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SUMMARY
] - This report discusses the implementation of system and

process noise, including sensor errors and atmospheric
turbulence, in the simulation of continuous models by

. digital computers. The concept of discrete white noise is
first introduced in a manner in which it reduces to
continuous white noise as the integratjon time interval
reduces to zero. The derivation of first and second order
Markov processes from white noise is then discussed. The
discussion includes the consideration of a suitable
difference algorithm to approximate differentiation. The
treatment throughout has been aimed at providing the
reader with the tools to implement a required power
spectral density (or autocorrelation function) as noise in
any discrete digital simulation model.
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1. INTRODUCTION

In this Report we discuss the implementation of noise in the discrete
simulation, on 8 computer, of a continuous process. We will develop the
concepts necessary for our purposes, but only in sufficient depth to preserve
continuity of the text. References are given to books in which a rigorous
mathematical treatment can be found.

In the next section we briefly examine continuous noise, starting with white
noise and then showing how noise of any desired spectral density can be

obtained by using white noise as the input variable to a suitable (stochastic)
differential equation.

Section 3 cxamines discrete noisce, using the =z transform formalism, in a
manner suitable for implementation in digital computer simulation of a syster.
Particular care is taken to develop a formalism which reduces to the
cont inuous case as the discrete interval tends to zero. The z transform, as
normally defined, does not have this property.

The discrete equivalent of white noise is discussed, and then the spectrum of
Markov processes generated by using white noise as the forcing function to a
difference cquation is examined. The relative merits of various algorithms

for the discrete approximation of the continuous differential are considered
in this treatment.

Approximating a continuous noise process by an equivalent discrete sequence
introduces errors, which increase with the integratioun step size. Expressions
are derived relaring the maximum step sjize to the fractional error in the
power spectral density and the parameters of the system.

Appendix I gives a worked example evaluating the parameters of a given noise
spectrum, and implem.ntation in a discrete simulation. Appendix Il shows how
atmospheric turbulence can be simulated by the methods described in the
Report. Appendix III discusses the discrete simulation of the Wicner process.

2. NOISE IN CONTINUQUS SYSTEMS
2.1 Methods for describing stochastic processes

If v is some variable, eg acceleration roll rate or wind speed, and m is
the measurement of that variable, thon these are related by

m = v+ (1

where n is the measurement noise or turbulence, represented by a stochastic
process. n is described by the probability density function p(a,t), or
equivalently, by the statistical moments. Gaussian random processes are
completely described by the {first and second moments, and, since most
random processes are found to be nearly Gaussian, it is common not to

exanine any moment higher tlion the second. The first moment, or mean, is
given by:

oo T/2
poeoda@l = [ ap@na - o1 awme 2)

" oo “-1/2

1]

|
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where p is the probability density function for the process with amplitude
o at time t. The last equality follows from the assumption that the
process is ergodic. In this memorandum we assume the noise is stationary,
so that p does not depend on time.

The second order moment can be given in terms of either the autocorrelation
function or the covariance function.

C(r) = Eln(t +7)n(t)] = / afp(u, t; B,t +7)de P
T/2
Lt l/ n(t + 1) n(t)dt (3)
Rr) = E[{n(t +7) - p}fin(t) - ni] ' (4)

where p(a,t;B,t+t) is the joint probability distribution function. The
autocorrelation and covariance functions are related by

R(1) = C(t) - pu? (S)

In this paper we will be solely concerned with zero mean processes for
which u = 0. When dealing with a non-zero-mesn process, it is assumed that
the mean is first removed from the process.

Tne second moment can he equivalently described by the power spectral
density(ref.1): .

o0 ~jwr
P = [ C(r)e dr (6) .

-0

which is the Fourier (or bilatersl lLaplace transform with s = jw) transform
of the autocorrelation function. Note that we are using a two-sided
spectrum. This will be the case throughout. The inverse of aquation (6)
s

1 jwr
C(T) = . / d(we dw (7
J

P

We will now examine Parseval's theorem, in preparation for comparing i{ts
exptessions in the discrate and coalinuous cases. Applying Parseval's

.

theoroem to NT’ the Fourier transform of N where n = for -17/2 <t <T/2
and = 0 for | tl>T/2, gives(ref.1):

3 Lt 1 2 . Lt 1 ,

3 T+o T no(tyde = o, T | Np(@) No(-)dw (8)
’_"‘ -T/2 v .sa

T

-
(3 B

*

Thic theorem can be regaided as a xtatement of equality of energy in the
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haud side of equation (8) is the , autocorrelation at zero lag, iec the
variance. Also, it can be shown that

B = gt 3 Np(N (-0 (9)

so that equation (8) can be written as

O =5 [ B (10)

-0

Equation (10) also follows from equation (7) by setting 1 = 0; however, we
have derived it using Parseval's theorem for comparison with the discrete
analysis of the next section. Note that for continuous white noise both
sides of tho equation are jinfinite unless $(w) = o.

2.2 White noise and the generation of Markov processes

A stochastic process commonly used in the study of noise is Gaussian white
noise which has autocorrelation and power spectral density defined by

Cu(t) = Y GD(t),<bu (w) = Y (11)

where & is the Dirac impulse function, and Y is the strength of the noisa.
&7

We .+ . r<fur *o this process as continuwous white noise, to distinguish it

fro. 5o ite write noilse introduced in the next section. The words

‘continuous' snd discrete’ are used to describe the system to which the

noise is applied.

If we have a measurement noise which is other than white, this random
process can bc genexated by having it as the dependent vaviable in a
diffarential equation whose forcing function is white noise, and augmenting
this differential equatjon to the system equations(ref.2). For example, if
% is given by

X = -ux + au (12)

where u is white noise whase autocorrelation and spectral density is given
by equation (11), then x is also a Gaussian process whose autocorrelation
and spectrum are given by

2 wlr] . 3: ¢
Cr) = ;e TV, S = TV {13)

There is an arbitrariness in the definition of a and u in esquation (12).
We shall remove this be defining the white noise to have unit power
spectral density, viz ¥ = 1.
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The rocess defined b equation (12) is a ficrst  order Markov
P y q
PN rocess(ref.2). This noise is also known as exponentially correlated noise
j P I y
al from the shape of its autocorrclation function.
p
" A sccond order Markov process is generated by the pair of equations:

Y y = wex -2 wo y + cu (14)

= y+au (15)

POL U A
e

\ Note that tlie same white noise source is input to both equations.

NEN The autocurrelation fuaction and power spectral density of x which result
" from this process are:

2 2 2
\? Cx(r) -2 Wy + b coslv/ 1 - ¢2 . woltl - n]e'§w°T\P

4 w3 cosn (36)

K] 1,2 3
"] i a“ w® + b
¢x(u) Towt s 203 - Nw e wd

. ¥ (17)

whare, once more, u is taken to have unit power spectral density, and
b = ¢ + 2afu .
Q
3. DISCRETE STHULATION OF NOISE
3.1 Methods for describing discrote random processes
In a digital computer program which simulates a continuous system, the

states are wavaluated only at discrete time intervals. For the case of
uniform zaapling intervals, 4§, equation (1) becomes

w(kd) = w(kd) ¢ ni{kd) {18}

wheraby the values of the continuous functions are only sampled at set
times. The formal exprassion of sampling =ay be written in different ways.
Cne common method (see, for exasmple, reference 3) is to introduce Dirac

delta functions to reprexent the saopling process. However, this is
Y unsatisfactory for computer simwlations, which require nushers and not
B impulses. In addition, by expressing sampling in termss of numbers, a3 is
::35; done in equation (18), the analysis reduces to the continucus case as the
s;$' sampling interval goes to zern. This  is  further discussed after
R
2{‘ egquation (21).
”
- Given the sampling process expressed by equation (18), the question which
¥ . . . .
Yool has te be answered is: what is the relation between the autocorreliation
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function and power spectrum of this discrete system and of the continuous
system to which it approximates? We commence by defining the
avtocorrelation function and spectral density for discrete time random
processes:

C(td) = Eln(jk +48) n(ka)]
K/2

R Z n(fk +LiA)n (k) (19)
k=-K/2

d(z) = A XC(tA)z“ (20)

where 8 is the discrete time interval betueen samples. The power spectral
density is identified as the two sided z transform(ref.4,3) of the
autocorrelation function. Note that the spectral density of this sampled

process is only defined for -w/A < w < #/4. The inverse of equation (20)
is

1 =1
C(dy = ﬁf‘l’(z)z dz (21)
which wmay be also written as
, ST ,
ey = [ (VY 90 g (21Ga))
. - /8

. . wd
by substituting 2 = aI¥8,

The factor 4 outside the summalion in equation (29} and outside the
integral in equation (21) has been included to give zontinuity with the
taplace tvansform an 4*0, kad*L. Thix facior is not generally nciuded in
the definition of the 2 transform, but is vital for the treatment of
simulation in this text. We will tharefore digress briefly on this sstter
by means of axample. Consider the damped exponential defined by

x = exp(-at) t 20

= t v Qg

wvhose Laplace transforas is

Taking the 2 transferm of x  using the & muit:iplied definition
{egquation {(20}} gives
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A/(1 - exp[-(a + s)b8}), 2 = ¢

where x¥(t) = Xx(t)GD(c~nA).

]

1\ :
Xz N ZXSLS+ZﬂJn/A)

»0

, I€ the A multiplied expression for the z transform is used,
i relation becomes

A

3 s v o

:‘:: Xz = Xs(s + 2jn/b)

b et
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consequence when this limit is not of interest.

-i'!l 4 ;
-

whens we use tha 4 oultiplien deflinition of the 2z transfora.
heuristically view the § factor as mederating the impilses in the sampling
process, so that, 25 4*0, we regain a continuous function. The benefits of
the A multiplied definition will becomes manifest in Section 3.2
enables us to define a discrete equivalent of continuous white noize. Ax
we have xaid earlier, the & factoy is usually omitted, since jt

t

As A*0, we have XZ*XS, which would not have been the case if the & factor

had not been included. In general (eg in sampling systems), this
continuity from the z trausform to the Laplace transform is not required,
so the factor A is omitted. However, we feel that the 2z transform

including a A factor is the more nitural definition. Confirmation of this
is suggested by considering the expression for the z transform as a sum of
the values of the Laplace transform over the primary and complementary
strips. Using the usual definition of the 2z transform this relation is

he above

with the

e may

wheve it

is of no

Further insight ¢o this definition of the 2 transfore can he gained by
considering Parsevai's theorem, vhick relates the energy in the signal to

Y the energy in the spectrum. The discrete equivaient of Parseval's theorem

2N is

)

YRS

ot

NS K/2

L]

e it a4 Lo, Lt 1 7 jw -jwd
» v n‘ (kA = ——— . ,

o K* = § }’ (k3) K+ o 72( ‘\!((c %.\K(Q
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Wee gdentify the left hand side with correlsrion at  zero shitt (vide
equation (19)) and it can be shown that

- iw A
®(z) = Kf‘m%ux(z) N (), z = & (23)

where NK is the 2z transform of n(kdj), k = -K/2 to K/2.
Substituting equatio:. (23) into (22) yields equation (21(a)) with 2=0.

Contrary to the case for coutimous white noise, Parseval's theoren does

have application in the discrete cquivalent of white noise, as we shall
see.

3.2 Discrete white noise

Suppose for our noise in ecquation (18) we generate random numbers u(kA)
with a Gaussian distribution and variance o?. This can be regarded as
discrete 'white' noise with autocorrelation function and power spectral
density given by

cu(m) = o‘éKr(z),cbu{z) = 0% (24)

where ﬁKr is the Kromecker delta. We wish to show that u(kA) reduces to

continuous white noise defined by equatien {11) as A*0(ref.l). Although
the steps which follow are not mathematically rigorous, they are included
as an heuristic derivation of the requirved relations.

Pf wae define u(t) as

WO = gglaey D) (28)

whare the limit ix assumed to exist in some genevalized sense, then we wish
to show that u(t) han tho properties of “continuous™ vhite naise as de”ined
by nquation (11). Now

C r) = Bl u(t) u(r « 1)l
o o e daer HUOD) llE £j0)] |
N &E(t),lr-édi’{\/z o allr(i&)
. ﬁf; G {a(r - &/2) - h(r + &/2)) i
= ;; ¢’ A 50(7)
where hit) donotes the unif step function. Comparing this resuyll with

equation f11):
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€,(1) = Y8 (1) (1)

we see that u(t) has the characteristics of continuous white noise, with

_ Lt
Y = &0 a?h (28)

ie we have shown that if we implement discrete white noise with the
autocorrelation function given by c’dxr(l) then this is cquivalent to a

continuous white noise process with autocorrelation function AO’GD(I).

Let us continue this equivalence of continuous and discrete processes into
the frequency domain. Continuous white noise has the uniform power
spectrum Y (equation (11)). The discretec white noise has the spectral
density oA, which extends from -m/A < w < n/A. Using relation (28) it is
seen that the amplitude of the power spectral density function for the
discrete case becomes Y, which is  identical to that for the continuous;
these relations are shown in figure 1. Note that the discrete equivalent

of Parseval's theorem is obeyed, so our use of the factor, A, has been
consistent.

3.3 Discrete algorithms for the differential operator

As can be done for continuous processes, it is possible to genercte a
discrete random process with a desired power spectral density by a
difference equation with a disciete white noise forcing function. Since we
will be wishing to relate the continuous and discrete processes thus
produced, in particular, to sce how well the power spectral density of the
latter approximates to that of the former, we will briefly digress and
examine the derivation of difference equations from differential equations.

The simplest discrete approximation to the derivative is the forward
difference defined by:

x[{(n+1)A] = x[nA] + X[nd].A (29)

The difference equation thus obtained is unsatisfactory for an integration
routine, as solutions obtained using it rapidly diverge. This is because
the magnitude of the transfer function is greater than the 1/w value of
continuous integration, especially at the higher frequencies. This is
shown in figure 2 which plots the ratio of the magnitude of the transfer
function for this case,

A jw A

V21 -cost)’ * * ¢

viz.l

g (30)

as a function of angular frequency.

All this is well known, and tourward differences are rarely used in discrete
integration routines. Commonly used integration algorithms are fourth
order Runge-Kutta and predictor-corrector, but both of these are difficult
to implement with white noise as the input. Runge-Kutta is impossible to
implement because it requires the evaluation of the function at

et

Y
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intersequence values of time, and we then have the choice of using a new

value for the random variable or of using the value at one end of the time
step. In aithor caso we will be inputting a noise spectrum different from
that of the discrete white noise dincussed in Section 3.2. Predictor-

corrector methods do not suffer from this problem; however, when they are
being implemented, the values of the noise variable at the several time
steps involved in each integration step must be consistently maintained.
This involves careful programming, so it is preferable to use & simpler
integration routine which is yet well behaved. One such is the modified
Euler algorithm given by ’

x[n + 1)4] = x[nA] + 3A{X[{(n + 1)A] + x[nA]} (31)

This is also known as sccond order Runge-Kutta algorithm. 1t gives for the
discrete transfer function:

Al + 2z _ A1+ coswd
21 -2z7) T 2/1 - coswa (32)

This function, which is also plotted in figure 2, is seen to damp out high
frequencies, which is why this routine is stable. Therefore, provided that
the integration time step is sufficiently small that none of the natural
modes of the system is severely damped by the transfer function of this
integration routine, it is a suitable integration method. It also has the
advantages of being simple to implement in a computer program (only
requiring two iterations per step interval) and of being simple enough to
examine analytically to see what effect it has on given noise inputs. The
well known tendency of integration using this algorithm to 'drift' can be
seen to arise becausc the curve in figure 2 starts to depart from unity at
the lowest frequencies.

The accuracy of the modified Euler method can be increased by iteration for
x(nA) and continuing until the difference between successive iterations is
as small as desired. When this is done, the method can be regarded as a
second-order prediction-corrector. A further virtue of this simple
algorithm is that it is suitable for a set of stiff equations(ref.6), that
is, a set of equations with a wide range of values for its eigenvalues.
Such sets of equations occur in flight simulation where the time constant
can vary from 100 s (for phugoid) to 0.01 s (for actuators). References 7
and 8 discuss the benefits of the modified Euler integration routine when

the set of equations are stiff, it is frequently superior to far more
sophisticated algorithms.

Although it is not the purpose of this memorandum to analyse integration
procedures, we will end this Section with a mention of an alternative to
formal integration routines. This procedure, discussed in reference 9,
enables large time steps to be used in discrete simulation by using a
difference equation which accurately maps the poles of the original
differcntial equation. This technique is valuable for stiff systems
because the time step interval can be made comparable with the time
constant of the fastest mode (instead of much less, as is required for
standard integration routines). However, when the coefficients of the
difference equation are derived by requiring, correct representation of the
poles of the original differential equation, a power series representation
of the input with time over each interval must be assumed (for example

quadratic). Since white noise can not be represented by a power serie;
this procedure must introduce an approximation. It is generally advisable
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to check Lf the consequent error be significant,

Anothier example of the nmalogue-digital technique for discrete simulation
of continuous systems {s given in reference 10.  In the method given
therein the coefficients of the difference equation are chosen so that the
first and second moments of the discrete correlated noise are the same as
for the correlated noise generated by the differential equation which is
being modelled. The resulting expressions, which are rather lengthy, are
essentially in terms of the transition matrix of the differential equation
integrated over the discrete time interval. '

We will now study the generation of discrete Markov processes, first by

difference equations derived using the forward difference algorithm and
then by using the modified Euler algorithm.

3.4 Generation of discrete Markov processes

3.4.1 Vorward difference algorithm

By using the forward difference approximation to the derivative
(equation (29)) the discrete equivalent of the first order Markov
process (equation (12)) is

x[(n+1)A] = (1-vd) x[nA] + ah.u(nd) (33)

where, as has been shown above, u(nd) is a sequence of uncorrelated
random numbers with variance o? = Y/A,

The power spectral density of x is given by the product of the modulus
of the frequency transfer function of the equation with the power
spectral density of u(ref.11), so we have for the discrete first order
Markov process a power spectral density:

Bz AZ\IJ
2@ = GTiEET - 10 (34)
or
al AtV
¢&(aa = 1+ - vA)2 - 2(1 - vA) coswA (35)

Taking the limit A+0 gives the power spectral density for the continuous
first order Markov process, equation (13), as expected.

In figure 3, we have plotted the power spectral density for the
continuous Markov process, which should be compared with that of the
discrete process plotted in figure 4. It is seen that the power for the
discretc process is greater than for the continuous process, but tends
to it ceither as A*0 or as w*0.

When simulating continuous processes by discrete sampling, it is
important to know what errors are introduced as a function of the
sampling interval. We will now derive oxpressions relating the maximum

permissible discrete time integration interval for a desired accuracy,
in_t
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There are two constraints on the sampling interval, A. The first is
that the power spectral density decrease to a negligible value at the
Nyquist f{requency (=n/A). For a first order Markov process, the ratio
of puwer spectral density at the Nyquist frequency to its pecak value is

f .
B
p -
Lo
.‘ . £ = v/[(n/b8)*+v?]
G
1‘
. We can interpret this equation as stating that a fractional error, ¢,
g results from a sampling interval A, due to aliasing. Rearranging gives
:\‘_lc-
’ti A < we/v (36)

a3 the contraint on A, vhere we have used the condition £<<1 in deriving
equation (36). The ot%er constraint is that the sampling interval be
smail euough that che discrete power spectral density approximates the
continuous one. Let & denote the ratio of the difference between the

4;' discrete and continuous pow r spectral densities to the maximum of the
. power spectral density. This ratio maximises at w = v, and gives the
N following cons.raint on A, {or th error ratio to be less than g:

W g
n A < 2efu (37)
Lo :

Y Note that the two constraints both inveive w. This is hardly surprising
‘ik as wa have only one parameter, viz. u. Since e<<l, equation (37)
¥ ’ imposes tighter constraint on A than does equaticn (36).

5&& Wde now turn to second order Markov rrocesses. Substituting
Ny . equation (33) into equations (14) and (15), el’minating y, and taking

™ the z transform of the resulcing difference wquation yields

R

N

0

el
g (22 4 2@wod - 1z + (1 - Zwod + wdA)IX = [ab.z ¢« (BA - aA)IU (38)
L

ﬂ§ whave b = ¢ + 2azuo and X, U are the 2z trausforms of x and u (the 2z
s .

rlg transfcrm of u being purely formal;.

‘
ey We can now write the power spectral dennity of » as

2

g

‘ “ R

5 @ A {a" + (bA - 3)'| + 2a(bd - a) coswd] (39)
; - . L SONT

:; x 1 +0f + 08 « 20171 + A)coswd + 23 cos2w A

I

s whero

S

o -

:ru ¢l = 2({(4) OA"I)

L
-~
"

1 - 2§Q)QA + wg o?
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As before, we compare the centinuous second order
plottad in figure 6, with the forward difference discrote approximation,
figures 7(a) and (b). It is seen the discrete power spectral density
diverges from the continuous more rapidly with integration step interval
than it did for the first order Markov case. This can be attributed to
a A "resonance" in the power spectrum (for any given w), regarding ¢ now
as a function of A, and is illustrated in tigure 7(c).

Markov process,

As before, we have constraints on A imposed by the requirements of the
continuous power spectral density being small at the Nyquist frequency,
and of the discrete power spoctral density being close to the
continuous. These are more difficult to apply to the second order
Markov process. After some manipulation it can be shown that, for the
aliasing and discrete approximation errors to be less than a fraction E,
the sampling interval must satisfy

A<m /E/aw] (40)
and

b + a® wi)t e
A< (b* - abfwo + a® w3)w, (41)

3.4.2 Modified Fuler algorithm

.
We will now derive the modified Euler approximations to the first and
second order Markov generating equations and compare them with the
results of the Section 3.4.1.

Substituting equation (31) into equation (12) and taking the z transform
glves

[(1+0V) z - (l-uV)] X = aV(1+z)U (42)

where V = A/2.

We can immediately write down the power spectral density of x to be

2a?v? wAy ¥
W = g e — (43)

(1 - v2 A%) coswd

This function is plotted as a function of w for a = v =1 and 4 = 0,1,2
in figure 5. Comparing with figure 4 we see there is a substantial
(about four times in this case) improvement on accuracy for a given A,
Note that the forward difference approximation amplifies the power
spectral density at high frequencies, while the modified Euler
approximation diminishes it. These properties are to be expected from
their respective frequency response functions (see figure 2).

Limitations on the size of A exist from the same constraints as
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discussed in Section 3.4.1 and lead to:

A < weju (44)

A < 3vE/v (45)
Comparing equation (45) with (37) shows the modified Euler approximation
allows larger time intervals for a given accuracy.
We now turn to our final case: the modified Euler approximation to the
differential equations defining the second order Markov process.

Substituting equation (31) into equations (14) and (15), and taking the
2z transform gives

[(1+ Bwoy+ wdv?)z? + 20Pwd - DDz + (1 - 2kw o)X

= V[(®V+a)z? + 2bV.z + (bV - a)lu (46)

where b = ¢ + ZaCuo

which gives for the power spectral density

d = qz[az + 3b*7?] + 4b’p® cos wA + (B P - a¥)cos 2w AW
X ¢3 + 03 + 05 + 204 (d3 + 65)cos WA + 20305 cos 2w D

(47)

where

s = 1+ 2% wey + wiy?
0 = 2w -1
¢s = 1- RAweV + wiy?

Equation (47) is plotted as a function of w, for several values of d, in
figure 8. Comparing with figure 7 shows that the modificd Euler method
is able to use much larger values of 4 before there is a significant
difference between the continuous and discrete spoctra. [t fis
interesting that the modified Eunler approximation produces not only a
diminution of power at higher frequencies, but also a lowering of the
frequency of maximum power. 1In place of equations (40) and (41) we have
the following inequalities which must be satisfied for the discrete
approximation to model the continuous second order Harkov noise
adequately:

A <ap\€/ac} (48)

> W W e W G TN R O ® . -

& % v ommmmas .

- s W, o e

4 8 & .9 __4.& Wm ™S
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S 2Avee ‘ (49)

We have summarised the results of Sections 2 and 3 in Tables 1 through
3. We have included the expressions for  autocorrelation function in
Table 1, because it is sometimes this, rather than the power spectral
density of the random process, which is measured and to which the

theoretical noise process is fitted to determine the parameters a, v or
a, ¢, w_, Z. -

3;5 Summary

A continuous white noise stochastic process, with power spectral density Y
(or, ecquivalently with autocorrelation function YGD) can be modelled in a

discrete simulation by a sequence of uncorrelated random numbers at the
simulation times, whose variance is o? = ¥Y/A where A is the discrete time
interval of the simulation. This discrete white noise also has a uniform
power spectral density equal to Y, but it is band limited to the angular
frequency range - /A < w < /A (see figure 1).

Although white noise never occurs in nature, its benefit lies in the fact
that noise of any given power spectral density can be generated
analytically by the solution of differential equations whose forcing

function is white noise. The first order Markov process has the power
spectral density (see figure 2)

and is generated by the first order differential equation

X = =ux + au

.

where u is the white noise input, and is'always chosen so that ¥ = 1.
The second order Markov process (see figure 6)

® a?w? + (c+ % wo a)? v
X T w* +208@? - Dw? s wd

is generated by the coupled pair of equations

X = y+au

w3 x - 28 woy +

e
L]

Given an obscrved power spectrum for noise we are then able to model the
stochastic process which has this power spectrum by choosing the
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coefficients of the cquations (viz: a, v; or a, c, 0 ) so the resultant

power spectral density fits the observed power spectrum.

In discrete simulation of these processes, the differential equations are
replaced by difference equations. As is discussed in the text, care must
be taken in choosing a suitable algorithm with which to implement the
differential operator. The best compromise between -~~curacy and ease of
implementation appears to be the modified Euler method :. - which

A (m+1)A] = x(nd] + 1A (n+1)4] + x{nA] |

where the derivatives, x, are replaced by the equations to be integrated.
The numerical procedure which implements this relation is a two step
iteration, because an estimate of x(n+l) must be made. When writing the
code for the discrete simulation, care wmust be taken to be consistent in
the use of the random numbers genesrated to simulate the white noise forcing
function; viz: the number gencrated for u at the second step in the
calculation of y(n+l) should also be used in the first step in the
calculation of y(n+2).

As discussed in the text, integration routines such as fourth order Runge-
Kutta, which require calculations at times intermediate to those at which
the difference equation is evaluated, arc unsuitable for the implementation
of noise. This 1s because of the problem of what value to assign to the
random variable at the intermediate steps. How this is done makes a large
difference to the power spectral density of the process. llence we
recommend simpler integration routines, thereby obviating the problem.

A further matter which must be considered is that the power spectral
density of a discrete Markov process calculated by difference equations
differs from that given by the exact solution of the differential
equations. This suggests that the Markov coefficients should be calculated
by fitting the observed spectrum to the powaer spectral density of the
discrete process. This is not recommended, because the fitment is no
longer valid if the time step, 4, of the simulation is changed. It is
preferable to fit the continuous spectrum to the obsarvations and note the
error introduced by discrate simulation for various time step intervals.
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NOTATION
coefficient of white noise in differential equation for Markov
process
=c+2afw

H

cocfficient of white noise in differential ecquation for Harkov
process

correlation function
expected value of a variation
measured value of a state variable (=v+n)
continuous noise process
probability density function
pox2r (= integrated spectral density from -= to =)
covariance function
Laplace transformr variable (=juw)
time
timo interval for integration (in the limit |T|*w)
white poise stochastic process
true value of a state variable
Markov process derived from white noise
(a) first order = exponentially correlated noise
(b) sccond ordur = damped cosine corvelated noise
intermediate variabie in deviving scecond order Harkov process
2 transform variable (= exp(sd))
b

Dirac delta fuiction. [ éu(c-x)dx = ] £f a»c>b; = 0 otherwise

Ja
Kronecker delta. ﬂx:(“) =1 if a=0; =0 otherwise
tize interval of discrete process
= A2

fra.tional error in discrete approximation to continuous power
spectral density

damping rstio in second order Markov process
mean value

correlation time in first ordar Harkov process
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standard deviation of Ganssian random number scquence used for
discrete simulation of white noise

time lag, argument of autocorrelation function

power spectral density (two sided and function of w)

subsidiary expressions involving ¢, s A

Fourier transform variable. Frequency in radian s !

undamped paiural frequency in -sccond order Markov process

spectral density of continuous white noise (taken = 1)
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APPENDIX I
AN EXAMPLE OF DISCRETE NOLISE STMULATION

Suppose we wish to model, in a discrete simulation computer program, the noise
on the output of an angle measuring device whose measured noise power spectral
density is given in figure 9. This approximates to a second order Markov
process, and so we will assume that it can be generated from white noise, u,
by the following pair of stochastic differential equations.

]

y w? x - Awey+cu deg 52 (1.1)

y + au deg s™* (1.2)

X
As shown in the text, the power spectrum of x generated by these equations is

(a2w2 +b2)
X w¥+2wid-Nw? +wg

.V deg?/(rad s™)

where b = ¢ + Zano, and Y is the power spectral density of u. Since ¢ and a

appear as multipliers of u, defining Y will fix c and a. It is convenient to
take Y as unity, and we will therefore do this:

viz: ¥ = 1deg? /(rad s %)

The parameters a, b, W % are then chosen to fit ¢x to the observed power

spectral density. This is partly trial and error, partly in.elligent
guesswork; for example the frequency and relative amplitude of the maximum
suggests that w°~2.5 and %~0.5. We have plotted in figure 9 the calculated

curve for the following valuas of the paramcters, which give a satisfactory
fit:

a = 1.6 rad s !}

c = 0.7 (vad s Y)?

w, = 2.6 (rad s )

4 = 0.6

b = c+2al w, = 5.7 (rad s ¥)?

To generate the discrete 2nd order Markov process corresponding te x, we
replace the differentials in equations (I.1) and (I1.2) by a finite difference
algorithm. As explained in the text, a good compromise between convenience
aud accuracy is given by the nodified Euler methcd. Using this method, and
assuming that we require an accuracy of Dbetter than 20% in the discrete
wodelling of the continuous process, equations (48) and (49), give the
following constraints on the in*egration step size:

P T T PP S T U
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Awrin/e/uwd = 0,52 s

AL 2AV/eE/wy = 0.50s

We have plotted in figure 9 the power spectrum of the discrete process
corresponding to a 0.5 s time step, out to the Nyquist frequency

(n/4 = 6.3 sec”t).
In figure 10 we have plotted 100 s of the discrete random process generated by
the modified Euler algorithm applied to the differential equations, with the

calculated values for the parameters, generated from discrete white noise
given by Gaussian random number sequence of variance:

The theorelical variance of the second order Markov process derived by these
means is given by (see Table 1):

2 .2 2
2 = (&_QQTLlL) W
otheory fwp )

1.18 deg?

This wvalue should be compared with the variance of the calculated random
number sequence plotted in figure 10:

2 1 2 2
g = =X x* = 1.0 de
calc N &
where the sum has been taken over 500 steps. It is wise to make this

comparison as a check on the discrete simulation program. These values could
also have been obtuined by integrating under the corresponding curves in
figure 9. The 20% accuracy between the continuous and discrete power is
gonerally adequate for most applications. It is not often that the estimate
of an error is required with greater accuracy.

In this example we started with o given power spectral density. If the
measurements of the noise process had been of the autocorrelation function, we

could determine the p- wmeters o, ¢, wyr € by fitting the theoretical to

observed autocorrelation function, and then proceed to model the noise in the
same manner.
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APPENDIX Il
DISCRETE MODELLING OF ATMOSPHERIC TURBULENCE

The purpose of this Appendix is to demonstrate how the methods of this Report
can be applied to the simulation of atmospheric turbulence. In simulating
turbulence it is necessary to use an analytical expression for the power
spectral density of the lateral turbulent atmospheric motions. We shall apply
the Dryden formula, which is commonly used; it has the advantages of being
analytically simple, whilst at the same time fitting the observed spectra very
well.

In this Appendix we do not internd to give, nor is this the place for, an
cxegesis on atmospheric turbulence, its variability and the validity of the
several analytical expressions for its power spectral density. These topics
are covered, for example, in references 12 and 13.

The Dryden expressions for the power spectral density of the longitudinal and
lateral components of atmospheric turbulence are:

1

20L -142 -1
q&ong T2 ol (ms™)*/(rad m™) (11.1)
. 1+ 32 Q7
q&at = 0L .7y 2 )t (11.2)
where
Q = spatial frequency (rad m™!)
0? = mean square gust velocity (ms~%)?
L = scale of turbulence (m/rad)

The longitudinal component refers to those random atmospheric motions along
the line to which the spatial frequency is referred; the lateral componant
refors to motions (vertical or horizontal) perpendicular to this line.

If the above equations are compared with the Dryden formulae usually quotued,
it will be noted that they contain an extra factor of (2n)/2. The factor 2n
is because the power spectral density of atmospheric turbulence is commonly
defined so that its integral gives the variance, ol. Hlowever, we prefer to
retain the relation between power spectral density and variance given by
aquatfon (7), since this 1is {n line with the standard definitions of the
Laplace and Fourier transforms. The factor 2 arises because we are using a
two-sided power spectral dens’ty of to be consistent with the main text,
rather than the one-sided density which is commonly used. Finally, note that
L and @ are in radians and not cycles.

Numerous observations of turbulence have shown that o typically lies in lhe

range 0.5 to 3 ms™!, with the lower values occurring more frequently(ref.l4).

L varies from 150 m/rad to 500 m/rad, ex- pt near the ground when [ is
proportional to altjtude. Reference 12 recommends using 300 m/rad for L in
the free atmosphere.
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When considering the effect of turbulence on an aircraft, it is standard
practice to assume that the aircraft moves through a spatial field given by
equation (II.1) which is "frozen". This approximation, called the Taylor
hypothesis, holds as long as the aircraft velocity is much greater than all
the turbulent motions. The aircraft then sees these spatial structures as an
equivalent frequency, w, given by

w = VQ rad s~}

where V is the velocity of the aircraft. Substituting into equations (II.1)
and (II.2) gives the power spectral density of turbulence, seen by an

aircraft, at a frequency w rad s~ as

® S @ 1 (ms=*)?/(rad s 11.3

long Vo o1+ (Lw/V) rad s7) (I1.3)
2 2

& _ o°L 1 + 3(LwyV) (11.4)

lat. v C[1+ /N3

We now wish to show how these spectra can be generated by using the metheds
developed in this report. Comparing with equations (13) and (17) it is seer
that the Dryden spectra, chosen because they give a good fit to observations
while at the same time being similar in form to the theoretically exact von
Karmen turbulent spectrum, can be modelled oxactly by the first and second
order Markov processes:

for longitudinal motions: x = -ux +a'u ms=~

for lateral motions: X = y+ au ms ~!
: 2 ) -1
y = -wgx-2Qweyecu ms

where x is the desired output and u is white noise of power spectral density
Y. The parameters in these equations are roelated to those of the Uryden
spoctra by

U = V/L

a'* =2 [20%V/L)/%
¢ = 1
u, = V/L
al = (30V/L)/Y
b = [o?V'/L')/Y

mmwr s N -

. 2 -

. s e

a w9
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where
b = ¢+ Zano

. and, as discussed in the text, we let the white noise input have unit power

spactral density¢¥ = 1 (ms !')?/rad s™' .

. The table below shows the value of these parameters for L = 300 m/rad and
three values of RMS gust velocity, as observed by an aircraft travelling at
170 ms :
6 ms™? 0.5 1.5 3.0
AN
i a' rad s~} 0.53 1.60 3.20
1
Ve
S a rad s™! 0.65 1.96 3.92
WM
- b (rad s~!)? 0.21 0.65 1.29
?fﬁ
,i ¢ (rad s™')? -0.53 -1.59 -3.19
3 )
d w, = 0.57 rad s * for all o.

® T AAA

Note that this approach to modelling atmospheric turbulence produces motions
of all scales. There is no need to add long period sinusoids to the model in
order to simulate the large scale motions, as we have seen done elsewhere.

PR S
i A

Pl

N For completeness we will note the autocorrelation functions corresponding to
the Dryden longitudinal and lateratl powear spectral densities
(equations (II.1), (II.2)).

Padt;

i

Clong = 9 expl-1CI/L] (a/s)?

[

o) Clat e (1-1¢l/Lyexp(-13 /L) (u/s)?

U9 These equations give a better indication of the meaning of L than do the
i expressions for the power spectral density.
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APPENDIX III
DISCRETE SIMULATION OF THE WIENER PROCESS
The Wiener process, also known as random walk and the process of uncorrclated

increments, is formally defined as the integral of white noise (references 1
and 11):

X = au (III.1)

This process differs from those examined in the text by having an
autocorrelation function whose ecxpectation does not converge to a constant
value for large time. On the contrary, the autocorrelation of the Weiner
procass fncrcases linearly with time:

C(t,t) = a®¥ft t<t (111.2)
where t is the elapsed time from the start of the process, and we will again
take the white noise process to be of unit strength, Y = 1.

The discrete equivalent of the Wiener process, using the modified Euler
integration algorithm, is

x{(n+1)A] = x(nd) + %4 aA{u[(n+1)A] + u(nd)} (I11.3)
where, as discussed in the text, u(nd) is a sequence of random numbers whose
variance is o® = ¥Y/4. We can rewrite this equation as

n
DB = 0] 5 u(o) ¢ Z u(md) + s (n+1)AI]
: ,

The autocorrelation function can therefore be written as, letting m<n:

L]

€, (m,n) E[x(md) x(nd)]

£E(ad)? E{u(md) u{nd))

©

!]

(ad)? LE ot er(m - 1)

il

(m - $)(acd)?

where the ¢ arises from the end point weighting of u.

Substituting the relation 04 = Y and setting t=md gives

ux(m.n) = (m-4)/m.&°Yt @m<n.

We see that discrete simulation gives the same autocoerrelation as the
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continuous process, except for the factor (m - %)/m, ie the accuracy of the
discrete simulation increases with the number of steps. The step size can
therefore be chosen to give the desired accuracy at any specified time.

Because of the time dependent property of the autocorrelation function, the
’ power spectral density is not defined.
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Figure 3

Note: We have defined power spectral density as being
two sided, but in this and subsequent fiiures,
only the positive half is plotted

Power spectral density of first order Markov process: Con’inuous
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e Figure 5. Power spectral density of first orxder Markov process:
%N Discrete with modified Euler algoritha
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Figure 6

Power spectral demsity of second order Markov process: Continuous

20

Figure 6.

B R R R T R T W T

- B "



WSRL-0292-TM
Figure 7(a)

32
L] Ac 041
28 +
24 -
£,
i1 0.05
!t
i
'
]
20 | \
¢ 16 |
¢
2 F Wes1
az-c¢cc
8 -
i}
0 1 1 ] \‘2&-‘_»
0 0.5 1.0 1.6 2.0 2.5 3.0
W
(a) § = 0.2

Figure 7.

Power spectral density of second order Ma-kov process: Discrete
with forward difference algorithm
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Pigure 7. Power spectral density of second order Markov prccess: Discrete
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Figure 8. Power spectral density of sccond order Markov process: Discrete
with modified Euler algorithm

poree Ak




WSRL-0292-TM
Figure 9

measured power spectral density (two sided)

. = =. fit of 2nd order continuous Markov process to measured
p.s.d. (see Appendix I)
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Figure 9. Measured power spectral density fitted by second order
Markov process
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