
AD-R142 139 REAL-TINE APPLICATIONS IN MULTIPROCESSOR SYSTENS(U) 1/2
NAVAL POSTGRADUATE SCHOOL MONTEREY CH M K OZYURT

UNCLASSIFIED DE 3F/G 9/2 NL

EEEEEEEEEEEEE
EEEEEEEEEEEEEE
mEEEEEEEEohEEI
mEEEEEEEEEEmmoE

EEEEEEmohEEEEE
mEEEEEEEEmhhEI

NA-T- I A. ~ ld OF I[TANO.. -- --l.

7w.

N..W.

p

11111 1.012.0

125-

MICROCOPY RESOiuTION TEST CHART
NATIONAL BUE44J O STANDARDS - 143 A

NAVAL POSTGRADUATE SCHOOL
CD: Monterey, California

C D e 1

THESIS '-: "

C..'

RL,-TIMHE APPLICATI ONS IN MdULTI'PROCESSO)R SYSTEMS

by

b- H. Kadri Ozyurt

_0 December 1983

LU-

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution unlimited

84J 0.6 14 052
|o&

UNCLASSIFIED
SIECUITV CLASSIPICATION OPP THIS PAGE (when Da Entsed)

READ INSTRUCTIONSRORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
V. ~ ~ ~ ~ 2 WPNNUBRLGOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (01d Stei.J S. TYPE Of REPORT & PERIOD COVERED

Real-Time Applications in Multiprocessor Systems Master's Thesis
December, 1983

4PERFORMIGO ORO. REPORT NUMBER

7- AIJTMo*(@ 6. CONTRACT OR GRANT NUNBER(@)

M. Kadri Ozyurt

3. PCOPONING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORKC UNIT NUMBERS

Naval Postgraduate School

5% Monterey, California 93943
It. CONTROLLING OFFICE NAMIE AND ADGRESS1 12. REPORT DATE

*Naval Postgraduate School December, 1983
Monterey, California 93943 NMEOPAS

*14L MONITORING AGENCY MAMI ACORIESS(fl dflefat bat Confieluumg Office) IS. SECURITY CLASS. (of this a pon)

UNCLASSIFIED

15a. OIECL ASh FICATION' OOWNGRAOING
SCHEDULE

* le. *ISTRI§ITION STATEMENTr (*E ii Repert)

Approved for public release; distribution unlimited

17. DhSTRIUUTION STATEMIENT (of the abatgat sea'ed ift 2e00A20. It dfte.,amt hem)UPONt

I& SUPPI.EMENTARY NOTES

IS. KEY WORMS j'Cnbe on nre side it eaeea modi fdmntii by bNock nuber)

Simulation PL/I Computer graphics
Real-time RASM-86
Microprocessor MDS
Interrupt Linked-li st

S&. AGSTRACT (Caniftwe = tewwrv W.*Of neseseam min 1~110i by bWeek Misber)
-. ,This thesis builds a simulatica model of a tactical fire control system in a

real time environment, using a tightly connected multi-processing system
consisting of two single board computers. The additional hardware used in
this project consists of an AEH-3A video terminal with a built-in retrographics
feature, an MDS microprocessor development system, an analog-to-digital

P3 converter, and two sets of triplet potentiometers. The potentiometers are
used to feed analog information about ownahip, targetship, and gun position-

DO W3 EDTO 1Oil Imow NOV 68SIS O0$OL9TEt
& 8S/N 0 102- L. 0 14- 6601 UNCASSIFIED

1SECURITY CLSIFICATION Of THIS PAGE (Illio Date Enteeea'

-. A~5.**' ~..-'x q:~. : .

V. -- 7 '- 1. 1: 7 .F 1

UNCLASSIFIED
IEPIUTY CLASSCATION Of T11 6AGE (l6 0 Etwot

- to the simulation model, which then evaluates and computes projected
Z. target positions and gun control parameters, and displays the results.

L: I

.
.l

1

.4.

iF:

,,°

$, 00° -04-6612 UNCLASSIFIEDS~N1O-I..O4.6o1ICCUIlY
CLAUIIrCATION OP 11415 PA@S[(Ullim Daeta £nt~ed)

7. 7 . T

Approved for public release; distribution unlimited

Real-Time Applications in Multiprocessor Systems

by

M. Kadri'Ozyurt
Lieutenant J.G., Turkish Navy

Submitted in partial fulfillment of the requirements
for the degree of

4MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

.4, NAVAL POSTGRADUATE SCHOOL
December, 1983

Auth or: I" m.&~

Appovd y:------------------------------------ ---
Thesis Advisor

------- A ~ec ond _Reader_

----------------------~9 4-t -----------Chairman, Dep~artment of Comput~er Science

S. .. -e-ce a ..d--.ience.

3

ABSTRACT

This thesis builds a simulation model of a tactical

fire control system In a real time environment, using a

tightly connected multi-processing system consisting of two

A single board computers. The additional hardware used in

this project consists of an hDM-3A video terminal with a

built-in retrographics feature, an MDS microprocessor

development system, an analog-to-digital conver-

ter, and two sets of tri-Olet potentiometers. The Ioten-

tiometers are used to feed analog information about own-

ship, targetship, and gun position to the simulation model,

which then evaluates and computes projected target

positions and gun control parameters, and displays the

results.

4

".

TABLE OF CONTENTS

I• INTRODUCTION 11

A. BACKGROUND 11

B. DISCLAIMER 12

C. PURPOSE OF THIS THESIS 12

D. THESIS ORGANIZATION 15

II• SYSTEM HARDWARE 16

A. SYSTEM CONFIGURATION 16

B. HARDWARE 18

le MDS 18

a. Front Panel Control Board 19

b. Disk Interfaee Boards 19

2. Single Board Computer19

a. CPU20
b. Serial I/021

c. Programmable Interval Timer 22

d. Priority Interrupt Control 22

e. Interrupt Matrix 24

f. Dual Port RAM 24

3. A-to-D Converter Board25

4. ADM-3A Terminal o......... 26

5. RG-512 Retrographics Card 27 0

6. Potentiometers 28

" " . e . f ., .q ° , . . . ° I

II1. IMPLEMENTATION OF THE SOFTWARE 29

A. GENERAL INFORMATION 29

1. Modularity 29

2. Data Structures 30

3. Other Features 31

B. SOFTWARE FUNCTIONAL DESCRIPTION 32

1. Head Module 32

a. WAR.PLI 32

2. Initialization Module 3 p.

a. INITVARS.PLI 33

3. Simulation System Module 4

a. TACTICAL.PLI 34

b. DISPLAY.PLI 35

c. STATUS.PLI 35

d. IDLE.PLI 36

4. Real Time Executive Model 37

a. ARBITER.A86 38

b. AWAIT.PLI 39

c. SCHEDULE.PLI 39

d. THRESH.PLI 39

e. P2.PLI 40

f. P2.PLI 40

. P3.PLI 40

h. P4.PLI 41

.%

5. Miscellaneous Assembly Routines 41

a. KEYBOARD.A86 41

b. ATOD.A86 42

c. RINGBELL.A86 42

d. WAIT.A86 43

e. SUSPEND.A86 43

f. RESUME.A86 43

D. INITIALIZATION OF THE PROGRAMMABLE COMPONENTS 43

1. USART Programming 44

2. PIT P-rogramming 45

3. PIC Programming 46

E. ASSEMBLY, COMPILING, AND LINKING 47

F. TESTING47

IV. CONCLUSIONS50

APPENDIX A: HEAD MODULE PROGRAM LISTINGS52

A. VAR.PLI52

B. GLOBALS.INP53

C. CONST.INP55

APPENDIX B: INITIALIZATION MODULE PROGRAM LISTINGS. . .56

A. INITVARS.PLI56

APPENDIX C: SIMULATION SYSTEM MODULE PROGRAM LISTINGS .61

A. TACTICAL.PLI 61

B. DISPLAY.PLI65

i
" ' ' " ,. ~ .. ." '.m.. . - -. , - , .. .- - . , *- .* ,*_ * % . 4 -,% -

'4 C. STATUS.PLI71

D. IDLE.PLI74

APPENDIX D: REAL TIME EXECUTIVE MODULE LISTINGS76

A. ARBITER.A86 76

B. AWAIT.PLI 82

C. SHCEDULF.PLI83

D . THRESH.PLI84

F. P2.PLI 86

G . P3 .PLI .87

E. P4.PLI 88

- APPENDIX E: MISCELLANEOUS ASSEMBLY ROUTINES89

*,':, A. KEYBOARD.A8689

B. ATOD.A869

C. RINGBELL.A8691

D. WAIT.A86 92

E. SUSPEND.A86 * .93

F. RESUME.A8694

APPENDIX F: DYNAMIC DEBUGGING MODULE LISTINGS 95

A. LOCALS.AID95

B. ERRHAND.AID96

C. PROMPT.PLIg.......99

S.

8

-*,-4*-.,--,J .;, ,:. , , ..--,-. -. ... -... , . . -a
*4 ~ .,. *54j

E. PUTARS.PLI 1

* C F. CHANGVAPLI 105

G. BREAKSO.AID 108

E. BREAKPTS.PLI 109

I. TIMES.AID 110

P.APPENDIX G: A SAMPLE SUBROUTINE TESTING 112

APPENDIX H: A SAMPLE PROGRAM TESTING 114

LIST OF REFERENCES 117

" 4*j.

BIBLIOGRAPHY 116

".'. INITIAL DISTRIBUTION LIST 119

.',/ 9

.L

, . . . S .- a . . ,. , . - . . .• : - . . -. . . , o

* -. LIST OF FURES

2."SstmInterconnection 17

.2 2.2 Interrupt Matrix Interconnection 26

2 ,,3.1 The Structure of the circular linked lists . • . 31

S- .

"0 1

I. INTRODUCTION

A. BACKGROUND

To this date, many tactical control and decision

systems have been designed and implemented in various

places, where the nature of the job required fast response

and decision making. The NTDS (Navy Tactical Decision

System), for instance, is one such system implemented for

U.S. Navy ships in 1962, and is still in use today, with

recent hardware modifications.

The revolutionary developments in the LSI (Large Scale

Integration) and VLSI (Very Large Scale Integration)

industries during the period from 1972 to 1983 have made

the costs of computing much less expensive than the costs

of yesterday's systems. Today's products, which ar-e based

on these innovations in large scale Integration, have

proved to be more reliable and more versatile than the old

systems, and they can also te tailored to the needs of

whatever the nature of the requirements may be. The

serviceability, availability and inexpensiveness of these

products, in addition to the above-mentioned features,

offer both the designers and the Implementers an

opportunity to take advantage of this technology.

11

B. DISCLAIMER

Many terms used in this thesis are registered trade-

marks of commercial products. Rather than citing each

individual occurance of a trademark throughout this thesis,

all registered trademarks referred to in this thesis will

be listed below, following the name of the firm holding the

trademark.

Intel corporation, Santa Clara, California:

Intel, Intel 8086, iSBC 86/12A, MULTIBUS, MDS

Digital Research Corporation, Pacific Grove,
California:
CP/M, CP/M-86, PL/I-80, PL/I-86, TED, RASM-86,
LINK-86, DDT-86

EX-CELL-O Corporation, Irvine, California:

REMEX Data Warehouse

MicroPro International, San Rafael, California:
Wordstar

Micropolis Corporation, Chatsworth, California:
Micropolis

Lear Siegler, Inc., Anaheim, California:
ADM-3A

C. PURPOSE OF THIS THESIS

The purpose of this thesis is to create a simulation

model for real time tactical systems which can be used to

study the following features:

1. Multiprocessor system real time performance;

2. System reliability;

3. Graphics Display;

4. Software Engineering.

12

'4
.4 ' ., j ..; . - .; ; .;. '. - . .., '.;.". --.-.. .+-.°.-. , ..--. . . , . . .,.

-.:. ,,. , , , . -

In order to carry out these objectives, certain

hardware changes had to be made. The real time

applications necessitate the existence of an interrupt-

driven configuration originating from an accurate timer.

The interconnections and the appropriate Initializations,

both in the timing (PIT) and the interrupt (PIC) circuits,

were made on the iSBC 86/12A board, to give the required

real time clock. After achieving the desired form cf

operation, the real time executive module (which

" synchronizes the operation of the simulation system

programs) was tested in an Interrupt-driven environment.

After testing out both the real time executive and most of

. .the simulation system programs, the Individual execution

times of the simulation system programs were measured with

the aid of TIMES.AID, an %INCLUDE file (see Apppendix F.

It was intended to utilize two iSBC a6/12A single board

computers in order to study the real time performance of a

* tightly connected multiprocessing scheme. The Intel MDS

(Microprocessor Development System) allows the configura-

tion of such an expansion, through its 20 bit MULTIBUS

backplane. It was also planned to write the required

software to prevent a single point failure and to gain a

graceful degradation" in the case of a malfunction in any

of the single board computers.

4.

K.
13

l4VV

*

-'.*2"* * * * ** * * * * * * **.* * * ~ *~~*:.. . , .
t. 4. Y . '° -.-. *• **

"- The ADM-3A video terminal, with its built-in Retro-

graphics unit, was utilized for graphics display purposes.

The Retrographics card contains a Z-80A eight bit

microprocessor. This allows the computations for high

precision graphics to be done by the video terminal. That

improves the efficiency by removing much of the overhead

from the iSBC 86/12A single board computers. The

Retrographics unit can also make drawings and erasures

selectively. This improves the display time, which might

be lost due to total erasures and redrawings. In other

words, the selective erasing capability decreases the

. display time, such that the program may make partial

erasures, erasures of single objects.

The programs written for the simulation model were made

as modular as much as possible, to facilitate testing and

maintenance, and to make room for future alterations. A

procedure call was placed wherever a critical design

decision was to be made. This procedure call gives the

option of changing a critical design decision if one that

is more efficient is designed. Structured programming and

efficient data structures were meant to be utilized.

Circular linked-lists are examples of such a programming

technique.

14

D. THESIS ORGANIZATION

The thesis is organized into four cbalters. The frog-

ram listings developed to implement the simulation system

are appended at the end of the text. The first chalter

covers the background, the disclaimer for the trademarks

used in this thesis, the intended purpose of the project

and thesis organization. The second chapter covers the

" system configuration and the hardware components. The

third chapter deals with software modules written in both

PL/I-86 and RASM-86 assembly languages. The program seg-

ments are discussed in detail in this chaiter. Some infor-

mation about the data structures used in the developement

of the software are brought up, as well as the initializa-

tion of the programmable hardware components. In the final

chapter, some conclusions are presented on the work

involved in the implementation of the simulation system.

15

, p ".-

N ' " , " " l 6"."' "
°

'""""e ° ' " "
"

" w . • -,

- . .

II. SYSTEM HARDWARE

A. SYSTEM CONFIGURATION

The existing system hardware (see Figure 2.1) uses the

Intellec microcomputer development system (MDS), which

allows the expandability required to set up a multi-proces-

sor system. Within the MDS, the boards required for the

operation of the system are interconnected through the

MULTIBUS backplane. These boards are the following: two

ISC 86/12A boards, the front panel control board, an A to

D converter board, and two interface boards for disk

drives. The MLS utilizes an Intel disk drive unit which

has twc disk drives. Standard 8-inch IBM floppy disks are

- used as the removable storage media.

._ v,. Fach ISBC 86/12A board had a RAM capacity of up to

OFF77 hexadecimal (65535 decimal) eight bit bytes. Since

the MULTIBUS is a 20-bit address bus, the address space of

the whole system can be expanded up to 1 megabyte. The

single board computers can address this memory space by

their 20-bit address bus. Each board is so wired that

the first 64 Kbyte RAM segment resides on its board (0000

through 77770). The 641 RAM segments on each board can be

wired to be accessible from the MULTIBUS as dual ported

memories in the 1-megabyte address space. One of the ISBC

86/12A boards is the master of the master-slave

1 %

I.

I,._ - .

ig-ur ... I

assigned Ih secon

V-.. or -'< urE

confgura in ure 2.1 - Sytemr oncupie thesgmnnwt

I:

ass.igne Aheseon 64 emn 100-(F~) n ti

.17

Fiue21- ytmItecneto

. ordinary memory locations. An analogy to that is that they

resemble read only memory that can only be read but not

written in to.

The master ISC 86/12A is connected to the ADM-3A video

terminal through it's serial I/0 connector. This is the

only means of communication of the system to the outside

world. The results of the simulation are fed to the video

display through this interconnection. The ADM-3A video

terminal has a built-in retrographics feature. The

consequence of this is that the ADM-3A works not only as an

alphabetic terminal but also may act as a graphics device

due to the fact that the retrographics card Itself has a Z-

BSA microprocessor built In. This microprocessor allows

the high precision graphics computations to be done without

the need of any other external processors. In this case,

ADM-3A has four operational modes, each one of which has

an impact on the simulation graphics and will be discussed

later in this chapter.

B. HARDWARE

In the following subsections the individual components

that comprise the system hardware are presented.
1...

The Intellec Microcomputer Development System (MDS)

is a complete development tool which allows the

integration of both microcomputer hardware and software

18

.- ;

X% -- i v*-s,

W.. X It . .--

development. The system operates under the control Cf an

8086 microprocessor which supervises all system resources

such as the main memory, I/O peripheral devices, and

optional system facilities, such as A-to-D converters.

It can support up to 7 ISBC 86/12A boards in this

configuration.. Some of the important boards are presented

below.

a. Front Panel Control Board

The Front Panel Control Board contains circuits

for controlling the front panel options. It also provides

some signals for bus control, clock generation, and the

bootstrap program. A bus time-out system is included to

prevent the CPU from halting operation if a nonexistent

memory location or an incorrect I/0 port is addressed.

This board ;roduces two types of clock pulses:

(1) Bus Clock (10 MHz), used In Bus

transactions;

(2) Common Clock (10 MHz), used by system

devices;

b. Disk Interface Boards

These two cards contain the disk controller

interface for each drive in the Disk Storage Unit.

2. Silg _qe Board Computer

Intel's Single Board Computer ISBC 86/12A is used

in the system. It is a member of Intel's complete line of

8- and 16-bit single board computer products and is a

19

complete computer system on a single printed-circuit assem-

bly. The ISBC 86/12A board includes a 16-tit central

processing unit (CPU), 32K bytes (32,768 bytes) of dynamic

RAM, a serial communications interface (USART), three pro-

grammable parallel I/O ports, programmatle timers (PIT),
V..

.riority interrupt control (PIC), Multibus interface con-

trol logic, and bus expansion drivers for interfacing with

other Multibus interface-com;atible expansion boards. Also

included is a dual port control logic to allow the ISBC

86/12A board to act as a slave RAM device to other Multibus

interface masters in the system, as is the case in this

Iroject. In the current state of the hardware, the RAM

capacity of both ISBC 86/12A boards is expanded u; to 64K

bytes by installing an iSEC 300 Multimodule RAM option. A

read only memory of 16K bytes is also added to both iSBC

86/12A boards. The important components that make up the

ISBC 86/12A board are discussed in the following

subsections.

a. CPU

The iSBC 86/12A Single Board Computer is

controlled by an Intel 8086 16-bit Microprocessor (CPU).

The 8086 CPU includes four 16-bit general purpose registers

that may also be addressed as eight 8-bit registers. In

addition, the CPU contains two 16-bit pointer registers and

two 16-bit index registers. Four 16-bit segment registers,

20

."5

°°--. - ° ° o .. - . ° .

-2, K .' , , ":" 'e . ":" "/ ." .".".". .' '- ..' ..,.-, ''.,''" . ," ".-.","• • * % * • -,.. ,. ., ., . 5.-,-

specifically: code, data, extra, and stack segment

registers; allow extended addressing to a full megabyte of

memory. The CPU instruction set supports many variations

of addressing modes and data transfer operations, signed

and unsigned 8-bit and 16-bit arithmetic including hardware

multiply and divide, and logical and string operations.

The CPU architecture permits dynamic code relocation,

reentrant code, and instruction lookahead.

b. Serial I/0

The serial I/0 port is controlled and

interfaced by an Intel 8251A USART (Universal

Synchronous/Asynchronous Receiver/Transmitter) chip. The

USART is individually programmable for operation in most

synchronous serial data transmission formats.

In the synchronous mode, the following are

programmable:

(1) Character length

(2) Sync character (or characters)

(3) Parity

In the asynchronous mode the following are
programmable:

(1) Character length
(2) Baud rate factor

(3) Stop bits

(4) Parity

21

Li. -. 7 7t V .

In both the synchronous and asynchronous modes, the

serial I/O port features half- or full-duplex, double

buffered transmit and receive capability. The USART

transmit and receive clock rates are supplied by a

programmable baud rate/time generator.

c. Programmable Interval Timer

-.% Three independent, fully programmable 16-bit

interval timer/event counters are provided by in Intel 825.

Programmable Interval Timer (PIT). Each counter is capable

of operating in either BCD (binary coded decimal) or binary

modes; two of these counters are available to the system's

programmer to generate time intervals under software con-

trol. In this thesis project the counterl is used to

generate timing pulses required for the real time clock

operation to the system software. These pulses are sent to

the PIC via the interrupt matrix as being an IRI Input

request.

d. Priority Interrupt Control

The priority interrupt control (PIC) which can

be programmed to respond to edge-sensitive or level-sensi-

tive inputs, treats each true input signal condition as an

interrupt request. After resolving the interrupt priority,

the PIC issues a single interrupt request to the CPU.

Interrupt priorities are independently programmable under

22STi3a

o.-* .aO' % ;w -%%.'*.

'- . - - -% ~ .

under software control. The programmable interrupt

priority modes are:

(1) Nested Priority. Each Interrupt request

has a fixed priority: input 0 is highest, input 7 is

lowest. This mode of operation is chosen in this

thesis project;

(2) Fully Nested Priority. This is

essentially the same as item (1) above, with the exception

that the requesting input is not locked out and pending

- requests are still accepted;

() Auto-Rotating Priority. Priorities are

equal. The last received input becomes the lowest priority

input;

(4) Specific Priority. Software assigns the

priorities;

(5) Special Mask. Interrupt requests that are

being serviced are masked out;

(6) Poll. The CPU's internal interrupt enable

is disabled. Interrupt service is achieved by a

programmer-initiated Poll command.

The ISBC 86/12A board provides two sorts of
4.

interrupts which are bus vectored (By) and non-bus vectcred

(N3V). The former deals with the interrult requests

from off-board sources where the latter deals with various

on-board sources. The interrupt requests are fed to the

23

P .. 00 ,%-

. ,,, , t , . .,,,~~' V> ' t. ,t'.V * ,% , ',,'4' "-,-.V. ",,v". ... ,."., , • - -. " -",'••"-' " "-* . - '.•- "-" -

under software control. The programmable interrupt

priority modes are:

(1) Nested Priority. Each interrupt request

has a fixed priority: input 0 is highest, input 7 is

lowest. This mode of operation is chosen in this

thesis project;

(2) Fully Nested Priority. This is

essentially the same as item (1) above, with the exception

that the requesting input is not locked out and pending

requests are still accepted;

'(3) Auto-Rotating Priority. Priorities are

equal. The last received input becomes the lowest priority

input;

(4) Specific Priority. Software assigns the

priorities;

(5) Special Mask. Interrupt requests that are

being serviced are masked out;

(6) Poll. The CPU's internal interrupt enable

is disabled. Interrupt service is achieved by a

programmer-initiated Poll command.

The iSBC 86/12A board provides two sorts of

interrupts which are bus vectored (BV) and non-bus vectcred

(NEV). The former deals with the interrupt requests

from off-board sources where the latter deals with various

on-board sources. The interrupt requests are fed to the

23

*'

' ., : ,',',:..-:. -',< .-< < .- i .-..- ,.-1< ;.,,,. . ,- .,< ..- . .. , .. , ,., .

4~~~~7 - -Y~ V-

PIC through the jumpers of the interrupt matrix, which will

[-- be discussed in the next subsection.

e. Interrupt Matrix

Interrupt requests may originate from eigbteen

sources without the necessity of external hardware. The

interrupt matrix connects the selected source lines to a

maximum of eight selected inputs of the PIC. It is an

array of pins which can be connected to each other via

jumper wires. There are two types of pins. The eighteen

source lines constitute the input pins, where the jins that

lead to the IRO through the IR7 inputs of the PIC

constitute the output pins. (See Figure 2-2 for the

Interconnection scheme of this thesis project.)

f. Dual Port RAM

The iSBC 86/12A board has an internal bus for

all on-board memory and I/O oierations. Hence, local (on-

board) operations do not involve the MULTIBUS interface,

making it available for other iSBC 86/12A boards for a

multi-processor scheme. Dual port control logic is

included to interface so that the ISBC 86/12A board can

function as a slave RAM device (or common memory) when not

in control of the Multibus interface. The CPU has priority

when accessing on-board RAM. After the CPU completes its

read or write operation, the controlling bus master is

is allowed to access RAM and complete its operation. Where

both the CPU and the controlling bus master have the need

24

IL2.

to write or read several bytes or words to or from the on-

board RAM, their operations are interleaved. For CFU

access, the on-board RAM addresses are assigned from the

bottom up of the 1-megabyte address space; i.e., 00000-

SOEPFFh. The slave RAM address decoding lcgic includes

jumpers and switches to allow positioning the on-board RAM

Into any 64-K segment of the 1-megabyte system address

space. The slave RAM can te configured to allow either

16K, Z2K, 48K, or 64K access by another bus master, with

the installation of the iSBC 300 Multimodule RAM. In this

thesis project all of the 64K-byte memory of the slave ISBC

86/12A is made accessible to the master. Furthermore,

both ISBC 86/12A boards are configured to occupy the first

128K section of the 1-megabyte address space.

3. A-to-D Converter Board

This board is electrically and mechanically compa-

tible with any iSBC 86/12A board and with MDS. Both the

anolog input and output systems are contained on a single

printed circuit board that is treated as ordinary memory

locations by the CPU (memory mapping). This board simply

gets the analog signals form the potentiometers and con-

verts them to the digital signals compatible with TTL

standards. The output of the A-to-D converter is one byte

per potentiometer input, which varies from +127 to -128.

This Is the maximum value range a fixed binary (7) variable

can assure in the PL/I language, by definition. So, the

25

• € ~~~~~..... \,~~.........._...-.. ..-....

W- . 97 1 - 4 4 4 . 4 4

fATC7/I
I ~T#Atd

576

II

IC

Figure 2.2 -Interrupt M'atrix Interconnection

software system thinks of the potenilometer value as chan-

ging between +127 and -128. The A-to-D converter board is

* configured to occupy the segiwent DO00: (14th 64K portion of

the 1-megabyte address space'o.

4. ADM-;A Termnalg

This terminal is the only means by which the

Joperatcr communicates with the system. It is connected to

the system with the master ISBC 8e/12A board's serial

1/0 connector. It is an Interactive device which is used

to enter, display, and send information to a host computer,

26

. . r w r- . -. r,. - ". - . .. ,, r .. . s-,,;. -r . o . . r .- r , .

and to receive and display information from that com uter.

The information exchange between the terminal and the

computer is made at different baud rates, ranging up to

19200. In this scheme, a 9600 baud rate is used. The

keyboard contains 59 keys. The display memory is a RAM

which Is capable of holding 1920 characters. Data

characters are displayed on 24 or 12 equally-spaced rows,

each consisting of 80 columns.

5. RG-512 Retrographipcs Card

The RG-512 Retrographics printed circuit board is

added to the ADM-%A terminal to extend the data and

graphics display capabilities with the aid of a Z-80A

built-in microprocessor. The RG-512 employs the bit map

method of storing graphic images. This information is

stored in a digital memory as a rectangular array of

bits. Each bit is mapped onto the CRT screen and can cause

a bright spot to be displayed. The RG-512 displays graphs

and pictures by writing the proper bits into the

graphics memory. One of the important features of the RG-

512 is the ability to erase portions of the screen

selectively. This is desirable when the application

requires the use of dynamic displays employing motion or

rotation to convey Information. The RG-512 has four modes

of operation. These are the ADM-3A Alpha Mode, the 4010

Alpha Mode, the Point Mode, and the Vector Mode. The first

one is equivalent to the operation of ADM-3A without RG-

27

4-.. . - -. .. .- .- . .

512. The latter three modes make use of the bit map

method.

6. Potentiomete rs

Two sets of triplet potentiometers are used as

simulating analog sensor information sources. They feed

anolog signals to the input of the A-to-D converter board,

varying between -5V and +5V.

.28

4.?I

AN*

A"

28

III. IMPLEMENTATION OF THE SOFTWARE

A. GENERAL INFORMATION

1. Modularity

A modular and extensible simulation program is

aimed at simplifying the debugging and testing phase and at

facilitating possible alterations. The hierarchy of the

modularity is composed of a head module and four second-

level modules connected to the head module. These second-

level modules are the initialization module, the simulation

system module, the real time executive module, and the

- dynamic debugging tool module. These modules are

se;arately compiled PL/1-86 and RASM-86 programs. Each

"-- ~ main module is further subdivided into third-level modules

to gain a finer granularity of modularity. In the

.- ' programs, two useful special features of PL/I-86 are

used. Those are %INCLUDE and %REPLACE statements. 'By

those statements, global declarations that are the same in

the scope of the simulation program need not be declared

within each and every module. Instead, they are grouped

together in the GLOBALS.INP declaration file. The %REPLACE

statement allows constants to be declared as in the other

high-level languages like Pascal, such that the value of
R.7T the constants can be changed without having to go through

every program segment in which they occur.

29

2. Data Structures

Linear arrays and arrays of structures (records)

are used in the simulation program as data structures.

These data structures are then linked to each other to

establish circular linked lists. Figure 3.1 (on the next

page) explains the general picture of the circular linked

lists in the simulation program. Fixed size data

structures with fixed binary pointers are used in the

program, rather than pointer data, to avoid the dynamic

system overhead and to retain the benefit of random access

capabilities inherent to linear arrays.

The structure SHIP has two pointers, in addition to

the fields that hold specifications about the ships in the

area. Those pointers, PTR and LINK-SHIP have different

purposes for different ships. SHIP (1), for instance,

being the ovnship points to two different circular linked

lists. PTR points to the enemy ship's circular linked list

by pointing to the target ship which is engaged (tracked)

for the sea battle. The other pointer, LINK-SHIP points to

the friendly ships circular list. The PTR field of other

ships, on the other hand, points to another circular linked

list, WAKE, to record their past positions that will be

used for tracking and display purposes, where LINK-SIP

points to the other ships in their category. The reason

for using circular lists in this program is the ease with

30

"_*4 '' '' . " " " " , o ". . . '. . . , . ., . . -.*..

,-., - ,,,.,,,.

4a.

..-,Figure 3.1 The structure of the circular linked lists

.; which one traverses through the lists and which does not

,-',-necessitate the use of another external pointer.

ii" 3. Other Features

The PL/I exception handlers (ON tody statements)

.4

'-'.are used extensively~in the dynamic debugging module, and

" ' _ in various interactive parts of the ;rogram, to Intercept

the error conditions that might te raised during the

,' ;testing and execution of the progTram. The ON body

%. an %[INCLUDE file. Upon receiving; the control through a

raised error condition, the staterents In the file prompt

.. 1

,* .4: . ; ; : ;'? ' < -. i .-. ,.... , .

I1.-- . . " "--. -.-.. . .

the user and give the control over to the REENTRY.PLI

interactive debugging tool.

One of the exceptional features of the simulation

program is the use of non-local goto statements which are

. unacceptable in structured style of programming. It is an

inevitable requirement, by the PL/I language, to suppress

the raised error conditions by a non-local goto statement.

It is also used in some parts of the dynamic debugging

module, in order to by-pass the flow of control over to the

debugging program when the optional ERRORON boolean switch

is closed. Explicit comments are offered wherever non-

local goto statements are used, to avoid confusing the

reader.

B. SOFTWARE FUNCTIONAL DESCRIPTION

In the following sections, the structure of the modules

-N and the programs that belong to those modules are

described. The program listings are presented as

appendices.

1. Head Module

- a. WAR.PLI

This main procedure is the head node of the

hierarchical structure of the procedures used to modularize

and structure the implementation of the simulation program.

It contains two call statements, one of which is to

the initialization module, to set up the tactical database

4A.

• ":'.. .. 32

, ._ * .

a nd to initialize various external variables that are used

throughout the simulation program. The other call is for

passing the control to the real time executive module where

.A the control stays for the rest of the prcgram execution.

'' A listing of WAR.PLI is presented as Appendix A.

2. Initialization Module

a. INITVARS.PLI

This PL/I routine, when called from the main

procedure, constructs the tactical database in an

interactive manner. It first initializes the pool of

available SHIP and WAKE modes for later use. It then gets

the interval of time which is used to update the

information about ships in the tactical area and other time

dependent functions. This time interval must be equal to

the period of the real-time Interrupts which depend on the

S.-> timing constants used during the initialization of PIT.

Detailed information will be presented later under the

hardware initialization section. Then the control proceeds

to establish the tactical database interactively. In this

session, the initial information about azimuth, range,

friend or enewy are written to the proper fields. Then, a

circular linked list of four nodes is composed and the PTR

field is made to point to that list. Finally, dependent on

whether friend or foe, that particular node is added to the

appropriate circular linked list. INITVARS.PLI makes use

of various internal subroutines for linked list

33

operations. Those subroutines simply extract a node from

the pool of available nodes. After establishing the linked

lists, the INITVARS.PLI initializes external variables that

are used throughout the program. A listing of INITVARS.PLI

is presented in Appendix B.

3. Simulation System Module

This module is composed of four PL/I Irograms which

perform the simulation under the control of the real-time

executive module. The following subsections describe the

functional description of those programs. The listings of

the program segments that comprise this module are

presented in Appendix C.

a. TACTICAL.PLI

This routine has the highest priority among the

system module programs. It first updates the position of

each ship in the tactical area by calculating the relative

velocity and multiplying that with the time interval, which

is the period of timing interrupts that occur every 250

milliseconds. The control then proceeds to calculate the

future positions of the ships, for those ships which have

been in the area for more than 4 seconds, and which are

included in the enemy ship circular linked list. The

routine uses the polynomial least squares curve fitting

method with Legendre Polynomials. The coefficients are

pre-calulated for the position of the ship one second after

the time of calculations, based on the past four wake

-- .34

-, , ,- - - .,.% ".. , ,. ,,. . . % . • - - .. .

-. -.- 7md

points. TACTICAL.PLI also calculates the trajectory of the

travelling projectile if the gun Is fired.

b. DISPLAY.PLI

This routine, which is invoked every second, is

the interface of the simulation program for the ADM-3A

screen. It simply traverses the circular linked lists and

generates the appropriate dis;lay objects for the ships,

their aim points which the own ship aims at, and the gun

aim point. It also displays the travelling projectile if

it is fired by the system. The routines for generating the

objects are internal for the DISPLAY.PLI. Another routine,

TRANSLATE, translates the cartesian coordinates to the

stream of characters that represent the x and y grid coor-

dinates of the RG-512 Retrographic Screen Memory. Finally,

the internal routine DRAW puts the generated cbjects on the

screen in vector mode. According to the key variable, D,

it either sets the data level to white and puts the object

on the screen, or sets the data level to black and makes

selective erasures.

c. STATUS.PLI

This routine, which is invoked at every second,

is the Interface of the system to the ADM-3A video terminal

keyboard. The commands for the system are read from the

keyboard by calling the serial I/0 chip (USART) interface

assembly program, KEYBOARD, which will be presented under

Miscellaneous Assembly Routines.

",35
- , *-w "* * ' , " , , i -'"< .,'-,",'-"."..',.,,'"- ''.---' "%'%".:.V' . '.'-.; '-. '.

>5: The are four boolean variables used in the

simulation program. Those are ENGAGED, MAGNIFIED, FIRED,

and EREORON. The STATUS.PLI sets these variables

according to the value of the parameter passed to the

assembly Interface routine. ENGAGED (with "E") shows if

the system is engaged to any target (for TACTICAL.FLI).

MAGNIFIED (with "M"), which is used in DISPLAY.PLI, shows

which display scale is being used and what the reference

point of the display is. Usually, the display on the

screen is relative to own ship. But that can be changed so

that the ship engaged is at the center to the screen by

setting MAGNIFIED true. FIRED (with "F") boolean variable

is used to commence the ballistic calculations and

display. It is used both in TACTICAL.PLI and DISPLAY.PLI.

.Finally, ERRORON (with "D") is used to transfer the control

to the dynamic debugging module.

d. IDLE.PLI

This program is the idle routine for the

V system, as it waits for a 250 millisecond timing interrupt

to occur. It is the interface program for the six

potentiometers which are used as sensors for the own ship

velocity vector, the known ship velocity vector, and the

gun elevation and bearing. The velocity vectors are com-

posed of speed and course components. The IDLE.PLI gets

this information by calling the Analog-to-Digital Converter

interface assembly program, ATOD. The control then

proceeds to convert this information, which Is In the fixed

binary (7) form in range (-128, +127), to approyriate

coordinate values, e.g. 50 knots maximum speed and the true

azimuth between 0 and 360 degrees. This routine calculates

own ship velocity compcnents in cartesian coordinates for

later use by TACTICAL.PLI. It also makes the initial

ballistic computations for the gun.

4. Real Time Executive Model

This module works as the interrupt handler fcr the

real time Interrupts that are initiated by Irogrammable

hardware components every 250 milliseconds. It is invoked

by the WAR.PLI the first time and interrupts thereafter.

It responds to the timing interrupts, which tell the system

that data must be collected at this point in time. The

module then resolves the priorities of the simulation

system module programs and arbitrates the flow of control

during the execution of the system. The real time

executive module makes use of the operating system

primitives, which are presented in the following

subsections. The labels P1 through P4 are associated with

the simulation system modules TACTICAL.PLI, DISPLAY.PLI,

STATUSOPLI, and IDLE.PLI, respective)y. The listing of the

programs included In the Real Time Module are presented in

Appendix D.

%-:-.

37

Y," : .': ",. : .'., , . .- : " . .. -. '.. . - ,.,. -* .-. -, .. ,- .. '., . . ,- .. X . ..

b,'-o
°

a. ARBITER.A86

This assembly language program is the real

workhorse of the entire system. It first allocates stack

areas for four simulation system during the assembly time.

Upon invocation by the main procedure, it initializes the

programmable hardware components and transfers the control

to the P4.PLI process, which in turn calls IDLE.PLI

repetitively until the first timing interrupt occurs. The

interrupt entry point PROCO, where the process switcning

N. starts, is entered by the interrupt software. At this
'

point of execution, the external variable fourthevc, which

signals the system that 250 millisecond event has o-cured,
is updated to the new value by incrementing it by one.

After storing the state of the ;rogram which is interrupted

during its execution, ARBITER.A86 invokes SCHEDULE.PLI to

obtain the name of the ready program that has the highest

priority. If there are none, the interrupted program is

resumed. If there is any ready process of higher priority,

then ARBITER.A86 loads the process state and gives the

control over to it. During this process switching, the

upper boundaries of the stack areas are checked for a

possible stack overflow, which could happen if the time

interval was not sufficiently large for the system module

routines to finish execution before the next timing

Interrupt comes. ARBITER.A86 has a second entry point,

STORISTATUS, for the synchronization primitive AWAIT.PLI to
8.

,.9

~38

a , ,,',,', ,-,Z ', ,...".-....-,...-.....-.-,.......... ,.,.

enter when the correct number of interrupts for the calling

synchronization primitive have not yet occured.

b. AWAIT. PLI

This synchronization primitive is invoked as as

an operating system primitive, by any process, P1 through

P3. AWAIT compares the value of the external variable

FOURTHEVC to the threshold value of the calling process to

see if it is greater or equal to the value at which the

process is to proceed. If not, then it calls the

STORESTATUS entry of ARBITER.A86 to relinquish the control

to the awaiting ready process, or to the P4.PLI that calls

the IDLE.PLI simulation system program as the system idling

routine.

c. SCREDULE.PLI

This synchronization primitive is called by

ARBITER.A86 to return the name of the highest priority

ready process. It does that simply by Identifying the

first ready process on the list. Because the scheduler

scans the list in the descending priority order, the

highest priority ready process will automatically be

scheduled.

d. THRESH.PLI

This routine, when invoked by processes P1

through P3, increments the corresponding thresholds in an

external one dimensional array called THRESHOLD. This

table is used by the AWAIT.PLI and SCHEDULE.PLI

39

,m mI / '•" "S: ,' ' '' ' ' ' ' ' " *. . . -. " " " *

synchronization primitives to decide whether or not a

process is ready for execution.

e. P1.PLI

This process is basically an infinite loop.

Within this loop, there are three subroutine calls. The

routine first makes a call to AWAIT.PLI to see if it is

-. time for it to proceed. If not, the control doesn't come

": back again; instead, the current state of the process Is

stored by ARBITER.A86 and the highest priority ready process

/ is executed. If it is the time, the control proceeds to

call the simulation system module program TACTICAL.PLI.

After that, a call to THRESH.PLI is made, where the

threshold value that is allocated to P1.PLI is incremented

by the proper value. When the infinite do loop repeats

itself, the call to the AWAIT.PLI will indicate that the

process TACTICAL.PLI is not yet ready for execution and

control is transfered to the highest priority ready

process.

f. P2.PLI

This process is identical to P1.PLI in form

except the call is to DISPLAY.PLI instead of to

TACTICAL.PLI.

g. P23.PLI

This process is identical to P1.PLI in code

except the call is to STATUS.PLI.

40

!'S,. . A a .- - .'"
"

. .""".. ."""" "".•'. ."."" """ " ."."'.. . .

* •.. % *

h. P4.PLI

This process is similar to P1 through PZ in the

structure described above. There is only one call in the

infinite do loop, which is to IDLE.PLI. This routine is

always ready for execution and, basically, repeats itself

until the next timing interrupt comes along.
* 5. Miscellaneous Assembly Routines

There are few machine dependent functions that

cannot be accomplished by the high-level language PL/I-86.

Assembly routines were written to interface the PLI-86

programs with the hardware of the 8086 microprocessor.

These assembly routines are included within the main body

of ARBITER.A86. There are two parameter passing

conventions from PL/I-86 to the assembly language routines.

In the first one, there is only one argument passed in the

accumulator, as in a function call. In the subroutine'C.,

calls, which is the case here, the address of the VECTOR

that contains the pointers to the actual parameters is

passed in the BX register. The following subsections give

some descriptions about those assembly routines. Appendix

E shows the listings of the modules.

- a. KEYBOARD.A86

This routine is invoked by STATUS.PLI to read

the keyboard. It is written so that the keyboarO :tatus is

read to see if a key had been pressed instead of waiting

Indefinitely until a key was depressed, as would be the

41

* .**-°*.* .

case had the PL/I get statement been used. The program

first reads in the status of the serial I/0 interface :hi

4. (USART) to see if a character has been received from the

keyboard. If it has, then the character is read and placed

into a corresponding character variable, which is the

formal parameter in the subroutive invocaticn. If there is

no character received since the last attempt to read, the

ASCII equivalent of 0 is put in key. The reascn for that is

that the character 0 is not teing used as a ccmmand.

b. ATOD.A86

This assembly routine is called ty IDLE.PLI to

read the first six Analog-to-Digital Converter Board

outputs. The reason to write this assembly rcutine is that

the Analog-to-Digital Converter ports are memory mapped to

be in the segment DOOOH. The PL/I function UNSPIC works for

those memory locations which are included within the first

64K bytes of memory. The assembly routine sets the proper

segment and source index registers tc pcint to those

locations and makes an ordinary read operation. This value

*is then put in the formal parameter passed tc the PLI-86

routine.
.,

c. RINGBELL.A86

This assembly routine simFly sends a bell

character to the video terminal and causes a bell sound to

ring. This is equivalent to sending a control G in PL/I-86.

*p.

,:<.42

The only difference is that it can be used in other

assembly routines.

, d. WAIT.A86

This assembly routine reads in the status of

the I/0 interface chip and waits until the transmitter

buffer is empty; i.e. the character which had been in the

buffer is received by the video terminal and an

acknowledgement signal is sent back to the interface chip.

This routine is used by assembly routines that put out a

message.

e. SUSPEND .A86

This routine simply resets the interrupt bit of

the program status word (PSW) to disable the 8086 CPU from
acknowledging the interrupts. It is used by the dynamic

debugging system to stop the real time clock.

f. RESUME.A86

This routine first sets the interrupt flag to

enable the 8086 CPU to respond to the interrupt requests.

It also resets the PIT that is used to generate the timing

clock pulses for the PIC.

D. INITIALIZATION OF THE PROGRAMMABLE COMPONENTS

The ISBC 86/12A board has three programmable hardware

components, which were described in Chapter II. In the

following subsections, the initialization sequences for

43

., *, ' ' .* ",, * ; * " ***-*.. . . -,.. .,*. . -... V V " . . , * - . ..

those hardware components which produce the real time

synchronization are described.

1. USART Programming

The 8251A USART converts parallel output data into

virtually any serial output data format. The US&RT also

converts serial input data into the parallel data format.

Prior to starting to transmit or to receive data, the USART

must be loaded with a set of control words. These control

words, which define the complete functional operation of

the USART, must immediately follow a reset (internal or

external). There are two types of control words, namely, a

Mode instruction and a Command instruction. Once the Mode

instruction has been sent, the Command instruction can be

sent at any time prior to a read/write operation. The

following assembly code is used to initialize the USART

read/write mode:

MOV AL,37E
OUT O0DAH,AL

During the course of execution, the serial I/O

interface routine executes the following assemtly code to

read the USART status and to read the receiver buffer if

any character has been received:

IN AL,OODAH

AND AL,02H
JZ KEYBOARDI
IN AL,O0DeH

44

rn

2. PIT Programming

The 8253 PIT has three independent counters.

They are Counter 0, Counter 1, And Counter 2. The input

clock frequency is 22.1184 MHz supplied by a crystal oscil-

lator. The input clock frequencies can be adjusted via

jumpers. In this project, Counter 1, with the default

factory jumper connection (E59-E60), is used. The input

frequency is 153.6 KHz. It is chosen to work in mode 0 so

that it gives an interrupt on terminal count. The formula:

N = TC

where

N is the count value for the counter

T is the desired interrupt time interval
in seconds

C Is the internal frequency (Hz,

From the above formula, the count number for

the counter 1 is found to be 38400 decimal (9600 hex).

Since it is not possible to express this number in four

decimal digits, the binary count mode is selected. The

counter is initialized by sending a mode control word,

followed by a down-count number. Once the counter is

initialized, sending the down-count number resets it to the

start condition. The following sequence of code is used to

program the PIT:

45

IL

MOV AL,50H
OUT 00D6H,AL
MO? ALO00H
OUT 00D2H,AL
MO? AL,60H
OUT 00D6H,AL
MOT AL,96H
OUT 00D2H,AL

3. PIC Progrr In

The 8259A PIC is programmed in the nested mode.

The master PIC with no slaves is accepted. For this parti-

cular situation, the initialization words 1,2, and 4 are

sent. The initialization word 2 is set to represent the

interrupt vector address. This is the address that the

control is given when the interrupt 1 occurs (04H). An

interrupt mask byte is used to mask out the irrelevant

interrupts for the purpose of this thesis. The PIG can be

reset after each interrupt simply by sending the EOI (end

of interrupt) status byte to the appropriate address. The

initialization sequence is as follows:

CLIMOV AL,11H

OUT 00COH,AL
MOT AL,20H
OUT 00C2H
STI
MOT ALOFDH
OUT 00C2H,AL

To reset the PIC,

MOT AL,20H
OUT 00CO,AL

46i, -.. % e ." e " "% " , " % " ' " ' .• * .- -• -•
& , - = / _ f : .. ' # " ., ' , " .. . - e . " . . . - . - - , ' - - - - - - - - - - . . .

E. ASSEMILY, COMPILING AND LINKING

The assembly language code was written in RASM-86 and

assembled by using the RASM-86 Assembler. This assembler

produces relocatable files that can then be linked with

other separately compiled or assembled object files by Link

86. This linker accepts three types of input files. Those

are the object file, library file, and/or an input file.

Input files are very useful tools in that they include

input command lines by an input file instead of writing the

command line each time the programs are to be linked. The

PL/I-86 compiler is used to compile PL/I programs. This

compiler requires a 128 Kbyte RAM, as opposed to the PL/I-

80 compiler, which requires 48K RAM.

F. TESTING

The hierarchical simulation program modules were

designed and tested in a top-down manner. An extensive

dynamic debugging module was used in the testing of

individual modules (see Appendix F). The testing phase is

first started with writing a skeletal model for the real

time executive module. The PL/I-86 output statements

(stubs), which printed some appropriate numbers, were

inserted in the places where the simulation system module

programs were invoked. The DDT86 (Dynamic Debugging Tool)

was used to test and debug this skeleton program. Since It

was a real-time interrupt driven program, the Interrupt

47

Le i , - , - • • . ° % - . o . - ° .,-••

enable bit (W) of the program status word was reset to zero

(0) to control the flow of the program. Some error

checkings are inserted in the main assembly language

program, ARBITER.A86, to see whether the process switching

was done correctly, or to see if any of the stacks

allocated to the synchronization primitives have

overflowed.

After testing the real-time executive model, the second

phase was the testing of the subroutines that are used by

the simulation system module programs. Appendix G shows an

example for testing a subroutine.

The third phase of the testing was to test and debug

the simulation system program. The dynamic debugging

module was used for this purpose. This module is composed

of PL/I-86 %INCLUDE files and external PL/I-86 programs.

The %INCLUDE files are inserted into the various parts of

the program being tested. The code of this debugging

system is bordered with comment lines from the main body of

the program it tests. It is not visible to the program,

i.e., it brings its local and global variables with the

LOCALS.AID declaration %INCLtUDE file. It is possible to

manipulate the system's external variables through the

debugging system module, IDLE.PLI.

The PL/I-80 had been used in the early stages of the

testing phases because of the existence of redundant Intel

8080 based systems in the Naval Postgraduate Micro-Lab.

48

-/ r .'-, , , '.'.'. : -- '" '- .'-/ /" ."*- - " . -. - .. *. .- .-.....-.. . -_- ... ,.. *...

But in the later stages, it was realized that this had

caused some problems, due to some incompatibilities between

the PL/I-80 and P1.11-86 systems. These deficiencies of' the
PL/I-86 have necessitated the test ing and debugging of the

programs to be done in the PL/1-86 based systems, The need

for such a thorough debugging system module was then

realized.

4.49

.. -S ,77

IV. CONCLUSIONS

The original objectives of the thesis have been

accomplished, to a large extent. The hardware

interconnections intended to promote real time clock

operations have been successful. A test model, which

comprised the real time executive module and the PL/I put

statements, instead cf the simulation system modules, was

developed to check the system's operation and timing.

Correct results appeared on the screen. Then, the testing

and debugging of the simulation system programs showed that

their algorithms and operations were correct, with the

exception of the simulation system program, DISPLAY.PLI.

The testing of DISPLAT.PLI showed that the objects to be

displayed on the video screen were not successfully put on

the screen. One error, which was an automatic conversion

error, was found in the routine TRANSLATE and corrected by

using a step variable. However, an error still exists in

the body of the procedure DRAW.

Since the testing phase of the DISPLAT.PLI has not

been accomplished, the objective of synchronizing two iSBC

86/12A boards could not be accomplished. The intended

purpose for this objective was to make the second ISBC

86/12A jump to a waiting loop with the Initial power start

up Interrupt (reset), to load the assigned simulation

program segment to the common RAM, and to direct it to the

,'..:

S.- 50

V.% " -. . ,r * ,** " " . - - ... --

beginning of that program segment, through a bus vectored

interrupt.

A hierarchical and modular program model was

constructed through the use of data structures and

structured programming. The modularization allows possible

future changes to the programs.

The simulation system program constructed in this

thesis could be a basis for further enhancements towards a

complete fire control system, or a related tactical

simulation system, due to its modularized nature.

The dynamic debugging module designed to test and

debug the simulation system modules can be used for the

purpose of testing any other programs, simply by changin z

the names and formats of the variables that the debugging

system manipulates. The advantage of using the %REPLACE

* and %INCLUDE pre-processor statements, which are peculiar

to the PL/I-86 version of the subset G, makes such an

implementation feasible.

-51

. 4

4!

. -

APPENDIX A

HEAD MODULE PROGRAM LISTINGS

A. WAR.PLI

, Prog Name : WAR.PLI
* Date : December 81

Written by M. Kadri Ozyurt
For Thesis
Advisor Professor Kodres
Purpose : This is the main procedure of the
modular simulation program. It invokes the initialization
module to set up the target database and to initialize the

* external variables used throughout the simulation ;rogram.*/

WAR:PROCEDURE OPTIONS(MAIN);

/*external procedures*/

DCL
(INITVARS,ARBITER) ENTRY;

/*this call to the initialization module initializes the
simulation system*/

CALL INITVARS;

/*this call gives the control over to the real timeexecutive module*/

CALL ARBITIR;

END WAR;

52

* B. GLOBALS.INP
/,*

Prog Name : GLOBALS.INP
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This %include file contains the declara-
tions of the global variables used in the simulation program

DCL
(COUNTER,SECONDS,MINUTES,HOURS,WAKEPTR,
SHIP_ PTR,AVAILSHIP,AVAILWAKE,P ,Q,NUMBERSHIPS,
NODE,TARGET,KNOWN) FIXED BIN(?) EXTERNAL,
FOURTHEVC FIXED BIN(15) EXTERNAL ,

D FIXED BIN(7) EXTERNAL,
-. (DT,T PRIME,T OF,T) FLOAT EXTERNAL,

(I,J,XX.YY) FIXED BIN(15),
CURRENTPROC FIXED BIN(7) EXTERNAL ,

A (ENGAGED,MAGNIFIED,FIRED,ERRORON,DONE) BIT(1) EXTERNAL

KEY CHARACTER (1) EXTERNAL ,
-;.- THRESHOLD(0:2) FIXID BIN:15) EXTERNAL ,

ARG(0:5) FIXED BIN(?) EXTERNAL,

(VX_ OWN,VYOWNgVX TARGETVYTARGET,VXREL,
VY REL,VXROUND,VYROUND,VR) FIXED DECIMAL EXTERNAL,

ALPHA FIXED DECIMAL EXTERNAL ,

(AX.SUM,BX_SUM,CXSUM,AYSUM,BYSUM,CY SUM,
AX,BXCX,AY,BT,CT,X AT5,Y AT5,R,DX DT AT5,
DTDTAT5,DRDTAT5XOFFSET,YOFFETM)FIXED DECIMAL

EXTERNAL,

*.- (O1,02)(5) FIXED DECIMAL EXTERNAL

1" SHIP(MAXSHIPS) EXTERNAL,
2 VELOCITY,

3 COURSE FIXED DECIMAL INIT(0.0),
3 SPEED FIXED DECIMAL INIT(0.0),

2 POSITION,
3 AZIMUTH FIXED DECIMAL INIT(O.0),
3 RANGE FIXED DECIMAL INIT(0.0),

N53
4 ,'' , % . . . ,. , , .. , , . ,

2 COORDINATES,
* -. 3 X FIXED DECIMAL INIT(0.0),

3 Y FIXED DECIMAL INIT(0.0),
2 AIM,

3 1_AIM FIXED DECIMAL INIT(0.0),
3 Y AIM FIXED DECIMAL INIT(0.0),

2 COUNT-FIXED BIN (7) INIT(O),
2 NUMBER FIXED BIN (7) INIT(O),
2 PTR FIXED BIN (7) INIT(O),
2 LINK SHIP FIXED BIN (7) INIT(O),
2 FRIEND BIT(1) INIT(FALSE),

1 OBJECT(MAXSHIPS) EXTERNAL,
2 LOCATIONS,

' 3 U (0:10) FIXED BIN(15) INIT((11) -1),
3 V (0:10) FIXED BIN(15) INIT((11) -1),

2 AIMS,
3 U AIM (0:10) FIXED BIN(15) INIT((11) -i,
3 VAIM (0:10) FIXED BIN(15) INIT((11) -1),

2 GUN,
3 U-GUN (0:10) FIXED BIN(15) INIT((11) -1),
3 V GUN (0:10) FIXED BIN(15) INIT((11) -1),

2 WAKES,
3 U WAKE (0:10) FIXED BIN(15) INIT((11) -1),
3 U WAKE (0:1e) FIXED BIN(15) INIT((11) -1),
3 V WAKE (0:10) FIXED BIN(15) INIT((11) -1),
3 VYWAKE (0:10) FIXED BIN(15) INIT((11) -1),

1 GUN EXTERNAL,
2 POSITION,

3 AZ FIXED DECIMAL INIT(O.0),
3 ALT FIXED DECIMAL INIT(O.0),

2 COORDINATES,
3 1 -_GUN FIXED DECIMAL INIT(0.0),
3 YGUN FIXED DECIMAL INIT(0.0),

1 WAKE(4) EXTERNAL,
2 COORDINATES.

3 IWAKE FIXED DECIMAL INIT(O.0),
3 Y WAKE FIXED DECIMAL INIT(0.0),

2 LINK WAKE FIXED BIN(7) INIT(O),

(SUSPEND,RESUME,ARDITER,INITVARS) ENTRY,
>41 KEYBOARD ENTRY (CHARACTER(1)),

ATOD ENTRY (FIXED BIN(?),FIXED BINt?));

54

• . .11

... :1 7 '7 7

'44

C. CONST.INP

/*j
Prog Name : CONST.INP
Date : December 83
For : Thesis
Advisor : Professor Kodres
Purpose : This %include file contains the constant
declarations used throughout the program.
*/

%REPLACE
MAX WAKE BY 4, /*max number of wake nodes*/
MAX SHIPS BY 2, /*max number of ship nodes*/
MAXVARS BY e2, /*max number of variables*/
OWN BY 1, /*ownship indicator*/
RMAX BY 25000.0, /*max gun range*/
MAXSQ BY 1.073E+09, /*max argument for SORT */
TOP BY 32767.0, /*max number for fixed (15)*/
0 BY 10.7246, /*gravitational con.yd/sec2*/
VM BY 518.0, /*muzzle velocity*/
A BY 512, /*x coord. for center*/
B B! 390, /*y coord. for center*/
K BY 1.40625, /*azimuth proportionality c.*/
L BY 4.513, /*speed proportionality c.*/
TWO PI BY 360.0, /*definition for 360 degree*/
PI BiY 3.1416, /*definition of pi rad/180deg*/
00 BY 1.0, /*legendre poly. of zero deg.*/
TRUE BY '1'B, /*boolean true*/
FALSE BY 'O"B, /*boolean false*/
NIL BY 0, /*in linked list terminology*/
CLEAR SCREEN BY '\N[L', /*char. sequence for retro.*/
CLEAR ALPHA BY 'Z',
VECmob By '1', /* * t /
POINTMOD B! \ /*" .. . */
ALPHA4010 By '\ , I
ALPHA3A BY '\" x', /* ".*/
WHITEMOD BY ':(a', /* ... */

BLACKMOD BY "wi['; /* $/

55

.- X.-- -

APPENDIX B

INITIALIZATION MODULE PROGRAM LISTINGS

A. INITVARS.PLI

4* /*
Prog Name : INITVARS.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor Professor Kodres
Purpose This routine prompts the user to give
the time interval (it) and constructs the tactical circular
linked list in an interactive manner. The control then
roceeds to initialize the external variables.

Initvars:proc external;

dcl

%include'const.inp';
%incl ude'gl obal s. I np';

/*this iterative loop Initializes the pool of available
wake nodes*/

do i1 to max wake-1;
end; link-rake(i)-i+I;" ' end;

link vake(pax.vake)-nil;

/*this sequence initializes the pool of available ship
nodes*/

do i-1 to max ships-i;
link ship()i1

end;
link ship(max ships)-nil;
put skip listl'Enter the time interval (dt) in seconds');

56

*r7. 7 ~

/* the following block is an interceptor for a too large
input value*/

on overflow begin;
put list('*** too large, try again');
goto initl;

end;
Initl:

put skip list('>');
get list(dt);
revert overflow;
put skip list('Construction of the tactical database');
numbersb ips=0;
done=false;

4- /* this procedure call gets a ship node from the pool of
available ships and assigns its address to ship pointer*/
ship_ptr=getshipo;
do while (done);

put skip llst('Enter the position of ',numbersbips,
'th ship in true azimuth and in yards');

-/*the following two on condition bodies are for the input

line at init2*/
on error begin;

put list('*** bad value,try again');
goto init2;

end;
on fixedoverflow begin;

put list('*** too large,try again');
end; goto init2;.d end;

init2:
put skip list('>');
get list(azimuth (shlp_ptr),ranee(shlp_ptr));
revert error;
revert fixedoverflow;
put skip list('Priend or foe (P/E)?');
put skip list('>');
get list(key);

/* the following sequence adds the ship node to the
appropriate circular linked list, friend ships or enemy
ships, according to the friend boolean value entered*/

if (key='J')!(key='f') then do;
friend(ship ptr)=true;

if link ship own)=nil then
linkship(shipptr)=shipptr;

else
link ship(ship_ptr)=linkship(own);

/*end ifi*/

57

4-5 ", "X', --,:," , ,C ,".'-. &.,' " .'. ,'- .7.' , ~7 -: .- ':' .''.' " -" ,-","-,,

link ship(own)=ship._ptr;
end 7*do*/;

else do;
friend (ship_ ptr) =fal se;
if ptr(own)=nil then

else linkship(ship_ptr)=ship_ptr;-:<-:"else

link ship (shipp tr)=ptr(own);
/*end 1 */

4% -

. end ptr(own)=ship ptr;
.. -."end /*if*/;

/* the following procedure call and the iterative loop get
available nodes from the pool, construct a circular linked
list of four nodes, and assign the address of the list to
the ptr pcinter of the ship node which is being
constructed*/

wakeptr=getwakeo;
qvwakeptr;
do i-i to 4;

p-wakeptr;
wakeptr=getwake();
link wake(p)=wakeptr;

end /*do*/;
link wake(wake ptr)=q;
ptr(ship ptr)=vakeptr;
number(ship_ ptr)=numberships;

,*-,, put skip list('Would you like to enter another ",
"sbiF (T/N)?);

put skip list('>');
get list(key);
if (key-'Y')!(key='y') then do;

shipptr-getship();
if shipptr=nil then
/-*-nd done=true;

Sf/*end if*
end;

else
.* -done=true;

/*end if*/
end /*do*/;
seconds-0;
minutes=4;

~hours=@;
:Y vake-ptr=0;

target=O;
tprime-0.0;
t of-0.0;

58

'..o -". '. . " , ., .,'~ r r' - , . - , - - - ,.

link ship(own)=ship.,ptr;
end 7*do*/;

else do;
friend(shipptr)=false;
if ptr(ovn)=nil then

elselinkship(ship_]ptr)=ship_ptr;-' else

link ship(shipptr)=ptr(own)
/*end i?*/

ptr(own)-ship.ptr;
end /*if*/;

/* the folloving procedure call and the iterative loop get
available nodes from the pool, construct a circular linked
list of four nodes, and assign the address of the list to
the ptr pointer of the ship node which is being
constructed*/

wakeptr=getwake(
q-wakeptr;
do i=1 to 4;

pvwake ptr;
"'9i wake ptr=getwakeo();

end link wake (p) =wake ptr;.. '. end /*do*/; -

link wake (wake_ ptr =q ;
ptr(sbip ptr)=wake ptr;
number(shp_ptr)=numberships;
put skip list('Would you like to enter another

"sbi (YIN)?');
put skip list('>');
get list(key);
if (key-'T')I(key='y') then do;

shipjtr-getship();
if ship_ptr=nil then

done=true;
/*end if*/
end;

else
done=true;

/*end if*/
end /*do*/;
seconds=O;
minutes-;
hours-B;
vake-ptr-0;
target=B;
t prime=0.0;
t of=0.0;
t;*O.O;

" , , ,. -. .. -.... ._5. .

friend(own)-true;
knowu=2; 1* engaged ship no by the sensor ~
x offset=0.0;

m;50.0;
* fourthevc-0;

currentproc-4;
* engaged-false;

magnified-false;
f ired-f alse;
erroron-false;
key='0';
threshold(0)-.; threshold(I)=4; threshold(2)=4;
vX own-0 .0;
vy own=0.0;
vxztarget=0.0;
vytarget-0.0;
vx rel-0.0;
vy rel=0 .0;
vx round-0.0;

vr-0.0;
.4-' alpha=0.0;

ax -sum-0.0; bx sum-0.0; cx sum=0.0;
ay sum=0.0; by sum=0.0; cyr sum=0.0;
ax;0.O;tx=0 .O;cZx0.0;
ay-0.0;by=0.0;cy=0.0;
x at5-0.0;yat5=0.0;
r;0.0;
d~x dt at5=0.0; dy dt at5=0.0; dr dt at5=0.0;

/*getship, when Invoked, extracts a node from the pool of
X available and returns a pointer value pointing to that

node. It puts an error message if there is no available
node*/
getship:procedure returns (fixed bin(7));

/* d*l
1* cl%include 'globals.inp';

if availship-nil then do;
put skip list('No more available ship nodes');
return(nil);

elsedo;end /*do*/;
node-avails hip;
availship-linksbip(availship);

59

W1-

return(node);
end getship;

/*getwake does the same function as getship except for the
operations made are on wake nodes*/
getwake:procedure returns (fixed bin(7));

/* dcl */
%include 'globals.inp';

if availvake=nil then do;

put skip list('No more available wake nodes');
return (0);
end /*do*/;

else do;
node=availwake;
availwake=linkvwake(availwake);

end /*if*/;
return(node);

end getwake;

end initvars;

60

"',,V

APPENDIX C

SIMULATION SYSTEM MODULE PROGRAM LISTINGS

A. TACTICAL.PLI

Prog Name : TACTICAL.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professo.r Kodres
Purpose : This external routine calculates and
updates the positions of the ships in the tactical area
and the future positions of the ships that belong to
enemy ships circular linked list pointed to by ptr(own),
and
and calculates the trajectory of the travelling projectile
if fired

TACTICAL :PROCEDURE EXTERNAL;

/*

DCL*/
%INCLUDE 'CONST.INP';%INCLUDE 'GLOBALS.INP';

/*following sequence of code updates the present positions
of the ships in the tactical area*/
DO 1-2 TO NUMBERSHIPS;

._ TARGET - SPEED(I) * SIND (COURSE(I));
VT TARGET - SPEED(I) * COSD (COURSE(I));
VZ -XREL = IX TARGET - VX OWN;
TY REL = VT'TARGET - VT-OWN;
WAKRPTR = PTR (I);

61

~ %~%i%

IL

Y WAKE(WAKE PTR) = Y(1);

1(1) = 1(1)- VXREL DT;
Y(I) - Y(I) + VY REL * DT;
PTR(I) = LINK WAKE(WAKE_PTR); /*ptr(i) points tc*/
IF COUNT(I) <4 THEN /* the oldest wake*/

COUNT(I)=COUNT(I)+I;
/*END IF*/

END /*DO*/;

/*calculating the future positions (aim points) starts
here by using the least squares method with legendre
polynomials. The coefficients are pre-calculated according
to the fifth second including the zeroth second*/
FILTERING:

TARGET - PTR(OWN);
DONE-TRUE;
IF (TARGET=NIL) THEN

DONE-FALSE;
*, /*END IF*/

DO WHILE (-DONE);
IF COUNT(TARGET)=4 THEN
BEGIN;

AX SUM - X(TARGET) * 00; /*Leg. poly. 0 deg.*/
BX SUM - X(TARGET) * 01,(5);/* , 1 -- */
CXSUM = X(TARGET) * 02(5);/* 2
ATSUM - Y(TARGET) * 00;
BYSUM - T(TARGET) * 01(5);
CT SUM - T(TARGET) * 02(5);
WAKE PTR - PTR(TARGET)I;J= ;

DO WHILE (LINKWAKE(WAKEPTR) _= PTR(TARGET));
AXSUM - AX SUM XWAKE(WAKE-PTR) * 00;
31 SUM - 31 SUM + I VAKE(WAKE PTR) * 01(J);
CI SUM - CI SUM + X WAKE(WAKE PTR) * 02(J);
ATSUM - AT SUM + Y-WAKE(WAKE-PTR) * 00;
BYSUM - BY SUM + T-WAKE(WAKE-PTR) * 01(J);
CT SUM - CT-SUM + I-WAKE(WAKEPTR) * 02(J);

AKE PTR-LINK_WAKE(VAKEPTR);

END /*DO*/;

AX - AI SUM / 5.;
3I - 2.0 * D1_SUM / 5.;
CI - 2.0 * CX SUM / 7.;
AT -AT_SUM /-5.;
BY 2.0 BT SUM/ 5.;
CT - 2.0 * CT-SUM / 7.;

62

9T,' . ,. - . ." ," - " .•. . - -. .-

* ' '# ," . ';", , . " " " *. .- - - " " ' " - " " • " " •. . . .-. .

X AT5. - AX - 1.5*BX + 3.5*CX;

YTAT5 - AY - 1.5*BY 4.*l

INCONVENIANCE:
/*this begin block is inserted to avoid the complications
which might arise from the automatic conversions*/

BEG IN;
DCL (XSTEP,YSTEP) FIXED,

(xFYF,RSQD) FLOAT;

IF (ABS(X -AT5)>TOP)I (ABS(T-AT5)>TOP) THEN
RSQD=-1 .0;

ELSE DO;
XSTEP=BINARY ,XAT5);
TsTEP=BINARY(T-AT5);
IF=FLOAT (XSTEP);
T J=FLOAT (Y ST EP)
RSQD=XF*IF+YF*YF;

END /*IF*/;
IF (RSQD<0.0)!(RSQD>MAXSQ) THEN

* R=0.0;
ELSE

R=SQRT(RSQD);
/*END IF*/

END INCONVENIANCE;

17 (R-0.0) I (RRMAX) THEN DO;
I AIM(TARGET)=0.0;
T AIM(TARGET,=O.0;

END 7*DO*/;
ELSE DO;

ALPHA = ASIN,,G*R/VM**2) 2.0;/*IN RADS*I
VN - TM *COS (ALPHA);
T PRIME R / VR;
DI DT AT5 = Z3.0*CX - 0.5*BX;
DT DT AT5 = :5.0*CT - 0.5*BY;
Di.DT AT5 = (X-AT5 * DX DT AT5 +

YIAT5 * DYDT-AT5) / R;
T0OF = (R + DR DT AT5 * T PRIME) /VR;
X AIM(TARGET) =X-AT5 +Di DT AT5 T ~OF;
T-AIM(TARGET) = IAT5 + DYX DT-AT5 *TOF;

END /*17*7;
END /*IF*/;

TARGT-LNK HIP(ARGT);/*next target?*/
IF' TANGET=PtR(OVN) THEN

DONE-TRUE;

/*ND TRIF*/KSI(ARE) .

63

,-,

ROUNDTRACK:
/*the ballistic calculations start here*/

IF (FIRED) THEN
BEGIN;

VI- REL - VX ROUND - Vx OWN;
VY REL = VY-ROUND - VY-OWN;
I GUN = X GUN + VX REL * DT;
I-GUN = YGUN + VYTREL * DT;
T-= T - DT;
IF T<=O THEN DO;

PUT LIST(''G');
FIRED = FALSE;

END /*IF*/;
END /*IF*/;

.%/ END TACTICAL;

,.

'6

."Z

.4

* ~~~~~~~~~~~~ "w-c. V-r----.--~--~. -..- UU-.]" L
.

-* -,,- . ,. 7 W.-.-. . -

B. DISPLAY.PLI

Prog Name : DISPLAY.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This routine first puts the time in
hours, minutes, and seconds. The control then proceeds to
call DRAW subroutine in an iterative loop to erase the old
objects. It then calculates the positions of the objects
relative to either ownship or the ship that has been
targeted according to MAGNIFIED.Then it calls DRAW to
display the objects.

.q

DISPLAY :PROCEDURE EXTERNAL;

/*DCL*/
%INCLUDE 'CONST.INP';
%INCLUDE 'GLOBALS.INP';

PUT LIST("'1 _X'); /*ENTER ALPHA MODE*/

IF MINUTES=0 THEN
BEGIN;

PUT LIST ('N[%P);

PUT EDIT (HOURS)(7(2));
HOURS = HOURS+1;
IF HOURS=24 THEN

HOURS = 0;
/*END I7/

END /*IF*/;

I SECONDS-0 THEN
BEGIN;

PUT LIST ('"[- (');
PUT EDIT (MINUTES)(F(2));
MINUTES - MINUTES+1;
IF MINUTES=60 THEN

MINUTES = 0;
/*END IF*/

END /*IF*/;

PUT LIST ('[- +');
PUT EDIT (SECONDS)(F(2));

65

I r-4

, * * -. ,' %, , , . ,. .U; , ,,. ,,, . ., . ,, . . . , , . .. - , .

-7 7

SECONDS =SECONDs+1;

IF SECONDS=60 THEN
SECONDS = 0;

/*END IF*~/

PUT LIST('MX-); /*HOME CURSOR*/

/*the following calls erase the objects from the screen*/I

DO I=1 TO NUMEERSHIPS;
CALL DRAW(OBJECT(I).U,OBJECT(I).V,D);
CALL DRAW(OBJECT(I).UU WAKXOBJLCT(I).VV WAKE,D);
CALL DRAW(OBJECT(I).UAIM,OBJICT(I).VAII,D);

END /*DO*/;
CALL DRAW(OBJECT(l).UGUN,OBJECT(l).VYGUN,D);

/*the following sequence converts the coordinates of the
objects to the grid coordinates of the' screen and generates
the sequences of the coordinates for the objects*/
DO I1 TO NUMBERSHIPS;

XX-A+:BINART((I(I)-I OFISET)/M);
YT=+BINARY((Y(I)-Y:OF1'SET)/M);
I(FRIEND(I)) THEN
CALL GENPRIEND(XX,TY,OBJECT(I).UOBJECT(I) .V);

ELSE
CALL GENIOE(XI,YY,OBJECT(I).U,OBJECT(I).V);

/*EJD I?*/
CALL GZNWAKZ(1I,YT,OBJXCT(I).U WAKE,OBjECT(I) .VVWAKE);
XI-A+BINARY((XWAKE(PTR(I))-X.OFFSET)/M);
T!=B+BINARY((YWAKI(PTR(I))-YoFFsET)/M);
IF COUNT(I)=4 THEN

CALL GENWAKE(XX ,Y! ,OBJECT (I).UUWAKE,
OBJECT(I) .VTWAKE);

-' XX=A+BINARY((X .AIM(I)-X OFFSET)/M);
TT=B+BINAR((TAIM(I)-Y OFFSET)/M);
IF ((XX=A)&(TY=B)) THER

IF 1=1 THEN
CALL GENOURAIM(XX,TT,OBJECT(I) .UAIM,

OBJECT(I) .VAIM);
ELSE

CALL GENAIM(XX,Y,OBJECT(I) .U AIM,
OBJECT(I) .VAIM);

/*END IF*/
/*END 11*/

* END /*DO*/;
1I-A4BINARY! C (GUN-1 OFFSET)/M);
TT-B+BINAR ((Y.GUN-Y..OflSET) /M);
CALL GENG;UN(XTT,OIJECT(l).UGUN,OBJECT(1).V GUN);

66

/*the following sequence draws the objects by calling the
routine DRAW*/ '

* D=1;
DO I=1 TO NUMBEESHIPS;

CALL DRAV(OBJECT(I).U,OBJECT(I).V,D);
CALL DRAW(OBJECT(I).UVAKE,OBJECT(I).VWAKE,D);
IF (ENGAGED) THEN CALL DRAW(OBJECT(%I).U AIM,

OBJECt(I).VAIM,D);
END /*DO*/;
IF FIRED THEN CALL DRAW(OBJICT(l).UGUN,OEJECTt~l).TGUN,D);

/ * the following procedures produce the sequence of screen
grid coordinates for various objects*/

GENFRIEND:PROC (X,T,ij,V);

DCL
(1,T) FIXED BIN(15),9
(U,V)(0:10) FIXED PIN(15);

U(0)-1;V(2)=T-3;

U(4)-1+6; ()Y3
U(5)=X+6; ()-3

U(6)-1;V(6)=r-8;
U(5-l V($=J

END GINFRIEND;

GENFOI:PROC.(CX,!,U 9v);

DCL
(1,Y) FIXED BIN(15),
(U,V)(0:10) FIXED BIN(15);

U(2)-X-; 2)Y8

END GINFOX;

67

GERNWAKE:PROC(X,Y,U,V);

DCL
(1,T) FIXED BIN(15),
(U,V)(0:10) FIXED BIN .15);

* *~ END SINWAKE;

GENOURAIM:PROC(X,Y,U,V);

DCL (X.Y) FIXED BIN(15),

(U,V)(0:10) FIXED BIN(15);

U(2)-X; v(2)-Y;
U(3-;V (3~)-Y -8;

U 4 =X; v(4)=Y+S;

U 5 =-J; V(5)-;

END GINOURAIM;

* GINAIM:PROC(X,YU,V);

DCL
(19Y) FIXED BIN(15),
(U,V)(0:10) FIXED PIN(15);

U(1)-X-4; V(i)=T-4;
U(2)-X; V2'T
UR()=X+4; ()Y4
U (4)=-4; V(4)-Y+4;
U(5)=-; V(S)=-;

END GENAIM;

68

.I

-.:

GENGUN:PROC(X,Y,U,V);

DCL (X,Y) FIXED BIN(15),

(U,V)(0:10) FIXED BIN i5);
i ~uM(M--+1; V(e)-¥-i;

U(1-X+I; V(1)=Y+l;
U(2)=X-I; Vk(2)=Y+I;
U(3)=X-1; V(3)=Y-1;
Su(4)=X+l; v(4)=Y-i;', ,U (5) =-I; V (5)=-J;

END GENGUN;

/*this procedure receives two arrays and a key variable as
pararaters, and either displays the object or erases it*/
DRAW:PROC(U,V,D) EXTERNAL;

DCL
(U,V)(0:10) FIXED BIN(15),
(I,J,BD) FIXED BIN(7),
RUB CHAR(I) EXTERNAL,
C(7) CHAR(I),
Z1(0:3) CHAR(i) BASED(P),', Z(0:3) BIT'%8),
P POINTER;

P-ADDR(Z); /*Z and ZI share same location hereon*/~I-0;

DO WHILE (I<11);
IF (D=1)

/*enter vector set level white*/
THEN PUT LIST('-a');
/*enter vector set level black*,/
ELSE PUT LIST(""',RUB);

/*END IF*/
DO 9-1 TO 5;

IF (U(I)<) THEN DO;
PUT LIST('M X"[1;
RETURN;

END /*IF*/;
S"." /*this call translates the coordinates to the

stream of bits*/
CALL TRANSLATE(U(I),V(I),Z);

9. 69

4.,

/*this put statement puts out the bit streams
as being characters*/

PUT EDIT((ZI,'J) DO J=O TO 3)) (4A(1));
END /*DO*/;

/*the following two statements get the status of
the screen. The status is not sent back until the
screen is ready.*/
PUT LIST('-(E'); /*HNDSHAKF,*/
GET EDIT((C(J) DO J=1 TO 7))(7A(l));IND /*DO*I/;

PUT LIST('MX'); /*B3ACK TO ALPHA*/

TRANSLATE:PROCEDURE(X,Y,Z) ;
DECLARE (1,Y) FIXED BIN(15),

Z(0:3) BIT(8),
T FIXED BIN(15),
S1 BIT (16),
SS BIT(7),
S BIT (8),
I FIXED BIN(7);

I = DIVIDE(1,32,8);
SS=BIT(I,7);
S='0'B II ss;
Z(O) = '00100000'B I S;
T - (Y/32) * 32;
S1 = BIT (T,16);
S = SUBSTR(Si,8,8);
Z(I) = 011000'B I S;
I = DIVIDE (X,32,8);
SS=BIT (197) ;
S='0 B Il SS;
z(2)= " 090000,'B I s;
T = x- (1/32) * 32;
Si BIT(T,16);
S SUBSTR (SI,8,8);
Z(3) = "01000000"B I S;

END TRANSLATE;

v 1% END DRAW;

END DISPLAY;

I .4

70

'V ..* . ,- , *4* .. ., .4

C. STkTIJS.PLI

Prog Name : STATUS.PLI

Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor godres
Purpose : this routine calls the assembly routine
KEYBOARD to read the keyboard to set the boolean variables
used in other routines

STATUS :PROCEDURE EXTERNAL;

i".. *DCL

%INCLUDE 'CONST.INP';
ZINCLUDE "GLOBALS.INP';

CALL KETBOARD(KET);
IF (KEY-'Q')!(KET'q') THEN

STOP;
ELSE IF (KET='E')!(KEY='e') THEN

ENGAGED = TRUE;
ELSE IF ENGAGED & ((RANK(KEY)>48)&(RANK(KET)<=57))

THEN BEGIN;
I-RANK(KET)-48;
IF NUMBER(I)=o THEN

LINK SHIP(I)=I;
ELSE IF FRIEND(I) THEN DO;

CALL REMOVINODE(LINK SHIP(OWN),I);
CALL ADDNODE(PTR(OWNII);
FRIEND(I)=FALSE;
END;

PTR(OWN) a 1;
END;

ELSE IF (KEY='R') ! (K-Y='r') THEN
ENGAGED-FALSE;

ELSE IF (KIT-'M')I(KEY='m') THEN DO;

71

/*set the scale to 1/200*/
MAGNIFIED=TRUE;
M=200.0;
IF ENGAGED THEN DO;
/*set reference as the tar et*/

XOFFSET=X (PTR (OWN) ;
TYOFFSET=Y(PTR(OWN));
END /*DO*/;

ELSE DO;
/*ownship is the reference*/

X OFFSET=0.0;
Y OFFSET=0 .0;
END /*DO*/;

/*END IF*/
END;
ELSE IF (KEY='T')I(KEY='t') THEN DO;
/*set the scale back to normal (1/50)*/

MAGN IFIED=FALSE;
M=50.0;
X OFFSET=0.0;
Y OFFSET=0 .0;

END /*DO*/;-
ELSE IF (KEY='F')!(KEY='f') TEEN

FIRED - TRUE;
ELSE IF (KEY='D')!(KEY='d') TEEN

ERRORON=TRUE;
ELSE IF (KEY-'S')!(XEY='s') TEEN

SIGNAL ERROR(1);
/*END IF*/
KET= "0

/*this routine removes the node pointed by QQ from the
circular linked linked list pointed by PP*/
REMOTENODE: PROC (PP ,QQ);

DCL

(PP,QQ) FIXED BIN(7);
%INCLUDE 'GLOBALS .INP ;

Popp;
P-LINK SHIP(P);
DO WHILE (-(LINKSHIP(P)=QQ));

P-LINKSHIP (P);END;

LINK-SHIP(P)=LINK_SBIP(QQ);
END;

72

** **g* * ' - .

/*tisrotin adsa noepone by QQ to tbe circular

linked list by PP*/
* ADIDNODE:PROC(PPqQQ);

DCL
(PPOQQ) FIXED BIN(7);

* %INCLUDE'GLOBALS .:NP';

P=PP;
P=LINK SHIP (P);
DO WHILE ((LINK SIP(P)=PP));

P LINK-SHIP(P);

END;

LINIKSBIP(QQ)=PP;
END;

END STATUS;

)7

L
"'

D. IDLE.PLI

/*

Prog Name : IDLE.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This routine reads the A/D converter
output to get the velocity vectors of ownship and a
selected ship, and the gun information as azimuth and
elevation. It then converts this information to real world
values. It calculates ownship speed which will be used to
find relative speeds later. It then computes the maximum,
range, cartesian coordinates of the splash point, and time
of flight corresponding to the current gun position

IDLE:PROCEDURE EXTERNAL;

/*
DCL* */

UINCLUDE 'CONST.INP';
%INCLUDE 'GLOBALS.INP';

DO D-0 TO 5;
CALL ATOD (D,ARG(D));

END /*DO*/;

/*at this point the A/D output values are fixed bin(7)

values. The following sequence converts those to fixed
decimal values*/

COURSE(OWN)=ARG(0);
SPIED(OWN)-ARG(4);
COURSE(KNOWN)-ARG (2);
SPIED(KNOWN)=ARG(3);
AZ-ARG(1);
ALT-ARG(5);

/*the following sequence converts A/D values to real time
values by using appropriate proportionality constants*/

COURSE(OWN) = COURSE(OWN) *K;

74

.

COURSE(KNOWN) = COURSE(KNOWN) * K;
AZ = AZ * K;
IF COURSE(OWN)<0.0 THEN

COURSE(OWN) = COURSEOWN) + TWO PI ;
IF COURSE(KNOWN)(0.0 THEN

COURSE(KNOWN) = COURSE(KNOWN) + TWO PI
IF AZ<0.0 THEN

AZ = AZ + TWO PI;
IF ALT>90.0 THEN

* ALT = 90.0;

SPEED(OWN) = SPEED(OWN)/L;
SPEED(KNOWN) = SPEED KNOWN) / L;

/*ownship speed computations*/
VI OWN = SPEED(OWN) * SIND(COURSE.OWN));
VT-OWN = SPEED(OWN) * COSD(COURSE(OWN));

/*when not have fired, the following makes the ballistic
computations*/

IF - FIRED THEN
SBEGIN;

T OF = 2.0 * TM * SIND(ALT) G ;
V! TM COSD(ALT);

-. R = yR * T O;
IAIM(OWN) = R * SIND(AZ);
T-AIM(OWN) = R * COSD(AZ);
I GUN = 0.0;
I GUN - 0.0;
VX ROUND = YR * SIND(AZ);
VY ROUND - VR * COSD'AZ);
T= T-07;

END /*IF*/;
END IDLE;

75

APPENDIX D

REAL TIME EXECUTIVE MODULE LISTINGS

.-.1

A. ABBITER.A86

;Prog Name : ARBITER.A86
;Date : December 83
;Vritten by : M. Kadri Ozyurt
;For : Thesis
;Advisor Professor Kodres
;Purpose . This program contains all the assembly
;routines used by the simulation system. It initializes all
;programmable hardware components, responds to the timing
;interrupts, and increment the FOURTHEVC used throughout the
;simulation model program. Upon receiving interrupt
;requests , it performs process switching by storing the
;state of interrupted process in the stack area allocated
;for the processes and by restoring the highest ready
;process given by SCHEDULER

;GLOBALS

DGROUP GROUP FOURTHEVC,CURRENTPROC
FOURTHEYC DSEG COMMON
FOURTHEVC1 DV 0
CURP.ENTPROC DSEG COMMON
CURRRNTPROCI DB 4

CSTEG
XXTRN SCHEDULE: FAR
IXTRN P1:FAR
EXTRN P2:FAR
EIXTRN P3:FAR
UITRN P4:7AR
PUBLIC ARBITER
PUBLIC STORESTATUS
PUBLIC RINGBELL
PUBLIC KEYBOARD
PUBLIC ATOD
PUBLIC SUSPEND
PUBLIC RESUME

76

i : : - .., ... , ,.. -.. ,.

.4A7 ..-... 'A. 7-77%

EQUATES

INT1 EQU 84H ;INTR1 JUMP ADDR.
INT3 EQU 8CH ;INTRZ JUMP ADDRESS
Pici EQU OCOB ;PIC COMMAND OUTPUT PORTi
PIC2 EQU ME2 ;PIC COMMAND OUTPUT PORT2

2-:ICW1 EQU 13H ;PIC COMMAND WORD1
*.ICW2 -EQU 20H ;PIC COMMAND WORD2

ICW4 EQU 0DB ;PIC COMMAND WORD4
MAS11 EQU 01DH ;PIC MASK BYTE
9QI EQU 20H ;END-OF-INTERRUPT BYTE
CNTR1 EQU 50H ;PI'T MODE CONTROL BYTE

CNTR2 EQU 0

PORTC EQU 0D6E ;PIT CONTROL PORT
COUNT EQU OD2H ;PIT COUNT # OUTPUT PORT
CNTRLO EQU OOH ;PIT COUNT # LO BYTE
CNTRBI EQU 96H ;PIT COUNT # HI BYTE
READWR EQU 37
RURDY EQU 02E ;USART STATUS MASK(READ)
TXRDT EQU OlE ;USART STATUS MASK(VRITE)
PORTIO SQU 0DSH ;USART I/O PORT
PORTST EQU ODAH ;USART STATUS PORT
SEGCONV EQU ODOO0H ;A/D CONVTR PORT SEGMENT
OFYCONV EQU OF700H ;A/D CONVTR PORT OFFSET
STACKSIZE EQU 100E
LY EQU OAH
CR EQU ODE
BEL EQU 07E
FS EQU 1CE
lESC EQU 1B
IP EQU OCR
CAN EQU 18H
FALSE UQU 0
TRUE EQU NOT FALSE

ARBITER:
PUSH DS
CLI ;DISABLE INTR'S
MOT AX,0
MOT DS,Al ;SET SEGREG TO 0
MOT BI,INT1
MOT WORD PTR E[l] ,OFFSET PPOCO ;INT1 JMP ADDRESS
INC DX
INC B1
MOT WORD PTR EBI] ,CS
POP DS
MOT DI,OFSET STACKTBL+STACKSIZE-2
MOT CS:CBXI,CS
ADD DX,STACISIZE

77

a.

MOT CS :BX, CS

ADD BX,STACKSIZE
MOi CS:(BX],CS
ADD BX,STACKSIZE
MOT CS:[BX],CS
CLI

.d MO! AL,ICW1 ;INIT. PIC TO
OUT PIC1,AL ; EDGE-TRIG., SINGLE PIC
MOT AL,ICW2
OUT PIC2,AL ; INT1 ADDR IS 04H
MO! AL,ICW4
OUT PIC2,AL ; NOT F. NESTED, NORM. EOI
STI
MO! ALMASK1
OUT PIC2,AL ;ONLY INTI IS ALLOWED
MOT ALCNTR1 ;INIT. PIT
OUT PORTC,AL ;SELECT MODE 0 ,CNTR 1

; CLK FREQ. IS 153.6 KHZ
MOT AL,CNTRLO ;COUNT-DOWN VALUE 9600H
OUT COUNT,AL ; WHICH GIVES AN INTR AT
MOV AL,CNTR2
OUT PORTC,AL
MOT AL,CNTRHI ; EVERY FORTH OF A SEC.
OUT COUNT,AL
MOT AL,READWR
OUT PORTST,AL
MOT AX,CS
MO! SS,AX ;SET STACK SEG. TO CODE
MOT BP,3*STACKSIZE

V MO! SPSTACKTBL [BPI-,; JMP P4

p PROCO:
. PUSH Ax

PUSH BX
PUSH CX
MOT AL,CNTR2
OUT PORTC,AL ;RESET COUNTER
MOT AL,CNTRHI ;RESET THE CNTR.

OUT COUNT ,AL
MOT AL,EOI ;RESET PIC
OUT PICI,AL
ADD SP,6 ;SP->INTERRUPTED IP
POP BX ;BX-> IP
POP AX ;AX-> CS
POP CX ;SP->INTERRUPTED IP
PUSH &I ;PUSH ,. CS
PUSH BX ;PUSH IP

PUSH CX

78

57--V7--

SUB SP,6 ;SP->PUSHED CX
POP CK
POP BI ;RESTORE DX
POP AX ;RESTORE AX
INC FOURTEEC1
imp S'TORESTATUS1

STORISTATUS:
*DEC SP

DEC SP
PUSH AX
ADD SP,4
POP AX ; AX-) INTERRUPTED IP
PUSH CS
PUSH AX
DEC SP
DEC SP
POP AX *;RESTORE AX
PUS HE
CLI

V STORESTATUSl:
PUSH Al I PUSH BX I PUSH CX I PUSH DX
PUSH BP I PUSH SI I PUSH DI I PUSH ES
CALL SCHEDULE
MOT NEWPROC,AL
MQV ALCURRENTPROC.
CMP AL~l
JNZ OUT.
MOT BP,l
imp OUT4

OUT1: CMP AL,2
JNZ OUT2
MOT BP, STACKS IZE~l
imp OUT4

OUT2: CMP AL.3
JNZ OUT3
MOT BP,2*STACKSIZE+.
imp OUT4

OUT3: CMP AL,4
JNZ OUT5
MOV BP,3*STACKSIZE+l
imp OUT4

OUT4: ADD BP,OFYSET STACKTDL
CMP SP,BP
JNA OUT6
DEC B

*MOT (BP] ,SP
imp LOADPROC

OUT 5: ADD AL,30H
MOT OUT5AL,AL
MOY DX,OJYSET OUT5MESS
imp ERRORMESS

79

OUT6: ADD AL,30H
MO? OUT6AL,AL
MO? DX,OYSET OUTMESS

LOADPROC:JMEROES
MO? AL,NEWPROC
CMP AL,l
JNZ LOUT1
MO? BP,0
imp RETURNPT

LOUT1: CMP AL,2
JNZ LOUT2
MO? BP,STACKSIZE
imp RETURNPT

LOUT2: CMP AL,3
JNZ LOUT3
MOV BP,2*STACKSIZE
imp RETURNPT

LOUT3: CM? AL,4
JNZ LOUT4
MO? BP,3*STACKSIZE
imp RETURNPT

VLOUT4: ADD AL,30H
MO? LOUT4AL,AL
MO? DX,OFFSET LOUT4MESS
imp ERRORMESS

RETURNPT:
MO? CURRENTPROC1,AL
MO? SP,STACKTBL [BPI
POP ES i POP DI I POP SI I POP BP
POP DXI POP CXI tOP BX I POP Al
POPY
ST I
RET?

;THIS ROUTINE MAKES A SYSYTEM CALL TO PUT OUT ERROR
;MESSAGES
ERRORtMESS: C,

i.INT 224
MO? CL,0
MO? DLl1
HIT 224
RET

so,

;THE STACK AREAS AND VARIABLE DEFINITIONS

STACKTBL:
DW OFFSET STACKTBL+STACISIZE-22
Rs STACKSIZE-8
DW FALSE
DV OFFSET P1
RS 2
DW OFFSET STACKTBL+2*STACKSIZE-22
RS STACKSIZE-8
DW FALSE
DW OFFSET P2
RS 2
DV OFFSET STACKTBL+3*STACKSIZE-22
RS STACKSIZE-8

-,DW FALSE
DV OFFSET P3
RS 2
DW OFFSET STACITBL+4*STACKSIZE-22
Rs STACKSIZE-8
DW FALSE
DW OFFSET P4~
RS 2

NEWPROC Di 0
*OUT5MESS DB FS,ESC,FF,CAN

DB 'RETURN FROM OUT5. AN UNKNOWN CURRENT PROCEDURE:'
OUT5AL DB i$,
OUTMESS DB FS,ESC,FF,CAN.

DB 'RETURN FROM OUT6. STACK OVERFLOW FOR THE PROC.:'
OUT6AL DB i$,
LOUT4MESS Di FS,ESC,FF,CAN

*DB 'RETURN FROM LOUT4. AN UNKNOWN NEW PROCEDURE:'
LOUT4AL DB i$,

END

81

B. AWAI TPLI

Prog Name : AWAITPLI
Date : December 8'2
Written by : M. Kadri Ozyurt
For : Thesisj

*Advisor : Professor Kodres
Purpose : This synchronization primitive checks

* the threshold value for the calling process by comiaring
the corresponding threshold value with FOURTHEVC and
returns the control either to the calling process. if its
threshold value is equal to and greater than FOURTHEYC, or
else transfers the control to ARBITER.A86

await: procedure(i);
dcl threshold(0:2) fixed bin(15) external,

storestatus entry,
4 tourthevo fixed bin(15) external
* I fixed bin(?);

If (fourthevc>=threshold(i-1)) then return;
else call storestatus;

end await;

C82

C. SCHZDULE.PLI

Frog Naive : SCHEDULE.PLI
Date : December 8Z

A Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This synchronization primitive

*compares the threshold values corresponding to theN
processes P1 through P3, beginning from P1, to FOURTHEYC
and returns the name of the first one which Is equal to or
greater than that value. If non of the processes meet this
conditions then P4 is returned.j

schedule: procedure returns (fixed bin(7));
dcl threshold(0:2) fixed bin(.15) external,A fourthevc fixed bin(15) external,

i fixed bin(7);
do i=0 to 2;

if (fourthevc>=threshold(i)) then return (1+i);
end;

:4 return (4);
end schedule;

83

D. THRESH.PLI

Prog Name : TRRESH.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Tgesis
Advisor : Professor lodres
Purpose : This synchronization primitive
receives a pointer to the calling process and increments
the corresponding threshold valuae by an assigned amount

* THRESH: PROC (1);

DCL THRESHOLD(0:2)FIXED BIN(15) EXTERNAL,
I FIXED DIN(7);

I7 (1-1) THEN THRISHOLD(0)=THRESHOLD(0) + 1;
IT (1-2) THEN TERESHOLD(1)=THRESHOLD(l) + 4;
IF (i=3) THEN THRESHOLD(2)=THRESEOLD(2)+4;
RETURN;

END THRESH;

48

1. P1.PLI

-- Prog Name : P1.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This process is basically an
infinitive loop. Once entered, it first call AWAIT.PLI
to see If FOURTHEVC Is equal to or greater than its
threshold value. If it is, then the control proceeds to
call TACTICAL.PLI. The last call In the loop is to
THRESE.PLI to Increment its threshold value. In the next
iteration, the control will not come back since its

w threshold value is greater than FORTHEVC.

P1: PROCEDURE;

DCL AWAIT ENTRY (FIXED 1IN(1?)),
THRESH ENTRY (FIXED BIN(7)).
A FIXED BIN(?)9

V TACTICAL ENTRY;

DO WHILE ('i'B);
CALL AWAIT (1);
CALL TACTICAL;
CALL TRESH (1);

END /*DO*/;
* END Pi;

85

.', ,'

F. P2.PLI

Prog Name : P2.PLI
Date : December 83
Written by : M. ladri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : The purpose of this process is-idecti-
cal to that of Pi.PLI with the exception that the second
call is to DISPLAY.PLI

. /

P2: PROCEDURE;

DCL AWAIT ENTRY (FIXED BIN(e))
THRESH ENTRY (FIXED BIN(7)5,
A FIXED BIN'7),
DISPLAY ENTRY;

A-2;
DO WHILE (''B);

CALL AWAIT (2);
CALL DISPLAY;
CALL THRESH (2);

END /*DO*/;
END P2;

,-x

.

G. P3.PLI

Prog Name : P3.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : The purpose of this process is the
same as P1.PLI with the exception that the second call is
to STATUS.PLI*/

P3: PROCEDURE;

DCL AWAIT ENTRY (FIXED BIN(7)),
-: THRESH ENTRY (FIXED BIN(7)),

A FIXED BIN(7),
STATUS ENTRY;

A=3;
DO WHILE ('I'B);

CALL AWAIT (3);
CALL STATUS;
CALL THRESH (3);

END /*DO*/;
END P3;

87

4 o4

-H. P4.PLI

Prog Name : P4.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This process is an infinitive loo;
in which there is only one call to IDLE.PLI repeaditively
until an interrupt comes along.

'S/

P4: PROCEDURE;

DCL AWAIT ENTRY (FIXED BIN(7)),
THRESH ENTRY (FIXED BINk'?)),
A FIXED BIN(7),
IDLE ENTRY;

A=4;
DO WHILE ('i'B);

CALL IDLE;
END /*DO*/;

END P4;

88

- .4

..

APPENDIX E

MISCELLANEOUS ASSEMBLY ROUTINES

A. KEYBOARD.A86

;Prog Name : KEYBOARD.A86
;Date : December 83
;Written by : M. Kadri Ozyurt
;For : Thesis
;Advisor : Professor Kodres
;Purpose : This program receives a formal
;parameter, KEY, reads the status of the serial I/0
;Interface chip. If a character has been received from the
;keyboard, it reads this charactr and places it to the
;formal parameter. If there is not a character available
;it puts a ascii equivalent of zero into the parameter.
;The reason for that is that zero Is not used as a keyboard
;command. The variables used here are defined in the body
;of ARBITER.A86

KEYBOARD:
PUSHJ
CLI
PUSH AX
IN ALPORTST
CIMP AL,RXRDY
JZ KEYBOARD1
IN AL,PORTIO
AND AL,77H
imp KEYBOARD2KEYBOARD1I:
MOV AL,30H

KEYBOARD2:
MOv BX,E BI
MOv £B11 ,AL
POP Al
POPF

RET

89

A~, ,," % " - . -o -, - - ,: , e ... : , ,,.. e', /', , . ,,.,,: :e ., ' ,.' , "*,,,,- _,,,-' - ..-. ,,..',-. ". . " -' .. " -. - . - . . - . - . . . -

Y 747 .

B. ATOD.A86

;Prog Name : ATOD.A86
;Date : December 83
;Written by : M. Kadri Ozyurt
;For : Thesis
;Advisor : Professor Kodres
;Purpose : This program receives two parameters
;It reads the output of the A/D converter specified by the
;second parameter and places it into the first parameter.
;The variables used here are defined in ARBITER.A86

ATOD:
PUSHY
CLI
PUSH SI
PUSH AX
PUSH BX
PUSH BX
PUSH DS
MOV BX,C]X] ;BX=.ARGUME NT(l)
MOT- AH,0
MOT AL, CBX]
MOT SIAX
MOT AXSEGCONV
MOT DS,AX
MOT BX,OFFCONV
MOT AL,[BX+SI] ;READ A/D PORT
POP DS
POP BX
MOT BX,2[BX]
MOT (BX] ,AL
POP BX
POP AX
POP SI
POPP
RET

90

.-J.:,.,.... * " " - , . . -. ,.' ' . ,

i . " " . . ' _ ,- . , t . . ,' ,*.' -.. . "
"

" " ." . " . ' .

J

I,

C. RINGBELL.A86

;Prog Name : RINGBELL.A86
;DRte : December 83
;Written by : M. Kadri Ozyurt
;For : Thesis
;Advisor : Professor Kodres
;Purpose : This program sends a bell character to
;the video terminal. The variables used here are defined in
;the body of ARBITER.A86.

-I

RINGEELL:
* PUBEY

CLI
PUSH AX
CALL WAIT
MOT AL,BEL
OUT PORTIO,AL
POP AX
POPP
RET

S.91

.1

*11
9,ip

9-1

* - -. .
'"Q " -''-;% , ,,.,'';- ,, -w;'' 'i, ,' % - ,. .- .. ,.',.4"C" ., ,'': ".",--"- ":.,-..-"- :-, .. ".:-.;,, :.... ?..-.: .-.... ,..,.., .,.

D. WAIT.A86

;Prog Name : WAIT.A86
;Date : December 83
;Written by : M. Kadri Ozyurt
;For : Thesis
;Advisor : Professor Kodres
;Purpose : This program proogram reads the status
;of the serial I/0 chip and waits until the transmitter is
;ready to send characters.

WAIT:
PUSH AX

WAITI: IN AL,0DEH ;GET STATUS
AND AL,1
JZ WAIT1
POP AX
RET

:, 92

a'..

N', ,,w. ;. ,, -" "
a.'.-." :-,..;,' ,. ,.."/w.".'.".'.'.,% ,,;,. .. , . .. ". "

--- ,

E•SUSPEND.A86

;Prog Name : SUSPEND.A86
;Date : December 83
;Written by : M. Kadri Ozyurt
;For : Thesis
;Advisor : Professor Kodres
;Purpose : This program stops the real time clock
;by reseting the interrupt bit of the PSW.

SUSPEND:
CLI
RET

.%, ..

5'.'

9.3

IRD-A142 130 REAL-TIME APPLICATIONS IN MULTIPROCESSOR SYSTEIIS(U) 2/2
INAVAL POSTGRADUATE SCHOOL MONTEREY CA M K OZYURT
I DEC 83p NC LRSSIFIEDF /G 92

16

I.

J. 11111.8

jli 1. 5 5

j~jj . I 140 1.

-~l 1111 1U1

MICROCOPY RESOL.UTION4 TEST CHART
WMMOPIAL UR 01*w STNAAROS - 1963 - A

F. RESUME.A86

;Prog Name : RESUME.A86
;Date : December 83
;Written by : M. Kadri Ozyurt
;For : Thesis
;Advisor : Professor Kodres
;Purpose : This program starts the real time clock
;by reseting the interrupt bit of the PSW. It then reset
;the counter to zero.

RESUME :RSE PUSH Al

MOT AL,CNTR2 ;RESET COUNTER
OUT PORTC,AL
MOT AL,CNTRHI
OUT COUNT,AL
MOT AL,EOI ;RESET PIC
OUT PIC1,AL
POP AX
STI
RET

S.9.
'P

.'.o

[94

'""N C.2"" % "° ' ' "" "" ' ' " * " " ' "" "" " ""-"" ", '' " " " "

_APePE NDIX F.

DYNAMIC DEBUGGING MODULE LISTINGS

A. LOCALS AID

/*
Prog Name : LOCALS.AID
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This %include file contains the declara-

-. tions of the variables used by the dynamic debugging module

DCL
* BREAKS(0:9) LABEL,

STOPS(0:9) BIT(1) EXTERNAL,
(CODE1,CODE2,VALUEH) FIXED BIN(15),
BRTAKPT FIXED BIN(15) EXTERNAL,
PUTVARS ENTRY,
REENTRY ENTRY,
BREAKPTS ENTRY,
PROMPTUSER ENTRY (FIXED BIN(?)),
STORESTATUS ENTRY,
TACTICAL ENTRY,
DISPLAY ENTRY,
IDLE ENTRY,
STATUS ENTRY,
CHANGEVA ENTRY (FIXED BIN!15),FIXED BIN(15));

95o

I i<. l. . ; :.:- .: - ,"" '' ' ''-" , .t" '... : - .-""" " "". ' ''"" " "" . .: ". . ,."' .i--:.?-'

P. ERRHAND.AIDi /*

Prog Nave : ERREAND.AID
Date : December 83
Written by : M. Kadri Ozyurt
?or : Thesis
Advisor : Professor Kodres
Purpose : This %include file contains six
different types of PL/I ON condtion bodies. Upon
intercepting any raised error condition is displayed
and the control is transfered to PROMPTUSER with a number
that shows which breakpoint has been past. Then the ON
condition body is exited with a non-local 6oto statement.
At the exit point the control is transfered to REENTRY
which is the dynamic debugging tool. This call to REENTRY
is protected during the course of normal operation with an
if statement which tests the value of ERRORON.* */

-N

stops(O)-false;
stops(1)-false;
stops(2)-false;
stops(3)-false;
stops(4)-false;
stops(5)-false;
stops(6)=false;
stops(?)=false;
stops(8)-false;
stops(9)=false;
on error

begin;

put llst(''Z1); /*clear screen*/
put skip list('Zrror #')

/*this statement gets the code of the error condition*/
codel-oncodeo;

/*this call prompts the user with the # of breakpoints past
and asks if the user wants to enter the dynamic debugging
environment*/

call promptuser(codel);
if (key-'y') I (key-'T') then goto errorexit;
else if codel<-127 then do;

put skip list('The program will be abandoned');
stop;

end /*f*/;

96

- ~ *~ *,- , . *-,, :, ,.,--.* ,,*;.* - , . -.-....- ,, ..- *-*..... :-.- . .. ,:, ,,... .. , .- ,.- . . . ,.

end /*error*/;

on fixedoverfiow
begin;

put list(' Z');
put skip list('Fixedoverfiov ')
codel-oneodeo;
call promptuser ~codel); *

if (key-'y') I (key-'!') then goto errorexit;
else if codel(-127 then do;

put skip list('The program wili be abandoned'!;
stop;

end /*If*/;

end /*fIxedoverfiov*/;

on overflow
* begin;

put list(,');'
put skip list('Overflow '
codel-oncodeo;
call promptuser (codel);
if (key-'y') I (key-'!') then goto errorexit;
else If codel(-127 then do;

put skip list('The program will. be abandoned')';
stop;

end /*If*/;

end /*overflow*/;

on underf low
begin;

N put lIst(',');
put skip list('Underflov w
codel-oncodeo;
call promptuser (codel);
If (key-'y') I (key-'!') then goto errorezit;
else If codel<-127 then do;

put skip list('The program will be abandoned');
stop;

end /*if*/;

end /*underflov*/;

on serodivide

'S begin;

97

put list(z');
put skip iist('Zerodivide #
codel-onc ode 0;
call promptuser(codel);
If (key-'y') I 'key='Y') then goto errorexit;
else if codel<in127 then do;

put skip iist('The program will be abandoned ');
stop;

end /*if*/;

end /*zerodivide*/;

errorexit:
If erroron then do;

call reentry.;
end /*if*/;

9.8

lp

k:C. PROMPT.PLI

I /*

Prog Name : PROMPT.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This routine prompts the user in case
of an error interception by ERRHAND. It puts the code of
the error and which breakpoint has been past. Then the
program asks if the user wants to enter the dynamic
debugging environment.

4,,

promptuser:proc(codel) external;

dcl*/
%include 'const.inp';
%include 'globals.inp';
%include 'locals.aid';

erroron=true;
put list(codel,' is detected when the module ")
put skip list('The clock stopped.');
put skip list('The breakpoint #',breakpt,'has been past.');
put skip list('Would you like to enter Interactive debugging

'environment (Y/N)?');
get list(key);

end promptuser;

99

[-

D. REENTRY.PLI

Prog Name : RZENTRY.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This routine is the "workhorse of
the dynamic debugging environment. It calls PUTYARS if
the user wants to see the external variables.Then it
calls CHANGEVA if the user wants to change any variable
with In a loop until no changes are wanted.It then transfers
the control to the breakpoint the user desires.*/

reentry:proc external;
/,*
dcl,/

%include 'const.inp';
%include 'globals.Int';
%include 'locals.aid ;

put skip list('You have entered the interactive debugging
'environment.');

put skip list('You will be asked questions about the ',
"control of program flow');

reentryl:
put skip list('Do you want a listing of all variables ',

'(Y/N)?');
get list(key
If (key-'Y' I (key'y') then call putvarso;
put skip list('Do you want to change the value of any "

"variable(Y/N)?');
get list (key);
do while (((ke key'n')));

if (key !"T I (key-'y) then do;
put skip list('Rnter the number and the new value

(-32768<=value<= 32,767) of the veriable you want to');
put skip list(' change in integers seperated by a ',

'comma.');
on error begin;

put list ('*** bad entry, try again');
goto reentry2;

end /*error*/;

100

7a" - - - . " .p %b v . b.

on fixedoverflow begin;
put list('*** too large, try again');
go to reentry2;

end /*fixedoverflow*/;
reentry2:
put skip list('>');
get list (codel,value);
revert error;
revert fixedoverflow;
if codel>maxvars then

put list ('invalid variable number');
else

call changeva(codel,value);
/*end jf*/

put skip list('Do you want a listing again ,Y/N)?');
get list(key);
if (key='Y')!(key-'y') then call putvars(;
put skip list('Do you want to change another variable ",

'(Y/N)?');
end /*do*/;

else
put list('*** bad entry, try again');

/*end If*/

get list(key);
end/*do*/;
put skip list('Which breakpoint do you want to transfer the ",

"control (0 thru 9, fooloved by return)?');
get list(key);
do while ((rank(key)<48) I (rank(key)>5?));

put list('*** bad entry, try again');
put skip list('>');
get list(key);

end/*do*/;
codel-rank (key)-48;
breakpt-codel;
put skip list('2nter the breakpoint you want to stop (0 ',

'thru 9) or any non-numeral character if you do not want to "
stop(fol. RET');get lilst(key);

if ((rank(key)<48) I (rank(key)>57)) then do;
-put skip list('The program will execute beginning from ",

'the breakpoint',codel);
erroronufal se;

end /*do*/;
else

do;
code2-rank(key)-48;
stops (code2)-true;
put skip list('The program will execute between the ',

'breakpts',codel,' and ',code2)

101

:---v ,.., ;. . ,:., , ,,, ../ /,,.; :./ : - : : ,,: ... : .. -- . ,'- : ,.-, :, : ,,.j , ",. ", -. - ".- .,S. .. . ,.-r-z _, . . . "-

r2.4

end /*if*/;

put skip list('Is that what you want(Y/N',?');
* get list(key);

if (key='N') I (key='n') then 1o;
put skip list('Do you want another run(Y/N)?');
get list (key);

it (key"'!') I (key='y') then goto reentryl;
end /*If*/;

end reentry;

;T 4

-4

~102
, %

.4 , .- € ," - " , .- ,"" _. , ,. e .'', '""'""", , '"•" ' ' ' '- " ",j .- ,..''".% .- ' *, - *"'"'J """- *""2 """, ,.

. - -r U, ! - " ¢ " ' " ''r ,,e € " }" . " r r . r , W ' -,-

?o : hei

Adisr: rfeso ode

-. 4 ~ ~ fas byo Nae PTVRSPL

Datelud Deceber 83p'

Write byip M.th ladrin ofzllcmmnvairtsisa

por :kp2 li Th'ie i ayvle:)
pdt srip Prt'(~eoes's ods,()iue=Mut
Purpose Ths routine pts selec td external ,iomat))
purablsout ith PL/I put et ks7taent. re

putvarsprproc external;)

putsplae niaxships by 2, fouthvc(af()

put skip(2 list('e lstng ofallomonsriblsisa;-

put skip(2) list('Fixed beiay values:');
put skip edit('(1)secon',secons,'(20)mi~n=',yion, 1

()xorge=',viurst,((4)wakreptr=' ,vakeptr()=i)(r(.formatl));

* ~put skip edit('(62) of',t , '(?)tlpa=',ltar,
'()ovn',ow,'(9O)knv',knr~on,'(I)J=,)()fr;l)

put skip edit('1)t',,'(2)ayuprime= .t',pme,etpcy=',
currentproc) trfo2Ml)

pu sipedt((1)furhvc',outhv10af3)

put skip edit('(35)ax sum-',axzsum,'(3G)bx sum-',bx sum,
% (37)cz-sui=',c Csum)'r(fcrmit3));

5% put skip edit(o(W8)ay suzu-,aysum, (39)by sum='by~sum,
'(40)cy-sum= ,cxsum)(r(format3))

*put skip edit(:1 4flxzat5-',x at5,'(42)y at5-',y at5,
R3r ,r) (r(f ormat3))

put skip ed~It('(44)dx d~t at5,dxzdtat5,'(45)dy-dt-at5-',
pu sip2)dy dt at5,2(46)dr dtat5',drdtat5)(r(format3));
putsk~(2)listV'Cfaracter values:');

put skip edit('(47)key-',key)(a(8),a(l));
put skip(2)list('Arrays:');
put skip edit('(48)thresholdgO)u',threshold(0) ,'(49)threshold(l)=',

tbresbold(1).'(50)threshold(2)-',threshold(2))
(a~f(5),col(26),a,f(5) ,col'(51),a,t(5));

4put skip(2) list('Data structures:');
put skip lIst(*shit (1):')
put skip edit('(51 course=',course(1),;(52)speed'speed(I

'(53)azimuth-',azimuth(l),'(54)ra ge=',rang ())(r(fo. .
put skip edit('P(55)x-',x(l),'(56)y-',Y(1),'(57)x aim=',xzai..),-

put skip edit('(59)count-',count(l),'(60)uumber=',nunber(1),
* '(81)ptr-',Ptr(l),'(62)linksbip-',liukship(l))

* ~~put skip list(*SbIp(2):');(rora);
put skip edit('(63)course-',course(2),'(64)speed =, speed(2),

'(65)azimuth-',azimuth(2),'(66)range', range(2)? (r(format4:));
put skip edit('(67)x-',(2),'(68)y-'y(2),'(69)zaim-',zaimu(2).

- -'(70)yaim=':y aim(2))(r~format5));
put skip edit(*(71)count-' ,count(2),'('2)uuber-',number(2),

put skip list('Gun:'); rfmaW

put skip edit('(75)az=',az,'(76)alt=',alt.'(?7)x gun-',x gun,
'(78)y gun', y un)(r(formaW5);

iput skip lisW('ake(pti(2)):');v
put skip edit('(79)x vake-',x vake(ptr(2)),'(S0)y wake-',

_w..ake(ptr(21),'(1)Inkvwake ' linkvwakelptr(2)))
(a,f(7,I),col(20),a~f(7.1),col(39),a,f(l));

put skip edit ('(82)dti',dt)(a,f(4,21);
formatl:foriuat(a,f(2),col(16),a,f(2),col(31),a,f(2),col(44),a,f(2),col(59),

foruat2:format(a,f(4,I),col(I9),a,f(4,I),col(3?),a,f(4,I),col(58),a,

foruat3:format(a,f(4,I),cal(24),s,f(4,1),col(47),a,f(4,1));

format4:fortwat(a,f(4,),col(l)a,f(4),col(35),a,f(,I5) ,al(4),a

end putvars;

104

F. CBANGEVA.PLI

Prox Name : CEANGEVA.PLI
Date : December 83
Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This routine changes a selected

* external variable specified by the parameter passed

changeva:proc(codel,value) external;

dcl
(codel,value) fixed bin(15)*

%~include 'const.inp';
%include 'globals.inp';

if code1=1 then secondsabinary(value,?);
If codel=2 then minutes=binary(value,7);
If code1=3 then hours=binary(valae,7);
if code1=4 then wakeptr=binary(value,7);
if code1=5 then i-binary(value,15);
If codel=6 then t of=binary(value,?);
if codel?- then target=binary(value,7)i
If codel=8 then own=binary(value,?);
if code1=9 then knowu=binary(value,7);
If codel=10 then J=binary(value,15);

-. If codel-il then t=binary(value,7);
if codel=12 then tprime=binary(value,?);
if codel13 then currentproc-binary(value,7);
if codell14 then fourthevc=binary(value,15);
If codel=15 then engaged=bit(value,1);
if codel-16 then uagnified=bit(value,l);
If codel=17 then fired=bit(value,l);
If codelziB then erroron-bit(value,l);
If codel=19 then vx own-decimal(value,4,1);
if codel=20 then vy-own-decimal(value,4,.);
if codel-2. then vx targetdeciial(value,4,1);
if codel=22 then vy target=dectmal(value,4,1);

K.If codel=23 then vx rel-decimal(value,4,1);
If codel=24 then vy.relmdecimal(value,4,1);

K.*if codel=25 then vx-round-decimal(value,4,1);
If codei=26 then vyround-decimal(value,4,1);
if codel=27 then vr-decimal(value,4,1);

10

7- *. .b- -1 0

If codel=28 then alpha-decinial(value,4,1);
if codel=29 then ax-decimal(value,7,2);
If codel-350 then bx=decimal(value,7,2);
If codel=31 then cx-decimal(value,7,2);
if codel-32 then ay=decimal(value,7,2);
if codel=33 then by-decimal(value,7,2);

-. if codel=34 then cy=decimal(value,7,2);
If codel=35 then ax sum-decimal(value,7.2);
If codel=36 then bz sum-decimal(value,?,2);

*if codel-37 then cx smm'=decimal(value,7,2);
If codel=38 then ay sum-decimal(value,?,2);
If codel=39 then by sun-decimal(value,7,2);
If codel=40 then cy sum-decimal(value,7,2);
If codel=41 then x zat5=decimal(value,7,2);
if codel=42 then y at5-decimal(value,7,2);
If codel-43 then r~decimal(value,7,2);
If codel-44 then dx dtat5=decimal(value,7,2);
if codel=45 then dy dtat5=decImal(value,7,2);
If codei=46 then dr dtat5=decImal(value,?,2);
if codel-47 then keywascii(value);
If codel=48 then threshold(0)-value;
If codel=49 then threshold'%l)=value;
If codel-50 then threshold(2)=value;
if codel=51 then course(l)=deciuial(value,4,1);
if codel=52 then speed(1)=decimal(value,3,1);
if codel=53 then azImuth(1)=decimal(value,3,0);
if codel=54 then range(l)=decimal(value,5,0);
if codeia55 then x(l)=decimal(value.6,l);
If codel-n56 then y(1)=decimal(value,6,1);
If codel=57 then x aim(1)=decimal(value,6,1);
if codei=58 then y aim(l)=decimal(value.6,1);
If codel=59 then count(i)=binary(value,7);
if codel-60 then number(l)=binary(value,7);
If codel=61 then ptr(l)-binary(value,?);
If codel-62 then link shi p (1)=binary(value.7);
if codel=63 then courie (2) =decimal(value,4,l);
if codela64 then speed(2)=decimal(value,3,1);
if codela65 then azimuth(2)=decimal(value,3,0);
If codei-66 then range(2)=decimal(value,5,O);
If codel=67 then z(2)-decimal(value,6,1);
If codel-68 then y(2)-decimal(value,6,l);
if codei-69 then xzaim(2)=decIma.(value,6,1);
if codela'70 then yaim(2)=decimal(value,6,l);
If codel=71 then count(2)-binary(value,7);
If codel=72 then number(2)=binary(value,7);
If codel-73 then ptr(2)-binary(value,?);
if codelin74 then linkship(2)=binary(value,7);
If codel=75 then az-decimal(value,4,l);
If codel-?6 then alt-decimal (value,4,l);
If codel-77 then x...un-decimal(value,6,I);

'a 106

E ~ . .~ -.. . .

14

if codel=78 then ygun-decimal(value,6,1);
if codel'79 then x - ake(ptr(2))-dt.-imal(value,6,1);
If codel-80 then yvwake(ptr(2))-decimal(value,6,1) '

if codel-Bi then link vake(ptr(2))-binary(value,?8;
If codei=82 then dt-float(value,7);

-endi changeva;

4l

'10

G. BREAKS0.AID

Prog Name : BREAKSO.AID
Date : December 83
Written by : M. Kadri Ozyurt

:4 For : Thesis
Advisor : Professor Kodres
Purpose : This %include file is one of the ten
%include files ,BREAKS@ through BREAKS9, that are used
to insert various parts of the programs to be tested.
They are protected during the normal operation of the
prograr under test vith an if statement. Within the if
statement thereis a call to BREAKPTS*/

BRIAKSM():
BRIAKPT-0;
IF STOPS(SREAKPT) THEN DO;

CALL BREAKPTS;
GOTO BREAKS (BREAKPT);

IND /*IF*/;

..-.

H. BREAKPTS.PLI

Prog Name : BREAKPTS.PLI
Date : December 83
W Written by : M. ladri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This routine prompts the user that the
breakpoint intended to stop has been reached. Then it asks
if the user wants to transfer the control over the dynamic
debuggig environment. If the answer is positive then it
calls REENTRY where the control stays thereafter.

breakpts:proc external;dcl stops(0:9) bit(l) external,
breakpt fixed bin(15) external,
key char(l) external,
erroron bit(l) external,
reentry entry;

stops(breakpt)-'O'b;
put skip list('***** breakpoint',breakpt,' **')
put skip list('The execution halted and clock stopped.');
put skip list('Do you want to enter the interactive debugging',

"environment(Y/N)?");
get list(ke)*
if (key-') • (key-'y') then

call reentry();
else

erroron-'"'b;
/*end if*/

end breakpts;

q109
1%up9

' ,' 5, r ,, ,,- , % %,-,, C,,: -. '. .:. .k B. ... -. ., ..-.. *.. . .. -.. '

. . . . 7 i. 77 .
".- %

%jSo

I. TIMES.AID
/*
Prog Name : TIMES.AID
Date : December 83
Written by : M. [adri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This %include file is inserted to
WAR.PLI to test the execution times of the individual
system routines.

put skip(2) list ('Do you want to measure the execution',
, times of the modules (T/N)?');
get list (key);
do while ((key='Y) I (key='y'));

* put skip(2) list('Enter the number of iterations you want ",
*. '(max 32,767).');

on error begin;
put list('*** bad entry, try afain.');
goto timesl;

end /*error*/;
on fixedoverflow begin;

".- , put list('*** too large, try again.');
goto timesl;

end /*fixedoverflow*/;
timesl:
put skip(2) list('>');
get list(h);
revert error;
revert fixedoverflow;

Uput skip(2) list('Get ready for time check. The modules',
" will execute ',h,' times.');

do i1 to 4;
put skip(2) list('Readyl! Press any key to start'

,'the time check of the module');
if 1-1 then put list (' IDLE.');
else if 1-2 then put list(' STATUS.');
else if 1=3 then put list(' TACTICAL.');
else put list(' DISPLAT.');
get list(key);
do J-1 to h while (1); call Idle; end;
do J-1 to h while (i-); call statls; end;
do J-l to h while (1=3); call tactical; end;
do J-i to h while (U4); call display; end;

110

0= . -: , , . *. , id*....- -.. ,.. ..

put skip(2)lIst('The end of the execution .');
put skip(2)list('Enter the time measured in ",

'seconds.');
on error begin;

put list('*** bad entry, try again');
go to times2;

end /*error*/;
on fixedoverflov begin;

put list('*** bad entry,try again.');
goto times2;

end /*fixedoverflow* /;
times2:

put skip(2) list('');
get list(j);
revert error;
revert fixedoverflov;
begin;

dcl duration float;
duration-float(j)/float(h);
put skiV(2) list('The execution time of the

module Is',duration,J iterations/sec');
end;

end /*do*/;
put skip(2) list('Do you want another run (Y/N)?');
get list(key);

end /*do*/;

111

APPENDIX G

A SAMPLE SUBROUTINE TESTING

P rog Name : P.PLI

Date : December 83
Written by : M1. Kadri Ozyurt
For : Thesis
Advisor : Professor Kodres
Purpose : This program Is written to test
individual procedures In an interactive manner. At each
iteration new values are asked. The PL/I ON condition
bodies are used to intercept any inadvertantlX wrong

* entries. The endless loop can be terminated either C or
Z from the terminal. In this particular example the

procedure DRAW inside the body of DISPLAY.PLI is tested by
making It external for the test purposes.

p:proc options(main);

dcl
(u,v)(0:10) fixed bin(15),
(i,x,y)fixed bin(15),
rub char(l) external,
d fixed bin(7),
draw entry ((0:10)fixed bin(15),(0:10)fixed bin(15)

,fixed bin (7));

on error begin;
put skip list('*** bad value, try again');
goto reentry;

end;

on fixedoverfiow begin;
* put skip list('*** too large, try again');

goto reentry;
end;

112

4'L

reentry:
rub-asciiq1278
do while(1'b);

put list('-/ IX)
put skip list 'ente r x and& y');
put skip is ti,>');
get list(r,y);
put list('-z');
call gen (x y u v);
d-1;
call draw(uv,d);
call delay;

call draw(u,v,d);
end;

delay:proc;
dcl (1,J) fixed bin(15);

do 1-1 to 30000;
do i-i to 2;

* . end;
end;

end;

gen:proc(xtyju,v);

dcl
*4 (u,v)(0:10) fixed bin(15).

(x,y) fixed bin(15);

u(O)mx+.8 v(O)-y;
u1MWX; v(lfrye8;
u(2)-x-8; v(2)-y;
u(3)-x; v(3)-y-8;
u(4)nx+8; v(4)nY;

end;

endp;

113

APPENDIX H

A SAMPLE PROGRAM TESTING

Prog Name : IDLI.PLI
. Date : December 83

Written by : M. Kadri Ozyurt
For : Thesis
Advisor : Professor lodres
Purpose : This is the testing version of the
procedure IDLE.PLI under the dynamic debugging module.
After the correct result from the test bad been taken,
the final version of the procedure was made simply removing
the segment of code in between the comment lines. In order

-to test the program, an interactive main procedure as In
? Appendix G was written. */

IDLE:PROCIDURE EXTERNAL;

/*
DCL*/

%INCLUDE 'CONST.INP';
%INCLUDE 'GLODALS .INP ;

/******* DEBUG AID *******/
%INCLUDE 'LOCALS.AID';
%INCLUDE 'ERRRAND.AID';
ZINCLUDE 'R3AESO.AID';

I******** END AID ********/

DO D=6 TO 5;
CALL ATOD (D,ARG(D));

END /*DO*/

n~

/*at thspon the A/D output values are fixed bin(7)
values. Tefollowing sequence converts those to fixed
decimal values*/

/*****DEBUG AID***/
%INCLUDE 'BREAKS1.AID';

5.'. - /******* END AID ********/

COURSE(oVN)-ARG(O);
SPEED (OWN)-ARG (4);
COURSE(INOWN)=ARG(2);
SPEED(KNOWN)=ARG(3);
AZ=ARG(l);
ALT-ARG(5);

/****** DEBUG AID **/

%INCLUDE 'BREAKS2.AID';
/******* END AID ********/

/*the following sequence converts A/D values to real time
values by using appropriate proportionality constants*/

COURSE(OWN) - COURSE(OVN) * 1;
COURSE(KNOVN) - COURSE(KNOWN) * K;
IZ - AZ * K;
IF COURE(OWN)<O.0 THEN

COURSE(OVN) - COURSE(OWN! + TWO PI
IF COrRS1(KNOWN)<0.0 THEN

COURSE(KNOWN) - COURSE(KNOWN) + TOFPI
IF AZ<0.0 THEN

AZ - AZ + TWO-PI;
IF ALT>90.0 THEN

ALT - 90.0;

/*****DEBUG AID ******/
%INCLUDE 'BREAKS3.AID';

/******END AID ***/

SPEED(OWN) = SPEED(OWN)/L;
SPEED(KNOWN) = SPERD(KNOWN) /L;

/*ovnship speed computations*/
VX OWN = SPEED(OVN) * SIND(COURSZ(OWN));
TYOWN - SPIED(OVN) * COSD(COURSECOWN));

/****** DEBUG AID ******/
%INCLUDE 'BREAKS4AID';

~ . /*******END AID ***/

115

C~P s*--

- . . - . ° .

/*when not have fired, the following makes the tallistic
computat ions*/

IF FIRED THEN
BEGIN;
T-O = 2.0 * VM * SIND(ALT) / G;

/****** DEBUG AID ******/
%INCLUDE 'BREAKS5.AID';

/******* END AID *** */

YR = VM * COSD(ALT);
R = VR * T OF;

/****** DEBUG AID *******/
-INCLUDE 'BREAKS6.AID';

/******* END AID * ******/

I AIM(OWN) = R * SIND(AZ);
T AIM(OWN) = * * COSD(AZ);
X-GUN = 0.0;
I-GUN - 0.0;

/****"* DEBUG AID 4"4,*/
%INCLUDE 'BRIEAKS7.AID';

/******4 END AID *,,,,,*4/

TX ROUND = VR * SIND(AZ);
VY-ROUND = VR * COSD(AZ);

/*-***4 DEBUG AID ,44444/
%INCLUDE 'BREAKS8.AID';

/******4 END AID *,*'****/

T - T.OF;

END /*IF*/;

1/*,*** DEBUG AID ******/
%INCLUDE 'BREAKS9.AID';

/***"*** END AID 4" * /

END IDLE;

116

. -9-%- g *- . - a~ **a .W A a ---- '~<-. : - : > -

°,.,LIST OF REFERENCES
.4

- 1. Digital Engineering, Inc, User's Manual. RG-512 Retro-
Graphics Card for the ADM-3A CoNpuer TerminaLa 1981

ft 2. Rector, R. and Alexy, G., The 8086 Book, Osborne,
McGraw-Hill, 1980

Sysntems Guide, 1981

4. Digital Research Corporation, PL/I-_6 Manual, 1983

5. Lamie, E.L., ?jLI jprgrgamng,Wadsworth Publishing
Co., 1982

6. Digital Research Corporation, PL/I-8_ Applications
9uide, 1980

7. Intel Corporation, iSBC 86L12A Single Board Computer
Hardware Reference Manual-19

8. Lear Siegler, Inc., ADM 3A Dumb Terminal Video Dislay
UVt User Reference Manual, Anaheim, 1981

9. Intel Corporation, MCS-86 Assembly _ang~uage Reference
Manual, Santa Clara,-- .

10. Kodres, U., Clas Notes CS.55, Naval Postgraduate
School, 1983

117

BIBLIOGRAPHY

Deitel, H.M., An Introduction to Operating Systems,
Addison-Wesley Publishing Company, 1982

Kersh, T. B., Signal Processor Interface Simulation of
the AN/SPY-1A Radar Contr i1er, Master% Thes1_s-,R-vai
Postgraduate School, 1983

Maclennan, B., Progr.amming Lanuage Desi§n principles,
Naval Postgraduate School, 1982

Selcuk, Z., Kim, K.C., and Bozkurt, D., Air Surveil-
lance §___ Simu lappon; CS-3550 Class Project,
Naval Postgraduate School, 1983

Tenenbaum, A.M. and Augenstein, M. J., flata Structures
Using Pascal, Prentice-Hall, Inc., 1981

Ie18

i % ~M . .",, .,. .- .- ,, -,-.-.. , . ,

INITIAL DISTRIBUTION LIST

No. of CcPies

1. Defence Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93S43

3. Department Chairman, Computer Science, 2
Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93-43

4. Professor U. Kodres, Code 52R 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. Hakan Ozyurt 1
145 Sok. 6/6 B. Blok
lopru - Izmir
TURKEY

6. Mike Williams, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 95943

7. LCDR R.B. Kurth, Code 52K 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

8. 0.1. Chambers 1
Systems analyst
Corrections Division
2575 Center St. N.E.
Salem, Oregon 97310

9. Dz. K. Komutanligi 5
Okullar ve 1urslar Dairesi
Pakanliklar - Ankara TURKEY

119119 i

.7*-.'V.

10. Deniz Barb Okulu
lu tuphanes i
Heybellada - Istanbul TURKEY

11. Istanbul Teknik Universitesi1
Kutuphanesi
Istanbul TURKEY

*12. Bogazici Universitesi
Kutuphanes i
Istanbul TUR KZ,
TURKEY

13. Orta Dogu Teknik Universitest
Kutuphanes I
Ankara TURKEY

14. M. Kadri Ozyurt
145 Sok 6/6 Kopru
Izmir TURKEY

'120

-iIt

If'

"~~~2'. W,* P'.

M-p
A,~ IT

$1 4

