating idiosyncrasies and less reliable or non-operating systems. Cannibalizing reduces force strength, although many good ICs are thrown away because of the expense of finding the good parts on a bad circuit card. Foreign sources would be undesirable in a surge or mobilization period. The Part on Demand Program plans to alleviate shortages by developing the other three alternatives--emulation, redesign, and alternative sources--for both a short term demonstration and a long term solution.


Because of the high design costs, short technological lifetime and expensive processing and testing equipment needed, IC manufacturers have relied on high volume production of each design for their profits. Production equipment is designed either for high throughput of a few designs or for expensive research and development work. To reduce design costs for increasingly complex ICs, the major semiconductor companies have developed computer-aided design tools, some of which are now used for new military designs. Highly capable CAD systems and extensive data bases, both for technical information on old designs and appropriate manufacturing data for new designs and redesigns, will be needed for POD IC facilities, in addition to good technical personnel.

Maintaining acceptable manufacturing yields is difficult when processing numerous small volume runs. Packaging, testing, and quality assurance are timeconsuming and expensive for small batch production.

diam'r ar

Redesign options are numerous thanks to very large scale integration and the various design methodologies and semiconductor technologies. Compatibility with the rest of the system and design time and expense are important considerations. Redesigning with greater integration can reduce the number of possible applications, decreasing production volumes and thus increasing unit cost. On the other hand, assembly time and expense are reduced, performance and reliability are greatly increased, and future availability problems for those IC's are eliminated. Emulation, redesigning to duplicate the characteristics of the original IC, can take advantage of higher volume IC manufacturing economies. This approach does not require information on the other components on the circuit card, which greater integration would require, but which might not be available.

The integrated circuit design process can be broadly partitioned and diagramed as follows:



If a new IC is to replace exactly an existing IC or PWBA, the logic design has already been verified and test vectors generated. Several logic simulation programs are available, one of the more popular being SPICE, developed at the University of California at Berkeley. Test generation is one of the least automated and most time consuming steps in the process. For complex chips the

number of test vectors needed to find a high percentage of the possible faults can be in the hundreds or thousands.

In the 1970's microprocessors and standard ICs were assembled and programmed for specific applications, but the high cost of software, coupled with declining hardware prices and increased design automation, has accelerated the growth of semicustom logic chips. Logic synthesis, like software, is still the burden of the design engineer, but synthesis should not be needed for most replacement parts since a logic diagram or a functional description should be available. Otherwise reverse engineering or logic synthesis may be necessary, either of which would be relatively easy for SSI chips but time consuming for more complex ones.

IC layout, the process of translating a description of an IC into a photolithographic mask for fabrication, is being automated with four basic methods:

- Standard cell, a large library of predefined small logic elements or cells is stored in the layout system. The designer tells the system which cells are needed and the connections between them, and the system then positions the cells and routes the wiring.
- Gate Array. A prefabricated chip contains hundreds or thousands of identical logic cells, such as NAND gates arranged in rows with wiring channels between rows. The designer specifies the logic functions the chip is to perform, and the system selects the cells needed and routes the wiring.
- Programmed logic array (PLA). The chip or subchip contains two arrays of NAND and NOR gates that in series perform Boolean logic operations. The designer supplies general logic equations and the system selects the signals to be included in the arrays to implement the equations.
- Standard floor plan or silicon compiler. The system generates the mask plots from the basic chip architecture or floor plan and a high level

functional description. The only floor plans used currently are versions of microprocessors. Silicon compilers are aiming for the best of two worlds: the density, flexibility and performance of full custom chips and the low cost and fast turnaround of semicustom chips. Although their commercial use is just beginning, their future seems assured. Low level compilers offer to an extent the design flexibility needed for emulating the characteristics of existing parts. Gate arrays and standard cells libraries have considerably less flexibility but faster turnaround.

An advantage of human over automated techniques is the ability to select different strategies in different situations. A good match between problem and strategy yields an efficient implementation. Standard cell layout, for example, does well on shift registers, PLA layout produces excellent control circuits, and standard floor-plan layout yields efficient processor circuits. A bad match, on the other hand, yields a messy implementation that may require extensive human intervention to complete, or one that cannot be completed at all. Some semiconductor manufacturers, such as RCA, are now experimenting with hybrid layout systems that incorporate two or more layout strategies.

Microprocessors have been the most popular way of customizing logic since the early 1970's, with over 400 types now available. Software (stored in memory) performs the necessary functions, while the architecture and microcode instruction set determine how the microprocessor will run the software programs. Microcode is usually contained in a small area of permanent memory on the microprocessor chip, but it can be on a separate chip, as with NCR's new 32-bit microprocessor. One microprocessor design can be used in many different applications, thus reducing production and design costs and time, because software determines its functions and mirocode its performance. New microprocessors are faster than older, larger computers, but the microcode can slow it down. An electrically programmable read only memory could store the microcode and allow the rest of the microprocessor to be prefabricated in high volume. Problems with microprocesors include software development and finding one or two generic enough and fast enough to cover the wide range of applications, if possible.

CP5/D-5

ŀ

Ş

A Practical IC POD system will first choose the best alternative and course of action on a case by case basis. Actions may include timely and sufficient purchase from the vanishing source, systematic salvage from obsolete or damaged equipment, or finally manufacturing new parts in a POD facility or other new source. The last option has several possible avenues (gate arrays, standard cells, programmable chips, full custom design), of which the best must be found and followed.

This decision-making will require both considerable knowledge of and experience in electronics and the industry, and also much information on the device itself, its uses, its inventory size and turnover, and its planned life.

In the short term the decisions will be made by a central planning and engineering group using information on ICs brought to their attention. Versatile CAD and CAT systems will allow them to design, modify, or devise progams for replacement chips, which will be manufactured by silicon foundries or the original vendors and rerouted to the central group for testing and certification before delivery to the ICP.

For an effective long term implementation, the central group should have a database containing the required specifications and acess to inventory information for all ICs which are POD candidates, so decisions can be made in advqance and solutions prepared. Additions to existing parts inventory control programs are needed to provide an early warning of impending depletion of any devices. Changes in future part procurement will be needed to get needed specifications.

A special DoD-only manufacturing facility will provide a quick, readily-available, and stable small batch production source for those parts which can be manufactured. It will be scheduled by the central group and well integrated with their design systems. Participation by a major semiconductor manufacturer and/or research university will help solve production problems and provide the high level of knowledge needed for choosing the right solution and executing it properly. 4. <u>OTHER SERVICE OR GOVERNMENT APPLICATIONS</u>: The IC diminishing sources of supply problem is common to all three services. Technology transfer to military contractors will improve the industrial base and reduce initial procurement costs and lead times. The Navy has been assigned responsibility to coordinate tri-service efforts in low-volume, automated manufacturing of partson-demand. The POD redesign systems can both borrow from and contribute to existent DoD design systems for new parts.

### 5. TECHNICAL APPROACH:

### Concept Development

A. Key Enabling Technologies Assessment.

The major redesign alternatives--gate array, standard cell, silicon compiler, full custom, and microprocessor programming--must be evaluated for replacing obsolete parts. This requires information on what type of circuits are or will soon be out of production and knowledge of available design systems, including those still being developed. A permanent technical center must be established for evaluating each case and deciding on the best solution, be it buyout, cannabalization, or one of the redesign methods.

### B. Baseline System Configuration

Production and testing processes and equipment must be chosen for flexible small batch integrated manufacturing. Equipment and interface deficiencies must be identified.

### C. Manufacturing/Redesign Database Requirements

Based on 1. and 2., database requirements must be defined for POD IC fabrication and testing. The amount of technical data needed is extensive--some will have to be procured and much will have to be generated in the redesign

process. Current databases will be evaluated and technical data requirements defined for future parts and data procurements. Expert systems for generating complete and correct technical data from available information should be assessed and developed if necessary.

### Engineering Development

D. Gate Array Fixed Geometries and Layout System.

Based on the concept development, appropriate gate array fixed geometries must be chosen or developed and an automated layout system adapted to them and integrated with the database and production facility.

E. Standard Cell Library and Layout

Based on the concept development, an appropriate standard cell library (or libraries) must be chosen and procured or developed, and an automated layout system adapted to it and integrated with the database and production facility.

F. Silicon Compilers and Custom Design System

Based on the technology assessment, a silicon compiler turnkey system should be purchased if appropriate or a new one developed. A versatile and highly automated full custom design system will be needed for redesigning specialized IC's, and it must also be integrated with the database and production facility.

G. Microprocessor Programming

Based on the concept development, appropriate microprocessors should be chosen and programming systems developed which can modify their instruction sets to change their characteristics and can develop software for the logic application.

### H. Test Generation and Self Testing

Automated or computer-aided test generation systems must be chosen or developed and integrated with the design systems, the database and the IC test equipment. On-chip self-testing circuitry should be evaluated and incorporated into the design systems where appropriate.

### I. IC Validation Procedures

Thermal cycling, burn-in, shock tests and other validation procedures must be developed for very small batches and quick turnaround.

### J. Central Process Control

IC processing and testing equipment should be integrated for central process control and access to the manufacturing database. Central control reduces the number of people in the clean rooms, in addition to facilitating flexible processing. Artificial intelligence and process feedback should be developed for improved control and process planning.

### K. Automated Wafer Handling

Automated Wafer Handling systems, incorporating robotics, should be developed to increase yields by reducing human contact.

### L. Flexible Automated Chip Packaging

Highly automated chip bonding, wire bonding, tape bonding and hermetic sealing should be developed to handle small numbers of many types of chips and packages (DIPs, chip carriers, flat packs). Vision sensor systems integrated with the database will be needed for automated wire bonding.

### M. VSHIC Developments

New developments in military integrated circuits, such as the unfinished standard hardware description language from the VSHIC program, should be evaluated and incorporated in the POD facility if appropriate.

N. Facility Demonstration

The conceptual and engineering cevelopments listed above must be integrated into a Parts-on-Demand facility for an early demonstration. The design and database system can be demonstrated before the production facilities are finished using commercial silicon foundries or Navy R&D facilities.

- 6. <u>ANTICIPATED IMPROVEMENTS</u>: The benefits and payoffs from developing a parts-on-demand IC manufacturing system can be significant: improved and more responsive logistics support and reduced production, procurements and inventory costs for spares and parts. Fully operational POD systems can impact long leadtimes by about 33%.
- 7. ORGANIZATION RESPONSIBLE FOR IMPLEMENTATION: Navy
- 8. <u>R&D POINT OF CONTACT</u>: Dr. Robert Elwood, NAVSUP 033B
- 9. FUNDING PLAN: See Attached
- <u>BENEFITS DATA</u>: Manufacturing production time as demonstrated by POD prototype systems and commercial FMS systems can be improved by more than 50%. In addition POD systems can reduce long lead times by 33%, inventory costs by 10%, and annual procurement expenditures by 15%.
- 11. <u>RELATED EFFORTS AND REFERENCES</u>: The U.S. Army's Electronics Computer Aided Manufacturing program seeks to improve batch manufacturing

productivity for military electronics by developing modular systems and techniques, and a future factory architecture, for technology transfer to contractors. These factory elements and procedures are now entering the development stage.

U.S. Army's ERADCOM funded RCA to develop efficient automated layout systems for gate arrays and programmable logic arrays. These projects have been completed.

NAVAIR is also developing solutions to the IC obsolescence problem at the Naval Avionics Center.

### 12. PROJECT STATUS: Ongoing.

13. PRIORITY:

CP5/D-10

9. FUNDING PROFILE (\$)

1

1

ŝ

1

# MANUFACTURING OF INTEGRATED CIRCUITS

|                              | 84           | 85           | 86            | 87           | 88     | 89      | ÛÓ |
|------------------------------|--------------|--------------|---------------|--------------|--------|---------|----|
| 6.2<br>TECHNOLOCY ASSESSMENT | ACC 14       | AVUC         | Aooc          | AUUC         | 2001   | 1 E O W |    |
| I ECHNOLOGI ASSESSMENT       | Vonce        | 2005         |               | NUU2         | NUDI   | NUCI    |    |
| SYSTEM CONFIGURATION         | 50 <b>0K</b> | 300 <b>K</b> | 200K          | 200 <b>K</b> | 95K    | 50K     |    |
| DATABASE REQUIREMENTS        | 200K         | 1 0 0 K      |               |              |        |         |    |
| 6.3                          |              |              |               |              |        |         |    |
| REDESIGN SYSTEMS             |              | 1000K        | 150 <b>0K</b> | 2000K        | 800K   | 500K    |    |
| MICROPROCESSOR PROGRAMMING   |              | 500 <b>K</b> | 500K          | 300 <b>K</b> | 200K   |         |    |
| TEST GENERATION              |              | 300K         | 200K          | 200K         | 200K   |         |    |
| VALIDATION PROCEDURES        |              |              | 400K          | 200 <b>K</b> |        |         |    |
| CENTRAL PROCESS CONTROL      |              |              | 100K          | 600 <b>K</b> | 300K   |         |    |
| AUTOMATED WAFER HANDLING     |              |              | 200K          | 400K         | 200K   |         |    |
| AUTOMATED CHIP PACKAGING     |              | 200 <b>K</b> | 1400K         | 200 <b>K</b> |        |         |    |
| VSHIC DEVELOPMENTS           | •            |              | 100K          | 100K         | 100K   | 100K    |    |
| 7.8                          |              |              |               |              |        |         |    |
| TECHNOLOGY DEMONSTRATIONS    |              | 800K         | 800K          | 1000K        | 1 000K |         | -  |
| ECONOMIC DEMONSTRATIONS      |              |              |               | 4000K        | 6000K  | 2000K   |    |
| FULL DEPLOYMENT              |              |              |               |              | 5000K  | 5000K   |    |

CP/2K6

White Paper

### CP5/E8

۶

### WHITE PAPER INVESTMENT STRATEGY FOR INTEGRATED CIRCUITS DIMINISHING SOURCES OF SUPPLY

7 OCTOBER 1983

Prepared for:

David Sherin NAVSUP 033

Prepared by:

Science Applications, Inc. (SAI) 1710 Goodridge Drive P.O. Box 1303 McLean, Virginia 22102 (703) 821-4438

### TABLE OF CONTENTS

| Section    | <u>.</u>                                                                                                | Page                       |
|------------|---------------------------------------------------------------------------------------------------------|----------------------------|
|            | EXECUTIVE SUMMARY                                                                                       | i                          |
| 1          |                                                                                                         | 1                          |
|            | <ul><li>A. Background</li><li>B. Purpose</li><li>C. Objective</li></ul>                                 | 1                          |
| 2          | PROBLEM SCOPE                                                                                           | 2                          |
|            | A. Issues                                                                                               | 2                          |
|            | <ol> <li>Rapid Technological Advances</li></ol>                                                         | 3<br>3<br>3<br>4<br>5<br>5 |
| 3          | APPROACH                                                                                                |                            |
|            | <ul> <li>A. Recommendations</li> <li>B. Funding Profile</li> <li>C. Payoff</li> <li>D. Risks</li> </ul> | .12                        |
| Appendix A | ALTERNATIVES: THEIR STRENGTHS AND WEAKNESSES                                                            | A-1                        |
| Appendix B | DETAILED LISTING OF PROPOSED INITIATIVES                                                                | B-1                        |

### LIST OF FIGURES

### Figure

14

ŧ

1

í

1

1

1

### 

Page

### EXECUTIVE SUMMARY

The purpose of this document is to provide an investment strategy for solving the problems of diminished sources of Integrated Circuit (IC) supply. This strategy provides for the creation of replacement chips through the use of a Partson-Demand (POD) system. The replacement items will provide ICs for weapon systems support over the near term and therefore, increase weapon system readiness.

The primary findings are that technological advances in solid-state electronics and economies of scale have made current suppliers sensitive to the commercial marketplace rather than to the needs of the military. As a result, thousands of ICs have been taken out of production and are no longer being sold. This has had a severe negative impact on weapon system readiness, costs, and funding requirements. To focus our resources for a solution to this problem, the Department of Defense has given lead responsibility for the POD program to the Navy. The Navy has delegated syscom responsibility to NAVSUP. The benefits derived will accrue to all the military services.

This paper recommends the evolutionary development of a Parts-on-Demand system which will solve the near term and long range problem of having replacement ICs available where and more importantly when needed. In addition, the POD system cost savings will more than pay for itself. It is our recommendation that the strategy be funded and authorization be given to NAVSUP for implementation.

i

### AN INVESTMENT STRATEGY INTEGRATED CIRCUITS DIMINISHING SOURCES OF SUPPLY

### 1. INTRODUCTION

### A. Background

DoD, SECDEF, SECNAV, OPNAV, and NAVMAT directives provide policy and guidelines for new systems development, acquisition, and support, and for ongoing support of existing systems not scheduled for replacement. However, little or no guidance is given for the orderly phase-out of major systems, nor for support of such systems as their population decreases. This lack of policy/guidance often results in curtailment of support long before a system is totally removed from operational use with the following consequences:

- Support funding is reduced or not programmed
- Manufacturing of unique parts/components ceases
- Support documentation is often not maintained

Inventories are inadequately controlled

A policy for the logistics support of digital electronic systems should base continuous support on the flexible manufacture of substitute integrated circuits. Rapid technological advancements in integrated circuits have had a major impact on weapon system design and deployment. New weapon systems have increased performance capabilities but are also usually more complex. This generally results in increased complexity, cost, and procurement lead times, especially for the digital logic. Increased complexity means longer repair times and greater costs. The sum effect of all these conditions is to complicate the support process and to lower weapon systems readiness. Readiness goals, weapon system availability must be increased for the Navy, Marines, Army and Air Force. DOD in recognizing the generic effects of this problem has asigned the lead service role to the Navy. The Chief of Naval Material designated the Naval Supply Systems Command (NAVSUP) as the Lead Systems Command. NAVSUP will assure that the POD program benefits accrue to all the military services. NAVSUP will also see that technology transfer is made to industry.

### B. Purpose

The purpose of this document is to provide an investment strategy for solving the problem IC Diminished Sources of supply. This document will describe the policies, procedures, and responsibilities applicable to support both old and new electronic systems with a component system that will replace existing IC parts on a form, fit, and function basis.

### C. Objective

The investment strategy for solution of IC diminishing sources of supply provides for the creation of replacement chips and/or modules, in a timely manner, to be used in the repair of electronic systems deployed throughout the DoD. The proposed solution uses a mixture of advanced "soft" design/fabrication procedures to create modern replacements in a timely and effective manner. The replacement items will be form, fit and function compatible with the original equipment. This should result in the rapid availability of replacement parts/modules with which to ensure adequate support to operational electronic systems.

### 2. PROBLEM SCOPE

### A. Issues

1. <u>Rapid Technological Advances</u> are bringing new processes into the market at a nearly exponential rate. In just over 40 years, we have gone from:

- Tubes
- Transistors
- Small Scale Integration (SSI)
- Medium Scale Integration (MSI)
- Large Scale Integration (LSI)
- Very Large Scale Integrated Circuits (VLSI)
- Very High Speed Integrated Circuits (VHSIC)
- Josephson Junctions (JJs)
- Something else tomorrow?

VHSIC allows circuit features of one micron (millionth part of a meter) or less to be utilized in the design of system level chips containing as many as a hundred thousand transistors. Josephson Junctions operate at temperatures near absolute zero. The above technologies are not yet on line, but may have great future value.

2. <u>Military Specifications and Regulatory Controls</u> were and are inadequate to deal with managing the selection, approval and support of ICs, and has resulted in inadequate documentation of: (1) the technology used, (2) from whom it was purchased, (3) in what assembly it is used, (4) in what system the assembly was used, and (5) in what platform the assembly is found.

3. <u>The IC Market</u> is highly competitive, capital intensive and is responsive to high payoff technological advances which demands the discarding of older technologies.

4. <u>The Window of Introduction to Obsolescence for IC Tech-</u> nology has a Relatively Short Life Cycle in comparison to the weapons systems acquisition cycle and subsequent estimated life cycle. The technology cycle from introduction, growth, maturity, saturation and decline spans, on the average, 5-10 years. Decline and phase out can take a few months or a few years.

5. <u>Fourth Tier Subcontractors</u> often manufacturer IC's for a prime contractor responsible for final product delivery.

### B. Discussion

The IC industry is bringing new processes and products into being at a nearly exponential rate. Many ICs become obsolete almost before their full potential is exploited. In 1980 alone, IC manufacturers announced they were ceasing production of at least 3,000 generic parts, some of which were sole source. The effect of this rapid, uncontrolled obsolescence is the wide spread, unscheduled reduction in readiness of many military systems and equipments, particularly aircraft.

The Navy first became aware of this undesirable aspect of technology a few years ago. ICs have been used in electronic equipment because of their benefits such as smaller size, lower power, increased packing density, greater reliability and circuit sophistication. But in the mid-1970s, competition in the integrated circuit business and the capital-intensive nature of manufacturing led the manufacturers to discontinue the least profitable items. The loss of these technologically obsolete parts affected very few Navy equipments. The Navy treated these early product losses as normal occurrences, and generally provided a quick means of working around the problems, such as the redesign of a circuit card, or substitution of another IC with similar characteristics, even though the latter approach sometimes generated secondary operational idiosyncracies. On rare occasions, a complete system redesign was required, merely because one or several simple microcircuits were no longer available.

i.

Today, IC obsolescence has become a real threat to all services' readiness as numerous IC manufacturers announce production cessation of many different products and sometimes of entire technology lines and associated production capabilities. The DoD share in the integrated circuit market place has dwindled to approximately five percent, and therefore, finds itself with little influence in keeping the appropriate production lines alive. Indeed, many IC manufacturers, when requested by the services for detailed characteristics of their circuit design, have responded negatively because they did not wish to reveal details in their highly competitive market. The result of this situation is that numerous equipment developed in the 1970s and becoming operational in the 1980s utilize large numbers of ICs that may have no qualified commercial source for future maintenance or repair.

The alternatives to resolving the IC problem are varied and the priority of which alternative is the best approach is just as varied among DoD and Service components. Currently, the Defense Electronics Supply Center (DESC) (part of the Defense Logistic Agency (DLA)), the U.S. Army Missile Command (MICOM), the U.S. Air Force and the Naval Avionics Center are studying various alternative solutions and each has a different opinion on the best approach.

### C. Impacts

- Decreased weapon system readiness
  - Increased mean time to repair
  - Parts unavailability
  - Manufacturer depot repair/unique repair
  - Increased logistic line
  - Increased down time
  - Reduced safety margins (essential electronic/avionics systems)

1

- Increased costs
  - Increased logistic support lines
  - Part unavailability/remanufacture
  - Tailored provisioning (buy outs, level loading, etc.)
  - Specialized handling, storage and breakout/checkout procedures
  - Erratic vendor dependability to prime contractor by subtier suppliers
- Increase Funding Requirements
  - FY 81 LOT buyouts and level loading at \$40 million; FY 82, \$52 million; FY 83 to FY 85, \$227 million; and in FY 85, \$90-100 million
  - Early identification of specific IC obsolescence is essential to meet provisioning process - IC closeout varies from a few months to a few years. Manufacturer's notification gives minimal time to respond
  - Special handling and storage costs
  - Redesign costs
  - Emulation costs
  - Government Owned/Government Operated (GOGO) and Government Owned/Contractor Operated (GOCO) costs

### D. Alternatives

The following alternatives have been grouped into two categories near term and long term. In some cases, the near term solutions may be transitional to those of the long term as indicated by an asterisk. A summary comparison of each alternative's strengths and weaknesses is contained in Appendix A.

### Near Term

- Life of type buy outs:
  - By LOT
  - By level loading
- \*• Replacement of IC by a parts-on-demand (POD) system
  - Emulation of IC
    - -- New devices that can be memory programmable
    - New devices that can be mask programmable
    - Redesign/replace (form, fit, function)
    - Hybrid microcircuit (form, fit, function)
  - Subsystem redesign
  - Alternative source
  - Waiver
- Cannibalize
- Foreign sources

### Long Term

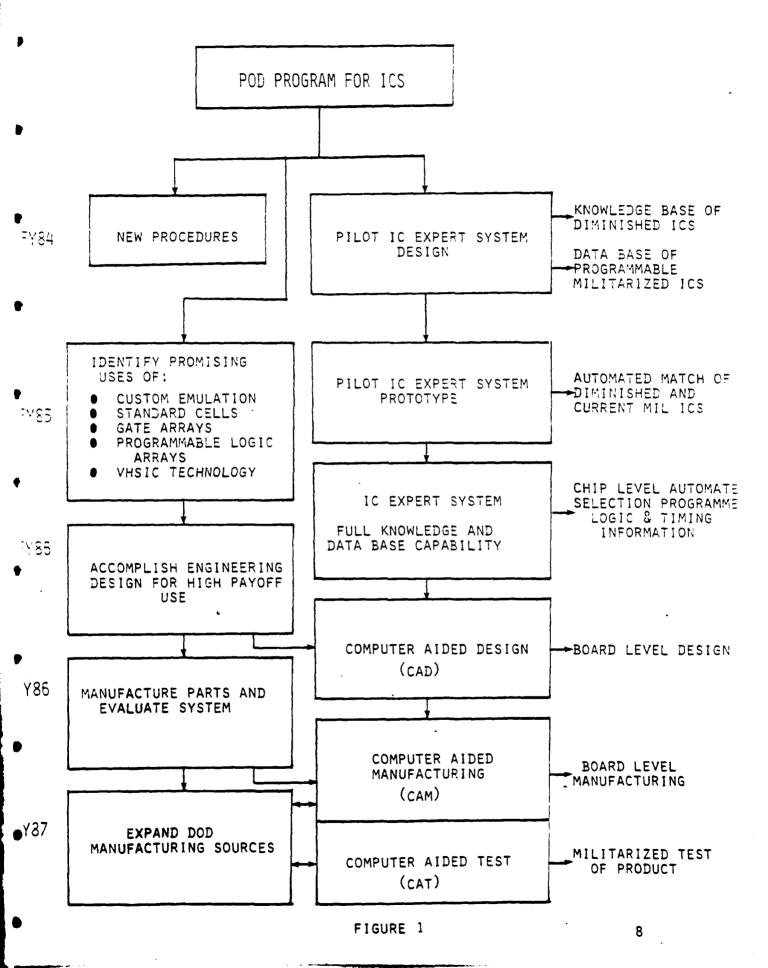
- Acquisition and procurement strategies
- Integrated policy and management initiatives
- Improve forecasting techniques/early identification and tracking
- Engineering
  - Design
  - Government owned/government operated
  - Government owned/contractor operated
  - Technical documentation quality assurance
- Provisioning specifications
- Configuration management
  - MIL-STD-2096 (AS)
  - Weapon systems file
  - Automation

- Interface specification
  - USAF MIL-STD-1553B

### 3. APPROACH

### A. Recommendations

1. Immediate solutions are available through the near term alternatives, although some are not highly desirable. Each must be considered on its own merit in terms of risk and cost versus readiness factors. The long term alternatives provide for a more permanent solution(s) to the IC problem and require more time to implement. The POD alternatives have merit for transition to the more permanent solution(s). POD is being recommended for the production of replacement integrated circuits. POD promises to yield the following benefits:


• Increased weapon system readiness

- Lower mean-time-to-repair
- Increased parts availability
- Shorter parts support line
- Increased safety margins
- Increase surge capability of lower tier manufacturers
- Decreased costs

Lower stock levels

- Lower holding times
- More competition
- Manufacturing options Govt./ 3rd, 4th tier manufacturers
- Greater dependability of supply

2. The POD solution will follow a phased program schedule, yielding intermediate benefits and building upon the successful completion of each phase. The initial thrust will follow a two pronged approach (see Figure 1). We recommend that procedures be developed (see Figure 2) to stem the flow of diminished ICs and at the same time a pilot expert system (see Figure 3) should be



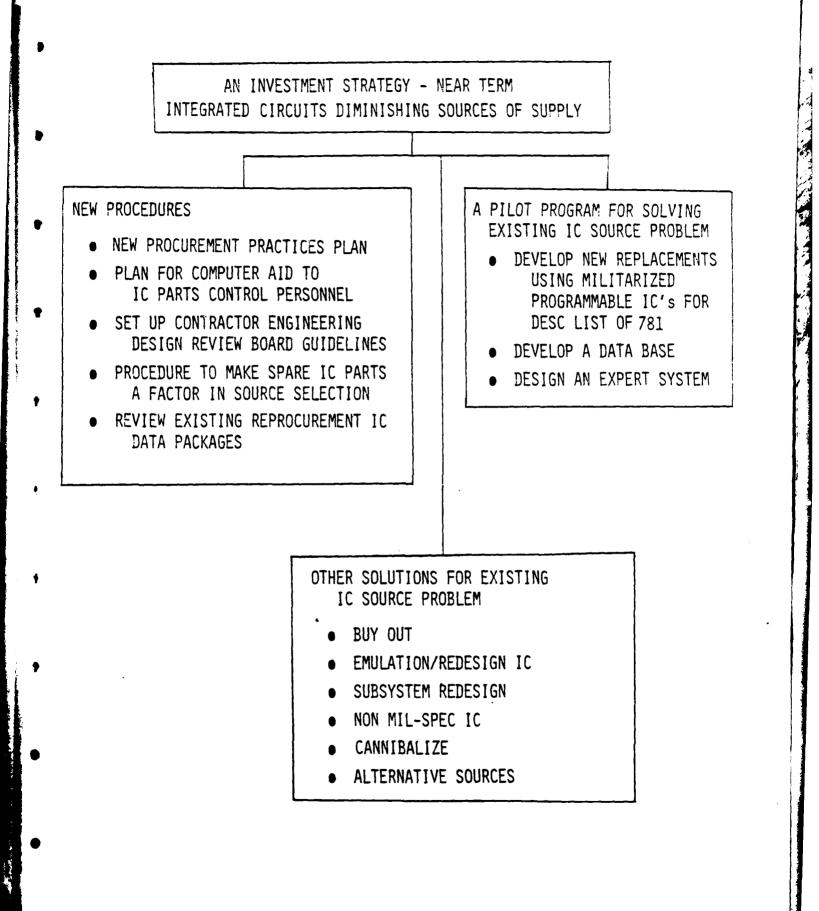
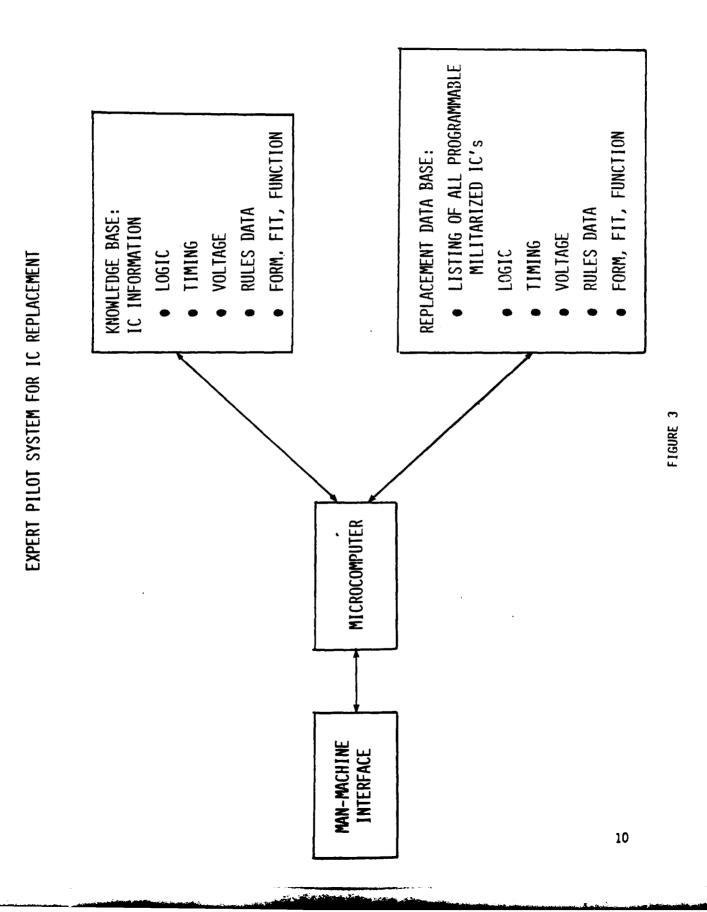




FIGURE 2



designed and built to solve the replacement problem for the existing number of diminished ICs. This pilot would then be expanded to include a knowledge base for all ICs used in DoD equipments. If the pilot expert system proves not to be cost effective then it can be terminated. We then continue POD through evaluation and possible implementation of systems using:

- Custom emulation
- Standard cells
- Gate arrays
- Programmable Logic Arrays
- VHSIC Technology

3. An IC POD system will choose the best alternative and course of action on a case by case basis. Actions may include timely and sufficient purchase from the vanishing source, systematic salvage from obsolete or damaged equipment, or finally, manufacturing new parts in a POD facility or other new source. The last option has several possible avenues (gate arrays, standard cells, programmable chips, full custom design), of which the best approach must be found and followed.

This decision-making will require both considerable knowledge and experience in electronics and the IC industry. Much information is required on the device itself, its uses, its inventory size and turnover, and its planned life.

In the near term, the decisions will be made by a planning and engineering group using information on ICs collected and tabulated. Versatile CAD and CAT systems will allow them to design, modify, or devise programs for replacement chips, which will be manufactured by silicon foundries or the original vendors and routed for testing and certification before delivery.

For an effective long term implementation, we must have a data base containing the required specifications and access to inventory information for all ICs which are POD candidates. Decisions then can be made in advance and solutions evaluated. Additions to existing parts inventory control programs are needed to provide an early warning of impending depletion of any

devices. Changes in future part procurement practices will be needed to get the required technical data information.

A special DoD-owned manufacturing facility will provide a quick, readily-available, and stable small batch production source for those parts which can be manufactured. It will be scheduled by the contract operator of the facility who can be a small business.

| <b>B.</b> | Funding | Profile ( | (0 <b>00'</b> s) |
|-----------|---------|-----------|------------------|
|           |         |           |                  |

|         | <u>FY 84</u> | FY 85    | <u>FY 86</u> | <u>FY 87</u> | FY 88    | <u>FY 89</u>      | Total              |
|---------|--------------|----------|--------------|--------------|----------|-------------------|--------------------|
| 6.2     | \$ 880       | \$ 1,000 | \$ 1,400     | \$ 900       |          |                   | \$ 4,180           |
| 6.3     | 2,300        | 5,500    | 1,140        | 910          | \$ 950   | \$ 100            | \$10,900           |
| 6.4     |              |          | 11,500       | 16,500       |          |                   | \$28,000           |
| 6.5     |              |          |              | 85,000       | 11,500   | 1,500             | 98,000             |
| TOTALS: | \$ 3,180     | \$ 6,500 | \$14,040     | \$103,310    | \$12,450 | \$ 1 <b>,60</b> 0 | \$141 <b>,08</b> 0 |

### C. Payoff

William J. Lewis, staff specialist in the DoD EW Directorate publically predicted that spending for electronics content in U.S. defense hardware will rise from 40 percent (\$22.7 billion) in 1981 to 47 percent (\$106 billion) by 1991. The Navy currently purchases \$3.5 billion in all spares annually and maintains a \$10 billion inventory. Using the above electronics content forecast, we can assume that 40 percent of the 1991 inventory would be in electronics. Of this \$4 billion electronics inventory, we would expect a non-recurring savings of \$200 million and recurring savings of 5 percent of annual electronic purchases (\$1.4M) or \$70 million per year other payoffs are:

- Fast, cost effective, and accurate replacement of critical parts with diminished sources of supply and inadequate stock on hand
- Fewer overly expensive, wasteful buyouts

- Lower inventory size and holding costs
- Reduces chance of vendor extortionary production-stoppage threats by providing a possible new source of parts
- Groups can work on new IC designs or existing production during slack periods

### D. Risks

- Engineering must have access to accurate and extensive technical data on parts if it is to function efficiently or at all.
- One or more of the emulation methods and CAD tools may prove unnecessary.

# APPENDIX A

1

# ALTERNATIVES: THEIR STRENGTHS AND WEAKNESSES

. . . . . .

A-1

1

.

۶

k

\* Has long term alternative potential as possible solution or part of a solution.

## 

# NEAR-TERM ALTERNATIVE

Waiver

## Foreign Sources

Cannibalize

,

**A-**2

### STRENGTHS

Commercial off-shelf stock. Ready supply source. Cost effective. Storage and handling cost reduced.

Stopgap solution. Rotable pool of spares. Initial readiness maintained.

Alternate source. Reduced costs feasible. Quality product possible. Extension of supply stock.

## WEAKNESSES

•

Dilutes standards. Safety. Documentation Reliability. Technology obsolescence threat remains. Maintenance personnel training.

Safety. Declining readiness. Does not solve problem. Configuration control. Compliance and monitor with standards. Availability of accurate manufacturer's technical data Security. Technology obsolescence threat remains. Time required. Contracting and procurement.

Lack of manufacturer's technical Lack of accurate statistical data. Management and monitor. Management enforcement. Contracting and monitor. Which IC(s)? WEAKNESSES Engineering compliance. Professional recruiting. Technology forecasting. **Fri-service sensitivities.** Professional staffing. OMB Circular A-76. **Fime to establish.** Size of problem. Validation. data. Time. Time. Time. Cost. Cost. Cost. Time. Improve specifications and technical 5 Improved configuration management. and More accurate data for life of sys-More emphasis on configuration Recognition of IC issue as part of Technological forecast and economic Improved engineering management. Address design, engineering predicated Designing to meet technology. Continued production line. environment awareness. STRENGTHS Improved management. logistic constraints. Improved system life. strategic planning. tem requirements Better provisioning. not documentation. Centralized focus, Communications. management. Improved cost. Cost effective. Cost effective. Production Flexibility. volume. Acquisition and Procurement Strategies Integrated Policy and Management Improved Forecasting Techniques LONG-TERM ALTERNATIVE Engineering (Design) POD GOGO & GOCO Initiatives A-3

ひとうちん しょうきしんせい いろう

Y

# LONG-TERM ALTERNATIVE

**Provisioning Specifications** 

**Configuration Management** 

Interface Specifications

### STRENGTHS

Improved sparing. Improved procurement. Improved management. Improved management. Improved technical data. Improved configuration control. Improved tracking. Automation.

Improved logistics. Vendors certified. Permits technology insertion. Fosters continual competition. Emphasis on standard. Design stability. Management initiatives.

## WEAKNESSES

Time. Cost. Time. Size of problem. Accuracy of data. Cost. Level of specification. Industry responsiveness. Time. Enforcement/Waivers.

### APPENDIX B

### DETAILED LISTING OF PROPOSED INITIATIVES

a) Develop a NAVSUP procurement plan to induce desirable effective competitive procurement and improved pricing in the acquisition of IC spare parts.

ی بر

j,

### OBJECTIVE:

- 1. Obey 29 August 1983 SECDEF Memo
- 2. Allow competitive procurement of IC spare parts.
- 3. Define IC technical data package requirements.
- 4. Tie IC availability and cost over 10-20 year period to prime weapon system contract.

### **PROJECTED BENEFITS:**

- 1. Increased combat readiness
- 2. Defined reprocurement cost and delivery

### **ESTIMATED COST:**

\$100,000.00

### **ESTIMATED DELIVERY:**

b) Develop and implement plans for acquisition of computer hardware and software to assist IC parts control personnel.

### **OBJECTIVE:**

- 1. Provide more decision-making information to personnel.
- 2. Provide enlarged IC data base.
- 3. Provide a prioritized IC replacement guide.
- 4. Obey 29 August 1983 SECDEF Memorandum.
- 5. Develop procurement specifications.

### **PROJECTED BENEFITS:**

- 1. More rapid response by parts control personnel
- 2. Lower reprocurement costs
- 3. Increased combat readiness

### ESTIMATED COST:

\$200,000.00

### **ESTIMATED DELIVERY:**

c) Set up contractor engineering design review board and develop plans to review reprocurement IC technical data packages for adequacy.

### **OBJECTIVE:**

- 1. Meet 29 August 1983 SECDEF Memorandum.
- 2. Define contents of IC technical data packages.
- 3. Define IC design review procedures.
- 4. Define engineering requirements for reprocurement of IC's.
- 5. Analyze at least 100 IC line items for informational content.

### **PROJECTED BENEFITS:**

- 1. Superior technical data packages
- 2. Standardized engineering information
- 3. Greater flexibility in reprocurement

### ESTIMATED COST:

\$500,000.00

### **ESTIMATED DELIVERY:**

Develop a procedure to make Breakout of spare IC parts a factor in d) source selection for new major systems.

### **OBJECTIVE:**

- 1.
- Meet 29 August SECDEF Memorandum. Make IC availability the weapon system contractor responsibility. 2.
- 3. Have predictable cost and availability.
- 4. Tie IC spare parts to new weapon system procurements
- Draft guidelines and operational procedures. 5.

### **PROJECTED BENEFITS:**

- Increased MTBF 1.
- 2. 3. Increased combat readiness
- Upgrades importance of long-term logistical support

### ESTIMATED COST:

\$200,000.00

### **ESTIMATED DELIVERY:**

e) Convene special task forces to review existing Reprocurement Data Packages for IC spare parts with high annual cost/quantity values.

### **OBJECTIVE:**

- 1. Meet 29 August SECDEF Memorandum.
- 2. Develop standards for reprocurement packages.
- 3. Identify high annual cost/quantity integrated circuits.
- 4. Provide technical and procurement data for computer data base.
- 5. Survey current methods at NUSC, ASO, and SPCC.
- 6. Draft guidelines and operational procedures.

### **PROJECTED BENEFITS:**

- 1. Lower reprocurement costs
- 2. Increased availability of reprocurement IC's
- 3. Expand IC supplier base

### ESTIMATED COST:

\$280,000.00

### **ESTIMATED DELIVERY:**

 Identify the 781 ICs cited by DESC (Oct. 81) as diminished source of supply. List equipments and weapon systems affected. Define for each IC its logic, timing and voltage requirements. 

### OBJECTIVE:

- 1. Solve current real IC replacement problem.
- 2. Provide knowledge base for an Expert System.
- 3. Provide technical information for selection of replacement ICs.
- 4. Analyze functional use of IC's in equipment and replaceable assembly.

### **PROJECTED BENEFITS:**

- 1. Increased combat readiness
- 2. Lower replacement costs
- 3. Allow for future automatic replacement of obsolete IC's

### ESTIMATED COST:

\$400,000.00

### **ESTIMATED DELIVERY:**

g) Compile a data base listing all currently available militarized programmable devices offered. Identify their logic, timing and voltage factors.

### OBJECTIVE:

- 1. Provide a data base of militarized programmable ICs and their characteristics.
- 2. Provide an Expert System data base.
- 3. Provide a guide for future design usage.

### PROJECTED BENEFITS:

- 1. Lower design costs
- 2. Lower replacement costs
- 3. Firmware replacement ICs for obsolete digital logic elements

~

### **ESTIMATED COST:**

\$500,000.00

### **ESTIMATED DELIVERY:**

h) Design an Expert System to optimize the cross match of dimished ICs with off-the-shelf programmable devices.

~

ŧ

1

### OBJECTIVE:

- 1. Automated selection and programming of replacement ICs
- 2. Multiple choice of reprocurement items
- 3. Source of IC design data

### **PROJECTED BENEFITS:**

- 1. Increased combat readiness
- 2. Lower reprocurement costs

### ESTIMATED COST:

\$1,000,000.00

### **ESTIMATED DELIVERY:**

Investigate custom emulation systems (such as Boeings) to determine i) effectiveness for replacing selected diminished ICs.

### **OBJECTIVE:**

0

- Determine feasibility of custom emulation. 1.
- 2. Plug-to-Plug compatible IC replacement
- Increase industry participation in finding solution to diminished sources. Replace any IC of same technology, i.e., Bipolar or MOS or GaAs. 3.

~

4.

### **PROJECTED BENEFITS:**

- Increased customer IC emulation capability 1.
- 2. Minimum change in documentation
- 3. Rapid MTTR in field
- 4. Extended life of equipment/weapon system

### **ESTIMATED COST:**

\$1,000,000.00

### **ESTIMATED DELIVERY:**

j) Investigate the use of Standard Cells, Gate Arrays and Programmable Logic Arrays to determine their effectiveness for replacing the 781 diminished ICs.

### OBJECTIVE:

- 1. Use CAD to layout metal gate layer of gate arrays.
- 2. Use firmware to interconnect PLA.
- 3. Configure standard cells to replace out-of-production IC's
- 4. Provide a source of replacement chips.

### **PROJECTED BENEFITS:**

- 1. Have MIL-STD-883B replacement items for reprocured ICs
- 2. Equal or increased performance characteristics
- 3. Rapid MITR in field
- 4. Extended life of equipment/weapon system

### ESTIMATED COST:

\$1,000,000.00

### **ESTIMATED DELIVERY:**

k) Study the impact of the VHSIC program and its manufacturing fallout to determine its impact on solving the diminished source of IC problem.

### **OBJECTIVE:**

- 1. Make use of speed/power advantages of VHSIC chips.
- 2. Evaluate current sample VHSIC circuits for use as replacement ICs.
- 3. Specify VHSIC applications as reprocurement parts.
- 4. Replacement of board level logic circuits
- 5. Standardization of design rules
- 6. Recommend new standard configurations and designs to replace high annual buy/quantity ICs

### **PROJECTED BENEFITS:**

- 1. Broader range of replacement possibilities
- 2. Lower power, higher speed, premium performance likely
- 3. Greater reliability
- 4. Less susceptibility to radiation-nuclear EMP
- 5. Lower initial and replacement cost

### **ESTIMATED COST:**

\$1,000,000.00

### ESTIMATED DELIVERY:

1) Identify all ICs used by the U.S. Navy. List smallest replaceable assembly, equipment and weapon systems affected. Define for each IC its logic, timing, voltage, design rules, and form, fit, function.

### **OBJECTIVE:**

- 1. Provide a catalog of all current ICs.
- 2. Provide a knowledge base for an expanded Expert System.
- 3. Provide a means to select and standardize on ICs.

### **PROJECTED BENEFITS:**

- 1. Lower initial design costs
- 2. Lower reprocurement costs
- 3. Lower inventory costs
- 4. Increase combat readiness

### **ESTIMATED COST:**

\$2,000,000.00

### **ESTIMATED DELIVERY:**

m) Implement an engineering prototype Expert System to facilitate selection of replacement circuits for diminished sources of supply.

### OBJECTIVE:

- 1. Solve diminished source problems.
- 2. Reduce buyout dollars spent.
- 3. Reduce IC turnaround time.
- 4. Determine number of "matchs" between 781 diminished source ICs and available programmable militarized integrated circuits.

### PROJECTED BENEFITS:

- 1. Lower initial spare part costs
- 2. Increased combat readiness
- 3. Lower holding costs

### ESTIMATED COST:

\$1,500,000.00

### ESTIMATED DELIVERY:

n) Logistics and Engineering Workstations for IC options.

### **OBJECTIVE:**

1. Provide Naval logistics scientists with at-the desk-access to mainframe computers.

2. Evaluate the resulting productivity impact.

### **PROJECTED BENEFITS:**

- 1. Enhanced productivity of logisticians and engineers by 15-20%.
- 2. Low cost access to computers
- 3. Establish systems and procedures for use of the work stations

### ESTIMATED COST:

FY 86 - \$1,500,000.00 FY 87 - \$1,500,000.00 FY 88 - \$1,500,000.00 FY 89 - \$1,500,000.00

Total: \$6,000,000.00

### **ESTIMATED DELIVERY:**

FY 87 ---- FY 89

o) Artificial intelligence (AI) software for spare electronic part reprocurement.

### **OBJECTIVE:**

1. To evaluate artificial intelligence software for application to electronic engineering trade-off tasks

### **PROJECTED BENEFITS:**

- 1. Identified cost-effective use of AI in data management, simulations/ modeling, analysis and data acquisition and control
- 2. Reduced operational costs of engineering tasks
- 3. Enhanced productivity of scientific and engineering personnel by 15-20%.

### **ESTIMATED COST:**

| FY 86 - \$400,000.00 | Total: \$800,000.00 |
|----------------------|---------------------|
| FY 87 - \$400,000.00 |                     |

### **ESTIMATED DELIVERY:**

**.**.........

p) Configuration management of electronic systems.

### **OBJECTIVE:**

1. To test and document various procedures required to support the electronic logistics network.

### **PROJECTED BENEFITS:**

. ·

- 1. Improved tracking of electronic equipment hardware, software and documents
- 2. Establishment of procedures for back-up and recovery of local procurement data

### ESTIMATED COST:

### **ESTIMATED DELIVERY:**

FY 88 ----- FY 89

q) Computer-aided-instruction (CAI) for training.

### **OBJECTIVE:**

1. To determine how CAI can be used to train government and contractor personnel in the use of expert systems, workstations, knowledge bases, and other components of the spare parts reprocurement system.

### **PROJECTED BENEFITS:**

- Enhanced productivity of government and contractor personnel 1.
- 2. 3. Improvement of CAI packages
- Development of CAI standards
- 4. Feedback on improvements for the logistics support system

### **ESTIMATED COST:**

| FY 87 - \$750,000.00 | Total: \$1,500,000.00 |
|----------------------|-----------------------|
| FY 88 - \$750,000.00 |                       |

### **ESTIMATED DELIVERY:**

- r) Establish an engineering and implementation group to select emulation methods.
  - Layout gate arrays
  - Program logic arrays
  - Design custom emulation chips
  - Select and modify standard cells

### **OBJECTIVE:**

- 1. Provide mask-data or masks to appropriate foundry.
- 2. Provide cost and time estimates to supply agencies.
- 3. Choose best emulation method from list above.
- 4. Use existing government wafer processing foundries.

### **PROJECTED BENEFITS:**

- 1. Minimum turn-around time in foundries
- 2. Evaluation of quality at time of mask design
- 3. Accuracy of logic, timing and voltage data

### ESTIMATED COST:

FY 86 - \$1,000,000.00 FY 87 - \$500,000.00

Total: \$1,500,000.00

### **ESTIMATED DELIVERY:**

s) Evaluate capability for small run production at IC foundries throughout the United States.

### OBJECTIVE:

- 1. Establish working relationships with existing foundries.
- 2. Assist small business foundries to qualify in producing small lots of militarized ICs.
- 3. Ascertain quality and turn-around time of supplies.
- 4. Establish procurement procedures for wafer runs.

### **PROJECTED BENEFITS:**

- 1. Establish a network of suppliers
- 2. Increase competition lower costs

### ESTIMATED COST:

FY 86 - \$1,000,000.00

### **ESTIMATED DELIVERY:**

- t) Set up DoD dedicated manufacturing facilities. Thiss could entail:
  - Cost sharing with industry
  - GOGO At NAC, NBS, etc
  - GOCO with possible small business management
  - Subsidiaries to ensure military priority and capability

### **OBJECTIVE:**

- 1. Ensure rapid, cost effective, and accurate replacement manufacturing source for government used ICs.
- 2. Provide for knowledge dissemination to small business.

### **PROJECTED BENEFITS:**

- 1. Lower inventory size and holding costs
- 2. Increased IC spare part availability
- 3. Greater surge capability

### ESTIMATED COST:

- FY 87 \$25M non-recurring for each of two technologies projected.
  - Total non-recurring \$50,000,000.00
  - Operating subsidy per year \$5,000,000.00

### **ESTIMATED DELIVERY:**

FY 87 -----> FY 88

u) Establish a CAD, CAM and CAT facility for production of discrete integrated circuits and board level assemblies.

### OBJECTIVE:

- 1. Establish a Navy owned POD facility at NOSC, NAC, a NAFEC or other location.
- 2. Provide the Navy with independent means of supporting logistic support to the rapidly rising electronic content in weapon systems.

### **PROJECTED BENEFITS:**

- 1. Ready, available support facility
- 2. Increased combat readiness
- 3. Facility available for new product concepts and classified activities

### ESTIMATED COST:

- FY 86 \$10,000,000.00 (CAD)
- FY 87 \$40,000,000.00 (CAM)
- FY 87 FY 88 } \$20,000,000.00 (CAT)
- Total \$70,000,000.00

### **ESTIMATED DELIVERY:**

FY 86 ----> FY 88