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I.  INTRODDCTION 

The assessment of structural integrity for bodies subjected to rapid or 
impulsive loading poses a severe test for the stress analyst.  The difficulty 
arises not only from the frequent requirement for dynamic rather than static 
analyses but also from the deviation of the materials from classical elastic- 
plastic behavior under these conditions.  High rates of loading lead to 
measurable elevation of the apparent yield strength for many structural 
materials.  For example, the common titanium alloy, Ti 6A1 - 4V, has an 
increase in yield stress greater than 20% due to an increase of testing strain 
rate from 10~ to 10 per second.  This change represents a significant 
"strengthening" of the material, which should surely be included in any 
analysis attempting to give a complete picture of the structural response. 

Extensive catalogs '  and reports  are available which document this yield 
stress vs. strain rate variation for many materials of interest under constant 
strain rate test conditions.  Unfortunately the use of these data for 
structural analysis is not straightforward.  A few service loading histories 
may be approximately related to a constant strain rate.  The most notable is 
the study of failure modes for structures rapidly loaded above their ultimate 
strength.  An average strain rate is found by dividing the strain at failure 
by the duration of the phenomenon.  Material properties appropriate to this 
rate (the "dynamic" material properties) may be used to model the failure 
conditions in the material, using the classical rate-independent plasticity. 

More generally, the structure is intended to survive the applied forces, 
which consist of highly variable loading and unloading phases with possible 
periods of constant load interspersed.  The duration of the loading phase and 
a maximum strain approximation may again be used to estimate strain rate for 
the purpose of assigning material properties.  However, this rate estimate is 
not valid in the vicinity of the peak load, obviously the most interesting 
time from a structural integrity point of view.  At the occurrence of maximum 
stress in a component, the stress rate is zero; so, the elastic strain rate is 
also zero.  Classical plasticity theory claims that no plastic strain occurs 
during a neutral loading increment; therefore, the plastic strain rate is 
zero.  Thus the total strain rate is zero at peak load, so that "static" 
rather then "dynamic" material properties would appear to be appropriate.  The 
"strengthening" of many metals accompanying high rates of loading would not 
appear to affect the ability of a structure to survive a loading pulse.  This 

U.S.  Lindholm,   L.M.  Yeakley,   R.L.  Bessey,   "An Investigation of the 
Behavior of Materials Under High Rates of Deformation^" Air Force 
Materials Laboratory TR-68-194,   Wright-Patterson AFB,   GH,   July  1968. 

U.S.  Lindholm,   R.L.  Bessey,   "A  Survey of Rate Dependent Strength 
Properties of Metals, " Air Force mterials Laboratory TR-69-119,   Wright- 
Pattereon AFB,   OH,   April  1969. 

A.J.  Holder,   "A  Tabular Summary of Some  Experiments in Dynamic 
Plasticity," Journal of Engineering Materials and Technology,   Vol.   101,   pp 
231  - 237,   July 1979. 



simple approach cannot estimate how the stress state will be modified in 
passing from the high rate loading phase to the zero rate maximum stress 
state. 

The difficulty with the preceding simple approach is due to the "grafted 
on" nature of the rate dependency.  The rate of loading affects the 
incremental plastic behavior as it is occurring, and hence the state of stress 
and strain at peak load is dependent on this earlier load and rate history.  A 
consistent model of the dependency of incremental plastic strain on variable 
loading rates is required by the stress analyst. 

It is the purpose of the present work to derive such a model.  The 
selected approach allows the retention of the elegant conceptual developments 
of yield surfaces, associated flow rules, normality conditions, etc., 
occurring in the classical rate-independent formulation.  The addition of a 
single state variable in the description of the yield surface and the 
derivatioa of the consequences within the framework of the classical theory 
create a consistent theory of rate-dependent plasticity. 

II.  PROLEGOffiNA 

A.  Physical Concepts 

The model to be developed will be a phenomenological one; that is, it will 
not be deduced directly from physical considerations of crystal metallurgy. 
However, a brief discussion of the underlying physical processes will aid in 
the specification of the state parameters and concepts to appear in the 
theory.'^' ^' ^ 

The division of a total differential strain increment into an elastic and 
a plastic part is regarded not as a computational tool but as a reflection of 
the physical process.  Some difficulties in the definition of reference 
configurations for the elastic and plastic strains occur during large 
deformation.  These problems are avoided in the present work by assuming 
infinitesimal deformations, so that the underlying constitutive development 
may be emphasized.  Thus 

U.F.  Kooks,   "Constitutive Relations for Slip," Constitutive Equations in 
Flastioity,   ed.  A.S.  Argon,  MIT Press,   Cambridge,   MA,   1975. 

J.M.  Kelly and P.O.   Gillis,   "The  Influence of a Limiting Dislocation  Flux 
on the Mechanical Response of Poly crystalline Metals," International 
Journal  of Solids and Structures,   Vol.   10,  pp 45  - 59,   1974. 

A.S.  Argon,   "Physical Basis of Constitutive  Equations for Inelastic 
Deformation, "Constitutive  Equations in Plasticity,   ed.  A.S.  Argon,  MIT 
Press,   Cambridge,  MA,   1975. 

E.H.  Lee,   "Some  Comments on Elastic-Plastic Analysis, " International 
Journal  of Solids and Structures,   Vol.   17,   pp 859 -  872,   1981, 
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de, . = de^. + dc?.  , (1) 
ij    ij     ij  ' ^ ^ 

where  de..  =  total strain differential  , 

e 
dE..  =  elastic strain  , 

ij 

de..  =  plastic strain 

The "recoverable" or elastic strain occurs in some specific structural 
configuration of the crystal by the development of small increments to the 
distance between lattice points.  It is kinematically possible for this 
deformation to occur instantaneously, with all lattice points displacing 
simultaneously.  The deformations are resisted by the atomic bonds of various 
order, corresponding to electro-magnetic forces within the crystal, which are 
proportional to the lattice spacing.  Specifically, they do not depend on the 
rate of deformation.  On a continuum scale this last observation is equivalent 
to the rate independence of the elastic modulus for metals.  Only the mass 
properties of the atoms in the lattice prevent the elastic strains from 
occurring instantaneously.  The mass effect limits the propagation of elastic 
strain to the elastic wave speed of the material. 

The "permanent" or plastic strain, on the other hand, is related to 
Incremental changes in the structural order of the crystalline configuration 
by such sequential mechanisms as the movement of dislocations on glide 
planes.  For a given level of applied force and temperature, i.e., for a given 
energy level in the material, dislocations move at a definite velocity 
determined by the average time to overcome a barrier in the glide plane.  The 
movement of atoms due to the accumulated passing of dislocations through the 
crystal produces a localized plastic shear strain in the lattice.^'^  The 
sequential accumulation of processes, each occurring at a finite rate, means 
that the plastic strain requires time to develop fully. 

On the macroscopic level, the development of plastic deformation with time 
is apparent as a time dependency of plastic strain.  This time effect has been 
noted by several investigators.^' ^^ As stated by Phillips,^^ "To each 
increment of stress da at a given temperature corresponds an increment of 

8 

10 

M.F.  Ashhy and H.J.   Frost,   "The Kinetias of Inelastic Deformation Above 
0°Kj" Constitutive Equations in Plastiaity,   ed.  A.S.  Argon,   MIT Press, 
Cambridge,  MA,   1975. 

E.  Krempl,   "An Experimental  Study of Room-Temperature Rate-Sensitivity, 
Creep and Relaxation of AISI Type  304  Stainless  Steel," Journal of 
Meahanias and Physics of Solids,   Vol.   27,   pp 383  - 375,   1979.  

A.  Phillips,   "The   Foundations of Plasticity," Plasticity in Structural 
Engineering - Fundamentals and Applications,   Springer-Verlag,   NY,   1979. 



elastic strain de and an increment of plastic strain de^, which needs time to 
develop." 

This discussion of strain components shows that the plastic strain 
contains the rate dependency as a material response property.  The elastic 
strain rate depends on the rate of stress application, so the elastic response 
to a change of stress rate is instantaneous.  The time dependency of the total 
strain is therefore due solely to the presence of a plastic strain increment 
within it. 

The quantity which exhibits time/rate dependency as an essential feature, 
conversely, is best able to serve as a rate variable in the parameterization 
of the macroscopic rate effects.  For this reason plastic strain rate will be 
used as the appropriate rate variable in the present theory.  The total strain 
rate, while it contains this parameter, also contains extraneous elastic rate 
data which does not reflect material response. 

If the plastic strain is allowed sufficient time (perhaps infinite) to 
develop completely before the next stress increment is imposed, for example 
during a standard tensile test, the resulting plot of stress vs. total strain 
(elastic plus plastic) is referred to as the static stress-strain curve.  For 
most practical loading rates, the full plastic strain will not have developed 
before the next stress increment is applied.  The result is an apparent 
stiffening of the material by the suppression of a part of the time dependent 
plastic strain.  All real stress-strain curves lie above the static curve. 

Plastic deformation occurs whenever dislocations move within a crystal, 
even for vanishingly small stress levels.9.H  However, the magnitude of this 
plastic deformation is negligible at low stress levels.  Near some level of 
stress depending on the material, a rather abrupt transition region occurs, 
with the appearance of long-range movement of dislocations^ and measurable 
plastic deformation.  The vastly different material behavior on either side of 
this narrow transition region lends itself well to the concept of a unique 
yield or flow stress and the use of back-extrapolation techniques to determine 
the value. 

The use of the term "plastic" strain for the permanent changes of crystal 
structure is widely used in Materials Science.  However, it includes more than 
is commonly meant by the structural engineer, due to his familiarity with the 
classical form of plasticity theory.  Not only is plastic deformation rate- 
dependent, but creep and relaxation effects similar to viscoelastic behavior 
are observed to appear above the yield stress in metals tested near room 
temperature.^'1"  This is, of course, a consequence of the presumption that 
the plastic strain increment, corresponding to a particular stress Increment, 
needs time (perhaps infinite) to develop fully.  The creep described by this 
mechanism is of the type commonly labeled (logarithmic) transient creep.^^ 

IT 

12 

S.R.  Bodnev and Y.  Partom,   "Constitutive  Equations for Elastic;  - Visao- 
plastia Strain - Hardening Materials," Journal of Applied Meahanies,   Vol. 
42y   pp 385  - 389,   June  1975. 

F.A.  MaClintoak and A.S.  Argon,   eds.,   Meahaniaal  Behavior of Materials, 
Addison-Wesley Publishing Co.,   Reading,  MA,   1966. " 
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Specifically it is not steady state creep which occurs in metals at elevated 
temperatures.  To preclude this latter type of large scale deformation, which 
is primarily a thermally activated and controlled process, the temperature 
will be restricted in the present development to values less than .3 T  (T is 
the absolute melting temperature).  In this temperature range plastic 
deformation is dominated by the dislocation glide motion.^'^^ 

Other than this restriction on the permissible temperature range, no 
thermal effects are considered in the present development in order to minimize 
the number of internal variables and, hence, to Isolate the rate effect on 
plastic behavior.  For higher temperatures, where thermally activated 
mechanisms become relatively more important, or for larger deformations or 
impact conditions, where a considerable amount of plastic work is liberated as 
heat, this athermal assumption becomes increasingly poor for defining material 
behavior. '■■^ 

B.  Phenomenological Concepts 

The present development may be regarded as an extension of the classical 
rate-independent theory of plasticity.  As such, the fundamental concepts of 
that theory, as described, e.g., in the books of Martin^'^ and Mendelson.^^ are 
adopted directly. 

A basic notion of the classical plasticity is the concept of stress 
space.  Stress space is imagined as niae dimensional, each dimension 
corresponding to a component of stress in some reference configuration.  The 
state of stress for every particle of a body then corresponds to a point in 
the stress space, and a loading and unloading process applied to the body 
generates a trajectory in the stress space for each particle of the body.  The 
origin of the space is the stress-free state.  It is generally assumed that 
there exists a neighborhood of the origin, for a virgin material, which 
behaves in a purely elastic manner.  When the stress is Increased along any 
stress axis, an intensity will eventually be reached such that plastic 
behavior occurs.  This stress level corresponds to the yield stress under the 
particular loading program.  (As remarked previously, the appearance of 
macroscopic plastic deformation corresponds to the development of long-range 
glide of dislocations.  This development occurs over a rather small band of 
stress levels; nevertheless, the method used to determine the unique "yield 
stress" affects the value obtained.)  By loading from a stress free state 
along other radial lines in the stress space until plastic deformation 
appears, a locus of yield stress is obtained.  It is assumed that this locus 

13 

14 

15 

O.W.  Dillon,   Jr.,   "Some  Experiments in Thermovisaoplastiaity, " 
Constitutive  Equations in  Visaoplastiaity:    Phenomenological and Physiaal 
Aspects,   AMD-Vol.   21,   Amerisan Sooiety of Meahaniaal  EngineerFi,   NY^   ia7fi. 

J.B.  Martin,   Plasticity:     Fundamentals and General Results,   MIT Press, 
Cambridge,   MA,   1975.        ~~~~ " 

A.  Mendelson,   Plasticity:     Theory and Application,  Macmillan  Co..   NY. 
1968.   
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forms a smooth surface in the stress space, called the initial yield 
surface.  The surface may be analytically formulated in various ways, 
depending on the desired trade-off between accuracy and complexity. 

When the stress point moves within the yield surface, strictly reversible 
strain is assumed to occur.  Thus the yield surface is not altered in any 
way.  Those portions of a load path which contact the yield surface correspond 
to increments of plastic strain which change the structure of the metal 
crystal and, hence, may be inferred to influence the yield surface.  This 
influence is felt through the instantaneous values of a set of parameters 
referred to as internal variables.l*^*16 xhe past stressing of the material In 
the plastic range alters the values of these parameters; in this sense, the 
"history" of the loading process is recorded. 

The hardening behavior of the material, i.e., the change of the initial 
yield surface due to plastic straining, is expressed in terms of these 
parameters.  If the initial yield surface is placed into a functional form as 

F(a.j) = 0, 

the subsequent yield surfaces following plastic strain are symbolically 
written as 

F(a^ , history)  = 0. (2) 

In a geometrical picture, when a stress point moves along a stress trajectory 
representing load so that it contacts the yield surface, the surface is not 
penetrated.  Rather, the surface translates and deforms in the expanded 
(a.., history) space such that the stress point and surface remain in 

contact.  After any increment in loading corresponding to plastic deformation, 
the yield surface is still given by Eq. (2); thus, during plastic straining 

dF(a.., history)  = 0  . (3) 

Note that this common assumption, in effect, defines an equation of 
plastic state, siace the subsequent yield surfaces, Eq. (2), are relations 
among the stress and some complete set of internal variables sufficient to 
describe the process of plastic deformation. 

The selection of the set of internal variables to describe the plastic 
deformation depends on the formulation of classical plasticity adopted.  Some 

__  
J.R.  Riae,   "On the  Sbvuatuve of Stress-Strain Relations for Time-Dependent 
Plastic Deformation in Metals," Journal  of Applied Meahanias,   Vol.   37,   pp 
728 -  727,   September 1970. 
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measure of change of structure in the metal crystal is required, e.g., 
effective plastic strain or plastic work. Also, for a rate-dependent theory 
to result, some form of strain-rate variable must appear in the expression for 
yield surface. '  Here the selection of an internal variable is nowhere near 
as standard.  Attempts at a theory of crystal microplasticity use a variety of 
parameters, such as mobile dislocation density and velocity, all of which are 
eventually related in some manner to the plastic strain rate, 

A final concept from the classical theory of plasticity is a flow rule, 
i.e., a specification of the amount and relative directions of the incremental 
plastic strain components due to an increment of stress.  The plastic strain 
increments must be perpendicular to the yield surface in the stress space in 

order to ensure material stability and uniqueness of solutions.   This 
requirement is expressed formally as 

de   =  dX ^   , (4) 

where  dX  =  parameter expressing magnitude of plastic strain increments, 

8F 
-5——    = normal to the yield surface F = 0 in the stress space. 

The addition of other parameters to the specification of the yield 
surface, in effect increasing the dimension of the space on which subsequent 
yield surfaces are defined, does not eliminate this requirement for normality 
of the plastic strain increments in the stress subspace.  Hence, the yield 
surface is also regarded as a potential function for plastic deformation. 
This associated flow rule, common to most plasticity formulations, is carried 
over directly to the rate-dependent case.  It is expected that a number of 
theorems relating to stability, uniqueness, and bounds of solutions for 
plastic deformation, depending on the normality condition of the classical 
theory, would also apply then to the rate-dependent formulation. 

C.  Experimental Basis for Eate-Dependent Yield Stress 

The type of material behavior to be modeled has been described by several 
investigators:  Lindholm for a variety of structural materials,^ Krempl for 
AISI Type 304 Stainless Steel,^ Kujawskl and Krempl for a titanium alloy,^^ 
etc.  Typically, the data were determined from a series of constant strain 

17 

18 

W.   Olszak,   "Generalized Yield Criteria for Advanced Models of Material 
Response," Plastisity in Structural Engineering  Fundamentals and 
Applications,   Springer-Verlag,   NY,   1979. 

D.  Kujawski and E.  Krempl,   "The Rate   (Time)  - Dependent Behavior of Ti- 
7Al-2Cb-l  Ta Titanium Alloy at Room Temperature  Under Quasistatia 
Monotonia and Cyclic Loading," Journal of Applied Mechanics,   Vol 48,  pp 
55-63,  March  1981.   
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rate uniaxlal tests performed for a wide range of loading rates.  An example 
from Reference (1) is shown as Figure 1.  Common features of the plots include 
a unique elastic line common to all levels of strain rate.  Then, for each 
constant strain rate test, a separate leg of the a - e curve is obtained.  The 
legs of the curve are ordered as shown, with higher applied strain rates 
corresponding to higher stress levels. 

Another feature of the typical plot is that the legs of the curve for the 
different strain rates are often roughly parallel, at least for moderate 
strain rates below 10  in/in/sec.  (For higher rates, therraodynamic coupling 
considerations would become increasingly more important.)  We assume that the 
legs are parallel for different constant strain rates, so that the 
determination of the tangent modulus for static loading rates may be applied 
for all constant strain rates. 

The investigations of rate effect are commonly performed at a constant 
total strain rate.  As indicated previously, the preferred rate variable for 
the present investigation is the plastic strain rate.  To convert the mass of 
experimental data at constant total strain rate to usable form, we further 
assume that the plastic strain rate approaches a constant value within a short 
distance along the leg of the plastic portion of the stress-strain curve. 
This assumption will be well justified by the results of the uniaxlal test 
model presented in a later section. 

Since the constant plastic strain rates are asymptotically approached 
along the plastic leg of the stress-strain curve, it is obvious that the yield 
stress should be obtained by a back-extrapolation along each leg.  An optimum 
method of performing this back-extrapolation relies on the use of a bilinear 
stress-strain relation within the strain range of interest; the procedure is 
described in detail In Reference (19).  The bilinear stress-strain 
approximation gives an easy-to-use, reasonably accurate model of elastic- 
plastic behavior.1^  The use of a more accurate curve is probably not 
justified, especially since the same curve must be fit to each of the roughly 
parallel plastic legs. 

A bilinear representation of a stress-strain curve is shown in Figure 2. 
For an increment of stress Aa within the plastic range, there is an increment 
of elastic and plastic strain.  The relation between the constant total strain 
rate and the assumed constant plastic strain rate given by a bilinear 
representation is 

(5) 

Eq. (5) may be used to generate data points of yield stress vs. plastic 
strain rate from the constant strain rate stress-strain curves shown in Figure 
1.  Typical results from this process are shown in Figure 3.  Many similar 

a 0 
• p •        'e Er. E E  -   E £ e - e T T 

■         = • • • E e E 0 

19 
C.E.  Pugh,   J.M.   Corum^  K,C.   Lin and W.L.  Greenstveet,   "Currently 
Recommended Constitutive Equations for Inelastic Design Analysis of FFTF 
Components," (ENL-TM-3602,   Cak Ridge  National  Lab.,   TN,   September 1972. 
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Figure 1.  Typical Experimentally Determined Stress-Strain Curves 
Demonstrating Rate-Dependent Yield Stress (Reference 1) 
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Figure 2.  Bilinear Model of Uniaxial Material Test, Showing Elastic and 
Tangent Modulus 
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plots may be seen in Reference (2), where, however, the coordinate is total 
strain rate, so that the scale should be adjusted by Eq. (5).  Some features 
are common to many materials.  At low rates the yield stress is nearly 
constant at the "static" value.  Then, there exists a knee in the curve at 
some transition strain rate, e , above which the yield stress rises with 
plastic strain rate.  This increase may be represented by a straight line on 
the semi-log plot, at least to within the accuracy implied by the typical 
large amount of scatter.  The mathematical form which expresses this behavior 
is given by 

•P 
a      = a^  [l + h in  [l  +   f- )] . (6) 
y     o 

e 
o 

This expression gives the yield stress a    in terras of the static yield stress 

a , a slope parameter b, a plastic strain rate e , and a transition strain 

rate e^.  At very high strain rates, greater than 10 , there appears to be a 
second transition, into a zone of greater strain rate sensitivity.  Here the 
dependence is nearly linear rather then logarithmic.  In Material Science it 
is generally presumed that a different mechanism of resistance to dislocation 
motion has become predominant at these higher rates, yielding the different 
response.  In any case, these rates correspond to high speed impact problems 
and are not generally encountered in structural integrity analyses. 

Some final observations concerning tests of material at constant strain 
rate deal with modifications to these tests.  Thus, the rate may be suddenly 
changed from one rate to another higher rate.  Immediately after the change of 
rate, the slope of the stress-strain curve is nearly elastic.  The curve 
rapidly approaches that appropriate to a constant rate test at the higher 
rate; the curve soon becomes indistinguishable from a test performed entirely 
at the higher rate. 

When a test at constant rate is interrupted in the plastic range by 
holding the stress or strain constant, creep or relaxation will occur in 
metals at room temperature.  If the constant rate is reapplied to the test 
specimen, the stress-strain curve will rapidly approach a curve appropriate to 
an uninterrupted test.  These last effects are well documented in the series 
of papers by Krempl, et al."' ^^ 

III.  THEORY OF RATE-DEPENDENT PLASTICITY 

A.  General Formulation 

Rate dependency may be added to any of the currently utilized classical 
theories of plasticity by the addition of an appropriate rate variable to the 
yield surface. ^^ The resulting formulation will exhibit the defects of the 
underlying classical formulations.  For example, a model based on isotropic 
strain hardening will not be able to describe cyclic loading with accuracy. 
Conversely, the Inclusion of excessive generality in the basic theory will 
yield constitutive relations which are difficult to apply in practical 
analysis, even with the aid of advanced computers. 

The present development will adopt the classical plasticity model selected 
In Reference (19), where a critical evaluation of currently utilized 
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formulations Is given.  Briefly, the selected model consists of a Von Mlses 
yield criterion, with kinematic hardening, an associated incremental flow rule, 
and a bilinear material representation.  These assumptions were chosen because 
of their ability to model rather general loading programs, including cyclic 
loading with Bauschinger effect.  In addition, the resulting incremental 
constitutive equations are conceptually simple and easily included in 
nonlinear finite element structural codes, e.g., ADINA.20 while the general 
development of the rate-dependent theory will be presented within this 
context, extension of other variants of the classical theory is 
straightforward. 

The rate variable used in the present formulation is plastic strain 
rate.  The reason for this selection was discussed in Section II.A, where the 
finite velocity of dislocation motion was judged responsible for the 
nonlnstantaneous time-dependent growth of elastic-plastic strain.  The use of 
this rat^^va^^able in the theories of vlscoplastlcity, as expounded, e.g.. by 
ir-erzyna,  '   is based on the same type of consideration. 

For consideration of the experimental results of unlaxial material tests 
the unlaxial plastic strain rate is an acceptable variable.  This may be 

generalized to multiaxial states of stress by assuming that the plastic strain 

rate tensor is the controlling variable, e^^.  However, a more coherent 

theory results from the further consideration of the selection of plastic 
strain rate as a rate variable.  Since dislocation motion is the phenomenon 
which controls the rate of plastic deformation and the combined movement on 
several slip planes adds together to give each tensorial component of plastic 
strain rate, the total amount of dislocation motion on all active slip planes 
is seen as regulating the rate of plastic flow.  An estimate of this combined 
dislocation motion appropriate to a phenomenological theory is based on 
effective" plastic strain^\  This quantity is defined in terms of increments 

of components of plastic strain as 

P     /     P   P 
de  =  ^2/3 de_ de    (summation on repeated indices)      (7) 

The rate quantity is obtained by dividing by dt.  As may be seen, effective 
plastic strain rate sums plastic strain rate over all components of the 
tensor, and may therefore serve as a measure of total "plastic activity." For 
the important case of unlaxial stress states as occur in material testing, the 
effective plastic strain rate reduces to the axial plastic strain rate, due to 
the Incompressibillty of plastic deformation. 

20 

21 

22 

K.J.  Bathe,   "Static and Dynamia Geometvia and mterial  Nonlinear Analysis 
Using ADINA," Report 82448-2,   Mass.   Inst.  of Tech.,   Cambridge^  MA,  May 

P.  Persyna,   "Fundamental Problems in  Visaoplastiaity," Advances in Applied 
Meohanias.   ed.  by G.  Kuerti,   Academic Press,   NY,   1966.   

P.  Persyna,   "Thermodynamics of Dissipative Materials," Recent Developments 
in Thermomechanics of Solids.   Springer-Verlag,   NY,   1980~.       ~~  
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The yield surface given by Eq. (2) may now be specified for the assumed 
classical plasticity model. Thus, the region of elastic behavior is bounded 
by 

F(o^.,  el.,  e^ = f(S^j -a..)  - K(e^) =0  , (8) 

where 

S.. = stress deviator = a..     -    a    5. 

da.. =  C de^. 

' " = i ^"ll ^ ^^22 ^ ^33^  ' 

ij       Ij (kinematic hardening)  , 

,   C = hardening modulus (constant for bilinear material) , 

f(S^j ~"lj^ " ^^2(Sij ""ij^^^ij ""ij^  ^^°'^ ^^^^ ^°^"^^     ' 

, ■    . p     1   2 • P 
K(e )    =    —    a    (e   ) . (magnitude of yield stress). 

Any strain hardening that occurs in the kinematic model is contained in the 
parameter a^ , which is essentially a shift of the origin of the yield surface 
in stress space in the direction of the plastic strain increment.  (Care is 
required when using kinematic hardening in reduced stress spaces*) 
Translation of the yield surface in the direction of prior plastic strain 
models the Bauschinger effect, as it occurs during reversed loading, with 
sufficient accuracy for most engineering purposes. 

The hardening modulus appearing in Eq. (8) may be determined by applying 
that equation to a uniaxial material test.  Since a bilinear model is assumed 
in the present analysis, as shown in Figure 2, C is constant and given by 

o  EE 2   T 

Study of Eq. (8) reveals an additional advantage of the kinematic 
hardening formulatloa for rate-dependent plasticity, viz. the rate effect has 
been isolated in the' term K, corresponding to yield stress.  The variation of 
other quantities in Eq. (8) with rate of deformation is not assumed because of 
the lack of experimental evidence.  For example, allowing Ej, and, hence, C to 
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•p 
vary with e contradicts the observed parallelism of the legs of constant rate 
stress-strain curves at different rates (Recall Figure 1). 

Throughout a load increment which corresponds to plastic deformation, Eq. 
(8) must hold.  Hence, the increment of F must vanish, as specified by Eq. 
(3).  For the present formulation, this requirement becomes 

_ 3f 9f 3K  ^'P    „ ,  , 

where 

9f      8f 

'°ij " '=i:    • 

3f 3f 

With the aid of the definitions of Eq. (8), Eq. (10) becomes 

■T-— da,. - C-r  de.. - -^ de  = 0 . (\^^ 3a^.   ij     90^.   xj    g.p • (11) 

Eq. (11) connects the increments of stress, do.., plastic strain, de'^ and 

effective plastic strain rate de and forms, in effect, an evolutionary 
equation for the components of plastic strain.  Since it is summed over all 
components of stress and plastic strain, the expression governs only the 
magnitude of the plastic strain.  To obtain the direction of the plastic 
strain increment an additional relation is required; this relation is the 
associated flow rule as expressed by Eq. (4); for the present formulation 

The nomenclature of Eq. (12) is standard; but for the present development 
an alternate form of the associated flow rule is preferred.  Substituting Eq.* 
(12) into Eq. (7) gives 
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=   V2/3  (dX)2 |1-   |i de^     =   V2/3  (dX) 
^°ij     ^^ij 

=   V2/3  (dX)^ 2/3 a ^ 

=    2/3 a    dX 
y 

Then 

If .„ .  _     .  P ^° 
ij - ^ y    3eP 

and solving this expression for de 

P     1   r 9f ^'^ 

y     ij    -^ -^^  8e 

(13) 

,^P     -,^ de^ 9f 
^^j  = 3/2 ^p- g—- . (12a) 

Inserting Eq. (12a) into Eq. (11) 

3^7 ^'^ij  - C a^ de - 2/3 a  -2 de^ = 0  . (Ha) 

c^: ^3^7 °^ij ~ '^3 % 71? '^^ J • (1^) 

Finally substituting this relation back into Eq. (12a) 

y 

Eq. (15) is a constitutive relation for the increment of the plastic 
strain tensor, de  , in terms of the material properties, the normal to the 
yield surface, the increment of stress and an increment of effective plastic 
strain rate.  The first term in brackets in Eq. (15) is the rate-independent 
equation from classical plasticity.  The second term constitutes the 
correction for rate effect. 
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A form of the general equations dealing with Increments of stress and 
total strain may be more convenient for numerical applications.  The 
elasticity relation is 

da. 
ij ^ijk£ ^^ki 

=  E 
ijk£ 

de 
ki 

(16) 

^^\J 

Replacing da  in Eq. (Ua) by this expression and again solving for effective 
plastic strain increment gives 

8a 
(17) 

where 

Then, using Eq. (17) and Eq. (12a) in Eq. (16) gives a modified constitutive 
relation 

da 
ij 

=  [E.. 
ki 

-     D 

-DE 

3f 
ijkZ    8a 

kZ 

8f 

2/3 a 

8f 
iimn  8a   8a 

mn   rs 

8a 

^skA^^^^A 

y 8eP 

y j'P - de 

(18) 

Again the rate effect is isolated in the last term.  The remainder of the Eq. 
(18) is identical to the classical rate-independent relation. 

In the present form, of course, the increment of effective plastic strain 
rate is unknown, so Eqs. (15) or (18) are not directly useful as computational 
tools without some algorithm to calculate de  for the increment.  No such 
specification will be made for the general case; however, several solutions 
for special cases will be developed to cover many situations of practical 
interest in the following sections.  Of particular importance within the 
context of modern engineering practice, an incremental form of the theory 
readily adaptable to nonlinear, dynamic, finite element stress analysis codes 
is a preferred embodiment and will be developed next. 
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B.  Incremental Constitutive Relation for Computation of Multlaxlal Plastic 
Strain 

In the general development of the preceding section, the increments of the 
plastic strain tensor, Eq. (15), were specified by increments of stress and 
effective plastic strain rate, with coefficients to these increments depending 
on the instantaneous value of the stress and plastic strain tensor and the 
effective plastic strain rate.  This form of the theory leaves the analyst 
with the problem of computing, or at least estimating, the increment of 
effective plastic strain rate.  The correct Increment will maintain the 
collection of state variables on the yield surface during plastic deformation 
and also maintain the appropriate relation between increments of tensorial 
plastic strain and strain rate and the effective plastic strain rate 
considered as time differential. 

An alternate approach is obtained by returning to the expression for the 
vanishing of the increment of yield surface, dF, as given by Eq. (11a). 
Dividing this relation by dt, the corresponding increment of time, gives 

5   '^'   *   3/2 c S^   =   V2 (f  If-) ;,.    .     - (:,) 
3e , y ij J 

where 

"P 
e  =  effective plastic strain "acceleration." ' 

This equation will be considered a first-order nonlinear differential equation 
for the plastic strain rate. The nonlinearity arises from the coefficients of 
the equation. 

The empirical relation Eq. (6) for the variation of yield stress with 
plastic strain rate may be differentiated to give 

8a       ah 
 1    ^ o 

• p    •     'P 

o 

(20) 

This is the coefficient of the acceleration terra. 

The right hand side of Eq. (19) presents a greater difficulty.  The 
quantity in parentheses represents the direction normal to the yield surface 
In stress space, assumed to be the direction of the incremental plastic flow 
by the associated flow rule.  The magnitude of this gradient to the yield 
surface has been normalized by dividing by a   .  Hence this quantity represents 
a vector of constant magnitude but variable direction in the stress space. 

The scalar product of this normal with the stress rate vector constitutes the 
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loading associated with the plastic deformation; this concept is directly from 
the classical theory.  The analytical specification of this normal direction 
generates enormous difficulties in the general case, although the form is 
simple. 

1  3f ^^ij ~ ^ ^ ij'* ,  , 
- J^    = - • (21) 

V^ '       'J   -(3/2 (S,^ - c.^^)(s,,-c=\^) 

The real difficulty arises from the mere appearance of the individual 
components of the plastic strain tensor.  Eq. (19) may no longer be considered 
a nonlinear differential equation; its true character as a nonlinear integro- 
differential equation becomes apparent due to the requirements of specifying 
the plastic strain tensor. 

The difficulties with the right hand side of Eq. (19) disappear in two 
special cases, which have also been widely investigated in classical 
plasticity.  The first is the case of perfect plasticity.  In this 
approximation there is no work or strain hardening during plastic deformation; 
i.e., the tangent modulus in the plastic state is assumed to be zero, which 
gives C = 0 in the present formulation.  The true significance of this model, 
however, lies in the fact that the yield surface, and hence the normal to the 
yield surface, no longer depends in any way on the plastic strain which has 
occurred up to that time. 

The second special case concerns restricted loading programs, in 
particular what is commonly called radial or proportional loading.  In this 
case the load in stress space proceeds along a radius of the yield surface 
until that surface is reached.  Additional loads are applied in the same 
direction in the stress space, i.e., the relative proportions of the various 
components of the stress tensor are maintained constant throughout the plastic 
deformation.  The initial normal to the yield surface is given by Eq. (21) 
with e   = 0, so the initial increments of plastic strain are also in this 

radial direction.  Thus, no changes in the direction of the normal occur 
during proportional loading; and the coefficient on the right hand side becomes 
constant. 

These two solutions to the difficulties presented by Eq. (19) rely on 
special material or loading assumptions. Hence they are not applicable to 
general structural analysis.  The remainder of the current section will 
develop an approximate method appropriate to the numerical structural analysis 
of general material properties and loading programs.  The method commonly 
applied to compute nonlinear behavior by modern structural analysis codes 
(e.g., Reference (20)) is to replace the differential (infinitesimal) 
increment developed in the preceding sections to describe the growth of the 
plastic strain by a finite increment or difference.  During the finite 
increment, only the incremental quantities grow; all other quantities (e.g., 
stress, plastic strain, etc.) remain fixed at the values at the beginning of 
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the Increments.  At the beginning of the next increment, these total 
quantities are adjusted by the value of the preceding increment.  Hence the 
total quantities vary as step functions.  This type of approximation is 
accurate as the duration of the increment approaches zero.  For finite 
intervals the accuracy may be improved by decreasing the size of the increment 
or by iterating the value of the total functions within the interval.  The 
rationale for this procedure comes from the mean value theorem of elementary 
calculus. 

Applying this procedure in the present case means that the coefficients 
and right hand side of Eq. (9) are constant.  Hence the equation reduces to a 

linear, first-order differential equation for e , which is readily solvable 
within each of the finite intervals.  The incremental time scale will be 
denoted by T; the origin is placed at the beginning of each increment. 

The complementary solution of Eq. (19) is 

=  e ex P [- 
3/2 C 
30 (22) 

9e^ 

where 3 = constant of integration. 

The complete solution of Eq. (19) is obtained by variation of parameters, 
g in Eq. (22) is assumed to be no longer constant, but rather a function 
of T.   Inserting Eq. (22) into Eq. (19) gives 

5 -  3/2 (f 1^) i 
ij 

ij  3a 

3e' 

r3/2 C T 

d¥ 

■-] . (23) 

which may be integrated to give 

-  (^ 
3f 
9a, 

ij 

exp ■3/2 C T- 

9i' 

(24) 

where g = constant of integration. 

Substituting Eq. (24) into Eq. (22) gives the complete solution 
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^' - ^ (f 1^) °1, * \ -p [- ^e^ ] •        (") 
y  ij 

3|P 

To evaluate the constant, B^, the discussion of previous sections will be 
recalled.  There, it was postulated that the resistance of the plastic strain 
rate (caused by dislocation motion) to sudden changes was the basis of the 
rate effect in plastic deformation.  Hence, the correct initial condition for 
Eq. (25) is to guarantee continuity of the effective plastic strain rate from 
the previous increment. 

.p    .p 
e  = e ^ ,  when x = 0  . (26) 

Thus 

^1  ■ ' o  - -^ 8^ ^ii  • (27) 

Eq. (25) must be converted from an expression for effective plastic strain 
rate to a relation for the increment of effective plastic strain for use in 
the associated flow rule Eq. (12a).  The increments are now finite rather than 
differential, so 

, P    •? 
de  = e T 

and (28) 

da, . = a^. T 

Collecting Eqs. (12a), (25), (27) and (28) generates a constitutive equation 
for the increment of plastic strain 
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« '- '" ^ K-^ '"" ^ 

+  Q/o I^    r;P    _!_ if  •  1     r   3/2 C T T 3f       ,  , 

•y        y  '^*  y     ij 

.•P 

The first term on the right hand side of Eq. (29) is the classical rate- 
independent plastic Increment.  The second term represents the correction for 
rate effect.  It controls the growth of the plastic strain increment with time 
within the interval and demonstrates the continuous evolution of plastic 
strain with time as postulated from physical considerations; even for constant 
stress, when 

Eq. (29) shows that plastic strain will grow due to the initial effective 
plastic strain rate in the interval.  This phenomenon is creep occurring above 
the yield strength of the material.^»^^ 

of Eq. (^Q) is well suited for use in incremental elastic-plastic 
It codes.   The structure of the code does not need to be 

The form 
finite element 

changed, since all quantities required to calculate the plastic deformation 
during an increment are available at the beginning of the increment. 
Additional algebraic operations are, of course, required in each increment to 
obtain the correction for rate effect. 

C.  Development for Perfectly Plastic Material 

For a perfectly plastic material there is no strain hardening.  In the 
development for the classical theory the stress may not increase beyond the 
(static) yield surface.  In the rate dependent theory, some increase of stress 
above static yield is possible due to rate hardening of the material.  The 
significance of the perfectly plastic model lies in the immense simplification 
of the yield surface definition possible without hardening.  The difficulty 
introduced in the general case by a yield surface dependent on the integrated 
past history of plastic deformation was considered in the discussion following 
Eq. (19). ^ 

In the present formulation, the perfectly plastic model is obtained by 
eliminating the kinematic hardening, i.e., C = 0.  Then Eq. (11) becomes 

23 
A.R.   Tak,   "Finite Element Model for Nonaxisymmetvia Structure mth Bate 
Dependent Yield Conditions," BRL Contractor Report,   In preparation. 
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^■^T: '^^ij ^ 7^ ^"^   ' (30) 

which is integrable, giving the original yield function.  Thus 

2 
a .p 

VaS^j S^.  = ^ [1 H- b In  (l +-^)]2 . (31) 

o 

Solving for effective plastic strain rate 

/3/2 S,.S,. - a 
%     < exp [ ^^ ° ]  - 1 >  ,    . (32) 

from which a rate form (the traditional form) for components of plastic strain 
results, giving 

P     -i     . *'3/2 S, .S, . - a s, . 
e 2 ^ ^ ^^P L bT-^^  J - 1 > ^ .        (33) 

o y 

The plastic strain rate may be seen in Eq. (33) to be in the direction of 
the current value of the stress deviator tensor, and of a magnitude influenced 
by an exponential function of the excess of "effective stress" over the static 
yield stress.  For a constant stress condition, the plastic flow will continue 
indefinitely. 

D.  M>del of Daiaxlal Stress States 

The incremental solution indicated in Section B allows general loading 
programs to be numerically modeled with any required accuracy.  However, 
special loading programs, namely radial or proportional loading, allow great 
simplification in the equation governing plastic deformation, Eq. (13).  For 
these cases, the normalized gradient to the yield surface, appearing on the 
right-hand side of that equation, becomes constant and no longer dependent on 
the history of past plastic deformation.  For an important type of radial 
loading, the case of uniaxial stress, such as occurs during material testing, 
a closed form analytical solution may be obtained.  This exact solution to 
rate-dependent plasticity gives an accessible picture of material behavior, 
allows various response parameters to be identified, and provides a measure of 
accuracy for the numerical solutions. 

29 



For a uniaxial stress state, 

a,, 5^0, a        *  0  , all others a      = o. . == 0 , 

S  =^ a (34) 
^11  3 ^11  • 

= - lA c 
22   33      '2 ='11  » S„„ = S„ 

P       P       1/  P 
e 22 = ^33 =   /2 ^ 11 ; 

hence, 

'      =  1^ 11 > 

and 

y   11 

where the sign depends on the sign of the quantity ( S.. - a ).  (Fbr 
uniaxial stress, the normal to the yield surface is a vector pointing in the 
positive or negative direction.) 

Using the relations from Eq. (34) in Eq. (19), the equation governing the 
growth of plastic strain becomes 

V     "P     ,   .p    . 
     e"^ + 3/2 C e"^ = a , (35) 
e + e 
o 

where    a    = sign (S^^-a^^) a   . 

•   'P 
Defining n = e + e  , 

"P 
so      n = e  , 
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Eq. (35) may be written 

o^h  n + 3/2 C n  - (a + 3/2 C e^) n = 0  . (36) 

Eq. (36) Is a Riccati equation with zero right-hand side, which, fortunately, 
may be solved in closed form by the substitution 

n = -  ,   n = 
2 ' 

y 

giving 

a^b y + (a + 3/2 C e^) y = 3/2 C . (37) 

The complementary solution of Eq. (37) is obtained 

dy 
y 

■—jT (a + 3/2 C e ) dt. 
O D O 

Integrating 

In y    = C - 
a  b 
o 

(a + 3/2 C e t)  , 
o   ' 

or 

= C" exp [- -ir- (a + 3/2 C e t)]  . 0 b 
o 

(38) 

Allowing the constant of integration C" to vary with time and substituting 
into Eq. (38) gives 

o^b exp [- —^ (a +  3/2 C e^t)] C" = 3/2 C . 

31 



Integrating, 

:"  = C,  + ~^    j  exp [-^ (a  + 3/2 C e t) dt. 
o o 

^                 ^ c ,     3/2C 
^    a h 

0 
.p   .   - < s 
e    + e 

0 

Then, a complete solution to Eq. (35) may be written 

/ exp  [^ (a + 3/2 C e^t)] dt > 
o 

(39) 

• exp [- -~^  (a + 3/2 C e^t)] . 
o 

To proceed further, the variation of the stress a  with time must be 
specified.  Since the application of interest will be stress loading rates 
appropriate to a stress-controlled uniaxial material testing machine, 
sufficient generality is obtained from piecewise linear loading histories in 
time.  Thus, 

a    =    Z        +    Z  t       ,   t in linear loading interval , 

and (40) 

•    • 
a    =    Z    =    constant  . 

Using Eq. (40) in Eq. (39) gives a solution valid during any loading interval 
for which plastic strain is occurring 

a + 3/2 C £ t 

T?-~- = ^1 ^-P [ ^-b   ] ^ T^—7-    . (^1) 
e + e o p + e 

o ^     o 

where    P = 3/2C  • 

The parameter p in Eq. (41) is a steady state plastic strain rate 
corresponding to the cons 

• P strain rate, e , asymptot 
gives the plastic strain 

corresponding to the constant stress rate in the loading interval; the plastic 
• P strain rate, e , asymptotically approaches this value.  Integrating Eq. (41) 
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Ob 

"  = S "^ P' ^ 37fc ^^ (TT—7-) (^2) 
£ + e 

o 

in the loading interval. 

The constants C, and C2 appearing in Eqs. (41) and (42) are evaluated by 
requiring that the plastic strain rate and plastic strain be continuous 

between the previous loading interval and the present interval. 

Some care is required in applying Eqs. (41) and (42) to a particular 

situation because of the sign conventions adopted during the derivation. 

Thus, the strain quantity calculated is equal to the absolute value of the 

plastic axial strain.  Similarly, the stress rate quantity a is positive or 

negative as the absolute magnitude of the stress is increasing or 

decreasing.  This convention allows the quantities of Eqs. (41) and (42) to be 

calculated.  The sign of the plastic strain developed will then depend on sign 

(S,, - ot,,). (For small strains this is merely the sign of the stress, tension 

or compression.) 

Standard uniaxial material tests may also be performed on machines so that 
the strain or deformation rather than the stress or load is varied in a 
prescribed manner.  Modern servohydraulic testing machines may control either 
quantity, so that stress or strain is prescribed at the experimentalist's 
discretion and the remaining quantity is determined as the result of the test. 

In modeling a strain controlled test, the stress field is still uniaxial, 
so Eq. (35) applies; 

o       P  .  ^ ,„ „ •? 
,  'P 

e  + e 
e  + 3/2 C £ = a  . (35) 

o 

However, the stress rate on the right-hand side is no longer known.  This 
problem is avoided by writing, for uniaxial stress, 

a=E£  =E[£-EJ. (43) 

Then Eq. (35) becomes 

o b     ..„ 
O P  ,   /^/„ „ . „s 'P 

.p 
e  + E 
o 

£  + (3/2 C + E) e  = E £  . (44) 

Eq. (44) may be solved in the same manner as the stress control process, 
once the strain rate loading has been specified. Again the prescribed strain 
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will be assumed to be plecewise linear; this is sufficient to model accurately 
most material testing conditions.  So 

e = R^ + Rt   ,  t in linear loading interval  , 

and 

e = R    (a constant) 

(45) 

The solution corresponding to the loading program of Eq. (45) is 

1 1 E e + (3/2 C + E)e t 

•P 7 + C^' exp [ -^ ^ ]  .  (46) 
e + e     £ + r "o o o ^ 

where 

r = T 
3/2 C 

• 
r corresponds to a steady state plastic strain rate for a constant strain 

rate loading R.  The actual plastic strain rate approaches this value 
asymptotically.  r and p for the stress controlled test are entirely 
analogous terms. 

Eq. (46) is integrated to give 

p 
e  = C'  + r t 

0 b o 
^'^ (T ^—7?)  • (47) 2 3/2 C + E    '^.     .p 

e  + e 
■ -■ .  ■ o        •-,••. 

Again, the constants C'^ and C'2 appearing in Eqs. (46) and (47) are 
evaluated by requiring that the plastic strain rate and plastic strain be 
continuous between intervals. 

The two sets of equations, Eqs. (41) and (42) and Eqs. (46) and (47), give 
exact solutions for the plastic behavior of materials under actual, realistic 
testing conditions.  As such, they allow easy determination of the shape of 
stress-strain curve for a wide variety of loading programs.  In addition, the 
easily calculable solution serves as a check case for the more general 
structural analysis procedures. 
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IV.  APPLICATIONS OF ONE-DIMENSIONAL MODEL 

A.  Constant Rate Tensile Testing 

The uniaxial stress solutions to the equations of plastic deformation are 
used to model the constant strain rate material tests of the type illustrated 
by Figure 1.  For the piecewise linear loading programs considered in Section 
III, the time origin is set to the beginning of the loading interval being 
considered.  Hence the strain for this portion of the strain controlled test 
is given by Eq. (48), 

= R  + 
o 

Rt (48) 

where = e. (initial strain in loading interval). 

Both the plastic strain and plastic strain rate must be continuous.  At 
the beginning of an interval, then, these variables must be equal to their 
value at the end of the previous interval. 

•P    'P   \ 

at t = 0  . (49) 

For the initial interval, the time origin is set to the time when the 
stress reaches the static yield stress for the material and the plastic state 
is first entered.  For this special interval 

I 

and 

•P 

o 
"E 

= e. 

(50) 

= 0 

since there can be no plastic strain before the yield surface is crossed. 

Applying the initial conditions Eq. (49) to the solutions for constant 
Strain rate uniaxial stress given by Eqs. (46 and 47) allows the constants to 
be determined as 
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•p 

^i = T' ^^' r ^^P ["Tb-^ (e^+ ej)(e^+ r) 

and (51) 

4 = \   e  +  e^ 
o      I 

P _     o  . f 1 >, 
'I    (3/2 C + E) ^" ^.   ,   .P J • 

Inserting these constants into the Eqs. (46) and (47) results in 

• tp 

P P • o o I 

e    + e 
o 

and (52) 

•              •?           •              'P • •?                          •                 ,                  • 
e       +    e^           e      +    e r    -    e                          ER    +    (3/2  C +  E)e 

O i                      O                      i I                          r                                                                                O        ^T   =         +      exp       -     r      t 
e+e             e+r e+r                                        o 

o                            o o 

To obtain the stress-strain curve for this model of the uniaxial test, the 
values from Eq. (52) are inserted into 

E e^ = E(e - e^)  , (53) 

where    e = e  + Rt 

Finally, it is more convenient to eliminate the time and deal directly with 
the increase in strain since the start of the interval, as 

t =  i = A£ . (54) 
R       R 
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Then 

a     = a^ + E^ As - 
a  b 
o 

E - E 

In  < 
+ e 

and (55) 

e  + e^ 
o     I 

+ e 

+ e. 

e  + r 
o 

-T Efe +  rj 
_ exp  [-  ; Ae ]  . 

e  + r 
o a b r 

o 

To demonstrate the use of Eq. (55), material parameters are obtained from 
Figure 1 and the experimental data from that series of tests modeled.  The data 
are due to Lindholm^ for Titanium 6 A1-4V alloy tested in tension at 70°F. 
The strain range will be restricted to 4% for the purpose of constructing 
the bilinear approximation for back extrapolation to determine yield stress. 
This process results in the data in Figure 3, where the yield stress-plastic 
strain rate curve to fit the experimental points is also shown.  The relevant 
material properties obtained from Figures 1 and 3 are listed in Table 1. 

TABLE 1.  MATERIAL PROPERTIES FOR Tl 6A1-4V IN TENSION AT 70"? (REFERENCE (1)) 

Modulus 

E =  17,000,000 psi E 

a  =  140,000 psi 
o ^ 

^ =  350,000 psi 

Static Yield 

e^ =  .00824 o 

e  =  .5/sec 
o 

Rate Dependency 

b =  .0314 

Using these values in Eq. (55), along with the initial conditions for the 
first plastic interval Eq. (50), results in the model of the uniaxial constant 
strain rate test shown in Figure 4.  Also shown in Figure 4 are the relevant 
data points from Figure 1.  That the agreement between the model and 
experiment is excellent should not be surprising for this case, since the 
model was calibrated to this data.  The errors are an indication of the 
accuracy of the bilinear approximation and the logarithmic yield stress- 
plastic strain rate fit. 
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Figure A.  Moc'el c: Constant Strain Rat.€- Uniaxial Tensile Test. 
Points fron Reference (1) 
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The shape of the curves is very nearly that of the bilinear 
approximation; however, they do not have a sharp corner at the "dynamic" yield 
stress.  Instead, they rise past the static yield stress at nearly the elastic 
slope.  Then within a very narrow transition, e.g., in the high strain rate 
example, e = 220/sec, the zone is less than .1% strain centered about 1% 
strain, the curve abruptly changes to the slope of the plastic region.  This 
abruptness in the transition and rapid approach to a "steady state" plastic 
deformation rate is important to the validity of using constant strain rate 
tests to generate constant plastic strain rate data.  The use of back 
extrapolation techniques to measure yield stresses assures that the values 
determined correspond to constant plastic strain rates. 

After the model has been calibrated to the data of Figure 1, more 
complicated loading histories may be calculated.  One such history which has 

been experimentally studied ^>1° is to load at a constant total strain rate 

into the plastic zone, and then to change abruptly to a different, but again 
constant, strain rate.  This loading program may be easily modeled by Eq. 
(55), where now the (nonzero) values of plastic strain rate and plastic 
strains are used as initial conditions across the change of interval. 

The results of these calculations are shown in Figure 5 for the same two 
constant strain rates as used in Figure 4.  When the strain rate is suddenly 
increased from the lower to the higher rate, the stress-strain curve follows a 
nearly elastic slope initially.  The curve again has a sharp transition and 
within a half of a percent strain has rejoined the stress-strain curve of a 
test performed entirely at the higher rate.  When the strain rate is suddenly 
decreased from the higher to the lower rate, the curve falls along a aearly 
vertical line and transitions to the lower curve within a few hundredths of a 
percent strain.  This behavior of the model reproduces the experimental data 
of References (9, 18) well. 

Also shown in Figure 5 are the results of modeling a tensile test 
performed with stress control.  The Eqs. (41) and (42) are used, along with 
the data of Table 1, to obtain this curve.  During a stress control test, the 
stress rate of loading is controlled at a constant level by the machine.  For 
comparison of data the stress rate should correspond to a particular constant 
strain rate.  In the example of Figure 5 the stress rate is controlled to give 
the same steady state plastic strain rate as the upper curve of the strain 
control tests.  As may be seen from the figure, the upper curves for stress 
and strain control do not correspond within the strain range considered.  At 
larger strains the two curves coalesce.  The stress control-test takes much 
longer to attain a steady plastic strain rate.  This difference in the shape 
of the stress strain curve depending on the control of the testing machine has 
been noted in the References (9, 18). 

B.  Creep and Selaxation 

It has been noted experimentally that creep and relaxation phenomena 
appear in metals at room temperature when they are stressed above their yield 
stress.'*    These phenomena are due to the plastic deformation requiring 
time to develop fully.  The suppression of a part of the plastic deformation 
is what raises the stress-strain curve at real loading rates above the static 
curve.  A corollary is that, if the load rate is stopped and the stress held 

39 



a-    - 

Figure 5.  Application of Model of Uniaxial Stress Plastic Deformation to 
Change of Strain Rate and to Stress Rate Control 
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constant, the remainder of the suppressed plastic deformations will eventually 
occur.  This process is creep. 

The creep phenomenon is modeled with Eqs. (41) and (42).  The material is 
presumed to be loaded into the plastic range by some program, and the response 
is calculated by the methods of Section A.  Then the loading is halted and the 
stress maintained constant at the current value.  The period of constant 
stress is taken as an interval, with conditions 

= e. 

= e 

I 

P 
at t = 0 , (56) 

ancl 

0 . 

Then the response of the material is given by 

a  b 
e = e  + —;  

I    3/2 C 

e + e^ 
,n <^ 1-> 

•     •? e  + £ 
o 

with (57) 

 1 = 1 + -L 
£  + e 
o 

•P 

- -;— exp  [- 
3/2 C e 
 c 

a  b 
o 

and 

a    =     a. 

Thus, under a constant stress, the strain grows as indicated by Eq. (57).  The 
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maximum strain is approached as time goes to infinity; then the exponential 
term approaches zero and 

JTTc   '-   <'   ^  -r>   =  ^~ , (58) 
e o 

where a    is the initial yield stress corresponding to a constant plastic 
strain tate of e^.  Since the tangent modulus at any plastic strain rate is 
parallel to the static value, the stress difference does not change in 
proceeding to higher initial strain values.  From Figure 2 and Eq. (58) then, 
the material will creep at constant stress until it reaches the static stress- 
strain curve.  The approach to this curve is very rapid, being governed by the 
exponential term of Eq. (57).  For the material properties of Ti 6A1-4V alloy 
being utilized in the previous calculations, all but 2% of the total creep 
would have occurred within .1 sec. 

By the same considerations as were applied to modeling the creep behavior 
of a material above the yield stress, the relaxation phenomena may be 
calculated.  In this case the strain is held constant after an initial loading 
into the plastic zone, and the stress decreases with time until the static 
stress-strain curve is reached. 

V.  ASPECTS OF RATE-DEPENDENT PLASTICITY 

A.  Behavior of the Model In Multlaxlal Stress Space 

The concepts of stress space, yield surface, and loading trajectory were 
introduced in Section II.B.  The current section will describe the behavior of 
the rate-dependent model during plastic deformation. 

Interior to the initial yield surface is a volume of stress space which 
corresponds to purely elastic material behavior.  As the load increases, the 
stress point approaches the yield surface and eventually touches it.  It is 
convenient to think of the material as having entered the plastic state at 
thiSptime.  Since the initial yield surface is static (i.e., it corresponds 
to e  =  0), there is no plastic strain occurring at this instant.  Thus 
continuity of behavior is preserved between elastic and plastic states. 

As the load continues to increase, a finite plastic strain rate will 
develop, giving rise to plastic strains.  The stress point is now located on a 

yield surface corresponding to £  > 0.  Concentric to and interior to this 
surface is a current static yield surface.  As plastic strain develops, these 
concentric surfaces are shifted by the kinematic hardening rules.  This 
behavior is shown in Figure 6. 

The outer current yield surface expands and contracts about the inner 
static surface depending on the instantaneous value of the plastic strain 
rate.  As long as the stress point is outside of the static surface, plastic 
deformation is occurring and tests to determine loading, unloading, or neutral 
loading conditions, as in the classical theory, are unnecessary.  If the 
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loading program is such that the current yield surface shrinks to the static 
• P 

surface, plastic deformation will cease since e  =0, but the plastic state 
will not be exited until the stress point moves interior to the static 
surface. 

What is referred to as neutral loading in the classical theory is the 
movement of the stress point on the static surface.  No plastic deformation 
can result from this type of process, due to the vanishing of e  on this 
surface. 

B.  Existence of Equation of State 

The behavior of materials to unlaxial tests where the strain rate is 

changed abruptly, as in Section IV.A, is often regarded as proof of the 

nonexistence of an equation of state for plastic deformation. "^  This behavior 

is shown in Figure 7, which reproduces the stress-strain curves of a material 

at two different constant strain rates e, and e , as well as the case where 

the strain rate is changed from e  to e  .  Here, for the same value of strain 

corresponding to the vertical line and the same value of strain rate, 

e , there are two values of stress possible, shown by the points (a) and 

(b).  This nonuniqueness of the stress is taken as evidence for the 

nonexistence of an equation of state appropriate to plastic flow.  It is 
argued that the past history of the material must be known, i.e., the stress- 

strain curve up to the present time, in order to make the stress unique for a 
given strain and strain rate. 

An alternate approach is to consider a different set of variables to 
define the state of the material.  In particular, the variable used in the 
present theory, the plastic strain rate, eliminates the preceding 
difficulty.  Lines of constant plastic strain rate are parallel to the tangent 
modulus of the material; their intersection with lines of constant strain give 
unique points which determine the stress.  After an abrupt change of strain 
rate, the plastic strain rate Increases steadily in the manner prescribed by 
Eq. (46), toward an upper limit.  Thus the instantaneous value of this 
quantity stores the relevant rate history information required to determine 
the stress uniquely.  This consideration is an additional argument for use of 
plastic strain rate in the formulation of the rate-dependent theory. 

The above consideration is not meant to imply that the present theory is 
history independent.  Although the instantaneous value of the plastic strain 
rate is all that is required, the determination of this quantity required the 
solving of a differential equation with initial conditions.  Thus all past 
history is included in the current value of this internal state variable. 

2,4 A.M.   Fr'eudenthal,   The   Inelastia Behaviov of Engineering mtevials and 
Stvustuves,   John Wiley and Sons,   NY,   1950. 
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Figure 7.  Existen cc ot Equation of State for PJa.-tic Flow 
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C.  Relation to Vlscoplastlclty 

A question arises as to the relation of the present rate-dependent 
plasticity theory and the theory of vlscoplasticity as expounded, e.g., by 
Perzyna.   There appears to be no simple answer.  The approaches to the 
derivation of the theory were different, and the resulting equations for the 
general case cannot be put into similar forms.  The relationship between the 
theories is a matter deserving additional study. 

In one special case, however, the resulting equations reduce to the same 
form.  This is the case of a perfectly plastic material, where the plastic 
modulus is zero and no strain hardening occurs.  Eq. (33), written for 
uniaxial stress conditions, becomes 

•P 
e  = e 

a    -    a 

o    ^^'^P [7-b ^]  - 1>  • (59) -a  b 
o 

By comparison to Eq. (2.90) of Reference (21), this special case of rate- 
dependent plasticity is seen to be identical with the exponential form of 
classical viscoplasticity.  Vlscoplasticity is derived from the concept of a 
function of the overstress, here represented by the quantity 0 - a , and a 
viscosity coefficient characteristic^of the material.  Comparison of the 
equations reveals that the quantity e       representing a transition strain rate, 
as m Figure 3 in the present theory, appears in the same place as the 
viscosity coefficient, y, of classical viscoplasticity. 

D.  Conclusion 

A form of the equations of plasticity has been derived which allows for 
rate-dependent phenomena.  The major assumption was simply that the yield 
surface depended on the plastic strain rate.  The choice of plastic strain 
rate as the rate variable was based on physical considerations and on 
appropriateness as an internal state variable.  From this assumption the 
governing equations were determined by extension of classical plasticity 
methods without recourse to additional assumptions concerning overstress or 
material viscosity.  The theory as derived contains rate-independent 
plasticity as a limiting case when rate effect vanishes; therefore, it may 
serve as a matrix to relate the various elements of rate dependency, creep and 
relaxation, and classical plasticity. 

A factor ignored in the present theory but clearly of importance is 
temperature.  Elementary forms of temperature dependence on yield stress may 
be added to the present formulation in the same manner that these effects were 
added to the rate-independent plasticity in Reference (19). 

When high strain rates are combined with large strains, the heat 
generated by the plastic work raises the temperature sufficiently to affect 
the plastic deformation mechanism.-^"^ This thermo-mechanical coupling would be 
an important component of any theory attempting to explain impact or 
penetration phenomena, for example.  It is obvious that the addition of this 
type of coupling to a rate-dependent theory of plasticity would be a major 
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modification, if handled in a rigorous manner.  A temperature modified rate- 
dependent formulation would be the optimum starting point to derive such 
theory. 

On a more modest scale of effort, the connection between this theory and 
the theories of viscoplasticity should be investigated for the general case. 
Identification of areas of similarity or difference could help in the 
classification of the theories, and might lead to further Interesting 
congruences, as was observed between the material viscosity of viscoplasticity 
and the transition strain rate of the present development. 

Comparison of the results of calculations with multiaxial states of 
stress to experimental data may reveal other areas where rate effects 
appear.  For example, attempting to load a specimen along a Von Mises ellipse 
in a torsion/tension test leads to a bulge in the curve, which is matched by a 
rate-dependent calculation.   Additional study of the apparent shape of the 
yield surface under variation of plastic strain rate, as well as stress state, 
may lead to new understanding of experimental yield surface data. 

S.A.  Meguid,   L.E.  Matvern,   J.D.   (hmphell,   "Plastia  Flow of Mild Steel 
Under Proportional and Non-proportional Straining at a Controlled Rate," 
Journal of Engineering Materials and Teahnololgy,  Proceedings of ASME Vol• 
101,   pp 248-253,   July 1979. 
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