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Chapter 1. Introduction

1.1. Motivation and Objectives

Our overall objective is to develop a design methodology and to establish a basis

for the design theory of the development of distributed processing systems. In order to

give a concrete basis to our research, we have chosen a specific problem to study- the use

of distributed computer systems for providing d'ata management facilities in a node of

an unreliable, secure network.

Current approaches to the design of distributed processing systems are based pri-

marily on intuition and experience. As the computing power of processors increases with
.+i the development of VLSI technology, the size ai~l cost of software and hardware design

increases by leaps and bounds. The complexity of today's computer systems provides

serious problems of maintainability, understandability, expandability and adaptability,

-_ which are only exacerbated by the trend towards multiprocessing and distribution func-

tions. We need, therefore, a systematic approach for the design and analysis of distri-

buted computer systems. To anchor our research in reality, we have chosen to develop

our research around a subsystem of considerable current interest, a database machine

backend for a node in a computer network. Although research on database machines has

been comparatively recent, a sizable body of knowledge has been acquired concerning

different aspects of them which we woula like to systematize in a top-down approach.

Special attention is also paid on the impacts of VLSI technology.
".o

1.2. Overview of Contents

In chapter 2, we discuss the importance of design methodology and the particular

one we deem appropriate for our research. Chapter 3 and 4 discuss the design of the

virtual database machine architecture. Chapter 5.6,7,8 are devoted to the design of phy-

uical database machines. Both design considerations and design methodologies are given

in these two closely related subjects. Chapter 9 gives the conclusion, current status and

our planned work.

........... . "- " ' :  . + " .+x '. .."A,..
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Chapter 2. Design Methodolgy for Large Scale Computer Systems

The complexity of today's computer systems provides serious problems of maintai-

nability, understandability, expandability, and adaptability, which are only exacerbated.,..

A! by the trend towards multiprocessing and distribution functions. We need therefore, a

systematic approach for the design and analysis of distributed computer systems.

Current approaches to the design of distributed processing systems (DPS) are based

primarily on intuition and experience. These approaches cause expensive penalty

lengthy development time, unreliability, inability to tackle changing environment, etc.

The methodology we will follow uses the concepts of abstraction, stepwise refinement,

and modularity. To be more specific, system development is partitioned into stages and

phases. The stages constitute a natural structufing based on major differences in applied

technology. The phases, which make up a stage, impose an ordered, layered approach to

design, reducing the risk of error and producing systems that are easier to understand

and maintain.

2.1 Stages and Phases

2.1.1 Problem Definition Stage

During this stage the functional and nonfunctional requirements of the computer

system are determined. We believe that successful system design proceeds from a clear

understanding of the problem being addressed and, therefore, consider this stage to be of

prime importance. Two phases of development occur during this stage to ensure the

accurate definition of the problem: an identification phase and a conceptualization

phase. The identification phase is informal and exploratory in nature. During this

phase an identification report is produced that contains all available information on sys-

tem responsibilities, system interfaces, and design constraints. The system requirements

generated during the conceptualization phase contain (1) a conceptual model that for-

malizes the system's role from a user perspective and (2) the design constraints imposed

by the application. The conceptual model is the standard against which system

S. . . - ' . - = % %. e . , . . . . , , ,t i, . i. . . - , - " - • - " . " . " . . . . . .. . . , ..
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functionality is measured throughout the design process.

2.1.2 System Design Stage

During this stage the hardware and software requirements are established for each

component of the system. Requirements for the functional and nonfunctional capabili-

ties of the components are specified, including the interfaces between these components (

such as communication protocol, programming i'nguage support, and operating system

primitives ). These requirements are closely followed (I) during the procurement and

design of the individual system components (such as computers, operating systems, and

peripherals.) and (2) during the subsequent integration of these components into the final

system.

The system design stage includes two phases : system architecture design and sys-

tem binding. The main concern of the developer during the system architecture design

phase is to investigate system design alternatives and their potential impact on the vari-

ous system configurations being considered. In the case of a distributed database system

the developer may use this phase to identify data and processing distribution and the

number of nodes present in the network. Particular software or hardware components

are evaluated to assure that a set of reasonable binding options exists.

During the system binding phase , the actual mix of hardware and software is

selected . The hardware and software requirements generated during this phase may

combine off-the-shelf and custom-built hardware and software components. How these

components are selected is determined by the design constraints to be met and the avail-

able technology. Binding options are identified in the system architecture design phase,

but the selection of specific components is done in the binding phase.

2.1.3 Software Design Stage

There are three phases involved in this stage. During the first phase, software

configuration design, off-the-shelf software is procured and the overall high-level software%I

system design for each programmable system component is established . This involves

i.a .o% .%" I" i" e" . -
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(1) the structuring of the software into such division as subsystems, virtual layers , and

tasks, (2) the definition of interfaces between components, and (3) the generation of

requirements for each component. The program design phase takes these requirements

and produces the program design (data and processing structures) , which together with

all pertinent assumptions and constraints , makes up the implementation requirements.

These are used by the coding phase to build the actual programs.

2.14 Machine Design Stage

This stage is similar to the first two phases of the software design stage. During

this first phase of the machine design, the hardware configuration design phase, off-the-

shelf machines are procured and high level architecture of custom hardware is designed.

Component requirements are developed for all entities that are part of the custom

hardware and passed on to the component design phase. A register-transfer level

machine description which is used to determine the circuit design requirements and the

firmware requirements, is generated during this stage.

2.1.5 Circuit Design Stage

Three phases of system development occur during this stage: switching circuit

design , electrical circuit design , and solid state design. During each phase, design

requirements are generated for the phase immediately following.

2.1.6 Firmware Design Stage

This stage consists of three phases that are an analog to program design, coding.

and compilation. These phases are microcode design , micro-programming, and micro-

code generation.
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2.2 Steps

The ten steps listed below represent the design activities involved in each

phase, regardless of the nature of that phase.

(1) formalism selection,

(2) formalism validation,

(3) exploration,

(4) elaboration,

(5) consistency checking,

(8) verification,

(7) evaluation,

(8) inference,

(9) invocation, and

(10) integration.

2.2.1 Formalism Selection

This step encompasses the activities involved in selecting a formalism for a partic-

ular problem domain. Each phase may involve one or more different formalisms : pro-

gramming languages for coding ; pseudocode for program design; logic diagrams for

switching circuit design; and stimulus-response graphs and logic models for conceptuali-

zation. Candidate formalisms are chosen on the basis of their expressive power in that

domain and their ease of use, lack of ambiguity, ease of analysis , and potential for auto-

mation.

2.2.2 Formalism Validation

In this step, we determine whether a formalism has the expressive power needed for

a particular task. We also evaluate how easy formalism are to use. These tasks may

involve both theoretical and experimental evaluations. The validation step also includes

evaluations of the formalism's potential for design automation and its ability to support
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hierarchical specifications.

2.2.3 Exploration

This step encompasses the mental activities involved in synthesizing a design.

These activities are creative in nature and depend on experience and natural talent.

They cannot be formalized or automated unless the problem domain is significantly res-
tricted.

2.2.4 Elaboration

In this step, ideas produced in the exploration step are given form through the use

of various formalisms. Coding , specification ;writing, and circuit layout drawings are

typical activities associated with this step , but it's scope extends to the building of a

concrete object such as a piece of hard ware . The effectiveness of this step may be

greatly increased through the use of a variety of design and manufacturing aids.

2.2.5 Consistency Checking

This step encompasses activities such as checking for incorrect use of formalisms;

for contradictions, conflicts, and incompleteness in specifications; and for semantic errors.

Checking includes verifying consistency between different levels of abstraction in a

hierarchical specification and reconciling multiple view points.

2.2.6 Verification

In this step , we demonstrate that a design has the functional properties called for

in its requirements specification. Since each phase has a requirement specification and

produces a design , this step is equally important for all phases. A common example of

this type of activity is verifying program correctness.

"..
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2.2.7 Evaluation

In this step, we determine if a design meets a given set of constraints. Constraints

include both those that are part of the requirements specification for the phase and those

that result from design decisions. The nature of evaluation activities depend on the type

of constraints being analyzed. They include classical system performance evaluation of

response time and workload by means of analytical or simulation methods; deductive

reasoning for investigating certain qualitative aspects like fault tolerance or survivability.

2.2.8 Inference

In this step, the potential impact of design decisions is assessed. Questions
addressed are (1) How will the system impact 'the application environments ! Can we

afford the implementation? Is personnel retraining too expensive?; (2) Can subsequent

phases accommodate the decisions made in this phase ! Is the bandwidth choice reason-

able ? ; (3) How does the design affect our ability to maintain and upgrade the system ?

Will parts be available five years from now ? ; and (4) How does the design affect imple-

mentation options ? Is there a good reason for ruling out mainframes ? These issues

must be considered in every phase, but they are particularly critical in stages that define

architectures.

r%'
2.2.9 Invocation

This step encompasses the activities associated with releasing the results of the

phase. It includes quality control activities involving tangible products and review

activities that lead to the formal release of output specifications. The release of output

gives the step its name, since this release in effect invokes subsequent phases.

2.2.10 Integration

In this step, the portion of the total system designed in the phase is configured and

tested. Traditionally integration is considered a design area , and would therefore qual-

ify as a stage in the framework. However, we have chosen to distribute integration

%77... .. , ... . .. :. , .- - -



-9-

activities among the phase because (1) the expertise needed to test a portion of the sys-

tem is similar to the expertise needed to create its requirements, (2) the assumptions

made in a phase about the nature of the products that could be delivered by subsequent

*i phases must be checked once the subsequent phases complete their tasks, (3) all models

- used to make these assumptions must be validated, and (4) errors found during integra-

p tion must be resolved in the phase that created the requirements.

2.3. Goals:Using above mentioned hierarchical approach, we believe we can

develop a design methodology that will be able to:

(1) provide an evolving system with controlled expansion.

% (2) represent effectively and efficiently*'the decision making -.traints by a

specification language.

(3) provide a means for incorporating design alternatives and tra _ jffs at various

design steps and design levels.

(4) provide design attributes and documentation for evolution (growth and

"* modification) so that changes can be made without reconsidering the whole

design process.

'.o

I
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" Chapter 3. Functions of Back-End DB Machines in Distributed Environments

Database sharing is one of the main advantages a network environment provides.

However, several problems whkh we do not encounter in a monolithic system arise:

- How should data be distributed?

-Will the whole system still operate if one node fails?

- How to authenticate users from remote sites?

"4 - How to reduce the communication overhead? -,

-How to coordinate tasks between several sites?

- How to recover a failed node?

In this chapter, we look into these problems, give a brief survey of existing solu-

tions, and add our comments.

3.1 Environments

A general distributed environment may consist of several networks, each connected

"- through gateways. Each network may have different characteristics from others; e.g.,

. topology, communication medium, and the physical distanc between two nodes, etc.

Eavesdropping may occur on the network and malicious users may try to break into the

system. Communication links may be broken at any time and any node can fail. Users at

different sites run programs independently, and they may want to access the data base

at the same time - delete, update, read, append, etc. All these factors contribute to the

-. complexity of a Distributed Data Base Management system (DDBMS).

-9

3.2 Functional Requirements of a DDBMS

In this section, we examine functional requirements of a DDBMS. We focus espe-

cially on those functions that are brought up by the distributed nature of our target

environments.

9 9 . o ".-. !q , • . . . .
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3.2.1 Data Distribution & Replication

Required at each autonomous site are two kinds of data: frequently accessed and

less frequently accessed. Frequently accessed data should be stored locally. The object of

data distribution is to satisfy each site's needs in an efficient way. If two or more sites

frequently access the same data, then the data should probably be replicated, under

some tradeoff considerations. Several advantages of replication can be identified:

(1) Higher availability.

(2) Better response time.

(3) Reduces communication traffic.

(4) Load balancing.

However, this is true only when most of the accesses to the replicated database are read

requests. For update requests, all the advantages go away and several problems arise. A

list of update strategies that tend to solve these problems may be found in [Li79]. We

discuss here only two common strategies:

(1) The Unanimous Agreement update Strategy: In this scheme, unanimous acceptance

of the proposed update by all sites having replicas is necessary in order to make a

modification, and all of those sites must be available for this to happen. In this

.-, design, the availability of a replicated file for update requests is (1-p)**N, if there

are N copies; p is the probability that a node fails.

(2) Single Primary Update Strategy: Update requests are issued to the primary replica,

which serves to serialize updates znd thereby preserve data consistency. Under

this scheme, the secondaries diverge temporarily from the primary. After having

performed the update, the primary will broadcast it to all the secondaries some

later time. Availability of this scheme is (l-p); again, p is the probability that a

node fails.

~*%

9.
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3.2.2 Authorisation

%A multi-user data base system, whether distributed or not, must permit users to

share data in a controlled and secure manner. Problems encountered in centralized data-

bases, which have to be shared, inc Ae authorization validation, creation and destruc-

tion of tables in adynamic manner, etc. When the system becomes distributed, new

issues crop up. One of the main issues is that of security of data while it is on the corn-

S.' munication medium. This is a problem which is purely an outcome of the distributed

nature of the environment. For some applications the confidentiality of data is critical,

and we ought to have mechanisms to prevent data theft by techniques such as wire-

tapping. In recent years this issue has aroused much interest in researchers leading to

substantial development in the field of cryptography. Use of cryptographic techniques for

the safety of transmitted data entails the following:JI.
.p.- The sender encrypt, the data to be transmitted using a key, yielding cipher tet.

The cipher text is transmitted over the insecure channel. This is safe because even

if someone were able to record this data, its meaning would be unintelligible to

him.

The receiver decrypt# the cipher text to get back the clear teat, i.e. the original

data.

Currently DES is a very popular encryption mechanism which is based on what in

literature is reffered to as the conventional key encryption scheme. An inherent drawback

of this scheme is its inability to provide the facility of digital signature in a simple way.

Recent researches have brought to light an alternative encryption scheme known as the

public key encryption system. This mechanism solves the problem of implementing digi-

tal sinatures in a simple and elegant manner. One unfortunate aspect of this scheme is

the current availability of fast enough technology to implement this scheme in an

eficient manner. However, this problem is not inherent in the scheme, and we hope tech-

nology will develop fast enough to overcome it.

'"N' . Other authorization problems include those of password veriflcatio, access control,

etc. These are problems which are not due to the distributed nature of the system. Good

. ** . . . o o . • . . - ,
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and efficient solutions to these problems &bound in literature.

3.2.3. Protocol Handler

To coordinate executions among remote sites, we must design a set of protocols for

DDBMS; e.g., locking protocol, recovery protocol, etc. The details of these protocols will

be discussed later. In this section, we discuss how to design new protocols in an

automated way to guarantee their correctness.

Protocol synthesis is a process of designing new communications protocols. The

V objective of developing automatic protocol synthesizers is to provide a systematic way of

designing protocols such that their correctness can be ensured. Although protocol

analysis methods are useful to various extents in validating existing protocols, they do

not provide enough guidelines for designing new ones. What protocol designers need is

some set of design rules or necessary and sufficient conditions, so that their designs are

guaranteed to be correct. The newly designed protocols need not go through the

analysis stage to be checked for their correctness.

We developed a protocol synthesis procedure which constructs the peer entity from

the given local entity which is modeled by a Petri net.[Do83I If the given entity model

satisfies certain specified constraints, the protocol generated will possess the general logi-

cal properties which a protocol synthesizer is looking for. The synthesis procedure is

very general. It is applicable to every layer of the protocol structure.

To construct the desired peer entity model, there are three tasks which should be

conducted in sequence

(1) Check local properties of the given local entity model to make sure that it is

well-behaved. This can be done by generating and examining the structure of

its state transition graph.

(2) Consut t the peer state tVnsition graph from the above generated state tran-

sition graph according to sdme wH designed transformation rules.
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(3) Construct the peer entity model in Petri nets from the peer state transition

graph.

3.2.4 Transaction Management

The transaction management system is responsible for scheduling system activity,

-A managing physical resources, and managing systqm shutdown and restart[Gr78]. Tran-

saction is a unit of consistency and recovery. We could divide a transaction into three

phases:

(1) Read Phase: In this phase, access to data objects must be authorized.

(2) Execution Phase

V(3) Write Phase: In this phase, transaction may be aborted or committed.
,.'.

Concurrency control mechanisms may be used to solve problems in Read phase and

Recovery management may be employed to solve problems in Write phase. The Execu-

tion phase will be discussed in a later section.

3.2.4.1 Concurrency Control

Concurrency is usually introduced to improve system response time. However, if

several transactions run in parallel, the system may be left in an inconsistent state unless

accesses to shared resources are regulated. There are three forms of inconsistency:

(1) Lost Updates: Write -> Write dependency.

(2) Dirty Read: Write -> Read dependency.

(3) Un-r v atable Read: Read -> Write dependency.

Note that reads commute, so we don't have Reaa -> Read dependency.

There are basically two ways for solving concurrency control problems. One is by

locking mechanism, and the other uses timestamp-based protocols.

.. . , ... . . .... . .. .. . . . . ...e. . .



3.2.4.1.1 Lock Management
We could define consistency in terms of lock protocols. We say that a transaction

T observes the consistency protocol if:
4

(a) T sets an exclusive lock on any data it dirties.

(b) T sets a share lock on any data it reads.

* (c) T holds all locks to EOT.

An important issue is the choice of lockable units. It presents a tradeoff between

concurrency and overhead, which is related to the granularity of the units themselves.

For fine lockable units, concurrency is increased, but it has the disadvantage of many

invocations of the lock manager, and the storaie. overhead of representing many locks. A

coarse lockable unit has the converse cases. It would be desirable to have lockable units

of different granularities coexisting in the same system.

Another important issue the lock manager must deal with is deadlock. There are

several ways to handle this problem:

(1) Timeout: causes waits to be denied after some specified interval. It is acceptable only

for a lightly loaded system.

(2) Deadlock Prevention: by requesting all Ica-&s at once, or requesting locks in a specified

order, etc. One generally does not know what locks are needed in advance, and conse-

quently, tendency is to lock too much in advance.

(3) Deadlock Detection and Resolution: Deadlock detection problem may be solved by

detecting cycles in wait-for graphs. Backup process is handled by Recovery manager.

3.2.4.2 Recovery Management

The job of recovery manager is to deal with storage and transmission errors. There

are three possible outcomes of each data unit transfer:

(1) Success (target gets new value)

(2) Partial failure (target is a mess)

---... ~..1
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(3) Total failure (target is unchanged)

The recovery manager must be able to back up to a consistent state no matter what

failures occur in order to keep the data integrity. Since recovery management is a criti-

cal part of reliable DDBMS, we will discuss it in length in this section. Following is a

brief survey of existing mechanisms to support fault tolerance for a transaction process-

ing system.

3.2.4.2.1 Transaction Commit

If several copies of a data are distributed around the network, then they must all

be kept up to date to avoid inconsistency. The following technique called Transaction

Commit can be applied: We select a primary, or originator site. It will serve as the coor-
dinator. It first sends update requests to other sites, then waits for their answers. If

ever one apees to participate in the updating, the coordinator sends the commit request

and everybody does the actual updates at that time. Note that after it agrees to partici-

pate, no site can change its mind any more, and during the updating, the data must be

locked, i.e., no other user can access the data. To guarantee that the mechanism will

work under any single failure, we still need two supplementary mechanisms, shadou

pages and audit trail, which are discussed in the next two subsections.

3.2.4.2.1.1 Shadow Pages

The idea of shadow page is that before the transaction is committed, all updates

should actually go to a shadow copy of the original data, so that when crash occurs, we

can still recover the data to the original consistent copy. This is different from theU multiple copies" in that one of the two copies here is kept only temporarily, and after

the transaction commits, the original copy is deleted. The system must keep track of

where these shadow pages are, and must be able to remove all of them when the system

recover from crashes.

p.-
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3.2.4.2.1.2 Audit Trail

It some failures occur during the transaction processing, either after or before the

transaction commits, the recovered site must be able to identify which state it is in. If

the transaction already commits, it must replace the original copy by the shadow copy.

If the failure occurs before it receives the commit request but after it agrees to commit,

then it must check other sites to see whether the commit action is already taken by

other sites; if it is, it performs the commit operations, otherwise, removes the shadow

copy. If it has not agreed yet, then apparently the transaction must already aborted, so

it can remove the shadow copy. To keep, its state, each site must records the sequences

of actions on its data. However, the audit trail itself may be damaged. To keep the
integrity of the audit trail, another form of multiplication called stable storage [StSO]

may be used.

3.2.4.2.1.3 Stable Storage

The basic idea of stable storage is 'write twice'. We always keep two copies of the

data, and always update them in the fixed order; first primary, then secondary. If while

writing the primary, the system crashes, we copy the secondary to the primary. On the

other hand, if when writing the secondary, the system crashes, then we can copy pri-

mary to secondary. Now, a natural problem arises, how do you know which state you

are in? We can not rely on another audit trail, because the problem would become circu-

lar. An easy solution is to use checksum to check the integrity of the data. If one is bad,

the good can be copied to it. If both are good, the crash must occur just after we suc-

cessfully write the primary copy; in this case, the primary should be copied to the secon-

dary.

3.2.4.2.1.4 Software faults

One thing that is usually ignored intentionally in designing reliable systems is

software faults. Most systems assume that there is no bug in system programs. How-

ever, the catastrophe caused by software faults happens everyday in the world. Since

. -.m V., . . .



.',. they are eaily ignored, they also go undetected duing execution, thus making recovery

very difficult, if not impossible. Recently a lot of concern has been shown about this

., problem. Good references can be found in [iM84]. Here we mention only the idea of

4.

~recovery boCh,:

S For each block of code, we introc~uce alternate blocks which perform the same func-

tion but with different algorithms nd different degrees of precision or complexity in a

hope to make things work despite failure of one method. To detect a software fault, an
ccepteyne teat is performed, which checks the validity of the results generated by the

code block. The rcceptance test keeps the interity of the hetIn results fail to ps

the test, then recovery mechanism is initiated. The process state must be reinitialized
before entering the code block, after which an alternate block is selected and the execu-

tion starts over again. If all blocks fail the test, then error is reported.

A potential problem of this mechanism is tha odn ect a is substantially

larger than that without recovery blocks. However, for critical applications, if the

software is rther complex, sustantial saving in terms of debugging efforts could be

achieved. However, this technique can only deal with software faults, and we did not

mention here how the state is saved and recovered.

3.2.4.2.1.8 What Else?

In the above discussion, we enumerates many fault tolerant techniques that are

related to transaction processing. Although they are not the whole story, they identify
most of the important mechanisms that we teel should be included in a distributed, tran

saction processi system. However, there is one thin we haven't discussed yet, i.e., bow

are cooperating processes recovered from crah occurring in o e of themf Domnl Ee

may occur when we try to back up these processes to a consistent state. We devote the

next section to ivestigating this problem.
4
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3.2.4.2.2 Achieving Fault Tolerance Using Message Passing

Coupled with the development of distributed computation, message-passing has

become the primary candidate for an operating system kernel structure. One of the

important functions that can be achieved via message passing is system reliability.

*Although research is still under way, it is generally believed that, at the cost of redun-

dancy, message-based systems are able to yield fault tolerance.

There are many software-controlled schemes for reliability. Among others, check-

pointing and tranaction, the two we discussed above, are most fundamental. Incor-

porating these schemes, more specific techniques have been designed and applied to real-

world environments [Ba8l], which features the concept of proce, pairs, have proved to

be of practical value. The idea of publiahtpg [Po83l, as has been simulated in

Demos/MP, an experimental distributed operating system currently under development

at Berkeley [Po84I, is a simple and powerful tool for tolerating faults on an Ethernet.

The Aurosj, a Unix-like operating system being implemented on the M68000-based mul-

tiprocessor Auragen 4000, introduces the novel notion of multi-way message backups and

periodic synchronization, which looks very promising.

Fault-tolerant operating systems always need the support of multiple processors,

either in a distributed or a tightly-coupled fashion. Traditionally, the cost-effectiveness

was not attractive except for some specific and defense-oriented applications. With the

advent of VLSI, the situation has reversed almost over night. Highly-reliable systems

have finally reached such application domains as airline reservation, banking, etc. with

reduced expense. This section focuses on some of the important issues considered by

Non-Stop, Publishing and Auros.

It

t both trademarks of Tandem Computers Inc.
a * trademark of A'agen Systems Corporation. 3
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3.2.4.2.2.1 Type@ of Faults Tolerated

Assumptions about the environments differ from system to system. With regard to

faults, most message-based systems commonly assume the following.

1. A message-based fault-tolerant system is able to tolerate single hardware faults.

Software failures are not handled.

* 2. Failures must be detectable and non-determiteieti. In other words, failures must be

recoverable.

3.2.4.2.2.2 Duplicated Resources

The major concern here is the manner in .hich duplicated resources are used to

provide fault tolerance.

In Non-Stop, the idea of process pairs is implemented as follows. The requester and

the server both keep a process backup respectively. The checkpointing is performed at a

very line grain. Whenever a primary process receives a message, it checkpoints its

backup. If the primary crashes, the backup takes over and when the old primary recov-

ers, it becomes a backup. During its recovery period the new primary is not check-

pointed. Each message is identified by a unique sequence number. Redundant opera-

tions are avoided by comparing message sequence number and an internal log kept by

each process.

Duplication in Demos/MP is restricted to a centralized recorder that records every

message How over the Ethernet. This recording activity is called publishing. The

recorded information is categorized according to process-id. To cut down the work dur-

ing the recotlyery stage, occasional checkpoints are performed. Processor state since last

checkpoint is also kept in the recorder. If the recorder crashes, a second one will be
elected. The recovery procedure is a standard roll-forward discipline: Firstly restore

state, then replay interactions since checkpoint and lastly discard outputs since failure
time. I

The Auros system extends Non-Stop's process-pair idea one step further to yield a

scheme known as multi-way message transmission. In Auros, every message sent by the

"N •.
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sender to the requester goes to three places: (1) primary destination, (2) backup destina-

tion, and (3) sender's own backup (increment a counter, actually). (1) and (2) are the

analogy of a process pair whereas (3) serves primarily for the purpose of preventing

redundant messages be from being resent. Every process interrupt is checkpointed. But

the interrupts by kernel in backup checkpoints are not checkpointed.

Whenever the primary has read a system predefined number of messages, the pri-

mary and its backup are synchronized. Again, like every checkpointing mechanism, this

is for performance considerations instead of reliability. Without checkpointing, the relia-

bility can still be achieved, but the efficiency of recovery will be degraded.

3.2.4.2.2.3 Crash Detection

To detect crashes in Non-Stop, the following steps are taken:

NI. Every second, each processor sends an unsequenced acknowledgement packet over

each bus to every processor.4*,

N2. Every two seconds, every processor checks whether it has received an unsequenced

packet from each other processor.

As far as crash detection in Demos/MP is concerned, a recovery manager is imple-

mented. Two types of crashes are handled by the manager.

D1. A process crash causes a trap to kernel, which stops the process and sends a mes-

sage to the recovery manager containing the error type and process id of the

crashed process.

D2 To detect processor crashes, the recovery manager spawns a watchdog process in

the recording node. If no messages have been seen in a while, the processor is con-

sidered to have crashed and is restarted. To avoid the watchdog's misjudgement,

each processor is required to send out null messages from time to time even if it has

nothing to say.

Since Auragen is still under development, it is not clear at this moment the specific

mechanisms used for crash detection. Since the Auragen 4000 is an architecture of

several clusters of multiprocessors, it can be predicted that failures local to a cluster is

' '+ ,€, , , : , , . ., . ..'.:. ,,.- -.. , . . ... . . - -. - . . . . . . . . ~.
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detected locally and periodic polling by a global server on each cluster is necessary.

3.2.4.2.2.4 Transparency

The Non-Stop process pairs is a mechanism that is not transparent to the user. An

application program desiring fault tolerance must explicitly manage the process pairs.

This burdens the application programmer very badly. A side effect of this situation is

the large amount of application-specific code, which makes transporting packages

difficult. Also, the upgrade of system may cause some software compatibility hardships.

It has been reported that the situation is being improved.

Both Demos/MP and Auros feature transparency of high reliability. Users of these

systems have no idea about the realization of fault tolerance. To us, this is essential.

Furthermore, since publishing is a centralized mechanism as opposed to the other two
decentralized ones, it causes less perturbation during recovery.

4.,

4 4 - : ' : , .: .' . " . ... , .., .. .Z .-. . ' -, ' . f . .. , .. .. . - .. . . . . . . . . . . . .
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Chapter 4. Back-End DBMS Construction from Requirement Specification

Our ultimate goal is to provide a computer aided interactive design environment

for designing distributed systems. DDBMS is our first design instance. In our view, the

scenario of future design process should look like following:

A user wants to design a new system. Although he knows what are required in his

system, he may not be able to solve the conjlcts between requirements; he knows

some design issues, but he is unable 'o manage the complexity of all possible design

tradeoffs. Therefore, he asks for help from the computer. He works interactively with

the computer to get a consistent requirement specifications. There may be several

alternatives given by the computer for each design problem, the user can ask the corn-

puter for explanation of certain choices; hit may randomly select one, or he may

specify further requirements to narrow down the scope of possible alternatives, e.g.

lowest cost, highest reliability,..etc. Finally, if everything is agreed between the user

and the computer, the latter will start working on a full report in details of what are

required for lower level components of the system. The whole design process may be

iterated several times for different levels of the target system architecture.

Now we will see how this strategy could be applied to our DDBMS design. Before

getting into the details, we shall point out that, not every DDBMS is built from scratch;

there may already be some physical constraints ; e.g., network topology may be fixed,

supporting operating system may not be changed, etc-. These can be integrated into the

requirement specifications. Also, the design may even stop at some earlier phase; there is

a trend to design DDBMS based on existing database systems with fixed physical

designs[Ro84]. In this case, the design must stop at logical access path optimization.

We see the whole design of a back-end DBMS as a 3-phase process.

Phase A: User requirements-> Network design + Node requirements

Phase B: Node requirements-> Subnetwork design + pr,essor requirements

Phase C: Processor requirements -> (HW + SW) design + bus structure design

Our primary interest lies at the level of Phase B. However, we shall start with

phase A because many design decisions must be done at this level. We do not plan to get
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into phase C at this stage, but the output of phase B should be feasible in terms of pro-

cessor constraints or realizability. This chapter will be devoted to the discussion of our

methodology and the design of phase A, later chapters will discuss phase B in details.

4.1 Consultation System

All design phases start with requirements from upper levels and produce require-

ments for lower levels. There are two kinds "of requirements functional and non-

functional. For phase A, functional requirements are usually the same in all DDBMS's,

because basically they all have the same problems to solve; the difference only lies in the

degree of functionality. However, non-functional requirements may be drastically

different among different enterprises. Some'. import concerns are: system cost,

throughput, response time, expandability, adaptability, user friendliness, and reliability.

To meet both functional and non-functional requirements in designing a DDBMS is cer-

tainly a very difficult job. Design methodology must be employed to save design effort.

To help users and designers specify their requirements, we are currently building a

consultation system. The idea is to store current expertise of DDBMS into a database

using Ingres[St76] facility, and to employ an interface program to retrieve the informa-

tion so that users may reference this expertise and remove inconsistency or infeasibility

of their requirements. Our first version is very primitive because the validation of

requirements can not be done automatically yet, the system only provides some hints to

help users make the right specifications.

We are investigating the knowledge organization of the consultation database. It

should consist of the following categories of information to answer questions of users or

designers in the future:

(1) What are the requirements that need to be specified for a DDBMS?

(2) What are the design is3ues that need to 1e considered?

(3) How many alternatives do we have for solving a particular problem? What are

the advantages and disadvantages of each?

7_7
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(4) Descriptions of the current state of existing DDBMS's. How do they solve

different problems? Any measurement data or evaluation reports available!

(5) Is there any preference relations for design options! How to check the conflicts

between two requirements?

We need some tools to help us build up the consultation database and other ele-

ments of future design environment. These will be described in the following sections.

4.2 Requirements Language

We must provide a requirements specification language so that users can state their

requirements naturally yet rigorously enough to avoid ambiguity. We are currently

extending RSL[A177] notions for our purpose. Basically, there are five types of objects:

(1)Element8: Analogous to "nouns" in English. Elements are objects and ideas

which the requirements analyst uses as building blocks for his/her

description of the system.

Examples:

- ALPHA: the class of functional processing steps

o DATA: the class of conceptual pieces of data necessary in the sys-

tem

- R-NET: the class of processing flow specifications

(2).4tributes: Analogous to "adjectives" in English. It formalizes important pro-

perties of the elements. Each attribute has associated with it a set of

values, e.g., mnemonic names, numbers, text strings.

Examples:

- INITIAL-VALUE for DATA

- INPUT for ALPHA

(3)Relationshipe: Analogous to "verbs" in English. It corresponds to the mathematical

definition of binary relation, a statement of an association of some

type between elements. Relationship is non-commutative, i.e., a

A.,,t , , ,f - .. ,, ,,..., .. ,, .. . . . . . - , - . . . . .  . . . .. . . . . . . . . . . .. . . .

4 ' ' d
°

+ m -i " " " " " " " ' " " " , '' ' ", ."." " . , ' '" .". '' . " ,% """' . " "-" ""



- 25 -

subject element and an object element are distinct.

Examples:

- ALPHA INPUTS DATA

- or DATA is INPUT to an ALPHA, where INPUT here indicates

the relationship

(4)Structures: There are two structures:

- R-NET (SUBNET) structure: identifies the flow through the func-

tional processing steps (ALPHAs) and is thus used to specify the'.

system response to various stimuli.

J - VALIDATION-PATH: is used to specify performance of the sys-

tem.

(5)Segment: It consists of groups of element types, relationships, attributes, and

structures which arise from some underlying issues of requirements

definition. There are five segments:

- DATA segment: the logical relationship among pieces of informa-

tion and interaction of the information with the rest of the system.

- ALPHA segment: the basic processing steps in the description of a

set of functional requirements.

- R-NET segment: the specification of the flow of processing steps

- VALIDATION segment: the definition of the performance require-

ments to be met by the system.

- MANAGEMENT segment: information necessary to support the

disciplined management of a requirements engineering project.

4.3 Requiremert Analysis

.After users have specified their requirements, some requirement analysis must be

made to remove inconsistencies among requirements. In this section, we discuss two tools

that may help the analysis.

.,e,:,¢,** s.s r€ .', ... , " . ., *,... . .. "',. : '.,'.,.. . . . . . . , - . . . . .
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4.3.1 Payoff Measures and Payoff Trees

Payoff measures are measures of "goodness" and are thus associated with the non-

functional attributes(reliability, performance, etc.) of the system. The development of

the payoff measures was guided by the need to make them compatible with the parti-

tioning approaches. There are several ways to partition a system:

(1) partitioning by hierarchical component level(DDBMS, nodes/ internodal net-

work, computers/intranodal network, hardware/software).

(2) partitioning by level of abstraction(functional, virtual, physical), which is super-

imposed on each of the component levels of the first type of partitioning.

(3) partitioning by data processing software component(application system, operat-

ing system).

(4) partitioning by subsystem affinity.

The payoff measures were developed along the lines of the first type of partitioning.

Furthermore, they are applied essentially at the virtual(to guide the allocation process)

and physical (constraining physical design) levels of abstraction of the second type of

"- ~ partitioning.

In order to use the payoff measures for guiding the design path at each stage, each

payoff measure must be decomposed into the lower-level, design-controllable factors

which determine the value of the payoff. This decomposition, called the payoff tree is

structured hierarchically along hardware and software lines. To obtain a high-level

payoff value, the contributions to the payoff from its subtree are aggregated based on

analytical models or simulation.

We have selected a set of payoff measures and developed payoff trees appropriate to

the design of DDBMS's. The development is made so as to facilitate the evaluation of

Alz payoff.
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4.3.2 Preference Graphs

The Function Option Library(FOL) in our consultation database is organized in

the form of preference graphs. In different decision domains, the designer must choose

among the options available as the process of function refinement or elaboration is car-

ried out. These domains are represented in the FOL. As the design process proceeds

through the successive phases, the design path through the preference graphs will be

traced out to greater and greater depths.

.,
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Chapter S. Classification and Comparison of Data Base Machines

To develop an effective methodology for designing distributed backend database

machines requires in-depth knowledge about the target itself. Chapter 3 has covered

issues of distributed systems in general. The next chapter will focus particularly on the

- impact of VLSI. This chapter discusses the current status of backend database

-: machines. The rationale behind database machines is first examined. Being unable to

support efficient database operations, the deficiencies of conventional computer systems

are highlighted. As remedies to these deficiencies, there have been a number of database

machines proposed, a representative subset of them is classified according to a simple

taxonomy. What are the guidelines in designing a database machine! Some suggestions

are given with a real-world example. Finally, pr9blems faced by these machines are also

investigated.

6.1. Background

People's desire increases proportionally with the power they acquire. The introduc-

tion of general-purpose databases has stimulated a great demand for a higher perfor-

mance data management capability. A direct consequence of this demand is that many

installations have reached the point of resource saturation. The explosive increment of

data is certainly responsible for this crisis. But if we take a closer look, the most essen-

tial point is not that we are unable to handle a large amount of data but that the perfor-

mance of handling this data is severely degraded due to its "large" quantity. The impli-
cation, therefore, is that system structure must be the primary source of causing this

performance degradation. On the one hand, the operating system may be inadequate to

support efficient data retrievals and updates. On the other hand, it may be the case

that the underlying system architecture itself is deficient in supplying fast operations

needed by very !arge "-:aabzses.

As pointed out by [St8], the problems of operating system support for DBMS are

many folds. For example, operating system buffering is sometimes redundant because a

DBMS has to buffer anyhow, so why bother to double the costly operation? In terms of

-4
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disk prefetch and replacement, the DBMS usually has a more accurate guess than the

operating system because the former knows better which block will be used next.

Furthermore, crash recovery is a central issue in database systems, especially for those in

distributed environments. But since an operating system does not guarantee the com-

mitted block be written back to disk immediately (due to its buffering), crash recovery in

such a system becomes very hard.

There are yet many other concerns in JStl]" such as data segment sharing, context

switch overhead, convoy effect, etc. What they ended up doing in Ingres was to modify

the Unix kernel by adding those features which they considered essential and deleted

those they thought redundant. The purpose: to achieve a satisfactory database perfor-

mance. The major advantage of this approach is its relatively low cost. However, if the

quest for an improved performance is higher, one cannot escape from facing embedded

bottlenecks in the system.

An alternative to an upgrade is the offloading of database management functions

from an existing computer to a backend machine which handles nothing but database

operations. This approach, as surveyed in [MaSO), is the software realization of DBMS

on dedicated conventional computers. It is clear what it buys is host's load relief at the

cost of some extra hardware. Since the backend acts as a database "machine", the fron-
tend will be able to run more jobs yielding a better global throughput.

The disadvantages of this approach come from the loose coupling of host and back-

end. Since there is no shared memory, additional overhead may be introduced due to

the inevitable copy operations as part of the now necessary communication between the

two parties. More importantly, the inherent deficiencies of von Neumann machines are

generally ignored by these systems. The limitations of conventional von Neumann archi-

tectures in terms of DBMS support are the following:

(1) The familiar von Neumana jotizneck: large quz.ntities o. data need to pass

through the processor-memory channel of a limited bandwidth.

(2) The sequential nature of address decoding in traditional memory technology.

. ..V " " " , ' : " " : , ' ." ." , ' - ' ' ' .." ., , .. .
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(3) The uniprocessor architecture.

(4) The lack of intelligence in secondary storage.

In fact, these issues are not unique to database systems only. Researchers in the

computer architecture community have long been trying to do something about them.

As far as DBMS is concerned, this often means a specially devised architecture is used as

the backend rather than what is implemented in systems belonging to the previous
;f,

category. A taxonomy of database machines based on their different departures from

von Neumann model is given next.

.4.1

6.2. Taxonomy

A database machine can be categorized according to a combined consideration of
.4 j

(1) the approaches taken to eliminate or reduce the above limitations or bottlenecks, and

(2) the main contributions it makes [Su84]. A more detailed guideline follows:

I. Intelligent secondary storage devices. Techniques that fall into this domain try to

process and manipulate data where they are stored. Typical methods include con.

text to addressing mapping, content to content, hardware garbage collection, etc.

I1. Filters end intelligent controllers. Main memory to secondary storage bandwidth

utilization can be increased by either reducing the amount data that passes through

or by using multiple channels. The so-called data filters and intelligent disk con.

trollers are designed for this purpose.

Ill. Associative processors. The goal of introducing associative memory is to eliminate

the limitations of traditional memory's sequential decoding behavior. However,

associative memory is still a very expensive device under current technology.

IV. Multiprocessor database computers. Three more subclasses can be distinguished:

(i) Lioael-coupted 6ictributei y!,' -'t. .- connection in h0e3e sysi eW3 ae usu-

ally bus- or tree-oriented. Data is processed in a distributed fashion (not geo-

graphically distributed, however) to achieve some performance upgrade.

= _ = '.: • -< . .. .. . .. . .. . .. . . .* . . . .,. ., . . . . ,- .. .. . . ......- . .. ... ;.,,, ... ,.
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* (ii) Loosely-coupled backend machine. The host down-loads its database func-

tional specialization to a backend machine. This machine can be a conven-

tional computer which inherits software capability from its host only. This is

essentially the approach mentioned earlier. The other possibility is to build a

novel piece of hardware designed solely for database applications.

(iii) Dynamic MIMD procesing. This is by far the most innovative database

machine technology. Techniques like multiprocessor cache, dynamic processor

allocation, data flow, switchable memory modules are potential candidates.

(iv) Special purpoee processore. These processors make use of VLSI technology

and offer more promise than others.

Notice that under this taxonomy, such approaches as the one taken by Ingres are

not considered as database machines. In other words, if the system hardware

configuration is not altered, even though virtually equivalent functionalities are achiev-

able, a conventional system is not classified as a database machine. As an exercise of the

taxonomy, a number of real-world database machine are summarized in table 5-1.

5.3. Design Considerations

Design considerations are closely tied with the development of methodologies. To

implement a database machine, the first criterion is te identify user requirements. The

attributes listed below, as devised by [Ep8O], provide a coarse discipline:

I. Transaction rate. The designer must understand what is the maximum transaction

rate expected by the user. The speed of memory devices chosen must be based

upon the the required rate. It is trivial to see that the faster the memory the

higher it costs.

I. Storage requirement-. \Vhat ;s the largest rossibni P,-onnt of data the user will be

storing? A very large amount of data exceeding a certain threshold value implies

that single level storage no longer suffices; instead multiple levels of storage must be

implemented.

*...
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General guideline Finer grain technique TechnologijfSyetem

Intelligent secondary bubble memory,

storage devices CASSM, RAP, RARES

Filtering CAFS, VERSO, SURE

Filters

and Mass memory controller DBC

intelligent controllers

Data modules DIALOG

Associative processors -STARAN, NON-VON, ARM

Loosely-coupled Bus: MIOR ONET, MDBS

distributed systems Tree: HYPERTREE, REPT

Multiprocessor

Loosely-coupled
database 1DM, iBDP

backend systems

computers

Dynamic MIMD
procesingDIRECT, SM3

Special purpose systolic arrays (CMU)

processors join proc essor( M ary land)

Tz~ble 5-1: A4 fazonory of a number l'databtat "

Ill. A ccess patterns. If the commonly used access manners are predictable, then the

database machine can be tuned toward its optimal state with regard to these pat-

terns. This is reasonable because certain applications reference data by certain
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fixed key values.

IV. Costs. The costs a user can afford certainly precludes everythingelse.

,4 The cost/performance ratio can be computed using these attributes. This ratio

serves as a market probe which helps in defining an initial target. For example, IDM's

decision was to focus on mid-scale users. The so-called "mid-scale" users are those that

0I require a transaction rate of less than 1K but faster than 0.1K per minute. Also, it is

assumed that certain access patterns can be observed. Specifically, IDM is designed to

achieve transaction rates as high as 2K/min or as low as 100/min. It can store up to 32

Gigabytes of data. A family of IDM's, spanning a wide range of performance from mid-

scale towards low-ends, are implemented. Unlik the commercial market, a military

application may have a narrower view in how this cost/performance ratio should be used

in making design decisions. However, we see no particular situations where the princi-

pies reported here are not applicable.

There are other fundamental tradeoffs that need be considered. We consider the

following:

Access methods

The choices are complete scan or hoahing/ indezing. The former is a linear algorithm

and is in most cases impractical because of its terrible time complexity. However, if

multiple moving disk heads are available, for some small databases this approach may be

a win. The latter scheme is typified by B-trees, ISAM, and hashing, etc. They are algo-

rithms with a complexity that is proportional to the log of the number of cells in search-

ing; rather than the number itself. Tremendous amount of time can be saved by these

methods without the help of multiple search elements. If access patterns can be

predicted, the second scheme can outperforms the first at a much lower cost.

Storage Medium

It must be determined whether fixed head disks are sufficient. If not, a complete

line of moving head disks, each offering a different cost/performance ratio, are available.

Depending upon the user's specification, the designer can decide which to choose, at an
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N" optimally low cost/performance ratio. A noticeable fact is that the price per unit

storage drops as the size of the system expands.

A Processors

Another decision the designer has to make concerns the processing elements. There

are quite a few off-the-shelf microprocessors readily available. He/she must decide if

they are functionally sufficient, given that the only task this processor has to perform is

" database operations. One possible conclusion he may draw from a careful study is that

most OEM processors are computation bound, which do not always match database

requirements. As a result, the designer sometimes ends up building special-purpose pro-

cessors uniquely for database machine support. '

Cache

A disk cache can be implemented using random access memories. By the argument

of locality of reference, a disk cache pays only if a block is referenced more than once in

a short. period of time. Again, a careful cost/performance measurement must be con-

sidered. The cache size and speed is highly dependent upon secondary storage size,

secondary storage speed, and most importantly, the user requirement. If desired, a rela-

tively high cost implementation of cache can yield an effective disk access at close to

main memory speed.

Control flow

A very important issue is that of the flow of control in transactions. The choices

are (1) single thread: only a single transaction is allowed to execute at any moment, or

(2) multiple threads: multiple transactions are permitted, the system provides a schedul-

ing mechanism similar to that in a multiprogramming envirc 'nent. This issue is tightly

coupled with the choice of disk controllers. If the function of single thread or multi-

thread control is realized at the controller level, the tradeoffs are minimal. However, if

the function remains in the central processor, then the operating system has to take care

* * " -TV ' .
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of the non-trivial scheduling among transactions provided a multi-thread approach is

taken.

Functionality

The functionality of a backend database machine can be abstracted as the follow-

ing seven levels. (1) cache controller, (2) search unstructured files, (3) record manage-

ment system, (4) basic relational data management system, (5) backup and recovery

facilities, (6) protection and data definition facilities, and (7) full user support. The

higher the level of abstraction the more work is offloaded into the backend machine.

5.4. Summary

Suppose queries types can be partitioned into overhead- intensite and data.intensite,

under the condition that queries are overhead-intensive, the database will not be cost-

effective [Ha79]. It is further shown that data-intensive queries can be performed

efficiently on database machines if the function performed on the data is a function the

database machine provides [Ha82].

From these performance analyses, it is clear that putting in the right functions into

a database is the premise of the success of a database machine. Users may have a

variety of requirements and, thus decisions must be made based upon the specification

and the available technology. The purpose of this chapter is to provide a first order sur-

vey of the current status of database machines. These ideas will serve as a bottom line

in later phases of the development of distributed database machine design methodolo-

gies.

4.
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Chapter 6. Impacts of VLSI Technologies on DB Machine Architecture

VLSI technology means having upward of many hundreds of thousand switching

devices on a single silicon chip with feature size approaching one micron. In the last two

decades, IC technology has advanced from a few to tens of thousands of transistors on a

single silicon chip. For the first 15 years, since the inception of ICs, the progress in mak-

ing ICs for every complex structure has moved in an exponential fashion, at the rate of

doubling the number of transistors that could be placed on a single chip every year

[Mo79]. Although the growth rate has slowed down to doubling every 18 to 24 months

over the last few years, physical limits suggest an ultimate density improvement of 1000

times over that attained by today's IC technology. [Ri80].

With the large number of switching elements available in a single chip as promised

by VLSI technology, the question that arises naturally is: nat can we do with this

technology and how can we best utilize it? In what follows we will discuss several archi-

tectural trends based on VLSI technology, particularly those related to the data base

machines.

6.1. Concurrent Processing

Although concurrent processing has been touted as a major area of extensive

research for a long time, its importance was not widely recognized until recently as more

and more applications requiring high degree of concurrency have come forward.

The impact of VLSI technology towards this direction is two-fold:

a) Intra-chip Concurrency:

For the last few years, several self-contained, single-chip computers have been

implemented. As technology is moving rapidly, we expect that it will soon be possible to

h ave mli!t;ple processors, memo." r-'.dles, oth- logic blocks, and communication paths

on a single wafer. While pin limitation is generally accepted as one serious drawback oi

VLSI technology [B177], this evolution provides more flexible as well as more tightly cou-

.r pled computers with low communication cost and high bandwidths. This intra-chip con-

currency, together with the decreasing cost of hardware, invokes the following trends:

• *,, .,,.% . ... •.. . , . ... ,, :. , . . ,, .,-,, ,. , 4 : .,4',,- ,-.--~ , ... . ., ... .. . 4 .... ... - -. . . . . . .
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1) Migration of Functions - VLSI Implementation of Algorithms:

Hardware implementation of an algorithm is always faster than a software imple-

mentation. of hardware. Further, by using more hardware components, additional

speed-up can be obtained. For example, using a linearly connected network of size O(n),

both the convolution of two n-vectors and the n-point discrete Fourier Transform can be

.-A' computed in O(n) units of time, rather than O(n logn) as required by the sequential FFT

algorithm. The design cost of VLSI chips to implement algorithm is designed carefully in

the first place IF080]. The complexity of designing special-purpose chips is about the

same as designing a high-level algorithm for the same problem if the underlying algo-

rithm is "good' and a proper methodology which transforms the good algorithms into a

final layout in a more or less mechanical way is used. As there are sizable problems in

data base area can be solved by good algorithms, the design of special-purpose VLSI

chips to implement them becomes feasible and cost effective. [Ku8O]

2) Concurrent Processing of Tightly-Coupled, Asynchronous Software Modules:

For computer systems in which parallel-processing is achieved through separate IC

chips, the communication remains a major and difficult problem. The advantage of

parallel processing may sometimes be overshadowed by the excessive communication

required among the modules, particularly for those which are tightly coupled and highly

interactive. The difficulties are due to the following two factors: First, because of

different loading capacities, the delay-power product of a connection residing

within a single IC chip is much smaller than those interconnecting separate ch;ps. At

present, the ratio is more than two orders of magnitude and will become larger as proper

scaling of MOS circuits leads to faster and smaller circuits which operate at lower power

levels. Hence, bringing a signal from one chip to another results in a significant perfor-

mance penality, either as increased power assumption or as exorbitant delay. The second

faLcor is dclu ;o the pin limitation, for which only a few interconnection schemes may be

applied among chips and most communications can only be achieved on the time-sharing

-" basis.
'5
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All above difficulties disappear, however, if intra-concurrent VLSI chips become

feasible. As multiple building blocks and communication paths can be built in one chip,

more freedom is obtained in arranging them and most importantly, at a much lower

communication cost. As for DBMS applications,, an immediate example is that the

four-process structure in INGRES[St76] can be implemented as four asynchronous

hardware modules and operates in the pipelining manner, more users(queries) can thus

be active at the same time.

b) Inter-Chip Concurrency

By exploiting the advantages of VLSI technology where a complex CPU, a single-

chip microcomputer, or even an intra-concurrent single chip microcomputer might cost

only a few dollars, it becomes economical to design a highly concurrent system using a

multiplicity of microcomputers providing more processing power than would be possible

or practical using a single microcomputer.

In summary, these two levels of concurrency provided by VLSI technology suggest

a general computer architecture of the form depicted in figure 6.1.

I I
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6.2. Customisation

Custom logic, predominately in the form of gate array today, offers the system

designer important advantages over standard products. It allows the designer to imple-

ment his/her own architecture exactly. It is due to the Mead-Conway design method

[Me80] that computer scientists can experiment with his/her own custom circuits. Since

then a series of new generation of VLSI circuit design aids emerge. A partial list include

the Caesar [Ou81] Circuit Editor, MacPitts datapath generator [Su82], Esim and

NL/RNL [BaS0] design-rule checkers and switch-level simulators, as well as TVJJo83

and Crystal JOu83] timing analyzers.

One major advantage of custom logics, in addition to implement those good algo-

rithms, is to tailor the architecture towards certain operating environments. Indeed,

although most DBMSs are designed for general purpose, the average user demands

(requirements) vary from system to system. It has been proven [DeBl] that no existing

database machine architecture is optimal for all the demand patterns. For those systems

in which average use demands are known, customized architecture is certainly required

to optimize the performance (where, of course, general algorithms are still provided). As

for database applications, the average user demand patterns can be short queries, aggre-

gate queries, or multiple-relation queries. On the other hand, characteristics of relations

(e.g. average length of the relation, average bit ratios, etc) may as well serve as design

factors for customized logic.

8.3. Distributed Intelligence in System Components

Because of the large number of switching elements in the VLSI chip, it is possible

to introduce more intelligence into different components of a computer system, such as

memory and I/0 processor, so that the processing load on the system can be distributed

A.-y among the different modules of the system, and at the same time reducing

the amount of communication among tG different components. One example in this area

I.J is the design of a fast cellular associative memory which expands the functions of con-

ventional associative memory [Le79J. Another example is the enhanced-logic memory
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which is also an extension to associative memory aimed at the VLSI technology [De79].

The design of a more powerful I/O processor, such as the Intel 8089, has been a step in

- .this direction.
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Chapter 7. Design of VLSI Data-Base machine

Part I - Design Methodology and A Proposed Architecture

7.1. Introduction

After the virtual architecture has been instantiated, it needs to be implemented.

While the derivation of virtual architecture is based mainly on functional requirements,

as we discussed in Chapter 4, the implementation phase considers mostly performance

and cost-effectiveness requirements.

The design of architecture for a virthial srtem is greatly influenced by technology.

Today, with the low cost of hardware and advances in communication media, the distri-

buted computer system has become the dominating architecture. The merits of distri-

buted system are that they provide high throughput, modularity, reliability, availability,

and reconfigurability, with relatively low cost. Along with the advantages of VLSI tech-

nology, in this chapter we will also present the design methodology of constructing a dis-

tributed database machine which is composed of multiple, interconnected VLSI chips

* from user performance requirements. A particular architecture will also be introduced.

7.2. The Design Methodology

*i Successful computer architectures are usually the result of many months of careful

planning and development. Such an intensive planning effort requires an integrated

design methodology that cover the entire architecture development life cycle. Further-
more, this methodology must be specialized to the particular application, technology,

and organization.

Te architecture desi - ,ehdol-gy we propose includes, based on our discussion

in chapter 8, two steps: Global inter-chip architecture design and Loc-, chip architecture

design. Each of these two steps, in turn, has two phases: architecture analysis and archi-

tecture binding. The main concern of the developer during the architecture analysis is to

investigate various design alternatives satisfying the performance requirements and come
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up with several candidate designs with certain preference index. During the architecture

binding phase, the most preferred candidate is selected and technology constraints are

checked. If, unfortunately, the proposed architecture is not feasible according to the

current technology, the next promising candidate is selected and the architecture binding

phase restarts again. In the case there are no more candidates available, the commit-

ment made at previous stage will halve t6 .he invalidated and the process restarts from

the architecture binding phase of the previous stage. In the worst case there is no more

global, interchip architecture available to commit, the performance requirement is

deemed to be unfeasible. The whole architecture design process is depicted in figure 7.1

AnyireCL
4.. _____ __________,, __, __1

-4. A| 1 i

J

. 7. 1

:-4.

I'.,

7.3. Global Interchip Architecture Design
The global inter-chip architecture 4 . i,, sia basically implement- z he process of

partitioning, by which subsystems and subprocesses instantiated in the virtual architec-

ture design can be grouped into different sets (hopefully, chips), and global interconnec-

tion. Due to the relatively large communication overhead among physical modules, the

objective of partitioning is to group the subsystems into ;mplementable modules with a

4.,' •.-. .- '; . ' , ' •.. . . , .. .,,..... .
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minimum amount of inter-module interactions, that is, the modules are loosely coupled.

The basic design issues are:

1) How many partitions are appropriate?

2) Which virtual modules should go to which partition?

3) How are those partitions interconnected?

4) Which partitions should be implemented as custom modules?

5) How much intelligence should be distributed, as we discussed in section 6-3!

All above decisions should be made according to the following performance requirements:

1) In a multi-programming environment, the desired degree of multiprogram-

ming.

2) The average workload of the system.

3) The desired average, best case, and worst cabt response time at average work-

load.

4) The cost constraint.

Both analytical and simulation studies will be conducted to resolve the above highly-

interrelated design issues. Following guidelines are used during the study:

1) Heuristics are used in coming up with the candidate architectures and queuing

analysis will be conducted to compare various alternatives. Based on (Ba7],

requests to the system will be typed and functional modules will be classified.

Execution Speed for the operating modules will be assumed, and thus serves

as the requirements for the chip design stage, and are validated in later stages.

2) Although the problem of finding the optimal partitioning that minimizes the

interaction is NP-complete and some heuristics, e.g. max-flow min-cut tech-

nique (Rz79.], have bzzn y:I'oposed, nc -vas;deratior has beer paid to the

preservation of concurrency under partitioning. Good heuristic will be studied.

I
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*7.4. A Proposed Global, Inter-chip Architecture

Although our study towards formal derivation of global, inter-chip architecture has

just been initiated, the study of chip design can be carried out as long as a clean inter-

face exists between these two stages. In this section we will introduce a particular global,

inter-chip data base machine architecture which is derived intuitively based on appropri-

ate justifications. Indeed, this architecture may be deemed as the output derived from

our incoming formal approach under certain particular workload and requirements.

7.4.1. Overview of the Proposed Architecture

When operational, the complete system will be composed of four main components:

a host processor, a single-chip back-end database controller(DBC), a set of query proces-

sors (QP), a set of local disks together with their corresponding intelligent disk controll-

ers (DC). The DBC is directly coupled with the host system and is connected to all the

QPs through the local Bus (LB). As we assume that a back-end distributed database

environment exists, the DBC is also connected to other DBCs of the distributed data-

base.

The technology we assume is that VLSI can provide tens of processors, tens of

memory modules, and several i/o ports, on a single chip such that certain amount of

intra-chip concurrency can be explored. Through the interconnection network, the set of

QPs are connected to the set of DCs and each DC may directly access some of the on-

chip as well as off-chip memory modules. An overall picture is shown in Figure 7-2.

Software-wise, we assume that a suitable version of UNIX and INGRES[St78] exist

such that they are suitable for this inter-/intra- chip concurrent environment. The host

p.xessor will handle all communications with the users and all queries are down loaded

to the back-end DBC. The DBC, with the modified INGRES and some global informa-

tion about the database(e.g. s-:teiu catalog) residing, will parse the incoming query.

modify it according to integrity control, decompose it into a sequence of one-variable

operations, and finally form a query packet to be transmitted to one of the suitable QPs

for execution through the Local Bus.

4.* , I . °
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-. If the query is coming from some other site of the distributed data base, the DBC should

handle all the communication function (e.g. protocol management,

encryption/decryption) before the "true" query processing can start. The query processor

will, after receiving the query execution packet, generate a strategy such that some

optimal concurrency can be achieved, bring in the related pages of the relation(s), do the

-- operation(s), and return the result packet back to the DBC. Concurrency Control is

implemented at DCs and locking is used at page level. One file/relation is assumed and

the file is not segmented across local disks.

7.4.2. Rationale of the Design

The following features best characterize tee above architecture and differentiate it

from other current, existing DBM architectures:

1) Concurrency: The inter-query concurrency is achieved through the intra-concurrent

nature of the DBC and multiplicity of QPs . On the other hand, intra-query con-

currency is achieved by the intra-concurrent QP on which the query execution

packet is executing. While most existing DB machine architectures explore intra-

query concurrency by cooperating different QPs (e.g. DIRECT[De791), this archi-

tecture relieves the DBC from excessive control and produces more tightly coupled

concurrency through distributed, local QPs.

2) Customization: As each QP may be customized, it can be designed tailored to some

particular, average query pattern(s) without sacrificing its generality. As we will

discuss in next chapter, this architectural optimization also relieves the DBC from

excessive, software emulated planning and provides better performance.

3) Distributed Intelligence: Due to the discussion in section 8.3, the function of DCs

are expanded. We think concurrency control should be implemented as close as pos-

sible T'o where data is stored, for the fo.i,.1ig reasons:

a) Too much traffic will be generated between DBC and QP (or, among QPs) if

page locking is done at DBC (or, at QP)

-k
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b) Higer the granuality of locking lowers the degree of data sharing.

c) Distribute the responsibility of concurrency control increases the degree of

data sharing and reliability.

7.4.3. Remarks

It should be emphasized here that no commitment is made to the proposed archi-

tecture for all the applications. As we have mentioned in the beginning of this section,

the architecture we just proposed may only be suitable for certain particular environ-

ments. The sole purpose here is to illustrate the impact of VLSI technology on DB

machine design and serve as an example for our chip design discussed in the next

chapter.
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S . Design of VLSI Database Machine

* Part 11 - Chip Design of Query Processor from Requirement Specification4.. .

8.1. General Philosophy

As we have discussed in Chapter 6, VLSI technology provides us with a chance of

customizing our own logics under relatively low cost compared with conventional LSI

technology. This is particularly useful for those systems whose typical operating environ-

ments can be estimated. Fortunately, most data base systems fall in this catagory.

The target we are interested in particularly is the query processor single-chip archi-

tecture, which we assume to be intra-concurrent in nature.Its functions were introduced

in Chapter 7. While general query-handling algorithms are equipped with each QP, we

decided to design the chip architecture based on certain user request characteristics such

that the performance is optimized for those typical, average request patterns. To be

more specific, our strategy here is to sacrifice some "boundary" operations such that we

have better chance in achieving optimal performance. For systems in which there exist

several competing patterns, compromise must be made for balance.

Being strongly favored by general VLSI design methodology [Me8O], we believe that

the design should be as modular as possible. In the architecture analysis phase, alterna-

tive architecture models should be selected while some of the design parameters, e.g. size,

ratio,etc. may remain open. These parameters are instantiated at architecture binding

phase where constraint/performance tradeoffs are resolved.

.2. Classification of Queries

In [Ha79],[HaS2] three classes of relational queries are identified overhead-

intensive, data-intensive, and multi-relational queries. Here for discu.sioa purpose we

classify queries according to the number of relations involved and its aggregate/non-

aggregate nature. To simplify the discussion, we assume that the typical, average queries

in the target system are one or two relational, non-aggregate and are of the form:

. . -.
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operation(relation attributes) where

qualification 1

qualification n

and qualification i may be single-relational qualification or double-relational

qualification

Let NSQ = set of (qualificationl ....... ,qualification n)

NSQL1 - set of single-relational qualifications on RI, the first relation

involved.

NSQL2 - set of single-relational qualifications on R2, the second relation

involved.

NDQL == set of double-relational qualifications on RI and R2

thus INSQI-= INSQII + INSQ2I + INDQLI

Note that for one-relational queries, INSQL21 - 0 and R2 does not exist.

The above query is then assumed to be transformed into the following sequence:

1) retrieve into templ where NSQLI

2) retrieve into temp2 where NSQL2 (if INSQL21 !- 0)

3) (if INSQL2I !- 0) join templ and temp2 into temp3 based on NDQL

* 4) operate on temp3 (if INSQL2I - 0 then temp3 =a templ)

8.8. A Proposed Architecture for One-Relational Queries

Although several architectures are suitable for one-relational query processing, 'e

propose here a particular one for analysis purpose and its architecture is depicted in Fig-

ure 8.1. This architecture is designed in favour of the execution of one relational queries

*with one or two qualifications. The sequence of operations activated for a one-relational,

"I, za . % -.
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* .. two-qualification, query is as follows:
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1) The Chip-Controller (CC) determines what functions should be done by the Work-

ing Processor(WP). It then broadcasts certain control messages to WPT(ij),

is 1<-j<-2, 1<-i<=NR, to activate the appropriate functions in WP(ij) and

instantiate certain parameters(e.g. number of cycles of comparisons). At the same

time, the CC issues a request to the appropriate Disk Controller(DC) , according to

the information in the query execution packet, through the Chip- Global-I

2) The appropriate Dc, after allocates the relation file, loads WMA(i,1), 1<-i<-NR,

NLT(-LM/LT, see (4)) tuples(records) sequentially.

3) The CC then initiates a global operation cycle. During this cycle WPli,1) fetches

the next tuple in WM(i,1), compares it with argument 1 and passes the tuple,

together with the result of comparison, to WP(i,2). WP(i,2) does the second comn-

parison anad if both the results passed from WP?(iI) and WVP(i,2) are true then the
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tuple is written to WM(i,2). After each of WP(ij) has done NLT comparisons, the

global comparison cycle terminates, and the results collected in %WM(i,2),

1 < =i <=-NR, are collected by the CC (and are stored in the off-chip CCM).

4) Let

NT - Number of tuples in the relation

LT = Length of tuple in bytes

LM = Length of the array memory module in 1K bytes

if (NT*LT)/(NR*LM) = NL > 1, then the sequence (2)-(3) will be repeated NL

times. Each cycle is preceded by a DC request from CC.

The design tradeoff in this architecture is that increased NR increases the amount

of parallelism but also increases the total circuitry required by the \VPs. This will

greatly reduce LM and more disk accesses are required. To determine the optimal NR

and LM, the following analysis should be carried out:

Let

STRATE - data rate from DC to CCM (s/byte)

DAVAC = average disk access time (s)

DRATE = data rate to QP (s/Kbyte)

VPCOMP - average time of a NI' to do a comparison

a - ratio of circuitry required by a NVP to 1K bytes of on-chip memory

BCOM - average time required to communicate with DBC

iKCOMP - circuitry complexity required by 1K bytes of memory

r - total circuitry constraint

b - ratio of circuitry required by tbe CC to that of 1K bytes of memory

Then the required response time for the given average single-relational, two

qualification queries is:
#I

-w.. .
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"-m response(NR,LM) =- BCOM + NL*(DAVAC + NR*LM*DRATE +

(!+ (LM/LT))*WPCOMP + a*NT*LT*STRATE

and the total circuitry required is estimated to be:

complexity(NR,LM) = 1KCOMP*(b+ 2*NR*LM + 2*a*NR)

Our objective then is to minimize response(NR,LM) under the constraint that

complexity(NR,LM) <= r. The minimal response is then compared with the required

response time to determine if the above plan is feasible. Techniques like Lagrangian Mul-

tipliers can be used to solve the above algebric equation easily.

: 8.4 A Proposed Architecture for Two-Relational Queries

According to the transformation process suggested in Section 8.2, concurrency can

be obtained if we could process on separate relations concurrently before join is required.

The architecture of query processor we propose for this class of queries is an extension of

what we proposed in Section 8.3 and is shown in Figure 8.'.
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1C C

II
-_____-_--____ . -3 , ew ~ , ._--

' 8.r

;',U^ : A '/. , 1)'-" "V -Iv , 2

.~'7.,UV a. gt



- 53-

The difference of Figure 8.L from Figure 8. is that instead of having only one CGB and

one I/O port to DC, two of each are provided. This modification ensures two parallel

. paths for relation loading from the DCs. The working environment we assume is that

the typical, average queries are two-relational with two single-relational qualifications for

each relation and one double- relational qualification.

The proposed system, when receiving an incoming typical, average pattern query,

works as follows:

1) The CC determines the sequence of operations should be executed.

2) The CC, once identifies the Des associated with the relations, issues separate

control messages to respective DCs for tuple loading. The amount of data and

the destinations are also included in the control message.

3) The DCs, after allocating the associated relations, start loading the first chunk

of data to the working memories. If these two relations reside on different I
disks, these tasks can be done in parallel. Otherwise, the loading is sequential.

4) The WP-WM pairs are partitioned into two parts. The first part works on the

first relation tuple selection and the second part works on the second relation.

Once the tuples are exhausted, a complete message is sent to the CC and the

CC stores the results in the off-chip CCM.

5) When both parts finish egecuion the CC could ask for another loading if

there are still some unprocessed data remaining and the sequence (3)-(5)

repeats.

6) After all the single-relational tuples are selected, the CC determines the inner .

4 and outer relations[De7g] used for joins. It then distributes the qualified

tuples, which are stored in CCM, evenly into the left half of the WNis(here we

assume that one distribution is sufficient).

7) The WPs are then doing the join parallelly. The results of join are stored in oil
the right half of WMs.
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-8) The tuples are then selected, based on the double-relational qualification, in

the right to left manner.

The analysis for the target architecture is carried out as follows:

.4 Let

WPJOIN - average time of a WP to do a two-tuple join

NTi - number of tuple in relation. i, 1 <-i<=2

LTi - length(in bytes) of tuple in relation i, 1 < -i<=2

ai - hit ratio of single-relational selection or relation i, 1 <-i<-2

b - fraction of NR rows assigned to relation i in the single-relational

selection stage, 1 <-i<-2 a6 (NTI*LTI)/(NTI*LTI + NT2*LT2)

NR - NRc

NR2 - NR*(1-c)

NLi - NTi*LTi/NRi*LM, I <-i<-2

-, Then(assume relation I is the outer relation in join)

response C1R, LM) -SCOM + MAX f (NL ( AVAC "+" NRI1*LM *DRATE
E t LM ], . 4WJOM + & T1*, LT/ ,.

(NL2 * (DAVAC +NR. xLM. DRATE 4 14 LM/TI) WP)MP

+ R2'O.* NTfALTZ)*'SRATE"t + (-4,* "T LT1 It

WcJIr, VPC&MP)

complexity(NR,LM) - IKCOMP * (b + 2*NR*LM + 2*a*NR)

8.5. ..1rchitect -')a fv" Multiple Typical, Average query Patterns

The analysis in Section 8.3 and 8.4 are based on some particular query pat-

terns. The style of analysis, indeed, is applicable for any single pattern. In case

there are multiple, competing patterns, however, some compromise should be made

for optimal performance.
I...
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Assume there are N competing patterns, each of which occurs with probability

u(i), 1<-i<-N. The response time for each of them is response(i,NR,LM). Our

objective is then to minimize

... u(i)*response(i,NR,LM)

such that complexity(NR,LM) is less than or equal to r, where

complexity(NR,LM) - 1KCOMP * (b + 2*NR*LM + 2*a*NR) in our particular

example.

8.6. Concluding Remark

Although we have paid special attention to the next generation VLSI chip

design, it should be noted that what we have developed in this chapter is general

.' Nenough for conventional technologies also. As an example, the chip architecture can

actually be implemented by LSI logics and the complexity constraint can be

replaced by cost constraint, fan-out limitation, etc.

"5..
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Chapter 9. Current Status and Planned Work

The work we have done in this project can be summarized as follows:

1) It can been seen from Chapter 3 and Chapter 5 that we have acquired siz-

able knowledge and have done a great deal of analysis on the subject of

databa-,e machine architecture, both at virtual and physical levels. Some
innovative contributions have also been made by ourselves to have the

knowledge more complete.

2) It has been shown in chapters 4 and 7 that we have successively developed

the meta-level methodologies for the virtual and physical database machine

architecture design.

3) We have paid special attention to the impacts of VLSI technology to the

physical database machine architecture design. As can be seen from chapters

7 and 8, the design methodology we developed is applied successfully to the

global as well as local architecture design of database machines. Some

appropriate architectures are also proposed.

4) We have investigated the approaches appropriate for the design automation

of this particular subject. As we could see from chapter 4, a consultation sys-

tem combining both software engineering and artificial intelligence tech-

niques are currently being built.

What we are planning to do at this stage include:

1) Our research on distributed data base design will be continued. In the next

stage we will also pay special attention on upgrading database systems to

knowledge base systems. Combined impacts of VLSI technology and

knowledge engineering will be addressed.

2) A complete knowledge base supporting our design methodology will be con-

structed. The combined effort of software engineering and general problem

solving techniques will be elaborated.
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3) Global Architecture analysis and derivation, as we discussed in chapter 7,

will be further conducted based on formal performance evaluation. The stra-

tegies of reasoning on various architectures will be developed.

4) Requirement specification languages for various levels of architecture will be

designed and tested.
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