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Overall Introduction

The goal of the task described in this report is to establish the basis for an
advanced fault-tolerant onboard computer that will be the successor to the current

generation of fault-tolerant computers.(e.g., SIFT [1] and FTMP [21). Particular

features envisioned for this new computer include the following:

9 Support for the processing of application programs written in a modern pro-
gramming language, e.g. Ada

* Minimal burden on the programmer to prepare programs for the fault-tolerant
computer

* Flexible, dynamic scheduler

9 To the extent possible, an executive that can be easily ported among different

processors types

e Immunity to transient faults the number of which might exceed the voting

margin

* Immunity to massive transient faults, i.e., that might drive processors to a state

from which they cannot proceed without the assistance of other processors

* Extendability significantly beyond that provided by SIFT



Overall Introduction

e Compatibility with the envisioned electronics system of the aircraft of the
future, i.e., a large number of sensors and actuators each with its own micro-

processor, and the possibility of replacing a given function that can no longer

be processed by one or more backup functions.

Towards this goal we are working on the following technical problems:

a. The architecture of a network-based fault-tolerant system - Chapter 1

b. The diagnosis of transient faults from error reports - Chapter 2

e. The use of Ada as the language for the executives of the computer and the
application programs - Chapter 4

d. A new paradigm (an extension of the conventional voting paradigm) for

comparing the values produced by replicated processors,- Chapter 5

On (a), we have identified a preliminary architecture as the basis for the
research. The architecture consists of clusters interconnected by a network.
Each cluster, which is logically associated with a sensor, an actuator, or a site

of computation, would itself be redundant; the cluster could even be a SIFT
computer whose processors are microprocessors. Different from the intracluster

interconnection structure, the network that links the clusters would not be star-
connected. Instead each cluster could be connected to only a few other clusters

(perhaps 3). If each cluster is a SIFT (say composed of 5 processors), then the
link between a pair of connected clusters could consist of 5 connections - between
corresponding processors in the cluster pair. With this structure, conventional
voting could be used to mask errors arising in the transmission of data between

directly connected clusters. We have investigated the reliability of such a system,
assuming that overall system failure occurs if any cluster exhausts its redundancy
or if enough processors fail in any cluster pair such that voted communication

between these clusters cannot take place.

We have also studied the problem of finding optimal network graphs. The

objective here is to minimize the number of hops required for the transmission
of data between any two clusters. This problem appears to be that finding low

-2-

Nkmo.



Overall Introduction

diameter graphs assuming a constraint on the fan-out for each node.

For topic (b), the problems are that the error report itself provides no direct

information about the transient or solid nature of the fault that generated it. Such
information must be deduced from the pattern and frequency of error reports.
We have devised algorithms to extend those of the SIFT system, particularly to
analyse interprocessor link failures, to discriminate between solid and transient
faults, and to recognise solid faults with a low rate of error generation.

On (c), we have identified the potential advantages arising from the use
of Ada. Besides the gain in portability, it is likely that the executive can be
appreciably simpler than a comparable executive written in other languages (e.g.,
Pascal or Assembly Code) since the Ada runtime system itself provides some of the
basic functions of the executive: scheduling, process synchronization, and memory
allocation. The key problems we have been working on are (a) the identification of
that data of the application programs that has to be voted on, (b) how to inform

the executive when a vote is to take place, and (c) the identification of those

points in the program where the amount of voted information is minimized. In
the worst case, the amount of data to be voted on can be substantial, including:

global variables, local variables, stack frames, multiprocess substructure when
a task is composed of interacting subtasks, and the heap that is accessible to
these subtasks. A further comlplication arises when the voted data has to include
rendezvous information. Here interactive consistency must be used to ensure that
all replicas synchronize with the same subtasks. However, the amount of data

is drastically reduced by doing voting when the state of the program does not
include values of the global variables, when there are not temporary variables,
and when a task has no active subordinate tasks.

The assumption underlying (d) is that it might be advantageous to relax the
principal concept underlying SIFT (and all voter-based fault-tolerant systems)
that all replicas of a task get identical inputs and are expected to produce identi-
cal outputs. By relaxing this requirement it would be possible for the replicas to
run at different times, thus allowing the system to be less vulnerable to correlated
transient faults. If the different replicas of a task produce different values, conven-
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Overall Introduction

tional voting does not work. The voting function is replaced with a filter function
that, similar to the conventional vote function, takes as inputs the values from
the various replicas. We have started to investigate properties for this filter func-

tion. It appears that extensions of our clock synchronization algorithm [31 (after
elimination of grossly out-of-range values, the median of the remaining values is
the clock value to be synchronized to) will work for reasonably well-behaved func-
tions. When the inputs are binary values, the function can be simpler. We do not
yet have a solution when the task function does not satisfy reasonable continuity

conditions.

The more theoretical aspects of this research have been supported by this
contract and are reported here. Support for the more practical development of
these novel architectures is being sought from NASA Langley Research Center.

-4-



Chapter I

NETS: Network Error-Tolerant System

Introduction

Our purpose in this research is to design and assess a fault-tolerant system

that could be the successor to the SIFT and FTMP class of computers. Although

both SIFT and FTMP provide a reliability in the presence of permanent and

transient hardware failures that far exceeds what is obtainable with conventional

unreplicated computers, there remain deficiencies that appear to be inherent to

the underlying architectural concepts. Among the deficiencies are:

e Limited capability for expansion beyond approximately 8 processors

* Limited capability to accommodate different processor types, including special
purpose processors

* No immunity to transient faults that temporarily disable several processors

The basic problems with SIFT and FTMP are that, although they are mul-
ticomputers providing reliability through redundancy, fault-masking and logical

removal of faulty processors, they employ the centralized computer technology

t/



1. NETS: Network Error-Tolerant System Introduction

available when the designs commenced in the 70's. In particular, they require

reasonably tight synchronization among all processors and direct communication

between each pair of processors. The solution to these deficiencies appears to
be a more distributed concept, employing the newly available distributed system

technology of the 80's.

The computer concept under consideration in this report, NETS (Network
Error Tolerant System), is a bona-fide distributed system. NETS is an intercon-

nection of clusters, each of which can be a simplex (nonreduntant) proces3 r it-
self a fault-tolerant computer - say a SIFT configuration of 3-5 processor ETS
offers all of the "conventional" advantages of a distributed system (e.g ;Apan-
dability, highly-parallel computation, physical separation of computat. 3ites),

in addition to advantages particular to the goal of fault-tolerance (e.g., IL tly
fault-tolerance, some immunity to massive transient faults, and better adaption

to fault conditions).

NETS consists of clusters, each of which has a direct communication link
with only a few other clusters; thus, as is standard in computer networks, com-

munication between non-neighbor clusters requires the passing of data through

intermediate clusters. Each cluster is intended to be responsible for 1 (or possibly
a few) task, and is likely to be located physically close to external equipment

(sensors, actuators, etc.) associated with the task. A cluster might have inter-

nal redundancy to enable it to continue operation in the presence of faults - in
particular permanent or transient faults that only impact, say, I processor. It

is anticipated that each cluster will be a SFT configuration of 1-5 processors, 5
processors being required where higher reliability for a task is mandated and 1

processor where the task is not critical.

An initial analysis of NETS has been completed. In the process of carrying

out the design, we identified a number of difficult problems, most of which we have
solved at least to the point of pragmatic, if not theoretically optimal, solutions.

NETS appears to address the deficiencies of SFT and FTMP, and to achieve the
high level of reliability required for aircraft electronics systems.

-6
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1. NETS: Network Error-Tolerant System Introduction

Section 1.2 describes in more detail the goals of an aircraft fault-tolerant

system that motivated the design of NETS. The overview of the NETS architec-

ture is presented in Section 1.3, with emphasis on the intercluster communica-

tion protocols and the requirements of the various executive-level functions. Of

primary concern is failures in communication links: how to mask errors that follow

such failures, how to identify faulty links, and what communication protocols can

avoid the use of known faulty links. Formulas determining the reliability of NETS

under various redundancy and communication assumptions are derived in Section

1.4. Section 1.5 discusses desirable properties of the interconnection network.

One desirable feature is that, for a given fan-out d from each cluster and a given

diameter k (the diameter being the maximum number of hops between any pair

of clusters), the maximum number of clusters n should be accommodatable. This

turns out to be a "classical" problem in graph theory, called the (n,d,k) prob-

lem, studied extensively at SRI and elsewhere during the 60's. We summarize

the relevant results. This previous work, unfortunately, assumes no failures of

communication links. Our discussion derives some initial results on the effect of

faults on the diameter of certain networks.

The graphs discussed in Section 1.5 guarantee the existence of a path, be-

tween any pair of clusters, whose length does not exceed d. AMg rithms for

identifying the shortest path, particularly following a failure in communication

link, is discussed in Section 1.6. Each cluster, being a SIFT computer, will

employ our previously developed algorithm for achieving synchronization among

the processors within a cluster. Extensions to that algorithm to obtain network-
wide synchronization are discussed in Section 1.7. Section 1.8 discusses the related

problems of recovery from massive transients and initialization of a newly con-

nected cluster. It is shown that a cluster suffering a transient failure that corrupts
data in all of the cluster's computers can be reinitialized through the efforts of

the cluster's neighbors. Conditions for recovery from simultaneous massive tran-

sients are also presented. Section 1.9 presents unresolved problems and suggests
experiments that could be conducted on AirLab to confirm our initial findings on

NETS and to identify optimal ways of using NETS in particular applications.

r -- 7 -
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1. NETS: Network Error-Tolerant System 1.1. Requirements for NETS

1.1 Requirements of Advanced Fault-Tolerant Systems Addressed by
NETS

1.1.1 High Reliability

As assumed for SIFT, the probability of a critical computation yielding an
incorrect or late result is not to exceed 10- 0 /hour over a 10 hour period. Given
the current reliability of processors (even those developed using VLSI technology),
this low probability of failure can be achieved only with redundancy. It is easily
shown that for a given amount of redundancy, the smaller the replaceable unit
the higher the reliability. This property is seen by considering a 5-fold replicated

system ( e.g. a centralized SIFT system). Assume the probability of failure of each
processor is p, yielding a system failure probability Pc = 5p 4 , for small values of

p. This calculation assumes that a fault in a processor is detected shortly after
occurrence, causing the processor to be logically removed from the configuration.

Thus system failure occurs upon the 4th failure, at which time there remains
one failed processor and one working processor in the configuration. In contrast,
consider a highly partitioned system which consists of n SIFTs, each of which

is 5-fold replicated, but where each of the SIFTS in this case performs Ith of
the work as compared with the original system and where the failure probabilityp
of an individual processor is 3" For this partitioned system, the probability of
failure Pp = 5n-4 p4, or P,- n4P. Of course, this simple calculation ignores the
effect of any fixed, processor size-independent overhead associated with executive
routines. Assume an overhead portion that contributes Po to the failure probability
of a processor independent of the size of the processor and also assume (very
pessimistically) that po = - t Then, Pc = (2-4)(n4 ). For all but very small
values of n, it is seen that there is significant gain in reliability to be realized

through partitioning.

tWith this latter assumption, halt of the computation carried out by a partitioned system

processor is overhead.

-8-
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I. NETS: Network Error-'rolerant System 1.1. Requirements for NETS

1.1.2 Expandable and Contractit-

In the current SIFT architecture, each processor has a direct connection to

every other processor through a broadcast link. This property limits the number
of SIFT processors in a given system to about 16 - giving a range of about 3:1
from a minimal system to a maximal system. A larger range - perhaps of the
order of 10:1 - would be desirable for a fault-tolerant computer to be useful for

the full range of NASA applications.

On-line insertion or removal of nodes is possible in NETS. It should be
possible to change the configuration without disturbing the currently proceeding

computations.

1.1.3 Capability of Using Different Processor Types

One attractive feature of a network-based system is the capability to accom-
modate different processor types within a given system. Among the processor
types could be special purpose processors (e.g., navigation computers, air data

computers, etc.) in addition to general purpose processors. SIFT and FTMP,
requiring tight synchronization among the processors, do not easily accommodate
a wide range of processor types. Moreover, the overall reliability of the system can
be improved by the use of different processor types. Our reliability computations

assume processor faults occur independently. If faults are correlated, the actual
reliability will be significantly lower than computed. Independence of faults is
more likely if the processors have different designs and different manufacturers.
Moreover, the use of different processor types will make certain software faults
(e.g., in the implementation of compilers) more independent and less likely to
result in system failure.

Very little special purpose hardware is required for NETS. Most of the

hardware should be commercially available and known to be intrinsically reliable
through extensive field use. Special purpose hardware is prone to design and, per-
haps, failure in operation when exposed to unexpected environmental conditions.

/



1. NETS: Network Error-Tolerant System 1.1. Requirements for NETS

Furthermore, the complexity of most specially developed chips precludes thorough
testing on the part of the manufacturer. Most chip designs become reliable only

after extensive testing by users followed by modification by the manufacturer.

Special purpose designs will not be so thoroughly stressed and, hence, will be

much less reliable.

1.1.4 Immunity to Massive Transient Faults

The current fault-tolerant systems cannot tolerate a fault that changes the
values of data in a majority of the processors without causing permanent damage

to the processors. Such a fault could be caused by a lightning strike or by
power surge. Although not absolutely precluding global damage from massive

transient faults, the physical separation of processors afforded by a network-based

system should help localize the corruption caused by such faults and provide the

opportunity for recovery.

1.1.5 Ability to Interface to Distributed Smart Sensors and Actuators

The trend in aircraft electronics system design is to sensors and actuators
which are "smart", i.e., which provide on-site computational power. The current

SIFT system interfaces with such devices through conventional Input-Output

channels. A more attractive approach is to consider these devices as part of the

overall network, thus enabling the more effective use of their computational power.

NETS must be designed to be capable of handling critical real-time com-
putations. The deadlines of critical tasks must be achieved. The interaction of

unpredictable tasks compounds the difficulty of demonstrating that task deadlines

are satisfied in a distributed system.

As described in the following sections, the NETS architecture can satisfy all

of the above goals.

-10-
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1. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

1.2 Overview of NETS Architecture

This section presents a brief overview to the NETS architecture. Issues

covered are

e The design of clusters that comprise the nodes of NETS and possible protocols

for intercluster communication, including the accommodation to faulty links

* The combination of clusters of different redundancy

9 Requirements for an overall network executive that is distributed among the

nodes of NETS

1.2.1 Clusters and Their Communication Protocols

The computational unit in NETS is called a cluster, the clusters communicate
with each other through a network. As illustrated in Figure 1, a cluster is a site

that can be associated with a sensor, an actuator, or can be a computation cluster
whose role is to generate outputs in response to inputs. A sensor cluster will

have no logical inputs, and an actuator cluster no logical outputs. A computation

cluster will have both logical inputs and logical outputs. The interconnection

network will not be a complete graph; that is, each cluster will not have a direct

connection to every other cluster. Hence intermediate hops will be required when

a pair of nonadjacent clusters communicate with each other.

In generating the value to be delivered to an actuator in response to sensor

inputs, all three types of clusters could be involved. A chain of tasks (in general a

tree if it is assumed that more than one sensor is involved) cooperate to generate

the output, the sensors providing the inputs, the computation clusters generating

intermediate values, and the actuator generating the final value. In its most

general form, the graph of these clusters will be as indicated in Figure 2. The

sensors and actuator clusters are "stubs" hanging off a general graph (containing

loops). The loops are present to account for one (or more) computation cluster
executing more than one task in the chain of tasks.

-l-
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1. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

C

I. C --

S: Sensor Cluster

A: Actuator Cluster
C: Computation Cluster

Figure 1. NETS is an Incomplete Interconnection of Clusters

Figure 2. The General Form of the Cluster Graph

- 12 -
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1. NETS: Network Error-Tolerant System 1.2. Overview or NETS Architecture

Each cluster is configured as a SIFT computer, i.e., a complete interconnec-

tion among a set of processors. It is expected that a given NETS system will have

clusters of different size; we call such a cluster an n-SIFT. We will represent the

internal structure of a n-SIFT as the schematic illustrated (for n=5) in Figure

3. It is likely that the maximum value of n needed for currently envisioned ap-

plications is 5, as the probability of failure of a 5-processor SIFT is quite low. Of

course as discussed below, for less critical tasks clusters containing fewer than 5

processors will suffice.

Figure 3. Within a NETS Cluster the Interconnection is Complete

Let us now consider the structure of the interconnection between a pair of

clusters. As illustrated in Figure 4 for the two 5-SIFTs, there is a single link

between corresponding processors; for the current discussion let us assume that the

link is bidirectional, although unidirectional links are possible. Assume that a task

a executing on cluster A is required to transmit data to a task b executing on B.
In the absence of failures, each A processor will send the data to its corresponding

B processor. When all of the B processors have received the data, they exchange

the received values and vote. What if a link suffers a failure? Since a link is just

a wire connecting a pair of processors, it is convenient to view a link failure as a

failure in either of its associated processors. Accordingly, an error resulting from

a link failure can be masked as long as there is adequate voting margin; what

- 13 -
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1. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

constitutes an adequate voting margin for link failures is discussed in the next
section. Furthermore, once the link failure is identified, that link can be avoided
in future communication between A and B. The identification and reporting of link
failures is quite straightforward, since it is simply the identification and reporting
of processor failures. Thus the link (A-2, B-2) will be assumed to be faulty under
any of the following conditions:

a. The processors of cluster B (A) determine processor B-2 (A-2) to have suffered
a permanent fault through B-2 (A-2) being outvoted on some computation.

b. B-2 (A-2) reports itself to be faulty to more than one of its neighbors in B
(A).

22 2

5 225

AB

Link 2-2 fails if A2 or B2 fail

Figure 4. Interconnection between two 5-SIFTs

Note that in producing erroneous outputs B-2 (A-2) could be faulty itself
or could have received erroneous data from the other cluster - A-2 or B-2. The
safe policy is to assume both A-2 and B-2 are faulty. Note, however, that a link
could fail but the associated processors could still be capable of performing other
activities, e.g., compute on behalf of tasks or transmit data along other links (see
below). Hence a policy less profligate in dismissing processors would be as follows:

- 14 -



1. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

If a processor (say, B-2) is outvoted on data received from A, assume the failure

could be either in A-2 or B-2 pending confirmation by subsequent error reports.

That is, if no reports are received indicating that A-2 is unable to carry out its

task processing activities, it is allowed to participate in all activities of A except
the transmittal of data to B. Alternatively, future reports could indicate that B

is likely to be working.

Once it has been determined, by either A or B, that a link is faulty, the
cluster noting the failure informs its neighbor that the link is to be avoided. The

direct exchange of failure information is possible if the links between processors are
bidirectional; otherwise, as discussed below, the information must be transmitted

through a path that contains other clusters.

The discussion above is concerned with the case where cluster B contains a

task that requires data from its neighbor A. What if the destination of A's data is
to be a third cluster C which is not a neighbor of A? For example, the transmission
might require an intermediate hop through B. In this case, the working processors
of A transmits the data to B using working links The working processors of B
vote on the received values and then transmit the voted values to C, again using
working links. For example, as illustrated in Figure 5, A would avoid the link

(A-2,1-2) and B the link (B-3,C-3), assuming these links were known to be faulty.
By voting on the data received from A, B can mask any errors from newly failed
links between A and B, thus increasing the chances for transmittal of error-free
data to C. In addition, B can immediately take note of a failed link and inform A
of the failure. We call this approach the vote and forward protocol. Through this
protocol, errors are handled by the cooperation of the two processors connected
by the failed link; no other clusters need participate. The disadvantage of the
vote and forward protocol is the delay it introduces.

-15-
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1. NETS: Network Error-Tolerant System 
1.2. Overview of NETS Architecture

Figure 5. Use of an Intermediate 1-op to Transmit Data from a Source to a Destination

A different protocol, which involves less delay, is called the forward and vote

at destina2tion protocol. Data received by an intermediate cluster is forwarded

to the next cluster on the path without voting. Once all of the replicas arrive

at the the destination cluster, they are voted on. The successful masking of

errors requires that the paths taken by the different replicas bo nonoverlap ping,

otherwise a single link failure could cause correlated errors. A further complication

is in locating faulty links, as a single error report can only locate the error to a

II

path which might contain a number of links. It would be necessary to exercise,

subsequently, each of the suspected links to try to locate the faulty link.

-1-



1. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

1.2.2 The Combining of Clusters of Different Redundancy

One of the goals for NETS that we indicated in Section 2 is the capability

to handle tasks of different criticality without enduring the penalty of excessive

redundancy for the less critical tasks. NETS can achieve this goal through the use

of clusters containing different number of processors. Highly critical tasks would

be assigned to clusters containing 5 processors; less critical tasks to 3-processor

clusters; uncritical tasks to 1-processor clusters.

If clusters containing different levels of redundancy are to be combined in a

single NETS, one approach is to segregate the clusters of a given redundancy to

their own subnetworks of NETS. However, it is possible to combine clusters of

different redundancy without compromising the reliability goals.

What are acceptable communication paths between clusters, particularly if

the paths might involve clusters whose redundancies are not the same? Let us

consider a source cluster A sending data to a destination cluster B through a

path containing other clusters. Assume that A and B have the same redundancy

n. If the forward and vote at destination protocol is used, the ideal is that the

number of distinct paths from source to destination be equal to n. The minimum

requirement is that at least 3 distinct paths be used to protect against any single

point failure.

If the vote and forward protocol is used, all clusters on the path should ideally

have the same redundancy as that of the source and destination clusters. Figure

6 summarizes the various possibilities.

One additional issue in combining clusters of different redundancy is balanc-

ing the load on each processor. That is, if m 3-SIFTS are to be neighbors of a

5-SIFT, what should the interconnection pattern be so that each of the processors

of the 5-SIFT have approximately the same fan-out? The solution is quite simple,

and is best illustrated through example.

- 17 -
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1. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

SIMPLEX REPLICATED
/ CLUSTER CLUSTER

(a) Acceptable Path

End nodes - simplex

Intermediate nodes - simplex or replicated

e 9 e 0

(b) Acceptable Path

All nodes replicated

(c) Unacceptable Path

End nodes - replicated

Intermediate nodes - simplex or replicated

Figure 6. Communication Paths containing Simplex and Replicated Clusters

Assume that the number of external links to each of the 5-SIFT processors is

not to exceed 2. Then, as illustrated in Figure 7, three 3-SIFTS can be neighbors

of the 5-SIFT using the interconnection pattern indicated. Each of the processors

of the 5-SIFT, except 2, have a fan-out of 2. The interconnection pattern can be

described using a matrix notation, as below.

- 18 -
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1. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

Processors of 5-SIFT

3-SIFTs 1 2 3 4 5

A x x x
B x x x
C x x x

According to the matrix, the 3 processors of A are connected to processors 1,2,

and 3 of the 5-SIFT respectively, etc.

Figure 7. A Balanced Connection of 3-S1FTs with a 5-SIFT

-19-
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I. NETS: Network Error-Tolerant System 1.2. Overview of NETS Architecture

In general, if the allowed fan-out from each of the 5-SIFT processors is d,
then the maximum number of 3-SIFTs that can be connected is given by the
quotient I Thus for d=3, the following matrix will apply.3"

Processors of 5-SIFT
3-SIFTs 1 2 3 4 5

A xx x
B x x x

C x x x

D x x x
E x x x

Note that the data passed to a 5-SIFT from a 3-SIFT will be subjected to only
3-way voting.

1.2.3 Requirements of NETS Executives

It is envisioned that each of the clusters of NETS will run the SIFT executive:

local executive, error report, global executive, etc. To manage the network itself,
a network executive is required. The network executive functions, distributed

among the clusters, are the following:

t Apply the vote and forward protocol to messages destined for other clusters.
It is envisioned that each message will have a destination tag, and each cluster
will have a table indicating which neighbor to use for each possible ultimate

destination.

* Receive and process error reports from neighboring clusters. The processing
will identify faulty links, which are to be avoided in subsequent communica-

tions. The identity of a suspected faulty link is broadcasted to the cluster at

the other end of the link.
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e Determine optimal paths to be used in the communication of data between
clusters, where optimal means shortest. As discussed in Section 6, this func-
tion will be invoked when enough links between a pair of clusters have failed,

thus precluding the reliable communication between these clusters. Many com-
munication paths might have to be changed. As we show, the determination

of new paths can be carried out locally in the sense that each cluster decides
on the new optimal paths from information received from its neighbors.

* Participate in the initialization of newly connected neighboring clusters and in

the recovery of neighbors that have suffered massive transients that temporary

disable a majority of the cluster's processors. The approach to both of these
problems is discussed in Section 8.
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1.3 Reliability Assessment

In this section we consider the reliability achievable by NETS. We consider
the following failure modes: (1) permanent faults - system failure due to exhaus-

tion of spares, and (2) permanent faults - system failure due to buildup of faults
beyond the voting margin before reconfiguration is completed. For each of the

modes we consider separately the cases of (a) cluster failure, preventing it from

performing tasks; and (b) link failures, preventing a cluster from communicating

with any of its neighbors.

It is shown that acceptable reliability - better than the basic requirement of

10-/hour for critical tasks - can be obtained, even for relatively large NETS
systems, assuming that (1) all critical tasks are executed on 5-SIFT clusters, (2)

all communication between critical tasks is through 5-SIFT clusters using the
vote and forward protocol, and (3) the fan-out from each cluster is at least 2.

It is encouraging to observe that such a modest fan-out is acceptable; other
requirements (e.g., keeping the communicating paths short) will probably force

us to consider a higher fan-out.

1.3.1 System Failure Due to Exhaustion of Spares

We consider a NETS system to be a network in which each node is a 5-SIFT.

(Clearly, we do not imply that all of the clusters must be 5-SIFTS; Our intention

is to derive a lower bound on the reliability that critical tasks would experience,)

Let us assume, for this section, that faults become detectable errors that are

handled very shortly after their occurrence. Thus a cluster will continue working

through its third failure, as two working processors remain. However, the next

fault spells the failure of the cluster, as one good and one bad processor would

remain. Thus the probability of 4 (out of 5) processor failures is approximately
5p 4, where p is the probability of a cluster failure. (Again, we are assuming faults

occur independently of each other.) The probability of a failure of one cluster in
an N-cluster system is then 5Np4 .

- 22 -
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1. NETS: Network Error-Tolerant System 1.3. Reliability Assessment

Now let us consider the probability of system failure due to a sufficient

number of link failures occurring such that a cluster cannot communicate with

any of its neighbors. We will only be enumerating those failure conditions that

do not constitute cluster failure. Our initial assumptions will be as follows: (1)

fan-out of two from each cluster, and (2) the forward and vote protocol; later we

consider higher values of fan-out (which will provide improved reliability and the

forward and vote at destination protocol.

1.3.2 Two-Cluster System

CLUSTER A CLUSTER 8

L5

After handling failures in BI and A5, the system can tolerate failure of L3.

Figure 8. Failures tolerated in Two Cluster Nets.

First we will show that all patterns of three link failures can be tolerated.

Next the number of patterns of 4 link failures leading to system failure will be

enumerated. Then the probability of system failure will be approximated as the

sum of the probabilities of link failures that cause system failure and cluster

failures that cause system failure.
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We assume that link failures are detected immediately after their occurrence.

Thus, referring to Figure 8, failures of processors BI and A5, implying failures

of links Li and L5, would be detected in turn and handled by the network

executive. At this point, there are 3 working links L2, L3, and L4, allowing the

system to tolerate another link failure - say L3; the results emerging from the two

working links would outvote the result from the newly failing link.

CLUSTER A CLUSTER S

LS

L1

5 2 L2

L3

Examples of untolerated patterns of 4 failures are:

Al,A3,B2,B4 Al,A2,A3,B4 and Al,A2,A3,A4.

Figure 9. Failures not tolerated in Two Cluster NETS.

Now, as depicted in Figure 9, let us consider patterns of 4 faults that lead

to link failure causing system failure. We claim that faults in Al, A3, B2, B4 is

such a fault pattern, as it implies failure of four links: Li, L2, L3, and L4. (Note

that not all patterns of 4 faults lead to system failure; for example, faults in Al,

A2, Bi, and B2 would cause only 2 links - LI and L2 - to fail.) Another pattern

of 4 faults that leads to system failure is Al, A2, A3, and B4. It is easily shown

that there are two classes of failures to be considered. For each of these classes

communication between the clusters can no longer be guaranteed, although there

are still adequate resources left in each of the clusters to allow voting to mask all

-24-

-w 24--
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internal cluster failures.

1. Failures of processors Ai, Aj, Bk, BI, where i, j, k, I are all different (as
illustrated in Fig. 6). Only one reliabl link now exists between the two
clusters (link 5 in the figure), in which case the voting of results transmitted

between the two clusters no longer masks errors. The number of such patterns
is (') X (') = 30, where ( ") is the combination function - the number of
combinations of n items taken m at a time.

2. Failures of processors AiAj,Ak,BI or Bi,Bj,Bk,AI, where i, j, k, 1, are all
different. Similar to the situation in (1), only 1 reliable link (link 5) remains

for intercluster communication. The enumeration here yields 2 X ( ) X (I) =

40 failure patterns.

(Note that a failure of 4 processors all within a cluster is not considered here

as it implies a failure of the cluster itself - see below) Summing (1) and (2) yields
70 failure patterns or a failure probability of approximately 70p 4, where p is the

probability of failure of an individual processor.

A cluster itself fails when the number of operational processors within a
cluster is inadequate to permit error masking through voting. Assuming, as
above, that faults occur at a low enough rate to permit the logical removal of

a faulty processor before the occurrence of a subesquent fault, failure of a cluster
occurs when 4 faults are occur. The probability of 4 faults within a cluster is

approximately (1) X p4 or lop4 when both A and B clusters are considered. Thus
the probability of system failure due to link failure and the probability of system

failure due to cluster failure are approximately the same.

-25-
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Figure 10. A Three Cluster NETS

1.3.3 Three Cluster System

Figure 10 depicts a 3-cluster NETS system; the fan-out from each cluster is

two. As in the 2-cluster system, all patterns of three link failures are tolerated, but

here, with the use of routing of broadcasts via intermediate cluster, all patterns

of four link failures are also tolerated.

-26-
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Figure 11. A pattern of Four Faults that does not cause Link Failure

Figure 11 illustrates the probability that a fault pattern occurs that prevents

A from communicating with either of its neighbors. A cluster I will be unable to

communicate directly with cluster J, if 4 (or more) of the links connecting I and J

are failed. Note that if 3 or fewer links have failed, the voting margin suffices to

allow reliable communication under the assumption that a faulty link is ignored
prior to the next occurrence of a faulty link. We first observe that all patterns of

4 failures spread over these 3 clusters are tolerated. (The reader is reminded that
we are excluding from the enumeration those failure patterns that cause cluster
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failure, e.g., the failure of 4 processors in A.) An example of a pattern of 4 such

tolerated failures is shown in Figure 11. The four failures indicated would prevent

A from communicating directly with B, as only one good link (A-5,B-5) remains

between these two clusters. However, 4 good links remain between A and C, and 3

good links remain between B and C, thus allowing communication between A and

B to be through C. The other patterns of 4 faults among the 3 clusters are: two

in each of two clusters, two in one cluster and one each in the other two clusters
- all of which can be shown to be tolerated.

Now consider the patterns of 5 failures that are not tolerated. One such

pattern, as shown in Figure 12, prevents A from communicating with either B or

C - in effect isolating A. It can be shown that there is no pattern of five faults

two of which are in A such that A will not be able to communicate with either

B or C. Hence the only case of interest is three faults in A. If the two remaining

faults are both in the same cluster, then A will have two working links on which

it can communicate with the other cluster, thus avoiding isolation. Hence the

enumeration need only consider three faults in A, one fault in B such that A

cannot communicate with B, and one fault in C such that A cannot communicate
with C. The number of such patterns is given by

C(5,3) C(2, 1) C(2, 1) - 40.

Then, an upper bound on the probability of system failure due to link faults is

40Np'. This is an upper since some of the patterns covered for a cluster will also

spell failure for a neighbor.

-28-
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4 3/

C

Figure 12. A Pattern of Five Failures that is not Tolerated

Note that for reasonably small values of p, the probability of system failure is

dominated by the probability of cluster failure. Further note that the probability

of A not being able to talk with both of its neighbors is given by 100p4 (enumerating

the patterns of four faults that cause either intercluster communication path to

become unreliable). Exceeding the probability of cluster failure by a factor of 20,

this is probably too high for critical computations. Thus it is necessary to allow

for alternate communication paths in NETS.
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If the intercluster fan-out is increased to 3, the probability of system failure
due to link failure is decreased to 60Np8 . Again, it is probably not necessary to
employ a fan-out of 3 from the standpoint of achieving reliable communication.

Now let us consider the use of the forward and vote at destination protocol.
All that is required is that A have two or more working links - both to the same
neighbor or one one to each of its neighbors. In this case all patterns of 5 failures
are tolerated, but at the expense of the more complicated protocol.

1.3.4 General Result for N-Cluster Systems with Fanouts of 2 or 3

Consider a fan-out of 2 from each cluster. System failure will occur when one
(or more) clusters is unable to communicate with any neighbor, thus isolating it

from the rest of the system. Enumerating the faults that cause this situation, we
find that the probability of system failure due to link faults is given by N X 40 X p5.
(This result is easily derived as a generalization of the enumeration carried out for
the the 3 cluster NETS.) The probability of system failure due to cluster failure is
N X 5 X p4 ; thus, for this general case, the fan-out of 2 is adequate for achieving
reliability.

If the intercluster fan-out is increased to 3, the probability of system failure
due to link failure is decreased to N X X p" = N X 80 X p.

1.3.5 System Failure due to Fault Buildup Prior to Reconfiguration

Unlike the adaptive voting approach assumed in the previous section, we are
assuming here that faults are not detected and handled. Thus system failure will
occur whenever three bad inputs are generated - either within a cluster carrying
out a computation or in the passing of data between clusters. The probability of

three faults in a 5-SIFT is given by l0p3.

On the other hand, the communication between a pair of clusters (A and B)
will become unreliable when A suffers 2 faults (say in Aj and Ai) and B suffers one
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fault in BI, I =j,i. The number of such fault patterns is

C(5,2)* C(3, 1) = 30.

Thus the probability of system failure due to cluster failure and that due to link

failures are comparable. Furthermore, there is no alternative to improving the

reliability in this case short of increasing the redundancy level of the clusters.
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1.4 Structure of the Interconnection Network

In this section we consider the interconnection network through which clusters

communicate with each other. One key property of the network is that it allow
clusters to communicate with each other with minimal delay. For the moment
let us assume that each cluster has the need to communicate with every other

cluster. (It is understood that this assumption ignores the possibility of assigning

collections of tasks that communicate with each to collections of clusters that are

close to each other; this possibility is discussed later.) Hence a measure of the

quality of a network is the diameter k of the network. Here diameter is taken in

the graph-theoretic sense to mean the following:

Let the distance between any pair of adjacent nodes be 1. Let
the distance between any pair of nonadjacent nodes i,j, be the

length lij of the shortest path between i and j. The diameter k
of the graph is maximum shortest path, where the maximum is

taken over every pair of nodes. Thus for a diameter k graph it is

assured that no more than k hops need be taken in going between
any pair of nodes.

As might be expected, the diameter of a graph generally increases with the

fan-out d permitted from each node. In the limit, if every node is connected to

every other node, the diameter is one. However, we are seeking graphs in which the

fan-out is much less than the number of nodes. In this case, a more comprehensive

measure of the quality of the graph is the number of nodes n, for a given d and

k, the general desire being to find graphs with maximum n. A graph having n

nodes, diameter k, and fan-out d is called an (n,d,k) graph. A graph having the

largest n for given d and k is cal1-d an (n,d,k)maz graph.

One further complication is the impact of faulty links. We want the diameter

to be low despite the occurrence of faulty links - say t such faults; whenever a
fault occurs it is necessary to find a new shortest path that does not include the

faulty link. A graph of n nodes, fan-out d, and diameter k in the presence of k or
fewer faulty links is called an (n,d,k,t) graph. Again, we are, in general, interested
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r in maximizing n for fixed values of the other parameters - leading to (n,d,k,t)max

graphs.

During the 60's, a number of researchers searched for (n,d,k) graphs, in
particular for families of such graphs covering different values of n,d, and k.

Unfortunately, all of this work was aimed at the fault-free case. Below we discuss

several such families and show how the diameter is affected by a single link failure
occurring anywhere in the graph - the case t=1. As discussed in the previous
section, the occurrence of more than one link failure is so unlikely that we need

not consider it.

For one particularly interesting family - due to Akers [?] and shown if Figure

13 - we show that the effect of a single fault is to increase the diameter by no

more than 2 for graphs at the low end of the family - containing up to 35 nodes.

For graphs at the higher end, the single link failure will not cause the diameter
to be increased at all. Even for those graphs where the diameter is increased, for

most node pairs, the shortest path is not increased due to the failure. However,

more work is needed here, particularly if optimum graphs are to found.

~opa

I.

Figure 13. An Akers (n,d,k) Graph

Let us briefly consider the fault-free case. Moore [?] has computed an upper

bound on n for given d and k. The reasoning is as follows. Consider the maximum
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number of nodes in a graph such that the distance from one distinguished node a

to any other node is no more than k, assuming a fan-out of d. Let a be the root

node of a tree. Let there be d successors to a, as allowed by the fan-out limitation.

Let each of these successors have d-1 successors, and each of d words per cluster.

Approaches similar to this are used in most networks [?].

Can this approach be easily extended to to faulty link case? The trivial

extension is to store for each i triples <j,k,l>, which would indicate the successor

j on the shortest path to k for link I being faulty. For a network of 500 links - a

reasonable number of links for 100 or more nodes - the storage requirement could

increase to 50,000 words. This, then, is not an effective solution. Some savings

can be attained, however, if an Akers' graph is used. Since the alternate paths

do not overlap with the "original" path, the third position in the triple can be a

node instead of an edge, the intent being to avoid that node. The storage would

then be reduced to, perhaps, 10,000 words. A further reduction can be obtained

by only storing triples for those paths that are changed by a fault. We believe,

although have not verified, that only about 20%of a graphs shortest patb% are

affected by any particular link fault. Thus the storage requirement might be as

low as 2,000 words. This would probably be acceptable.

Nevertheless, there are techniques for dynamically determining the shortest

path that involve computation, but at a significant savings in storage. The

following is one such approach, which we conjecture to find the alternate shortest

path or determine that the primary path is still applicable.

Each node i will have a table of triples <j,j',k>. As before, j is the primary

successor to i in communicating with k. However, an alternate j' is now also

specified. Each node j will also have back pointer pairs <i,k>, indicating that j

is on the shortest path from j's neighbor i to k. The key is to determine if the

occurrence of a fault requires a shift to the alternate. Consider Figure 14. Assume

the site of the fault is the link a-b, between processors a and b. Also assume that

the occurrence of a fault but no, its identity is broadcasted around the net by

either a or b. The key, now, is to determine which primary paths involve a-b;

for those that do, there will be a shift to the alternative. Nodes a and b, by
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referring to their tables, for which destinations k the link a-b was on the primary

path. They indicate this information to each of their neighbors, which switch to

the alternate successor if their primary successor was indicated by a or b to be

affected. These neighbors n of a and b then broadcast to their successors those

destinations for which any member n required a shift to an alternate path. The

process continues until all nodes have received updates. As presented the process

proceeds in synchronized steps starting with a and b. However, the process need

not synchronized; each node upon receiving any information updates its tables

and broadcasts derived information to its neighbors. All that is required is enough

time for the process to yield no new information.

qll,:-1" op#€ :

Link a-b is faulty
1. Alternative path between a,b is (a,c,d,e,b) and has length 4

2. Alternative path between c,b is (c,d,e,b) and has length 3

Figure 14. An Akers Graph with a Single Link Failure
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1.5 Synchronization in NETS

The successful operation of a SIFT cluster requires that its processors be
synchronized to within approximately 50 microseconds. Such synchronization is

necessary to prevent a processor from changing is rate of processing tasks to the
point where it is working on an iteration that is different from its neighbors,

and thus producing different results and destroying the exact match required for
voting.

In NETS, of course, each SIFT cluster would have to be internally synchronized.
However, the clusters need not be synchronized with each other. The internal

synchronization will guarantee that the processors of each cluster produce data
for output at approximately the same time, and that the processors of a cluster

reading this data will all read it at approximately the same time. The only danger
is that a cluster might run faster to the point where an occasional iteration of data

is not read by an input cluster before being overwritten by the next iteration's
data. We do not see this as a problem, as long as each cluster continues to work

with the most recent data available. Moreover, it might be difficult to synchronize
the clusters of NETS if they have different type processors with different clock

rates.

Nevertheless, there might be occasions where it is desirable to have the
clusters in NETS synchronized with each other. If each cluster contains at least

4 processors and if the fan-out from each cluster is 3, then the current SIFT
synchronization algorithm can be used by each cluster to synchronize :.self with

its neighbors.

It should be noted that the algorithm can also be used for clusters containing
fewer than 4 processors. In this case, each processor will synchronize itself with

its neighbors within a cluster and in other clusters.
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1.6 Recovery from Massive Transients

We assume the occurrence of a fault that corrupts the state of every proces-
sor in a cluster, but does not cause damage to prevents its subsequent processing.

This kind of fault we call a massive transient fault. A cluster c suffering such a

fault may not be able to effect recovery without outside assistance. For example,
the information indicating working processors and, perhaps more fundamentally,

indicating the neighbors of c might be have been lost due to the fault. The fol-
lowing are requirements to permit the recovery of a cluster through the assistance

of its neighbors:

* Restart Box (rb)

* Checkpointing of global data

* Detection of Massive Transient

* Recovery process

We will require a modest-size special purpose circuit in each cluster, which

we call a restart box (rb). A rb will accept inputs from each of c's neighbors,
requesting c to return to a reset state. To prevent a neighbor, perhaps one
that itself has suffered a massive transient, from maliciously trying to restart its

neighbors, restart will only be carried out if at least 2 of c's neighbors send restart
signals. The immediate effect of being in the reset state is to execute the clock

synchronization n algorithm and run an initialization program that will continue

recovery (see below).

Certain critical data of a cluster must be checkpointed. This includes the

identity of the working processors, the identity of neighbors (assuming such in-
formation is not hard-wired), the pairs and triples needed to communicate with

other clusters on shortest paths, and the identity of which links with neighbors are
working. Such information can be given to a neighbor each time it is updated. Not

required to be checkpointed would be task data (it is regenerated each iteration)
and task schedules (they are likely to be stored in microcode).

- 37 -

/



" " " ' I -l - iIt 1.. .. ... _

1. NETS: Network Error-Tolerant System 1.0. Recovery from Massive Transients

When a cluster has suffered a massive transient it is assumed that its behavior
becomes erratic. This could involve the processors becoming unsynchronized, the

loss of data such that there is little agreement among the output values of the

cluster's processors, or the absence of any output data. Any of these events, when

observed by a neighbor, are evidence of a massive transient. In any event, a cluster

exhibiting behavior cannot produce any useful work. It would also be possible for

a neighbor to submit test data and, based on the return, decide that the cluster

has suffered a massive transient.

The recovery of a cluster is as follows. It must be given all of the data it
previously checkpointed and be moved to a state where it starts to execute the

tasks on its schedule. The data will come from its neighbors, once the cluster

indicates that it is in its reset state. The final input from the neighbors will move
the cluster to the state where it commences doing useful work.
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1.7 Remaining Problems and Recommendations

We believe that the work conducted to date demonstrates the feasibility of the

NETS concept for the aircraft environment. Some additional problems, solution
to which would optimize the NETS design are the following:

e Transient Fault Analysis: A transient fault causes a processor to temporarily

deliver erroneous results. After a period of time, the processor will return to
a state where it will deliver correct results. The usual technique for dealing
with transient faults is permit the processor suffering the fault to deliver the

erroneous values for a certain period of time t, during which voting will mask
the error. If the processor does not return to an error-free state within t, it is
considered to have suffered a permanent fault. If t is set at too low a value,
then long-duration transient faults will be considered as permanent faults, and
good processors will be removed from the system. On the other hand, if t is

set too high, transient (and permanent) faults can build up, causing the system

to fail by having the voting margin exceeded. To determine the vulnerability

of NETS to transient faults, it will be necessary to weigh the probability of
exceeding the voting margin against the probability of running out of spares.

o Determination of Near-Optimal Interconnection Networks. Based on the work
carried out in the 60's, adequate <n,d,k> graphs are known. However, the
situation is not as encouraging when faults must be handled - the <n,d,k,t>
case. We have shown that the Akers' graphs have good fault-handling capabil-

ities - at least for the case of single link faults. It is recommended that other

families of graphs be sought. Moreover, reasonably tight upper bounds on n

should be determined to guide the search for such graphs.

* A Distributed Algorithm for Computing Optimal Communication Paths: It will
be necessary to associate paths in the interconnection graph with each pair of
clusters that communicate with each other. The computation of such optimal

paths can be done "offline" for the initial configuration. As link failures occur,
certain paths might become closed off, in which case it will be necessary to

determine new paths. It is conjectured that this determination of optimal
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paths can be accomplished in a local manner as follows: If cluster A can no

longer use B in communicating with C, it chooses to communicate with C using
that neighboring cluster D such that the distance between D and C is smaller
than the distance between any other neighbor and C. It remains to verify this

conjecture. Also, we must consider the impact of a second failure while the

new shortest path is being computed.

" Assignment of Tasks to Clusters. The motivation for the search for <n,d,k,t>

graphs was that tasks could be assigned to clusters in an arbitrary manner,

hence the need for graphs with low diameter. However, it should be possible to

take advantage of the structure inherent in task communication to determine

optrnal assignments of tasks to clusters. The problem is as follows. Assume

that the computations to be carried out are expressed as graphs, the nodes of
which are tasks and the edges indicate communication between tasks. For a set

of such computations, find an optimal embedding onto the underlying network

graph. It is not obvious just what constitutes optimality, but minimizing the
longest communication path seems to be a good choice. It is noted that this
problem is related to the VLSI placement problem, although our problem does

not have the rectilinear structure of the VLSI problem.

" Effects of Combinations of Failures. Our design effort so far has assumed that
faults are handled shortly after their occurrence. We have avoided considering

the recovery from multiple failures, e.g., a massive transient at the same time

as a link failure. Some effort should be given to this more general case.
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Chapter 2

The Analysis of Transient Faults

Introduction

Faults in computer systems are of two kinds, solid and transient. A solid
fault is one in which some component of the system fails and will continue to
fail for all subsequent uses. A transient fault is one in which some component of
the system is temporarily deranged and fails in use, but in which that component
subsequently recovers, without repair action, and in subsequent use the component

does not fail.

Transient faults may be caused by thermal noise in a marginal component,

by cosmic rays or alpha rays, or by electromagnetic interference. For typical
transient faults, the faulty component is deranged for only microseconds or at

most milliseconds, though the errors resulting from the fault may persist for
much longer. It is difficult to obtain dependable information on the frequency
of transient faults under operational conditions, because current systems are

not instrumented to distinguish between solid and transient faults. However
such information as is available indicated that transient faults will occur more

frequently than solid faults, at perhaps ten times the rate.
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2. The Analysis of Transient Faults Introduction

It is important to distinguish between solid and transient faults, since proces-

sors suffering from a solid fault are removed from the system configuration. In
contrast, processors subject to a transient fault are permitted to remain in the
configuration. In other designs, the initial action taken for both solid and transient

faults is the same - the processor is temporarily removed from the configuration

pending tests to determine whether it is working and can be readmitted. This
approach is not used in SIFT because:

" Processors diagnosed as having a solid fault are never readmitted to the config-

uration after they have been removed, even if the off-line diagnostic tests cannot

detect any fault. The coverage of the diagnostic tests is not high enough to

ensure that the benefit from readmitting good processors to the configuration
outweighs the loss in reliability from readmitting defective processors.

* Processors diagnosed as suffering from a transient fault are not removed from

the configuration, even temporarily, since the short duration of transient faults

ensures that the actual faulty condition will not last even as long as the time
required for error recognition and reconfiguration.

The reliability modelling results of the SIFT project (1] analysed the ability
to distinguish between solid and transient faults. Assuming that transient faults

are substantially more frequent than solid faults, it is important for the error
diagnosis of the system to be able to recognize transient faults.

" If transient faults are incorrectly diagnosed as solid, resulting in working proces-
sors being deleted from the system configuration, the rate of system failure due

to exhaustion of spares is greatly increased.

If a solid fault is incorrectly diagnosed as a transient, the effects on system

reliability are much less deleterious. The solid fault will generate further errors

and provide further opportunities for repeating the diagnosis and recognizing
the solid nature of the fault. The system is at risk to the occurrence of a second

fault, whether transient or solid, during the time interval before the fault is
correctly diagnosed.
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2. The Analysis of Transient Faults 2.1. Solid Fault Types

Figure 1.5 contains results obtained from the reliability model for SIFT,
showing the probability of system failure within a 10 hour flight*. It is evident,

particularly where critical functions are protected by five-fold voting (f=5), that

a relatively small probability of regarding a transient fault as solid has a much

bigger effect on the probability of system failure than does the corresponding

probability of regarding a solid fault as transient. But, of course, it is essential to

recognize solid faults; regarding all solid faults as transient is devastating to the

reliability of the system.

Consequently, the ability of the system's error diagnosis routines to distin-

guish between solid and transient faults is very important.

2.1 Solid Fault Types

Many solid faults are catastrophic and either prevent the computer from

generating any results at all or cause almost all results generated to be erroneous.

However some faults, though solid, produce erroneous results only in rather specific

circumstances. Such faults generate periodic errors, produced more or less fre-

quently whenever those specific circumstances occur. A solid fault that generates

errors only infrequently can be difficult to distinguish from a succession of tran-

sient faults.

Some faults will never yield an erroneous result, for the particular com-

ponents are never actually used to produce the results in question. Other faults

yield errors, not on every execution of the task, but only for specific data values,

resulting in errors every few milliseconds, or seconds, or minutes. Experiments

have been performed at NASA Langley Research Center to investigate the propor-
tion of solid faults that do not generate immediate errors in the results of ap-

It is important to note that these results are based on plausible but arbitrary component failure
rates. Consequently the results can only be of qualitative significance. Quantitative measures
of the reliability must be derived from careful measurement or actual component failure rates

under operational conditions.
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plication programs. Unfortunately these experiments have, for obvious economic
reasons, considered only the proportion of faults that result, or do not result, in
an error within a relatively short time interval. It is important to extend this work
to determine the shape of the tail of the error-generation-frequency distribution,
and it is to be hoped that the team at NASA Langley might consider such an
experiment for AIRLAB.

During the period between the time when a solid fault occurs and the time
when the fault causes an error, the fault is "latent". Latent faults are of course

undetectable. The duration of latency of the fault is not significant, and latent

faults are no more damaging to system reliability than simple faults, provided
that the fault is "uncorrelated". While the latent fault remains undetectable so

long as it is latent, it can also do no damage so long as it is latent. Only when
the fault generates an error is there any risk to the system, and the duration

of the previous period of latency is of no significance, provided that the error is
generated at a random moment in time.

Correlated latent errors present a significant risk to the reliability of the
system. A correlated latent error remains latent until some other error also occurs,
and thus is manifested only in a double error situation. There are two ways in
which this can occur:

" The latent fault can be such that the only circumstances in which errors
are generated are those in which other errors are already present. Such a
fault might damage only the operation of the error detection, diagnosis, or

reconfiguration.

" The latent fault can be such that errors are generated only during a specific
infrequently performed, but critical, function (for instance the autolanding
functions). There is a risk that two processors might each be affected by such
a latent fault, undetectable until the function is invoked and then yielding a

double error.

This analysis, and indeed the whole SIFT design, does not address correlated

faults.
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2. The Analysis of Transient Faults 2.2. Error Generation and Detection

There can also exist faults that are solid in that their defect is due to a

physical cause that is permanent, but which generate errors only infrequently due

to some physical aspect of the nature of the fault, rather than due to the nature of

the processing being performed. Such faults are referred to as "intermittent" and

are sometimes caused by cracks in conductors or by loose particles in packages.

An intermittent fault resembles a succession of transient faults. The duration of

each error generating event of an intermittent fault is usually rather longer than

for a transient fault, and the frequency of such event is usually much greater than

the frequency of transient faults in a properly working processor. The reliability

analysis for SIFT indicated that the transient fault analysis algorithms are well

able to protect the system against intermittent faults.

2.2 Error Generation and Detection

Faults, whether solid or transient, are manifested only through the errors

that they generate, whether those errors are in the results of the application tasks

or errors in the results of a diagnostic test sequence. This immediate error is of

course only an incorrect result. To act on the error requires that it be detected,
that a checking mechanism be capable of recognizing that the result is indeed

incorrect and thus that an error, and by implication a fault, exists. Once the
error is detected, it must be diagnosed that a specific type of fault is the cause of

the error, and that some recovery or reconfiguration action is appropriate.

In typical low reliability systems, error detection is very poor and the degree

of confidence that any particular erroneous result will be noticed is low. High

reliability systems, such as SIFT, in contrast have very good error detection and

almost any error will be detected.

Even though a fault may cause errors to be generated 'immediately', the

errors are not detected, and thus the existence of the fault is not recognized, until

the erroneous results are subjected to the voting or other error detection checks.

The results of high priority tasks are needed for use by other tasks within a short
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period of time, and thus must be voted or checked very promptly, certainly within

a few milliseconds. Thus, a fault that causes errors in the results of high priority

tasks can be detected soon after the fault occurs.

However, many systems contain background tasks whose results are not

needed immediately. The execution of such tasks may be spread over several

seconds, or even longer, and the results may not be voted until some convenient

moment long after they were generated. A fault that yields and error in the results

of a background task may not be detected until seconds, or even minutes, after

the fault occurs.

This has two effects:

" During the interval between the generation of the erroneous result for the

background task and the masking of that error by voting, the system is vul-

nerable to the occurrence of a second fault. Fortunately, background tasks

are usually not very critical and a rather higher risk of failure of such a task

can be accepted. Results that are very critical must be voted at frequent in-

tervals to ensure that errors are masked promptly, thus reducing the risk of

error accumulation between masking. This frequent voting of critical results is

necessary even if processing of those results is required only infrequently.

" A single transient error may occur and damage the results of several tasks. The

erroneous results of high priority tasks will be detected quickly, but further

error reports will continue to be generated for some time as other results of

lower priority are voted. This might confuse the error diagnosis routines into

thinking that the error that has occurred is persisting in generating errors,

and thus may be solid. It might also confuse the error diagnosis routines into

thinking that multiple faults had occurred.

It might be hoped that the nature or appearance of the error detected might

provide an indication as to the location and type of the fault that caused it.

Unfortunately, the errors detected are often of the form of an incorrect result

and it is difficult to ascribe a cause from such meager information. Further,

a "malicious" fault may masquerade as some different type of fault. It is es-
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sential that such deception should not permit the successive removal from the

configuration of working equipment until system failure results.

Any one error report originates at a single point in the system and the

report must be replicated for analysis by the necessarily replicated global executive

routines. As for any other information that originates at a single point, interactive

consistency or interactive convergence techniques must be used to ensure that

the replications are consistent. Even when a component reports itself to be

faulty, it is essential to use interactive consistency techniques to detect that

a processor has reported itself faulty to one neighbour and not to others, and

situation indistinguishable from that in which the neighbour falsely claims that

the processor has reported itself faulty.

2.3 The Analysis of Error Reports

Xn error report is certain information that an fault has occurred, but less

certain as to what fault and when. If interactive consistency techniques are used,

a report by processor A of an error in the results of processor B for iteration i of

task k provides the information that:

9 the fault existed in either processor A, or processor B, or the link between them

e the fault existed at some time since the start of the data-window for iteration

i of task k

The global executive routines must make use of the combination of many

error reports to deduce the true nature of the underlying fault. The basic algo-

rithms used in SIFT are described in [1). We discuss here three aspects of fault

diagnosis:

e identification of, and action on, link failure,

* identification of transient faults,

9 identification of low error rate solid faults.
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2.3.1 Identification of Link Failure

When a processor fails, it will probably generate erroneous results and broad-

cast them to all of the other processors, resulting in a large number of error reports

from which it is easy to diagnose which processor has failed.

Less probably, a processor might suffer from a fault that causes it to generate
erroneous error reports even though the results being voted were correct. If that

processor is detected by the global executive to be generating many error reports,
claiming errors in several other processors, all unsupported by reports from other
processors, the diagnosis is again relatively easy.

But failure of the link between two processors results in error reports in

which one processor systematically reports errors in the results of just one other
processor, without any corroboration from other processors. The exact location

of the fault may be:

" in the physical link itself,

" in the transmitting circuitry of the broadcasting processor, after the point at
which the common broadcast signal has fanned out into separate signals for
each destination,

* in the receiving circuitry, or the result buffering, or the voting software, or the
error reporting software, of the processor reporting the error.

Because continued operation of SIFT requires full connectivity between all
processors of the configuration, and because continued operation with a faulty
link exposes the system to failure should another fault occur, it is essential to

reconfigure the system to a reduced configuration in which the faulty link is not
required, i.e. to a configuration without one or other of the two processors at
either end of the link.

If the fault is simple, it matters little which of the two processors is to be

reconfigured out of the system. But it is very important that a malicious fault
should not be able to exploit the choice to remove systematically a succession of
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other processors.

The algorithm recommended is:

following a link failure event in which processor B reports errors in the results of

processor A, without corroboration,

* if processor A is not on probation then:

. processor B is removed from the configuration,

• processor A is recorded as being on probation,

9 if processor A is on probation then processor A is removed from the configuration.

The choice is made to favor removing processor B, rather than processor A,
from the configuration because there is very little logic in processor A after the

fanout point at which the common broadcast signal is split into separate signals for

each destination. Consequently is is relatively improbable, though not impossible,
for a malicious fault to develop in that small amount of logic within processor A.

In contrast, the amount of logic, both hardware and software, in processor B that

is capable of producing the symptoms is quite large.

However, the algorithm must guard against the possibility of a malicious fault

in the small amount of logic in processor A. Consequently, processor A is placed

on probation. Thus, if a malicious fault in processor A should succeed in causing

processor B to be removed from the configuration, any subsequent attempt by

processor A to repeat the attempt, say on processor C, results in the removal of A

rather than C. Consequently, the rather improbable malicious fault in processor

A can cause two processors to be lost, but no more than two.

2.3.2 Identification of Transient Faults

The identification of transient faults is based on their short duration. It

is assumed that a fault is solid if it persists, i.e. continues to generate errors,

for more than some period of time (known as the solid/transient discrimination
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inlerval). Typically that period of time might be set to say 200ms or 300ms, for
almost all transient events are much shorter. Faults that generate only single

isolated errors, or short bursts of errors, are assumed to be transient.

In systems in which all tasks operate at iteration rates shorter than the

solid/transient discrimination interval, such as SIFT Mk I, it is relatively easy to

distinguish solid from transient faults. Such system detect all errors within one

iteration, and any fault that causes errors to be detected in two or more iterations

can be assumed to be solid.

Future systems will contain tasks that operate at very different iteration

rates, and some of those iteration rates will be much longer than the solid/transient

discrimination interval. The detection of errors in the results of slowly iterating

tasks may be delayed for a period comparable to the iteration interval of the

task. For certain navigation and fuel management tasks, this delay may be many

seconds or even minutes. Thus, even for a transient fault of short duration, if

the results of lower priority tasks have been aff-cted then error reports may be
generated periodically over a relatively long interval of time. Consequently it does

not suffice to assume that a solid fault is indicated by error reports spread over
an interval longer than the solid/transient discrimination interval.

The proposed algorithm is based on the concept of fault windows, the interval

of time somewhere within which a fault must have existed to cause the observed

error symptoms. We will consider two types of fault windows:

" error report windows,

" fault event windows.

An error report window is the interval within which a fault must have existed

to result in the observed error report. The error report window, for an erroneous

result from task A, extends from the earliest time of voting of any input value to
task A until the completion of interactive consistency on the error report.

A fault event window is the interval within which a fault must have existed to

cause several error reports, and thus is the intersection of the of the error report
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windows for each of the error reports.

The proposed algorithm for discrimination between solid and transient faults

is:

* initially the fault event window is set to empty.

* when a fault report is received,

a the error report window for that report is computed,

b if the fault event window is empty then an new fault event window is created

equal to the current error report window,

• if the fault event window is not empty, but the intersection between the

fault event window and the error report window is empty, then again a new

fault even window is created equal to the current error report window,

s if the intersection of the fault event window and the error report window is

not empty, the fault event window is set to that intersection.

* if the end of the fault event window is so long ago that no current fault could

generate an error report window to intersect it, the fault event window can be

set to empty.

e every time that a new fault event window is created, analysis is made of
the frequency of fault event to determine whether reconfiguration action is

required.

The behavior of this algorithm is illustrated in Figures 16 - 19. In Figure

16, the fault event window is initially empty. Thus the error report window is
computed and a new fault event window is created and set equal to the error

report window.

In Figure 17, a further error report has been received whose window overlaps

the fault event window. We assume that the same fault generated both error
reports. Thus the fault event window is reduced in size to the intersection of the

two windows. In Figure 18, it is still possible that the same fault caused all three

errors and thus the fault event window is again reduced in size.
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ER. I !

Figure 16. An Error is Reported when the Fault Event Window is Empty
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Figure 17. An Error whose Window overlaps the Fault Event Window
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Figure 18. A further Error whose Window overlaps the Fault Event Window
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Figure 19. An Error whose Window does not Intersect the Fault Event Window
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But in Figure 19, the next error report window no longer intersects the fault

event window, and it is not possible for a single transient fault of short duration

to have caused all of the errors that have been reported. Thus we create a new

fault event window, equal to the error report window, and start the analysis to

determine whether the frequency of faults requires reconfiguration (see the section

below).

2.3.3 Identification of Low Error Rate Solid Faults

The discrimination between solid and transient faults depends on the obser-

vation that a transient fault is of short duration, and thus on the assumption that

a set of errors, generated in some short interval and not followed by other errors,

have probably been generated by a transient fault. But some solid faults are such

that only occasional results are damaged by their presence. The equipment is

definitely broken, but the nature of the fault is such that many correct results

can be generated and only a few are erroneous. Unfortunately, it is unlikely that

in service it will be possible to diagnose faults sufficiently to distinguish solid faults

that generate errors only occasionally from transient faults. Consequently we do

not distinguish between transient faults and low rate solid faults, but rather aim

to determine whether the rate of occurrence of such faults is such as to damage

the overall system's reliability.

If a processor suffers from a solid fault (or a transient fault) generates er-

rors only occasionally, we must consider whether retaining that processor in the

configuration improves the reliability of the system or reduces it. Occasional

erroneous results from the processor can be masked by the voting algorithms,

but retaining the processor in the configuration increases the risk that its er-

roneous result will coincide with some other erroneous result, causing system

failure. Removing the processor from the configuration eliminates the risk of

coincident errors, but increases the risk of exhaustion of spares should several

other processors fail.
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A preliminary analysis of this problem was performed using the reliability
model for SIFT. It is important to note that the results here are only indicative,

and that the modelling should be repeated with more accurate data. The model
was used to compare the reliability of two SIFT configurations:

" A five processor SIFT, with four normal processors and one processor set to
generate occasional (transient) errors,

" A four processor SIFT, with all normal processors.

A normal SIFT processor was assumed to have a solid fault rate of 2 X

10-4/hour and a transient fault rate of 2 X 10- 3 /hour. The error rate of the
'speciai' processor was varied to investigate the effects of a higher than normal

transient event rate.

For a SIFT system in which only three way voting is performed on critical

functions, it was found that the 4 processor system became more reliable if the
transient rate of the 'special' processor exceeded 10-1/hour. In effect, a processor
that suffers even a single fault per fight damages the reliability of the system, a

rate that is only slightly greater than the expected transient rate for normal SIFT
processors.

For a SIFT system in which critical functions are five way voted, it was
found that the 5 processor system, containing the 'special' processor, remained

more reliable even for special transient rates as high as one per few seconds.
When ample error masking was available, the risk of coincident errors was not

significant.

This investigation should be extended. For instance, no investigation was
made of the effect of remaining mission duration of the discrimination, nor was
consideration given to situations in which more than one processor has a high

transient fault rate. The analysis should also be performed for systems with initial

numbers of processors other than 5.
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Chapter 3

Application of Ada to Fault-Tolerant Systems

3.1 Scenario and Goals

SIFT successfully demonstrated reliable computation for aircraft flight con-

trol applications through replication of flight control programs on multiple com-
puters. Fault masking was achieved by broadcasting results of replicated tasks

and majority voting. In SIFT, task replications, executing on distinct processors,

maintain loose synchronization using a preplanned schedule.

The characteristics of the SIFT software structure are:

" A fixed set of user tasks

* Tasks are periodic and executed with fixed frequency

" Communication between tasks is limited to a fixed number of "results", broad-
cast at the end of each task iteration. Tasks share no storage and have no

communication during execution.

" Communication between successive iterations of a task is limited to the same
broadcast "results". No storage is preserved between task iterations.
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a A preplanned schedule ensures that task results are available when required by
other tasks; tasks are never required to wait for input values.

* Errors in broadcast results, caused either by processor or communication faults,
are masked by majority voting. Since broadcast results are the only informa-
tion representing task state which is retained, no other form of fault masking
is required.

e No form of masking of errors due to incorrect programs is included.

* Errors detected during voting result in reconfiguration.

* Discrimination is provided between solid and transient faults. Transient faults
are masked by voting and do not cause reconfiguration.

9 Reconfiguration consists of choice of a new, preplanned, schedule and allocation
of tasks to processors.

e Based on individual reliability requirements, tasks can be selectively replicated
to any necessary degree. These replications can be allocated to processors to
balance processor load.

The orientation of the SIFT design is towards predictability and reliability
rather than flexibility. An advantage of the approach is the very simple, and there-
fore inherently more reliable, nature of the Executive software. The simplicity of
the approach used in the Executive software imposed many constraints on the
user and exposed aspects of scheduling, communication and replication. These
constraints are not inherent in the "SIFT concept" - they were imposed to allow

a very simple implementation.

In this report, we investigate to what extent the concept of SIFT can support

a more general user interface. We consider a system in which the structure of the
user program is not constrained by the needs of fault tolerance, and in which the
system is not as dependent on the user to specify management of information and
resources in the system. In particular, we seek to permit a more dynamic program
structure.
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To this end, we consider the Ada virtual machine and investigate building a
reliable Ada machine. Our goals are:

" To provide fault-tolerant support for a wide class of Ada programs.

* Ada programs should be unchanged, except for advisory directives.

" To allow greater asynchrony between executions of Ada program replications.

3.2 Considerations in Providing a Reliable Ada Machine

In investigating a reliable Ada machine, we continue the SIFT approach of
replication on independent processors, with error detection and masking based
on majority voting. For majority voting to suffice to detect and mask errors,
all replications of the program executing on working processors are required to
produce exactly the same results. Even non-deterministic programs must adhere
to this requirement - all instances of the program must behave identically.

3.2.1 Effect of Non-determinism

Ada provides a tasking facility, which inevitably introduces non-determinism.
This non-determinism results from direct interaction between tasks and from
access by tasks to shared global variables. Ada restricts access by tasks to shared
global variables, so that all non-determinism in Ada programs stems from direct
communication between tasks. The Ada mechanism for interaction between tasks
is the rendezvous. The rendezvous involves a task which calls a rendezvous entry
and a task which accepts the entry call. An entry call, equivalent to a procedure
call (with parameters), suspends the calling task until the entry is accepted and
a rendezvous is completed. When the called task accepts the call, a rendezvous
occurs, and the body of the accept procedure is executed. Following completion
of the accept procedure, both tasks are allowed to continue asynchronously. If a
task reaches the accept point, it is suspended until called.
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Non-determinism is introduced by several tasks contending asynchronously

for the same accept procedure. Ada does not provide any guarantee of timing

for the concurrently executing tasks, and thus does not determine which task will

reach the call first. This timing can be influenced by lower level factors such as

system scheduling, interrupt handling, etc. These factors may vary from processor

to processor. In order for our majority vote masking to succeed, we must be able

to guarantee that all processors executing the multiprocess Ada algorithm accept

the same entry call into the rendezvous. We shall refer to this as a consistent

rendezvous.

Tasks in Ada are objects, which may be dynamically created and dynamically

terminated. One does not have any predefined configuration of tasks. It is possible

for an Ada program to contain an arbitrary number of instances of an Ada task

type.

3.2.2 Periodic Voting

The execution of an Ada program, of course, can be of arbitrary duration.

Reliability requirements demand periodic voting to detect and mask errors. When

should these votes be performed? Each vote in each processor must be performed

at exactly the same point in the computation. The moment of voting cannot be

determined solely on the basis of time, since different processors may be in different

states at that time. It also is not possible to determine for an arbitrary program

how to embed vote requests in the program to obtain votes with appropriate

periodicity. For an arbitrary program there will be no obvious iterative structure

which could guide this choice. One must also take into account that some points in

the program may be more appropriate for voting because of cost or effectiveness.

A second issue concerns what information need be voted. Sufficient data

must be voted to detect that tasks instances executing on different processors are

performing the same computation. In SIFT, because voting is performed on task

results at a time when the task has terminated, only those results need be voted.
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For a more general Ada program at which votes are taken periodically, there is

no explicit indication of what constitutes "results".

3.2.3 Resource Management and Scheduling

Many potential applications of fault-tolerant computing involve real-time

performance constraints. In SIFT, these constraints are guaranteed to be satisfied

by a rigid, preplanned schedule. An Ada-program, designed to meet the same

constraints, depends on dynamic interaction between the program and the Ada

scheduler. We expect that the Ada programs to be rendered fault tolerant will

already contain the resource and scheduling strategies necessary to meet the real-

time constraints. The introduction of fault tolerance should not perturb this basic

strategy, although there will inevitably be some overhead introduced as a result

of the additional mechanism.

3.2.4 Where to Embed Fault-Tolerance Mechanism

The additional mechanism needed to achieve fault-tolerance can potentially

be introduced at one of three levels:

" Below the level of the Ada run-time system.

" Within the Ada translator and its run-time support.

* Above the level of the Ada virtual machine.

The first alternative, implementing fault-tolerance below the level of Ada,

implies the Ada translator and its run-time support can be completely unchanged.

In order to accomplish this, one would have to introduce a fault-tolerant version

of the processor architecture assumed by the Ada translator. This approach

is certainly feasible, using mechanisms such as dual-dual. The problems to be

solved turn out to be comparable to those using the other alternatives, but the
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mechanisms cannot exploit the structure of the Ada program to reduce the cost

of the additional reliability.

The third alternative would consist of an Ada package, programmed entirely
in Ada, to implement the necessary mechanisms. This package would reproduce

to the Ada user program a fault-tolerant virtual machine equivalent to the original

machine. This would allow a highly portable solution, allowing the fault-tolerance

mechanisms to be applied to any system supporting the Ada. To accomplish
this, all necessary mechanisms would have to be expressible within Ada. Thus,

the consistent rendezvous must be programmed using the rendezvous facility

for communication between processes. Even with the aid of a preprocessor to

introduce additional statements into the Ada program, it would still be necessary

to augment the Ada compiler and run-time system to provide information not

normally accessible to the Ada program.

The second alternative, that of modifying the compiler and run-time support

of Ada, permits more efficient implementation of the necessary fault-tolerance

mechanisms. This is at the expense of requiring changes to a rather complex

compiler and run-time system, and results in a translator-specific implementation
of fault-tolerance.

In the following sections, we explore the capabilities necessary to support the

fault-tolerance techniques, and comment on the difficulties in implementing fault

tolerance within the Ada system.

3.3 Mechanizing Fault-Tolerance for Ada

In this section, we describe mechanisms to support a fault-tolerant Ada
virtual machine. It requires both error detection and masking support and a

mechanism to ensure consistent rendezvous. In presenting the major ideas, we
treat Ada programs, possibly itself implementing a multiprocess algorithm, as a
monolithic program, replicated in its entirety.
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3.3.1 Error Detection

The basic approach will be based on replication of the Ada program on
independent processors. We use a majority voting scheme to detect faults in a

minority of processors - the consensus in such a configuration is assumed to be
correct.

In SIFT, each processor uses only voted values as inputs - achieving im-

mediate error masking. Here, where there is no notion of distinct inputs, we have

no concept of masking input values. Rather, we use majority voting to detect
errors. Each processor uses only local state information in performing its com-

putation. Following an error, a processor will continue to compute erroneously,
but cannot influence other processors' computations. The error will be detected

during majority voting, leading to later fault diagnosis and reconfiguration. Error
masking occurs as a result of reconfiguration to exclude dependence on erroneous

processors.

To detect any erroneous computation, it is necessary to vote the entire state

of the program. Voting any less than the entire state could permit an undetected

error that might adversely affect the future computation. The program state, of
course, can be rather extensive - consisting of the run-time stack, heap, expression
stack, and any other run-time management information. Rather than broadcast
and vote this potentially large amount of data, we compute a signature of the

state. This signature should be an encoding of the state with sufficiently high
probability that distinct states map to distinct signatures. Furthermore, signature
calculation should not be highly correlated with the computation; if by chance an
erroneous chance reduces to the same signature value as that of the consensus,
further computation and a further vote should have a low probability that equal
signatures will again occur. Digital techniques such as [61 satisfy these criteria.

The length of the signature can be adjusted to meet the required probability of

immediate error detection.

One consequence of a multiprocess Ada program is that different instances of
the same program may contain tasks scheduled differently on different processors.
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Programs may never be in exactly the same state. Consequently, we cannot in

general vote entire Ada programs. Rather, voting must be done on a task-specific

basis. Therefore, it must be possible to determine a partitioning of program state

into task states. This raises several problems.

First, there may be no simple way to partition global state into task states.

Secondly, even when such a partitioning is possible, it may be impractical to
deduce. Because processes may interact through global variables, the appropriate

partitioning may be only dynamically determinable. In order to provide a prac-

tical solution, we will disallow reference to global variables, forcing all task com-

manication to be via rendezvous calls.

For any partitioning, it is necessary that the combined partitions account

for the entire global state of the program. Votes at different times on task states

must ensure that the net effect is to guarantee that no information will escape

being voted. To ensure this, it is necessary not only to vote the information

inside the task state, but all information being communicated between tasks.

Since all information flow occurs by rendezvous, it is sufficient to additionally
vote all values passed as parameters by entry calls. Consistent with our global

variable restriction, no in out parameters or access values may be passed as

entry parameters.

Assuming the implementation of Ada is such that each task has a local run-

time stack and expression stack, voting the current state of a task necessarily

requires voting the value of these stacks. This cannot be done, of course, above

the Ada virtual machine, but can be accomplished by functions added to the Ada

run-time support. It is not a safe assumption that heap space is partitioned in

a similar manner. Any use of the heap, to allocate access variables, for example,

must be traceable to a single task. Voting must include all stack and heap values.

Vote values are generated in one of two ways. Upon encountering a user-
supplied vote pragma, a signature of the task's entire state is computed and

broadcast to the other processors. Upon entry call to a rendezvous, signatures of

input In parameters are computed. Upon return from a rendezvous, signatures for
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out parameters are computed. Each signature is tagged with a task identification
and a sequence number which uniquely identifies that vote.

Having established that state signatures are broadcast to all processors, we

now describe two possible algorithms for detecting and reporting errors. Because
no processor is dependent on values computed by other processors, there is no need
for synchronization between processors at vote points. However, some synchroniza-
tion points are necessary in order to avoid an unbounded amount of storage neces-

sary to hold signature values until a consensus is possible.

The simplest algorithm provides storage for one signature per task instance.

Processors can proceed asynchronously up to a vote point. No task instance can
progress beyond a vote point until all other instances have reached the previous
vote point. To ensure that a minority of failing processors cannot indefinitely delay
a vote, we must include a timeout mechanism in this vote. Timing starts when
a majority of processors have submitted values. It is assumed that it is possible
to establish an appropriate timeout value for each task and that the scheduling

can maintain the skew between instances of the task on working processors to
less than this value. At the expense of increased storage, it is easy to extend this
algorithm by storing additional signatures, thereby allowing greater asynchrony.

There is an alternative algorithm that allows much greater asynchrony with-

out storage penalty. Since voting is used for error detection rather than masking,
it is not necessary to vote every signature value separately. Rather, we aim
to maximize the number of pairwise comparisons between values generated by

different processors.

The voter stores, for each pair of task instances, one signature, its tag, and
the id of the processor that generated it.

* 11 no value is currently stored, a signature triple arriving from either processor

can be stored.

o If a signature triple arrives from same processor as that of the outstanding

triple,that signature is ignored.
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9 If the arriving signature is from the other processor:

' it is ignored if its sequence number is smaller than that outstanding;

• it is stored if its sequence number is greater than that outstanding;

• it is voted if the sequence number of the arriving triple is equal to the
outstanding triple. Error reports are generated and broadcast when dis-
crepancies in the vote are encountered.

To implement this scheme, we require that successive signature values be
computed cumulatively, i.e., that the previous signature be included in the cal-
culation of the next. Thus, each vote includes all previously computed signatures,
and errors can be detected even though every signature value is not voted inde-
pendently. As for the simple algorithm, a timeout mechanism must be used to
ensure detection of processors that generate no signature or infrequent signatures.
Processors that generate signatures with inappropriate sequence numbers will also
be detected.

The maximum interval between votes in this scheme is equal to the maximum
interval between generation of signatures plus the maximum skew between the
execution of the task on different processors.

3.3.2 Error Masking

The voting of task state, as described above, can only be used to detect
errors. Reliable operation requires also that error masking be provided:

9 to mask transient errors,

* to move task instances from processors deemed faulty to other processors.

The algorithms by which the SIFT Global Executive diagnoses faults from the
error reports, and distinguishes solid from transient faults, are equally applicable
here and need not be described. In SIFT, voting automatically masks transient
errors and the Global Executive need take no action. When the Global Executive
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diagnoses a solid fault, tasks must be assigned to execute on other processors.

Those processors have already obtained the required input values, with errors

masked by prior voting, and can immediately assume the tasks. For the current

scheme, however, the Global Executive must issue explicit directives to mask both

solid and transient faults. This masking must be performed by copying the entire

program state from a processor deemed to working correctly. The entire state can

be copied at once, though it may be possible to copy on a task by task basis, thus

reducing the time for which processing is suspended.
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Chapter 4

Asynchronous Voting

The need for reliable computation has induced many designs for fault tolerant

computer systems based on the replication of the processors and appropriate error
detection and masking algorithms. Typical of such systems are SIFT and FTMP,
which use majority voting for error masking, and Stratus, which uses a dual-dual

structure for error masking. It is clear that these approaches, coupled with the

steadily improving reliability of components, now allow the construction of very

reliable systems.

All fault tolerant systems depend on some form of error masking algorithm,

coupled with error detection to allow the repair of faults. Some such systems

depend on backward error correction, in which a result is computed, the accep-

tability of that result is checked, and in the event of error the computation of the

result is repeated. Typical of such systems are classical Checkpoint-Restart sys-

tems and Recovery Blocks. Backward error correcting algorithms necessarily incur

a significant overhead for repeating the computation when an error is detected,
and also involve an acceptance test on the results, a test that is usually system
and application specific. We do not consider backward error correcting systems

in this paper but rather we examine Forward Error Correcting systems, in which
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the results are computed in a redundant form that allows error masking without

repeating any computation.

Two forward error correcting algorithms are currently used for masking
processor errors in reliable systems, majority voting and dual-dual. The majority
voting approach can mask errors caused by one faulty channel out of three, while

a dual-dual approach masks one faulty channel out of four. Both approaches

have the advantage that they are completely application independent. However

majority voting and dual-dual both depend for their operation on exact match
comparison between results of computations. Thus, for successful masking of

errors, it is essential that the fault free channels should generate identical results.

Both algorithms guarantee, with only a single faulty channel and with fault free

channels producing identical results, that fault free channels remain error free and

continue to generate identical results.

Two questions arise from this. The first concerns whether there are any
single point faults that could cause fault free channels to generate different results,
thus invalidating the presumptions of both majority voting and dual-dual. We

describe below a class of such faults and give algorithms for precluding them. The

second question relates to the possible increase in the risk of common mode faults

resulting from the need for all channels to perform exactly the same computation

on identical data at approximately the same time. We show below that error

masking algorithms can be devised that allow each channel to perform a different
computation on different data at different times.

4.1 Loss of Consistency

Figure 20 shows a majority voted three channel system, with one faulty and
two working channels. The successive levels of the diagram might represent dis-

tinct units within the channel, but equally they can represent successive iterations

of a computation performed by the same units. It is clear that, provided that the
two working channels generate identical results initially, each voting operation
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will receive as inputs two identical values and one erroneous value. The voters
in the two working channels will therefore both produce the same value for the

majority. Thus the working channels continue to generate identical results, and

consistency between working channels is maintained. However, if at any time the
three channels generate different results, the voters can find no majority and the

system fails.

WORKING WORKING FAULTY

CHANNEL CHANNEL CHANNEL

V :

Figure 20. A Three Channel Majority Voted System
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Consider Figure 21, which shows a system of three working channels and an
input to that system from a single faulty source. The nature of the fault is that
the source distributes different values to each of the three channels (the values A,

B, and C). Even on a broadcast bus, such faults can result from marginal timing
faults or from a marginal transmitter at the source and receivers with slightly

different, but within specification, characteristics. More complex communication
mechanisms, particularly where software is involved, permit many more such
faults. The figure shows that, if the faulty source distributes different values to
each channel, the three channels generate different results, the voters can find no

majority, and the system fails.

WORKING WORKING WORKING FAULTY
CHANNEL CHANNEL CHANNEL SOURCE

A C

-?

Figure 21. Distribution of Information from a Single Faulty Source to a Three Channel System

- 70 -



4. Asynchronous Voting 4.1. Loss of Consistency

Figure 22 shows a three channel system with two working and one faulty
channels. Here information present in just one of the channels is to be distributed
to all three channels and be used in a replicated calculation. The faulty source

distributes different values to the two working channels, and compounds the prob-

lem by repeating the same erroneous values (suitably transformed if necessary)

in the next, voted, stage of the system. Note that not only do the two working
channels continue to receive inconsistent values, even after voting, but also each

of the two working channels can be mislead into believing that it is the other
working channel that is faulty.

WORKING WORKING FAULTY
CHANNEL CHANNEL CHANNEL

Figure 22. Distribution of Information from a Single Channel to Three Channels
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The existence of this problem was discovered during the design of SIFT, a
reliable aircraft control system, and is discussed in [4], where it is shown that no
solution is possible in a purely three channel system. An algorithm, called the

interactive consistency algorithm, is given for a four channel system containing a

single faulty channel, and extended to the masking of N faults in a 3N+1 channel

system.

REPLICATING SOURCE
CHANNEL CHANNEL

Figure 283. The Interactive Consistency Algorithm
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The basic interactive consistency algorithm is given in Figure 23. One of

the four channels is the single point source of the information, and the three

other channels are used to replicate that information. Once the information is

replicated, any or all of the channels can vote the replicated information with
confidence that all voters in working channels will produce the same majority

value, or alternatively all working voters will find no majority and will return a

default value. For this algorithm to be effective against all faults, the channel

that is the source of the information must be distinct from the throe channels

that perform the replication.

Consider the possibility that the source channel is faulty. It may then

distribute different values to the other channels. The three replicating channels

must all be working, and thus every working voter must get the same set of inputs.

If at least two of the replicating channels have the same value, every working
voter will find that value as its majority, while if all three replicating channels

have different values, every working voter will return the default value. (If the
source is faulty, the interactive consistency algorithm cannot of course guarantee

a correct value from that source, but only a value that is consistent across all
working channels.)

Consider the possibility that one of the three replicating channels is faulty.

Now the source is necessarily working and will distribute the same correct value

to each of the two working replicators, which will replicate it. Thus each working

voter obtains at least two correct inputs and is able to produce the correct value

as its result.

In SIFT, four circumstances were found in which a value from a single source

had to be distributed to three replicated channels, namely:

o input from a sensor,

o error reports from a voter,

o interfaces between unreplicated and replicated tasks,

o synchronization of processor clocks.
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The first three of these require the use of the interactive consistency algorithm
to protect the system against malicious faults. The fourth is of special interest in
that exact agreement is not necessary for clock synchronization, and thus slightly
simpler algorithms guaranteeing approximate agreement suffice.

4.2 Maintenance of Approximate Consistency

In SIFT, as in many other fault tolerant systems, each processor has its own
clock and operation of the system depends on these clocks remaining synchronized

(to within 50ms in SIFT). Many prior systems used three channels, three clocks,

and a clock synchronization algorithm based on each clock synchronizing itself

periodically to the median clock of the three. It is instructive to consider why this
"obviously sound" approach is invalid.

Figure 24 shows a system wi%,h two working clocks (A and B) and a faulty

clock (C). We may assume that clock A runs slightly faster than clock B. Clock
C presents to clock A an erroneous clock value indicating that clock C is running

faster even than clock A, causing clock A to assume that it is the median clock.

Thus clock A makes no correction to its value. Similarly, clock C presents to
clock B a value indicating that it is behind even clock B, causing clock B to
assume that it is the median clock and make no correction to its clock value. By
this strategy, the faulty clock C can induce clocks A and B to operate without

correcting their clock values as they gradually drift apart until the system fails.
Single point component faults that could cause this "malicious" behavior have
been found even in purely analog clock systems.
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C A B
SEEN BY
CLOCK A

A B C
SEEN BYc~coI I I
CLOCK B

w APPARENT TIME

Figure 24. A Failure Mode of the Median Clock Synchronization Algorithm

It is tempting to attempt minor corrections to the three channel clock synch-

ronization algorithms, aimed at preventing this behavior. As yet we have no
rigorous mathematical proof that no three channel algorithm can exist, but we
believe that the approximate agreement needed for clock synchronization requires
the same number of channels as the exact agreement discussed above.

In SIFT, a four channel clock synchronization algorithm is used in which each
clock is periodically resynchronized to the mean of the four clocks. To protect
against wildly erroneous clock values, the algorithm imposes a bound within which
a clock value must lie to be included in the averaging calculation. For n processors
of which at most m are faulty, with R as the resynchronization interval and S as
the time taken for resynchronization, and if c is the maximum clock reading error
and p the maximum rate of clock drift, it can be shown that the maximum skew
between working clocks will not exceed

n -- (2c + p(R + 2(n - m)S
(n -3m) n

A similar problem has been examined by L. Webster 17,8] in closed loop
control systems. lie found that use of a median voting algorithm in a three
channel system favors the median channel, effectively disconnecting the two other
channels from the closed loop. Without cross coupling between the integrators
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of the three channels, this results in uncontrolled accumulation of error terms in

the integrators of two of the channels, rendering them useless for error masking.
With cross coupling, the integrators are vulnerable to precisely the same problem

as the clocks above.

The possibility of failure to maintain approximate consistency appears to
exist in any three channel system containing embedded integrators.

4.3 Asynchronous Multichannel Systems

Existing fault tolerant multichannel systems using forward error correction,
whether majority voted or dual-dual, depend on an exact equality between the

result values of the various channels. To ensure this exact equality of their outputs,

the various channels must all perform exactly the same calculation on exactly the

same input values at approximately the same time. This exposes such systems

to an unquantifiable risk of correlated faults generating errors simultaneously in

several channels. Such correlated faults might result from some external influence,

such as lightning or cosmic rays, or from accumulation of latent faults not within

the coverage of the diagnostics, or from design faults in the hardware logic or the

software.

A much higher degree of confidence in the resilience of the system to corre-

lated faults would result from a system design in which each channel performs
its calculation at different times, on different input values, and obtains different

outputs. It is even possible to consider the use of different algorithms in each of

the channels. Unfortunately, as exhibited above, without an exact match between

channels, standard voting techniques are vulnerable to faults that cause loss of
consistency between channels and thus system failure. We seek here to provide

alternative algorithms that permit differences between channels without risk of

loss of consistency.

The first thoughts on an approach to such asynchronous error masking

envisage a system of four channels. Each channel operates at the required iteration
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rate but completely unsyschronized with the other channels, thus minimizing
interaction between channels. Each result produced would carry a timestamp.

A processor, when voting such a result, would have access to the four most recent
values, one from each channel, together with their timestamps. From these it
would be possible to extrapolate to a most probable current value, as shown in

Figure 25.

VALUE

0

W

7-

~TIME

7
7

,7*

/

NOW
- TIME

Figure 25. Extrapolation from Past Values to a Most Probable Current Value

More formally, if Rip is the i'th broadcast result from processor p, containing

a value vi,p and a timestamp ti,p, and if the most recent result so far received from

processor p is n., the algorithm can be expressed as:

consensus value = F(v(,. ,a), t(n. ,a) V(n,,b), t(n,,b), V(n.,c), t(n.,c), V(n.,d), t(n4 ,d))

where F is some function to be determined, and a, b, c, d are the four processors.

Unfortunately, it is easy to show that the timestamps do not assist in the

maintenance of consistency in the absence of any constraints on the times at which
results are calculated. If greater weight is given to more recent values, those values

may be erroneous values increasing the vulnerability of the system. In particular,
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consider the case in which three good values are reported approximately simul-
taneously and subsequently an erroneous value is reported. Any preference given
to recent values can only render the consensus less reliable than that obtained by

ignoring the timestamps.

Consideration can also be given to the clock synchronization algorithm de-

scribed above. Here, if processor a is considering the values generated by proces-
sors b, c, d, with current values va, Vb, v, and vd,

For i in b, c, d:v vif v,v+6 Vv<va-6

then Va

else vi

and then: consistent result --- _+ V" + V +
4

That algorithm does indeed maintain consistency between channels, but the
rate of convergence is very weak and the drift and error signals that can be in-
troduced by undetected faulty clocks are much larger than the permitted drift

and jitter of working clocks. In the clock synchronization application this is not
critical for the individual clocks have performance characteristics much better

than those required for typical system applications. For a control system applica-
tion however, the errors introduced by a faulty channel can easily overwhelm the

control action of the system, and thus such an algorithm is clearly unacceptable.

A possible alternative approach requires that the four channels compute their
results at uniform phases within the iteration interval, one channel generating a
value at the start of the interval, a second channel generating its result a quarter
of the interval later, etc., as shown in Figure 26. This additional information

allows the algorithm an improved ability to compute a most probable current
value and to reject erroneous values. The uniform spacing at which results are
generated through the interval greatly simplifies calculations compared with a
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system in which such spacings are arbitrary, and thus assists in reducing the
voting calculation overhead.

A

D

C

B

A

I I
P TIME

Figure 26. Calculation of Results at Uniform Phases within an Interval

An initial evaluation of such a system was made, using the arithmetic mean of
the four values for the most probable current value, as in the clock synchronization

algorithm. Each channel uses fixed limits for the acceptable deviation of the
values computed by other channels from its own most recent value, but those

limits can differ for each of the other channels. Thus if b is an appropriate

acceptable deviation for the channel whose result was computed one quarter of

an iteration later, then 1.36 is an appropriate limit for the channel computing

half an iteration later and 1.26 for the channel computing three quarters of an
iteration later. These slightly larger values are permissible because the algorithm

gives greater weight to more recent values, though this must be balanced against
the effect of an earlier erroneous value augmenting its disturbance by influencing
the intermediate values.

Here, if processor a is considering the values generated by processors b, c, d,
with current values va, Vb, Vc and Vd,
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V-ifVb>Va+ 6  V b < Va 6

then v,

else Vb

t--ifv, >v+1.36 Vv, <va-1.36

then va

else v,

V -- ifd >va+1.26 VVd<tval. 26

then v,

else Vd

and then: consistent result = - 4

Unfortunately, while this algorithm appears to be better than the basic clock

synchronization algorithm, it is only slightly so and the drift and error signals

introduceable by a fault are still at least comparable to the maximum permissible
control action of the system. Thus the algorithm is still unacceptable.

We can refine the algorithm by giving different weights to each of the values,

for instance:
consistent result =- " +2v 13v 4vl

but the effect is marginal and still far from providing acceptable margins for

control purposes.

Error masking algorithms such as these act as filters and, like all filters,

necessarily introduce delay into the control loop. The algorithms above introduce a
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delay of about 2/3 of an iteration. To maintain the same margins of loop stability,

the introduction of such a delay would require an increase in the iteration rate of

about 33%.

A number of possible improvements to the algorithm are under consideration.
We are currently working on algorithms that make better use of the relative timing

of results, both by giving greater weight to more recent results in estimating the

most probable current value, and also by considering the values generated by other

channels when determining the acceptability of a result. A further possibility is
the use of a five channel system fully capable of rejecting the most malicious faults

which degrades on the first reconfiguration to a four channel system capable of

rejecting all faults except those malicious faults in which different information
is delivered to different destinations by the broadcast mechanisms. Since the
probability of a second fault during a mission is low, and the probability of a

malicious fault is also low, such a system might be judged to be adequately reliable.
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