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ABSTRACT

This dissertation presents both analytic and

processing techniques for various radar imaging systems.

A two dimensional system classification method, which

is very general and hence applies to the special case of

radar imaging systems as well, is proposed to assist in

understanding the structure and describing the limitations

of 2-D systems. Once a given system is identified with the

simplest possible class, the specific techniques can be

directly utilized to process the data or reconstruct the

images.

Following a review of radar imaging principles,

several coherent radar systems are analyzed and experimented

upon. They include synthetic aperture radar (SAR) ground

mapping, imaging of an aircraft target from turntable data,

and imaging of a flying aircraft target. In each case

the point spread function (PSF) of the imaging system is

derived or estimated. Physical considerations are then

incorporated in mathematical PSF's to categorize the imag-

ing systems according to the aforementioned system classi-

fication principle proposed. Degrees of Freedom (DOF) under

different imaging geometries are analyzed as a means to

determine the amount of information present in the usually

xiii
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huge amount of raw radar data for the purpose of efficient

computation and minimal storage requirement. Motion

compensation, range curvature, range alignment, de-chirping,

FFT, registration and side lobe reduction problems are all

addressed and experiments are performed using data from

RAT-SCAT (for turntable imaging) and other facilities.

The results shown suggest the versatility of coherent radar

imaging.

Possible extentions of the current work are discussed.

The understanding of the system characteristics, in parti-

cular the formation of the radar image will aid in the

advancement of techniques for radar image enhancement,

encoding, quantization, and restoration.
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Chapter 1

INTRODUCTION

This dissertation deals with the radar imaaina problems.

The objective of a radar imaging system is to reconstruct

the target image from its radar returns. Radar imaging

geometry is one of the most important factors which deter-

mines the complexity of reconstruction orocedures and the

quality of the images obtainable. Many radar parameters

function interactively making the analysis and the optimiza-

tion of thp system very complicated. Physical considera-

tions as well as mathematical assumptions must be taken and

made before a practical reconstruction alqorithn can be

realized.

This dissertation presents both analytic and orocessing

techniques for various radar imaging systems from a system

noint of view. Degrees of freedom (DOF) under different

imaging qeometrics are sought as a means to determine the

amount of information available in the usually huge amount

of raw radar data for the purpose of efficient image recon-

struction and minimal storage requirement.

A two-dimensional system classification method, which

is very general and hence applies to the special case of

radar imaging systems as well, is proposed in Chapter 2 as

~1



a preliminary study to assist in understandinq the structure

and describing the limitations of 2-D systems, with the

ultimate goal of providing guidelines for any aiven system

to reduce its reconstruction or orocessing effort. Once a

system is identified with the simplest possible class, the

specific techniques can be directly applied to 2-D nrocess-

ing. Mathematical examples are given and physical examples

are shown to fit nicely into such categorizations. In

addition to the system classification, system decomposition

is proposed which would expose more system structure avail-

able for current fast processing techniques.

An overview of the radar signalling principles and

processing techniques in both the range and azimuth direc-

tions, assuming system separability, is presented in

Chapter 3. This chapter is devoted to reviewing the one-

dimensional radar signal processing methods which form the

foundation of general two-dimensional radar image process-

ing discussed in later chapters. Advantages as well as

limitations for each simple case are given and compared.

Following the chapter on radar signalling principles,

several coherent radar systems are analyzed and experiments

performed to support the theoretical work. They include

synthetic aperture radar ground mappinq of the stripping

mode, coherent imaging of aircraft targets from turntable

data, and imaging of an actual aircraft target in flight.

In each case the point spread function of the imaging system

2



is derived and categorized according to the classification

method proposed in Chapter 2. Physical considerations are

then incorporated in mathematical PSF's to determine the

actual reconstruction algorithms to be used. Motion compen-

sation, de-chirping, range alignment, range curvature, image

registration, sidelobe reduction and Fourier transforming

problems are all discussed and numerous experiments per-

formed using data from RAT-SCAT (for turntable imaging) and

other facilities. The results shown suggest the feasibility

and versatility of coherent radar imaging.

Finally, possible extensions of the current work are

discussed. Postprocessing upon the images reconstructed

from this work can be helpful in extracting the most rele-

vant information once the characteristics of various radar

imaging systems are fully understood. Among them, the radar

image enhancement, image coding and quantization are valuable

examples.

An analogy between radar imaging systems and sonar

imaging systems from the mathematical point of view is

pointed out which could be a significant extension of this

work. However, because of the tremendous disparity between

the speeds of an EM wave and a sound wave, many different

physical considerations have to be investigated before any

feasibility of the sonar imaging system could be concluded.

3



Chapter 2

STRUCTURES OF TWO-DIMENSIONAL TRANSFORMATIONS

2.1 Introduction

Modern day imaging systems often use digital computers

for completion of the imaging process in the form of "recon-

struction" algorithms. Such algorithms may be as simple as

edge enhancement for modulation transfer function compen-

sation to as complex as polar coordinate tomographic recon-

struction methods for three dimensional imaging. However,

one common thread throughout these methodologies is the

theme of avoiding singularity (ill-conditioning) and

consequent noise amplification while simultaneously extrac-

ting as much image information as is possible from the

original scene of interest. In numerical analysis terms, we

wish to reconstruct the object uo to the degrees of freedom

(rank) of the imaging system without exceeding the computa-

tional complexity indigeneous to a particular imaging

configuration. Previous analysis for the degrees of freedom

of imaging systems includes the earlier work of Twomey

[2-1,2-2] followed by Gori and Guattari [2-3]. However, the

above degrees of freedom (DOF) are to be differentiated from

the computational degrees of freedom (DOF c ) to be proposed

in this chapter.

4



As a preliminary study for our research work of radar

imaging systems, this chapter is devoted to a generalization

of the concept of the point spread function (PSF) matrix

and its role in general two variable to two variable dis-

crete linear mappings (the most common of which are, of

course, imaging systems). The importance of understanding

the system PFS lies in the fact that the image reconstruction

requires, in a general sense, the inversion of the point

spread function or its gramian [2-1,2,3,4,5]. It is obvious

that one would like to make full use of the structure of the

PSF to ease this process. By categorizing the two-

dimensional systems according to their structure with

associated computational and storage savings one could then

apply fast and efficient reconstruction algorithms for each

class. Thus, whenever a given category is identified with

the simplest possible class, the underlying reconstruction

techniques can be directly utilized.

The PSF matrix is generically related to optical

analysis of linear space invariant imaging systems, but

today has come to represent a much more general mapping,

especially if one takes a numerical analysis view. Because

of the relatively advanced state of the numeric processing

art provided by numerical procedures in problems of

inversion of ill-conditioned systems and because the domain

of reconstruction for modern day imaging systems is numeric

and discrete, linear algebraic analysis techniques are

5



becoming increasingly popular [2-5,6]. In order that we

take advantage of such techniques, the following section

discusses the implications of formulating our two variable

linear mapping systems into one variable lexicographic

ordering and the tensor to matrix simplifications thus

introduced (at least in a notational sense).

Following the lexicographic discussion, nine categories

of PSF matrices are discussed, along with their computa-

tional degrees of freedom (DOFc) and inherent structural

relationships. It is shown that these nine models cover all

two variable to two variable linear mappings and that the

reconstruction and analysis algorithms which relate to the

respective models allow for generalized processing results

given the users' knowledge of what processing model his

imaging system falls into. The models so discussed are then

exemplified by illustrations from radar imaging, tomography,

optical astigmatism, curvature of field, rotational motion

blur, and standard space invariant optical transfer function

distortions.

2.2 Lexicographic Ordering

General two variable to two variable imaging systems

can be analyzed from three typical models; a continuous-

continuous representation, a continuous-discrete represen-

tation, or a discrete-discrete representation. Such models

result in the following three versions of the integral

6



equations used for imaging (see Fiaure 2-1).

g(x,y) = fJ'f(E,n)h(x, y; ,9)dCd r (2-1a)

g= ff f( , n) h(I , ri)d~dr- (2-1b)

q = [H]f (2-ic)

In the above f represents the original object, g represents

the resulting image or observations to be reconstructed and

h represents the linear mapping of object to image. The

first equation represents a Fredholm integral with a four

variable kernel. The second represents a linear mapping

with a continuous -discrete kernel, and the third repre-

sents the mapping in linear algebraic notation. For the

discrete image cases we will index the (x,y) continuous

plane with a set of discrete indices (i,k). However, for

notational convenience, these indices will be lexicogra-

phically ordered to form a "row scanned" vector image g.

Thus the MxN image becomes a vector of dimension MNxl.

In the discrete-discrete model we assume the original

object was NxM indexed by (p,q). Due to our lexicographic

"row scanning" notation, the point spread function becomes

an MNxMN matrix with a "block" notational structure.

(Actually imaging a systems with unequal data points in the

input and output planes are easily included in this analysis,

but for notational convenience, we will restrict our nota-

tion to non-square, NxM, but equal input and output planes).

7



This lexicographic "block" structure of the point spread

function matrix can be represented as

-(H) (I i) [H) (1,2) ... [H (1,M)

[H] (2,1) [H] (2,2)

[H] = (2-2)

[H] (M,1) ... [H] (M,M)

where the individual matrices are NxN given as:

[H] (i,p) = [hk 3 (i,p) (2-3)
k,q

See Figure 2-1. Thus the most general point spread function

matrix represents an arbitrary kernel h(i,k;p,q) in a

discrete notational system. We will see that the block

structure of equations (2-2) and (2-3) will be particularly

powerful as an analysis tool because, in matrix algebra,

such block structure is invariant to matrix addition, multi-

plication, transposition, inversion, etc. Consequently,

"block diagonal", "block Toeplitz", "block circulant", etc.

matrices will retain their lexicographic structure through-

out manipulation with matrices within their own class.

2.3 Point Spread Function Matrices and Computational

Requirements

In this section we discuss various models of point

spread function matrices, define the notations used and



x

h(x,y,&,n)

a) Continuous imaging model

3. g

q k

b) Discrete imaging model

N samples in q input plane
M samples in p i

N samples in k output plane
M samples in i

Fig. 2-1. Imaging models
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exploit ways to utilize the structure of the system to

speed up the reconstructions. In its most general form

[HI is that of a nonseparable space variant point spread

function and there is no structure without further analytic

knowledge.

For our discrete model, three classes of structure

could be used to simplify the system description. These

structures are labeled i) space invariant, ii) separate,

and iii) separable. Let h(i,k;p,q) be the point spread

function with input variable index p,q (as in Figure 2-1)

and output variable index i,k. Then the definitions of

the three concepts mentioned above become:

i) Space Invariant:

invariant in one dimension only

invariant in both dimensions

ii) Separate:

h(i,k;p,q) = hN(k;q/i)hM(i;p/q)

Here h M(i;p/q) means processing along the i or p direction

with q as a parameter fixed for i and p but variable in the

k indexed dimension. Note that in hN and hM above the

conditioning variables i and q are output and input varia-

bles respectively. This means hM occurs before hN. Of

course it is also possible to have separate processing in

the other order, i.e.

h(i,k;p,q) = M(i;p/k)hN(k;q/p).

10



The order of processing in the two dimensions is not

commutative, in contrast to the separable class below.

In fact the separable class will always be a subset of the

separate class.

iii) Separable:

h(i,k;p,q) = h M(i;p)hN (k; q )

Combinations of the above three structures lead to nine

cases which can be diagrammatically depicted as in Figure

2-2(a). Thus there are nine branches of the system

classification tree, which have been arbitrarily numbered

from 1 to 9 in the figure.

If we define the computational degrees of freedom

(DOF c ) of a class of linear system matrices to be the

maximum number of independently-determined entries of the

matrix which belongs to this class, then intuitively, this

DOF of the matrix is an indicator of the effort requiredc

to diagonalize the matrix or to reconstruct the image in

the ideal case. Accordingly, if a structure is a subset of

another, its DOF must be less than the other. In theC

following we exploit the structure of the 9 cases of Figure

2-2(a) for two dimensional discrete linear systems in the

approximate order of decreasing DOF c for given nontrivial

M and N, i.e. M>2 and N>2. We will assume that the data are

stacked in appropriate lexicographic order as defined in

the previous section.

11
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Case 1: Nonseparate space variant

h(i,k;p,q) = h(i,k;p,q)

DOF ((HI) = (NM) 2

(IM

[H] (2-4)

(M,l) [H] (M,M)

where [H] ( p ' i ) is NxN.

Case 2: Nonseparate space invariant in one dimension

(assume invariant in (i,p) coordinate)

h(i,k;p,q) = h(i-p,k;q)

DOF ([H]) = (2M-1)N 2

c
-[ ](0) [ ](-I) .. HI(-M)-

(H] (1) (H] (0)

[H] = (2-5a)

[H] (M-l) [H] (0)

Here matrix (2-5a) is Toeplitz in the (i,p) superscript

indices but each submatrix is still arbitrary (thus the N2

factor in the degrees of freedom).

Had we chosen or been faced with a linear system that

was nonseparate but invariant in the (k,q) dimension, then

13



H(i,k;p,q) h(i,k-q;p)

DOF [H] = (2N-1)M
2

c

-[H] . . . [HI( ,M

[H] = (2-5b)

[H I (M ,I) [H ] (M M )

where each submatrix [HI (i,p) is Toeplitz, i.e.

(i,p)
h 0  h . . . hl N

h I  h0

(ip) 1 0[H]

hN-1 .h0

and aside from this fact, there are no constraints among

different [H](i,P)'S.

Case 3: Nonseparate space invariant in both dimensions

h(i,k;p,q) = h(i-p,k-q)

DOF c ([HI) = (2M-1) (2N-1)

[HI (0) [HI (-l) [HI (1-M)

[H) (1) [H] (0)

[H] = (2-6)

[HI (M-.)[I (0)

14



where
h 0 1(j)

h0 -1 ... h-N

- hI  h0

hN- 1 h

The above matrix for [H] is known as block Toeplitz where

the superscript indices are Toeplitz and the submatrices

are also Toeplitz. This matrix structure is often appro-

ximated by block circulants which are then diagonalizable

by the 2-D Fourier transform process [2-71.

Case 4: Separate space variant

(assume column operations first)

h(i,k;pq) = h N(k;q/i)hM(i;p/q)

2 2
DOF([HI) = N M+M N

[H) = [RN] [CM] (2-7a)

where

[R] (1)

[R] (2) 0

(M)
0 [RI

[C] ( l ... [C ] (I'M )

[CM =

[C] (Ml) [C] (M,M)

15



where
_ (i,p)

cl 0

[C] (i,p) = c 2

0 CN

Here [RN] is a block diagonal and [CM] is made up of block

submatrices which themselves are diagonal. Had we reversed

the order of operations for case 4, i.e.

h(i,k;p,q) = h M(i;p/k)h N(k;q/p)

then we would have

[H] = [CM ] 
tRN]  (2-7b)

where again (RN] is block diagonal and [CM I consists of

diagonal submatrices. We note that the sparse matrices of

the form [RN] and [CM] are row operators and column opera-

tors, respectively, on lexicoqraphically ordered two

dimensional data. Decomposition into forms like (2-7a) or

(2-7b) identifies a separate system with sequential row and

column (or vice versa) operations which are not necessarily

commutable.

Case 5: Separate space invariant in one dimension

(assume invariant in (i,p) coordinate and column operations

first)

h(i,k;p,q) = h N(k;q/i)hM(i-p/q)

DOF ([H]) N 2M+(2M-1)Nc 16



[H] = [RN] [CM] (2-8)

where [RN] is block diagonal as before but [CM] is Toeplitz

in its subpartition index, i.e.

[C] (0)[c] (-1) ... [C]I

[C] (1) [C] (0)
[CM]=

[c] (M-l) [C (0)
]..

and the [C] (j ) are diagonal. Again if the role of the

invariance in Case 5 is reversed, i.e., invariant in the

(k,q) coordinate

h(i,k;p,q) = hN(k-q/i)hM(i;p/q)

then

DOF [H] = (2N-I)M+M2 Nc

and

[H] = [RN ] [CM]

where [RN] is block diagonal with block matrices beinq

Toeplitz and [C M ] is subpartitioned into arbitrary diagonal

matrices as in Case 4. It should be clear that Case 5 is a

subset of Case 4.

Case 6: Separate space invariant in both dimensions

(assume column operations first)

H(i,k;p,q) = hN(k-q/i)hM(i-p/q)

DOF ([HI) = (2N-I)M+(2M-I)N
C

17



[H] = [RN] [CM]  (2-9)

Here [RN] is block diagonal with the matrices on the

diagonal being Toeplitz and [CM I is subpartitioned into

Toeplitz indices each submatrix of which is diagonal.

Therefore Case 6 is a subset of both Case 5 and Case 4.

Case 7: Separable space variant

h(i,k;p,q) = hM(i,p)hN(kq)

Unlike the separate cases separable operations can be

performed regardless of their order. This is because of

the independence of one dimensions's operations upon the

other's. Thus

DOF ([H]) = M 2+N
2

[H] = PN ] 0 [ M] (2-10)

where 0 is the kronecker or direct product matrix operation

[2-8]. Here [PN ] is NxN and [3M] is MxM resulting in the

M2+N 2 degrees of freedom. Again [aN and I,-MI correspond to

row and column operations respectively. An equivalent

imaging system in non-lexicographic order for this and all

separable cases would be to take the NxM object matrix If]

and form the NxM image matrix [g] as

[g] = [(M ] If] IRN ]

or in lexicographically stacked notation

[KN ] 0 [%M11f

18



Case 8: Separable space invariant in one dimension

(assume invariant in (i,p) coordinate)

h(i,k;p,q) = hM (i-p)h (k;q)

DOF ([H]) = (2M-l)+N 2

[H] = [9N] 0 p M]  (2-11)

where [M I is now a Toeplitz matrix. If the space invari-

ance were in the (k,q) coordinate, then we would have

h(i,k;p,q) h hM(i;p)h N(k- q )

DOF ([H]) M2+2N-1c

and [RN I would be Toeplitz rather than [C-.

Case 9: Separable space invariant in both dimensions

h(i,k;p,q) = hM (i-p)hN(k-q)

DOF ([HI) = (2M-l)+(2N-l)c

[H] = [RN] @ [PS] (2-12)

where both [ N I and (C- I are Toeplitz. This particular

case is the well-known model for separable linear space

invariant imaging systems in which approximations to [R N1

and [(M with circulants results in the familiar 2-D Fourier

transform computation.

Note that DOF ([H])<M2N 2 for all nine cases above forC

all non-trivial 2-dimensional systems with M>2 and N>2.

If Cases 1-9 above are considered as sets, then there

are covering relations among them as depicted in Table 2-1.

From the table it is clear that Case 1 covers all other

19
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(read from left to top)

Case
Case 1 2 3 4 5 6 7 8 9

1 =D ZD D

4 M D D D

5 *

6 = * * D

7 =

8 = D

9

= :equality

D :strictly covering

* :partially covering

Examples: Case 4 strictly covers Cases 5,6,7,8,9.

Table 2-1. Covering relations among 9 cases proposed
for two-dimensional systems

20



cases. Case 4 covers all higher indexed cases (i.e. 5,6,7,

8,9) as does Case 7 (i.e. 8,9). In the cases of space

variance in both dimensions (Cases 1,4,7), nonseparate

case (Case 1) covers separate case (Case 4) which in turn

covers separable case (Case 7). Similarly, within any

group of the nonseparate or separate or separable cases the

space variant case covers 1-D space invariant case which in

turn covers 2-D space invariant case. They are straight

covering relations. However, nonseparate space invariant

(1-D or 2-D) cases do not cover the corresponding separate

cases, e.g. Case 2 6 Case 5. This is because in the

separate cases the sequential processing property, i.e.,

row operations followed by column operations, etc., allows

a more general definition of space invariance in which the

invariance is only in a column by column or row by row

sense, in contrast to the traditional space invariance in

which the processing or "blurring", if any, is uniform

throughout the whole image plane.

To classify a given system into the simplest possible

case, one could use Fig. 2-2(b) for sequential tests. The

terminal nodes are the corresponding simplest cases classi-

fied. As an alternative, Fig. 2-2(a) can easily be modi-

fied to become a flow chart similar to Fig. 2-2(b). The

difference is that in Fig. 2-2(a) the separability property

is tested first while in Fig. 2-2(b) the invariance proper-

ty is tested first. It is noted, however, that to identify

21



h U, k,p, q)

h (k-q, i,p) o

No Yes

Sseparate> 
N h irqab l ?

separable separable? separable?

NoYs No Yes No Yes

inainaran

5 
6

Figure 2-2(b). A possible flow chart for classification;
terminal gives case number

Fig. 2-2. PSF matrix classification
and decomposition
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the separate (but not separable) space invariant cases

(Cases 4 and 5), the separability has to be determined

first due to the reason explained above.

The knowledge of the covering relations among the nine

cases is important in the application of system decomposi-

tion. In discrete linear image reconstruction or object

estimation from the sensor data or observations, the

relation between the data and object, i.e. point spread

function matrix [H] has to be determined from the data

sensing geometry first and then its inverse estimated and

multiplied to the data vector g to come up with an estimate

of object function f as in Fig. 2-1. This reconstruction

scheme, although straightforward in theory, usually involves

huge amounts of computation because of the complexity of

[H). In the worst case, one would have to resort to a full

singular value decomposition (SVD) to find a pseudoinverse

[H] -1[2-5]. Thus, it is usually desirable to decompose [H]

in such a way that it becomes simpler to apply consecutive

processings to g than [H] - I itself. One possible way is to

-i
do some preprocessing [H2 1 upon g, as in Fiq. 2-2(d) such

that [H and the remaining processing, [H would be

much simpler than the [H]- itself. This means that, if

possible, the decomposed component matrices should be in

cases covered by the case of [H] and the combined effort is

still less than 1,H] itself. Examples of pre-processing in

the radar imaca1r(: are motion compensation, range walking

23



observations
object discrete or data

f linear- system gS[H]

g = [HI f

Figure 2-2(c). Imaging system

Fiq. 2-2. PSF matrix classification and
decomposition

f J ]] H g

fH] = 2H2 1 [H1 ]

-1 -i -l[H] = [H1 ] [H2 ]

f= [H] g

- [HI] -  [H 2 ]-

where [H2 ] preprocessing

s.t. [Hi ] & [H2] are computationally

simpler than [H].

Figure 2-2(d). Preprocessing of image reconstruction

Fig. 2-2. PSF matrix classification and
decomposition
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compensation, data presuming, etc., as in [2-1].

Another existent technique of system decomposition is

to process the data in the transformed domain as in

Fig. 2-2(e). Sawchuk [2-14] proposed a geometrical

transformation of [G] in the reconstruction of rotationally

blurred images with successful results. Another simple

example could be the processing of polar coordinate Fourier

transformation which originally belongs to Case 2. An

interpolation transformation [G) [2-17] from polar coor-

dinates to rectangular coordinates could make the system

separable.

It is pointed out that separability and invariance are

not the only structure that can be utilized. In some

situations, the structure within our categorization could be

further scrutinized. For example although a 2-D FFT belongs

to Case 7 which is space variant, the availability of fast

algorithms make it competitive with the 2-D separable

convolution which is Case 9. In fact, in the case of

space-invariant processing, sometimes it is preferable to

apply a transforming technique similar to Fig. 2-2(e) to do

simple point by point operation in the transformed eigen-

space, i.e., the Fourier domain. This is one of a few

examples where a specific structure on top of the case

structure could even be utilized to further speed up the

processing within that case. It is the purpose of the

system classification and decomposition to extract as much

25



[H] = [G] - 1 [H 3 ] [G]

[H] -  [G] - I  [H 3 ] [G]

f = [H] g

= [G] - 1 [H3) - I [CI g

s.t. [G] and [H3 are computationally simpler

than [H]

Figure 2-2(e). Processing in transformed domain

Fig. 2-Z. PSF matrix classification and

decomposition
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system structure as possible for the purpose of fast

processing. However, although we have proposed a classifi-

cation method, the general decomposition is the state of art

which demands ingenuity. It suffices to say that, in

general, the principle of the decomposition is such that

more fast processing techniques can be applied upon the

transformed data. However, some disadvantages might

accompany the decomposition of the system in that one might

have to sacrifice some degrees of freedom (in the informa-

tion sense) for fast processing. This is because the

optimal mean-square reconstruction is guaranteed only by

the availability of singular values of [H] itself [2-6],

which is usually very difficult to infer from singular

values of product component matrices.

To summarize these 9 cases for linear two dimensional

systems, Table 2-2 has been prepared. From the table it is

clear that a large variety of systems and their computa-

tional degrees of freedom can be formulated depending on

specific point spread function circumstances. To make

these 9 cases more meaningful and relevant to actual imaging

conditions, a group of examples are developed in the

following section as illustration of some of the cases

discussed here. However, before proceeding to the follow-

ing section, the reader's attention is drawn to the mathe-

matical examples of PSF's of Table 2-3 associated with the

individual case numbers of Table 2-2. While these are
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Case No. Point Spread Function

1 h(i,k;p,q) = exp{-(i-'k.4p+q) 2

2 h(i-p,k;q) = exp{-((i-p)+k+q) }

h(k-q,i;p) = exp{-((k-q)+i+p) 2

3 h(i-p,k-q) = exp{-((i-p)+(k-q)) 2}

4 h N(k;q/i)h M(i;p/q) = exp{-(k+q+i) 2 exp{-(i+p+q) 2

h N(k;q/p)h M(i;p/q) = exp{-(ksq+p) 2}exp{-(i+p+k )2}

h N (k;q/p)h M (i-p/q) = exp{-(k+q+i) 2lexp{-((i-p)+q) 2
2 2h(k-q/i)h (i~p/k) = exp{-kqpfep-((i-q)+ k)

h~(kq/i~~(1;/q) xp{-(k-q+i) exp{-(i+p+q)I

h N(k-q/p)h M(i;p/k) = cxp{-((k-q)-.p) 2 exp{-(i+p+k) 2 1

6 h N(k-q/i)h (i-p/q) =exp{-((k-q)+i) 2 lexp{-((i-p)+q) 21
hN qpM ipk = exp{- ((k-q)+p) 2 lexp{ ((i-p) 4k) 2)

7 h N(k;q)h M(i;p) = exp{-(k+q) 2}exp{-(i+p) 2

8 h N(k;q)h (i-p) = xf(~)2}exp{-(ip) 2 1

h N(k-q)h M(i;p) =exp{-(k+q) 2}exp{-(i-p) 2

9 h N(k-q)h M(i-p) =exp{-(k-q) 2 exp{-(i-p) 2I

Table 2-3. Mathematical examples of the 9 cases
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mathematically correct, they may not be meaningful in a

physical sense. For physically meaningful examples, the

reader is referred to the following section.

2.4 Physical Examples

This section is designed to put the numeric structure

of the point spread function matrices described above

into physically meaningful perspective with respect to some

typical realistic imaging configurations. While naturally

not all imaging systems can be investigated, it is hoped

that enough illustrations are presented to provide a firm

grasp of the relationships of the real world physical

phenomena with the numerical structure of the computer world

computational phenomena in implementing restoration and/or

reconstruction algorithms. Examples are taken from optical

imaging, x-ray imaging, and radar imaging and range in

complexity from Case 1 (i.e., arbitrary imaging) to Case 9

(that of separable space invariant imaging). The illust-

rations are presented below.

Case 1: Nonseparate space variant

This imaging configuration represents an arbitrarily

comple system in which the object field f(p,q) is mapped

into the image field q(i,k) by a point spread function

matrix [H] of arbitrary entries. In the extremely urecise

higher order modelling of any linear imaging system, the

limiting situation would result in this case. Naturally,

30



such precision is not warranted in many situations, thereby

leading to the simplification of 3ucceeding examples.

Case 2: Nonseparate space invariant in one dimension

Three examples of imaging systems that fit into this

category come from radar imaging and x-ray imaging. In the

former situation consider the geometry of a synthetic

aperture radar (SAR) operating in the "stripping" mode.

This configuration is illustrated in Figure 2-3. After some

analysis the point spread function can be shown to be [2-91:

2 2+z2

h(x2 t;xlYl) = exp(j t)A(xl- x2' yl'Z2)f s(t- 2 [ (x l x 2  +Y +2] )

222,%

e j 2[(xl-x2 ) +y1 +Z2] (2-13)

where the parameters are defined as:

Wo: range offset angular frequency

Wc : carrier angular frequency

A: antenna beam pattern

fs: modulating function of signal pulse

z 2 : flight height

c: speed of light

x 2 takes on discrete values (nvT s

v: aircraft velocity

Ts: interpulse period

In Chapter 4 Eq. (2-13) will be rederived and becomes
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Eq. (4-10). With (xl,Y I) being the input or object plane

and (x21t) being the output or image plane we see that

h(x2,t;xly I) = h(x2-xlt;v I) (2-14a)

or in our discrete numeric notation of the previous section

h(i,k;p,q) = h(i-D,k;q) (2-14b)

The above equation is referred to as the SAR imaging

equation with range curvature. The range curvature forces

the point spread function to be nonseparate. However, we

will see in subsequent cases that, by ignoring such curva-

ture, great simplification in processing can be achieved.

The second example for this case is obtained from

computer aided tomography (CAT) scanners in which x-ray

cross-section slices are obtained by computer reconstruction

of radiation projections. Figure 2-4 illustrates the geome-

try of such systems. Essentially the imaging equation is

given by

p(r,O) = ff f(x,y)h(r,9;x,y)dxdy (2-15)

where the integration is taken over the unit circle as in [2-4]

Assuming the blur is space invariant along r and independent

of 0, McCaughey and Andrews [2-4] have shown that once r and

0 are samoled the PSF becomes

h(r,e;x,y) = h(xcosO+ysinO-r)

34
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Y

f(x, 
y) 

r

unit circle

X-ray source

a) CAT imaging configuration f(pf) h(r' ;p,

N samples per projectionin radius

M projections

b) Data necessary for reconstruction

Fig. 2-4. CAT scanners
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or

h(r,O;p,)= h(pcos(O-p)-r)

where

X = Qcos

y = DsinP

Hence the [H] matrix becomes

[H] (1,1) [H) (1,2) [H] (1,2)

[H] (2-16)

[H] (1,2) [H] (1,1)

where fixed azimuthal steps are assumed and the super-

scripts denote the azimuth variables. E.g. (i,m) means

(ei,¢m). [H] is circulant in the index (i-m) because of

the (e-f) dependence in the PSF. Note that

cos(i- m) = cos(O m-i). Because a circulant is a subset

of a Toeplitz process we see that this PSF is a member of

Case 2, equation (2-5a).

As for the third example, consider the astigmatism and

curvature of field studied by Sawchuk [2-14]. The Point

spread functions behave in a rather complex fashion.

Figure 2-6 illustrates the imaging geometry. It can be

shown that the point spread function assumes the form
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h(xr x ' 4
D (2C+D)u r

(XrSin (x_) 2 [xrCos (x0_u )_u

+ r e6/ r < 1 (2-17a)

D2 R2 u4 (2C+D) 2u4R2
r r

h(xr,X0;ur,u0) 0, otherwise

where

C: degree of astigmatism

D: degree of field curvature

R: radius of a circular exit pupil.

A close examination of Eq. (2-17a) shows that it can be

rewritten as

h(x,xr;u0 ,U) h(x 0 -u 0 ,xr;Ur) (2-17b)

or in our discrete numeric notation

h(i,k;p,q) = h(i-p,k;q)

In the above formulation it should be noted that for no

field curvature (D=Q) and therefore only astigmatism, the

point spread function becomes

(4C2 R2U4_ (Xr ur) 2]
ha(X0,Xr;U,Ur) =22u4

a 6 r2C u
r

u -2CRu 2r < x < u +2CRu 2
rU r - r - r r

and zero elsewhere, which is separable and a one dimensional
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blur along (xr,Ur).

Case 3: Nonseparate space invariant

This situation occurs most frequently in traditional

linear space invariant optical imaging systems. The

concepts of coherent transfer functions (CTF), optical

transfer functions (OTF), and modulation transfer functions

(MTF) all exist in this category of imaging situation. As

an example consider the OTF for a diffraction limited system

with circular exit pupils given in Figure 2-5. Goodman

[2-10] has shown that the imaging equation are given by

g(x,y) =11 f( ,n)h(x- ,y-n)d~dn (2-18)

for a circular pupil function with diameter Z,

h(x- ,Y-n) = circ (x 2+(y_)2-

and in the notation of the previous section91h '~~pq 2/2 (2-19b)

Such an imaging system has a PSF matrix with (2M-) (2N-I)

degrees of freedom arranged in a block Toeplitz fashion.

As mentioned earlier, approximations to such block Toeplitz

forms with block circulant forms results in the use of fast

Fourier transform processing [2-7].

Case 4: Separate space variant
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No meaningful examples come to the minds of the author.

Interested readers are invited to contribute to this

illustration with examples from their own experience.

Case 5: Separate space invariant in one dimension

This class of imaging systems has examples from push-

broom sweep arrays (as in ERTS and LANDSAT data) and SAR

radar imaging configurations. Proceeding with the radar

example, referring back to Figure 2-3 we see that the

effect of range curvature caused the SAR model to be non-

separate. However, if our geometry and requirement is such

that the range curvature effect is negligible, then our

point spread function becomes decoupled [2-9,2-11,2-12] and

h (x2 t;x 'Y ) = h (t;yl)hM(X2-X /Y ) (2-20a )

exp(jwt)A(xl-X2 Yl z2 )f t y+z2))

exp { c - (xl-X 2 ) + +z (2-20b)

which will be repeated as Eq. (4-12) in chapter 4. In this

situation with N samples in time (range) and M samples in

azimuth, we obtain (2M-)N+N2 degrees of freedom (see

Table 2-2). While this system is "separate" it is nonsepa-

rable. This means that the order of the processing is still

important. Specifically, one should process the range data

first and then process the azimuth data in the image recon-

struction effort. The azimuth processing is a function of

41



range which explains the conditioning on y in equation

(2-20) and the need for the conical lens in optical recon-

struction of SAR imagery. (See for instance Goodman [2-10],

Harger [2-11], and Rihaczek [2-13]).

Case 6: Separate space invariant in both dimension

Two examples are presented for this case, an astigmatic

processor from Goodman [2-10] and rotational motion blur

from Sawchuk [2-15]. Figure 2-7 presents the optical chain

for the astigmatic processor. The imaqing equation is

g(x3,Y3 ) =fff(xlYl)h(x3-x1 )6(y3-yl)dxldyl (2-21)

This is an astigmatic process in one dimension only. Like-

wise, a two-dimensional (sequential) astigmatic process is

a straightforward extension.

The second example for this case is that of rotational

motion blur as illustrated in Figure 2-8. Here the blur is

greater the further away from the origin. The blur is an

angular spreading in e resulting in an imaging system of

g(r,O) = fff(p,)h(p,;r,f)pdpd (2-22a)

where

h(p,O,r,8) = 1-h (9- ) (p-r) (2-22b)

and the factor 1/p is due to the nonuniform rotational

speed. In terms of the polar coordinate system (p,O) into

(r,e), the imaging system is a blurring along 8 only and is
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two dimensionally invariant. However, in terms of coor-

dinate system (p,p ) into (r,rB) which has a Jacobian of

unity with respect to the rectangular coordinate system,

the system is invariant along the mapping from p to rO, but

changes its form as the other coordinate p or r changes.

Intuitively the points farther away from the origin are

subject to more blur as a result of nonuniform rotational

velocity which results in a nonseparable blurring in accor-

dance with our definition.

Case 7: Separable space variant

Separable space variant processes occur quite frequent-

ly in digital computation simply as a convenience for

computational simplicity. Thus two dimensional unitary

transforms for image coding fall into this example. However

more relevant imaging situations in this category include

imaging lenses with square apertures and the Fourier trans-

forming properties of lenses themslves.

Consider a lens imaging system with square aperture

such that p(x,y) = px (X)p y(y) is separable into x and y

coordinate and magnification factor m / -1. Goodman [2-101

has shown this system to have a PSF (see Figure 2-9) in

coherent light of

dfp(x~y) expl-Jli~(xi+MxO)x+(yi+My0) dxdyh(xiYifx0,Y0) -f P ,dodi A

(2 -23a)
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_ 2r
id Jpx(x)expj27iXi+L.J ) X dxX 2 d di f IX

f p (y) exp i- j L (Yi+MY0 ) Y dy (2-23b)

= hx (xi ;x 0 ) hy (yi;Y0 ) (2-23c)

Note that when M=-l we obtain Class 9 imaging.

As a second example, consider the Fourier transformina

properties of lenses. Figure 2-10 presents the optical

system for this illustration. Here the output image (i.e.,

the Fourier transform of the object) is given by

g(xf,yf) = j-fff(x 0 Y0)exp -3 - xxf+yoyf) dx dy 0

(2-24a)

Consequently

A -rxdexp (2-24b)
h(xffyf;xQfyQ) = jueXP I ~j3FxO~feP i~YQ~ 2b

= hx (x 0 ,xf)hy(y0,yf) (2-24c)

Case 8: Separable space invariant in one dimension

For this case we return to our SAR stripping mode

radar and make some additional simplifying assumptions. If

the difference of Ylmax and ylmin on the ground (Figure 2-3)

is fairly small, then let Yln be the nominal value of yl in

hM(X2 -X1 /yI ) of Eq. (2-20a) and after some manipulations we

obtain [2-9]

h(x2 ,t;xl,Yi) = h,(t;yl)hM(X2 -X I ) (2-25a)
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f(x0,y0) object g (xi yd) image

do ddi

Fig. 2-9. Square aperture magnification

YO Yf

f (yo, x0)

0 g (Xf? Yf)

Fig. 2-10. Fourier transforming properties
of lenses
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where
hN(t;Yl) = expljWot fs(t-_(yl+z,)k) (2-25b)

0 (X-X) 2

hM(X 2 xl) A(X-X2Z ) e x p -2 c 2 2 2 (2-25c)

(yn+Z2)

Derivations of above Equations can also be found in

Chapter 4.

Case 9: Separable space invariant in both dimensions

Pursuing our SAR example, a further simplification of
2 2 2

the range offset frequency equal to zero and yl+zl ; Yl

results in the following PSF [2-9]

h(x2 ,t;xlY I ) = hN (t-2cl)hM(x2 -Xl) hN(t-t2 )hM(x2 -xI)

(2-26)

where t 2 c

A second example of a separable space invariant

imaging system is a television raster display. The horizon-

tal dimension is electronically filtered (due to the frequ-

ency response of the components) and the PSF of the electron

gun. The vertical dimension is blurred or "interpolated"

by the PSF of the electron guns. Both dimensions are

space invariant in a well tuned monitor. The system will be

separable if the PSF of the electron gun is separable. This

is usually the situation for a Gaussian CRT spot.

The above examples are tabulated in Table 2-4 as a
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summary. It is clear that many other examples exist, but in

the interest of brevity, these will not be presented here.

2.5 Conclusions

This chapter has attempted to present an analysis of

the numeric computational aspects of linear imaging systems

from the viewpoint of the computational degrees of freedom

of such imaging systems. A matrix-lexicographic structure

was developed and the DOF of the PSF matrix was thenc

analyzed. These degrees of freedom were shown to range from

the most complex imaging situations (N2 M 2 ) down to the

simplest imaging systems with (2N-l)+(2M-l) degrees of

freedom. The inherent structure of each PSF matrix was

analyzed for 9 cases ranging from the most general block

structure down to the simplest form of kronecker products of

Toeplitz matrices.

Following the section on the analysis of the algebraic

structure of each PSF matrix, a set of illustrations from

the physical world of imaging systems was developed.

Examples from x-ray, radar, coherent, and incoherent optical

systems were presented as illustrative material to exemplify

the various cases developed in the earlier sections of the

chapter. It is hoped that this chapter has aided in the

ever growing marriage of computational algorithms and their

use for complex image reconstruction. As future imaging

systems are developed, it should be possible to utilize the

49



Case No. Imaging System Reference

1 Arbitrarily Complex Imaging
System

2 SAR Stripping Mode with Range [2-9,[2-11],
Curvature [2-12]

CAT Scanner [2-4]

Astigmatism and Curvature of [2-141
Field

3 OTF,MTF,CTF [2-5], [2-10]

4 None Presented

5 Pushbroom Sweep Arrays

SAR no Range Curvature [2-9]

6 Astigmatic Processor [2-10]

Rotational Motion Blur [2-151

7 Lens with Square Aperture [2-10]

Fourier Properties of Lenses [2-101,[2-16]

8 SAR Stripping Constant Range [2-9]

9 SAR Stripping Low Altitude [2-9]

TV Displays

Table 2-4. Physical examples of imaging systems
for the 9 cases
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framework developed here to readily anticipate the comple-

xity of computational reconstruction of imagery once the

structure of the PSF matrix is discovered.
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Chapter 3

PRINCIPLES OF RADAR IMAGING

3.1 Imaging Systems

The general two-dimensional imaging system, as depicted

in Fig. 3-1 is a transformation of the target or object

function f(F,n) into the observation function g(x,y) through

a point spread function h(x,y; ,n), which could be linear

or nonlinear and its variables discrete or continuous or a

mixture of both [3-1]. The purpose behind the imaging

system is to reconstruct or estimate the object function f

as close as possible in some sense from the observation g.

There are various imaging systems in the real world, e.g.

c¢tical, infrared, x-ray, and radar systems; with a wide

range of characteristics and limitations, the most conven-

tional one being the passive optical system in which a

camera records the reflectivities or transmissivities of the

object. In this case relatively little reconstruction

effort is required because the point spread function is

almost space invariant and in most situations has an

impulse-like shape which gives a g closely resembling f as

one usually experiences from taking photographic pictures

in his daily life. On the other hand, the radar imaging
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h(x, y; , ,n)
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h-1(x, y; ,r)

Fig. 3-1. Imaging system and reconstruction

I azimuth
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range

Fig. 3-2. Antenna illumination geometry
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system uses an active device to radiate signals whose

returns usually have to be processed by complicated

procedures to reconstruct the object function.

3.2 Principles of Radar Imaging Systems

There are three major physical parts in a radar

system: the transmitter, the receiver and the target. The

transmitter, which is required for all active imaging

systems, is used to illuminate the target. The receiver

is a sensing device which records the signals reflected

from the target and is followed or accompanied by a data

processing unit. The target is the object some physical

properties of which are to be calculated from the received

data. In fact the functions of the radar systems can be

dichotomized as target detection and parameter estimation.

Detection of a target is the determination of its presence

in the unavoidably noisy situation, and parameter estimation

is the measuring of the characteristics of the targets, e.g.

their ranges, velocities, angular positions, sizes, etc. by

the extraction of available information from the received

echoes when the presence of the targets has been determined

or assumed (3-2]. By this token, the radar imaging in which

shape and size of the target are of concern belongs to

the second category.

In order to reconstruct a radar image of some target

from its signal returns, two prerequisites have to be
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satisfied from the system point of view. First, the

returned data has to have a two-dimensional format.

Second, radar imaging geometry must be such that the return

from each pulse or signature contains different information

about the target. In fact, degrees of freedom (DOF)

analysis on the radar returns as explored in some detail

in this dissertation provides an attempt at evaluating the

information-carrying capability of the system by analyzing

the extent to which the above conditions are satisfied.

The two geometrical coordinates associated with the

radar or the targets in a 2-D radar imaging system are

usually called range and azimuth (or cross-range). (In 3-D,

there is one more called elevation). Range is the direction

along which the radar signal is transmitted, reflected and

received. Range information is provided by the return from

a single pulse resolved by timing (when a short pulse

waveform is used) or range compression technique (when a

linear-FM-like waveform is used). Azimuth is the direction

orthogonal to the range direction in the surface of interest.

It is the component of the relative motion between the radar

and target through which an effective target rotation is

created.

In the simplest geometry of radar imaging, the

processing of the data is separable along the azimuth and

the range directions. Although the coupling of the two

dimensions has to be taken into account in a comolicated
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radar imaging geometry, this chapter will discuss processing

principles when the system is assumed separable and hence

decomposable into two consecutive 1-D processes because the

understanding of processing principles along individual

dimensions is basic to comprehending sophisticated radar

imaging systems. In the separable radar imaging systems the

operations in the two dimensions could be any combination of

incoherent and coherent processing depending on the wave-

form and antenna pattern used. Incoherent processing

assumes incoherence of those signal returns from a single

target point and makes no attempts at processing the phase

part of the returns, whereby coherent processing uses the

phase relations among different returns to "compress" the

pulse to achieve high resolutions, as will be explained.

We now describe the principles of the four possible opera-

tions along the range and the azimuth directions indivi-

dually.

(A) Incoherent range operation.

The returns of a single pulse 7rom a particular target

point are assumed incoherent in phase. Thus no compression

technique (as this would require the knowledge of the phase

relation) could be applied and the only range resolving

ability comes from the actual timing of the strong magnitude

pulse return. If T is the time duration of the pulse then

the ideal range resolution PT will be half the time on

target (TOT) of that pulse translated into the spatial
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domain, i.e.

P - cT (3-1)

where c is the propagation speed of the EM wave. For

example, to achieve a range resolution of 1 ft. T must be

less than 2 nanoseconds. Thus for high range resolving

ability very narrow pulses have to be used, which requires

very high peak powers to keep a sufficiently large signal

noise ratio. Obviously the requirements of an extremely

short pulse and high peak power could not easily be met

from a technical viewpoint as the resolution pursued becomes

higher and higher. The main difficulty lies in the fact

that the duration of a rectangular pulse is inversely

proportional to its bandwidth making a simultaneous large

bandwidth and a high SNR very difficult. One way to get

around with this conflict is to use phase modulated wave-

forms which results in what we call a coherent range opera-

tion as follows.

(B) Coherent range operation.

In fact, it is the bandwidth Br, and not the time

duration of a pulse waveform that determines the range

resolution, i.e.

r c (3-2)
r 2B r

Equation (3-2) is a universal relation which applies to the

special case of rectangular waveforms of incoherent range

operation. Combining Eqs. (3-1) and (3-2) gives
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B • T 1 (3-3)r

for a rectangular pulse with time duration T and bandwidth

Br and without any phase modulation. The quantity Br T is

called the time-bandwidth product (TBP) which is an indica-

tion of the compression capacity of the pulse 12-31.

Coherent range processing uses phase modulation on the

transmitted pulses to enlarge its TBP. For example in the

case of a linear-FM modulation it can be shown that for

large bandwidth the signal bandwidth is proportion to k • T

where k is the linear FM rate which determines how fast the

frequency is changing within a pulse 13-33 and T is the

pulse duration. Thus in contrast to Eq. (3-3) the bandwidth

and the pulsewidth are now in proportion to each other and

the S/N will not suffer, but benefit instead, from using a

larger bandwidth pulse which is accompanied by a longer

pulse duration. Other forms of phase modulation are also

possible to "stretch" the pulse duration while increasinq

its bandwidth, but usually the linear FM or chirp modulation

is preferred because of its high efficiency in terms of TBP,

easy analysis and implementation. Upon receiving the echo

of a modulated pulse, the data processor "compresses" or

"decodes" it to get high resolution profiles. The resultant

de-modulated signal is in the decoded time domain and

consists of pulses whose width or resolution is determined

by the bandwidth of the transmitted signal and whose

locations determined by relative ranges of the target
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points. The compression ratio, or the ratio between the

original pulse duration and the duration of the compressed

pulse from a point target, is equal to the TBP in the ideal

case (3-3]. An intuitive explanation of the high resolution

advantage of a coherent radar processing is as follows:

Conceive that the point spread function in the range direc-

tion of a radar system is essentially a scaled form of the

transmitter signal waveform. Although the linear FM is rela-

tively long in time duration and hence the PSF wide in the

range domain, high range resolution is possible because of

the high bandwidthof the signal dae to the phase modulation.

This is the key point of coherent radar signalling.

Hence the simultaneous achievements of a high resolution

and a large signal energy are possible by a phase modulated

long duration pulse. It is noted that, however, because the

transmitted signal is in a coded form (e.g., linear FM

modulated), a decoding scheme (e.g., pulse compression)

which is a coherent processing, has to be applied upon the

received echoes, in contrast to noncoherent processing

(simple range grating) for straight short pulse signalling.

The compression or decoding of the return of a linear

FM signal from the target can be decomposed into two concep-

tual steps (3-41: a quadratic phase removal followed by a

Fourier transforming. The former is to compensate for the

linear-PM modulation of the signal and the latter is to

localize or resolve the various target points.
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Because of the strong mathematical similarity between

a linear FM signal and the quadratic phase delaying property

of the lens [3-81, optical or hologram processing techniques

can be used to compress the radar returns and to reconstruct

the target images. The analogy between a linear FM wave-

form and the phase delay of a lens is that both of them are

quadratic in phase, with the linear FM rate analogous to the

inverse of the focal length of the lens. Thus a lens of

suitable focal length (or a conical lens if the focal

lengths change in a linear fashion, as described in a later

chapter) can be used to remove the quadratic phases associa-

ted with the linear FM, followed by a Fourier transforming

to complete compressing the signal (3-3].

(C) Incoherent azimuth operation.

Before the development of the synthetic aperture radar

(SAR) techniques, incoherent processing was the only way to

obtain the azimuthal information of the target by a radar

technique. At that time, the traditional imaging radar

achieved azimuth resolution by using an antenna with illu-

mination pattern very narrow in azimuth. Physically speak-

ing, the narrower the beam width, the "narrower" the point

spread function and thus the better the resolution obtain-

able. There is no coherent processing necessary along the

azimuth direction because the illumination patches are

independent azimuthally and no fixed phase relations are

maintained among different pulses.
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From the antenna theory it is well known that the half

power beam width 0 in radians of a physical antenna of

length L is (See Fig. 3-2).

X/L (3-4)

Thus fine azimuth resolution (a small) demands a very long

physical antenna (L large), not practically available in

many situations as higher and higher azimuth resolutions

are required in recent years.

(D) Coherent azimuth operation.

From the analysis of the coherent range operation in

(B) it can easily be conjectured that a high azimuth resolu-

tion could be achieved by phase coding, e.g., a linear FM

modulation along the azimuth direction just as in the range

direction. However since the object of interest is two

dimensional (range and azimuth) while the signal is onlyi one

dimensional (a function of time only), and because only one

dimensional (i.e., the range) information can be inferred

from a pulse return, no explicit phase modulation upon the

transmitted signals along the azimuth can be realized.

Fortunately, an implicit modulation is made possible by

the relative motion of the target and the radar which

creates quadratic phase history to each target point in the

azimuth direction. In fact, the range history of any

rotating target point as a function of the time generates

quadratic or linear FM phases for small angle changes as a
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first order approximation [3-5]. This is the baseline of

the principle of synthetic aperture radars (SAR).

The azimuth resolving ability of the SAR can also be

explained from the antenna point of view. The radar

radiates pulses at different target aspect angles and

receives their echoes from the targets shortly after.

Because of the relatively short TOT of any pulse it can be

assumed that during any single TOT the motion of the targets

or the radar is negligible. The returns of different pulses

from the same target point are azimuthally modulated by the

relative motion between the radar and that particular point.

The induced linear-FM returns can be compressed to yield

high azimuthal resolution as in the range case. This is

analogous to the case of a physical antenna array where the

received signals at each array element are coherently

processed and summed to yield a sharp effective antenna

pattern [3-6]. The analogy between a physical antenna array

and a synthetic antenna is depicted in Fig. 3-3.

From Fig. 3-3(b) it is observed that the whole physical

azimuthal beam width at range R gives the length of the

synthetic aperture available at that range. If L and Leff

are the physical and synthetic antenna width alonq azimuth

then

LR B -!A (3-5)
eff L

where B is the physical antenna width in radians. Since the
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Fig. 3-3. Analogy between a physical antenna
array and a synthetic antenna
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operation of SAR utilizes the two-way beam pattern in the

sense that the phase shift is introduced on both the paths

to and from the targets, the round-trip phase shift effec-

tively reduces the wavelength by a factor of 2. Thus the

effective antenna pattern width is, from Eq. (3-1),

eff - X (3-6)
f  

2 Lff

The azimuth resolution pa is the effective beam width

projected on the target at range R

Pa Sef R - L (37)

which is proportional to the azimuth size of the physical

antenna, and is independent of X and R. Thus in the SAR to

achieve higher azimuth resolution a shorter antenna has to

be used, in contrast to a single antenna in a traditional

incoherent case as in (C). This is because a smaller

antenna has a wider illumination pattern which generates

a wider bandwidth available, a characteristic of linear-FM

signals [2-7].

3.3 Conclusions

This chapter analyzed one-dimensional radar signal

processing principles assuming, system separability. In a

radar system coherent in both the range and azimuth dimen-

sions, linear FM modulation exists in both dimensions. In

the range direction it is created by actually modulating
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the transmitted waveform whereby in the azimuth direction

by an effective rotation of the target. However, the

returns are processed in the receiver end by the same

compression technique to resolve the target points in both

dimensions.

As the analysis goes from one dimensional Processing to

a two-dimensional one as will be done in the following

chapters, new problems could generate many difficulties.

Coupling between the two dimensions, e.g. range curvature,

range alignment, relative scaling, is a typical example.

Also, motion compensation and focusing problems adds the

complexity to the system analysis.

System classification and decomposition principles

proposed in Chapter 2 will prove very useful tools in the

subsequent chapters in obtaining practical and efficient

radar image reconstruction procedures under the various

imaging geometries.
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Chapter 4

SAR STRIPPIN', MODI'

4.1 Introduction

Synthetic aperture radar can map two-dimensional areas

with high azimuth resolution achieved b.' the use of coherent

signal processing upon the taraet point phase histories

induced bv a relative motion between radar and taraet. In

imaging a large sized target which is usually stationary,

e.g., the ground terrain, the radar is carried on a movina

vehicle, e.g., an airplane or spacecraft, to get radar

echoes from different aspect angles of the tarqet points.

Based on the same synthetic aperture princicle, there are

basically three modes of SAR ground mapping depending on

the imaging geometry: spotlight mapping, strip maT)ping, and

Doppler beam-sharpening [4-1,2]. This chapter concerns the

stripping mode of SAR terrain imagina which is the most

interesting mode having obtained great attention since its

birth in early 1950's.

In its operation an airplane or spacecraft flies

straight over the ground of interest, radiates pulses at

different locations and records the returned echoes. As

shown in Fig. 4-1, let (x,y,z) be a rectangular coordinate

system witb (x,y) being the ground, and assume unless other-
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((x~ y2 z2) 14

Fig. 4-1. Flight-path geometry of stripping mode

67



wise stated that the flight is along the x axis, with y=O

and at a constant velocity. For simplicity a side-looking

radar is also assumed, although it could as well be squint

[4-21. In the geometry depicted in Fig. 4-1, we use

(xl1yl1z) and (x2 ,y2,z2 ) to denote the coordinates of an

arbitrary target point and the radar receiver on the air-

craft, respectively. We will assume that the effect of the

height of mountains and structures on the ground are negli-

gible and that the curvature of the earth surface can be

ignored such that z1=0 for all the ground points to be

mapped. Furthermore we assume that the time origin coin-

cides with the x origin of the aircraft. Thus x2=vt where

v is the velocity of the aircraft. As is generally the

case, the antenna is assumed to be shared by the transmitter

and the receiver. This necessitates the pulsed nature of

the signal waveform and inevitably creates blind ranges

[4-31. Echoes from targets in blind ranges reach the radar

while it is transmitting and not receiving and thus are

lost. Also, the pulse repetition frequency (PRF) sets an

upper bound to the maximum range without range ambiguities.

For simplicity of analysis we assume that the signal pulse

train consists of pulses of identical waveform at a constant

PRF. Thus let fs (t) be the modulation function of a single

pulse centered at t=O then the infinite lengthed pulse train

wave function will be, in its analytic form,
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00

f(t) = fs(t-nTs )exp(jw t) (4-1)

n=-o

where T is the pulsing period and wc the angular frequency

of the carrier. As described in Fig. 4-2, if the "effective"

time width of fs (t) is Tp then the length of the time

during which the transmitter is not in use between consecu-

tive pulses is Ts-T p which decides the maximum range

deviation of the radar returns without range ambiguities.

In addition to above timing factors, the depression

angle p, or the angle between the horizontal plane and the

radiated beam, and the antenna pattern are major parameters

of the system with its geometry depicted in Figs. 4-3 and

4-4. The point spread function is naturally a complicated

expression with many parameters interacting mutually and

hence precise image reconstructions demand formidable

efforts. However, depending on the degree of accuracy pur-

sued, if we model the PSF of the system in some desirable

way by appropriate geometrical considerations and appro-

ximations, we will be able to simplify the description of

the system, making the system evaluation work the purpose

of which will be described in the next section relatively

easier and the reconstruction more feasible. Of course,

by so doing we inevitably distort the system by using an

inexact model, and an incomplete or nonoptimal (in some

sense) reconstruction of the target image is to be expected.
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Fig. 4-2. Waveforms of pulsed signals
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Fig. 4-3. Flight-path geometry on vertical plane
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Fig. 4-4. Flight-path geometry on slant range plane
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It is obvious that the more approximations one makes, the

more degradation will result in the reconstructed image.

In this chapter we will give a hierarchy of the SAR system

models in progressive inaccuracies. We will show that these

models fit the system classification categories in Chapter 2

nicely so that the reconstructions can be done readily by

using the appropriate algorithms summarized in Chapter 2.

We will also tabulate the approximations made and their

justifications at each step. It will be shown that in its

simplest form the system is separable and space-invariant.

An imaging system has two kinds of DOF's; one of them

is computational (DOFc) as studied in Chapter 2 and the

other is informative (DOF). We now explain the latter and

differentiate the two.

4.2 System Evaluation

In general, gathering more data provides more

information to solve for the unknowns at the expense of

increased requirements in storage and complexity in compu-

tation. On the other hand, intuition suggests that after

some "threshold amount" of data is obtained, the additional

observations do not always provide equal amounts of new

information. This is due to the inherent "blurrinq" of the

imaging systems and observation noise, etc. Thus the

concept of degrees of freedom (informative DOF) has arisen

to measure the number of truly independent samples of
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data one gathers under a particular imaging system [4-4,5].

In the system evaluation the concept of eigenvalues of

a correlation matrix or the Gramian matrix is usually

adopted [4-6,4-8]. For example, in the continuous-discrete

case, we equate the degrees of freedom with the number of

eigenvalues of the Gramian matrix larger than some threshold

determined by the noise level of the system. This is equi-

valent to the singular value analysis of the system. For

the purpose which will be clear later we now show that

orthogonal transforming the input and/or output data of a

linear system will not change its eigenvalue spectrum and

hence its system performance, other than a possible reorder-

ing of its singular values. Consider the discrete-discrete

case for the sake of ease in proof: Let (H] be the matrix

of the linear system and [P], [Q] be orthogonal matrices

multiplied with the output and input vectors, respectively;

PtP = PPt =I and QtQ = QQt = I where the superscript t

denotes a transposition. The set of eigenvalues of

PHQ(PHQ)t = PHQQtHtp t = PHHtPt is the same set of eigen-

values of PtPHHt = HHt except for additional zeroes due to

possible size difference of P and Q [4-81. Note that the

sets of eigenvalues of PHQ and H differ in general, though.

To differentiate the DOF and DOF, we note first thatc

both of them are derived from the system PSF. However, the

DOFC is usually determined before DOF and it need, only

the structural information of the PSF and can be determined
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by identifying the PSF with the simplest case in Chapter 2.

The DOF c is used to determine the amount of effort required

to estimate the DOF which requires the actual numeric values

of the PSF in the matrix diagonalization manipulation.

4.3 Derivation of Point Spread Function for the SAR

Imaging System

Referring to Fig. 4-1, zI = 0, x2 = vt, Y2  0 and z2

is the flight height. Define the ground range

R [(Xl-x2)2+ (yl-y 2 ) 2

= [(x-vt) 2+y1] (4-2)

and the slant range

R = [(X 1 -x2 2 2+(z2)
2]

= [x-vt) 2+y+z2] (4-3)

1- [R~ 1 2

The propagation delay associated with a point target

at (xl,YlZl) with range R is 2R where the factor 2 is

because of the round trip of the wave propagation. Let

P(xly I ) be the reflectivity function of the terrain and

A(xlYlx 2 Z 2 ) be the illuminating intensity of the antenna

beam on the terrain point (xly I ) when the receiver is at

(x2 ,0,z2 ). If the antenna pattern remains the same during

the flight, it is easily seen that
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A(xl,Yl,X 2,Z2 ) = A(x 1 -x2,ylz 2 ).

The received echoes are the product of the illuminating

pattern A, the terrain reflectivity P and the delayed

signal function f, summed over the ground coordinates

(xl where the propagation decay has been assumed

uniform in the (xlY 1) plane and neglected

z(t) = A)P(Xl )f(t-2)dXldY (4-4)

f Afx 1- 2,ylpz 2)plx 1 y1 )ft-)d 1dy 1
-00

Substituting Eq. (4-1) into Eq. (4-4),
CO O

z(t) = I A(Xl-X 2'YlfZ2)P(xY (t-2R-nT

exp jW (t-f)(t- dy- (5)

If we interpret Eq. (4-5) as a two variable to one

variable system with p(xly 1 ) as its input and z(t) as its

output, it is obvious that the system is linear with

point spread function

h(t;x y1 ) = A(X -X 2 ,Y ,Z 2fs t nTs22]

n = - oo c

cc22 Jc (4-6)

exp{j c t} E A( 1 -nvTs,Yl,Z 2 )f(t-nT s
-

n=-oo

2 ns2 2 2]k 2 [(x2nVTs)2+y+z ]k

c c
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where x2=nvTs is a discrete radar coordinate and it has been

assumed that during the transmission and receiving of a

single pulse the aircraft is approximately stationary so that

x is substituted by nvTs in Eq. (4-6). This is valid if

(sufficient conditions)

a) A(x -nvT izPAx nT+x 'a) A(l-nV 5 ,YlZ 2 ) A(Xl-nVTs+Ax2 ,Yl,Z2 )

2_ 2 2 2b) (Ixl-nvTsl+Ax 2 ) (xl-nvTS) 2<<(Y+Ayl) -y1 and

c 2[xinT+A 2  2 2 2 2 2C) 2[(,xl-nVTs,+Ax2+yl+z2]k-2[(xl-nVTs ) y+z2+Z <X

for all x1 and yl under illumination, where Ax2 is the

maximum distance the aircraft travelled during the receiving

of a single pulse. AyI is the range resolution desired.

See Fig. 4-5. Note that Ax2 <vT s as assumed earlier. The

above relations assume that the movement of the radar during

the receiving of a single pulse is so small that a) illu-

mination pattern is effectively fixed, b) no range walking

within one pulse and c) induced phase error is much less

than one wavelength, respectively.

(a) is easily satisfied by noting that L is ofeff L-'

the order of hundred or thousand meters, and is

therefore greatly larger than Ax2 , which is of

the same order of the azimuth resolution desired.

(b) (Ixl-nvTsl+Ax 2 ) 
2 (x-nVTs) 2

= 2Ax 2 1 -nvT +Ax2

< 2Ax 2 (Leff+Ax2 ) 2AX 2Leff

while
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A×Y2nvT.5 X AX y

(n+l)vT, X

X2

Fig. 4-5. Justification of the stationarity of
radar within one pulse time
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22 2 2(YI+AYl) -Yl = 2AyI'Y+Ay 1  2AyI'Y

Since Ax2 is of the same order as Ayl(azimuth resolution

vs. range resolution), (b) will be valid if

Leff yl (4-7)

(c) 2 )[[(IxlnVTsl+x 2 ) 2 +y 2+ z 2  (xl-nvT ) 2+z2]k1
1L 5  2 -1' 1 2

2 2(y +z ) lsA22 -y 2 +Z2 ~(x 1 -nvT S)2

Y+Z2 +z2)
2 (1xl-nVTsI'Ax 2 +Ax1)

(Y1l+Z 2)k 1 S-xA

21xl-nVTsl.A

(Yl2+Z2 )121 2

2Leff'Ax 2
2 2 A2(yI+Z2 )

where validity of Eq. (4-7) has been assumed. Thus if we let

Ax2 be of the same order as X,. (c) will be satisfied. In

fact, the achievable r .uth resolution is of the same order

as Xc [4-11].

Because the sinusoidal phase term exp{jc t) in Eq.(4-6)

does not carry any information on p(xiYl), a preprocessing

can shift it to any lower frequency wo desired. In optical

processing upon SAR data, the "offset" frequency w 0O is to

separate reconstructed twin images from each other and from

other useless images [4-9,10].

Thus,
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h(tx l ,yI) = exp{jw t} E A(x-nvTsylz 2 )
n-oo

2 ( l - V~ )2+y2l 2]

fs(t-nTs 2[Cx lnvTs) + Z I
c

t~ m 2  (xlnVT) 2+Yl2 2]

exp j ( (4-8)c c

Although the return of the pulse train from the two

dimensional target field is one dimensional - i.e., function

of t only, the recording of data is usually two dimensional.

For example, because of its huge capability for 2-D data

storage, film has been widely used for SAR data recording.

This is conveniently done for latter processing because the

signal returns from different pulses do not overlap in time.

The returns of each transmitted pulse are arranged side by

side as in Fig. 4-6(b) in which the data lines are contained

between 0 and Ts in the new t axis and extends along the

flight path axis x which is perpendicular to the t axis.

Equivalently, the original one dimensional t axis denoting

the data collecting time is transformed into two dimensions,

discrete x2 and continuous t. Because the coordinate trans-

formation above is a reordering of the data which is an

orthogonal transformation, nothing has been changed from a

DOF point of view from the analysis in section 4.2.

Now S(x2 ,t) is nonzero only for 0 < t < Ts and x2 is a

discrete variable occuring at nvT5 only. Note that x2 and

t, which are the variables in the cdata domain, have dimen-
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z(t)

000 [ k.4 I . . _A_-. I .. A I A _ I I

(a) received signal

S(x 21t)

2 2

X

(b) reordering of (a)

Fig. 4-6. Reordering of received signal
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sions of length and time, respectively.

The PSF expressed in (x2,t) variables now becomes

h(x2,t;xlyl) = exp[jw 0 (t+nTs)]A(xl-x2 ,Ylz 2 )

ft [(xl-x 2) 2221

[x 22+zc] (4-9)

where 0 < t < Ts , x2 = nvT s.

Eq. (4-9) can easily be identified with the kernel of

a two-dimensional transformation,w0 , Wc, v, Ts, z2, c, A

and fs being parameters. Sometimes it is desirable that the

data obtained from the system kernel Eq. (4-9) be multiplied
x2

with exp(-jw 0nTs ) = exp(-jw-), or exp(-jw0 t) yielding

range offset case and azimuth offset case, respectively

[4-12]. Although the multiplication is not necessarily an

orthogonal transformation and thus would affect the true

DOF of the imaging system, the exact effect on the DOF will

not be investigated here. As will be explained in Chapter 7

this is one of the preprocessors designed to make subsequent

processings or presentation easier. The offset data has

equivalent kernels

h(x2 ,t;xlY I) = exp(jw 0t)A(x1 -X2 ,yl,z2 )

2 2 ex2] 2 2 2]

fS(t L c) c y1 jc

range offset case (4-10)
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h(x2,t;xl, 1  exp --x2 A(Xl-X2Y, )

f~[ 222 Lex ].jw [_x1  2 2 2]
f -2[(xl-X 2) + +Z2 exp -JW x1 c2+ z

fs( t- c c

azimuth offset case (4-11)

In the following analysis we shall assume that the range

offset case is used.

4.4 Simplification of PSF

In this section we try to simplify the PSF (Eq. (4-10))

of the SAR imaging system from several physical considera-

tions. Along with the simplifications, a hierarchy of

models of PSF's with decreasing complexity will be derived

along with their associated assumptions and approximations.

We start by noting the strong relations between

variables xI and x2, y1 and t, respectively: in Eq. (4-10),

the argument of fs' t-[2 (Xl-X 2 )2+yl+z2]J / c, were it not

2for the factor (x1-x2 ) , would yield a simple one dimen-

sional relation which connects yl with t to provide the

range information independent of azimuth modulation. This

is the only way which makes h(x2 ,t;xly I ) nonseparate in

azimuth and range in Eq. (4-10). If this fact can be

ignored, e.g., if the propagation delay induced by the

variation in (x1-x2 ) is much smaller than the range resolu-

tion interested, then the PSF can be considered separate in

azimuth (from x1 to x2 ) and range (from yl to t):
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h(x2,t;xl,Y I) = exp(jw 0t)A(xl-x 2,ylZ 2 )

2 2 k 2 2 2]1
fs t- 2(y1+z2 expt)jW c2 LIxlx2) +y1 +z2

c c

(4-12)

Physically this means that the range resolution cells

under antenna illumination do not move to overlap each

other as the flight continues. The situation is depicted

in Fig. 4-7, where the range y of a target point is plotted

as a function of the azimuth distance xl- 2 of that point.

Various ways have been proposed to alleviate the problem

of range-azimuth coupling [4-13,14,15] where the range

curvature is not to be ignored. However, if pr is the

range resolution pursued and a the effective beam width

then this range curvature will be negligible if

I +X- 2 + z  -(Yl+z2 ) 3 r

for all x1 -x2 and yl illuminated by the radar. Assuming
2 2

(xl-x 2 ) << (y2+z 2 ) as in Eq. (4-7) and small, we have
212 2 (xl-X) 2 2 -

21 x _x 2 2 y + 212 1 2 1_ 2 2 (y 2 ¢Y+Z2)
( 1+zX) 2

(x 1-x2)

(yl+z 2)

L 21 eff

=8 Le8ff
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.2 22 1

y = [(xl-x 2 ) +y 1+z2,

x )c

) 1 -x

Fig. 4-7. Range variation of a point target
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So we require that

> .- L (4-13)Or  8Leff

tor negligible range curvatures. I.e., PSF can be

approximated by Eq. (4-12), which is separate in azimuth

and range, if the inequality (4-13) holds.

To see that the system with kernel Eq. (4-12) is

separate in azimuth and range, we rewrite Eq. (4-12) as

2 2 2

(x (X- 2 ) +y +z

A(xlx 2 ,YlZ)exp jWc 2 1

=ht(t;yl)hz (x2 ;xlYl) (4-14)

s2(yI2+Z 2) stersos

where ht(t;y I) A expHjW0t)f s  c is the response

of a unit point source (impulse response) at y,, which is

independent of azimuth dimension; and

A 2 (Xl-X 2  1 yz2J

hz(x 2 ;Xl'yl) A (xlx2Yl'Z2)exp -jtc 4 l c

is the azimuth response of a unit point source at (xl,Y1 ).

Note that hz (x 2 ;x lyl) = hz(xl-x 2 ;yI ) is space invariant in

x and x2, but varies its form as y, changes. If we use

Eq. (4-14) as the kernel of the SAR, then the input-output

relation will be 85



00

2 f ht (t;Yl) hz (l-x 2 ;Yl)9 (xl'Yl)d dYl
-00

(4-15)

Thus equivalently the imaging system of SAR is a transforma-

tion of p(xl1 y,) into z(x21 t) in a sequential order:

azimuth transformation followed by range transformation.

Because of the dependence of hz upon YI' ht and hz are not

separable and thus their order cannot be interchanged in

modelling the system. Accordingly, the reconstruction of

the ground reflectivity function p(x1 ,yI ) from its image

z(x2 ,t) has to follow the reversed order.

To put Eq. (4-14) in a more practical form, we note
2 2

from inequality (4-7) that Ixl-X 2 1 « yl+z 2 and hence

2 2 2 (X1 -x 2 ) 2

2() 2 21  2(yl +z2 ) + 2 2

jW2 +Y+Z2 lexpI-jW (y1+z2 )'
exp -J~cc cccc c

2 z2) 2

= exp j 2 (y1+2 --xp (X 2 2)x (4-16)
l-c I yl+z2)

and thus hz(x 2 ;xly I) can be approximated by

2 2 )

hz(x 2 ;xl,YI) exp j c 12c A(x 1 -X 2 ,yl,z 2 )

:) jwe (Xl-X2)2 1

exp -jS c y2 2) (4-17)
(Yl+26

86



2(yl+Z 2 is independent of
Because the phase term exp I-J 2Wc- c o

azimuth its effect can be taken out and absorbed in the

reflectivity function p(x,y). In terms of the system

block diagrams, we now have Fig. 4-8 where

2 22

ht(t;Yl) = exp(J 0t)fs (ty l z 2)

h' Xl-x2'yl) A (Xl- (4-18)
z x ~ 1-x2,y1 z 2)

e .c (x 1 -x 2 ) 2
e xp 1 -3 c ( 2 + Z2 k

(Yl+Z2)

Eq. (4-18) is the form assumed for most SAR processing.

The equation clearly expressed the separability of the PSF

in which the range information is provided by the timing

of the returns whereby the azimuth information is provided

by the phase history induced by the motion x1 -x2.

All the assumptions required so far can usually be

justified in practical SAR systems of stripping mode. We

proceed to approximate Eq. (4-18) by a PSF separable in

azimuth and range, i.e., such that hz is independent of yl

in Eq. (4-18). This will be true if

(A) A(x 1 -x 2 ,ylz 2) = A(x1 -x2 ,z2 )

(B) exp -3 - - + 2)2 exp 3 c (Y l+ 21 2 2

where y1 and y{ are azimuth coordinates for any two target

points under the antenna illumination. (A) can be made
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approximately true by an appropriate antenna pattern tail-

ored for the imaging geometry.

2 +Z2

(B) will be true if lmax 2 1 y min and Ylmax are2 +z2
Ylmin+Z2

the yl coordinates of the target points at maximum and

minimum ranges covered by the antenna beam, respectively.

In that case, the azimuth modulation would be same linear

FM at all range bins. We shall not elaborate on the exact

requirements for the inequality.

It is pointed out that in general (B) cannot hold.

However, if it could, then the system of Eq. (4-18) would

be separable:

h(x 21 t;xlYl) = ht(t;yl)hz(X 2 -x1 ) (4-19)

Further theoretical reduction of the PSF is still

possible: if we make the offset frequency 0 and assume
2 2~'

that yl > z2 for all valid yl such that z(yl2+z 2 )/c can
2y, A 2yl

be approximated by c , then by changing variable t2  c

we will have

h(t;y1 ) = f s(t_ c~

or

ht(t;t
2 ) = fs(t-t

2 )

so

h(x2 ,t;xiy 1 ) = h1 (X2 t;xl,tl)

ht(t-t 2 )hz(x2-Xl) 14-20)
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which is a separable space invariant PSF (SSIPSF).

A summary of the properties of the PSF's under various

assumptions is listed in Table 4-1.

4.5 Conclusions

This chapter presents the analysis of the stripping

mode of the SAR from a PSF point of view. A series of PSF's

of the imaging system is derived based on various geometri-

cal and mathematical assumptions. Depending on the degree

of precision one pursues the PSF's vary from the most

complicated case of a non-separate one-dimensional invariant

processing to a separable two-dimensional invariant proce-

ssing. The requirements for most of the approximations are

derived. Many parameters are present in the radar equations

which look formidably complicated in some of its most

precise forms. By classifying the equations according to

the method in Chapter 2, parameters can be clearly separated

from the variables associated with the imaging equations and

great insight into the image formation methods is readily

provided.

The concept of preprocessing is briefly mentioned in

this chapter. Details of processing techniques for the

reconstruction are not presented until later chapters.
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Chapter 5

TURNTABLE RADAR IMAGING

5.1 Introduction

Synthetic aperture radars achieve high azimuth resolu-

tion by coherently processing the phase histories of the

tarqet points. Based on this principle there are three

modes of SAR: the &tripping mode, the doppler beam

sharpening mode and the spotlight mode. In the previous

chapter the stripping mode has been analyzed and many radar

parameters introduced. In this chpater we study a radar

imaqing geometry closely resembling the spotlight mode and

in a well controlled environment where the relative motion

between the radar and target is a strict circle.

We will show that the underlying radar imaging system

is very similar to a computer aided tomographic (CAT) system

from the PSF point of view. Unfortunately, physical

limitations, e.g. the aspect-angle-dependence of the target

reflectivities and the shadowing effect from 3-D obscura-

tion, discourage one from applying a tomography-like recon-

struction to the reflected signals. Hence, instead the SAR

principles will be applied directly to small angle looks

and several looks will then be registered and incoherently

summed to give the full reconstruction of the object
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reflectivity function. A DOF as well as Nyquist rate

analysis in the frequency domain will be derived to show

the minimum number of data points required for image recon-

struction under specified physical constraints and require-

ments. Basic relations between bandwidt' and resolution

will also be discussed.

5.2 The RAT SCAT Facility and Data Acquisition

The original design purpose of the RAT SCAT (standing

for RAdar Target SCATter Site) facility is to measure

radar cross section (RCS) of various targets at different

distances, angles, elevations and frequencies [5-1]. In

operation, the target (say a model airplane) is placed on a

rotator at a distance r0 from the radar to its rotation

center as shown in Fig. 5-1. A reference sphere S is

sitting at distances r1 from the radar R and r2 from the

rotation center C. The angle between line RS and the target

line of sight RC is a. Let ( ,n), (x,y) be two rectangular

coordinate systems with origins at C. Let (E,n) be fixed

on the target and (x,y) on the ground at an angle 0 from the

former coordinates, as depicted in Fig. 5-2. At discrete

angle ei the radar radiates continuous waves (CW's) single

frequencies fk for various k. The radar receiver at the

reference sphere S takes the signal directly from R to S as

a reference and beats it with the signal reflected from the

target. The resultant in-phase and quadrature phase
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reference

sphere (receiver)

C. r r,

A

Target Radar
on rotator (transmitter)r>1

Fig. 5-1. Relation among radar, target and
reference sphere

Y

-- xj
C radar

Fig. 5-2. Geometry of coordinate systems
( , r): target, (x,y): ground
or radar
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components become the data. This process continues for

different k and i to form a 2-D data array. For simplicity

we shall assume that at each aspect angle the radar

radiates the same set of M frequency waves at a fixed

frequency step Af. We shall assume that the angle step A6

is also constant as one advances the aspect orientation.

5.3 Hypothetical Target Reflectivity Function

Referring to Fig. 5-2, let f( ,q) be the reflectivity

function of the target, where by reflectivity function f(%,n)

we mean the ratio of the received signal due to a point

target at (,4,n) with the radiating signal. At wavelengths

X small compared with the curvature of the target body, as

used in our experiments, the target looks specular to the

radar [5-2] so that only those surfaces at appropriate

orientations to the radiation path reflect strong energy

back to the radar receiver. in addition, wherever a point

( ,q) is blocked by some other points or surfaces in the

line of sight (LOS) to the radar, shadowing occurs. In

other words, the shadowing effect occurs because of the

non-convexity of the surface of the target. Thus f(C,n) is

actually a function of aspect angle 8. Nevertheless, for

ease of analysis we assume that f(,n) is independent of 8

and we shall see a close resemblance of this imaging system

to that of a tomography. A great deal of insight can be

obtained by this theoretical assumption. Even if we
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release this assumption, as we shall do later, the DOF

analysis based on fixed f(E,n) is still valid in the real

situation.

5.4 PSF of the Imaging System

In Fig. 5-1 let's assume that the angles a and 3 are so

small (in our experiments they are ; 10) that the signal

reflected to S would essentially be the same as if S were in

the line RC at the same distance from C. The distance

between the object point at (,,n) and the radar is a

function of r0 , 0, E and T).

= 2 2r(r0 ,0,F,q) (r0-x) +y2]

(r0-x), (5-1)

where we have assumed that r0-x >> y for all target point

coordinates (x,y) or (t,n) and

x = cose+nsine = xcosO-ysin9
or

y = ncosO-&sine = ycos0+xsin0 (5-2)

where 0 is the angle from E axis (on the target) to the

x axis (on the imaging device). Thus

r(r0 ,0,,,n) [(r0 -YcosO-risin0) 2+(cosO-,sin0) 2]

2(r0 -x) ( sine-ncosO)+2y(-nsinO-CcosO)

&sinB-ncosO = -y (5-3)
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where we have assumed r 0 -x 

Equations (5-1) and (5-3) reveal that the lines of

constant range and lines of constant doppler are parallel

to the y,x axis, respectively. Lines of constant range can

be separated or resolved by range or timing processing while

lines of constant dopplers can be separated by azimuth or

doppler processing, roughly speaking.

We proceed to find the PSF's of the imaging system.

Let a be the maximal radial extent of the target.

Define line projection at angle 0 and range x by

a

g(x,e) = f( ,n)dy (5-4)

-a

which is the integration of the reflectivity function f( ,n)

over all target points at distance r0 -x to the radar when

the x axis is at an angle 6 from axis. The radar

transmits signals of the forms

fk(t) = Acos( 2Ttfkt+P) k = 1,2,...,M (5-5)

at discrete Oi, i = 1,2,...,N, where A is an amplitude

factor and $ a phase term. The siqnal reflected to the

reference sphere from the "line mass" at range r0 -x is

z(x,i,k,t) = Bg(x,i)cos 21Tfk  t c)+ (5-6)

where the signal power, propagation decay and reflectivity

phase have been absorbed into the complex constant B. The

return from the whole object is a summation of the contri-
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butions from different ranges:

Ia

z(i,k,t) = Jz (x,i,k,t)dx
-a (5-7)

= B a q(x,Oi)cos 27Tfk t c) + -2x
-a

which is again a CW.

The signal received by S along path RS assumes the

form

y(k,t) =C cos[27r rlj) + (5-8)

When signals in Eqs. (5-7) and (5-8) are mixed or multiplied

at S, they become
fa [~ (t r0+r2-2x

(i,k,t)y(k,t) BC g '9 )Cos 2Tfk
-a

COS 2Tfk -c) + (P dx
fC a  [ 2 r0+rl+r2-2x

a [(r-r x

B _a g(x,oi)cos 2 f O-r2+ )Jdx

(5-9)

The first term in Eq. (5-9) is a high temporal frequency

term which can be filtered out to leave only

a  c2x+s( -r -- r
I(i,k) = D g(x, )Cos 2k-- 2 7Tf( (J-a k C

Similarly by beating z(i,k,t) in Eq. (5-7) with 90 shifted

version of y(k,t), one obtains

pag si(2 c-- + r -0r)x(-1

Q(i,k) = -D a(x,3i)sin f 2f c )dx (5-1)
-ac 98



Define

Yktg(x,0i) } = g(x,O i)(exp - dx (5-12)

-a rl-r 0 -r 2
and compare Eqs. (5-10) and (5-11) with (5-12). 2rrfk c

in (5-10) and (5-11) is a linear phase term with resoect

to f which if compensated for would mak? I(.i,k) and Q(i,k)

the Fourier component of the shadow gram g(xe i ) at angle2fk
0. and frequency -. According to the circular projection

1 c

theorem [5-5], the data [I(i,k),Q(i,k)] takes on the value

in the ring in Fourier frequency domain as shown in Fig. 5-3

with the extra linear phases mentioned.

Mathematically the structure of the data obtained has

a considerable similarity to that of the Fourier transformed

data of an infinitely narrow parallel-beam tomographic

imaging system [5-4,5]:

In the computer aided tomographic system, let p(y,0)

denote the integral of the object transmission (in the radar

system it would be the reflectivity) function f(C,n) or

f(x,y) along the line L(r,0), as shown in Fig. 5-4. As

before, coordinates (E,n) are assumed fixed on the object

or target and (x,y) fixed on the data gathering device (in

the radar system it would be the transmitter and receiver).

The two coordinate systems are related by

x = cosO+nsinO = xcose-ysineor (5-13)

y = ncosO-&sinO o = ycosO+xsin(
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Fig. 53. Rawdata i f reqc.dmi
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as in Eq. (5-2). The equation for the line L(r,6) is

x-r=O or cos8+nsin6-r=0. Thus

p(r,e) = f f( ,n)ds (5-14)

L(r,8)

where s is along line L(r,6)

The set S={p(r,8) I-<r<-, 0<6<nI is called the shadow-

gram which is a transformation of the object function f(U,n)

or f(x,y), and is the data one obtains from a parallel

beam tomographic system. A famous way to reconstruct f(C,n)

from p(r,6) is to use the back projection convolutional

method [5-6]. Other reconstruction algorithms can be found

in [5-7]. However, if we take the Fourier transform of

p(r,e) with respect to r,

P(We) =f p(r,O)exp(-jwr)dr = f f f(C,rI)exp(-jojr)dsdr,

- - L(r,O)

and compare with

F(w,6) = f f f(&,n)exp[-jw( cose+rlsinO)]d~dn (5-15)

where F(w,8) is the two-dimensional Fourier transform of f

in polar coordinates, it is obvious that

P(w,O) = F(w,6)

Hence f(E,n) can be reconstructed by taking a 2-D inverse

FFT upon F(w,6) or P(w,8):

= 2 fd f P(w e)exp[jw(Ccos+nsine)wdw] (5-16)

Tr 0 -00
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Thus it seems the RAT-SCAT image could be obtained by

a 2-dimensional inverse Fourier transformation upon the

data, just as in the transformed tomographic system. There

are, however, several differences which should not be over-

looked:

(1) The validity of the hypotheses made in Section

5.3.

(2) A linear phase factor (if not compensated for)

in RAT SCAT as in Eq. (5-11).

(3) Bandpass (instead of low pass) property of data

gathering ability of RAT SCAT as in Fig. 5-2.

Because of (1) and (2) one has to seek algorithms

other than those from tomography to reconstruct our RAT SCAT

images. Becuase of (3) the radar images have no "DC" term

and magnitudes or intensity of complex reflectivities have

to be taken in order to display the final stages. We'll

next derive the minimal number of data required to recon-

struct a target of given size and required resolution, show

the relation between resolution and bandwidth and then

propose a reconstruction algorithm which turns out basic to

all modes of SAR's.

5.5 DOF of the Data

The DOF problem of an imaging system arises because the

data available for image reconstruction are not independent.

In other words, there are overlappings among different PSF's
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of the data acquisition system. A common method to tackle

the DOF problem is to form the correlation matrix [F] of the

imaging system and try to diagonalize it. The eigenvalue

spectrum and the rank of [F] give a quantitative measure

of the DOF.

The degrees of freedom problem of a tomographic projec-

tion system has been analyzed in detail by McCaughey and

Andrews [5-5]. Because of its mathematical similarity, we

will apply some of their results to the RAT SCAT data.

First, for the purpose of clearity and convenience,

let's normalize the spatial extent of the target as in [5-5].

We assume that the object has a maximal radial extent of a

meters and that the minimal and maximum radar frequencies

applied at each aspect angle are fmin and fmax' respectively,

which give respective 2 way wavelengths

1 cIma x  Y _.

min
(5-17)

1 c
min  f 2

max

where c is the speed of EM waves. The normalized frequen-

cies have a spectrum from

_ a _ a

fl 1 Xa to f2  - a (5-18)
max min

Refer to Fig. 5-5.

For the circular imaging system on the unit-radius

object it has been shown in [5-5] that the (i,m,k,l)th
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Fig. 5-4. Projection imaging geometry

(a) spatial domain (b) frequency domain

Fig. 5-5. Spatial and frequency domains of a
spatially normalized target

104



i,mof[]i
entry r k,1 of [ is

rk,l= J J exp[-j2k(oie(i+sin6i)exp[+j2rul(cosOm+sin9
m) ]ddn

R

_ 1l(2 n (uk 2 u~kulcns(O6m) 2)] (5-19)
2 2 ]

Juk- 2ukulxos ( -m)+u 1 )

where (i,k) and (m,l) are indexes of any two, possibly

same, data points; i and m are azimuth angle indices and k

and 1 are frequency indices along radial direction. Jl()

is the first order Bessel function of the first kind, R is

the unit circle and 0<0., 0 <2n, f<u ul<f2  Ea. (5-19)

can be rewritten 
as

rk [1p(k,l,i,m) (5-20)

k,1 QP(k,1,i,m)
2 2

where p(k,l,i,m) = [uk- 2 ukUlcOs(ei-em)+Ui] , which is

nothing but the distance between two points (i,k) and (m,l)

in the frequency plane. In other words, ri m is only ak,l

function of the distance between the two data points.

Therefore, one can think of the data as samples of a two-

dimensional stationary process with correlation function

J JI(2Trp) which is the Fourier transform of the unit circle
P

which defines the object spatial extent. The correlation

pattern is the same no matter where the points are consi-

dered and manipulation methods of stationary processes such

as the Nyquist sampling theorem can be applied to easily

solve the DOF problem.
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A stationary process with correlation function ....

has a oower spectrum (Fourier transform of t_e corri-iatioi

function) circ(r) and is bandlimited .with radial cutoff

frequency 1, as shown in Fiq. 5-6. According to the

Nyquist sampling theorem, the sampling inter.val in the

frequency domain must be < 1/2 in order to avoid any alia-

sing in the spatial domain. This coincides with the more

intuitive fact that to adequately represent an object of

maximum statial extent S, the samplinq interval in its

frequency domain should not be larger than 1/S (note that

S=2 in our case of a normalized target). This information

can be used to determine the maximum allowable frequency

steD in the radial direction and maximum angle step in

azimuth without ambiguities. As an alternative way of

analysis tne "effective correlation region" in the data

domain can be determined from Eq. (5-20) and approximate DOF

of the data band in Fig. 5-5b can be determined by dividing

the ring area by the effective correlation region.

Because of the stationaritv of the random process in

the data space, an interesting phenomenon results when one,

say, doubles the initial frequency in Pig. 5-5b while

keeping other parameters unchanged. The area in the ring

will be approximately doubled and thus the same to the DOF.

Although the range (along the radial direction) resolution

doesn't change by such a new arrangement, the azimuth or

along angle direction does double its DOF by the doubling
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J, (2Trp)
P

circ(r)

p F.T. r

Fig. 5-6. Correlation of the data and
its Fourier transform

yYa

Starget point radar

x radar

Ar =-x2 -X1 = y 1  for small

Fig. 5-7. Separability of azimuthal and range processing

at small angle variation P. (Target

coordinates fixed on paper)
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of its circumference and hence number of independent

samplings. This means twice (better) the azimuth resolu-

tion although the radial resolution remains the same.

This phenomena does not exist in one-dimensional radar

pulsing where the range data is the only information sought.

In that case the only purpose of the carrier frequency is

to carry a signal of certain bandwidth and it is the band-

width and not the carrier frequency which determines the

range resolution. However, in our 2-D radar system the

carrier frequency comes into the radar imaging equation

directly and manifests itself as a major azimuthal para-

meter. In terms of radar terminology, a raise in carrier

frequency increases the doppler rate and thus will widen

the potential azimuth bandwidth of the frequency spectrum

generated by a single target point. However in some

situations, e.g. the stripping mode of SAR in which the

antenna pattern width is inversely proportional to the

wavelength the two factors cancel, leaving the doppler

spectral width, and hence the system performance independent

of the carrier frequency. [5-2]

5.6 Actual Reconstruction Method

Physically the radar imaging system has lots of differ-

ences from the tomography projection system because of the

many widely different imaging characteristics. Some of the

differences have been described in the end of Section 5.4.
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In the radar imaging system range resolution is

obtained by the "timing" of the signal return from the

target point. In RAT SCAT multiple frequency signature (MFS)

is used and the timing information is resolved by taking

Fourier transformation along the stepped frequencies.

Ideally, the relative motion between the target points and

the radar should be zero to obtain range resolution with

any high degree of precision desired. On the other hand,

the azimuthal resolution is introduced by the created

different doppler histories at different azimuthal points by

way of a relative motion between the target points and the

radar. The seemingly conflicting requirements are resolved

in the RAT SCAT system in which different frequency compo-

nents at an aspect angle 0 are obtained during which there

is no relative target motion. Azimuthal information is then

provided by the phase differences of the same frequency

components at different O's due to the range change of

target points induced by the target rotation.

In Fig. 5-7 let (xl,YI ) and (x2 ,y2 ) be the coordinates

of the same point with the aspect angle difference being 0.

Similar to Eq. (5-13) we have

x 12 = XlCOS1+Ylsin xI = x2cosD-y 2sinD

or (5-21)

Y2 = ylC°S0-xlsin' Yl = y2cosl+x 2sin(D
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Thus the range of the point undergoes a change of

Ar(xl,Yx 2,Y 2) = X2 -x1

- xlcosP+YlsinD-x1

X1 (cosD-1)+ylsin¢ (5-22)

which creates different phse histories to each target

point in going from one radar coordinate (xl1y,) to the

other (x2 ,Y2). In Eq. (5-22) if ¢ is small enough, then

cost Z 1 and Ar(xl,yx 2 ,y2 ) z ylsinD z ylz (5-23)

which is independent of x I or the range. The phase

variation as a function of D induced by r() creates a dop-
dr

pler frequency dr y. Because different y are associated

with different doppler shifts, the azimuth targets can be

resolved by taking Fourier transforms on the data along

small azimuthal angles, as long as the data are taken from

appropriate range bins. Usually separability of azimuthal

and range processings are desired because of its high

efficiency in computation [5-13], in which the two process-

ings can even be interchanged if so desired. To insure

the separability range curvature* has to be avoided by

limiting Ar in [5-22] to be less than one range bin width

or max Ar<l range bin width. This amount to a coherence

aspect angle t<one range bin width in the target with

normalized size. Since both the range and azimuth require

*The term "range curvature" in the subsequent chapters bears

the same meaning as "motion through resolution cells" in
[4-13].
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Fourier transformation as explained, separability implies

using 2-D Fast Fourier Transformations (FFTs') which trans-

forms the data in frequency domain to the reflectivity

function in spatial domain.

Fig. 5-8 shows a section of data for such a small fan

angle D. Br is the range bandwidth with range frequency

step Af and B and B are the minimum and maximum azimuthr zI  z

bandwidths at f and f respectively, with azimuth frequen-

cies step Af and Af z Note that

Br = M x Af = f2-f

B z N a x Af = N x f Ae (5-24)

B zN x Af = N x f2Ae

where A9 is the azimuth step angle in radian and Na is the

number of azimuth points coherently processed.

Discrete Fourier transforms on M number of data along

range frequency with frequency step Afr and bandwidth Br r

give the range profile with unambiguous spatial dimension

R and range bin width Ar where

R - (5-25)
Af

rand

A - (5-26)
r rr

Eqs. (5-24) and (5-25) are dual relations of sampling

theorem. Similarly in the azimuth direction
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Fig. 5-8. Separable processing of range and
azimuth) small fan angle (D
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1 1l Af 2- Af

and

Az - B Az - B
z z 2

where ZIZ 2 are the unambiguous spatial dimensions of the

Fourier transformed data along azimuth direction at the

lowest and highest range frequency (i,e., f1 and f2
) ,

respectively and Az1 and Az2 are the azimuth bin widths at

frequencies fl,f 2 respectively. Note that AzI ; Az2 or

Z1  Z2 if the 2-D FFT which is separable is valid and

creates little image distortion.

In summary, the reasons for taking the 2-D FFT on small

angle data are:

1. The reflectivity function is a function of aspect

angle.

2. Satisfactory phase compensation for the propagation

between the radar and the target center is extremely diffi-

cult, if not impossible.

3. However, the reflectivity function can be assumed

constant over small aspect angle P during which the azimuth

and range processing can be separated and FFT techniques

can be employed.

4. The shadowing effect can be reduced to a minimum by

adopting the technique of coherent processing over small

angles and then incoherent summing over large angles, as
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described in the next section.

5.7 Incoherent Summation of Different Looks

Coherent processing should be applied to only those

radar returns from target points of fixed reflectivity

during the imaging. As the azimuth aspect changes by more

than a certain amount, speckle and blocking effect change

the target reflectivity by so much that the data can no

longer be deemed as coherent. Coherent processing on the

data of a small aspect angle span gives the "look" of the

target from that particular angle and shows only those

target surfaces approximately normal to that particular

LOS. Those looks could be integrated incoherently to

enhance the final target image. The procedure will be

further explained in the following chapter.

5.8 Conclusions

This chapter presents the theory of a high resolution

radar imaging from both a radar systems viewpoint and a

degrees of freedom or numerical analysis viewpoint.

Similarity with the computer aided tomographic scanner

imaging technology is pointed out. However the differences

between the two systems are emphasized and a radar unique

reconstruction algorithm is developed for combined coherent

and noncoherent imaging. The actual reconstruction method

is presented which will be used in Chapter 6 on the data

obtained from the RAT-SCAT facility. The pictorial images
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resulting from the computational procedures as shown in

Chapter 6 are surprisingly recognizable and suggest that

these techniques may have some practical application in the

future.
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Chapter 6

EXPERIMENTAL RESULTS OF RADAR TURNTABLE IMAGING

6.1 Introduction

This chapter presents the experimental results of the

radar turntable imaging in Chapter 5. A complete sequence

of processing techniques is introduced starting with the

photographic presentation of the raw data. Explanations as

well as conjectures of the intermediate results are given

along the way towards the final images. Many processing

parameters are tested against the qualities of images

resulted.

Three aircraft targets are individually imaged using

actual data which are the complex returns (in-phases and

quadrature-phases) of the radar signals from the targets.

Two of them are model airplanes (F-102, F-5E) of reduced

sizes and the other is a full-sized real F-102 plane.

Experiments are done for two setups of the targets, i.e.,

horizontal and vertical positions,resulting in azimuth and

vertical images, respectively. All notations bear the same

meanings as in Chapter 5.

6.2 Imaging a Model F-102 Airplane

6.2.1. Physical properties of the imaging geometry
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A real F-102 has an overall length and a wing-to-wing

width approximately 68 ft. and 38 ft. respectively. The

model F-102 is 0.29 times the real size. Other numerical

values used in the experiments are listed in Table 6-1. The

imaging geometry is depicted in Fig. 5-1. The bandwidth in

the range direction is approximately 870 MHz which has an

ideal range resolution Pr

c2 9.84x10 8ft/sec - 0.57 ft. (6-1)Pr 2xBr 2x870x10 6/sec

The frequency step Af = 3.4 MHz corresponds to an unambi-
r

guous range intervalIr

Ir 2Af 132 ft. (6-2)
r

which is approximately 6.7 times the largest dimension of

the target. This means that the data has been oversampled

by a factor of 6.7 in the MFS frequency domain. The same

conclusion could also be reached from the DOF analysis in

the previous chapter by applying Eq. (5-12). The step

frequencies in the azimuth direction are between

Af z fmin AO = 31.87 MHz (6-3)

to

Af 2 f xA = 36.91 MHz (6-4)z2 max

with corresponding unambiguous intervals 12.9 ft. and

14.1 ft. Refer to Fig. 5-8. The unambiguous azimuth inter-

vals are longer than the target dimension, which means that

Ae = 0.20 is adequate to sample the data in the azimuth
117
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YO : 1652 ft.

Y1 : 1112 ft.

Y2 : 540 ft.

fmin : 9.13 GHz

f : 0 GHz
max

Af : 3.4 MHzr

M : 256

AO : 0.2 0.0035 rad.

Table 6-1. Model F-102 imaging parameters
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direction. However, the sampling is barely dense enough

because the unambiguous interval is only slightly larger

than the target size.

6.2.2 Sourcc data from model F-102 airplane

The source data, which are the returns of each single

frequency waveform at each particular azimuth angle of the

target, are complex numbers consisting of both the in-phase

and quadrature-phase components, which can be transformed

into polar coordinates to become the magnitude and phase

components. Fig. 6-1 shows the phase and square root of the

magnitude of the source data from a horizontally mounted

model F-102 target. They are 256 data points along lines of

constant azimuth angle and approximately 900 points along

the azimuth direction from 00 to 1800 of the target orien-

tation. Note that only 1800 of data is sufficient for the

whole target reconstruction since the target was presumed

symmetric horizontally. The square rooting is necessary to

reduce the gigantic dynamic range of the radar cross section

(RCS) of an airplane as a function of the aspect angle or

radar frequency [6-1, at wavelengths ( 1.5 cm in our case)

much smaller than the average curvature of the airplane.

Note that at approximately 600 of the data there were strong

returns probably due to the strong reflectivities of the

delta wing structure. Similar phenomenon happened close to

900 or broadside position where the fuselage served as
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strong reflectors. Starting from approximately 120 the

gain of the radar system seemed raised resulting in higher

brightness of the magnitude part of the photographs. The

phase part of the source data are linearly coded from -7 to

7 for the photograph. The data is in the frequency domain

in both the range and the azimuth dimensions. Because of

the linear phase due to y1-Y0- as explained in Chapter 5

the oversampling phenomenon along the range is not very

obvious. It turns out, as shown in Fig. 6-2, that this

linear phase contributes a fixed amount of shift in the

spatial domain. The highly structured phases are probably

a result of a large signal noise ratio of the radar system.

6.2.3 Fourier transforming in the range direction

Because the source data was in two-dimensional frequ-

ency domain, some form of two-dimensional transformation

was necessary to bring the data into the spatial domain. As

explained in Chapter 5, we segment the data according to

their azimuth angle into sectors and then apply 2-D Fourier

transformations on each sector which is approximately

rectangular or separable. Fourier transforming the data

along a fixed aspect angle gives the "projections" of the

target onto that line of sight (LOS) at that angle. If the

processing is assumed separable between the range and the

azimuth then the magnitude parts of the projections provide

the range information (range profiles) while the phase
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parts, when processed with the phases at neighborirnj asrPect

angles, will resolve the azimuth information. Toward tnis

assumption our source data was Fourier transformed alon.

the range direction for each azimuth angle and the phase

and the magnitude parts of the resultant data are then 3hnwr

in Fig. 6-2. Note that now the data is in spatial doma~n

along the range and still in frequency domain along the

azimuth. Again for a better presentation square rootig.a is

applied to the magnitude parts, which assume a dynamic range

of more than 30 dB. The magnitude parts clearly show the

location of the target which is off the center of the pic-

ture because of the linear phase and the target occupies
1

617 of the whole range dimension as a result of the over-

sampling in the range frequency domain of the source data.

Note the strong returns curving in and out in the figure

along the azimuth angle. The bright lines in the center of

the magnitude pictures account for the DC bias of the

radar receiver and processing unit. The faint mirror

images of the target with respect to the central DC line are

due to the imbalance of the in-phase and quadratic-phase

circuitry of the radar system. To show this, let D. and D1 q

be the gains of in-phase and quadrature phase circuitries

of the mixer of the radar receiver. From Eq. (5-10), the

actual complex data becomes
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I (i,k)+jO (i,k)

= D. a g(x,i) os Tfk 2 rfk ) rdx

-a I a  1 ~s(2fkI-c-Y2)d
+DqXj g(x,), in fk2+21 cf l

-a L .

=1* ki'G-, exp 2Trfk lO2)

(Dg- i)

(D -D.r 12f k I -y y\ 2f\

Gki c g (x,i)exp (j2rkx)dx (6-6)

-a

The imbalance of the second term in Eq. (6-5) causes the

mirror images in Fig. 6-2. It is reasoned that in

Fig. 6-2(a) the strong returns closest to the radar (which

is to the right of the photographs) are due to the nose and

those in Fig. 6-2(c) are due to the tail of the target. In

Fig. 6-2(a) observe a bright tiny spot very close to the

nose line at approximately 600 azimuth. Again, it is due to

the returns from the delta wing.

The phase figures 6-2(b) and (d) are correlated with

their counterparts (a) and (c) in that prominant structures

exist only in those regions where there are strong magni-

tudes due to target points of high reflectivity. In other

regions the phases look random and noise like.
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There are two ways to remove the redunancy tf the

data in the range dimension. One is to choose i larger

frequency step \f from the DOF analysi; in Cnar er to keep

only minimum frequency components required ir tie source

data. The other is to retain in the spatial domain the

portion containing the target. -,,e latter optlion has the

advantage of offering a higher S/N in the reddened data. In

our exoeriments we always keep 64 range bins in the spatial

domain which gives a data reduction of 4:1. The windowing

of the data is visually determined from Fig. 6-2(a) and (c).

Fine tuning of the target center is necessary because of the

unavailability or uncertainty of ' 0 , Y and y This will be

discussed in subsection 6.2.5.

6.2.4 Azimuth processing

If the reconstruction, which is basically a two-

dimensional transformation as explained before, can be

assumed separable, then since the range transformation

has been accomplished in the previous subsection, only

azimuth transformation remains to be done. In our case of

RAT SCAT imaging, separability means no range curvature or

range bin moving problems induced by the rotation of the

target necessary for azimuth resolution. Since the maximal

radial extent of the target is assumed to be no more than

10 feet, the range change will be less than 10-feet for all

the target points when the target undergoes a rotation of
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radians assumed so small that tan; Z . If the range

walking is to be prohibited at all, then

iOX < Pr = 0.52 ft. (6-7)

or

< 30 (6-8)

However, it is sometimes desirable to process coherent

intervals larger than the maximum interval without range

walking even if separable processing is assumed. This has

the advantage of a better azimuth resolution, although it

will be subjected to some blurring due to the range walking

introduced. The quantitative analysis of the interaction

between the range walking and azimuth bandwidth will not be

pursued here. It is pointed out, however, that if one were

willing to use a non-separate model to process the data,

then as long as the target reflectivity function could be

reasonably assumed to be constant within the coherent azi-

muth interval, the interval processed could be as large as

possible without actually suffering from range walking

problem. This approach would yield optimum DOF of the final

images and hence better resolutions. It would, of course,

demand much more computational requirement as described in

Chapter 2 and was not adopted in our experiments.

In our experiments the data in the ring area in

Fig. 5-3 was divided into possibly overlapped azimuthal

sectors. Each sector is individually Fourier transformed
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along azimuth (recall we have performed range Fourier

transformation in 6.2.3) and only the magnitude part which

is of our interest is kept to give target "looks" at the

respective aspect angles. Figure 6-3(a) shows the image

looks centered at 00, 300, 600, 1200 and 1500 with the

azimuthal coherent interval being 3.20 or 16 points.

Figure 6-3(b) and 6-3(c) are looks at the same angle with

6.40 and 12.80 coherent intervals, respectively. Note the

different relative scales between azimuth and range in

Fig. 6-3(a), (b) and (c) in which figure 6-3(a) and 6-3(b)

have been two-dimensionally linearly interpolated at a

factor of 4 and 2 respectively to fully utilize the dimen-

sion of the displaying monitor from which all of our 2-D

images were shot. In all the image looks of Fig. 6-3 the

radar is to the right. Salient features of the airplane,

e.g., the nose, the tail, the delta wing and the fuselage

can be readily identified at appropriate looks. For

example, at 00 the target is sitting with nose on the radar.

The images, which show reflectivities of the target, have a

very large dynamic range of brightness and the sidelobe

effects are very serious which manifest themselves as

cross-like structures running horizontallyand vertically,

corresponding to the two dimensions of processing. Theore-

tically, images without sidelobes could be obtained only

from all of the data points in the whole frequency domain

which extends from -w to w in both dimensions. In reality
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our data for each look comes only from an approximately

rectangular area of the frequency space. This means,

equivalently, a rectangular function has been multiplied

with the data on the otherwise infinitely-extended data

space. In the spatial domain the effect is as if the ideal

images had been convolved with the Fourier transformation

of a 2-D rectangular function, which is a sinc function.

The sinc function has a first sidelobe of 13.4 dB below

the main lobe level. Compared to the 30 dB dynamic range

of the strength of the target reflectivities, the -13.4 dB

sidelobe could completely mask the weak signals close to the

strong ones. To alleviate the sidelobe problem, a well-

shaped function should be multiplied to the data before

Fourier transformation is taken [6-2]. Figure 6-4 shows the

image looks when a two-dimensional Hanning window, which has

a first sidelobe less than -30 dB, is incorporated into the

data. Comparing Fig. 6-3(b) and Fig. 6-4 it is seen that

the sidelobes have been reduced and the main lobe width

slightly increased as predicted in [6-2].

To verify that the Hanning windowed Fourier transforma-

tion is a valid image reconstruction technique, Fig. 6-5,

a sequence of 28 abutting looks with each look occupyinq

6.40 of data azimuthally, is presented. The rotation of the

fuselage is very clear as it goes from 00 to 180(' in the

consecutive looks. In all the following experiments the

Hanning window is always incorporated in the FFT's.
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6.2.5 Incoherent summation of the looks

Because of the specularity of the target, each look in

Fig. 6-5 shows only those target points which contribute

coherently to the radar returns at the particular aspect

angle. It is reasoned that a suitable combination of

different looks should give a much enhanced overall target

image. Indeed, we used the following procedure to accom-

plish this:

(1) determine the center of rotation for each look

(and hence all of the looks since the distance between the

radar and the rotation center is fixed upon the data

collecting).

(2) rotate each look according to their respective

aspect angle.

(3) incoherently sum the rotated and registered looks

i.e. only the magnitude part of each look is used in the

summation.

An additional advantage of the incoherent summation is the

reduction of the "speckles" due to the phase errors in cohe-

rent systems.

In the case of "azimuth imaging", (i.e. horizontal

setup of target), the images obtained from 1800 orientation

are always flipped for the other 1800 and added for

symmetry after the incoherent summation.

There are three parameters independently "tuned" to

reach final summed images:
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(1) the coherence interval in the azimuth direction.

(2) the amount of sector overlapping for adjacent

looks.

(3) the c3xirer of rotation assumed in all looks.

Each of the above parameters is tested in our experiments to

show how they affect the image quality.

Figure 6-6 through 6-8 test the parameters (1) and

(2). Overlapping factors of abutting, 50' overlap and 90%

overlap and coherence intervals rf 3.2 , 6.40 and 12.80 are

adopted in these figures. Figure 6-9 test different rotation

centers (different range bins) when the other parameters

are fixed. The image quality seems to be relatively insen-

sitive to the rotation center of each look compared to the

case of F-5E imaging to be discussed later. Generally

speaking, the experimental results show considerable

improvement over the single-look images and clearly show the

outline of the characteristic delta wing of the F-102

aircraft.

6.2.6 Imaging the vertical model F-102

The imaging principle of the RAT SCAT is that the

information of the target reflectivity on the plane of the

rotation can be resolved. In other words the images should

outline the vertical projections of the target on the

ground. Thus by using the data gathered from the target

airplanes which sat vertically (i.e., roll angle = 900) one
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should come up with the "side view" or elevation image of

the airplane. The processing principles are much the same

as described before. However in this setup the radar images

are not symmetric anymore so the data from the full 3600

rotation is necessary for our reconstruction algorithm of

incoherently summing different looks.

Figure 6-10 shows the result of the model F-102 from

the vertical setup. The azimuth coherence intervals were

6.40, the looks were abutting and the center of rotation

was at range bin number 178.

6.3 Imaging the Model F-5E

The same processing techniques were applied to an F-5E

model airplane which has a different shape and size from

those of the F-102. The size of the model target is 0.30

times that of an actual plane which is approximately 48 feet

in length and 26 feet from wing tip to wing tip. y1 and Y2

were unknown constants while other parameters were the same

as those in the case of the model F-102.

In the followinq experiments the target was assumed in

a horizontal position (00 roll) unless otherwise stated.

Figure 6-11 shows a resultant sequence of 14 looks with

abutting 6.40 coherence intervals, covering 00 to 90

aspect angles. Note the rotation of the fuselaqe along

the consecutive looks. Aqain the radar was to the right for

each look so the right wingtip can be identified in the
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last few looks in which the target was approximately

broadsided to the radar. The other 14 looks covering 900

through 1800 aspect angles, which are not shown here, have

the corresponding orientation of the previous looks. These

28 looks were incoherently combined and flipped for symmetry

with the rotation center being at range bin number 177.25

to become Fig. 6-12. Note the protrudent wings of this

aircraft as opposed to the delta wings of an F-102. As

mentioned before, the quality of the image for the model

F-5E seems more sensitive to the rotation centered assumed;

at approximately 4 bins (center at #181) off the true

center the target image looks like a big blub as in

Fig. 6-13. Figure 6-14 is a fine tuning of the rotation

center at 0.25 range bin resolution.

Figure 6-15 shows the effect of the overlapping factor

between adjacent looks.

Figure 6-16 are the elevation images of the target

with a vertical position of the target. The images are

centered at range bin number 178 with different amounts of

overlapping.

6.4 Comparison Between the Model F-102 and F-5E Imaqes

Figure 6-17 presents a summary of photographs for the

model F-102 and model F-5E airframes for both azimuth and

elevation plots. The photographs show the distinct shapes

of the wings of the two aircraft. Except for a slight
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difference of the physical scales of these models (0.29 vs

0.30) all other parameters are fixed for these images.

Consequently, it is clear that the F-5E is a smaller air-

craft and naturally has a different azimuth and elevation

projection than does the F-102.

6.5 Imaqing a Real F-102 Airplane

The third target imaged was a full-sized real F-102

airplane. In this case, Y0' fmin and Af r were changed to

5,552 ft., 2,744 MHz and 1,000 kHz, respectively to account

for the large size of the real plane. y1 and Y2 were un-

known constants and other parameters remained the same as in

the previous cases From the parameters it is found that

the unambiguous range interval Ir is

I = c 449 ft.
r 2xAf r

and the range bandwidth is

B = 256 x 1,000 kHz = 256 MHz
r

which ha, an ideal range resolution of

r 2B .76 ft.
r

The data ring in Fig. 5-3 has a smaller radius and

width, hence smaller area than in the cases of model air-

craft. However, because of the larger size of the target,

the correlation field in the data space has a smaller
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"effective" autocorrelation region and thus the DOF in the

small data ring is approximately the same as in the model

airplane cases because of the cancellation of the scaling

factors. Thus it is exoected that the quality of the target

images should be about the same. Roughly speaking, a target

of larger spatial extent needs a narrower sampling interval

in the frequency data domain to avoid any aliasing effect.

Consequently the area in the sampled data domain would be

smaller if the same number (DOF) of independent data points

which determines the quality of the final images is to be

present.

Figure 6-18 presents some photographs of the real

F-102 radar images at different rotation centers. As

predicted, the images qualities are about the same as those

in Fig. 6-9. Again, here the delta wing structure is

clearly visible.

6.6 Summary and Conclusions

Reconstruction of the reflectivity function of three

airplanes is attempted experimentally in this chapter.

Three major parameters of the reconstruction algorithms

proposed in Chapter 5 are tested. They are: aspect

coherence interval (the optimal value of which is deter-

mined by the interaction between the azimuth resolution and

the range walking when separable processing is assumed),

factor of overlapping between adjacent looks, and location
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of the rotation center which has a "focusing" effect. As it

turns out, some targets are sensitive to some of the para-

meters while insensitive to others. It is very difficult

to predict what parameters should be used in a given

imaging condition. For our purpose of obtaining the "best"

images judged by human perception, trial and error seems

to be the only feasible way at the present time.

In the final stage of our experiments to take pictures

off the TV monitor for display, most factors of the shooting

conditions were well controlled and calibrated. In fact,

most of our images were taken from the same camera at

fixed focal length, shutter speed and aperture. The

brightness and the contrast on the monitor were fixed within

the accuracy of the monitor operation. The background

intensity has always been kept as low as possible. The

major nonuniformity of the pictures so presented, if any,

is conjectured due mainly to the films because of the

film grain noise and possible difference in the sensitivity

to the exposure.
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Chapter 7

RADAR IMAGING WITH TARGET MOTION

7.1 Introduction

Imaging from ground-based (stationary) radars of

moving targets is often possible by utilizing a "synthetic

aperture" developed from the target motion itself, or

sometimes called "inverse SAR" for the obvious reason.

This chapter addresses the theory about a ground-based

radar imaging system in which a target aircraft is imaged

by its own motion induced doppler. The aircraft is imaged

from both a straicrht flight and a turn with recognizable

results. Analysis shows that two phase components exist

in the radar return, one being gross velocity induced, the

other being interscatterer interference within the target

itself. The former phase must be removed prior to imaging

and techniques are developed for this task. Preprocessing,

range curvature, range alignment, motion compensation, and

presuming are all addressed in this chapter.

7.2 Radar Imaging Equations

Figure 7-1 shows the flight path of a target aircraft

which has an overall length of approximately 80 feet and

wing span of about 70 feet. Two portions of the flight path
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along which the data were obtained for imaging will be

called interval 1 and interval 2, as shown in Fig. 7-1.

The first interval is when the airplane was flying straight,

at angles approximately 300 to 150 off broadwide, whereby

the second interval occurs when the airplane was making a

standard left turn.

7.2.1 First interval

Figure 7-2 is a reproduction o - the first interval of

Fig. 7-1. The aspect angle of the target center viewed

from the radar undergoes a change c, which in this case is

the same as the change of the aspect angle of the target

body with respect to the radar line of sight (LOS) because

of the straight flight. In fact, it can be shown that it

is the latter, and not the former angle change, which

provides the azimuthal information. For this reason, we

redraw Fig. 7-2 using the target center as the origin of

the coordinate system. This becomes Fig. 7-3. Observe a

close resemblance to the rotational geometry of a turntable

imaging system as in chapters 5 and 6 (7-11.

In Fig. 7-3 let coordinates ( ,n) be fixed on the

target and (x,y) be rotating with the radar and with the

same origin 0 as ( ,n). Let the angle from axes to x be

0. Then we have

x = cos0+nsin0 = xcosO-ysinO

or (7-1)

y = - sin0+qcosO n = xsinO+ycos0
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Let (xr ,Yr) or ( , n) be the coordinates of the radar and

(XaYa) or ( aa) be those of any target point. Note that

Yr = 0 identically. Let r be the coordinate of the
0

radar had the airplane flown to the position broadwide to

the radar and define 0 r0. Let s(xaYar , Yxr ) be the

distance between (xaY a  and (xrYr). Then

S(Xa a XrY 'r) = [(Xa-xr)2+(ya-yr) 2]

= (x-2x r a+X+y)a a

x ( xx r xa) k (7-2)

X- ra
r x r

=x -xr a

for target distance large enough such that x
2 +y2 << x r -
a a r

Note that x r and xa are both functions of time t.

As the flight goes by, the change in s(xa , rYr)

induces a Doppler frequency of the target point at (x aYa)

2 ds 2 (dXr dxa)
f ( a Ya )  -X t d t d tJ (7-3)

where X is the wavelength of the transmitted signals.

Equation (7-3) has a very interesting interpretation.

The Doppler frequency of the target point (xa ,Y ) is

comprised of two part:

f dxr (w hen - 0) due to the trajectory of

d- dt he dt
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the target center, and

f 2dx a dxr
X hen d , due to the relative motionfd2  Tt ( dt

of the target inter-scatterer points with respect to the

target center. Recall that in the last two chapters the
dx

term -d was zero because the target was rotating on adx
a

table and hence xr was a constant. Also in RAT SCAT

is a constant because the rotation rate, or the step

increment in aspect angle of the target is a constant. If

we are to apply the techniques developed in turntable ima-

ging to the underlying system, these two differences have

to be compensated first.

Because 2 4

Xr = (R° 2 0+2  R +i + .. (7-4)

dx r1 dn n3dr rr dr r + (7-5)
dt R dt 2 R3 dt+

0

Assuming a constant flight speed v, from Fig. 7-3 we
dn r_

have - -v and hence
dt

r - r + 1 v 3 - (7-6)
dt R°  3 r

0

Thus the Doppler frequency induced by x r is a linear

function of 9 r plus higher order terms and the phases of

the return due to x r are quadratic plus other higher order

terms, the first two being of opposite signs. It is clear

from Eq. (7-6) that as the aircraft flies closer to being
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broadside or normal to the radar LOS corresponding to a

decreasing q r' the linear relation between fd and qr is

more precise. In that situation the "rate" in Doppler

frequency

2 / 2 2
2 2 v (7-7)

dtR 2R 3

0

becomes larger and larger and converges to a constant pro-
2

portional to - which in terms of signal processing is a

Olinear FM rate.

Rough'y speaking, the history of xr does not provide

useful imaging information but only serves as a carrier to
dxa

carry --- which contributes to coherent imaging ability by

providing a wide spectral bandwidth inherent in a linear FM

signal. Upon reception, xr phases should be removed first

(sometimes called de-chirping or motion compensation) to

ease the processing afterwards to extract the relevant
dx

azimuthal phase information in a Schemes to remove these
dt

phases will be described in Section 7-5. We now analyze the
dx

higher order effects of d which does not exist in RAT SCAT.

Since xa = EaCosn+a sinO,a a

2 dxa 2 i
= T(-asino+nacosol)t

2y dt (7-8)
- T dt

Also tanO= n or 8 = tan -

rEr
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so

de i 1
dt 2

1+ r

r0

(7-9)

v 1
R 2

1 + r

R2

0

dO
Again, - approaches maximum as the airplane flies

normal (n r=0 ) to the radar. In that case - and
0

2ya v
fd- R (7-10)

2 0

This means that at positions close to broadside the doppler

frequency of a single target point at (xaYa) due to change

in xa is proportional to y and is independent of xa . Inaa a

this situation there is a one-dimensional (along ya) Fourier

transform relation between the returns and the target

reflectivities. Over a wide range of the flight path, the
1

factor -- 2 could change so much as to affect the perfor-

1
R2

0

mance of the Fourier transform. However, over a small
1

interval where -1 is approximately constant and can thus

1+n
R

0

be replaced by a nominal value, Fourier transform techniques
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can still be applied. Thus if ci aoes ti)t IunSato fr

the above abnormality factor, there is a Lradeoff between

the resolution (determine- ' the aspect angle span cohe-

rently processed) and the fidelity of a Fourier transform.

One way to compensate for this is to interpolate the azi-

muthal samples to obtain the data uniformly soaced in the

azimuthal frequency domain. Another possibilitv is to use

a variable PRF which follows dt or the rate of rotation of

the target as seen from the radar. Note from Eq. (7-10)

that an increase in v, or a decrease in A or R will0

increase the obtainable resolution accomoanied with a

higher minimum PRF reouired. The A-dependence will be

further explained later. The "speckles" of the final imaqes

from the coherent processing could be removed somewhat by

incoherently averaging different coherent looks, as in

Chapters 5 and 6.

7.2.2 Second interval

The flight path of the second irl-ervK .s depicted in

Fig. 7-4 in which (',n') are coordinates centered and fixed

on the target and (x,y) are fixed on the radar with the

origin o being the center of the turn. Let (:,' ) be the

coordinates parallel to (f',,'), with origin at o. Again

let the coordinates of the radar and the taraet joints have

subscripts r and a, respectively. Because

xcosq-ysin:, (7-i)

ri xsin')+ycos

.. . .. .
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and o where r is the radius of the turn, we have

j'+r O = xcose-ysinO

fu = xsine+ycosO

or (7-12)

= xcose-ysinO-r0

l' = xsinO+ycosO

which is the coordinate transformation relation between

( T', ') and (x,y).

The distance between a target point at ( a, a) and the
a' a

radar at (r, rr ) is

S( a, a, rrn r ) = [(a-Er) 
2 +(a-nr)2]

= [E 2+n2-2E 2 r +E2+ 2]

r r ar ar a a

2 2 (7-13)[r+flr-2 ( a~r+ anr ))]27-3

r~ +2 ar a r(2 +2 3 - a~r+nanr
(r r) - _ _ _ _ _

r r 2+

r r

=R - r
0 R

0

whee RA 2 2
w (x r+y ) is the distance between the center of

the turn and the radar. In Eq. (7-13) we have assumed that

the radius of the turn is small compared to R . The Doppler0

frequency of the point target at ( '1a is then
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2 ds($f aar'lnr)d a'a - dt

2 ds d6d dt (7-14)

where

ds _ 1 d[ (x rcose-Yr sin)+n a(x rsinO+y rCos)]

dO R d8
0

1
R (-Ea 1 r+arr) (7-15)

Let

(E = ras(Cosa ,sinOa)

and

( r, r)= rr (COSOrSinOr) = R0 (cosasin0r )

where r and 0 are the polar coordinates with respect to the

coordinates ( ,n) with origin at 0. Then

ds 1ds - 1 ra R sin(Oe ) = r sin(O -e) (7-16)Ra 0 a- r a* a- r
0

Equation (7-15), which assumes that r << R as in
0 0 ds

Eq. (7-13), has the following interpretation: T is propor-

tional to ra, the radial distance of the target point from

origin 0 and is independnent of 8, modulated by a sinusoidal

function of 0 a- r . While 0a is independent of 0, 0r is a

linear function of 0. Hence each target point has a sinu-

soidal range history. In the extreme case when ro = 0, this

would be the same as a turntable geometry. The effect of

8r is to make the family of constant doppler lines rotated
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by an angle 8r. Note that 8a = 0 for the target center and

ds
a- = -rsin6 r (7-17)

is the range velocity of the target center. Obviously

ds = 0 at 0 = 00 and 1800 corresponding to broadside
d0 r

positions and is maximum in absolute value corresponding to

head-on or tail-on positions.

In the case r0 is not small compared to R one can

still, in principle, decompose s(a, n a Car ,qr ) into two parts,

one consisting of the pure target center motion and the

other a rotating of the target as seen from the radar, to

separate the relevant imaging information from the irrele-

vant trajectory information using the precise coordinate

relation in Eq. (7-12). However, derivation of the exact

expression is very complicated and tedious so we decided not

to elaborate. The comment that is necessary is that the

effective target rotation rate which determines the azimuth

resolution is the sum of the aspect rate due to the turn

itself (thus is uniform) and the aspect angle rate of the

aircraft center as seen from the radar. If the maximum rate

of target center aspect change which occurs at broadside is

much smaller than the uniform turn rate , the effective

aspect angle rate can be approximated by a constant, assum-

ing constant radius and velocity of the turn.

As in Interval 1, before applying a Fourier transform
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to the data returns with small aspect angle change*, the

motion of the center of target, which is much more compli-

cated in interval 2, has to be compensated. This will be

discussed in subsequent sections.

7.3 Preprocessing

For most practical purposes, radar imaging systems

which determine the relation between the data returns and

the reflectivities of the target can be considered linear

[7-21 and the system classification method developed in

Chapter 2 [7-4] can be used to decide ways to reconstruct

the reflectivities directly from the raw data. This situa-

tion is depicted in Fig. 7-5. The data return g(x,y) is a

linear transformation of target reflectivity function f( ,'r)

through the radar signal radiation and the echo reception.

For ease of presentation we will assume that both g and f

in Fig. 7-5 are discrete so that the system can be repre-

sented by a matrix [HI and g and f by vectors as in

Chapter 2. Depending on the waveforms of transmitted

signals, (e.g., short pulse, linear FM pulse, or step-

frequency waveforms) and the imaging geometries (e.g.,

shape and size of target, direction of relative motion,

resolution required, etc.), the radar imaging systems

represent a wide spectrum of the cases in [7-4]. Once the

relation [H] between the reflectivity and data is

Assuming no range curvature problem, as discussed later.
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(precisely) decided by the flight or radar data, a straight-

forward reconstruction of f and g can be achieved by

applying the pseudoinverse of [H] to g yielding a minimum

square error reconstruction. Methods of taking [HI are

readily provided by each of the nine cases in Chapter 2.

The above reconstruction scheme, although straight-

forward in theory, usually involves a great deal of compu-

tation because of the complexity of [H]. In the worst

case, one would expect to resort to a full singular value

decomposition (SVD) to find [H] Certainly a decompo-

sition of [H] such that the structure of the imaging geome-

try can be better utilized would warrant the efforts in

many cases.

A perceivable way to accomplish this is to do some

preprocessing upon the raw data such that the resultant

data has a much simplified relation to the reflectivity

than the raw data itself. Diagrammatically, [H] can be

replaced by a cascaded system of [H1] and [H2] as in

Fig. 7-6 or Fig. 2-2(d) and f can be estimated by multiply-

ing [H2] 
- , followed by [HI] , to g with the hope that

[H1] would be so simplified in structure or so small in

size compared to [H] that the extra effort on obtaining

[H2]
- would be warranted. For this purpose [H2 ]

- I is

called preprocessing. Examples of [H2 ]
1- are: range

alignment, presumming, de-chirping, and general motion

compensation. Some of them will be discussed in the
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- Range curvature elimination

- Motion Compensation
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[HI]-: Ideally a Fourier transform

Fig. 7-6. Decomposition of [HI in Fig. 7-5
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following sections.

7.4 Range Curvature and Range Bin Alignment

In general, the radar return of the signal pulse from

the target provides the range information while the history

of the returns along some range bin provide azimuthal

information. These two sources of information could have

been coupled such that a separable or even separate pro-

cessing [7-4] would not be adequate to recover the infor-

mation to the extent of accuracy one pursues. There are two

major sources of non-separability in the radar imaging

system: range curvature and range misalignment. We will

describe the phenomena and propose methods to avoid or

correct them.

7.4.1 Range curvature

A single radar pulse return contains the information

about the surfaces or lines whose points are equi-distant

from the radar transmitter or receiver. These surfaces

or lines can be resolved by the timing (for short pulse) or

range compression (for long duration linear FM-like pulse)

or even synthetic range profiles (for MFS pulses) tech-

niques. Since the range direction has been compressed and

resolved in our source data, the simplest way to resolve

the azimuth would be to do one-dimensional processing along

cross range direction. This requires that each particular

point has contribution to only those range bins which are
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aligned for azimuthal processing. Such is the case for low

or medium resolution SAR imaging with aligned returns. As

the resolution requirement becomes greater and greater one

is usually forced to reduce the range bin width and/or to

increase the azimuthal interval over which the data are to

be processed coherently. Both of these would eventually

create range curvature problem since the surfaces of

constant range as mapped on the target move further away

as the relative motion between the radar and the target

continues.

There are two effects as one increases the azimuthal

coherence interval: increased bandwidth and range curvature.

In addition, the amount of computation increases with the

signal bandwidth. Assuming separable processing there is a

tradeoff as to how far one should increase the coherence

interval without too serious a range curvature problem.

There have been few quantitative criteria proposed for

optimizing this tradeoff, especially when the computational

factor is also considered.

It is, however, much easier to find the critical

condition under which the range curvature starts to occur.

This is whenever any target point of interest has a range

variation of more than, say, 1 range bin width, so that

the point has contribution to more than 1 range bin. This

condition can be derived from the geometry of imaging, as in

Chapters 5 and 6.
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Since range curvature problems are introduced by

crossing the range bins, ideally one can avoid it by

increasing the range bin width. This means sacrificing

range resolution for the azimuthal resolution in the case of

separable processing. It is not true, though, that the

range curvature limits the width of coherent azimuth

processing available. In fact, in the range curvature

situation one can do some limited compensation by the

techniques described in [7-5,7-6] or even full compensation

by resorting to a non-separable model for the imaging

system [7-4] and relying on singular value decomposition

(SVD) techniques. However, all of our experiments in the

following chapter assume separable processing for ease of

computation and implementation.

7.4.2 Range alignment

In addition to the range curvature, there is another

problem which hinders the separability of the processing:

range misalignment. As described before, azimuthal

processing must operate upon the returns from target

points at equal range. Thus precise timing or other

schemnes on returns of individual pulses to insure correct

range bin alignment is of ultimate importance to a single

azimuth processing.

In obtaining the data from our radar system, range

tracking is provided by a Poly/Kalman estimator which
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tries to lock the first strong peak of each pulse return

onto a specific range bin. For example, if the target

point closest to the radar is the wing tip, then the wing

tip returns of different pulses hopefully will be locked in

the same range bins. Because of scintillation of the

reflectivities, this range locking method is not always

reliable and misalignment occurs from time to time. Two

automatic algorithms are proposed to realign the data,

one being in the frequency domain and the other in the

spatial domain.

7.4.2.1 spatial domain re-alignment

Let ftl(r) and ft2(r) be the high range resolution
1 2

(HRR) returns (or our source data) from adjacent pulses

where t2-tI = At is the pulse repetition interval (PRI)

and r is the recorded range. Because of the tiny aspect

angle change in one PRI, if we consider only the magnitude

of the returns, then

mt(r+Ar) mt (r), where mt (r) A Ift (r)l (7-18)
t~~ 11

for some Ar, the amount of misalignment which we would

like to estimate. Define a correlation function between

the two waveforms m (r) and m (r):
m1 m2

R(s) A - m (r)mt (rs)dr (7-19)

m2 (r)dr m2 (r)d
t t2 (r
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Then because m t(r+Ar) ' mt (r), from the Schwartz inequality

we have that R(s) will be maximal at s = Ar and the amount

of misalignment can be determined by a subsequent peak

detection on R(s). It is observed that the denominator

of Eq. (7-19) is independent of R(s) and can be dropped

without affecting the peak location. Thus we could as well

use

R' (s) A f mt (r)m t (r-s)dr (7-20)

which is a straight convolution relation.

7.4.2.2 frequency domain re-alignment

There are three differences between f (r) and ft(r),

the returns from adjacent pulses. One is that the range

bins have been shifted relatively. The other two are an

overall constant phase change due to the motion of the

target center and a phase variation due to the effective

rotation of the target. The last phase variation can be

negligible if the sampling rate in azimuth direction (i.e.,

the PRF) is large enough. In that case

f Ct(r) (tl,t 2 )ft 2(r-Ar) (7-21)

where (tl,t 2 ) is a phase factor independent of r and aqain

Ar is the quantity to be estimated.

If one takes Fourier transforms of both sides of

Eq. (7-21) with respect to r, then
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(t(f) = (tl,t 2) t (f)exp(-j2rf. Ar) (7-22)

Let 4t (f) and t (f) be the phase part of S' (f) and

F t (f), respectively, thent2

A
A tlt 2  = Ctl (f)- t2(M = 4(tllt 2 )exp(-j27TfAr)

(7-23)

and

{ tilt2 (f) } = f-l{ (t l t 2 )exp ( -j2Tf fAr)J

= ¢(tl,t 2 )
6 (r-Ar) (7-24)

hence

I-l{Ao (f) }I = 6 (r-Ar) (7-25)

The above analysis suggests the following way to

estimate Ar: Take the Fourier transform of each pulse

return and keep only the phase part. Find the phase differ-

ence of adjacent signatures. Finally, take the inverse

Fourier transform of that phase d& ference and keep only the

magnitude part. The location of the peak along the final

range direction gives the estimate of range bin shift

required to realign the range bins.

Clearly, the above two re-alignment schemes are equiva-

lent in the noise-free situation. Under noisy condition,

they would have different performances. However, a detailed

analysis is not attempted in this work.

7.5 Motion Compensation
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As described in Section 7.2, there are two components

of the target motion: the motion of the target center

relative to the radar and that of different target points

relative to the target center as viewed from the radar.

Only the latter contributes to the imaging ability of the

radar, and the relation between the latter phase variation

and the target reflectivity is a simple Fourier transforma-

tion in the azimuth direction. Thus, a motion compensation

[H2]
- which removes the effect of the motion of the target

center is highly desirable as a preprocessing. Equivalently

this is to find the trajectory of the target center and

remove its effect from the raw data.

Two schemes of such a motion compensation are proposed

for our imaging.

First scheme: The flight path of the target center

can be inferred from the timing of the pulse returns. For

example, in the first interval after the flight path has

been decided to be a straight line and the azimuth angle

determined, the result of the analysis in Section 7.2 can be

applied to determine the coefficients of the quadratic and

other higher-order phases and remove the X r effects to

leave only the phases associated with Xa which is rel2vant

to imaging.

Second scheme: Since the trajectory of a single target

point is very close to that of the target center, the

returns from that point, if available, can as well be used
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as a reference to compensate for the targer center motion.

In fact, this is equivalent to considering this target

point as the rotation center of the target. The phases of

this reference point as a function of azimuthal signatures

can then be subtracted from those of all range bins at the

corresponding signatures. Care should be exercised to

assure two things in this process: first, the size of the

reference point must be small enough. This is because the

size of the reference point decides the best possible

azimuthal resolution. Second, for each signature, the

reference range bin must correspond to the reference point.

This requires range alignment as described before. In

addition, reference point must be rigid on the target.

There are situations where other forms of motion

compensation should or could be applied: For example, in

many cases mathematical simplicity of the imaging equation

can be guaranteed only if the relative motion between the

radar and the target is very simple. In the case where the

flight speed, for example, is varying due to the weather or

maneuvering an interpolation of the azimuthal data can be

applied to obtain equally spaced samples. Alternatively, a

varying PRF which follows the speed of the flight can be an

effective tool in assuring a simple imaging equation. On

the other hand, some times even if the flight speed is a

constant, the interpolation or varying PRF schemes may still

be needed. For example, in the first interval portion in
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section d in Eq. (7-9) is not a constant due to the
dt

ratio of nr/Ro , and thus the Fourier transform relation

would not be exact if there were no compensation.

7.6 OversamDling and Presumming

Usually the radar imaging system is oversampled in the

azimuth direction because of a too high PRF. The purpose

of presumming is to remove the oversampling redundancy.

In the case of terrain imaging, over-sampling could be a

result of not processing the whole antenna illumination

pattern along the azimuth direction. In that case, the

azimuth pattern width utilized or coherently processed

determines the resolution of the image which in turn deter-

mines the amount of data redundancy. In our aircraft

imaging, the situation is subtly different. Here the

azimuthal width of the aircraft is so small that we always

try to make full use of the maximum width of the effective

radar illumination pattern, which is the azimuthal length

of the aircraft itself. Under this condition the PRF

required is decided by the azimuth dimension on the air-

craft and the azimuth resolution again by the interval

coherently processed. Thus, assuming other parameters

fixed, a larger aircraft would require a higher minimum

PRF to insure that no aliasing would occur in the final

images. Also, since the effective antenna illumination

(i.e., the overall aircraft azimuthal length) is independent
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of the wavelength, X, the minimum PRF or the resolution in

the aircraft-imaging case would be function of X. This is

in contrast to the ground terrain imaging cases where the

full antenna illumination pattern width, which is propor-

tional to X, is to be used so that the resultant resolution

is independent of X because of a cancelling effect (7-1,21.

Let f be the carrier frequency and L the length of the

aircraft along the direction normal to the LOS and on the

imaging plane, as shown in Fig. 7-7. Let 6e be the orien-

tation change of the target between two adjacent pulses

as observed from the radar, then the azimuthal frequency

change will be

Afz Z fo A (7-26)

This means a sampling interval of Afz in the azimuthal

frequency domain, which implies a non-ambiguous azimuthal
1 ctime interval of 1--, or spatial interval of 2- ' in

z z
accordance with the sampling theorem.

The oversampling factor o can be determined by

0 = 2f/L (7-27)

z

To remove the oversampling and leave minimum useful

data, a coherent low pass filter followed by sampling at a

correspondingly low rate should be applied along the azimuth

following motion compensation. The effect of low-pass

filtering is to remove the high frequency noise which other-
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Fig. 7-7. Determination of azimuth
oversampling factor
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wise would appear in the resultant image.

7.7 Conclusions

Tn this chapter a radar imaging system more practical

than the previous RAT-SCAT is researched. Although the

baseline coherent processing principle, i.e., Fourier

transforms along azimuthal direction, is the same as that

in RAT SCAT, the data has to undergo much more processing

before a final image can be realized. Motion compensation,

range realignment, and presuming are additional requirements

compared to the RAT SCAT case. The study of RAT SCAT,

which is in a well-contro-'led environment is of much help

to the analysis and processing in this and the following

chapters.
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Chapter 8

EXPERIMENTAL RESULTS OF RADAR IMAGING

WITH TARGET MOTION

8.1 Introduction

Unlike the RAT-SCAT case, the in-flight data represents

complicated flying geometries and requires much more

analysis and processing to reach final radar images. A

series of processing techniques developed from the previous

chapter will be presented along with their experimental

results.

The mode in which the radar operated and our source

data was acquired was a wide band high resolution mode.

The transmitted pulses were linear FM signals whose returns

were then compressed using matched filtering techniques in

the radar receiver and aligned side by side by using a

Poly/Kalman centroid estimator.

8.2 Experimental Results - First Interval

A condensed overall view of magnitude Dart of first

interval data is shown in Fig. 8-1 in which each row

corresponds to the log magnitude of the compressed return of

a single pulse. Only every 16th signature is shown in this

figure. Recalling that this interval represents the radar

returns when the target aircraft was flying toward a broad-
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side position (Fig. 7-1), we presume that the first high-

intensity range bin corresponds to the left wing tip and

the next distinct strong returns are from the fuselage and

nose. Note that the radar is to the left.

Then it can be perceived from Fig. 8-1 that the fuse-

lage is at a greater and greater range distance away from

the wing tip alonq the signatures as a result of closing-

to-broadside during flight. Also observe that while most

portions of Fig. 8-1 seem pretty well range-alianed, other

portions do need re-aliqnment before a separable processina

can be implemented.

To present the data in detail all of the first 512

signatures are displayed in Fig. 8-2. The phase image

(Fig. 8-2(b)) indicates clearly that the target points

probably lie in range bin number 50 to 200, where a strong

structure of phase relationships appears as a result of the

coherent radar pulsing. This is also shown in the log

magnitude picture Fig.8-2a, although with less clarity.

There is a transient region where the strength of the

returns decreases gradually with the range or time. This

is conjectured to be a result of multiple reflections on

the target which take more than before re-radiating to the

radar receiver.

To investigate further the behavior of the returns, we

kept only the regions of stronq signal returns and a

sequence of 80 second data or 8192 signatures is shown in
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Fig. 8-1. overall view of data in first interval;
locr magnitude of every 16th pulse return

a) Loq magnitude h) Phase

Fig. 8-2. First 512 siqnatur.os in f i rst i nterval



Fig. 8-3 with both log magnitude and corresponding phase.

Observe the quadratic-like phases along the flight direction

due to the flight geometry, as analyzed in Section 7.2.

Since the radar receiver has range compressed the

signal returns, ideally we will only need to perform some

azimuthal processing. For convenience we transpose the

data so that the horizontal direction now denotes the

signature or along-flight direction. Figure 8-4 shows the

log magnitude and phase of typical signatures (signature

8001 to 8512). To remove the quadratic phases from

Fig. 8-4(b), three options exist, the first two being

similar. They are described in subsections 8.2.1-3:

8.2.1 Linear fitting the phase differences and subse-

quent integration

Since the differentiation of quadratic phases is linear

phases, a linear fit to the phase differences can be applied

to determine the quadratic phase curvature. Figure 8-5(a)

shows the azimuthal phase difference of Fig. 8-4(b). Note

that except for the phase wrap-around in the right half

portion and the small variation due to oversampling and

noise, the intensity used to linearly encode the phase

between -7 to iT looks quite linear. However, before a

successful linear fit can be obtained, the phase-wrap

problem has to be solved and this is usually not a very

easy task. In fact, it is because of the rapid phase
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modulus phenomena in Fig. 8-4(b) that causes direct unwrap-

ping Fig. 8-4(b) extremely difficult. We used a simple-

minded scheme to unwrap the phase differences of Fig. 8-5(a)

to get Fig. 8-5(b), from which the linear portion of phase

variation was estimated and removed to leave Fig. 8-5(c).

Since Fig. 8-5(c) is still in the differentiation domain,

an integration brings it back to the azimuthal phase

domain, as depicted in Fig. 8-5(d).

8.2.2 Linear fitting the phase difference and quadra-

tic subtraction

An alternative to applying the estimated linear-phase-

difference is to sibtract the estimated quadratic phase

(from integration of estimated linear phase difference)

from Fig. 8-4(b) directly. The result is shown in

Fig. 8-5(e).

magnitudes of azimuthal Fourier transforms of

Fig. 8-5(d) and 8-5(e) are shown in Figs. 8-6(a' and 8-6(b),

which are very similar visually.

8.2.3 Target point referencing

The above two schemes of removing phase variation due to

target center motion are based on an assumption that the

flight path is relatively straight during the coherence

time. In other cases where the range trajectory is more

complicated than a low-order polynomial curve, the above

schemes are expected to be difficult. Another motion com-
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pensation schewe somewhat independent of the flight geometry

and simple in implementation is to use the signal returns

from a reference point to estimate the history of the flight

range trajectory. This single point can be thought of as

the center of rotation of the target and its phases subtrac-

ted from all other range bins to leave only the phase

histories of all target points relative to this reference

Qoint. This was, in fact, the techniques used in subsequent

imaging.

Since the azimuthal oversampling factor has been

determined to be greater than 50, the data after quadratic

phase compensation can be reduced by a factor of 32 before

Fourier transformations are applied. The result is shown in

Fig. 8-6(c). A comparison of Figs. 8-6(a) and 8-6(c)

confirms the validity of the coherent presumming. Note that

in Figs. 8-6(a), (b) and (c) the azimuthal bin width is

much wider than the range bin width and a subsequent inter-

polation has to be done to properly scale the images.

Figure 8-7 is a series of processed aircraft images

using the reference-noint scheme. Consecutive pictures

represent abutting 2048 signatures or 20-second flight

time. The images have been linearly interpolated in azimu-

thal to give the same range and azimuthal bin width such

that the images are properly scaled. Visually Fig. 8-7(d)

is the best probably due to the best range alignment of the

data in that time interval.
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a) 1st 20 seconds or 2048 b) 2nd 20 seconds
signatures (;2.50 aspect
change)

c) 3rd 20 seconds d) 4th 20 soconds

Fig. 8-7. Aircraft radar wiiqs with abut ti w,
20 second coherence time,;
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Ideally, an increase in coherence time should be

accompanied with an equally increased amount of resolution.

This is not the case in Fig. 8-8, where coherence times of

40 and 80 seconds are processed. The conjecture is that

the range curvature and range misalignment which tend to

blur the images outplay the coherence time increase. As

described in the previous chapter, one way to alleviate

the range curvature problem is to use larger range bin

widths. To test this, we used the same parameters as in

Fig. 8-8(b) except the data in range dimension were reduced

by a factor of two by a coherent collapsing. The result

shown in Fig. 8-9 is to be compared with Fig. 8-8(b).

The phase variations of target points induced by the

target motion is the key to the coherent radar imaging.

As one can see from Fig. 8-2, the magnitude of the radar

returns which provide only range information are very

similar from pulse to pulse and represent a great deal of

data redundancy. From the DOF point of view one would like

to have approximately equal amount of input and output

data. Since only the magnitude parts of the processed

images are needed for displays, it is conjectured that

the phase portion of data alone is sufficient to give an

image of a comparable quality. This would achieve a factor

2:1 in data reduction. Experimental result shown in

Fig. 8-10 seems to support this conjecture. Intuitively

speaking, the range bins corresponding to no strongly
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Fig. 8-9. 2:1 rancie collaped-coherence
time =40 seconds
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reflective target points have a random-like phase and are

likely to spread their energy over the spectrum after the

Fourier transform in the azimuthal direction is taken. On

the other hand, target points of strong reflectivities give

highly correlated azimuthal radar returns, resulting in

clusterings of energy corresponding to different azimuthal

target points in the processed Fourier transform domain.

In this way, the magnitude of the returns do not play an

important role in determining in which range bins lie the

strong target points.

8.3 Experimental Results - Second Interval

The first 8000 signatures of the second interval

source data taken when the airplane was making a standard

left turn are shown in Fig. 8-11 and Fig. 8-12. Unlike the

straight flight of interval 1, the phase plot here has a

changing azimuthal structure due to the turning motion of

the target, which creates complicated range and Doppler

histories. In addition, there are several occasions when

the range bins are seriously out of alignment. The

overall view of Fig. 8-11 shows the changes of relative

positions of the nose, fuselage and wing tip due to the

turn. A portion of data was taken when the airplane was

approximately nosed into the radar and a series of

resultant images are shown in Fig. 8-13 using the reference-

point technique as a phase compensator. In this case the
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Fig. 8-11. Overall view of data in second interval;
log magnitude of every 16th pulse return
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a) ist 2.5 seconds oS 256 b) 2nd 2.5 seconds
siqnatures ( 4.5 aspect
chanqe)

c) 3rd 2.5 seconds d) 4th 2.5 seconds

Fig. 8-13. Aircraft radar irilages with abuttinq
2.5 second coherence times in second
interval
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nose tip serves as a very good reference point as shown by

the degree of sharpness of the nose in these images.

Figure 8-14 shows images of different coherence times. In

Fig. 8-14(b) the shape of the fuselage has been clearly

imaged. A coherence interval of 18°rotation of the target

seems too much to give a satisfactory image as a result of

overwhelming range curvature.

The spread patterns close to the nose are due to the

aircraft radar which was constantly scanning during the

flight, presenting an object of changing reflectivity and

violating the assumption that the target was a rigid body

in the imaging system.

8.4 Range Re-alignment Results

As is evident from Figs. 8-11 and 8-12 the radar

breaks range lock quite often during the turn of the tarqet

aircraft. This is to be expected as different scatterers

from the aircraft dorrinate the leading return of the radar

reflection. Naturally when the radar broke lock seriously,

one would not expect to be able to image without re-

alignment processing. Section 7.4 presented a theoretical

discussion on such re-alignment procedures and this section

will present some experimental results.

The realignment procedures presented in the last

chapter are based on a sequential comparison between

adjacent signatures. Because of the discrete nature of the
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data, each comparison could produce a misalignment error by

up to one pixel width. Hence, although the scheme is

successful on local realignment, the accumulated errors

from this primitive recursive procedure make a global

alignment very difficult to produce satisfactorily corrected

images.

A remedy to this is to compare each signature with a

reference which has been aligned globally. However, this

reference has to bear considerable similarity to the

signature being compared to avoid large quantity error.

From these requirements and considering the slowly varying

nature of the successive signatures, we propose to use for

reference an exponentially weighted sum of the magnitudes

of previous realigned signatures. The algorithm is easily

implementable by assigning a weight to the newly aligned

signature and a complement weight to previous reference to

form the current reference. The weight can be chosen

according to how slowly the range profiles change along

the signature assuming the profiles resemble a "Markov

i)rocess." A small weight corresponds to high correlation

of the process. On the other hand, a weight of 1 corres-

ponds to very low correlation and coincides with the

theoretical realignment scheme described in the last

chapter.

We applied the modified realignment algorithm using

exponential weighting for the signature magnitude correla-
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tion and obtained a series of realigned data as in

Fig. 8-15. Sequential pictures contains 512 signatures

or a flight time of 5 seconds each. Note that the first 16

pictures correspond to the original data in Fig. 8-12.

A weight of 0.05 was used in all 21 data segments which

comprise the whole second interval of the flight. Except

for very few signatures the realignment algorithm seems to

work very well.

The realigned data was processed during the same

reconstruction procedure before and a series of 21 images

produced as in Fig. 8-16 in which the effective rotation

rate of the aircraft was assumed constant. Most of the

aircraft images are recognizable and clearly show the

turning. Fig. 8-16(a) and (b) correspond to the motion

before completing the starting of the turn and are thus not

square pictures. The nose and left wing tip crossed in and

out respectively at the later portion of the data segment

(e) as shown by Fig. 8-15(e) and by the change of

Fig. 8-16(e) from Fig. 8-16(f). In Fig. 8-16(r) the image

was a superposition of two images with the same orientation

and with the wingtip of one image being on top of the nose

of the other. This is due to the equi-distance of those

two target points from the radar at that particular target

orientation. In Figs. 8-16(t) and 8-16(u) the wingtip was

chosen as the reference range bins for motion compensation

whereby the range realignment procedure aligned the data
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with respect to the fuselage. Since the fuselage trajectory

is not parallel to that of the wingtip, the motion comoen-

sation did not work and the image is blurred.

8.5 Conclusions

This chapter has presented the experimental results

associated with imaging a moving aircraft target from a

stationary ground-based radar. Preprocessing techniques

for range curvature, range alignment, motion compensation,

and coherent presumming are all presented. Gross phase and

fine tuning phase are separated for imaging the target.

Coherence processing intervals, range collapsing and range

re-alignment are all examined. Two data sequences, interval

1 and interval 2, are taken for real radar data. Many

parameters are tested and their results are shown. Each

resultant image has been tested against the physical air-

craft flight information before any interpretations are

attempted. Images of encouraging quality confirm the

feasibility of the coherent radar imaging of the flying

aircraft.
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Chapter 9

SUMMARY AND EXTENTIONS

9.1 Summary

This dissertation has presented analysis and experi-

mental results of several radar imaging systems. As a

preliminary research of this work, a classification method

on two dimensional systems based on the structure of their

point spread function matrices has been proposed to aid in

understandin' imaging systems. The classification

principle is universal and cases apply to the specialized

field of radar imaging. Many physical examples are shown

to fit in most of the cases nicely and it is hoped that more

systems could be identified with some of the cases and

possibly even new imaging systems developed based on the

classified system structure as the image reconstruction

techniques advance. We have demonstrated that, depending

on the accuracy one pursues, the stripping mode of SAR

imaging can range from the non-separate 1-D invariant case

to the separable 2-D invariant case. While going to a

simpler system model saves some computation time and storage

requirement, part of the information becomes irretrievable

as a result of approximation. Analysis on the tradeoff
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between the DOF loss and the simplification of the system PSF

is a possible extention of the system classification work.

The radar system analysis and the processing techniques

in this dissertation assume discrete linear imaging systems

with the target being a rigid body of constant reflectivi-

ties. Physical phenomena, e.g., target point blocking,

reflectivity change as a function of aspect angle, multiple

reflections, parts moving on the target, etc. if completely

incorporated in the PSF's would make the actual imaging

system fairly nonlinear. Another nonlinearity comes from

our data processing in which both the radar returns and the

resultant image are transformed on a point by point basis,

e.g., taking the log of the magnitude parts, to reduce the

dynamic range. The effects of those nonlinearities remain

to be analyzed in the extention work.

In the RAT-SCAT system, image reconstruction was

assumed separable on the individual data section following

considerations of physical limitations and fast-algorithm

desirability. Larger sectors (e.g., 25.60) could have been

processed if we had chosen to nonseparably process the data

in which a constant target reflectivity function could be

assumed. The quality of the final RAT-SCAT images are

limited by target size, wavelength, bandwidth of the

transmitted signal set, fidelity of the radar receiver

processing unit, background reflectivity, sidelobe effect,

and ability to find the true rotation center of the compo-
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nent images.

While the RAT-SCAT imaging is performed under a well-

controlled environment, the imaging geometry in Chapters 7

and 8 is more realistic in that a full-sized flying aircraft

target is imaged. However, because of the increased comple-

xity of the PSF , a method of system decomposition is pro-

posed in which the preprocessing simplifies the relation-

ship between the transformed data and the object function.

Range realignment, range curvature compensation, motion

compensation, and presuming are examples of preprocessing

performed. After the preprocessing, the remaining system is

(hopefully) a separable one and fast processing techniques

like the FFT can be applied. Side lobe effects in the final

images can be greatly reduced by incorporating a weighting

window upon the data in the presumming and FFT processings.

In both the RAT-SCAT and the motion-induced-aperture

imaging, the range bin width and azimuth bin width are

equalized by interpolation techniques to make square images

suitable for human interpretation. This involves calculating

the relative magnitudes of the range bandwidth which is

determined by the bandwidth of the transmitted radar signals

and the azimuth bandwidth which is proportional to the

amount of rotation of the target.

While the range resolution is independent of the

carrier frequency f0 of the radar signals, the azimuth reso-

lution is a function of f0 * In fact, it is the large f0
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which makes imaging possible along the azimuth direction

with only a few degrees of the target rotation. Recall that

although the PSF's of the tomographic system have a very

similar mathematical form as thoseof the RAT-SCAT system,

it needs a full 1800 projections to reconstruct the image

because of a zero f0 *

The final radar imaaes are enhanced to reveal more

details. Most of the postprocessing enhancement techniques

used are nonlinear and belong to the immeasurable art of

image enhancement and image analysis [9-1]. Nevertheless

the understanding of the characteristics of the radar imaging

systems, in particular the cascaded decomposition of the

processing procedure, could aid in the advancement of

techniques for image storage, encoding, enhancement,

quantization, and restoration. For example, knowing the

dynamic range limitation of the film and the Fourier trans-

formation property of the lens, we could store the radar

images on the films in the frequency domain to spread the

energy over the film [9-2]. In the image encoding domain,

Chen [9-3] has developed a radar image coding method based

on dual mode interpolation for images with strong targets

and hence high dynamic range.

9.2 Sonar Imaging

Finally, a potential application of the coherent

radar imaging principle to other systems will be

discussed.
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As described earlier, the two-dimensional imaging

systems must collect a set of one-dimensional data about the

target reflectivity or transmission from different aspect

angle of the object for image reconstruction. In the MFS

system, the gathered data is in the frequency domain and

represents points at particular target aspect angles and

with radii being the radar frequency fc translated into the
2f

spatial frequency domain or cc where c is the speed of
c

light in the case of radar imaging. One advantage of the

large f0 lies in the fact that it places the data points

zway from the origin of the frequency coordinate system

making the data points relatively distant from each other

and less redundant, as analyzed in Chapter 4. The range
2B

bandwidth is 2r in the radar imaging, where Br is the

effective bandwidth of the transmitted signals in Hz.

Because of the exceedingly large value of c, a very large

bandwidth Br of the signal is required to achieve a fine

range resolution comoarable to the target size. For example,

bandwidths larger than 1024 MHz are required to achieve a

range resolution of 0.5 foot. This large bandwidth require-

ment has set many restrictions on the system design and

limitations on its overall performance.

In the sonar system, the situation is quite different.

Here the propagation speed v of the sound in, say the

vacuum, is only 1086 ft/sec approximately. The disparity

between the light speed and sound speed is in Lne 6th order
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of 10's power. To obtain the same data points in the

frequency domain of a sonar system as in the radar system

requires

2f0 2f

c v

and (9-1)

2B 2Br_ s

c v

where fs and Bs are the carrier frequency and the bandwidth

of the sonar wave in Hz, respectively. Thus fs = 6.6 kHz

and B = 565 Hz in the sonar system would be compatibles

with f = 6.6 kHz and Br = 512 MHz in the radar system,

a required bandwidth only 10 of that of the radar system.

An interpretation of the above analysis is as follows: the

amount of information about the target inferrable by a

single pulse is given by the time-bandwidth-product of the

received signal, or approximately the number of range bins

on the target. Since the time duration of the received

signal is in proportion to the time on target (TOT)

it follows that for a fixed number of TBP, the required

bandwidth is higher in the case of a faster propagation

speed or a smaller TOT.

The above analysis is based purely on mathematical

comparison. Because of the large characteristic differences

between the electromagnetic waves and sonar waves, there are
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many physical considerations to be made before actually

applying the SAR techniques to the sonar imaging system.

For example, in radar imaging systems, it is usually assumed

that during the transmission and receiving of a single pulse,

the target is stationary. This assumption makes imaging

equations relatively simple and is justified by the high

speed of the light. In the sonar system the signal dwell

time on the target could be so long (because of a low v) that

the target might rotate by a significant amount during TOT

and violate the stationarity assumption. Compensating

target motion within one pulse time could be very difficult.

Also, the PRF requirement is not as easily met because of

the slow v. From this point of view, sonar system should

be better suitable to imaging slowly moving targets like

the submarines. Another major disadvantage with the sonar

system is the high attenuation rate of the sound wave which

tends to impose a requirement for very high power trans-

mitters even in the modest target range. Besides, target

reflectivity under sonar, signal coherence and overall

system designs have to be well understood and many experi-

ments performed before the feasibility of sonar imaging can

even be assumed.
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