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ABSTRACT

This dissertation presents both analytic and
processing techniques for various radar imaging systems.

A two dimensional system classification method, which
is very general and hence applies to the special case of
radar imaging systems as well, is proposed to assist in
understanding the structure and describing the limitations
of 2-D systems. Once a given system is identified with the
simplest possible class, the specific techniques can be
directly utilized to process the data or reconstruct the
images.

Folllowing a review of radar imaging principles,
several coherent radar systems are analyzed and experimented
upon. They include synthetic aperture radar (SAR) ground
mapping, imaging of an aircraft target from turntable data,
and imaging of a flying aircraft target. 1In each case
the point spread function (PSF) of the imaging system is
derived or estimated. Physical considerations are then
incorporated in mathematical PSF's to categorize the imag-
ing systems according to the aforementioned system classi-
fication principle proposed. Deqgrees of Freedom (DOF) under
different imaging geometries are analyzed as a means to
determine the amount of information present in the usually
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huge amount of raw radar data for the purpose of efficient
computation and minimal storage requirement. Motion
compensation, range curvature, range alignment, de-chirping,
FFT, registration and side lobe reduction problems are all
addressed and experiments are performed using data from
RAT-SCAT (for turntable imaging) and other facilities.
The results shown suggest the versatility of coherent radar
imaging.

Possible extentions of the current work are discussed.
The understanding of the system characteristics, in parti-
cular the formation of the radar image will aid in the
advancement of techniques for radar image enhancement,

encoding, quantization, and restoration.
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Chapter 1

INTRODUCTION

This dissertation deals with the radar imaging nroblems
The objective of a radar imaging system is to reconstruct
the target image from its radar returns. Radar imaging
geometry is one of the most imvortant factors which deter-
mines the complexity of reconstruction orocedures and the
quality of the images obtainable. Many radar parameters
function interactively making the analysis and the optimiza-
tion of the system very complicated. Physical considera-
tions as well as mathematical assumptions must be taken and
made before a practical reconstruction algorithm can bc
realized.

This dissertation presents both analytic and »rocessing
technigues for various radar imaging systems from a svstem
noint of view. Degrees of freedom (DOF) under different
imaging geometrics are sought as a means to determine the
amount of information available in the usually huge amount
of raw radar data for the purpose of efficient image recon-
struction and minimal storage requirement.

A two-dimensional system classification method, which
is very general and hence applies to the special case of

radar imaging systems as well, is proposed in Chapter 2 as

ety oo~ .-

.



a preliminary study to assist in understanding the structure
and describing the limitations of 2-D systems, with the
ultimate goal of providing guidelines for any given system
to reduce its reconstruction or nrocessing effort., Once a
system is identified with the simplest possible class, the
specific techniques can be directly applied to 2-D pnrocess-
ing. Mathematical examples are given and physical examnles
are shown to fit nicely into such categorizations. 1In
additicn to the system classification, system decomposition
is proposed which would expose more system structure availl-
able for current fast processing techniques.

An overview of the radar signalling principles and
processing techniques in both the rance and azimuth direc-
tions, assuming system separability, is presented in
Chapter 3. This chapter is devoted to reviewing the one-
dimensional radar signal processing methods which form the
foundation of general two-dimensional radar image process-
ing discussed in later chapters. Advantages as well as
limitations for each simple case are given and compared.

Following the chapter on radar signalling principles,
several coherent radar systems are analyzed and experiments
performed to support the theoretical work. They include
synthetic aperture radar ground mapping of the stripping
mode, coherent imaging of aircraft targets from turntable
data, and imaging of an actual aircraft target in flight.
In each case the point spread function of the imaging system

2
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is derived and categorized according to the classification
method proposed in Chapter 2. Physical considerations are
then incorporated in mathematical PSF's to determine the

actual reconstruction algorithms to be used. lotion compen-

sation, de-chirping, range alignment, range curvature, image
registration, sidelobe reduction and Fourier transforming

problems are all discussed and numerous experiments per-

formed using data from RAT~SCAT (for turntable imaging) and

other facilities. The results shown suggest the feasibility
@ and versatility of coherent radar imaging.
J Finally, possible extensions of the current work are
discussed. Postprocessing upon the images reconstructed
from this work can be helpful in extracting the most rele -
vant information once the characteristics of various radar
imaging systems are fully understood. Among them, the radar
image enhancement, image coding and gquantization are valuable

examples.

An analogy between radar imaging systems and sonar
imaging systems from the mathematical point of view is
pointed out which could be a significant extension of this
work. However, because of the tremendous disparity between
the speeds of an EM wave and a sound wave, many different

physical considerations have to be investigated before any

feasibility of the sonar imaging system could be concluded.




Chapter 2

STRUCTURES OF TWO-DIMENSIONAL TRANSFORMATIONS

2.1 Introduction

Modern day imaging systems often use digital computers
for completion of the imaging process in the form of "recon-
struction”" algorithms. Such algorithms may be as simple as
edge enhancement for modulation transfer function compen-
sation to as complex as polar coordinate tomographic recon-
struction methods for three dimensional imaging. However,
one common thread throughout these methodologies is the
theme of avoiding singularity (ill-conditioning) and
consequent noise amplification while simultaneously extrac-
ting as much image information as is possible from the
original scene of interest. In numerical analysis terms, we
wish to reconstruct the object up to the degrees of freedom
(rank) of the imaging system without exceeding the computa-
tional complexity indigeneous to a particular imaging
configuration. Previous analysis for the degrees of freedom
of imaging systems includes the earlier work of Twomey
[2-1,2-2] followed by Gori and Guattari [2-3]. However, the
above degrees of freedom (DOF) are to be differentiated from

the computational degrees of freedom (DOFC) to be proposed

in this chapter.




As a preliminary study for our research work of radar

imaging systems, this chapter is devoted to a generalization
of the concept of the point spread function (PSF) matrix

and its role in general two variable to two variable dis-
crete linear mappings (the most common of which are, of
course, imaging systems). The importance of understanding
the system PFS lies in the fact that the image reconstruction
requires, in a general sense, the inversion of the point
spread function or its gramian [2-1,2,3,4,5). It is obvious
that one would like to make full use of the structure of the
PSF to ease this process. By categorizing the two-
dimensional systems according to their structure with
assocliated computational and storage savings one could then
apply fast and efficient reconstruction algorithms for each
class. Thus, whenever a given category is identified with
the simplest possible class, the underlying reconstruction
techniques can be directly utilized.

The PSF matrix is generically related to optical
analysis of linear space invariant imaging systems, but
today has come to represent a much more general mapping,
especially if one takes a numerical analysis view. Because
of the relatively advanced state of the numeric processing
art provided by numerical procedures in problems of
inversion of ill-conditioned systems and because the domain

of reconstruction for modern day imaging systems is numeric

and discrete, linear algebraic analysis techniques are




becoming increasingly popular [2-5,6]. 1In order that we
take advantage of such techniques, the following section
discusses the implications of formulating our two variable
linear mapping systems into one variable lexicographic
ordering and the tensor to matrix simplifications thus
introduced (at least in a notational sense).

Following the lexicographic discussion, nine categories
of PSF matrices are discussed, along with their computa-
tional degrees of freedom (DOFC) and inherent structural
relationships. It is shown that these nine models cover all
two variable to two variable linear mappings and that the
reconstruction and analysis algorithms which relate to the
respective models allow for generalized processing results
given the users' knowledge of what processing model his
imaging system falls into. The models so discussed are then
exemplified by illustrations from radar imaging, tomography,
optical astigmatism, curvature of field, rotational motion
blur, and standard space invariant optical transfer function

distortions.

2.2 Lexicographic Ordering

General two variable to two variable imaging systems
can be analyzed from three typical models; a continuous-
continuous representation, a continuous-discrete represen-

tation, or a discrete-discrete representation. Such models

result in the following three versions of the integral




equations used for imaging (see Fiaure 2-1).

glx,y) = /ff(i,n)h(x,y;é,n)dgdn (2-1a)
g = _/ £(5,n)h(&,n)didn (2-1b)
g = [HIf (2-1c)

In the above f represents the original object, g represents
the resulting image or observations to be reconstructed and
h represents the linear manping of object to image. The
first equation represents a Fredholm integral with a four
variable kernel. The second represents a linear mapping
with a continuous -discrete kernel, and the third repre-
sents the mapping in linear alagebraic notation. For the
discrete image cases we will index the (x,y) continuous
plane with a set of discrete indices (i,k). However, for
notaticnal convenience, these indices will be lexicogra-
phically ordered to form a "row scanned" vector image g.
Thus the MxN image becomes a vector of dimension MNx1.

In the discrete-discrete model we assume the original
object was NxM indexed by (o,g). Due to our lexicographic
"row scanning" notation, the point spread function becomes
an MNxMN matrix with a "block" notational structure.
(Actually imaging a systems with unequal data points in the
input and output planes are easily included in this analysis,
but for notational convenience, we will restrict our nota-

tion to non-square, NxM, but equal input and output planes).




This lexicographic "block" structure of the point spread

function matrix can be represented as

—

[H](Z.l) my (472)
[H] = . (2-2)

where the individual matrices are NXN given as:

) (2P =y 0P (2-3)

See Figure 2-1. Thus the most general point spread function
matrix represents an arbitrary kernel h(i,k;p,q) in a
discrete notational system. We will see that the block
structure of equations (2-2) and (2-3) will be particularly
powerful as an analysis tool because, in matrix algebra,
such block structure is invariant to matrix addition, multi-
plication, transposition, inversion, etc. Consequently,

E "block diagonal", "block Toeplitz", "block circulant", etc.

| matrices will retain their lexicographic structure through-

out manipulation with matrices within their own class.

2.3 Point Spread Function Matrices and Computational

Requirements

In this section we discuss various models of point

spread function matrices, define the notations used and
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exploit ways to utilize the structure of the system to

speed up the reconstructions. In its most general form
[H] is that of a nonseparable space variant point spread
function and there 1is no structure without further analytic
knowledge.

For our discrete model, three classes of structure
could be used to simplify the system description. These
structures are labeled i) space invariant, ii) separate,
and iii) separable. Let h(i,k;p,g) be the point svread
function with input variable index p,g (as in Figure 2-1)
and output variable index 1,k. Then the definitions of
the three concepts mentioned above become:

i) Space Invariant:

invariant in one dimension only

invariant in both dimensions
ii) Separate:

h(i,k;p,q) = hy(ki;q/i)h,(i;p/q)
Here hM(i;p/q) means processing along the i or p direction
with g as a parameter fixed for i and p but variable in the
k indexed dimension. Note that in hN and hM above the
conditioning variables i and g are output and input varia-
bles respectively. This means hM occurs before hN. of
course it is also possible to have separate processing in

the other order, 1i.e.

h(i,kip,q) = hy(i;p/K)hy(kia/p).

10




The order of processing in the two dimensions is not
commutative, in contrast to the separable class below.
In fact the separable class will always be a subset of the
separate class.
iii) Separable:

h(i,k;p,q) = hM(i;p)hN(k;q)
Combinations of the above three structures lead to nine
cases which can be diagrammatically depicted as in Figure
2-2(a). Thus there are nine branches of the system
classification tree, which have been arbitrarily numbered
from 1 to 9 in the figure.

If we define the computational degrees of freedom
(DOFC) of a class of linear system matrices to be the
maximum number of independently-determined entries of the
matrix which belongs to this class, then intuitively, this
DOFc of the matrix is an indicator of the effort required
to diagonalize the matrix or to reconstruct the image in
the ideal case. Accordingly, if a structure 1is a subset of
another, its DOFc must be less than the other. 1In the
following we exploit the structure of the 9 cases of Figure
2-2(a) for two dimensional discrete linear systems in the
approximate order of decreasing DOFc for given nontrivial
M and N, i.e. M>2 and N>2. We will assume that the data are
stacked in appropriate lexicographic order as defined in

the previous section.

11
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Case 1l: Nonseparate space variant

h(i,k;p,q) = h{i,k;p,q)

DOF_ ((H]) = (n)°
D
{H] = . . . (2-4)
(M, 1) (M, M)
H e e H ’
| (1) [H]
where [H](p'i) is NxN.

Case 2: Nonseparate space invariant in one dimension

(assume invariant in (i,p) coordinate)
h(i,k;p,q) = h(i-p,k:q)

DOFC([H]) = (2M-1)N2

(g (O U M
[H] = (2-5a)

Here matrix (2-5a) is Toeplitz in the (i,p) superscript
indices but each submatrix is still arbitrary (thus the N2
factor in the degrees of freedom).

Had we chosen or been faced with a linear system that

was nonseparate but invariant in the (k,q) dimension, then

13




H(l,kipIQ) = h(lrk_q7p)

DOFc[H]

(uy (1)

(H] =

M,1)

UH](

where each submatrix [H](

1,

1,

= (2n-1)M?
() (140
twy (MM
p) is Toeplitz, 1i.e.
b,y hyx
o
ho

—

(2-5b)

and aside from this fact, there are no constraints among

different [H] (27P)ig,

Case 3: Nonseparate space invariant in both dimensions

h(l'k?p,q) = h(l‘p:k"q)

DOFC([H])

[H](O)

ay V)
(H] = :

() (M= 1)

L

= (2M-1) (2N-1)

n)

(0)

(H]

13!

(1-m) ]

](0)

14



where

!
|
| i 7
| h, hoy +.. hy_y
. h h

! [H](J) 1 0
| .

gy - h,

—

The above matrix for [H] is known as block Toeplitz where

the superscript indices are Toeplitz and the submatrices

are also Toeplitz. This matrix structure is often appro-
i ximated by block circulants which are then diagonalizable

by the 2-D Fourier transform process [2-7].

Case 4: ©Separate space variant

(assume column operations first)

h(i,k;p,q) = hN(k;q/i)hM(i;o/q)

DOF ([H]) = N°M+M%N

[H] = [RN] [CM] {(2-7a)
where

| [R](l)

[R](Z) 0

[RN] =
o (M)

.‘ 0 [R]
5 L g
§ ~ =
? [C](l'l) [C](l,M)
' (c,l = . } .

(M, M)

](M,l)

... [C]

15




. C
(c] (l:P) - 2

L N
Here [RN] is a block diagonal and [CM] is made up of block

submatrices which themselves are diagonal. Had we reversed

the order of operations for case 4, i.e.
h(i, k;p,q) = hy(i;p/k)h(kiq/p)

then we would have

[H] = [CM][RN] (2-7b)
where again [RN] is block diagonal and [CM] consists of
diagonal submatrices. We note that the sparse matrices of q

the form [RN] and [C,,] are row operators and column opera-

M
tors, respectively, on lexicographically ordered two

dimensional data. Decomposition into forms like (2-7a) or
(2-7b) identifies a separate system with sequential row and

column (or vice versa) operations which are not necessarily

commutable.

Case 5: Separate space invariant in one dimension

(assume invariant in (i,p) coordinate and column operations
first)

h(i,k;p,q) = hy(kiq/i)h,(i-p/q)

DOFC([H]) = N2M+(2M-1)N

16




(B] = [Ry] (Cy] (2-8)

where [RN] is block diagonal as before but [C is Toeplitz

!

in its subpartition index, i.e.

— ) _1
[C] (0) [C] (-l) . [C] (l—M)
ey c1 (%)
(Cyl = :
(c] M-1) ... icy (@
a ]

and the [C](j) are diagonal. Again if the role of the
invariance in Case 5 is reversed, i.e., invariant in the
(k,q) coordinate

h(i,k;p,q) = hy(k-q/i)h, (i;p/q)
then

DOF_I[H] = (2N-1)M+M°N

and

{H] = [RN](CM]
where [RN] is block diagonal with block matrices being
Toeplitz and [CM] is subpartitioned into arbitrary diagonal

matrices as in Case 4. It should be clear that Case 5 is a

subset of Case 4.

Case 6: Separate space invariant in both dimensions

(assume column operations first)

H(i,k;p,q) = hN(k-q/i)hM(i-p/q)

DOFC([H]) = (2N-1)M+(2M-1)N

17




[#] = [Ry][Cy] (2-9)

Here [RN] is block diagonal with the matrices on the
diagonal being Toeplitz and [CM] is subpartitioned into
Toeplitz indices each submatrix of which is diagonal.

Therefore Case 6 is a subset of both Case 5 and Case 4.

Case 7: Separable space variant

h(lrk7prq) = hM(er)hN(k,Q)

Unlike the separate cases separable operations can be
performed regardless of their order. This is because of
the independence of one dimensions's operations upon the
other's, Thus

DOFC([H]) = M2+N2

[Hl = Ryl & [C] (2-10)

where ® is the kronecker or direct product matrix operation
(2-8]. Here [QN] is NxN and [GM] is MxM resulting in the
M2+N2 degrees of freedom. Again [QN] and [GM] correspond to
row and column operations respectivelv. An equivalent
imaging system in non-lexicographic order for this and all

separable cases would be to take the NxM object matrix [f]

and form the NxM image matrix [g] as
(g] = [CM][f][RN]
or in lexicographically stacked notation
g = [[3y) ® [C)IE

18
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Case 8: Separable space invariant in one dimension

(assume invariant in (i,p) coordinate)

h(i,k;p,q) = hM(l-p)hN(k;q)

DOF_([H]) = (2M-1)+°

(H] = (Rl © [C)] (2-11)
where IGM] is now a Toeplitz matrix. If the space invari-

ance were in the (k,q) coordinate, then we would have

h(i,kip,q) = hy(i;p)hy(k-q)

DOF_ ([H]) = M2+2N-1

and [®,] would be Toeplitz rather than [C].

Case 9: Separable space invariant in both dimensions

h(i,k;p,q) = hM(i—p)hN(k—q)
DOFC([H]) = (2M-1)+(2N-1)

(H] = [Ry] & [C] (2-12)

where both [RN] and [CM] are Toeplitz. This particular
case is the well-known model for separable linear space
invariant imaging systems in which approximations to [RN]
and [CM] with circulants results in the familiar 2-D Fourier
transform computation.

Note that DOFC([H])_SMZN2 for all nine cases above for
all non-trivial 2-dimensional systems with M>2 and N>2.

If Cases 1-9 above are considered as sets, then there
are covering relations among them as depicted in Table 2-1.

From the table it is clear that Case 1 covers all other

19




(read from left to top)

Case 1 2 3 4 5 6 7 9
1 = D D - =] > o >
2 = pon) * * * o
3 = * * %* o
4 = b o > )
5 = - * -
6 = * )
7 >
8 )
9 =

= : eqguality
D : strictly covering
*x : partially covering

Examples: Case 4 strictly covers Cases 5,6,7,8,9.

Table 2-1. Covering relations among 9 cases proposed

for two-~dimensional systems
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cases. Case 4 covers all higher indexed cases (i.e. 5,6,7,
8,9) as does Case 7 (i.e. 8,9). 1In the cases of space
variance in both dimensions (Cases 1,4,7), nonseparate

case (Case 1) covers separate case (Case 4) which in turn
covers separable case (Case 7). Similarly, within any
group of the nonseparate or separate or separable cases the
space variant case covers 1-D space invariant case which in
turn covers 2-D space invariant case. They are straight
covering relations. However, nonseparate space invariant
(1-D or 2-D) cases do not cover the corresponding separate
cases, e.g. Case 2 P Case 5. This is because in the
separate cases the sequential processing property, i.e.,
row operations followed by column operations, etc., allows
a more general definition of space invariance in which the
invariance is only in a column by column or row by row
sense, in contrast to the traditional space invariance in
which the processing or "blurring”, if any, 1is uniform
throughout the whole image plane.

To classify a given system into the simplest possible
case, one could use Fig. 2-2(b) for sequential tests. The
terminal nodes are the corresponding simplest cases classi-
fied. As an alternative, Fig. 2-2(a) can easily be modi-
fied to become a flow chart similar to Fig. 2-2(b). The
difference is that in Fig. 2-2(a) the separability property
is tested first while in Fig. 2-2(b) the invariance proper-
ty is tested first. It is noted, however, that to identify
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h{i,k,p,q)

h(i-p,k,q) or
h{k-q,i,p)?

Yes

separate

separable separable

separable?
\

AN
~

Yes No// Ye No// Yes
2 8 3 9
invariant 7
in 1-D
invariant
4 in other D
No Yes

5 6

Figure 2-2(b). A possible flow chart for classification;

terminal gives case number

Fig. 2-2. PSF matrix classification
and decomposition
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the separate (but not separable) space invariant cases
(Cases 4 and 5), the separability has to be determined
first due to the reason explained above.

The knowledge of the covering relations among the nine
cases is important in the application of system decomposi-
tion. In discrete linear image reconstruction or object
estimation from the sensor data or observations, the
relation between the data and object, i.e. point spread
function matrix [H] has to be determined from the data
sensing geometry first and then its inverse estimated and
multiplied to the data vector g to come up with an estimate
of object function f as in Fig. 2-1. This reconstruction
scheme, although straightforward in theory, usually involves
huge amounts of computation because of the complexity of
[H). 1In the worst case, one would have to resort to a full
singular value decomposition (SVD) to find a pseudoinverse
[H]_l[Z-S]. Thus, it is usually desirable to decompose [H]
in such a way that it becomes simpler toc apply consecutive

1

processings to g than [(H] 7" itself. One possible way is to

2]
and the remaining processing, [H
-1

do some preprocessing [H
-1

upon g, as in Fig. 2-2(d) such

that [H.,] ]_1, would be

2
much simpler than the (H]

1
itself. This means that, if

possible, the decomposed component matrices should be in
cases covered by the case of [H] and the combined effort 1is
still less than !H] 1tself. Examples of pre-processing in

the radar imagira are motion compensation, range walking
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observations
object discrete or data
linear
f —» system > g
(H]
g = [H] £
Figure 2-2(c). Imaging system

Fig. 2-2. PSF matrix classification and
decomnosition

£ (1] (Hy] f———Pg

1) = (M) (1)
-1 -1 -1
(H] = [Hy] (H,]
£= (g
-1 -1
= [Hy] (H,] g
where [H2]_1: preprocessing

s.t. [Hll & [H2] are computationally
simpler than [H].

Figure 2-2(d). Preprocessing of image reconstruction

Fig. 2-2. PSF matrix classification and

decomposition
24




compensation, data presuming, etc., as in [2-1].

Another existent technique of system decomposition is
to process the data in the transformed domain as in
Fig. 2-2(e). Sawchuk [2-14] proposed a geometrical
transformation of [G] in the reconstruction of rotationally
blurred images with successful results. Another simple
example could be the processing of polar coordinate Fourier
transformation which originally belongs to Case 2. An
interpolation transformation [G] [2-17] from polar coor-
dinates to rectangular coordinates could make the system
separable.

It is pointed out that separability and invariance are
not the only structure that can be utilized. 1In some
situations, the structure within our categorization could be
further scrutinized. For example although a 2-D FFT belongs
to Case 7 which is space variant, the availability of fast
algorithms make it competitive with the 2-D separable
convolution which is Case 9. 1In fact, in the case of
space-invariant processing, sometimes it is preferable to
apply a transforming technique similar to Fig. 2-2(e) to do
simple point by point operation in the transformed eigen-
space, i.e., the Fourier domain. This is one of a few
examples where a specific structure on top of the case
structure could even be utilized to further speed up the
processing within that case. It is the purpose of the

system classification and decomposition to extract as much
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fe—— 3 [G] [H,) (617! b——m>g

(1] = 16171 (1) (6
CIREEE (VR 9 R ()
£=-wlg

TR 0% R (5 I

s.t. [G] and [H3] are computationally simpler

than [H]

Figure 2-2(e). Processing in transformed domain

Fig. 2-2. PSF matrix classification and
decomposition
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system structure as possible for the purpose of fast

processing. However, although we have proposed a classifi-
cation method, the general decomposition is the state of art
which demands ingenuity. It suffices to say that, in
general, the principle of the decomposition is such that
more fast processing techniques can be applied upon the
transformed data. However, some disadvantages might
accompany the decomposition of the system in that one might
have to sacrifice some degrees of freedom (in the informa-
tion sense) for fast processing. This is because the
optimal mean-square reconstruction is guaranteed only by
the availability of singular values of [H] itself [2-6],
which is usually very difficult to infer from singular
values of product component matrices.

To summarize these 9 cases for linear two dimensional
systems, Table 2-2 has been prepared. From the table it is
clear that a large variety of systems and their computa-
tional degrees of freedom can be formulated depending on
specific point spread function circumstances. To make
these 9 cases more meaningful and relevant to actual imaging
conditions, a group of examples are developed in the
following section as illustration of some of the cases
discussed here. However, before proceeding to the follow-
ing section, the reader's attention is drawn to the mathe-
matical examples of PSF's of Table 2-3 associated with the

individual case numbers of Table 2-2. While these are
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Case No.

Point Spread Function

1

h(i,k;p,q) = exp{-(i+k+p+q)2}

]

exp{-((i—p)+k+q)2}
exp{- ((k-q)+i+p)?}

h(i-p,k;q)
h(k-q,i;p)

h(i-p,k-q) = exp{-((i-p)+(k-q))%)

hy (k3 /1)y (1;p/a) = expl- (keqei)“lexpl-(1+p+a)’}

hy (k;a/p)hy (i3p/q) = exp{- (k+q+p) Jexp{- (i+p+k) )

hy(ksa/idhy(i-p/q) = exp{- (k+q+i) *Yexp{-((i-p)+q)°
hy(k;q/pihy(i-p/k) = exp{- (k+q+p) Yexp (- ((i-q)+k)?

}
}

hy (k-a/i)h,(i5p/a) = exp{-((k-q)+i) Texp{-(i+p+q)’}
hy(k-a/p)hy (i;p/k) = exp{- ((k-q)+p) *Yexp{- (i+p+k)?)

hy (k-a/i)hy (i-p/q) = exp{-((k-q)+1)°}exp{-((i-p)+q)?}
hy (k-a/p)hy, (i-p/k) = expl-((k-q)+p) Jexpl-((i-p)+k)%)

hy(k;@)hy(i5p) = expl-(k+q) Jexp - (i+p)’]

. 2 2
hy(k;q)hy(i-p) exp{-(k+q) “texp{-(i-p)~}
hy (k-a)hy (15p) = exp{- (k+q)Yexp{-(i-p)?)

exp{-(k-q)z}exp{—(i-p)z}

n

hy, (k-q)hy, (i -p)

Table 2-3. Mathematical examples of the 9 cases
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mathematically correct, they may not be meaningful in a
physical sense. For physically meaningful examples, the

reader is referred to the following section.

2.4 Physical Examples

This section is designed to put the numeric structure
of the point spread function matrices described above
into physically meaningful perspective with respect to some
typical realistic imaging configurations. While naturally
not all imaging systems can be investigated, it 1s hoped
that enough illustrations are presented to provide a firm
grasp of the relationships of the real world physical
phenomena with the numerical structure of the computer world
computational phenomena in implementing restoration and/or
reconstruction algorithms. Examples are taken from optical
imaging, x-ray imaging, and radar imaging and range in
complexity from Case 1 (i.e., arbitrary imaging) to Case 9
(that of separable space invariant imaging). The illust-

rations are presented below.

Case 1: Nonseparate space variant

This imaging configuration represents an arbitrarily
comple - system in which the object field f(p,g) is mapped
into the image field g(i,k) by a voint spread function
matrix [H] of arbitrary entries. In the extremely vrecise
higher order modelling of any linear imaging system, the
limiting situation would result in this case. Naturally,

30
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such precision is not warranted in many situations, thereby

leading to the simplification of succeeding examples.

Case 2: Nonseparate space invariant in one dimension

Three examples of imaging systems that fit into this
category come from radar imaging and x-ray imaging. In the
former situation consider the geometry of a synthetic
aperture radar (SAR) operating in the "stripping" mode.

This configuration is illustrated in Figure 2-3. After some

analysis the point spread function can be shown to be [2-9]:

2[(xl %) +yi+zgl
h(x21t7xlryl) exp(jw t)A(X 2!yl )fs

c
' 2[(xl X2)2+yi+22]
eXp §=Ju, (2-13)
c
where the narameters are defined as:
w,: range offset anqular frequency
W, : carrier anqular fregquency
A: antenna beam pattern
fg: modulating function of signal pulse
z,: flight height
c: speed of light
Xyt takes on discrete values (ans)
v: aircraft velocity
TS: interpulse period
In Chapter 4 Eg. (2-13) will be rederived and becomes
31
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Eq. (4-10). With (xl,yl) being the input or object plane

and (x2,t) being the output or image plane we see that

h(let;x ) = h(Xz‘Xl,t;y ) (2—143)

1'Y1 1

or in our discrete numeric notation of the previous section
h(i,k;p,q) = h(i-p,k;q) (2-14Db)

The above equation is referred to as the SAR imaging
equation with range curvature. The range curvature forces
the point spread function to be nonsenarate. However, we
will see in subsequent cases that, by ignoring such curva-
ture, great simplification in processinag can be achieved.

The second example for this case 1s obtained from
computer aided tomography (CAT) scanners in which x-ray
cross-section slices are obtained by computer reconstruction
of radiation projections. Figure 2-4 illustrates the geome-
try of such systems. Essentially the imaging equation is
given by

pl(r,0) = y/Jff(x,y)h(r,e;x,y)dxdy (2-15)

where the integration is taken over the unit circle as in [2-4].
Assuming the blur is svace invariant along r and independent
of 6, McCaughey and Andrews (2-4] have shown that once r and

8 are samnled the PSF becomes

h(r,8;x,y) = h(xcos9+ysinb-r)
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unit circle

i

X-ray source

h(r,8;:;0,¥)

a) CAT imaging configuration f(p,V) >g (Y, 0)

N samples per projection
in radius

B SN S N U . b

M projections
& angle

b) Data necessary for reconstruction

Fig. 2-4. CAT scanners
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—

or
h(r,8;p,¥) = hipcos(B-p)-r)
where
‘ X = pcosy
y = psiny

Hence the [H] matrix becomes

my LDy (1,2) () (Lr2)
! oy (202 my (1o 1) ) (103
g [H] = (2-16)
_[H](l,Z) . ) . [H](l,l)J

where fixed azimuthal steps are assumed and the super-
scripts denote the azimuth variables. E.g. (i,m) means
(ei,wm). [H] is circulant in the index (i-m) because of
the (6-y) dependence in the PSF. Note that

cos(ei—wm) = cos(em-wi). Because a circulant is a subset
of a Toeplitz process we see that this PSF is a member of

Case 2, equation (2-5a).

As for the third example, consider the astigmatism and
curvature of field studied by Sawchuk [2-14]. The point
spread functions behave in a rather complex fashion.

Figure 2-6 illustrates the imaging geometry. It can be

shown that the point spread function assumes the form
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1
D(2C+D)u? *
r

h(xr,xe;ur.ue) =

: . 2 2
{ P - -
[xr51n(xe ue)] N [xrcos(xe ue) ur] <1 (2-17a)
p?Rr%y4 (2c+D) 2u?r?
r r
h(xr,xe;ur,ue) = 0, otherwise

where
C: degree of astigmatism
D: degree of field curvature
R: radius of a circular exit pupil.
A close examination of Eg. (2-17a) shows that it can be
rewritten as

h(xe,xr;ue,ur) = h(xe-ue,xr;ur) (2-17b)
or in our discrete numeric notation
h(llk7prq) = h(l_prk7q)

In the above formulation it should be noted that for no
field curvature (D=0) and therefore only astigmatism, the

point spread function becomes

L
[4C2R2ug-(xr~ur)2]2
h_(x,,x _;u,,u) = '
a“"o'""r’""8’'r 2C2u4
r
2 2
ur—ZCRur < X, < ur+2CRur

and zero elsewhere, which is separable and a one dimensional
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blur «long (xr,ur).

Case 3: Nonseparate space invariant

This situation occurs most frequently in traditional
linear space invariant optical imaqging systems. The
concepts of coherent transfer functions (CTF), optical
transfer functions (OTF), and modulation transfer functions
(MTF) all exist in this category of imaging situation. As
an example consider the OTF for a diffraction limited system
with circular exit pupils given in Figure 2-5. Goodman

[2-10] has shown that the imaginc equation are given by

g(x,vy) =./Jf f(&,n)h(x-&,y-n}d&dn (2-18)

for a circular pupil function with diameter ¢,

2 2
~f y-n) = ci (x-£) +(y-n) _
h(x-£,y-n) = c1rc§ 772 (2-19a)
and in the notation of the previous section
, 2 2
. . J(l—p) + (k-q) B}
h{i,k;p,q) = c1rc$ 7 (2-19Db)

Such an imaging system has a PSF matrix with (2M-1) (2N-1)
degrees of freedom arranged in a block Toeplitz fashion.

As mentioned earlier, approximations to such block Toeplitz
forms with block circulant forms results in the use of fast

Fourier transform processing [2-7].

Case 4: Separate space variant
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No meaningful examples come to the minds of the author.
Interested readers are invited to contribute to this

illustration with examples from their own experience.

Case 5: Separate space invariant in one dimension

This class of imaging systems has examples from push-
broom sweep arrays (as in ERTS and LANDSAT data) and SAR
radar imaging configurations. Proceeding with the radar
example, referring back to Figure 2-3 we see that the
effect of range curvature caused the SAR model to be non-
separate. However, if our geometry and requirement is such
that the range curvature effect is negligible, then our

point spread function becomes decoupled [2-9,2-11,2-12] and

h(let;xl,yl) = hN(t;yl)hM(xz-xl/yl) (2-20a)

L

2
} (2-20Db)

3 2f .2, .2
exp(]wot)A(xl-xz,yl,zz)fs(t_a(;l+zz)

exp {—jwc—i— ((xl—x2) 2+y§+z§)
which will be repeated as Egq. (4-12) in chapter 4. 1In this
situation with N samples in time (range) and M samples in
azimuth, we obtain (2M-1)N+N2 degrees of freedom (see
Table 2-2)., While this system is "separate" it is nonsepa-
rable. This means that the order of the processing is still
important. Specifically, one should process the range data
first and then process the azimuth data in the image recon-

struction effort. The azimuth processing is a function of
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range which explains the conditioning on Yy in eguation

(2-20) and the need for the conical lens in optical recon-
struction of SAR imagery. (See for instance Goodman ([2-10j},

Harger [2-11], and Rihaczek (2-13]).

Case 6: Separate space invariant in both dimension

Two examples are presented for this case, an astigmatic
processor from Goodman [2-10] and rotational motion blur
from Sawchuk [2-15]. Figure 2-7 presents the optical chain

for the astigmatic processor. The imaging equation is

9(x3,¥3) =_fff(x1,y1)h(x3—xl)6 (yy-y;)dx,dy, (2-21)

This is an astigmatic process in one dimension only. Like-
wise, a two-dimensional {sequential) astigmatic process is
a straightforward extension.

The second example for this case is that of rotational
motion blur as illustrated in Figure 2-8. Here the blur is
greater the further away from the origin. The blur is an

angular spreading in 6 resulting in an imaging system of

g(r,0) = fff(p,¢)h(o,¢;r,6)odod¢ (2-22a)
where

hip,¢,r,8) = %he(e-qa)é(p-r) (2-22Db)

and the factor 1/p is due to the nonuniform rotational
speed. In terms of the polar coordinate system (p,¢) into

(r,9), the imaging system is a blurring along 8 only and is
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two dimensionally invariant. However, in terms of coor-
dinate system (p,p¢) into (r,r8) which has a Jacobian of
unity with respect to the rectangular coordinate system,

the system is invariant along the mapping from p¢ to r6, but
changes its form as the other coordinate p or r changes.
Intuitively the points farther away from the origin are
subject to more blur as a result of nonuniform rotational
velocity which results in a nonseparable blurring in accor-

dance with our definition.

Case 7: Separable space variant

Separable space variant processes occur quite frequent-
ly in digital computation simply as a convenience for
computational simplicity. Thus two dimensicnal unitary
transforms for image coding fall into this example. However
more relevant imaging situations in this category include
imaging lenses with square apertures and the Fourier trans-
forming properties of lenses themsclves.

Consider a lens imaging system with square aperture
such that p(x,y) = px(x)py(y) is separable into x and y
coordinate and magnification factor m ¥ ~1. Goodman [2-10]
has shown this gystem to have a PSF (sece Figure 2-9) in

coherent light of

_ 1 _.em
h(xi,yi,xo,yo) = Pd—é—ffp(x,y)expz ]-m—i(xi+bfb<0)x+(yi+Myo) dxdy
071

(2-23a)
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= ——-—fp (x)exog J (x +Mx )x
A dOd

. 2T
fpy(y)expg—JXEi—(yi+Myo)y£dy (2-23Db)

hx(xi;xo)hy(yi;yo) (2-23¢)

Note that when M=-1 we obtain Class 9 imaging.

As a second example, consider the Fourier transforming
properties of lenses. Figure 2-10 presents the optical
system for this illustration. Here the output image (i.e.,

the Fourier transform of the object) is given by

(
_ A 2T
g(xXerye) = INE ff(xo,yo)exps-Jﬁ(xoxfwoyf)gdxodyo

(2-24a)

Consequently
h(xf,yf:xo,yo) = w—fexp; fo expg jxfyoyfg (2-24Db)
= hx(xo,xf)hy(yo,yf) (2-24c)

Case 8: Separable space invariant in one dimension

For this case we return to our SAR stripping mode
radar and make some additional simolifying assumptions. 1If
the difference of Y1max and Yimin ©M the ground (Figure 2-3)
is fairly small, then let Yin be the nominal value of Yy in
hM(xz-xl/yl) of Eq. (2-20a) and after some manipulations we
obtain [2-9]

h(xz,t7xl,yl) = hN(t;yl)hM(xz—xl) (2-25a)
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| Fig. 2-9. Square aperture magnification

Fig. 2-10. Fourier transforming properties
of lenses
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where
hN(t;yl) = exp{jwot}fs<;—é(yl+z§)%) (2-25b)
2wy (xyx,)
hM(xz—xl) = A(xl-xz,zz)exp{-] c 5 5 ;} (2-25c)
(yyn+zy)”

Derivations of above Equations can also be found in

Chapter 4.

Case 9: Separable space invariant in both dimensions

Pursuing our SAR example, a further simplification of

the range offset frequency equal to zero and yi+z§ =~ yi

results in the following PSF [2~9]

2y
- -1 - - _ -
h(xz,t,xl,yl) = kﬁq( —E%)hM(XZ xl) = hN(t t2)hM(x2 xl)
(2-26)
2y
where t2 4 ——l .
c

A second example of a separable space invariant
imaging system is a television raster display. The horizon-
tal dimension is electronically filtered (due to the frequ-
ency response of the components) and the PSF of the electron
gun. The vertical dimension is blurred or "interpolated”
by the PSF of the electron guns. Both dimensions are
space invariant in a well tuned monitor. The system will be
separable if the PSF of the electron gun is separable. This
is usually the situation for a Gaussian CRT spot.

The above examples are tabulated in Table 2-4 as a
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summary. It is clear that many other examples exist, but in

the interest of brevity, these will not be presented here.

2.5 Conclusions

This chapter has attempted to present an analysis of
the numeric computational aspects of linear imaging systems
from the viewpoint of the computational degrees of freedom
of such imaging systems. A matrix-lexicographic structure
was developed and the DOFc of the PSF matrix was then
analyzed. These degrees of freedom were shown to range from
the most complex imaging situations (N2M2) down to the
simplest imaging systems with (2N-1)+(2M-1) degrees of
freedom. The inherent structure of each PSF matrix was
analyzed for 9 cases ranging from the most general block
structure down to the simplest form of kronecker products of
Toeplitz matrices.

Following the section on the analysis of the algebraic
structure of each PSF matrix, a set of illustrations from
the physical world of imaging systems was developed.
Examples from x-ray, radar, coherent, and incoherent optical
systems were presented as illustrative material to exemplify
the various cases developed in the earlier sections of the
chapter. It is hoped that this chapter has aided in the
ever growing marriage of computational algorithms and their
use for complex image reconstruction. As future imaging

systems are developed, it should be possible to utilize the
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Case NoO. Imaging System Reference
1 Arbitrarily Complex Imaging
System
2 SAR Stripping Mode with Range [2-9]),12-11), .
: Curvature [2-12]
CAT Scanner [2-4]
Astigmatism and Curvature of [2-14]
Field
. 3 OTF,MTF,CTF [2-5],[2-10]}
|
“ 4 None Presented
F
r S Pushbroom Sweep Arxrays
; SAR no Range Curvature [2-9]
| 1
6 Astigmatic Processor {2-10])
Rotational Motion Blur [2-15]
l
7 Lens with Square Aperture [2-10]
Fourier Properties of Lenses [2-101,(2-16]
8 SAR Stripping Constant Range f2-9]
9 SAR Stripping Low Altitude {2-9]
TV Displays
Table 2-4. Physical examples of imaging systems
for the 9 cases
50
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i framework developed here to readily anticipate the comple-
xity of computational reconstruction of imagery once the

structure of the PSF matrix is discovered.
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Chapter 3

PRINCIPLES OF RADAR IMAGING

3.1 1Imaging Systems

The general two-dimensional imaging system, as depicted
in Fig. 3-1 is a transformation of the target or object
function f(£,n) into the observation function g(x,y) through
a point spread function h(x,y;&,n), which could be linear
or nonlinear and its variables discrete or continuocus or a
mixture of both [3-1]. The purpose behind the imaging
system is to reconstruct or estimate the object function £
as close as possible in some sense from the observation g.
There are various imaging systems in the real world, e.q.
¢ btical, infrared, x-ray, and radar systems; with a wide
range of characteristics and limitations, the most conven-
tional one being the passive optical system in which a
camera records the reflectivities or transmissivities of the
object. 1In this case relatively little reconstruction
effort is required because the point spread function is
almost space invariant and in most situations has an
impulse-like shape which gives a g closely resembling f as
one usually experiences from taking photographic pictures

in his daily life. On the other hand, the radar imaging
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system uses an active device to radiate signals whose

returns usually have to be processed by complicated

procedures to reconstruct the object function.

3.2 Principles of Radar Imaging Systems

There are three major physical parts in a radar
system: the transmitter, the receiver and the target. The
transmitter, which is required for all active imaging
systems, is used to illuminate the target. The receiver
is a sensing device which records the signals reflected
from the target and is followed or accompanied by a data
processing unit. The target is the object some physical
properties of which are to be calculated from the received
data. In fact the functions of the radar systems can be
dichotomized as target detection and parameter estimation.
Detection of a target is the determination of its presence
in the unavoidably noisy situation, and parameter estimation
is the measuring of the characteristics of the targets, e.g.
their ranges, velocities, angular positions, sizes, etc. by
the extraction of available information from the received
echoes when the presence of the targets has been determined
or assumed (3-2]. By this token, the radar imaging in which
shape and size of the target are of concern belongs to
the second category.

In order to reconstruct a radar image of some target

from its signal returns, two prerequisites have to be
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satisfied from the system point of view. First, the

returned data has to have a two-dimensional format.

Second, radar imaging geometry must be such that the return
from each pulse or signature contains different information
about the target. 1In fact, degrees of freedom (DOF)
analysis on the radar returns as explored in some detail

in this dissertation provides an attempt at evaluating the
information-carrying capability of the system by analyzing
the extent to which the above conditions are satisfied.

The two geometrical coordinates associated with the
radar or the targets in a 2-D radar imaging system are
usually called range and azimuth (or cross-range). (In 3-D,
there is one more called elevation). Range is the direction
along which the radar signal is transmitted, reflected and
received. Range information is provided by the return from
a single pulse resolved by timing (when a short pulse
waveform is used) or range compression technique (when a
linear-FM~like waveform is used). Azimuth is the direction
orthogonal to the range direction in the surface of interest.
It is the component of the relative motion between the radar
and target through which an effective target rotation is
created.

In the simplest geometry of radar imaging, the
processing of the data is separable along the azimuth and
the range directions. Although the courling of the two
dimensions has to be taken into account in a comolicated \
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radar imaging geometry, this chapter will discuss processing
principles when the system is assumed separable and hence
decomposable into two consecutive 1-D processes because the
understanding of processing principles along individual
dimensions is basic to comprehending sophisticated radar
imaging systems. In the separable radar imaging systems the
operations in the two dimensions could be any combination of
incoherent and coherent processing depending on the wave-
form and antenna pattern used. Incoherent processing
assumes incoherence of those signal returns from a single
target point and makes no attempts at processing the phase
part of the returns, whereby coherent processing uses the
phase relations among different returns to "compress" the
pulse to achieve high resolutions, as will be explained.

We now describe the principles of the four possible opera-
tions along the range and the azimuth directions indivi-
dually.

(A) Incoherent range operation.

The returns of a single pulse °“rom a particular target
point are assumed incoherent in phase. Thus no compression
technique (as this would require the knowledge of the phase
relation) could be applied and the only range resolving
ability comes from the actual timing of the strong magnitude
pulse return. If T is the time duration of the pulse then
the ideal range resolution P will be half the time on

target (TOT) of that pulse translated into the spatial
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domain, i.e.

e

o=
Q
~

(3-1)

where ¢ is the propagation speed of the EM wave. For

example, to achieve a range resolution of 1 ft. 1 must be
less than 2 nanoseconds. Thus for high range resolving
ability very narrow pulses have to be used, which requires
very high peak powers to keep a sufficiently large signal
noise ratio. Obviously the reguirements of an extremely
short pulse and high peak power could not easily be met
from a technical viewpoint as the resolution pursued becomes
higher and higher. The main difficulty lies in the fact
that the duration of a rectangular pulse is inversely
proportional to its bandwidth making a simultaneous large
bandwidth and a high SNR very difficult. One way to get
around with this conflict is to use phase modulated wave-
forms which results in what we call a coherent range opera-
tion as follows.

(B} Coherent range operation.

In fact, it is the bandwidth Br’ and not the time
duration of a pulse waveform that determines the range

resolution, i.e.

p. T 5o (3-2)

Equation (3-2) is a universal relation which applies to the
special case of rectangular waveforms of incoherent range
operation. Combining Egs. (3-1) and (3-2) gives
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B, = T = 1 (3-3)

for a rectangular pulse with time duration T and bandwidth
Br and without any phase modulation. The guantity Br * T 1is
called the time-bandwidth product (TBP) which 1s an indica-
tion of the compression capacity of the pulse {(2-3].

Coherent range processing uses phase modulation on the
transmitted pulses to enla;ge its TBP. For example in the
case of a linear-FM modulation it can be shown that for
large bandwidth the signal bandwidth is proportion to k + T
where k is the linear FM rate which determines how fast the
freqguency is changing within a pulse [3-3] and T is the
pulse duration. Thus in contrast to Eg. (3-3) the bandwidth
and the pulsewidth are now in proportion to each other and
the S/N will not suffer, but benefit instead, from using a
larger bandwidth pulse which i1s accompanied by a longer
pulse duration. Other forms of phase modulation are also
possible to "stretch" the pulse duration while increasing
its bandwidth, but usually the linear FM or chirp modulation
is preferred because of its high efficiency in terms of TBP,
easy analysis and implementation. Upon receiving the echo
of a modulated pulse, the data processor "compresses” or
"decodes” it to get high resolution profiles. The resultant
de-modulated signal is in the decoded time domain and
consists of pulses whose width or resolution is determined
by the bandwidth of the transmitted signal and whose

locations determined by relative ranges of the target
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points. The compression ratio, or the ratio between the
original pulse duration and the duration of the compressed
pulse from a point target, 1is equal to the TBP in the ideal

case [3-3]. An intuitive explanation of the high resolution

advantage of a coherent radar processing is as follows:

Conceive that the point spread function in the range direc-

tion of 2 radar system is essentially a scaled form of the
transmitter signal waveform. Although the linear FM is rela-
tively long in time duration and hence the PSF wide in the
range domain, high range resolution is possible because of
the high bandwidth of the signal due to the phase modulation.
This is the key point of coherent radar signalling.
Hence the simultaneous achievements of a high resolution
and a large signal energy are possible by a phase modulated
long duration pulse. It is noted that, however., because the
transmitted signal is in a coded form (e.g., linear FM
modulated), a decoding scheme (e.g., pulse compression)
which is a coherent processing, has to be avplied upon the
received echoes, in contrast to noncoherent processing
{(simple range grating) for straight short pulse signalling.
The compression or decoding of the return of a linear
FM signal from the target can be decomposed into two concep-
tual steps [3-4}: a quadratic phase removal followed by a
Fourier transforming. The former is to compensate for the
linear-IM modulation of the signal and the latter is to

localize or resolve the various target points.

59 |




Because of the strong mathematical similarity between
a linear FM signal and the quadratic phase delaying property
of the lens [3-8], optical or hologram processing techniques
can be used to compress the radar returns and to reconstruct
the target images. The analogy between a linear FM wave-
form and the phase delay of a lens is that both of them are
quadratic in phase, with the linear FM rate analogous to the
inverse of the focal length of the lens. Thus a lens of
suitable focal length (or a conical lens if the focal
lengths change in a linear fashion, as described in a later
chapter) can be used to remove the quadratic phases associa-
ted with the linear FM, followed by a Fourier transforming
to complete compressing the signal {3-3].

(C) Incoherent azimuth operation.

Before the development of the synthetic aperture radar
(SAR) techniques, incoherent processing was the only way to
obtain the azimuthal information of the target by a radar
technique. At that time, the traditional imaging radar
achieved azimuth resolution by using an antenna with illu-
mination pattern very narrow in azimuth. Physically speak-
ing, the narrower the beam width, the "narrower" the point
spread function and thus the better the resolution obtain-
able. There is no coherent processing necessary along the
azimuth direction because the illumination patches are
independent azimuthally and no fixed phase relations are
maintained among different pulses.
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From the antenna theory it is well known that the half
power beam width B8 in radians of a physical antenna of

length L is (See Fig. 3-2).

| B = A/L (3-4)

Thus fine azimuth resolution (8 small) demands a very long

physical antenna (L large), not practically available in

many situations as higher and higher azimuth resolutions

are required in recent years.

(D) Coherent azimuth operation.

From the analysis of the coherent range operation in
(B) it can easily be conjectured that a high azimuth resolu-
tion could be achieved by phase coding, e.ag., a linear FM
modulation along the azimuth direction just as in the range
direction. However since the object of interest is two

dimensional (range and azimuth}) while the signal is onl: one

dimensional (a function of time only), and because only one
dimensional (i.e., the range) information can be inferred
from a pulse return, no explicit phase modulation upon the
transmitted signals along the azimuth can be realized.
Fortunately, an implicit modulation is made possible by
the relative motion of the target and the radar which
creates quadratic phase history to each target point in the
azimuth direction. 1In fact, the range history of any
rotating target point as a function of the time generates
quadratic or linear FM phases for small angle changes as a
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first order approximation [3-5]. This is the baseline of
the principle of synthetic aperture radars (SAR).
The azimuth resolving ability of the SAR can also be

explained from the antenna point of view. The radar

l radiates pulses at different target aspect angles and
receives their echoes from the targets shortly after.
Because of the relatively short TOT of any pulse it can be
assumed that during any single TOT the motion of the targets

or the radar is negligible. The returns of different pulses

k from the same target point are azimuthally modulated by the
relative motion between the radar and that particular point.

The induced linear-FM returns can be compressed to yield

high azimuthal resolution as in the range case. This is

analogous to the case of a physical antenna array where the
received signals at each array element are cocherently
processed and summed to yield a sharp effective antenna

pattern [3-6]. The analogy between a physical antenna array

and a synthetic antenna is depicted in Fig. 3-3.

From Fig. 3-3(b) it is observed that the whole physical
azimuthal beam width at range R gives the length of the
synthetic aperture available at that range. If L and Leff
are the physical and synthetic antenna width along azimuth

then
L T ReB = RA (3-5})

pr—

where B is the physical antenna width in radians. Since the
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operation of SAR utilizes the two~-way beam pattern in the
sense that the phase shift is introduced on both the paths
to and from the targets, the round-trip phase shift effec-
tively reduces the wavelength by a factor of 2. Thus the

effective antenna pattern width is, from Eg. (3-1),

A
B = (3-6)
eff 2Leff

The azimuth resolution Pa is the effective beam width

projected on the target at range R

~ - L -
Py = BeffR =5 (3-7)

which is proportional to the azimuth size of the physical
antenna, and is independent of X and R. Thus in the SAR to
achieve higher azimuth resolution a shorter antenna has to
be used, in contrast to a single antenna in a traditional
incoherent case as in (C). This is because a smaller
antenna has a wider illumination pattern which generates

a wider bandwidth available, a characteristic of linear-FM

signals [2-7].

3.3 Conclusions

This chapter analyzed one-dimensional radar signal
processing principles assuming system separability. 1In a
radar systemcoherent in both the range and azimuth dimen-
sions, linear FM modulation exists in both dimensions. 1In

the range direction it is created by actually modulating
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the transmitted waveform whereby in the azimuth direction
by an effective rotation of the target. However, the
returns are processed in the receiver end by the same
compression technique to resolve the target points in both
dimensions.

As the analysis goes from one dimensional processing to
a two-dimensional one as will be done in the following
chapters, new problems could generate many difficulties.
Coupling between the two dimensions, e.g. range curvature,
range alignment, relative scaling, is a typical example.
Also, motion compensation and focusing problems adds the
complexity to the system analysis.

System classification and decomposition principles
proposed in Chapter 2 will prove very useful tools in the
subsequent chapters in obtaining practical and efficient
radar image reconstruction procedures under the various

imaging geometries.
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Chavter 4

SAR STRIPPING MDD

4.1 Introduction

Synthetic aperture radar can map two-dimensional areas
with high azimuth resolution achieved by the use of coherent
signal processing uvon the taraget point ovhase histories
induced by a relative motion between radar and target. 1In
imaging a large sized target which is usually stationary,
e.g., the ground terrain, the radar is carried on a movinag
vehicle, e.g., an airplane or spacecraft, to get radar
echoes from different aspect angles of the target points.
Based on the same synthetic aperture vrincicle, there are
basically three modes of SAR ground mapping depending on
the imaging geometry: spotlight mapping, strip mapping, and
Doppler beam-sharpening [4-1,2). This chanter concerns the
stripping mode of SAR terrain imagina which 1s the most
interesting mode having obtained great attention since 1its
birth in early 1950's.

In its operation an airplane or spacecraft flies
straight over the ground of interest, radiates pulses at
dif ferent locations and records the returned echoes. As
shown in Fig. 4-1, let (x,v,z) be a rectanqular coordinate

system with (x,y) being the ground, and assume unless other-
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wise stated that the flight is along the x axis, with y=0
and at a constant velocity.For simplicity a side-looking
radar is also assumed, although it could as well be squint
[4-2)]. 1In the geometry depicted in Fig. 4-1, we use
(xl,yl,zl) and (x2,y2,z2) to denote the coordinates of an
arbitrary target point and the radar receiver on the air-
craft, respectively. We will assume that the effect of the
height of mountains and structures on the ground are negli-
gible and that the curvature of the earth surface can be
ignored such that zl=0 for all the ground points to be
mapped. Furthermore we assume that the time origin coin-
cides with the x origin of the aircraft. Thus X =Vt where
v is the velocity of the aircraft. As is generally the
case, the antenna is assumed to be shared by the transmitter
and the receiver. This necessitates the pulsed nature of
the signal waveform and inevitably creates blind ranges
[4-3]. Echoes from targets in blind ranges reach the radar
while it is transmitting and not receiving and thus are
lost. Also, the pulse repetition frequency (PRF) sets an
upper bound to the maximum range without range ambiguities.
For simplicity of analysis we assume that the signal pulse
train consists of pulses of identical waveform at a constant
PRF. Thus let fs(t) be the modulation function of a single
pulse centered at t=0 then the infinite lengthed pulse train

wave function will be, in its analytic form,
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=]

£(£) = D £_(t-nT_)exp (ju_t) (4-1)

n=-ow

where Ts is the pulsing period and w the angular frequency
of the carrier. As described in Fig. 4-2, if the "effective"
time width of fs(t) is Tp then the length of the time
during which the transmitter is not in use between consecu-
tive pulses is TS-Tp which decides the maximum range
deviation of the radar returns without range ambiguities.
In addition to above timing factors, the depression
angle ¢, or the angle between the horizontal plane and the
radiated beam, and the antenna pattern are major parameters
of the system with its geometry depicted in Figs. 4-3 and
4-4. The point spread function is naturally a complicated
expression with many parameters interacting mutually and
hence precise image reconstructions demand formidable
efforts. However, depending on the degree of accuracy pur-
sued, if we model the PSF of the system in some desirable
way by appropriate geometrical considerations and appro-
ximations, we will be able to simplify the description of
the system, making the system evaluation work the purpose
of which will be described in the next section relatively
easier and the reconstruction more feasible. Of course,
by so doing we inevitably distort the system by using an
inexact model, and an incomplete or nonoptimal (in some

sense) reconstruction of the target image is to be expected.
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Fig. 4-4. Flight-path geometry on slant range plane
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It is obvious that the more approximations one makes, the

more degradation will result in the reconstructed image.
In this chapter we will give a hierarchy of the SAR system
models in progressive inaccuracies. We will show that these
models fit the system classification categories in Chapter 2
nicely so that the reconstructions can be done readily by
using the appropriate algorithms summarized in Chapter 2.
We will also tabulate the approximations made and their
justifications at each step. It will be shown that in its
simplest form the system is separable and space-invariant.
An imaging system has two kinds of DOF's; one of them
is computational (DOFC) as studied in Chapter 2 and the
other is informative (DOF). We now explain the latter and

differentiate the two.

4.2 System Evaluation

In general, gathering more data provides more
information to solve for the unknowns at the expense of
increased requirements in storage and complexity in combu-
tation. On the other hand, intuition suggests that after
some "threshold amount" of data is obtained, the additional
observations do not always provide equal amounts of new
information. This is due to the inherent "blurring" of the
imaging systems and observation noise, etc. Thus the
concept of degrees of freedom (informative DOF) has arisen

to measure the number of truly independent samples of
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data one gathers under a particular imaging system [4-4,5].
In the system evaluation the concept of eigenvalues of
a correlation matrix or the Gramian matrix is usually
adopted [4-6,4-8). For example, in the continuous-discrete
case, we equate the degrees of freedom with the number of
eigenvalues of the Gramian matrix larger than some threshold
determined by the noise level of the system. This is equi-
valent to the singular value analysis of the system. For

the purpose which will be clear later we now show that

orthogonal transforming the input and/or output data of a
linear system will not change its eigenvalue spectrum and
hence its system performance, other than a possible reorder-

ing of its singular values. Consider the discrete-discrete

case for the sake of ease in proof: Let [H] be the matrix
of the linear system and [P], [Q] be crthogonal matrices
multiplied with the output and input vectors, respectively;
PtP = PPt =1 and QtQ = QQt = I where the superscript t
denotes a transposition. The set of eigenvalues of

pHO (PHQ) © = PHQO®H®PY = PHH'PY is the same set of eigen-

values of PtPHHt = HHt except for additional zeroes due to
possible size difference of P and Q [4-8]. Note that the
sets of eigenvalues of PHQ and H differ in general, though.

To differentiate the DOFc and DOF, we note first that

both of them are derived from the system PSF. However, the

DOFc is usually determined before DOF and it need:¢ only

the structural information of the PSF and can be determined
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by identifying the PSF with the simplest case in Chapter 2.

The DOFc is used to determine the amount of effort required
to estimate the DOF which requires the actual numeric values

of the PSF in the matrix diagonalization manipulation.

4,3 Derivation of Point Spread Function for the SAR

Imaging System
Referring to Fig. 4-1, z, = 0, X, = vt, Yy = 0 and z,

is the flight height. Define the ground range

ne>

[(xl—x2)2+(yl—y2)2]%

[(xl-vt)2+y§]% (4-2)

and the slant range

~
|

>
[(xl—xz)2+(yl—y2)2+(zl—zz)2]z

[(xl-vt)2+yi+z§]% (4-3)

[R;+22]}5

2

The propagation delay associated with a point target
at (xl,yl,zl) with range R is %? where the factor 2 is
because of the round trip of the wave propagation. Let
p(xl,yl) be the reflectivity function of the terrain and
A(xl,yl,xz,zz) be the illuminating intensity of the antenna
beam on the terrain point (xl,yl) when the receiver is at
(xz,o,zz). If the antenna pattern remains the same during

the flight, it is easily seen that
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A(X11Y1,X2,22) = A(Xl-erYl,ZZ) .

The received echoes are the product of the illuminating
pattern A, the terrain reflectivity ¢ and the delayed
signal function f, summed over the ground coordinates
(xl,yl), where the propagation decay has been assumed

uniform in the (xl,yl) plane and neglected
[o+]
z(t) = A(x, -x z.)0(x,,y.) £(t-2Ryax_d (4-4)
= 17¥r¥ e 200 %0y c 9%
Substituting Eq. (4-1) into Eq. (4-4),

[+ oo

z(t) = f f A(X =%5,Y,025) P (Xy07;) ,Z:_oofs(t = nTg)

exp{jwc(t-%§)}dxldyl (4-5)

If we interpret Egq. (4-5) as a two variable to one
variable system with p(xl,yl) as its input and z(t) as its
output, it is obvious that the system is linear with

point spread function

X
2
2[(xl-x2)2+y§+zzJ >

h(t;xl,yl) = gg;mA(xl-xz,yl,zz)fs<t-nTs— .
%

2[(x1-x2)2+yi+z§] );

C

(4-6)

expgjwc<t-

= exp{cht}E: A(xl-anS,yl,zz)fs(t—nTS-

n=-o

—ch

2. .2 2 %
2[(xl-anS) +y1+22] )
exp

X
2[(x1-ans)2+yi+z§] ‘

(o]

C




where X,=nvTg is a discrete radar coordinate and it has been
assumed that during the transmission and receiving of a
single pulse the aircraft is approximately stationary so that
X, is substituted by nvT in Eq. (4-6). This is valid if

(sufficient conditions)
a) A(xl-ans,yl,zz)zA(xl-ansisz,yl,zz)

2 2 2_ 2
b)  (|x;=nvT |+8x,) "~ (x -nvT ) “<<(y,+Ay;)"-y] and

2, 2

2 2,.2 213
c) 2[(|xl—ans|+Ax2) +y1+22]%—2[(xl-nVTs) +yl+zz]=<<xc

for all X and Yy under illumination, where sz is the
maximum distance the aircraft travelled during the receiving
of a single pulse. Ayl is the range resolution desired.

See Fig. 4-5. ©Note that Ax2<st as assumed earlier. The
above relations assume that the movement of the radar during
the receiving of a single pulse is so small that a) illu-
mination pattern is effectively fixed, b) no range walking
within one pulse and <¢) induced phase error is much less
than one wavelength, respectively.

{a) 1s easily satisfied by noting that Leffz%% is of
the order of hundred or thousand meters, and is
therefore greatly larger than sz, which is of
the same order of the azimuth resolution desired.

2 2
(b) (le—ans|+Ax2) - (% -nvTy)

2
= 2Ax2|x1—anS|+Ax2

| A

2Ax2(Leff+Ax2) = 2Ax2Leff

while




Fig.

4’y

4-5. Justification of the stationarity of
radar within one pulse time
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2 2 2
(y1+Ay1) -y, = 2Ay1-y+Ayl =] 2Ay1-y

Since Ax2 is of the same order as Ayl(azimuth resolution

vs. range resolution), (b) will be valid if

L (4-7)

eff << ¥y

(c) 3D|x -nvT (+Ax2)2 2, 2]% [}x -nvT )2+yi+z§] z
2,2 % (!x -nvT |+Ax2)2 (%, ~nvT)

2{(yy+ +i (y +z) ~%
R )

2

2 2

= (}%,-nvT_]| *Ax+AX5)
(Y§+Z§)g 1 s 2 772
2|x1--anS|-Ax2

~

%

(y§+zg)2
™ S WO
S TIAE

yl+22)

where validity of Eq. (4-~7) has been assumed. Thus if we let
sz be of the same order as Ac’ (c) will be satisfied. 1In
fact, the achievable - wth resolution is of the same order
as A, [4-11].

Because the sinusoidal phase term exp{jwct} in Eg.(4-6)
does not carry any information on p(xl,yl), a preprocessing
can shift it to any lower frequency Wy desired. 1In optical
processing upon SAR data, the "offset" frequency wO#O is to
separate reconstructed twin images from each other and from
other useless images [4-9,10].

Thus,
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hitix),y,) = exp{Jth} 2: A(x;-nvTg, Y ,2,)

Nn=-—w

2[(xl-ans)2+y§+zi]%
fs t-nTs— )

_ 2.2, 2%
2[(xl ans) +y1+22]

Cc

(4-8)

expg—]wc
o]

Although the return of the pulse train from the two
dimensional target field is one dimensional - i.e., function
of t only, the recording of data is usually two dimensiocnal.
For example, because of its huge capability for 2-D data
storage, film has been widely used for SAR data recording.
This is conveniently done for latter processing because the
signal returns from different pulses do not overlap in time.
The returns of each transmitted pulse are arranged side by
side as in Fig. 4-6(b) in which the data lines are contained
between 0 and Ts in the new t axis and extends along the
flight path axis x which is perpendicular to the t axis.
Equivalently, the original one dimensional t axis denoting
the data collecting time is transformed into two dimensions,
discrete X, and continuous t. Because the coordinate trans-
formation above is a reordering of the data which is an
orthogonal transformation, nothing has been changed from a
DOF point of view from the analysis in section 4.2.

Now S(xz,t) is nonzero only for 0 < t < Ty and x, is a
discrete variable occuring at nvT only. Note that x, and

t, which are the variables in the data domain, have dimen-
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z (1)

(a) received signal

S(xz,t)
! o
/ .
/ .
// .
/'\'»'m
/‘\'M\--
2l Raand
L. —
S,
w

(b) reordering of (a)

Fig. 4~6. Reordering of received signal
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sions of length and time, respectively.

The PSF expressed in (xz,t) variables now becomes

h(xz,t;xl,yl) = exp[jwo(t+nTs)]A(xl-x2,yl,zz)

02,2, 2%
( 2[(xl x2) +yl+22] ﬂ
st- o

£ C
2 (xl-x2)2+y§+z§J% :
expg—jwc = (4-9) !
where 0 < t < Ts’ X, = ans.

Eq. (4-9) can easily be identified with the kernel of
a two-dimensional transformation,wo, Wer VY, Tgr 25, C, A
and fs being parameters. Sometimes it is desirable that the
data obtained from the system kernel Eg. (4-9) be multiplied

X
with exp(-ijnTs) = exp(-jw —g), or exp(-jwot) yielding

Qv

range offset case and azimuth offset case, respectively
[4-12]. Although the multiplication is not necessarily an
orthogonal transformation and thus would affect the true

DOF of the imaging system, the exact effect on the DOF will
not be investigated here. As will be explained in Chapter 7
this is one of the preprocessors designed to make subsequent
processings or presentation easier. The offset data has

equivalent kernels

h(xz,t;xl,yl) = exp(jwot)A(xl-xz,yl,zz)

2[(x1-x2)2+y§+z§]% 2[(x1-x2)2+yi+z§]%
fs(t- ' )exp -jwc :
c c
range offset case (4-10)
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w
h(xz,t;xl,yl) = exp(?igx2>A(xl—x2,yl,zz)

2 2T:
£ ( 2[(xl-x2)2+y1+22]%)
St

_ 2,.2 215
2[(xl x2) +yl+zz] z
C
C

expz—jw
c

azimuth offset case (4~11)

In the following analysis we shall assume that the range

offset case is used.

4.4 Simplification of PSF

In this section we try to simplify the PSF (Eg. (4-10))
of the SAR imaging system from several physical considera-
tions. Along with the simplifications, a hierarchy of
models of PSF's with decreasing complexity will be derived
along with their associated assumptions and approximations.

We start by noting the strong relations between
variables 3 and Xy, yl
the argument of fs’ t-[z[(xl-x2)2+yi+z§]%]////c, were it not

2

for the factor (xl-xz) , would yield a simple one dimen-

and t, respectively: in Eq. (4-10),

sional relation which connects Y1 with t to provide the
range information independent of azimuth modulation. This
is the only way which makes h(xz,t;xl,yl) nonseparate in
azimuth and range in Eq. (4-10). If this fact can be
ignored, e.g., if the propagation delay induced by the
variation in (xl-x2) is much smaller than the range resolu-
tion interested, then the PSF can be considered separate in

azimuth (from x, to x2) and range {(from Yy to t):

1
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h(xy,tixy,yy) = exp (Jugt) AR =X, ¥y, 2,)

2(y§+z§)JE
fs(t-—————————)exp
c

_ 2,2, 2\|%
_ 2[(xl x2) +y1+22] (
—Jw - =

C

(4-12)

Physically this means that the range resolution cells
under antenna illumination do not move to overlap each
other as the flight continues. The situation is depicted
in Fig. 4-7, where the range y of a target point is plotted
as a function of the azimuth distance X%, of that point.
Various ways have been proposed to alleviate the problem
of range-azimuth coupling [4-13,14,15] where the range
curvature is not to be ignored. However, if Py is the

range resolution pursued and B the effective beam width

then this range curvature will be negligible if

2
[[(xl-x2)2+yl+z§] (yl+z )3[

©

for all X=X and Yy illuminated by the radar. Assuming

2
(xl-xz) << (yi+z§)% as in Eq. (4-7) and B small, we have
(x,~x )2
02,2, 205, 2,28 2, 2.k 2 2. 2.%
Bxl xz) +y1+z2] (yl+zz) = (y1+22) +%?_7—__;§ (y1+22)
b4 2
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Fig. 4-7. Range variation of a point target




So we require that

or > § Less (4-13)

o™

for negligible range curvatures. I.e., PSF can be

approximated by Egq. (4-12), which is separate in azimuth

and range, if the inequality (4-13) holds.
To see that the system with kernel Eq. (4-12) is

separate in azimuth and range, we rewrite Eg. (4-12) as

2, 2.k
. 2(yl+z2)
h(xz,t;xl,yl) = eXP(Jth)fS t-——

o
? Alx) =X,y rZ))expy=jo, c
= ht(t;yl)hz(xz;xl,yl) (4~-14)
o 2(y3+23) Y
where ht(t;yl) = exp(jmot)fS t-———E———— is the response

of a unit point source (impulse response) at ¥y which is
independent of azimuth dimension; and

2,2 2}y
2[(x1-x2) +y1+zz] }

C

A ) .
h, (xyixy,yy) = Alx, xz'yl'zz)exp{ Jwe

is the azimuth response of a unit point source at (xl,yl).

Note that hz(xz:xl,yl) = hz(xl—xz;yl) is space invariant in

x, and Xy but varies its form as Yy changes. 1If we use

1

Eg. (4-14) as the kernel of the SAR, then the input-output

relation will be g5




|

)

Z(xz,t) = J f ht(t;yl)hz(xl-xz;yl)p(xl,yl)dxldy1

co (=]

J ht(t;yl)[J hz(xl—xz;yl)p(xl,yl)dxl]dyl

- o0 -0

(4-15)
Thus equivalently the imaging system of SAR is a transforma-

tion of p(x ) into z(x2,t) in a sequential order:

1Y)
azimuth transformation followed by range transformation.

Because of the dependence of hz upon vy, h, and h2 are not

t
separable and thus their order cannot be interchanged in
modelling the system. Accordingly, the reconstruction of
the ground reflectivity function p(xl,yl) from its image
z(xz,t) has to follow the reversed order.

To put Eg. (4-14) in a more practical form, we note

from inequality (4-7) that |xl-x << yi+z§ and hence

2 l

(x,-% )2
2,..2.% 1 72
2. 2. 2% 2(y +z;)) 55—
2 (xl—xz) +yl+z2 (y1+22)
exp)—jwc zexpz-jmc
c c
= exp}-jwc—— exp -jwc——f——ffgg {(4-16)
c (yI+z,)
172
and thus hz(xz;xl,yl) can be approximated by
2(y2422)%
h_ (x,;x ) = exp{-juw _T1 72 A(x,-X z,)
PARVIES ER 6 Rl I %% - 17%2'Y12%)
w (xl—xz)
exp{-j< ——7—_7_E$ (4-17)
(yl+22)
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2(yl+z )'15

C

Because the phase term exp{-jm } is independent of
azimuth its effect can be taken out and absorbed in the
reflectivity function p(x,y). In terms of the system

block diagrams, we now have Fig. 4-8 where

Y
_ 2(yi+z§)2
ht(t7y1) = exp(ont)fS te——— =

c
' _ A\ - -
hz(xl x2,yl) = A(x1 x2,y1,22) (4-18)

2
w, (x x2)
expd-ig —3—5
¢ (y1+22)

Eq. (4-18) is the form assumed for most SAR processing.
The equation clearly expressed the separability of the PSF
in which the range information is provided by the timing
of the returns whereby the azimuth information is provided

by the phase history induced by the motion x,-x

1 72

All the assumptions required so far can usually be
justified in practical SAR systems of stripping mode. We
proceed to approximate Eq. (4-18) by a PSF separable in

azimuth and range, i.e., such that hz is independent of Yy

in Eq. (4-18). This will be true if

(A) A(xl—leYlIzz) = A(xl_lezz)
2 2
w_ (x,-x,) w_ (x,-x,)
1 72 ~ c 1l 72
(B) exp{ C -—2——2—1:}: exp{ J }
(yi+z5)7% ¢ (y'i+zg)%

where y1 and vy i are azimuth coordinates for any two target

points under the antenna illumination. (A) can be made
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approximately true by an appropriate antenna pattern tail-
ored for the imaging geometry.

2 2
. L. Y +z5
({B) will be true if ‘lmax “2 = 1 where Y1imin and Yimax Y€

+22

Yimin
the Yy coordinates of the target points at maximum and
minimum ranges covered by the antenna beam, respectively.
In that case, the azimuth modulation would be same linear
FM at all range bins. We shall not elaborate on the exact
requirements for the inequality.

It is pointed out that in general (B) cannot hold.
However, if it could, then the system of Eg. (4-18) would

be separable:

h(xz,t;xl,yl) = ht(t;yl)hz(xz-xl) (4-19)

Further theoretical reduction of the PSF is still

possible: if we make the offset frequency 0 and assume

i
that Yy, >> 2z, for all valid Yy such that z(yi+z§)2/c can
2y 2y
A 1

be approximated by —El, then by changing variable ty, =

2y
£ (t————l)
S C

ht(t;tZ) = fs(t_tZ)

C

we will have

ht(t;yl)

or

SO

ht(t—tz)hz(xz—xl) (4-20)
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which is a separable space invariant PSF (SSIPSF).
A summary of the properties of the PSF's under various

assumptions is listed in Table 4-1.

4.5 Conclusions

This chapter presents the analysis of the stripping
mode of the SAR from a PSF point of view. A series of PSF's
of the imaging system is derived based on various geometri-
cal and mathematical assumptions. Depending on the degree
of precision one pursues the PSF's vary from the most
complicated case of a non-separate one-dimensional invariant
processing to a separable two-dimensional invariant proce-
ssing. The requirements for most of the approximations are
derived. Many parameters are present in the radar equations
which look formidably complicated in some of its most
precise forms. By classifying the eguations according to
the method in Chapter 2, parameters can be clearly separated
from the variables associated with the imaging equations and
great insight into the image formation methods is readily
provided.

The concept of preprocessing is briefly mentioned in
this chapter. Details of processing techniques for the

reconstruction are not presented until later chapters.
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Chapter 5

TURNTABLE RADAR IMAGING

5.1 Intrcduction

Synthetic aperture radars achieve high azimuth resolu-
tion by coherently processing the phase histories of the
target points. Based on this principle there are three
modes of SAR: the s=tripping mode, the doppler beam
sharpening mode and the spotlight mode. 1In the previous
chapter the stripping mode has been analyzed and many radar
parameters introduced. In this chpater we study a radar
imaging geometry closely resembling the spotlight mode and
in a well controlled environment where the relative motion
between the radar and target is a strict circle.

We will show that the underlying radar imaging system
is very similar to a computer aided tomogravhic (CAT) system
from the PSF point of view. Unfortunately, physical
limitations, e.qg. the aspect-angle-dependence of the target
reflectivities and the shadowing effect from 3-D obscura-
tion, discourage one from applying a tomography-like recon-
struction to the reflected signals. Hence, instead the SAR
principles will be applied directly to small angle looks
and several looks will then be registered and incoherently
summed to give the full reconstruction of the object
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reflectivity function. A DOF as well as Nyquist rate
analysis in the frequency domain will be derived to show

the minimum number of data points required for image recon-

struction under specified physical constraints and require-
ments. Basic relations between bandwidth and resolution

will also be discussed.

H 5.2 The RAT SCAT Facility and Data Acquisition

The original design purpose of the RAT SCAT (standing

for RAdar Target SCATter Site) facility is to measure

radar cross section (RCS) of various targets at different
distances, angles, elevations and frequencies [5-1]. 1In
operation, the target (say a model airplane) is placed on a
rotator at a distance r, from the radar to its rotation
center as shown in Fig. 5-1. A reference sphere S is

sitting at distances r, from the radar R and r, from the

1
rotation center C. The angle between line RS and the target
line of sight RC is a. Let (£,n),(x,y) be two rectangular
coordinate systems with origins at C. Let (£,n) be fixed

on the target and (x,y) on the ground at an angle 6 from the
former coordinates, as depicted in Fig. 5-2. At discrete
angle ei the radar radiates continuous waves (CW's) single
frequencies fk for various k. The radar receiver at the
reference sphere S takes the signal directly from R to S as

a reference and beats it with the signal reflected from the

target. The resultant in-phase and quadrature phase
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Fig. 5-1. Relation among radar, target and
reference sphere

N
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g(x,0)

Fig. 5-~2. Geometry of coordinate systems
(§,n): target, (x,y): ground
or radar
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components become the data. This process continues for
different k and i to form a 2-D data array. For simplicity
we shall assume that at each aspect angle the radar
radiates the same set of M frequency waves at a fixed
frequency step 4f. We shall assume that the angle step AS

is also constant as one advances the aspect orientation.

5.3 Hypothetical Target Reflectivity Function

Referring to Fig. 5-~2, let f(f£,n) be the reflectivity
function of the target, where by reflectivity function f(§,n)
we mean the ratio of the received signal due to a point
target at (£,n) with the radiating signal. At wavelengths
A small compared with the curvature of the target body, as
used in our experiments, the target looks specular to the
radar [5-2] so that only those surfaces at appropriate
orientations to the radiation path reflect strong enerqy
back to the radar receiver. In addition, wherever a point
{£,n) is blocked by some other points or surfaces in the
line of sight (LOS) to the radar, shadowing occurs. In
other words, the shadowing effect occurs because of the
non-convexity of the surface of the target. Thus f(f,n) is
actually a function of aspect angle 6. Nevertheless, for
ease of analysis we assume that f(f{,n) is independent of §©
and we shall see a close resemblance of this imaging system
to that of a tomography. A great deal of insight can be

obtained by this theoretical assumption. Even if we

95




release this assumption, as we shall do later, the DOF
analysis based on fixed f(%{,n) is still valid in the real

situation.

5.4 PSF of the Imaging System

In Fig. 5-1 let's assume that the angles a and & are so
small (in our experiments they are = 1°) that the signal
reflected to S would essentially be the same as if S were in
the line RC at the same distance from C. The distance
between the object point at (£,n) and the radar is a

function of r 8, £ and n.

O'

r(rg, 8.6, = [(rg-x)  +y?)*

= (ry=-x), (5-1)

where we have assumed that r,~-x >> y for all target point

0

coordinates (x,y) or (£,n) and

x
1]

ass
1]

£cosB+nsind XCcosf-ysing
or

ncosf-£sinbd n

ycosO+xsinb {5-2)

<
]

where 8 is the angle from £ axis (on the target) to the

x axis {(on the imaging device). Thus
- ¥ 2 . 2. %
8r(r0,9,£,n) 8[(r0~gcose~nsln6) +(ncosb-Zsinb) 1]
36 a8
2 (ry-x) (£5in6-ncosB)+2y (-nsinb-£coso)
- r(r,,6,%,n)
= £sinB-ncosb = -y (5-3)
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where we have assumed ry=x = r(rgy,6,€,n).

Equations (5-1) and (5-3) reveal that the lines of
constant range and lines of constant doppler are parallel
to the y,x axis, respectively. Lines of constant range can
be separated or resolved by range or timing processing while
lines of constant dopplers can be separated by azimuth or
doppler processing, roughly speaking.

We proceed to find the PSF's of the imaging system.

Let a be the maximal radial extent of the target.

Define line projection at angle 6 and range x by
a
g(x,0) = f f£(£,n)dy (5-4)
~-a

which is the integration of the reflectivity function f({,n)
over all target points at distance ry-x to the radar when
the x axis is at an angle 6 from £ axis. The radar

transmits signals of the forms
fk(t) = Acos(2nfkt+¢) k=1,2,...,M (5-5)

at discrete ei, i=1,2,...,N, where A is an amplitude
factor and ¢ a phase term. The signal reflected to the

reference sphere from the "line mass" at range ry-X is
ro+r2-2x
z(x,i,k,t) = Bg(x,ei)cos[ZNfk t—————E——— +¢ (5-6)

where the signal power, propagation decay and reflectivity

phase have been absorbed into the complex constant B. The

return from the whole object is a summation of the contri-
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butions from different ranges:

"

a
z(i,k,t) f z(x,1i,k,t)dx

-a (5-7)

a ro+r2—2x
B f q(x,Gi)cos[ank tm——T;———- +¢]dx

-a

which is again a CW.

The signal received by S along path RS assumes the

!
vi{k,t) = C cos[2nfk - +¢J (5-8)

When signals in Egs. (5-7) and (5-8) are mixed or multiplied

form

at S, they become

a
z(i,k,t)y(k,t) = BC J g(x,9, )cos[ZTrfk t-
-a

T
cos 2nfk -— + @]dx
C

a r.+r.+r.~2x
- QEJ g(x,8,)cos [2W(2fkt- 0 1c 2 )+2¢de+
-a
a r,-r.-r

[ g(x,9. cos[2nf~(-£——9——g+gﬁ ]dx

J_ -a K C C

The first term in Eg. (5-9) is a high temporal frequency

(5-9)

term which can be filtered out to leave only

a r -1
. 2X 1” 0 2

= L S [ 3

I(i,k) D f-ag(x,ai)cos(2n.k(:+ wtk = ) Aax

(5-10)
Similarly by beating z({i,k,t) in Eg. (5-7) with 90° shifted
version of y(k,t), one obtains

r,-r,_-r

a 1 "0 2
1 = - 1 F — e e 4 -
Q(i,k) D J g(x,ei)51n(éﬂf ?;+2w K c )dx (5-11)
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Define

a 2nka
3k{g(x,8i)} = J g(x,ei)exp(-j = dx {5-12)

-a r.-r,.-r
and compare Egs. (5-10) and (5-11) with (5-12). 27f

k

in (5-10) and (5-11) is a linear phase term with reswect
to £ which if compensated for would mak= I(i,k) and Q(i,k)
the Fourier component of the shadow gram g(x,ei) at angle

2f
8. and frequency - According to the circular projection

i

theorem [5-5]}, the data [I(i,k),Q(i,k)] takes on the value
in the ring in Fourier frequency domain as shown in Fig. 5-3
with the extra linear phases mentioned.

Mathematically the structure of the data obtained has
a considerable similarity to that of the Fourier transformed
data of an infinitely narrow parallel-beam tomographic
imaging system [5-4,5]:

In the computer aided tomographic system, let p(y,0)
denote the integral of the object transmission (in the radar
system it would be the reflectivity) function £f(f,n) or
f(x,y) along the line L(r,8), as shown in Fig. 5-4. As
before, coordinates ({,n) are assumed fixed on the object
or target and (x,y) fixed on the data gathering device (in
the radar system it would be the transmitter and receiver).

The two coordinate systems are related by

»
I

fcosf+nsing g xcosf-ysin8
or (5-13)
ncosf-£sinbd n ycos0+xsin®

<
]
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Ui I(i.k)
’ Q(i, k)

N angle steps

Fig. 5-3. Raw data in frequency domain
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as in Egq. (5-2). The equation for the line L(r,8) is
x-r=0 or f£cosf+nsinb-r=0. Thus
p(r,8) = { f(g€,n)ds (5-14)
L(r,9)
where s is along line L{r,6)

The set S={p(r,8)|-o<r<e, 0<6<m} is called the shadow-
gram which is a transformation of the object function f(£,n)
or f{x,y), and is the data one obtains from a parallel
beam tomographic system. A famous way to reconstruct f(f,n)
from p(r,6) is to use the back projection convolutional
method [5-6]. Other reconstruction algorithms can be found
in [5-7]. However, if we take the Fourier transform of

p(r,6) with respect to r,
P(w,8) = f p(r,8)exp(-jur)dr = f f f(§£,n)exp(-jwr)dsdr,
- 00 - I‘(rle)

and compare with

oo

F(w,8) = J J f(g,n)expl-jw(Ecosd+nsing) }1d&dn (5-15)

- 00

where F(w,8) is the two-dimensional Fourier transform of f

in polar coordinates, it is obvious that
P(w,8) = F(w,0)

Hence f(£,n) can be reconstructed by taking a 2-D inverse

FPT upon F(w,6) or P(w,9):

T ©
£(E,n) = -17 Jde f P (w,8)exp[juw(Ecosb+nsing)wdw]  (5-16)
4n
0 -
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Thus it seems the RAT-SCAT image could be obtained by

a 2-dimensional inverse Fourier transformation upon the

data, just as in the transformed tomographic system. There
are, however, several differences which should not be over-
looked:

(1) The validity of the hypotheses made in Section

(2) A linear phase factor (if not compensated for)
in RAT SCAT as in Eq. (5-~11).

(3) Bandpass (instead of low pass) property of data
gathering ability of RAT SCAT as in Fig. 5-2,

Because of (1) and (2) one has to seek algorithms
other than those from tomography to reconstruct our RAT SCAT
images. Becuase of (3) the radar images have no "DC" term
and magnitudes or intensity of complex reflectivities have
to be taken in order to display the final stages. We'll
next derive the minimal number of data required to recon-

struct a target of given size and required resolution, show

the relation between resolution and bandwidth and then
propose a reconstruction algorithm which turns out basic to

all modes of SAR's.

5.5 DOF of the Data

The DOF problem of an imaging system arises because the

data available for image reconstruction are not independent.

In other words, there are overlappings among different PSF's
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of the data acquisition system. A common method to tackle

the DOF problem is to form the correlation matrix [['] of the
imaging system and try to diagonalize it. The eigenvalue
spectrum and the rank of [I'}] give a quantitative measure

of the DOF.

The degrees of freedom problem of a tomographic projec-
tion system has been analyzed in detail by McCaughey and
Andrews [5-5]. Because of its mathematical similarity, we
will apply some of their results to the RAT SCAT data.

First, for the purpose of clearity and convenience,
let's normalize the spatial extent of the target as in [5~5].
We assume that the object has a maximal radial extent of a
meters and that the minimal and maximum radar frequencies
applied at each aspect angle are fmin and fmax’ respectively,

which give respective 2 way wavelengths

1 o]

)\ = X =

max fmin 2
(5-17)

1 c

A .= X =

min fmax 2

where ¢ is the speed of EM waves. The normalized frequen-

cies have a spectrum from

£, = to £ =-Aa—' (5-18)

Refer to Fig. 5-5.
For the circular imaging system on the unit-radius

object it has been shown in [5-5] that the (i,m,k,1l)th
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Fig. 5~4. Projection imaging geometry
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(a) spatial domain (b) frequency domain

Fig. 5-5. Spatial and frequency domains of a
spatially normalized target
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entry 'l of [T'] is
i,m ) . . .
rk:l = f [ eXP[—JZWUk(ﬁcosei+n31nei)]exp[+32nul(&cosem+ns1n9m)]dgdn

2_ ~ 2,3
} Jl[zn(uk Zuku1005(ei em)+ul)]

5-19)
2 7% (

[uk Zukulcos(ei em)+u1]

where (i,k) and (m,l) are indexes of any two, possibly
same, data points; i and m are azimuth angle indices and k
and 1 are frequency indices along radial direction. J,(*)
is the first order Bessel function of the first kind, R 1is
the unit circle and 0<6,, 8 <2m, f,<u ,u,<f,. Eq. (5-19)
can be rewritten as

Jl[Zwo(k,l,i,m)l

m = —
1T TR, LW (5-20)

. _ 2_ _ 2.% . .
where p(k,1,i,m) = [uk 2ukulcos(8i em)+ul] , which is

nothing but the distance between two points (i,k) and (m,1)
in the frequency plane. In other words, ri:T is only a
function of the distance between the two data points.
Therefore, one can think of the data as samples of a two-

dimensional stationary process with correlation function
T
J1(2 P)

5 which is the Fourier transform of the unit circle

which defines the object spatial extent. The correlation
pattern is the same no matter where the points are consi-
dered and manipulation methods of stationary processes such
as the Nygquist sampling theorem can be applied to easily

solve the DOF problem.
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A stationary process wlth correlation function -—

-
has a power spectrum {Fourier transform of tlhe corrclation
function) circ{r) and is bandlimited with radial cutoff
frequency 1, as shown in Fig. 5-6. According tc the
Nvygulist sampling theorem, the sampling interval in the
frequency domain must be < 1/2 in order to avoid any alia-
sing in the spatial domain. This coiancides with the more
intuiltive fact that to adeguately represent an object of
maximum spatial extent S, the sampling interval in its
frequency domain should not be larger than 1/S (note that
S=2 1in our case 0of a normalized target). This information
can be used to determine the maximum allowable frequency
step in the radial direction and maximum angle step 1in
azimuth without ambiguities. As an alternative way of
analysis tne "effective correlation region” in the data
domain can be determined from Eg. (5-20) and approximate DOF
of the data band in Fig. 5-5b can be determined by dividing
the ring area by the effective correlaticn region.

Because of the stationarity of the random process in
the data =vace, an interesting phenomenon results when one,
say, doubles the initial frequency in Fig. 5-5b while
keeping other parameters unchanged. The area in the ring

will be approximately doubled and thus the same to the DOF.

Although the range (along the radial direction) resolution
doesn't change by such a new arrangement, the azimuth or

along angle direction does double its DOF by the doubling
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Fig. 5-6. Correlation of the data and
its Fourier transform
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Dr =x,-x%, = y ¢ for small ¢

Fig. 5-7. Separability of azimuthal and range processing
at small angle variation ¢. (Target
coordinates fixed on paper)
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of its circumference and hence number of independent
samplings. This means twice (better) the azimuth resolu-
tion although the radial resolution remains the same.

This phenomena does not exist in one~dimensional radar
pulsing where the range data is the only information sought.
In that case the only purpose of the carrier frequency 1is
to carry a signal of certain bandwidth and it is the band-
width and not the carrier frequency which determines the
range resolution. However, in our 2-D radar system the
carrier frequency comes into the radar imaging equation
directly and manifests itself as a major azimuthal para-
meter. In terms of radar terminology, a raise in carrier
frequency increases the doppler rate and thus will widen
the potential azimuth bandwidth of the frequency spectrum
generated by a single target point. However in some
situations, e.g. the stripping mode of SAR in which the
antenna pattern width is inversely proportional to the
wavelength the two factors cancel, leaving the doppler
spectral width, and hence the system performance independent

of the carrier frequency. [5-2]

5.6 Actual Reconstruction Method

Physically the radar imaging system has lots of differ-
ences from the tomography projection system because of the
many widely different imaging characteristics. Some of the

differences have been described in the end of Section 5.4.
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In the radar imaging system range resolution is

obtained by the "timing"” of the signal return from the
target point. In RAT SCAT multiple frequency signature (MFS)
is used and the timing information is resolved by taking
Fourier transformation along the stepped frequencies.
Ideally, the relative motion between the target points and
the radar should be zero to obtain range resolution with

any high degree of precision desired. On the other hand,
the azimuthal resolution is introduced by the created
different doppler histories at different azimuthal points by
way of a relative motion between the target points and the
radar. The seemingly conflicting requirements are resolved
in the RAT SCAT system in which different frequency compo-
nents at an aspect angle 6 are obtained during which there
is no relative target motion. Azimuthal information is then
provided by the phase differences of the same frequency
components at different 6's due to the range change of
target points induced by the target rotation.

In Fig. 5-7 let (x ) and (x2,y2) be the coordinates

1'¥1
of the same point with the aspect angle difference being ¢.

Similar to Eg. (5-13) we have

X, xlcos¢+ylsin¢ Xy xzcos®-yzsin¢

or {5-21)

Yo = YlCOS¢—xlsin¢ Y1 yzcos¢+xzsin¢
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Thus the range of the point undergoes a change of

AT (X1 /Y X5 Y5) = Xp=Xy

xlcos¢+y151n¢>—xl

xl(cos¢-l)+ylsin¢ (5-22)

which creates different phse histories to each target
point in going from one radar coordinate (xl,yl) to the

other (x2,y2). In Eq. (5-22) if ¢ is small enough, then
cosd T 1 and Ar(xl,yl,xz,yz) = ylsin¢ T Yy (5-23)

which is independent of X, or the range. The phase
variation as a function of ¢ induced by r(¢) creates a dop-
pler frequency g% = y. Because different y are associated
with different doppler shifts, the azimuth targets can be
resolved by taking Fourier transforms on the data along
small azimuthal angles, as long as the data are taken from
appropriate range bins. Usually separability of azimuthal
and range processings are desired because of its high
efficiency in computation [5-13], in which the two process-
ings can even be interchanged if so desired. To insure

the separability range curvature* has to be avoided by
limiting Ar in [5-22] to be less than one range bin width
or max Ar<l range bin width. This amount to a coherence
aspect angle b<one range bin width in the target with

ncrmalized size. Since both the range and azimuth require

*The term "range curvature" in the subsequent chapters bears
the same meaning as "motion through resolution cells” in
(4-13].

110




Fourier transformation as explained, separability implies
using 2-D Fast Fourier Transformations (FFTs') which trans-
forms the data in frequency domain to the reflectivity
function in spatial domain.

Fig. 5-8 shows a section of data for such a small fan
angle ¢. Br is the range bandwidth with range freguency

step Afr and BZ and Bz are the minimum and maximum azimuth

1 2
bandwidths at fl and fl respectively, with azimuth frequen-
cies step Af and Af_ . Note that

z z
1 2
B, = M x Afr = f2—fl
B, =N  x Afz =N  x flAe (5-24)
1 1
B = N_ x Af = N_ x £_A®
z, a z, a 2

where A8 is the azimuth step angle in radian and Na is the
number of azimuth points coherently processed.

Discrete Fourier transfcorms on M number of data along
range frequency with frequency step Afr and bandwidth B
give the range profile with unambiguous spatial dimension

R and range bin width Ar where

- 1 -
R = iF (5-25)
r
and
! -
b= 5 (5-26)
r

Egs. (5-24) and (5-25) are dual relations of sampling

theorem. Similarly in the azimuth direction
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and

-

_ _ 1
Az) = 3 ’ bz, = 3

31 2,

where Zl,Z2 are the unambiguous spatial dimensions of the
Fourier transformed data along azimuth direction at the

lowest and highest range fregquency (i,e., fl and f2),

respectively and Az1 and A22 are the azimuth bin widths at

frequencies fl'f2 respectively. Note that Az1 ~ A22
if the 2-D FFT which is separable is valid and

or
Zl ~ Z2,
creates little image distortion.

In summary, the reasons for taking the 2-D FFT on small
angle data are:

1. The reflectivity function is a function of aspect

angle.

2. Satisfactory phase compensation for the propagation

between the radar and the target center is extremely diffi-
cult, if not impossible.

3. However, the reflectivity function can be assumed
constant over small aspect angle ¢ during which the azimuth
and range processing can be separated and FFT techniques
can be employed.

4. The shadowing effect can be reduced to a minimum by
adopting the technique of coherent processing over small

angles and then incoherent summing over large angles, as
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described in the next section.

5.7 Incoherent Summation of Different Looks

Coherent processing should be applied to only those
radar returns from target points of fixed reflectivity
during the imaging. As the azimuth aspect changes by more
than a certain amount, speckle and blocking effect change
the target reflectivity by so much that the data can no
longer be deemed as coherent. Coherent processing on the
data of a small aspect angle span gives the "look" of the
target from that particular angle and shows only those
target surfaces approximately normal to that particular
LOS. Those looks could be integrated incoherently to
enhance the final target image. The procedure will be

further explained in the following chapter.

5.8 Conclusions

This chapter presents the theory of a high resolution
radar imaging from both a radar systems viewpoint and a
degrees of freedom or numerical analysis viewpoint.
Similarity with the computer aided tomographic scanner
imaging technology is pointed ocut. However the differences
between the two systems are emphasized and a radar unique
reconstruction algorithm is developed for combined coherent
and noncoherent imaging. The actual reconstruction method
is presented which will be used in Chapter 6 on the data

obtained from the RAT-SCAT facility. The pictorial images
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resulting from the computational procedures as shown in
Chapter 6 are surprisingly recognizable and suggest that
these techniques may have some practical application in the

future.
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Chapter 6

EXPERIMENTAL RESULTS OF RADAR TURNTABLE IMAGING

6.1 Introduction

This chapter presents the experimental results of the
radar turntable imaging in Chapter 5. A complete sequence
of processing techniques is introduced starting with the
photographic presentation of the raw data. Explanations as
well as conjectures of the intermediate results are given
along the way towards the final images. Many processing
parameters are tested against the qualities of images
resulted.

Three aircraft targets are individually imaged using
actual data which are the complex returns (in-phases and
quadrature-phases) of the radar signals from the targets.
Two of them are model airplanes (F-102, F-5E) of reduced
sizes and the other is a full-sized real F-~-102 plane.
Experiments are done for two setups of the targets, i1.e.,
horizontal and vertical positions,resulting in azimuth and
vertical images, respectively. All notations bear the same

meanings as in Chapter 5.

6.2 1Imaging a Model F-102 Airplane

6.2.1. Physical properties of the imaging geometry
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A real F-102 has an overall length and a wing-to-wing
width approximately 68 ft. and 38 ft. respectively. The
model F-102 is 0.29 times the real size. Other numerical
values used in the experiments are listed in Table 6-1. The
imaging geometry is depicted in Fig. 5-1. The bandwidth in
the range direction is approximately 870 MHz which has an

ideal range resolution P

8
_ _C ~ 9.84x107ft/sec ~ -
P = 2%B_ = = 0.57 ft. (6-1)

2x870x10° /sec

The frequency step Afr = 3.4 MHz corresponds to an unambi-

guous range interval I,

I_= = 132 ft. (6-2)

which is approximately 6.7 times the largest dimension of

the target. This means that the data has been oversampled
by a factor of 6.7 in the MFS frequency domain. The same

conclusion could also be reached from the DOF analysis 1in

the previous chapter by applying Eg. (5-12). The step

frequencies in the azimuth direction are between

&>
m
Q
Hh
X
&
<D
1

31.87 MHz (6-3)
to

>3
n
X
-
x
&
D
[

36.91 MHz (6-4)

with corresponding unambiguous intervals 12.9 ft. and
14.1 ft. Refer to Fig. 5-8., The unambiguous azimuth inter-
vals are longer than the target dimension, which means that

AB 0.2° is adequate to sample the data in the azimuth
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Yo 1652 ft.
Yl : 1112 ft.
Y, ¢ 540 f¢t,.
f . : 9.13 GHz
f : 10 GHz
Afr : 3.4 MHz
256

20 : 0.2° ™ 0.0035 rad.

Table 6-1. Model F-102 imaging parameters
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direction. However, the sampling is barely dense enough
because the unambiguous interval is only slightly larger

than the target size.

6.2.2 Socurcc data from model F-102 airplane

The source data, which are the returns of each single
frequency waveform at each particular azimuth angle of the
target, are complex numbers consisting of both the in-phase
and quadrature-phase components, which can be transformed
into polar coordinates to become the magnitude and phase
components. Fig. 6-1 shows the phase and square root of the
magnitude of the source data from a horizontally mounted
model F-102 target. They are 256 data points along lines of
constant azimuth angle and approximately 900 points along
the azimuth direction from 0° to 180° of the target orien- H
tation. Note that only 180° of data is sufficient for the

whole target reconstruction since the target was presumed

g

symmetric horizontally. The square rooting 1s necessary to
reduce the gigantic dynamic range of the radar cross section
(RCS) of an airplane as a function of the aspect angle or
radar frequency [6-1], at wavelengths (= 1.5 cm in our case)
much smaller than the average curvature of the airplane.
Note that at approximately 60° of the data there were strong

returns probably due to the strong reflectivities of the

delta wing structure. Similar phenomenon happened close to

90° or broadside position where the fuselage served as
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strong reflectors. Starting from approximately 120O the
gain of the radar system seemed raised resulting in higher
brightness of the magnitude part of the photographs. The
phase part of the source data are linearly coded from -7 to
m for the photograph. The data is in the frequency domain
in both the range and the azimuth dimensions. Because of

the linear phase due to v Y, as explained in Chanter 5

1”072
the oversampling phenomenon along the range is not very
obvious. It turns out, as shown in Fig. 6-2, that this
linear phase contributes a fixed amount of shift in the

spatial domain. The highly structured phases are probably

a result of a large signal noise ratio of the radar system.

6.2.3 Fourier transforming in the range direction

Because the source data was in two-dimensional frequ-
ency domain, some form of two-dimensional transformation
was necessary to bring the data into the spatial domain. As
explained in Chapter 5, we segment the data according to
their azimuth angle into sectors and then apply 2-D Fourier
transformations on each sector which is approximately
rectangular or separable. Fourier transforming the data
along a fixed aspect angle gives the "projections" of the
target onto that line of sight (LOS) at that angle. If the
processing is assumed separable between the range and the
azimuth then the magnitude parts of the projections provide

the range information (range profiles) while the phase
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parts, when processed with the phases at neighbuoring asrect
angles, will resolve the azimuth informaticn. Toward this
assumption our source data was Fourier transformed along

the range direction for each azimuth angle and the phase

and the magnitude parts of the resultant aa*ta are then 3hown
in Fig. 6-2. ©Note that now the data is in =zpatial doma’'n
along the range and still in frequency domain along the
azimuth. Again for a better presentation square rooting is
applied to the magnitude parts, which assume a dynamic range
of more than 30 dB. ThLe magnitude parts clearly show the
location of the target which is off the center of the pic-

ture because of the linear phase and the target occupies

1
6.7

sampling in the range frequency domain of the source data.

of the whole range dimension as a result of the over-

Note the strong returns curving in and out in the figure
along the azimuth angle. The bright lines in the center of
the magnitude pictures account for the DC bias of the

radar receiver and processing unit. The faint mirror

images of the target with respect to the central DC line are
due to the imbalance of the in-phase and quadratic-phase
circuitry of the radar system. To show this, let Dy and Dq
be the gains of in-phase and quadrature phase circuitries

of the mixer of the radar receiver. From Eq. (5~-10), the

actual complex data becomes
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I(i,k)+je(i,k)

a Yy“YqoY
2x 1 '0 72
Dy f g(x,8,) [cos(znfk—é—+2nfk———~—c—-—):l dx

-a

a Y1=Yqo~Y
: . 2x 1 70 "2
+ qujf g(x,ei) [51n(%nfk7;+2nfk———7;_—_)]dx

-a

2f Y=Yy~
k . 1 '0 "2
Di G(——c—,ei)exp(jZTTfk-—-—-—-——c )
(Dy-DI[ (3£ Y1=Y =Y 2f
g 1 k . 1 0 "2 * k
+ — . _]- e
3 [G( S ,el)exp(jznfk = G ( c ,ei).
Y17Ya"Y
. 1 '0 "2
exp(—;ank———c——-—)] (6-5)

a
G(x,i) & f g (x,i)exp (j2rkx)dx (6-6)

-a

where

The imbalance of the second term in Eq. (6-5) causes the
mirror images in Fig. 6-2. It is reasoned that in

Fig. 6~2(a) the strong returns closest to the radar (which
is to the right of the photographs) are due to the nose and
those in Fig. 6-2(c) are due to the tail of the target. In
Fig. 6-2(a) observe a bright tiny spot very close to the
nose line at approximately 60° azimuth. Again, it 1is due to
the returns from the delta wing.

The phase figures 6-2(b) and (d) are correlated with
their counterparts (a) and (c) in that prominant structures
exist only in those regions where there are strong magni-
tudes due to target points of high reflectivity. 1In other

regions the phases look random and noise like.
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There arc two ways to remove the redundancy of tle
data i1n the range dimension. One 13 to chocszse a larzer
frequency step f from the DOF analvsis in Tharvier 5 to keep

only minimum freguency components required ir the source

data. The other is to retain in the spatial dcmain the
portion containing the target. ~“ue latter onrtion has the
advantage of offering a higher S/N in the reduced data. 1In

our expceriments we always keep 64 range bins in the spatial
domain which gives a data reduction of 4:1. The windowing
of the data is visually determined from Fig. 6-2{a) and (c).
Fine tuning of the target center is necessary because of the
unavailability or uncertainty of YO'Yl and Y- This will be

discussed in subsection 6.2.5.

6.2.4 Azimuth processing

If the reconstruction, which is basically a two-
dimensional transformation as explained before, can be
assumed separable, then since the range transformation
has been accomplished in the previous subsection, only
azimuth transformation remains to be done. In our case of
RAT SCAT imaging, separability means no range curvature or
range bin moving problems induced by the rotation of the
target necessary for azimuth resolution. Since the maximal
radial extent of the target is assumed to be no more than
10 feet, the range change will be less than 10-¢feet for all

the target points when the target undergoes a rotation of
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¢ radians assumed so small that tany = 3. If the range

walking is to be prohibited at all, then

10x¢ < p_ = 0.52 ft. (6-7)
or

o]

¢ < 3 (6-8)

However, it is sometimes desirable to process coherent
intervals larger than the maximum interval without range
walking even if separable processing is assumed. This has
the advantage of a better azimuth resolution, although it
will be subjected to some blurring due to the range walking
introduced. The quantitative analysis of the interaction
between the range walking and azimuth bandwidth will not be
pursued here. It is pointed out, however, that if one were
willing to use a non-separate model to process the data,
then as long as the target reflectivity function could be
reasonably assumed to be constant within the coherent azi-
muth interval, the interval processed could be as large as
possible without actually suffering from range walking
problem. This approach would yield optimum DOF of the final
images and hence better resolutions. It would, of course,
demand much more computational requirement as described in
Chapter 2 and was not adopted in our experiments.

In our experiments the data in the ring area in
Fig. 5-3 was divided into possibly overlapped azimuthal

sectors. Each sector is individually Fourier transformed
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along azimuth (recall we have performed range Fourier
transformation in 6€.2.3) and only the magnitude part which
is of our interest is kept to give target "looks" at the

respective aspect angles. Figure 6-3(a) shows the image

0] o]

looks centered at OO, 307, 600, 120° and 150° with the
azimuthal coherent interval being 3.2° or 16 points.
Figure 6-3(b) and 6-3(c) are looks at the same angle with

© and 12.8° coherent intervals, respectively. Note the

6.4
different relative scales between azimuth and range in
Fig. 6-3{a), (b) and (:) in which figure 6-3(a) and 6-3(b)
have been two-dimensionally linearly interpolated at a
factor of 4 and 2 respectively to fully utilize the dimen-
sion of the displaying monitor from which all of our 2-D
images were shot. 1In all the image looks of Fig. 6-3 the
radar is to the right. Salient features of the airplane,
e.g., the nose, the tail, the delta wing and the fuselage
can be readily identified at appropriate looks. For
example, at 0° the target is sitting with nose on the radar.
The images, which show reflectivities of the target, have a
very large dynamic range of brightness and the sidelobe
effects are very serious which manifest themselves as
cross-like structures running horizontally.and vertically,
corresponding to the two dimensions of processing. Theore-
tically, images without sidelobes could be obtained only
from all of the data points in the whole frequency domain

which extends from -« to « in both dimensions. 1In reality
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our data for each look comes only from an approximately
rectangular area of the frequency space. This means,
equivalently, a rectangular function has been multiplied
with the data on the otherwise infinitely-extended data
space. In the spatial domain the effect is as if the ideal
images had been convolved with the Fourier transformation
of a 2-D rectangular function, which is a sinc function.
The sinc function has a first sidelobe of 13.4 dB below
the main lobe level. Compared to the 30 dB dynamic range
of the strength of the target reflectivities, the -13.4 dB
sidelobe could completely mask the weak signals close to the
strong ones. To alleviate the sidelobe problem, a well-
shaped function should be multiplied to the data before
Fourier transformation is taken [6-2]. Figure 6-4 shows the
image looks when a two-dimensional Hanning window, which has
a first sidelobe less than -30 dB, is incorporated into the
data. Comparing Fig. 6-3(b) and Fig. 6-4 it is seen that
the sidelobes have been reduced and the main lobe width
slightly increased as predicted in [6-2].

To verify that the Hanning windowed Fourier transforma-
tion is a valid image reconstruction technigue, Fig. 6-5,
a sequence of 28 abutting looks with each look occupying

6.4°

of data azimuthally, is presented. The rotation of the
fuselage is very clear as it goes from 0° to 180” in the
consecutive looks. 1In all the following experiments the

Hanning window is always incorporated in the FFT's.
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6.2.5 Incoherent summation of the looks

Because of the specularity of the target, each look in
Fig. 6-5 shows only those target points which contribute
coherently to the radar returns at the particular aspect
angle. It is reasoned that a suitable combination of
different looks should give a much enhanced overall target
image. Indeed, we used the following procedure to accom-
plish this:

(1) determine the center of rotation for each look
(and hence all of the looks since the distance between the
radar and the rotation center is fixed upon the data
collecting).

(2) rotate each look according to their respective
aspect angle.

(3) incoherently sum the rotated and registered looks
i.e. only the magnitude part of each look is used in the
summation.

An additional advantage of the incoherent summation is the
reduction of the "speckles" due to the phase errors in cohe-
rent systems.

In the case of "azimuth imaging”, (i.e. horizontal
setup of target), the images obtained from 180° orientation
are always flipped for the other 180° and added for
symmetry after the incoherent summation.

There are three varameters independently "tuned" to

reach final summed images:
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(1} the coherence interval in the azimuth direction.
(2) the amount of sector overlapping for adjacent
looks.
(3) the coeuver of rotation assumed in all looks.
Each of the above parameters is tested in our experiments to
show how they affect the image quality.
Figure 6~6 through 6-8 test the parameters (1) and

(2). Overlapping factors of abutting, 50% overlap and 90%

° and 12.8O are

overlap and coherence intervals nf 3.20, 6.4
adopted in these figures. Figure ¢-9 test different rotation
centers (different range bins) when the other parameters

are fixed. The image quality seems to be relatively insen-
sitive to the rotation center of each look compared to the
case of F-5E imaging to be discussed later. Generally
speaking, the experimental results show considerable
improvement over the single-look images and clearly show the

outline of the characteristic delta wing of the F-102

aircraft.

6.2.6 Imaging the vertical model F-102

The imaging principle of the RAT SCAT is that the
information of the target reflectivity on the plane of the
rotation can be resolved. 1In other words the images should
outline the vertical projections of the target on the
ground. Thus by using the data gathered from the target

airplanes which sat vertically (i.e., roll angle = 900) one
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a) Abutting b) 50% overlanping

c) 90° overlapping

Fig. 6-6, Incoherently ntegrated azimuth images o
mode ] l"—l'!l?v:\'lth different overlapning
factors
aspect coherence intervals 3 . -
centers of rotation = range bin number 183
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Fig. 6-7. Counterparts of Fig. 6-6 with
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6.4° aspect coherence intervals.
(all other parameters same as Fig.




a) Abutting b) 50° overlapning

c) 90 overlapping

Fig. 6-8. Coun(gor')arts of Figs. 6-6 and 6-7 with
12.8° aspect coherence 1ntervals. (all
other parameters same as Figs. 6-6 and

6-7)




a) Centered at range bin b) Centered at range bin
187 188

c) Centered at range bin 189

Fig. 6-9. Tncoherently intearated azimuth imaages of model
F-102 with different centers of rotation
aspect coherence intervals 6. 4°
overlapping factor: abutting




should come up with the "side view" or elevation image of
the airplane. The processing principles are much the same
as described before. However in this setup the radar images
are not symmetric anymore so the data from the full 360°
rotation is necessary for our reconstruction algorithm of
incoherently summing different looks.

Figure 6-10 shows the result of the model F-102 from
the vertical setup. The azimuth coherence intervals were
6.4° , the looks were abutting and the center of rotation

was at range bin number 178.

6.3 Imaging the Model F-5E

The same processing techniques were applied to an F-5E
model airplane which has a different shape and size from
those of the F-102. The size of the model target is 0.30
times that of an actual plane which is approximately 48 feet
in length and 26 feet from wing tip to wing tip. Y1 and Yo
were unknown constants while other parameters were the same
as those in the case of the model F-102.

In the following experiments the target was assumed in

° roll) unless otherwise stated.

a horizontal position {0
Figure 6-11 shows a resultant sequence of 14 looks with

abutting 6.4° coherence intervals, covering 0° to 90°

aspect angles. Note the rotation of the fuselage along

the consecutive looks. Again the radar was to the right for

each look so the right wingtip can be identified in the
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a) Abutting

b) 50% overlapping 1

Fig. 6-10. Elevation images of model F-102 with
different overlapping facgors- aspect

coherence intervals: 6.4
centers of rotation: range bin number
188 140




Fig. 6-11. Aosequ(‘ngo of 14 azimuth lonks from
07 to 907 aspect angles for model FP-5R




last few looks in which the target was approximately

broadsided to the radar. The other 14 looks covering 90°
through 180° aspect angles, which are not shown here, have
the corresponding orientation of the previous looks. These

28 looks were incoherently combined and flipped for symmetry

with the rotation center being at range bin number 177.25
to become Fig. 6-12. Note the protrudent wings of this
aircraft as opposed to the delta wings of an F-102. As
mentioned before, the quality of the image for the model
F-5E seems more sensitive to the rotation centered assumed;
J at approximately 4 bins (center at #18l) off the true
center the target image looks like a big blub as in
Fig. 6-13. Figure 6~14 is a fine tuning of the rotation
center at 0.25 range bin resolution.
Figure 6-15 shows the effect of the overlapping factor

i

|

l between adjacent looks.

l Figure 6-16 are the elevation images of the target

with a vertical position of the target. The images are

centered at range bin number 178 with different amounts of

overlapping.

6.4 Comparison Between the Model F-10. and F-5E Images

Figure 6-17 presents a summary of photograrhs for the !
model F-102 and model F-5E airframes for both azimuth and
elevation plots. The photographs show the distinct shapes

of the wings of the two aircraft. Except for a slight
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Fig. 6-12. Model F-5E azimuth imagg aspect
coherence intervals 3.2
overlapping factor: abutting
center of rotation: range bin 177.25

Fig. 6-13. Same as Fig. 6-12 except:
center of rotation: range bin 181
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a) Centered at range bin b) Centered at range bin
177 177.25

c) Centered at range bin 177.5

Fig. 6-14. Fine tuning of the rotation
cen-er for model F-58 azimuth
images
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a) 502 overlapping

b) Abutting

Fig. 6-16. Model F-5E elevation imaages with
different overlapping factors.
aspect coherence intervals 6.4
centers of rotation: range bin 178
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a) F-102 azimuth image b) F-102 elevation image
(28 looks) (56 looks) (1/2 scale)

T ——

c) F=5E azimuth image d) F-5E elevation image
(28 looks) (56 looks) (1/2 scale)

Fig. 6-17. Model F-102 and modvl(Y—GH azimuth and
elevation images (6.4  coherence)
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difference of the physical scales of these models (0.29 vs
0.30) all other parameters are fixed for these images.
Consequently, it is clear that the F-5E is a smaller air-
craft and naturally has a different azimuth and elevation

projection than does the F-102.

6.5 1Imaging a Real F-102 Airplane

The third target imaged was a full-sized real F-102

airplane. In this case, Yo £ and Afr were changed to

min
5,552 ft., 2,744 MHz and 1,000 kHz, respectively to account
for the large size of the real plane. Yy and Y, were un-

known constants and other parameters remained the same as in

the previous cases. From the parameters it is found that

the unambiguous range interval Ir is

- c ~
Ir = zfor = 449 ft.

and the range bandwidth is

Br = 256 x 1,000 kHz = 256 MHz

which ha. an ideal range resolution of

= < =
o, = 75, 1.76 ft.

The data ring in Fig. 5-3 has a smaller radius and
width, hence smaller area than in the cases of model air-
craft. However, because of the larger size of the target,

the correlation field in the data space has a smaller
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"effective" autocorrelation region and thus the DOF in the
small data ring is approximately the same as in the model

alrplane cases because of the cancellation of the scaling

factors. Thus it is exvected that the quality of the target

images should be about the same. Roughly speaking, a target

of larger spatial extent needs a narrower sampling interval
in the frequency data domain to avoid any aliasing effect.
Consequently the area in the sampled data domain would be
smaller if the same number (DOF) of independent data points
which determines the quality of the final images is to be
present.

Figure 6-18 presents some photographs of the real
F-102 radar images at different rotation centers. As
predicted, the images qualities are about the same as those
in Fig. 6-9. Again, here the delta wing structure 1is

clearly visible,

6.6 Summary and Conclusions

Reconstruction of the reflectivity function of three
airplanes is attempted experimentally in this chapter.
Three major parameters of the reconstruction algorithms
proposed in Chapter 5 are tested. They are: aspect
coherence interval (the optimal value of which is deter-
mined by the interaction between the azimuth resolution and
the range walking when separable processing is assumed),

factor of overlapping between adjacent looks, and location
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a) Centered at range bin b) Centered at range
229 230
c) Centered at range bin 231
Fig. 6-18. Images of real F-102 with different
of rotation;

centers
aspect coherence intervals 6.4
overlappina factor: abuttina




of the rotation center which has a "focusing" effect. As it
turns out, some targets are sensitive to some of the para-
meters while insensitive to others. It is very difficult

to predict what parameters should be used in a given

imaging condition. For our purpose of obtaining the "best"
images judged by human perception, trial and error seems

to be the only feasible way at the present time.

In the final stage of our experiments to take pictures
off the TV monitor for display, most factors of the shooting
conditions were well countrolled and calibrated. 1In fact,
most of our images were taken from the same camera at
fixed focal length, shutter speed and aperture. The
brightness and the contrast on the monitor were fixed within
the accuracy of the monitor operation. The background
intensity has always been kept as low as possible. The
major nonuniformity of the pictures so presented, if any,
is conjectured due mainly to the films because of the
film grain noise and possible difference in the sensitivity

to the exposure.
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Chapter 7

RADAR IMAGING WITH TARGET MOTION

7.1 Introduction

Imaging from ground-based (stationary) radars of
moving targets is often possible by utilizing a "synthetic
aperture" developed from the target motion itself, or
sometimes called "inverse SAR" for the obvious reason.
This chapter addresses the theory about a ground-based
radar imaging system in which a target aircraft is imaged
by its own motion induced doppler. The aircraft is imaged
from both a straight flight and a turn with recognizable
results. Analysis shows that two phase components exist
in the radar return, one being gross velocity induced, the
other being interscatterer interference within the target
itself. The former phase must be removed prior to imaging
and techniques are developed for this task. Preprocessing,
range curvature, range alignment, motion compensation, and

presuming are all addressed in this chapter.

7.2 Radar Imaging Egquations

Figure 7-1 shows the flight path of a target aircraft
which has an overall length of approximately 80 feet and

wing span of about 70 feet. Two portions of the flight path
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Fig. 7-2. Flight geometry of first inteval
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along which the data were obtained for imaging will be
called interval 1 and interval 2, as shown in Fig. 7-1.
The first interval is when the airplane was flying straight,

at angles approximately 30° to 15° off broadwide, whereby

the second interval occurs when the airplane was making a

standard left turn.

7.2.1 First interval

Figure 7-2 is a reproduction o~ the first interval of
Fig. 7-1. The aspect angle of the target center viewed
from the radar undergoes a change ¢, which in this case is
the same as the change of the aspect angle of the target
body with respect to the radar line of sight (LOS) because
of the straight flight. 1In fact, it can be shown that it
is the latter, and not the former angle change, which
provides the azimuthal information. For this reason, we
redraw Fig. 7-2 using the target center as the origin of
the coordinate system. This becomes Fig. 7-3. Observe a
close resemblance to the rotational geometry of a turntable
imaging system as in chapters 5 and 6 [7-1].

In Fig. 7-3 let coordinates (£,n) be fixed on the
target and (x,y) be rotating with the radar and with the
same origin 0 as (&£,n). ©Let the angle from axes § to x be

6. Then we have

]
]

X XCcosf-ysind
or (7-1)

xsinf+ycosH

sl

£cosf+nsind

-£sinf+ncosH n

~
1]
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(x,y)irotating with radar '

y

Fig. 7-3. Radar trajectory relative to target
center in first interval
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Let (xr,yr) or (gr,nr) be the coordinates of the radar and
(xa,ya) or (ga,na) be those of any target point. Note that
Yy = 0 identically. Let gro be the ¢ coordinate of the
radar had the airplane flown to the position broadwide to

. A
the radar and define R, = Iarol. Let s(xa,ya,xr,yr) be the

distance between (xa,ya) and (xr,yr). Then
- —x )2 -v 12|%
S(X /Y sX,0Y,) = [(xa x )"+ (y -y.) ]
2_ 2. 2\%
(xr 2xrxa+xa+ya)

= (xi-Zxrxa)lz (7-2)

x—
r X

1’
~
o

= X_~-X
r a

for target distance large enough such that x§+y§ << xi.

Note that X, and x, are both functions of time t.
As the flight goes by, the change in s(xa,ya,xr,yr)

induces a Doppler frequency of the target point at (xa,ya)

dx dx
=2ds _ 2| _r __a -
Fa(xq0Ya) = X 3 = (dt dt) (7-3)
where A is the wavelength of the transmitted signals.
Equation (7-3) has a very interesting interpretation.

The Doppler frequency of the target point (xa,ya) is

comprised of two part:

lie>
>N

dxr dxa
g6 when 4t - 0], due to the trajectory of
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the target center, and

\c>

2 dxa dxr
fd2 = ¥ ac when 3 = 0), due to the relative motion

" of the target inter-scatterer points with respect to the

target center. Recall that in the last two chapters the
dx
term —-— was zero because the target was rotating on

at gx
table and hence X, was a constant. Also in RAT SCAT ?ﬂ?
is a constant because the rotation rate, or the step
increment in aspect angle of the target is a constant. If
we are to apply the technigques developed in turntable ima-

ging to the underlying system, these two differences have

to be compensated first.

Because '
02 n4
_ 2, 2% 1 r 1 'r e, _
X, = (Ro+nr> = Royts == 3 + (7-4)
(o) R
o
3
éj(_{:?f_d_n_r-}_n_réi{.;. (7-5)
dt R dt 2 R3 dat
o)

Assuming a constant flight speed v, from Fig. 7-3 we

dnr
have 3 = -v and hence
dx n_v
r _ _ r 1 v 3 _ . ~
dat R Y23 (7-6)
o RO

Thus the Doppler frequency induced by X, is a linear
function of n. plus higher order terms and the phases of
the return due to X are quadratic plus other higher order
terms, the first two being of opposite signs. It is clear

from Eq. (7-6) that as the aircraft flies closer to being
158




broadside or normal to the radar LOS corresponding to a

decreasing Npr the linear relation between fd and n,. is
1
more precise. In that situation the "rate" in Doppler

frequency
2 2 2
gdxr:-z(ﬁ_in_rv_ (7-7)
A dtz A Ro 2R3
o
becomes larger and larger and converges to a constant pro-
2
portional to %—, which in terms of signal processing is a
(e}

linear FM rate.

Rough”y speaking, the history of X, does not provide

useful imaging information but only serves as a carrier to
carry i;? which contributes to coherent imaging ability by
providing a wide spectral bandwidth inherent in a linear FM
signal. Upon reception, X, phases should be removed first

(sometimes called de-chirping or motion compensation) to

ease the processing afterwards to extract the relevant

dx
azimuthal phase information in ?ﬂ§. Schemes to remove these
phases will be described in Section 7-5. We now analyze the

dx
?ﬁ? which does not exist in RAT SCAT.

Since X, = Eacose+na51n6,

higher order effects of

dx
2 ""a _ 2, . dse
XAt - x(ttasindingcostigy
2y
_ a db _
=X (7-8)
n n
r -1 r
Also tanf = T or 6 = tan e

l:‘O Ero
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o]

¥ . (-v)
dt 2 13 M

n r

1+ —3% °

€
r
o
(7-9)
= . 1

Ro n2

1+ —%
R
o}
Agai das . . .
gain, F¢ approaches maximum as the airplane flies
normal (nr=0) to the radar. 1In that case %9 = 2 and
t Ro
2y
= a v -
fd2 = % R (7-10)
o

This means that at positions close to broadside the doppler
frequency of a single target point at (xa,ya) due to change
in Xy is proportional to Ya and is independent of X, In
this situation there is a one-dimensional (along ya) Fourier
transform relation between the returns and the target

reflectivities. Over a wide range of the flight path, the

factor —3;7 could change so much as to affect the perfor-

n
1+—=

2
R
o
mance of the Fourier transform. However, over a small

interval where —J;I is approximately constant and can thus
n

r
1+;7
(o]

be replaced by a nominal value, Fourier transform techniques
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can still be avplied. Thus if one does not Ccurwensate for
the above abnormality factor, there is a tradeoff bhetwecen
the resolution (determined by the aspect anygle swvan coche-~
rently processed) and the fidelity of a Fourier transform.
One way to compensate for this 1s to interwoiate the azi-
muthal samples to obtain the data uniformly swaced in the
azimuthal frequency domain. Another possibility is to use
a variable PRF which follows g% or the rate of rotation of
the target as seen from the radar. Note from Eg. (7-10)
that an increase in v, or a decrease in 3 or Ro will
increase the obtainable resolution accumnanied with a
higher minimum PRF reoruired. The A -dependence will be
further explained later. The "speckles" 0f the final images
from the coherent vrocessing could be removed somewhat by
incoherently averaging different coherent 1looks, as 1in

Chapters 5 and 6.

7.2.2 Second interval

The flight path of the second irt+terv-. .s depicted in
Fig. 7-4 in which (£',n') are coordinates centered and fixed
on the target and (x,y) are fixed on the radar with the
origin o being the center of the turn. Let (7,n) be the
coordinates parallel to (5',n'), with origin at o. Again

let the coordinates of the radar and the target noints have

subscripts r and a, respectively. Because

¢

1]

xcosi-ysin (7-11)

"

i

XSint+ycos:
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E=¢g'+r
and { ° , where ro is the radius of the turn, we have
n=n'
g'+ro = xcosf-ysinb
n' = xsinf+ycosb
or (7-12)
£' = xcose-ysine-rO

U

n' xsinb+ycosb

which is the coordinate transformation relation between
(¢',n') and (x,vy).
The distance between a target point at (Ea,na) and the

radar at (£r,nr) is
s(E 06 m) = (6, -6 )%+ (n_-n ) %1%

2, 2_ _ 2. 2%
[€r+nr 288, 2nanr+€a+na]

n

(e2+n2-2(5 g _+n_n )% (7-13)

= (§§+n

where RO & (x“+y~)? is the distance between the center of
the turn and the radar. 1In Eq. (7-13) we have assumed that
the radius of the turn is small compared to RO. The Doppler

frequency of the point target at (Ea,na) is then
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_n i At i

£.(c Ny = 2 dS(Eama,Er,nr)
d'~a’'a A dt
_ 2 ds a8
= X d8 at (7-14)
where
ds _ 1 d[&a(xrcose-yrsine)+na(xrsine+yrcose)]
4de Ro de
=L (=& n_+& n_) (7-15)
Ro ar ca'r
Let
(Ea,na) = ra(cosea,sinea)
and
(Er,nr) = rr(coser,siner) = Ro (coser,sinsr)

where r and © are the polar coordinates with respect to the

coordinates ({,n) with origin at 0. Then

o}

s _ 1 . B _ e _ _
= = ﬁ; ry Rosz.n(ea er) =r, 51n(9a er) (7-16)

e}

Equation (7-15), which assumes that r, << Ro as in

Eg. (7-13), has the following interpretation: %g is propor-

tional to Lyr the radial distance of the target point from
origin 0 and is independnent of 6, modulated by a sinusoidal
function of ea-er. While ea is independent of ¢, er is a
linear function of 6. Hence each target point has a sinu-
soidal range history. In the extreme case when r, = 0, this

would be the same as a turntable geometry. The effect of

er is to make the family of constant doppler lines rotated
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by an angle er. Note that ea = 0 for the target center and

mlm
@i

= -r051ner (7~17)

is the range velocity of the target center. Obviously
ds
a6
positions and is maximum in absolute value corresponding to

= 0 at 6, = 0° and 180° corresponding to broadside

head-on or tail-on positions.

In the case r, is not small compared to Ro one can
still, in principle, decompose s(Ea,na,gr,nr) into two parts,
one consisting of the pure target center motion and the
other a rotating of the target as seen from the radar, to
separate the relevant imaging information from the irrele-
vant trajectory information using the precise coordinate
relation in Eq. (7-12). However, derivation of the exact
expression is very complicated and tedious so we decided not
to elaborate. The comment that is necessary is that the
effective target rotation rate which determines the azimuth
resolution is the sum of the asvect rate due to the turn
itself (thus is uniform) and the aspect angle rate of the
aircraft center as seen from the radar. If the maximum rate
of target center aspect change which occurs at broadside is
much smaller than the uniform turn rate , the effective
aspect angle rate can be approximated by a constant, assum-
ing constant radius and velocity of the turn.

As in Interval 1, before applying a Fourier transform
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to the data returns with small aspect angle change*, the
motion of the center of target, which is much more compli-
cated in interval 2, has to be compensated. This will be

discussed in subsequent sections.

7.3 Preprocessing

For most practical purposes, radar imaging systems
which determine the relation between the data returns and
the reflectivities of the target can be considered linear
[(7-2] and the system classification method developed in
Chapter 2 [7-4] can be used to decide ways to reconstruct
the reflectivities directly from the raw data. This situa-
tion is depicted in Fig. 7-5. The data return g(x,y) is a
linear transformation of target reflectivity function f{(f,n)
through the radar signal radiation and the echo reception.
For ease of presentation we will assume that both g and £
in Fig. 7-5 are discrete so that the system can be repre-
sented by a matrix [H] and g and f by vectors as in
Chapter 2. Depending on the waveforms of transmitted
signals, (e.g., short pulse, linear FM pulse, or step-
frequency waveforms) and the imaging geometries (e.g.,
shape and size of target, direction of relative motion,
resolution required, etc.), the radar imaging systems
represent a wide spectrum of the cases in [7-4]. Once the

relation [H] between the reflectivity and data is

*
Assuming no range curvature problem, as discussed later.
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(precisely) decided by the flight or radar data, a straight-
forward reconstruction of f and g can be achieved by

applying the pseudoinverse of [H] to g yielding a minimum

square error reconstruction. Methods of taking (H]  are

readily provided by each of the nine cases in Chaoter 2.
The above reconstruction scheme, although straight-

forward in theory, usually involves a great deal of compu-

tation because of the complexity of [H]. 1In the worst

case, one would expect to resort to a full singular value
decomposition (SVD) to find [H]-l. Certainly a decompo-
sition of [H] such that the structure of the imaging geome-
try can be better utilized would warrant the efforts in
many cases.

A perceivable way to accomplish this is to do some
preprocessing upon the raw data such that the resultant
data has a much simplified relation to the reflectivity
than the raw data itself. Diagrammatically, [H] can be
replaced by a cascaded system of [HI] and [H2] as in
Fig. 7-6 or Fig. 2-2(d) and f can be estimated by multiply-

1 1

ing [H2]_ , followed by [Hll- , to g with the hope that

[Hl] would be so simplified in structure or so small in

size compared to [H] that the extra effort on obtaining

2]~l would be warranted. For this purpose [Hz]“l is
-1

called preprocessing. Examples of [H2] are: range

(H

alignment, presumming, de-chirping, and general motion

compensation. Some of them will be discussed in the
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target reflectivity radar return

linear
£OE N ——— radar ———— g (x,y)
system [H]
!
g =1[H] £

[H]: Point spread function matrix (PSF)
[H][H]t: correlation matrix

- determines systems degrees of
freedom (DOF).

Fig. 7-5. Linear radar imaging system

target
reflectivity radar return

£0E, M——) [H,] [#,] f———> g(x,y)

[Hzl'l: Preprocessing

- Range alignment

Range curvature elimination

Motion Compensation
- Presuming

[Hll-lz Ideally a Fourier transform

Fig. 7-6. Decomposition of [H] in Fig. 7-5
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following sections.

7.4 Range Curvature and Range Bin Alignment

In general, the radar return of the signal pulse from
the target provides the range information while the history
of the returns along some range bin provide azimuthal
information. These two sources of information could have
been coupled such that a separable or even separate pro-
cessing [7-4] would not be adequate to recover the infor-
mation to the extent of accuracy one pursues. There are two
major sources of non-separability in the radar imaging
system: range curvature and range misalignment. We will
describe the phenomena and propose methods to avoid or

correct them.

7.4.1 Range curvature

A single radar pulse return contains the information
about the surfaces or lines whose points are equi-distant
from the radar transmitter or receiver. These surfaces
or lines can be resolved by the timing (for short pulse) or
range compression (for long duration linear FM-like pulse)
or even synthetic range profiles (for MFS pulses) tech-
niques. Since the range direction has been compressed and
resolved in our source data, the simplest way to resolve
the azimuth would be to do one-dimensional processing along
cross range direction. This requires that each particular

point has contribution to only those range bins which are
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aligned for azimuthal processing. Such is the case for low

or medium resolution SAR imaging with aligned returns. As
the resolution requirement becomes greater and greater one
is usually forced to reduce the range bin width and/or to
increase the azimuthal interval over which the data are to
be processed coherently. Both of these would eventually
create range curvature problem since the surfaces of
constant range as mapped on the target move further away
as the relative motion between the radar and the target
continues.

There are two effects as one increases the azimuthal
coherence interval: increased bandwidth and range curvature.
In addition, the amount of computation increases with the
signal bandwidth. Assuming separable processing there is a
tradeoff as to how far one should increase the coherence
interval without too serious a range curvature problem.
There have been few quantitative criteria proposed for
optimizing this tradeoff, especially when the computational
factor is also considered.

It is, however, much easier to find the critical
condition under which the range curvature starts to occur.
This is whenever any target point of interest has a range
variation of more than, say, 1 range bin width, so that
the point has contribution to more than 1 range bin. This
condition can be derived from the geometry of imaging, as in

Chapters 5 and 6.
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Since range curvature problems are introduced by
crossing the range bins, ideally one can avoid it by
increasing the range bin width. This means sacrificing
range resolution for the azimuthal resolution in the case of
separable processing. It is not true, though, that the
range curvature limits the width of coherent azimuth
processing available. 1In fact, in the range curvature
situation one can do some limited compensation by the
techniques described in [(7-5,7-6] or even full compensation
by resorting to a non-separable model for the imaging
system [7-4] and relying on singular value decomposition
(SVD) technigques. However, all of our experiments in the
following chapter assume separable processing for ease of

computation and implementation.

7.4.2 Range alignment

In addition to the range curvature, there is another
problem which hinders the separability of the processing:
range misalignment. As described before, azimuthal
processing must operate upon the returns from target
points at equal range. Thus precise timing or other
schemes on returns of individual pulses to insure correct
range bin alignment is of ultimate importance to a single
azimuth processing.

In obtaining the data from our radar system, range

tracking is provided by a Poly/Kalman estimator which
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tries to lock the first strong peak of each pulse return
onto a specific range bin. For example, if the target

point closest to the radar is the wing tip, then the wing

tip returns of different pulses hopefully will be locked in
the same range bins. Because of scintillation of the
reflectivities, this range locking method is not always
reliable and misalignment occurs from time to time. Two
automatic algorithms are proposed to realign the data,

one being in the frequency domain and the other in the

spatial domain.

7.4.2.1 spatial domain re-alignment

Let ft (r) and ft (r) be the high range resolution
1 2
(HRR) returns (or our source data) from adjacent pulses

where tz—tl = At is the pulse repetition interval (PRI)
and r is the recorded range. Because of the tiny aspect

angle change in one PRI, if we consider only the magnitude

of the returns, then

~ a -
mtl(r+Ar)~ m, (r}), where mt.(r) £ Ift.(r)\ (7-18)

2 1 1
for some Ar, the amount of misalignment which we would
like to estimate. Define a correlation function between

the two waveforms m, (r) and m, (r):

Y t
m, (r)m, (r-s)dr
t t
R(s) & 7= 1 2 \ (7-19)
® 2 ® 2
m (r)drI m (r)dr]
[Lo t o8




Then because my (r+ar) = m, (r), from the Schwartz inequality
1 2

we have that R(s) will be maximal at s = Ar and the amount

of misalignment can be determined by a subsequent peak

detection on R(s). It is observed that the denominator

of Eg. (7-19) is independent of R(s) and can be dropped
without affecting the peak location. Thus we could as well

use

a

R' (s) J mtl(r)mt (r-s)dr (7-20)

<

-

which is a straight convolution relation.

| 7.4.2.2 frequency domain re-alignment

There are three differences between ft (r) and ft (r),
1 2

the returns from adjacent pulses. One is that the range
bins have been shifted relatively. The other two are an

|

!

| overall constant phase change due to the motion of the

t

! target center and a phase variation due to the effective

rotation of the target. The last phase variation can be
negligible if the sampling rate in azimuth direction (i.e.,
the PRF) is large enough. In that case

ftl(r) = ¢(tl,t2)ft2(r-Ar) (7-21)

where ¢(tl,t is a phase factor independent of r and again

2)
Ar is the quantity to be estimated.

If one takes Fourier transforms of both sides of

Eq. (7-21) with respect to r, then
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e

!tl(f) = ¢(tl,tz)ftz(f)exp(—jan-Ar) (7-22)
Let ¢, (f) and ¢, (f) be the phase part of ¥, (f) and
tl t2 tl
?t (f), respectively, then
2
A
ad, B =y (£)-¢, (£) = ¢(tl,t2)exp(—j2ﬂfﬁr)
1772 1 2
(7-23)
and
-1 g1 .
F {A¢tl’t2(f)} = ¥ {¢(tl,t2)exp(—32ﬂfAr)}
= ¢(tl,t2)5(r-ﬁr) (7-24)
hence
lsc“l{Aotl'tz(f)}l = §(r-br) (7-25)

The above analysis suggests the following way to
estimate Ar: Take the Fourier transform of each pulse
return and keep only the phase part. Find the phase differ-
ence of adjacent signatures. Finally, take the inverse
Fourier transform of that phase 4 “ference and keep only the
magnitude part. The location of the peak along the final
range direction gives the estimate of range bin shift
required to realign the range bins.

Clearly, the above two re-alignment schemes are equiva-
lent in the noise-free situation. Under noisy condition,
they would have different performances. However, a detailed

analysis is not attempted in this work.

7.5 Motion Compensation
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As described in Section 7.2, there are two components

of the target motion: the motion of the target center
relative to the radar and that of different target points
relative to the target center as viewed from the radar.
Only the latter contributes to the imaging ability of the
radar, and the relation between the latter phase variation
and the target reflectivity is a simple Fourier transforma-
tion in the azimuth direction. Thus, a motion compensation
-1

[H which removes the effect of the motion of the target

2]
center is highly desirable as a preprccessing. Egquivalently
this is to find the trajectory of the target center and
remove its effect from the raw data.

Two schemes of such a motion compensation are proposed
for our imaging.

First scheme: The flight path of the target center
can be inferred from the timing of the pulse returns. For
example, in the first interval after the flight path has
been decided to be a straight line and the azimuth angle
determined, the result of the analysis in Section 7.2 can be
applied to determine the coefficiants of the quadratic and
other higher-order phases and remove the Xy effects to
leave only the phases associated with Xa which is rel:2vant
to imaging.

Second scheme: Since the trajectory of a single target
point is very close to that of the target center, the
returns from that point, if available, can as well be used
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as a reference to compensate for the targer center motion.
In fact, this is equivalent to considering this target
point as the rotation center of the target. The phases of
this reference point as a function of azimuthal signatures
can then be subtracted from those of all range bins at the
corresponding signatures. Care should be exercised to
assure two things in this process: first, the size of the
reference point must be small enough. This is because the
size of the reference point decides the best possible
azimuthal resolution. Second, for each signature, the
reference range bin must correspond to the reference point.
This requires range alignment as described before. 1In
addition, reference point must be rigid on the target.
There are situations where other forms of motion
compensation should or could be applied: For example, in
many cases mathematical simplicity of the imaging equation
can be guaranteed only if the relative motion between the
radar and the target is very simple. In the case where the
flight speed, for example, is varying due to the weather or
maneuvering an interpolation of the azimuthal data can be
applied to obtain equally spaced samples. Alternatively, a
varying PRF which follows the speed of the flight can be an
effective tool in assuring a simple imaging equation. On
the other hand, some times even if the flight speed is a
constant, the interpolation or varying PRF schemes may still
be needed. For example, in the first interval portion in
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Section 7-2,3% in Eg. (7-9) is not a constant due to the

ratio of nr/Ro, and thus the Fourier transform relation

would not be exact if there were no compensation.

7.6 Oversampling and Presumming

Usually the radar imaging system is oversampled in the
azimuth direction because of a too high PRF. The purpose
of presumming is to remove the oversampling redundancy.

In the case of terrain imaging, over~sampling could be a
result of not processing the whole antenna illumination
pattern along the azimuth direction. In that case, the
azimuth pattern width utilized or coherently processed
determines the resolution of the image which in turn deter-
mines the amount of data redundancy. In our aircraft
imaging, the situation is subtly different. Here the
azimuthal width of the aircraft is so small that we always

try to make full use of the maximum width of the effective

radar illumination pattern, which is the azimuthal length
of the aircraft itself. Under this condition the PRF
required is decided by the azimuth dimension on the air-
craft and the azimuth resolution again by the interval
coherently processed. Thus, assuming other parameters
fixed, a larger aircraft would require a higher minimum
PRF to insure that no aliasing would occur in the final
images. Also, since the effective antenna illumination

(i.e., the overall aircraft azimuthal length) is independent

177 i




of the wavelength, X, the minimum PRF or the resolution in
the aircraft-imaging case would be function of A. This is
in contrast to the ground terrain imaging cases where the
full antenna illumination pattern width, which is propor-
tional to A, is to be used so that the resultant resolution
is independent of A because of a cancelling effect (7-1,2].
Let fo be the carrier frequency and L the length of the
aircraft along the direction normal to the LOS and on the
imaging plane, as shown in Fig. 7-7. Let A8 be the orien-
tation change of the target between two adjacent pulses
as observed from the radar, then the azimuthal frequency

change will be
pE, = £A6 (7-26)

This means a sampling interval of Afz in the azimuthal

frequency domain, which implies a non-ambiguous azimuthal

c
2Afz

time interval of or spatial interval of , in

1
r
Afz
accordance with the sampling theorem.

The oversampling factor o can be determined by

= S -
o = 2Afz/L (7-27)

To remove the oversampling and leave minimum useful
data, a coherent low pass filter followed by sampling at a
correspondingly low rate should be applied along the azimuth
following motion compensation. The effect of low-pass
filtering is to remove the high fregquency noise which other-
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0=xS5- /L L: azimuth length of
?Afz target

Fig. 7-7. Determination of azimuth
oversampling factor
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wise would appear in the resultant image.

7.7 Conclusions

Tn this chapter a radar imaging system more practical
than the previous RAT-SCAT is researched. Although the
baseline coherent processing principle, i.e., Fourier
transforms along azimuthal direction, is the same as that
in RAT SCAT, the data has to undergo much more processing
before a final image can be realized. Motion compensation,
range realignment, and presuming are additional requirements
compared to the RAT SCAT case. The study of RAT SCAT,
which is in a well-controlled environment is of much help
to the analysis and processing in this and the following

chapters.

180 i




Chapter 8
EXPERIMENTAL RESULTS OF RADAR IMAGING

WITH TARGET MOTION

8.1 Introduction

Unlike the RAT-SCAT case, the in-flight data represents
complicated flying geometries and requires much more
analysis and processing to reach final radar images. A
series of processing techniques developed from the previous
chapter will be presented along with their experimental
results.

The mode in which the radar operated and our source
data was acquired was a wide band high resolution mode.

The transmitted pulses were linear FM signals whose returns
were then compressed using matched filtering techniques in
the radar receiver and aligned side by side by using a

Poly/Kalman centroid estimator.

8.2 Experimental Results - First Interval

A condensed overall view of magnitude part of first
interval data is shown in Fig. 8-1 in which each row
corresponds to the log magnitude of the compressed return of

a single pulse. Only every 16th signature is shown in this

figure. Recalling that this interval represents the radar

returns when the tarqget aircraft was flying toward a broad-
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side position (Fig. 7-1), we presume that the first high-
intensity range bin corresponds to the left wing tip and
the next distinct strong returns are from the fuselage and
nose. Note that the radar is to the left.

Then it can be perceived from Fig. 8-1 that the fuse-
lage is at a greater and greater range distance away from
the wing tip along the signatures as a result of closing-
to-broadside during flight. Also observe that while most
portions of Fig. 8-1 seem pretty well range-aligned, other
portions dc need re-alignment before a separable processina
can be implemented.

To present the data in detail all of the first 512
signatures are displayed in Fig. 8-2. The phase image
{(Fig. 8-2(b)) indicates clearly that the target points
probably lie in range bin number 50 to 200, where a strong
structure of phase relationships appears as a result of the
coherent radar pulsing. This is also shown in the log
magnitude picture Fig.B8-2a, although with less clarity.
There is a transient region where the strength of the
returns decreases gradually with the range or time. This
is conjectured to be a result of multiple reflections on
the target which take more than before re-radiating to the
radar receiver.

To investigate further the behavior of the returns, we
kept only the regions of strona signal returns and a

sequence of 80 second data or 8192 signatures is shown in
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Fig. 8-1. Overall view of data in first interval;
loa magnitude of every 16th pulse return

a) Log magnitude h) Phase

Fig. 8-2. First 512 signatures in first interval
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Fig. 8-3 with both log magnitude and corresponding phase.

Observe the guadratic-like phases along the flight direction
due to the flight geometry, as analyzed in Section 7.2.
Since the radar receiver has range compressed the
signal returns, ideally we will only need to perform some
azimuthal processing. For convenience we transpose the
data so that the horizontal direction now denotes the
signature or along-flight direction. Figure 8-4 shows the
log magnitude and phase of typical signatures (signature
8001 to 8512). To remove the quadratic phases from
Fig. 8-4(b), three options exist, the first two being

similar. They are described in subsections 8.2.1-3:

8.2.1 Linear fitting the phase differences and subse-

gquent integration

Since the differentiation of quadratic phases is linear
phases, a linear fit to the phase differences can be applied
to determine the quadratic phase curvature. Figure 8-5(a)
shows the azimuthal phase difference of Fig. 8-4(b). Note
that except for the phase wrap-around in the right half
portion and the small variation due to oversampling and
noise, the intensity used to linearly encode the phase
between -7 to m looks quite linear. However, before a
successful linear fit can be obtained, the phase-wrap
problem has to be solved and this is usually not a very

easy task. In fact, it is because of the rapid phase
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a) Log magnitude b) Phase

signature number 1-2048

c) Log magnitude

signature number 2049-4096

Fig. 8-3. Data in f{irst interval with 128 range
bins stacked side by side
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modulus phenomena in Fig. 8-4(b) that causes direct unwrap-
ping Fig. 8-4(b) extremely difficult. We used a simple-
minded scheme to unwrap the phase differences of Fig. 8-5({(a)
to get Fig. 8-5(b), from which the linear portion of phase
variation was estimated and removed to leave Fig. 8-5(c).
Since Fig. 8-5(c) is still in the differentiation domain,

an integration brings it back to the azimuthal phase

domain, as depicted in Fig. 8-5(d).

8.2.2 Linear fitting the phase difference and quadra-

tic subtraction

An alternative to applying the estimated linear-phase-
difference is to subtract the estimated quadratic phase
(from integration of estimated linear phase difference)
from Fig. 8-4(b) directly. The result is shown in
Fig. 8-5(e).

Magnitudes of azimuthal Fourier transforms of
Fig. 8-5(d) and 8-5(e) are shown in Figs. 8-6(a! and 8-6(b),

which are very similar visually.

8.2.3 Target point referencing

The above two schemes of removing phase variation due to
target center motion are based on an assumption that the
flight path is relatively straight during the coherence

time. 1In other cases where the range tra;ectory is more
complicated than a low-order polynomial curve, the above

schemes are expected to be difficult. Another motion com-
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c)

Linear phase removed d) Phase integration
from b) pf c)

e) OQuadratic phase removed
directly from 4b)

Fig. 8-5. (Continued)



pensation scheme somewhat independent of the flight geometry

and simple in implementation is to use the signal returns
from a reference point toc estimate the history of the flight
range trajectory. This single point can be thought of as
the center of rotation of the target and its phases subtrac-
ted from all other range bins to leave only the phase
histories of all target points relative to this reference
point. This was, in fact, the techniques used in subsequent
imaging.

Since the azimuthal oversampling factor has been
determined to be greater than 50, the data after quadratic
phase compensation can be reduced by a factor of 32 before
Fourier transformations are applied. The result is shown 1in
Fig. 8-6(c). A comparison of Figs. 8-6(a) and 8-6(c)
confirms the validity of the coherent presumming. Note that
in Figs. 8-6(a), (b) and (c) the azimuthal bin width is
much wider than the range bin width and a subsequent inter-
polation has to be done to properly scale the images.

Figure 8-7 is5 a series of processed aircraft images
using the reference-point scheme. Consecutive pictures
represent abutting 2048 signatures or 20-second flight
time. The images have been linearly interpolated in azimu-
thal to give the same range and azimuthal bin width such
that the images are properly scaled. Visually Fig. 8-7(d)
is the best probably due to the best range alignment of the
data in that time interval.
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a) Magnitude of Fourier b) Magnitude of Fourier
transform of 54) transform of 5e)

c) Fourier transform of
collapsed version of 5e)

-

Fig. 8-6. Cross-range processing Fig. 8-5
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Ideally, an increase in coherence time should be
accompanied with an equally increased amount of resolution.
This is not the case in Fig. 8-8, where coherence times of
40 and 80 seconds are processed. The conjecture is that
the range curvature and range misalignment which tend to
blur the images outplay the coherence time increase. As
described in the previous chapter, one way to alleviate
the range curvature problem is to use larger range bin
widths. To test this, we used the same parameters as in
Fig. 8-8(b) except the data in range dimension were reduced
by a factor of two by a coherent collapsing. The result
shown in Fig. 8-9 is to be compared with Fig. 8-8(b).

The phase variations of target points induced by the
target motion is the key to the coherent radar imaging.

As one can see from Fig. 8-2, the magnitude of the radar
returns which provide only range information are very
similar from pulse to pulse and represent a great deal of
data redundancy. From the DOF point of view one would like
to have approximately equal amount of input and output
data. Since only the magnitude parts of the processed
images are needed for displays, it is conjectured that

the phase portion of data alone is sufficient to give an
image of a comparable quality. This would achieve a factor
2:1 in data reduction. Experimental result shown in

Fig. 8-10 seems to support this conjecture. Intuitively

speaking, the range bins corresponding to no strongly
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reflective target points have a random-like phase and are
likely to spread their energy over the spectrum after the
Fourier transform in the azimuthal direction is taken. On
the other hand, target points of strong reflectivities give
highly correlated azimuthal radar returns, resulting in
clusterings of energy corresponding to different azimuthal
target points in the processed Fourier transform domain.

In this way, the magnitude of the returns do not play an
important role in determining in which range bins lie the

strong target points.

8.3 Experimental Results - Second Interval

The firsf 8000 signatures of the second interval
source data taken when the airplane was making a standard
left turn are shown in Fig. 8-11 and Fig. 8-12. Unlike the
straight flight of interval 1, the phase plot here has a
changing azimuthal structure due to the turning motion of
the target, which creates complicated range and Dopnler
histories. In addition, there are several occasions when
the range bins are seriously out of alignment. The
overall view of Fig. 8-11 shows the changes of relative
positions of the nose, fuselage and wing tip due to the
turn. A portion of data was taken when the airplane was
approximately nosed into the radar and a series of
resultant images are shown in Fig. 8-13 using the reference-

point technique as a phase compensator. 1In this case the
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Fig. 8-11. Overall view of data in second interval;
log magnitude of every 16th pulse return
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Fig. 8-12. Data in second interval with
128 range bins side by side
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nose tip serves as a very good reference point as shown by
% the degree of sharpness of the nose in these images.
§ Figure 8-14 shows images of different coherence times. In
! Fig. 8-14(b) the shape of the fuselage has been clearly
imaged. A coherence interval of 18°rotation of the target
seems too much to give a satisfactory image as a result of
overwhelming range curvature.
The spread patterns close to the nose are due to the

aircraft radar which was constantly scanning during the

flight, presenting an object of changing reflectivity and
violating the assumption that the target was a rigid body

in the imaging system.

8.4 Range Re-alignment Results

As is evident from Figs. 8-11 and 8-12 the radar
breaks range lock quite often during the turn of the target
aircraft. This is to be expected as different scatterers
from the aircraft dorinate the leading return of the radar
reflection. Naturally when the radar broke lock seriously,
one would not expect to be able to image without re-
alignment processing. Section 7.4 presented a theoretical
discussion on such re-alignment procedures and this section
will present some experimental results.

The realignment procedures presented in the last
chapter are based on a sequential comparison between

adjacent signatures. Because of the discrete nature of the

201




lst 5 _seconds 5 seconds

1st 10 seconds
aspect change)

Aircraft images with
different coherence

202




|
|

data, each compariscn could produce a misalignment error by
up to one pixel width. Hence, although the scheme is
successful on local realignment, the accumulated errors

from this primitive recursive procedure make a global
alignment very difficult to produce satisfactorily corrected
images.

A remedy to this is to compare each signature with a
reference which has been aligned globally. However, this
reference has to bear considerable similarity to the
signature being compared to avoid large quantity error.
From these requirements and considering the slowly varying
nature of the successive signatures, we propose to use for
reference an exponentially weighted sum of the magnitudes
of previous realigned signatures. The algorithm is easily
implementable by assigning a weight to the newly aligned
signature and a complement weight to previous reference to
form the current reference. The weight can be chosen
according to how slowly the range profiles change along
the signature assuming the profiles resemble a "Markov
process." A small weight corresponds to high correlation
of the process. On the other hand, a weight of 1 corres-
ponds to very low correlation and coincides with the
theoretical realignment scheme described in the last
chapter.

We applied the modified realignment algorithm using

exponential weighting for the signature magnitude correla-
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tion and obtained a series of realigned data as in

Fig. 8-15. Segquential pictures contains 512 signatures

or a flight time of 5 seconds each. Note that the first 16
pictures correspond to the original data in Fig. 8-12.

A weight of 0.05 was used in all 21 data segments which
comprise the whole second interval of the flight. Except
for very few signatures the realignment algorithm seems to
work very well.

The realigned data was processed during the same
reconstruction procedure before and a series of 21 images
produced as in Fig. 8-16 in which the effective rotation
rate of the aircraft was assumed constant. Most of the
aircraft images are recognizable and clearly show the
turning. Fig. 8-16(a) and (b) correspond to the motion
before completing the starting of the turn and are thus not
square pictures. The nose and left wing tip crossed in and
out respectively at the later portion of the data segment
(e) as shown by Fig. 8-15(e) and by the change of
Fig. 8-16(e) from Fig. 8~16(f). In Fig. 8-16(r) the image
was a superposition of two images with the same orientation
and with the wingtip of one image being on top of the nose
of the other. This is due to the equi-distance of those
two target points from the radar at that particular target
orientation. In Figs. 8-16(t) and 8-16(u) the wingtip was
chosen as the reference range bins for motion compensation
whereby the range realignment procedure aligned the data
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Fig. 8-16. Aircraft images after range re-alignment
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with respect to the fuselage. Since the fuselage trajectory
is not parallel to that of the wingtip, the motion compen-

sation did not work and the image is blurred.

8.5 Conclusions

This chapter has presented the experimental results
associated with imaging a moving aircraft target from a
stationary ground-based radar. Preprocessing techniques
for range curvature, range alignment, motion compensation,
and coherent presumming are all presented. Gross phase and
fine tuning phase are separated for imaging the target.
Coherence processing intervals, range collapsing and range
re-alignment are all examined. Two data sequences, interval
1 and interval 2, are taken for real radar data. Many
parameters are tested and their results are shown. Each
resultant image has been tested against the physical air-
craft flight information before any interpretations are
attempted. 1Images of encouraging quality confirm the
feasibility of the coherent radar imaging of the flying

alrcraft.
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Chapter 9

SUMMARY AND EXTENTIONS

9.1 Summary

This dissertation has presented analysis and experi-
mental results of several radar imaging systems. As a
preliminary research of this work, a classification method
on two dimensional systems based on the structure of their
point spread function matrices has been proposed to aid in
understandino imaging systems. The classification
principle is universal and cases apply to the specialized
field of radar imaging. Many physical examples are shown
to fit in most of the cases nicely and it is hoped that more
systems could be identified with some of the cases and
possibly even new imaging systems developed based on the
classified system structure as the image reconstruction
techniques advance. We have demonstrated that, depending
on the accuracy one pursues, the stripping mode of SAR
imaging can range from the non-separate 1-D invariant case
to the separable 2-D invariant case. While going to a
simpler system model saves some computation time and storage
requirement, part of the inforration becomes irretrievable

as a result of approximation. Analysis on the tradeoff
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between the DOF loss and the simplification of the system PSF
is a possible extention of the system classification work.

The radar system analysis and the processing techniques
in this dissertation assume discrete linear imaging systems
with the target being a rigid body of constant reflectivi-
ties. Physical phenomena, e.g., target point blocking,
reflectivity change as a function of aspect angle, multiple
reflections, parts moving on the target, etc. if completely
incorporated in the PSF's would make the actual imaging
system fairly nonlinear. Another nonlinearity comes from
our data processing in which both the radar returns and the
resultant image are transformed on a point by point basis,
e.g., taking the log of the magnitude parts, to reduce the
dynamic range. The effects of those nonlinearities remain
to be analyzed in the extention work.

In the RAT-SCAT system, image reconstruction was
assumed separable on the individual data section following
considerations of physical limitations and fast~algorithm
desirability. Larger sectors (e.qg., 25.6°) could have been
processed if we had chosen to nonseparably process the data
in which a constant target reflectivity function could be
assumed. The quality of the final RAT-SCAT images are
limited by target size, wavelength, bandwidth of the
transmitted signal set, fidelity of the radar receiver
processing unit, background reflectivity, sidelobe effect,

and ability to find the true rotation center of the compo-
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nent images.

While the RAT-SCAT imaging is performed under a well-
controlled environment, the imaging geometry in Chapters 7
and 8 is more realistic in that a full-sized flying aircraft
target is imaged. However, because of the increased comple-
xity of the PSF, a method of system decomposition is pro-
posed in which the preprocessing simplifies the relation-
ship between the transformed data and the object function.
Range realignment, range curvature compensation, motion
compensation, and presuming are examples of preprocessing
performed. After the preprocessing, the remaining system 1is
(hopefully) a separable one and fast processing techniques
like the FFT can be applied. Side lobe effects in the final
images can be greatly reduced by incorporating a weighting
window upon the data in the presumming and FFT processings.

In both the RAT-SCAT and the motion-induced-aperture
imaging, the range bin width and azimuth bin width are
equalized by interpolation techniques to make square images
suitable for human interpretation. This involves calculating
the relative magnitudes of the range bandwidth which is
determined by the bandwidth of the transmitted radar signals
and the azimuth bandwidth which is proportional to the
amount of rotation of the target.

While the range resolution is independent of the
carrier frequency f0 of the radar signals, the azimuth reso-
lution is a function of f.. 1In fact, it is the large fO

0
216

S — NI




which makes imaging possible along the azimuth direction
with only a few degrees of the target rotation. Recall that
although the PSF's of the tomograprhic system have a very
similar mathematical form as those of the RAT-SCAT system,

it needs a full 180° projections to reconstruct the image
because of a zero fo.

The final radar images are enhanced to reveal more
details. Most of the postprocessing enhancement technigues
used are nonlinear and belong to the immeasurable art of
image enhancement and image analysis [9-1]. Nevertheless
the understanding of the characteristics of the radar imaging
systems, in particular the cascaded decomposition of the
processing procedure, could aid in the advancement of
techniques for image storage, encoding, enhancement,
guantization, and restoration. For example, knowing the
dynamic range limitation of the film and the Fourier trans-
formation property of the lens, we could store the radar
images on the films in the frequency domain to spread the
energy over the film [9-2]. 1In the image encoding domain,
Chen [9-3] has developed a radar image coding method based
on dual mode interpolation for images with strong targets

and hence high dynamic range.

9.2 Sonar Imaging

Finally, a potential application of the coherent
radar imaging principle to other systems will be

discussed.
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As described earlier, the two-dimensional imaging

systems must collect a set of one-dimensional data about the
target reflectivity or transmission from different aspect
angle of the object for image reconstruction. In the MFS
system, the gathered data is in the frequency domain and
represents points at particular target aspect angles and
with radii being the radar frequency fc translated into the
spatial frequency domain or EéE where ¢ is the speed of
light in the case of radar imaging. One advantage of the
large fo lies in the fact that it places the data points
away from the origin of the frequency coordinate system
making the data points relatively distant from each other
and less redundant, as analyzed in Chapter 4. The range
bandwidth is 325 in the radar imaging, where B is the
effective bandwidth of the transmitted signals in Hz.
Because of the exceedingly large value of ¢, a very large
bandwidth B, of the signal is required to achieve a fine
range resolution comparable to the target size. For example,
bandwidths larger than 1024 MHz are required to achieve a
range resolution of 0.5 foot. This large bandwidth require-
ment has set many restrictions on the system design and
limitations on its overall performance.

In the sonar system, the situation is quite different.
Here the propagation speed v of the sound in, say the
vacuum, is only 1086 ft/sec approximately. The disparity
between the light speed and sound speed is in the 6th order
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of 10's power. To obtain the same data points in the

frequency domain of a sonar system as in the radar system

requires
2f0 ) 2fS
c v
and (9-1)
2B 2B
_r._=s
c v

where fs and Bs are the carrier frequency and the bandwidth
of the sonar wave in Hz, respectively. Thus fs = 6.6 KkHz
and BS = 565 Hz in the sonar system would be compatible
with fo = 6.6 kHz and B, = 512 MHz in the radar system,
a required bandwidth only 10—6 of that of the radar system.
An interpretation of the above analysis is as follows: the
amount of information about the target inferrable by a
single pulse is given by the time-bandwidth-product of the
received signal, or approximately the number of range bins
on the target. Since the time duration of the received
signal is in proportion to the time on target (TOT)
it follows that for a fixed number of TBP, the required
bandwidth is higher in the case of a faster propagation
speed or a smaller TOT.

The above analysis is based purely on mathematical
comparison. Because of the large characteristic differences

between the electromagnetic waves and sonar waves, there are
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many physical considerations to be made before actually

applying the SAR technigues to the sonar imaging system.

For example, in radar imaging systems, it is usually assumed
that during the transmission and receiving of a single pulse,
the target is stationary. This assumption makes imaging
equations relatively simple and is justified by the high
speed of the light. In the sonar system the signal dwell
time on the target could be so long (because of a low v) that
the target might rotate by a significant amount during TOT
and violate the stationarity assumption. Compensating

target motion within one pulse time could be very difficult.
Also, the PRF requirement is not as easily met because of

the slow v. From this point of view, sonar system should

be better suitable to imaging slowly moving targets like

the submarines. Another major disadvantage with the sonar
system is the high attenuation rate of the sound wave which
tends to impose a requirement for very high power trans-
mitters even in the modest target range. Besides, target
reflectivity under sonar, signal coherence and overall

system designs have to be well understood and many experi-
ments performed before the feasibility of sonar imaging can

even be assumed.
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