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EUROPE APPROACHES CHAOS WITH ELECTRICAL interest to the Navy. Parallel US
CIRCUITS research efforts are supported by the

Air Force Office of Scientific Research,
In some nonlinear dynamical sys- the Department of Energy, the National

*tems, behavior changes , -n simple and Science Foundation, and the Army Re-
predictable to chaotic as -ome external search Office.
control parameter is varied. An example In this report, the underlying
of this behavior is hydrodynamic flow concepts for the period-doubling route
around an obstruction in a fluid stream to chaos are presented, and the scope of
(Kadanoff, 1983). When the fluid speed recent research in a variety of physical
is low, the flow is laminar, and a down- systems is briefly noted. Then, Europe-
stream probe measures a constant veloc- an research investigating chaotic
ity. As the speed is increased, eddies behavior in nonlinear, driven electrical
with a regular structure are formed circuits is discussed in detail. These
behind the obstruction and are convected circuits--really nonlinear analog
downstream to produce a periodic varia- computers which solve the differential

*tion in velocity. At still higher equations describing idealized physical
.4.speeds, the flow becomes fully turbulent systems--represent a bridge between the

and the downstream velocity varies simple and highly abstract deterministic
erratically and unpredictably. models and the experiments where compli-

During the last few years, analo- cating and competing effects can obscure
gous transitions from simple to chaotic the universal behavior.
behavior have been observed in a variety
of hydrodynamic, biological, electronic, The Basics
chemical, and optical systems. Although The period-doubling transition to
these systems are physically very chaos arises from simple cyclic behavior
different, extremely simple determinis- at small values of a control parameter
tic mathematical models can reproduce R. As R is increased, a period-doubling
the approach to chaos for all of them. bifurcation occurs such that the system

*Even more surprising, the models show state repeats only after two periods of
that the observed "period-doubling" the basic cycle. Additional bifurca-
route to chaos possesses universal tions appear with further increases in

*features that depend only on a few R, causing increasingly complex behavior
fundamental qualities that the systems which repeats only after four periods,
share. This recent understanding has then eight, etc. At a certain value of
provided important and fundamental R, an infinite number of doublings has
insights about turbulent and noisy been reached and the system becomes
behavior in many physical systems. fully aperiodic.

The application of this research to A disarmingly simple mathematical
noise is of particular interest to the model with this behavior was investi-
Office of Naval Research, Arlington, VA. gated by Mitchell Feigenbaum (1978) of
The Nonlinear Dynamics Program within the Los Alamos National Laboratory.
the Physics Division includes a basic Feigenbaum studied one-dimensional maps
research program to study the evolution for which a variable x evolved in steps
of chaotic nonlinear systems using according to the quadratic transforma-
analytic theories, computer simulations, tion
and experiments with simple electrical
devices (Shlesinger, 1984). The specif- KJ 1  Rx1 (1-xj) (1) '
ic objective of the program is to Q3
understand chaos-induced noise in and determined the character of the -

sensors, transmission lines, computer long-term (large J) behavior as R was
memories, and communications systems-- varied.
though, as already indicated, the Equation (1) is trimmed to the bare
research may also characterize turbulent essentials required to study chaotic
behavior In other physical systems of behavior. The nonlinear differential 3
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equations that model the continuous few eggs, and a population that is again
variations of a physical system have small the year after.
been replaced by a deterministic one- As R is increased above 3.4, the
dimensional map that describes the state 2-cycle bifurcates to a 4-cycle (Figure
at time J+1 completely in terms of the Id) so that the population assumes four

. state at time J. The linear term acts values before repeating. Increasing R
like a driving term, while the quadratic still further causes additional bifurca-
term is dissipative and provides the tions until about 3.57, when a cycle of
required nonlinearity. A vivid example infinite period appears. At this point,
of the behavior described by the equa- the evolution is fully aperiodic but
tion comes from the study of population limited to a particular range of x
dynamics, where the insect population in values (Figure le), and the power spec-

" year j+1 is determined by the number of trum contains an infinite number of
* .' eggs laid in year J. For this example, subharmonic lines. As R is increased

R is a measure of environmental suita- further, the bands of accessible x
bility, such as the availability of values broaden until R = 4, where the
food, and the quadratic term represents population variation becomes fully
the reduction of natural growth caused chaotic and covers the range 0 to 1
by overcrowding. Without the quadratic (Figure if). The power spectrum has
term, equation (1) shows exponential evolved to broad-band continuum noise

- growth for R greater than I and exponen- filling the frequency range from
tial decay for R less than I from any zero up to the fundamental.
initial population xo. With the quad- Figure if demonstrates an important
ratic term, the behavior becomes amaz- characteristic of chaotic behavior. For
ingly complex. large J, the value of xj depends sensi-

The long-term evolution of equation tively on the initial value xo . Two
(1) can be studied by restricting con- trajectories with arbitrarily close
sideration to R,4, so that the popula- initial values rapidly diverge and
tion xj is limited to the interval 0 to become uncorrelated. Each trajectory
1. Examples for R in this interval are seems to evolve randomly though equation
shown in Figure 1 for which an HP-85 (1) is fully deterministic--any xj is
computer was used to iterate equation defined precisely by xo and the itera-
(1) and display the results. For R less tion procedure. However, tiny initial
than 1, the population decays to zero and computational errors grow exponen-
because of the inhospitable environment tially so that, for even the most accu-
(Figure Is). For R between I and 3, the rate computers, the calculated evolution

.' population approaches a constant value X is a complete fiction after several tens
independent of xo for which the provi- of iterations. The long-term behavior
sions of the environment are just ade- is known in the classical sense but is
quate to support the long-term popula- not calculable in practice. This
tion (Figure Ib). This equilibrium value pseudorandom behavior has wide-ranging
is determined by setting xj+1 - xi - X implications. For example, long-term
and solving to obtain X - I - /R. weather forecasting may never be accu-

As R is increased above 3, the rate because of the extreme sensitivity
simple asymptotic behavior is replaced to initial conditions about which there
by a 2-year cycle in which the popula- is imprecise knowledge.
tion alternates between low and high The full range of behavior dis-
values (Figure Ic). The Fourier power played by equation (1) is summarized
spectrum of this time variation contains in the bifurcation diagram shown in
two lines at the I-year fundamental and Figure 2. A scatter plot of accessible
the 2-year subharmonic. A low popula- xj values is constructed by varying the
tion in one year reproduces rapidly to control parameter in small steps,
leave a large number of eggs. This iterating the equation for each value of
results in overcrowding the next year, R a large number of times, and then
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Feigenbaum showed that period-doubling

6IFULP:RT!ItI PLOT to chaos occurs with any map of the form
S.-- --- xj+ Rp(xj), provided that p(x) is a

smooth function with a single maximum
-- between 0 and I and p(O) = p(1).

Furthermore, he demonstrated that the
P. .behavior of all such maps near the

-. .points of infinite bifurcation are the
".- - same. Defining Rn  as the control
-parameter value at which the n-period

I.cycle first appears, Feigenbaum showed
r'l. that the quantity

"'* *6 n - (Rn.i - Rn)/(Rn+ 2 - Rn+) (2)
28 3 2 3 4 IF 3.8

P rapidly converges to a constant value
6 - 4.669... as n increases above a few.
A second property is that the subhar-

Figure 2. A bifurcation diagram for the monic spectral lines of the n+1 cycle
quadratic map. will have intensities about 8.2 dB below

those of the n cycle. These two univer-
sal numbers should appear in all real

*. - systems exhibiting a period-doubling
- ... approach to turbulence and so provide

key experimental tests.

Experimental Observations
W, In 1979, A. Libchaber and J. Maurer

...... .... ..... of the Ecole Normale Superieure in Paris
performed Rayleigh-Benard convection

-experiments using a liquid helium cell
heated from below. As the temperature

..... ..... difference between the top and bottom of
the fluid was increased, the induced
convection showed subharmonic bifurca-

• • 40 80 120 160 200 tion until the system reached turbu-
' lence. The frequency spectrum showed

lines up to those of the n - 4 or

Figure 3. An intermittant 3-cycle. 16-period bifurcation. Using the
intensity of the n - 2 bifurcation lines
as a base, Feigenbaum (1979) demon-

plotting the next few hundred sequential strated that the n - 3 and n - 4 inten-
values of x1 . The chaotic regime (dark, sities were each reduced by about the
because of a continuum of x values) 8.2 dB predicted by the theory.
shows clear windows above 3.6 and 3.8. During the past few years, re-
Other, narrower windows can be seen on searchers on both sides of the Atlantic
higher resolution displays. These Ocean have demonstrated period-doubling
regions show i new behavior--a slovly to chaos in a variety of physical and
varying 3-cycle interrupted by intermit- chemical systems. Rayleigh-Benard
tent chaotic bursts (Figure 3). This experiments using room-temperature
intermittency has also been observed in silicon oil in place of the exotic
experiments which display period doub- liquid helium have demonstrated bifurca-
ing to chaos. tion to turbulence at the Woods Hole

The rich dynamical behavior just Oceanographic Institution in Massachu-
described is not unique to equation (1). setts (Whitehead, 1983) and at the

.44%
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Centre d'Etudes Nucleaires de Scalay in the behavior of optical and opto-elec-

France (Bergs and Dubois, 1983). The tronic devices that may be the building
French research has shown intermittent blocks for a new generation of large-
behavior in the form of alternating scale computers (Smith et al., 1984).
sequences of spatial chaos interrupted Japanese researchers calculated that
by transient ordered states with well- transmitted light from a bistable ring
defined convective structures. Re- cavity should undergo a transition from
searchers in Germany (Mullin et al., a stationary state to periodic and
1983) and the US (Brindstater et al., aperiodic states when the intensity of
1983) have reported chaotic behavior in transmitted light is increased (Tkeda et
the Couette-Taylor flow of fluid around al., 1980). F.T. Arrechi and coworkers
a rotating cylinder. The relationship (Arecchi et al., 1982) from the Istituto
between broad-band noise and intermit- Nazionale di Ottica in Florence, Italy,
tent behavior was studied at the Centre were the first to report experimental
National de la R~cherche Scientifique in evidence of bifurcation and chaos in
France in the electrohydrodynamic such a quantum optical-molecular system.
instability of an insulating liquid with In that work, they were able to corre-
an embedded ion space charge (Malraison late the appearance of low-frequency
and Atten, 1982). In that work, the noise in the power spectrum with jumps
intensity of a destabilizing electric between the two system states of a
field played the role of control para- Q-switched CO2 laser and have proposed
meter. a chaotic mechanism as the source of the

Rueben Simoyi and coworkers at the ubiquitous 1/f noise that limits the
University of Texas at Austin (Simoyi et sensitivity of electrical circuits. An
al., 1982) have observed forced Belou- electronic analog of this system is des-
sov-Zhabotinskii chemical reactions and cribed below. Soon after, R.G. Harrison
have constructed one-dimensional maps and coworkers (Heriot-Watt University,
that correspond to the periodic and Edinburgh, UK) pumped an ammonia cell
chaotic states. These nonlinear-react- resonator with a pulsed CO2 laser and
ing chemical mixtures form coherent obtained results in excellent agreement
spatial structures with different with the Ikeda theory (Harrison et al.,
component concentrations, and when 1983). Agreement with the theory had
stirred, the concentrations oscillate in been obtained earlier in experiments at
time in a manner mimicking biological the University of Arizona using a hybrid
oscillators. Researchers at the Prague optical-electronic bistable device
Institute of Chemical Technology in (Gibbs et al., 1981).
Czechoslovakia (Dolnik et al., 1984) Chaotic behavior has also been
have disturbed the natural rhythm of the reported in German experiments involving
oscillation by periodically adding a parametrically forced mechanical
bromine ions and have observed alternat- pendulum (Koch et al., 1983), and in
ing sequences of order and aperiodicity measurements of the conductance of
as functions of ion concentration and cryogenically cooled germanium crystals
addition period. By studying how the at Harvard University (Teitsworth et
added ions reset the chemical clock and al., 1983). Recently, chaos has been
introduce aperiodic behavior, the proposed as a solution to the puzzle of
authors have gained insight into biolog- why some polyatomic molecules are so
ical processes and disfunctions such as easily dissociated by infrared lasers
cardiac disrhythmia. (Ackerhalt et al., 1983).

Chaotic behavior has been reported The Japanese, possibly because of
in several laser-driven, optically long-term applications to advanced
bistable systems. Bistability in the computers, have taken the lead in the
optical transmission of a cavity filled study of chaotic behavior in neurons.
with a nonlinear medium is currently of Hayashi and coworkers at Kyushu Univer-
great interest. The phenonemon governs sity have observed period doubling,
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chaos and intermittency by driving the x + nx + f(x)= F(t) , (4)
pacemaker neuron of the mollusk Onchi-
diwn verruculatum with a sinusoidal cur- where n is the dissipation factor.
rent (Hayashi et al., 1983). Other re- Equation (4) describes the motion of a
searchers studied random nets of large forced pendulum with a nonlinear restor-
numbers of neurons numerically and ing force and friction. With appropri-
determined the chaotic behavior of the ately chosen f(x), it also describes the
firing wave instability by treating each dynamics of other physical systems.
neuron as a threshold element (Aoki et Chaotic effects are pronounced when
al., 1983). the driving force F has a period close

to that of a natural resonance in the
Electrical Circuits unforced, free-running system. Under

Electrical circuits with nonlinear such conditions, the equation exhibits
elements have distinct advantages over period-multiplying bifurcations leading
other systems for experimental study of to chaos. The connection with one-
chaotic behavior. The experiment is dimensional maps described above can be
readily assembled with inexpensive com- made by identifying xj with sequential
ponents and easily diagnosed with stand- values of x at a particular phase of the
ard, low-frequency oscilloscopes and driving oscillation. The dynamic
frequency analyzers. Nonlinear dynamics evolution of the differential equation
can be studied over wide ranges of sys- is then equivalent to the iteration
tem parameters by simply changing cir- scheme
cuit component values. The circuits are
accurate representations of differential xj+1 = g(xj, kj)
equations, and results are easy to in- (5)
terpret because extraneous effects, such Xj+l - h(xj, xj)
as nonideal and multidimensional behav-
ior, are absent. Thus, they lie between where the nonlinear functions g and h

- the one-dimensional logistical maps and must usually be determined from the
" experimental systems in complexity--they solution of equation (4) (Ott, 1982).
" are rich enough to model interesting In electrical experiments, these func-

physics but simple enough to do so unam- tions can be determined electronically
' biguously. The electrical circuits are so that the observed chaotic behavior

not physical systems but nonlinear ana- can be assessed in terms of Feigenbaum's
... log computers which solve the differen- p(x) requirements for universality.

tial equations that model the idealized Researchers in the US were first to
', behavior of other experiments. In that demonstrate the experimental advantages
.. regard, they perform better than the of electrical circuits to study chaos.

large-scale digital computers which Paul Linsay (1981) of the Massachusetts
replaced their linear-circuit ancestors Institute of Technology described a

,: as equation solvers 30 years ago. driven nonlinear electrical oscillator
Most of the electrical experiments exhibiting period doubling and chaotic

described below employ a series combina- behavior. In his circuit, a varactor
*: tion of resistance R, inductance L, and diode with a voltage-dependent capaci-

a nonlinear electronic element driven by tance was the nonlinear element. Linsay
a low-frequency oscillating voltage V performed spectral analyses and demon-
whose amplitude is a control parameter. strated agreement with theory by measur-
In terms of charge q (defined by 4 = I, ing the 8.2 dB intensity change between
the circuit current), the governing subharmonic Fourier components. Six
equation is months later, James Testa and coworkers

Lj + R4 + v(q) - V(t) (3) (1982) at the Lawrence Berkeley Labora-
tory used a similar circuit to directly

where v is the voltage across the non- record the bifurcation diagram with an
linear element. Equation (3) is equiva- x-y oscilloscope, performed a detailed
lent to the dynamical equation comparison with the logistical model,

61
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q.'

and demonstrated excellent agreement
with Feigenbaum's universal constant 6.

A Reverse Bifurcation f l
In Europe, a modified varactor

circuit has been used by J. Cascais and
coworkers of CAUL-CFMC (Av. Prof. Gama
Pinto 2, 1699 Lisbon Codex, Portugal) to
demonstrate a new effect: reverse
bifurcation. Like the US researchers,
they used a varactor circuit driven by EU

an harmonic oscillator. The modifica-
tion was a dc bias of b volts added to
the sinusoid. The dc amplitude repre-
sents a second control parameter whose
presence profoundly changes the chaotic
behavior.

The group collected data using
R = 5 ohms, L = 1 mH, and a Philip's
silicon varactor diode with a voltage-
dependent capacity of 50(0.6 + V)-' pf.
The ac amplitude A was kept constant at
10.5 V throughout the experiment, and
the system behavior was measured as b
was varied. Phase-space plots for which
the instantaneous current was plotted G
against varactor voltage showed bifurca-tion, chaos, and period-five windows as

b was increased. Further increases
caused a reverse of the process marked Figure 4. Phase space plots for w 360
by successive period halving. Figure 4 kHz and various values of b.
shows this sequence of transitions for a
driving frequency w of 360 kHz. Shown
are period two (A), period four (B), V
chaos (C), a period-five window (D),
reverse period eight (E), reverse period
four (F), and reverse period two (G).
Bifurcation diagrams for several values
of driving frequency were obtained by
plotting the peak voltage across the

dvaractor against b, and an example for
496 kHz is shown in Figure 5. These
diagrams show a strong dependence on
driving frequency--as w increases, the b
chaotic bands become narrower and
finally disappear above about 550 kHz. Figure 5. A bifurcation diagram for w =

Although the quadratic map of 496 kHz.
equation (1) does not show reverse

.4" bifurcation, some one-dimensional maps
in which the control parameter is an p(x) - exp(-a 2x2 /2Tr) + C (6)
additive constant (rather than a multi-
plicative one) do. Cascais and cowork- With a - 7, the map bifurcates to chaos
ers calculated the bifurcation diagram and then reverse bifurcates to a stable
in which the quadratic dependence is two cycle as C is varied from -I to 0.
replaced by Though this behavior has yet to be

~. . 7



observed in a physical system, reverse
bifurcation in electrical circuits and
one-dimensional maps demonstrates that
in certain situations a chaotic system
can decrease its dynamic complexity with
increasing stress.

Researchers from the University of
Gttingen in the Federal Republic of
Germany have also examined bifurcation
in varactor circuits and shown behavior
fundamentally different from the logis-
tic equation (Klinker et al., 1984).
They summarized results in a phase plot
of driving voltage amplitude versus fre-
quency showing areas of period doubling,
chaos, period five, and doubling from
period three. A most interesting result Figure 6. Frequency division by a diode
is a hysteresis effect--the boundary be- circuit.
tween areas of different behavior de-
pends on whether the transition is ap-
proached with increasing of decreasing realized that a critical property of the
amplitude. Bifurcation diagrams showing varactor circuit for bifurcation was
hysteresis agreed with numerical solu- that the charge-storage time in the de-
tion of equation (3), in which v was vice had to be a significant fraction of
assumed to have the form exp(q)-I for the driving period and that ordinary
the forward-conducting diode, silicon diodes also possessed that prop-

erty. They then investigated a sinusoi-
An Application to Microwave Electronics dally driven diode and series inductor

- Researchers at the Clarendon Labo- to determine the circuit's ability to
ratory at Oxford University became in- frequency divide (i.e., period multiply)
terested in chaotic electrical systems the driver. They found that a IN4001 di-
when David Jefferies (1982) observed ode with a charge storage time of about
period doubling in the vibrational reso- 3 Us could divide frequencies ranging
nances of the piezoelectric Rochelle from 10 kHz to 20 MHz for suitable drive
salt (sodium potassium tartrate tetrahy- amplitudes. Figure 6 shows successive
drate). In such ferro-electric crystals division of a 1.2 MHz drive by 2,3,4,
near the phase transition, the dielec- and 5 when the amplitude was increased
tric and elastic constants are strong from about 0.8 V to 11 V. Jefferies and
functions of the electric field. Since Usher also used a four-stage cascade
the sound velocity in Rochelle salt is a based on the diode circuit to frequency
function of the strain, the restoring divide a 4 MHz signal by 16.
force--and therefore the resonant fre- The three order-of-magnitude range
quency for acoustic oscillations--are of frequency that the diode could divide
nonlinear functions of displacement. As suggested that a Schottky barrier diode
the amplitude of a sinusoidal driving with a 100-ps charge-storage time might
field was increased, the voltage across be used to divide I to 100 GHz signals
the crystal first distorted and then since standard scaling techniques are
broke discontinuously into a half-period difficult to apply at these frequencies.
waveform. Further increases led to chaos A Hewlett-Packard HSCHI001 diode was
and regions of stable waveforms with in- used to divide a 1.5-GHz input signal by
tegral multiple periods, two in a short, 230-ohm transmission

Following these initial piezoelec- line. The output waveform showed behav-

tric experiments, Jefferies and his ior similar to that of the low-frequency
associate A. Usher (1983) became inter- dividers, and the half-frequency near
ested in electrical analogs. They 750 MHz was accurate to 10 digits.

'8
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Figure 7. Gate-driven circuit for nonlinear studies.

Though the low-frequency results indi- central one passing through 4 x-f
cate that the circuit should be able to (i.e., q-v) origin. The two :er line
divide much higher frequencies, the segments could have symmetric , great-
waveform generator and detectors used in er or lesser slopes than the :ral one

the experiment had an upper limit of (in which cases the restoring -s are
about 2 GHz so that the full operating called symmetric hard or soft) e neg-
range could not be tested. ative-x outer segment could nave the

same slope as the central segment (asym-
A Comprehensive Study metric hard or soft), or the three seg-

During a recent visit to the Clar- ments could all have different slopes
endon, I spoke with F.N.H. Robinson, who (totally asymmetric). The piece-wise
developed the hIgh-frequency version of nature of f(x) makes the differential

4 the divider experiment. He is about to equation analytically tractable with
publish a major experimental study on certain approximations, and the circuit
chaotic behavior using more complex non- has a wide dynamic range since the ca-

linear elements than those described pacitance values can be varied over a
above. Robinson designed his electrical range of 108. Highly nonlinear behavior
circuit to model equation (4) for a va- can be driven, and stable motions with

riety of nonlinear forces. He obtained periods as high as 49 times that of the
power spectra, and phase and bifurcation drive have been observed. The main dis-
diagrams for this range of f(x) forms advantage of this electrical system is

and used the results to confirm approxi- the discontinuous first derivative of f
mate analytic solutions. The analytic which complicates comparison with
solutions were then used to determine physical systems.
the force thresholds required to sustain The voltage across the small re-
motions of different periods, and the sistance r is proportional to the cur-
resulting scaling laws were also con- rent, so that q is derived from it by
firmed by the data. electronic integration. The variables q

Rather than a single semiconductor and 4 are fed to x and y oscilloscope
element, Robinson uses the circuit shown inputs to record the phase space motion.
in Figure 7. The nonlinearity is provid- An auxiliary circuit is used to blank or
ed by a gate circuit that senses the brighten the oscilloscope trace at pre-
voltage v across the capacitor array and determined points in the drive cycle or

operates the switches SI and S2 at pre- at voltage threshold points. This cir-
determined threshold values. By changing cuit is used to construct bifurcation
the thresholds, five different forms for diagrams when the amplitude of the
the force law were studied. All of the driving voltage is slowly changed and
studied forms for f(x) consisted of recorded as the horizontal oscilloscope
three straight-line segments with the input.
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Figure 9. A stable 9 cycle for a
Figure 8. Bifurcation diagram for an softener restoring force.

*. asymmetric hardener.

Asymmetric hardening is achieved if
=: a single switch is opened when v exceeds
. the threshold vj and closed otherwise.

This force law corresponds to several
. important dynamical systems, such as a

ship moored to a wharf or an oil rig

tethered to the ocean bed. Figure 8
shows a bifurcation diagram for such a
case at a 684-Hz driving frequency,
CO = 100 pF and C 1 = 47 nF. The single
period breaks into a chaotic regime out
of which period two emerges. After fur-
ther chaos, a brief period four collaps-I
es to period two, and then via more cha-

os back to the fundamental. This rather
simple behavior with reverse bifurcation
can become much more complex with other
parameter values--in one case a stable Figure 10. A softener bifurcation
period-18 oscillation was observed, diagram.

An asymmetric softener is realized
when a single switch is closed above a once every drive period to show nine
positive threshold and opened otherwise. bright spots for period nine. Figure 10
It is made symmetric if closure also oc- is the bifurcation diagram for this type
curs for v -vl. Unlike hardeners, where of motion showing the bifurcation
asymmetry leads to a "bounce" against sequence k, 2k, chaos, k+1, 2(k+l),

the nearer threshold and orbits very chaos, k+2, etc.
different from the symmetric case, asym- Armed with the data provided by a
metric and symmetric softeners have sim- large number of electrical experiments,

ilar orbits. With large changes in slope Robinson could test the validity of
between segments (CO + C1 >> CO), soft- approximate analytic solutions used to
eners exhibit complex motions of high derive simple force requirements for
period. A phase diagram is shown in sustained periodic behavior. Provided
Figure 9 for a softener with CO = 1 nF, that the dissipation and driving force
C1 - 4.7 tiF and a drive frequency are not too large, the solution of

of 4520 Hz. The trace is brightened equation (4) can be approximated by
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Gsiderations provide accurate predictions
x(t) ZxXcos(2rnt/k + On) , (7) of control parameter thresholds for the

n=1 appearance of the various periodicities.
dUnfortunately, the analysis cannot be

where k is an integer and the driving used to gain understanding of the
force has the form Fsin(2t+p). Integra- chaotic regime.
tion of equation (4) then yields the One important discovery about sys-
energy balance equation tems with softener-restoring forces with

consequences for a number of physical
2rn~ n 2x kFxkcos(-Ok) (8) systems is a shift in the power spectrum

to lower frequencies. Robinson provides
To proceed farther, solutions for the example of lattice vibrations in

the specific force laws of the experi- crystals near the melting point. A
ment must be employed. Here, Robinson's striking feature of melting is the sud-
solution procedure for the symmetric denness with which it occurs. A possi-
softener is summarized. He starts by ble explanation is that at melting, lat-
assuming a large slope ratio between the tice modes of high frequency reach an
central and outer line segments of f(x) amplitude at which period multiplication
and vigorous motion, i.e., the excur- begins. This shifts the power spectrum
sions of oscillation are much greater of thermal excitation to lower frequen-
than ±xo, the values at which the slope cies, causing a new group of modes to
changes. Then, the motion can be approx- become unstable. By a series of such
imated by cascades, thermal energy in the form of

latent heat might be extracted from the
x(t) = Ara.sin(t/k) - cos(t)] . (9) surroundings and be concentrated in low-

frequency modes that suddenly disrupt
This form fits the observed behavior the lattice at the melting point.
quite well. In fact, a phase plot of
equation (9) for the conditions of Fig- An Explanation of Noise
ure 9 is nearly indistinguishable from As indicated above, F.T. Arecchi's
that figure. Substituting the approxi- nonlinear optics group at the Istituto
mate form into the energy balance equa- Nazionale di Ottica in Florence is well
tion leads to an expression for the min- known for work on optical bistability.
imum force required to sustain an orbit In one set of experiments (Arecchi et
of period k: al., 1982), they correlated the appear-

ance of 1/f noise with chaotic jumps
F = 4n(a 2xo)k 3 /w , (10) between the two stable states of a CO2

laser cavity system. As part of an ongo-
where a2 is the slope in the central ing theoretical effort to describe this
region. phenomenon, Arecchi and F. Lisl have

Robinson compared this expression built an electronic analog using a
to the experimental parameters at the field-effect transistor to simulate the
onset of the k = 3,5,7, and 9 period mo- cubic force law f(x) = 4x 3 -x. This
tion. He demonstrated that F was indeed force has two potential valleys centered
proportional to k 3 and that the constant at x = ±1/2 that represent the two sta-
of proportionality was accurate to a few ble operating points of the laser cavi-
percent. The analytic solutions also ty. The circuit is harmonically driven
predicted the amplitude of the slow com- as in other experiments, and the driving
ponent to be F/nk, and the data confirm- voltage amplitude A is the control pa-
ed the k2 dependence. Similar compari- rameter. The circuit is characterized by
sons between data and the analytic model a driving frequency varied in the vicin-

U were made for the asymmetric softener ity of 560 Hz, a natural resonance fre-
and hardener. Thus, Robinson has demon- quency of about 459 Hz, and a fixed
strated that simple analytic forms can damping rate of n - 0.154.

reproduce the observed periodic motion For values of A below about
faithfully and that energy-balance con- 631 mV, motion is confined to one of the

11
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yet to be made. Still, researchers have
develo, . electrical analogs of Joseph-
son junctions with the objectives of
studying the detailed dynamic behavior
of the differential equations and learn-
ing how to control noise in experiments
(Yeh and Kao, 1982). As in optical bis-Cg - tability research, a primary application

I , (c) of Josephson devices is advanced comput-
2O ers, because the digital elements can be

"~ Kmade small, fast, and low-powered.
10.H. Seifert of the University of

*---p 1  Tubingen, Federal Republic of Germany,
5 5Hz 8 t4 has recently used a Josephson junction

Figure 11. Phase space plots, noise analog to study the effects of chaotic
spetum, .and time variation for the behavior on the alternating-current-
spectrum, and tie aalor induced step structure of the time-
optically bistable analog, averaged current-voltage (I-V) charac-

teristic. The circuit (described in
valleys, and Arecchi and Lisi observe a Seifert, 1983) models the normalized
standard sequence of subharmonic bifur- current conservation equation for such
cations leading to chaos. Doubling up devices
to period 16 has been observed with the B* + + sin* = i0 + iisint, (11)
universal behavior predicted by Feigen-
baum. As A is increased above 1.8 V, where the left-hand side represents the
the energy of motion exceeds the poten- sum of currents within the junction, and
tial barrier between the two valleys, the right-hand side is the applied
and the system hops from one to the driving current. Equation (11) is simi-
other after periods of chaotic activity lar to those considered above with a si-
in each. The two alternating phase plots nusoidal f(x) and a dc drive component.
are completely symmetric and show sub- The dynamic variable * is the phase dif-
harmonic line spectra (Figures lla and ference between the junction electrodes
11c). However, as shown in Figure 11b, and is related to the normalized voltage
the hopping introduces a new feature in across the electrodes by v - i.
the power spectrum, an accurate 1/f Seifert chose the parameters
noise continuum in the low-frequency B - 0.5, il - 0.8, = 1, and (similar

0.5- to 5-Hz band. to the Portuguese research) treated i0
Arrechi and Lisi suggest that the as the control parameter. The chosen

noise may be heuristically explained by parameter regime corresponds to resis-
the long-period jumps between different tively shunted tunnel junctions in which
states within each of which the short- hysteresis effects are small and the
period motion is chaotic. In addition damping is insufficient to suppress
to explaining the noise spectrum of the chaotic behavior. The resulting I-V
simulated laser experiments, they sug- characteristic, shown in Figure 12, is
gest that the well-studied flicker noise quite complex but models the behavior of
in electrical resistors may arise from superconducting microbridges quite well.
similar random jumping of electrons be- Seifert studied the detailed behavior
tween surface traps when driven by a occurring on either side of the v - 1/3
current. voltage dip on the v = 1/2 plateau.

Within these straight-line regions, the
Chaos in Josephson Junctions pair current is locked to subharmonics

The noise structure of Josephson of the driving current (the time-aver-
junctions also provides experimental aged voltage is constant since it is
evidence for chaotic behavior--although, proportional to ).
unlike the nonlinear optical systems, Figure 13 shows a bifurcation
direct observation of bifurcation has diagram for this part of the I-V

12

.................................................. °. *1
J,.-' .,'.,..' .''L '.. " ,," Z ' L % " ' ',l -% " "", . " "-\.-."• C. "'":" .. .. i- .,'''



*-,.. . -. . ' .7wY u 2> 4  
-1 . .. : .2.I -. 

1111

at

t,/
42-

.4.1 ., I-"-33p :0,5

E1
0

0,9 1,0 current i0

Figure 12. Josephson junction analog I-V characteristic.
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Figure 13. Bifurcation diagram near the v 1/3 step.

characteristic obtained by plotting the baum universality, and considerable de-
voltage value at a particular phase of viations were found. Seifert believes

each driving period. The locked states there are two reasons for the discrepan-

are represented by discrete lines, and cies. First, noise in the analog system

their number at a given i0 determines might initiate chaotic behavior after

the periodicity. Note the quite differ- only a few bifurcations s-' that the uni-

ext behavior on the two sides of the versal, high-periodicity benavior could

voltage step. not be observed. Second, the require-

Amplitude spectra in the multiple- ments on p(x) for Feigenbaum's one-

4.,. period regime were examined for Feigen- dimensional maps might not be satisfied

13
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Figure 14. Return maps constructed from the phase space plots.

in the Josephson analog. To test this veigenbaum, M.J., Physics ,etters, 74A

conjecture, Seifert constructed the (1979), 375.
return maps xj+l = f(xj) with x = sine Gibbs, H.M., et al., Physical Review

by electronically processing phase space letters, 46 (1981), 474.

plots for the two sides of the voltage Harrison, R.G., et al., Physical Review
step. The plots of xj+ l versus xj are Letters, 51 (1983), 562.

shown in Figure 14. Seifert argued that Hayashi, H., S. Ishizuka, and K.

the central dip in Figure 14b violates Hirakawa, Physics :etters, 98A
Feigenbaum's single-maximum requirement (1983), 474.

so that deviations from the theory are Ikeda, K., H. Daldo, and 0. Akimoto,
to be expected. Physical Review JLetters, 45 (1980),

However, the main results of the 709.
work dc, not depend on such details. Jefferies, D.J., Physics :etters, 90A
Seifert has demonstrated that the (1982), 316.
ac-induced steps in the time-averaged Jefferies, D.J., and A. Usher, Physics

I-V characteristic can be explained by Letters, 99A (1983), 356.
period doubling to chaos and that the Kadanoff, L.P., Physics Today (December

chaotic behavior can lead to the ob- 1983), 46-53.

served negative resistance regions in Klinker, T., W. Meyer-Ilse, and W.
such Josephson junction devices. Lauterborn, Physics :etters, LOLA

(1984), 371.
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