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*! -' This report discusses the implementation of system and
process noise, including sensor errors and atmospheric
turbulence, in the simulation of continuous models by
digital computers. The concept of discrete white noise is
first introduced in a manner in which it reduces to
continuous white noise as the integration time interval
reduces to zero. The derivation of first and second order
Markov processes from white noise is then discussed. The
discussion includes the consideration of a suitable
difference algorithm to approx!mate differentiation. The
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reader with the tools to implement a required power
spectral density (or autocorrelation function) as noise in
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1. INTRODUCTION

In this Report we discuss the implementation of noise in the discrete
simulation, on a computer, of a continuous process. We will develop the
concepts necessary for our purposes, but only in sufficient depth to preserve

continuity of the text. References are given to books in which a rigorous
mathematical treatment can be found.

In the next section we briefly examine continuous noise, starting with white
noise and then showing how noise of any desired spectral density can be
obtained by using white noise as the input variable to a suitable (stochastic)
differential equation.

SSection 3 examines discrete itoise, using the z transform formalism, in a
manner suitable for implementation in digital computer simulation of a syster.
Particular care is taken to develop a formalism which reduces to the
continuous case as the discrete interval tends to zero. The z transform, as

normally defined, does not have this property.

The discrete equivalent of white noise is discussed, and then the spectrum of
Markov processes generated by using white noise as the forcing function to a
difference equation is examined. The relative merits of various algorithms
for the discrete approximation of the continuous differential are considered
in this treatment.

Approximating a continuous noise process by an equivalent discrete sequence
introduces errors, which increase with the integration step size. Expressions

are derived relating the maximum step size to the fractional error in the
power spectral density and the parameters of the system.

Appendix I gives a worked example evaluating the parameters of a given noise
"spectrum, and impletr,-ntation in a discrete simulation. Appendix 1I shows howiatmospheric turbulence can be simulated by the methods described in the
Report. Appendix III discusses the discrete simulation of Lhe Wiener process.

2. NOISE IN CONTINUOUS SYSTEMS

2.1 Methods for describing stochastic processes

If v is some variable, eg acceleration roll rate or wind speed, and m is
the measurement of that variable, then these are related by

m = v + n (11

4 where n is the measurement noise or turbulence, represented by a stochastic
process. n xs described by the probability density function p(a,t), or
equivalently, by the statistical moments. Gaussian random processes are
cocipletely described by the first and second moments, and, since most
random processes are found to be nearly Gaussian. it is common not to
exat.ine any moment higher L.a the second. The first moment, or mean, is
given by:

-, En(t)] 0! T a p(a,t)d/ = Lt1 2•T/ n(t)dt (2)

.0, '-T/2
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where p is the probability density function for the process with amplitude

a at time t. The last equality follows from the assumption that the
process is ergodic. In this memorandum we assume the noisc is stationary,
so that p does not depend on time.

The second order moment can be given in terms of either the autocorrelation
function or the covariance function.
900

C(T) = E[n(t + r) n(t)] 0 aIp(U, t; f,t + r)da 40

_ fT/2Lt 1 n(t + r) n(t)dt (3)

T÷ Tj-T/2

"R(T) E[in(t + r) - AlIn(t) - y] (4)

where p(a,t;O,t+4 ) is the joint probability distribution function. The
autocorrelation and covariance functions are related by

R(i) = C(T) (52

In this paper we will be solely concerned with zero mean processes for$•. which IU = 0. When dealing with a non-zero-mean process, it is assumed thatthe mean is first removed from the process.

The second moment can 1,e equivalently described by the power spectral

which is the Fourier (or bilateral Laplace transform with s =wr) ransform
of the autocorrelation function. Note that we are using a two-sided
spectrum. This will he the case throuighouit. The inverse of equation (6)

1 C(T) -. ~ (cc)o d'o C

.•1 We will now examine Pnrseval's theorem. ip a preparation for comparing its
expiess ions in the discrote and continuous cases. Applying Parseval's

-5. theorem to NT, the Fourier transform of nl,, where nT = n for -T/2 < t < T/2

and 0 for Itl>T/2, gives(ref.1):

Lt 1 fT2 LL iL

00* T ~ td T4 + o f N I (w) N T (-W) d (8)
-T/2 -X

Thij theorem can be regaz-ried as a statefment of equality of energy in the
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hand side of equation (8) is the autocorrelat ion at zero lag, ie the,
variance. Also, it can be shown that

•• Lt I 9

T= T 4 NT (W)NT(-W) (9)

so that equation (8) can be written as

C(O) - C() dw (10)

Equation (10) also follows from equation (7) by setting T = 0; however, we
have derived it using Parseval's theorem for comparison with the discrete
analysis of the next section. Note that for continuous white noise both

. sides of th" equation are infinite unless 1(w) = o.

2.2 White noise and the generation of Markov processes

A stochastic process commonly used in the study of noise is Gaussian white
noise which has autocorrelation and power spectral density defined by

C r() = T 6 () u (W) = (

",where " is the Dirac impulse function, and T is the strength of the nois-.

We ,. -,r to this process as continuous white noise, to distingui.sh it
fry,. , te wtite noise introduced in the next section. The words
$contitnuous' and discrete' are used to describe the system to Which the
noise is applied.

If we have a measurement noise which is other than white. thi0 random
process c411 bL generated by having it as the d-pendent variable in a
differential equation whose forcing ftiuctio.- is white noise, and augmenting
this dlfferenttal equation to the system equations(ref.2). For example, if
x is given by

-O +u au (12)

where u in white noise wha.o anutocorreltiton and SpectrAl density is given

by equatLion (11), then x is also a Gaussian process whose autocorrelation
and Spectrum are given by

a 2v 0 - r Ia (13)X(T) 2i

There is an arbitrariness in the definition of a and u in equation (12).
We shall remove this be d.fining the white noise to have unit pl•er
spectral Oensity, viz Y = 1.
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The process defined by equation (12) is a first order e iarkoey
process(ref.2). This noise is also known as exponentially correlated noise
from the shape of its autocorrelation function.

A second order Markov process is gcnerated by the pair of equations:

W = x - 2ý W oy + cu (14)

x = y + au (iS)

Note that the same white noise source is input to both equations.

The autocurrelation function and power spectral density of x which result-•,; from this process are:

C(T - a 2W 2+b (.IoT -ill Or4  (16)-x 4 W cos[v -

al w 2 + b2
SCo;) = (4' 22 2- (2•2 1) o2 + 0 "•(7

:4-

where, once more, u is taken to have unit power spectral density, and
b) c + 2a4u

0ý0

3. DISCRETE SlIULATION OF NOISE*

3.1 Mlethods for decribing discrate random processes.

In a digital computer program which simulite% a continuous system, the
!%stAt0 arV evaluated only at dicrete t ime intervals. For the case of
tmuifot •'ar 1ping intervals, A. equation (1) beco"-s

m( -- v(kb) + n(k6)

* wher-by the values of the continuous function% are only sampled at spt
-4 times. Tlie forml expr-ssion of sampling may li written in diffetent w-ays.

One rn=-Son method (see, for exasple, reference 3) is to introducv. Dirac
delta fiinctions to represent the sampling process. lHoever, this is
unsat isfactory for caMputker s iMilai ions, which require nmbhers and not
impulse%. In additior, by expressing sampling in terms of numbers, a;. is
done in equation (18), the analysis reduces to the continuous case a% the
sampling interval goes to ZerO. This is further discussed after

4• equation (21).

Given the sampling process expressed hy Pqu.ltion (18). the question whir.h
has to be nnswi'ered i,,: uhat is the relatioel behtwoee thie antocorrelIit. ion



-5 - WSRI,-0292 -I'M

function and power spectrum of this discrete system and of the continuous
system to which it approximates? We commence by defining the
autocorrelation function and spectral density for discrete time random

processes:
C(LA) .,- Etn~k "di~A) n~kA)]

K!2
Lt _ n(Jk +11A)n(kA) (19)

K 0K + L
k=-K/2

Ab(z) A C(tA)z-t (20)

.00

where A is the discrete Lime interval between samples. The power spectral
density is identified as the two sided z transform(ref.4,5) of the
autocorrelation function. Note that the spectral density of this sampled
process is only defined for -m/A < w < %/A. The inverse of equation (20)
is

COlA) - •a•¢zz dz (21)
29jA

which may be also written as

C('A)C' dw(21(a))

by substituting v. e

The ftactor A ottsido theo %umnat ion in equatiLon (20) Atid uts idr, t he
integral in ecluation (21) haIs hb'en included to give -:ontinitltty with the0
tlaplce t-'an.nsform as *0, kýA*L. This LfaLor is t-ot .,t aryt l i z -r- t n

the defi ition of the z transform, but is vital for the treatment 0X

s imulation in this text. We will thr'tore digross brietfly on this .,tatter
by Meants of exaiplto. Consider tho dompe4 rxpconential definrd by

X I-- p -. t t Z! 0
zzŽ 0

4"0ose Laplace transform i%

Thkjng th. * ý.ran aform of x using the A =-i t1:ntI i d dl ir~ition
(equation (20)) gives
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X7= XiX1

j ~A A z ix.'.'

+ SA

where x*(t) =x(t) 6D(t-nA).

As A"O, we have X -X which would not have been the case if the t factor

had not been included. In general (eg in sampling systems), this
continuity from the z transform to the Laplace transform is not required,
so the factor A is omitted. However, we feel that the z transform
including a A factor is the more nitural definition. Confirmation of this
is suggested by considering the expression for the z transform as a sum of

* the values of the Laplace transform over the primary and complementary
strips. Using the usual definition of the z transform this relation is

St0

x z X .S L 2u'jn/A)

If the A multiplied expression for the z trdinsform is used, the above

relation becomes

X z Y (S 2tj n/6)

As 'O, X (s + jn.2v/A)"O for all n oxcept n 0 and we are left, with the

"simple roltion

whote we tsu.v the A multipi•otn derinition of the t ran-,(orm. =ay
htnuristiclly vtiew th1e A factor a?. t-or-der-Ling the inpulses in the .--i.pl.-A
process, so that, as A4O. we regain a continuous function. The. b.nef t0 o.f

the A multiplied definition will bhccge manifest in Section 3.2 wherr. St

enabhl•s us to definc a discrto, equivalent of continuo-s white noi.ne. A.
we have taid earlier. the A ftictor is usually omitted. since it is of no
consequence when thi, limit is not orf interest.

Further insight to this dr.finition of the ;t transforu can ho gained by
considering Parseval's theorem. which relate% the energy in the signal to
the energy in the spectrum. The discrete equival•.nt of Parseval's theorom

VS. is

"K/2 Ir/A
Lt A•V Lt Ie (22)

K n.(kA) = I d,,
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Wi ildt-lt i fy the lrft h1n1d side w i Lh correl .tion at zero shitt (Vide
equa tion (19)) and it cran bIe shown that

4L(z) I 1 NKKz), z = e (23)

where NK is the z transform of n(kA), k = -K'2 to K/2.

Substitutitng equatio:. (23) into (22) yields equation (21(a)) with --0.

Contrary to the case for Coll Ljitous whir, tioise, Parseval 's theorem does
have application in the discrete equivalent of white noise, as we shall

3.2 Discrete white noise

Suppose for our noise in equation (18) we generate random niumbers u(kA)
with a Gaussian distribution and variance 02. This can be regarded as
discrete 'white' noise with autocorrelation function and power spectral
€lonsity given by

C u(k4) = o 26Kr(t), (z) = 021 (24)

where 6 is thlv Kronecker delta. We wish to show that u(kA) reduces to
Kr

continuous white noise defined by equation (11) as A-O(ref.1). Although
the steps which follow are not matrhematically rigorous, they are included
as an heuristic derivation of the required relations.

It wo define u(t) as

U ~t) Lt )(25)0, u6+t

whhire thr limit i% assumed to exist in some gtugneralixed sense. theLn we wish
to mho" that u(t) hai the proportio, of conotinuo-s" white noi,%O a,% d"CinuId
by Oqual ton (I11). NNOW

ea* E- duMt U(t l
Lt

,,, 14'r E-u(kA) u([k *Ij1A)I

Lt

Lt* 0~( -(r 4/ 2)A/2))

Lt•0 o D3Sor

where bot) denotC% the unit s--p f-unc)ton- C t. W
equation (11):
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C(i) ( C6)•) (11)

we see thilt U (L) has th, cI:ih rittqi risr. Les of' continuous whlite Wo ise, with

T Lt U2A (28)

ie we. have shown that if we implement discrete white noise with the
autocorrelation function given by 026 (t) then this is equivalent to a

Kr
continuous white noise process with autocorrelation function AO2 6 D().

Let us continue this equivalence of continuous and discrete processes into
the frequency domain. Continuous white noise has the uniform power
spectrum 1 (equation (1I)). The discrete white noise has the spectral
density 02A, which extends from -v/A < w < i/A. Using relation (28) it is
seen that the amplitude of the power spectral density function for the
discrete case becomes T, which is Identical to that for the continuous;
these relations are shown in figure 1. Note that the discrete equivalent
of Parseval's theorem is obeyed, so our use of the factor, A, has been
consistent.

3.3 Discrete algorithms for the differential operator

As can be done for continuous processes, it is possible to generate a
discrete random process with a desired power spectrdl density by a
difference equation with a disciete white noise forcing function. Since we
will be wishing to relate the continuous and discrete processes thus
produced, in particular, to see how well the power spectral density of the
latter approximates to that of the former, we will briefly digress and
examine the derivation of difference equations from differential equations.

The simplest discrete approximation to the derivative is the forward
difference defined by:

x[(n+l)AI = xjnAj + :kcnAI.A (29)

The difference equation thus obtained is unsatisfactory for an integration
routine, as solutions obtained using it rapidly diverge. This is because
the magnitude of the transfer function is greater than the 1/w value of
continuous integration, especially at the higher frequencies. This is
shown in figure 2 which plots the ratio of the magnitude of the transfer
function for this case,

L...A
viz. A-1 2(1 - co z)' z e A(30)

as a function of angular frequency.

All this is well known, and forward differences are rarely used in discrete
integration routines. Commonly used integration algorithms are fourth
order Runge-Kutta and predictor-corrector, but both of these are difficult
to implement with white noise as the input. Runge-Kutta is impossible to
implement because it requires the evaluation of the function at
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intersequelce values of time, and we then have the choice of using a new
value for the random varinblhe or of using the value at oue' ,nd of the time
stop. In either case we will be inputting It noise spectrum different from
that of the discrete white noise dL.cussed in Section 3.2. Predictor-
corrector methods do not stiffer from this problem; however, when they are
being implemented, the values of the noise variable at the several time
steps involved in each integration step must be consistently maintained.
This involves careful programming, so it is preferable to use a simpler
integration routine which is yet well behaved. One such is the modified
Euler algorithm given by

x[n + l)AI x[nAJ + JA(i + l)A] + k[nA]) (31)

This is also known as second order Runge-Kutta algorithm. It gives for the
discrete transfer function:

A(l + z-•) A1 + cosw Y
2(l - z- ) 2 1-coswP (32)

This function, which is also plotted in figure 2, is seen to damp out high
frequencies, which is why this routine is stable. Therefore, provided that
the integration time step is sufficiently small that none of the natural
modes of the system is severely damped by the transfer function of this
integration routine, it is a suitable integration method. It also has the
advantages of being simple to implement in a computer program (only
requiring two iterations per step interval) and of being simple enough to
examine analytically to see what effect it has on given noise inputs. The
well known tendency of integration using this algorithm to 'drift' can be
seen to arise because the curve in figure 2 starts to depart from unity at
the lowest frequencies.

The accuracy of the modified Euler method can be increased by iteration for
x(nA) and continuing until the difference between successive iterations is
as small as desired. When this is done, the method can be regarded as a
second-order prediction-corrector. A further virtue of this simple
algorithm is that it is suitable for a set of stiff equations(ref.6), that
is, a set of equations with a wide range of values for its eigenvalues.
Such sets of equations occur in flight simulation where the time constant
can vary from 100 s (for phugoid) to 0.01 s (for actuators). References 7
and 8 discuss the benefits of the modified Euler integration routine when
the set of equations are stiff, it is frequently superior to far more
sophisticated algorithms.

Although it is not the purpose of this memorandum to analyse integration
procedures, we will end this Section with a mention of an alternative to
formal integration routines. This procedure, discussed in reference 9,
enables large time steps to be used in discrete simulation by using a
difference equation which accurately maps the poles of the original
differential equation. This technique is valuable for stiff systems
because the time step interval can be made comparable with the time
constant of the fastest mode (instead of much less, as is required for
standard integration routines). However, when the coefficients of the
difference equation are derived by requiring correct representation of the
poles of the original differential equation,'a power series representation
of the input with time over each interval must be assumed (for example,
quadratic). Since white noise can not be represented by a power series
this-procedure must introduce an approximation. It is generally advisable
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to check If the conseqllenL error be si.gnificant.

Another example of the nnalogue-digital technique for discrete simuotiLoH
of continuous systems is given in reference 1O. In the method given
therein the coefficients of the difference equation are chosen so that the
first and second moment's of the discrete correlated noise are the same as
for the correlated noise generated by the differential equation which is
being modelled. The resulting expressions, which are rather lengthy, are
essentially in terms of the transition matrix of the differential equation
integrated over the discrete time interval.

We will now study the generation of discrete Markov processes, first by
difference equations derived using the forward difference algorithm and
then by using the modified Euler algorithm.

3.4 Generation of discrete Markov processes

3.4.1 Forward difference algorithm

By using the forward difference approximation to the derivative
(equation (29)) the discrete equivalent of the first order Markov
process (equation (12)) is

x[(n+l)AI = (1-uA) x[nAj + aA.u(nA) (33)

where, as has been shown above, u(nA) is a sequence of uncorrelated
random numbers with variance 02 = y/A.

The power spectral density of x is given by the product of the modulus
of the frequency transfer function of the equation with the power
spectral density of u(ref.ll), so we have for the discrete first order
Markov process a power spectral density:

a2 A*(
X(Z - 1+ VA)(Z- - 1+ PA) (34)

or

41Ma 2 A2 (3S)__
X = 1 * (- vA)2 - 2(1 - VA) coswA (35)

Taking the limit A-d gives the power spectral density for the continuous
first order Markov process, equation (13), as expected.

In figure 3, we have plotted the power spectral density for the
continuous Markov process, which should be compared with that of the
discrete process plotted in figure 4. It is seen that the power for the
discrete process is greater than for the continuous process, but tends
to it either as AkO or as w4 0.

When simulating continuous processes by discrete sampling, it is
important to know what errors are introduced as a function of the
sampling interval. We will now derive expressions relating the maximum
permissible discrete time integration interval for a desired accuracy,M4n tym. nF tha narnmatprs o the rocess.
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There are two constraints on the sampling interval, A. The first is
that the power spectral density decrease to a negligible value at the
Nyquist frequency (=r/A). For a first order Markov process, the ratio
of power spectral density at the Nyquist frequency to its peak value is

C = U 2/f ( 7/A )2+ U2]

We can interpret this equation as stating that a fractional error, E,
results from a sampling interval A, due to aliasing. Rearranging gives

A < iT//-lu (36)

as the contraint on A, where we have used the condition E-«<l in deriving
equation (36). The ovher constraint is that the sampling interval be
smail eitough that :he discrete power spectral density approximates the
continuous one. Let E denote the ratio of the difference between the
discrete and continuous pow r spectral densities to the maximum of the
power spectral density. This ratio maximises at w = u, and gives the
following cons.raint on A, for th error ratio to be less than E:

A < 2c/u (37)

Note that the two constraints both involve I. This is hardly surprising
as wa have only one parameter, viz. u. Since E<<1, equation (37)
imposes tighter constraint or, A than does e.quation L3 6 ).

Wa now turn to second order Markov rrocesses. Substituting
equation (33) into equalions (14) and (15), el!.minating y, and taking
the z transform of the re:;uLling diffeience equation yields

+z + 2 a(A)oA- _)z + (1 - oa+ WA 2 )]X = [aA.z + (b2 - aA)] U (38)

wharoe 1 = c + laf° nad X, U are the z transform.. of x and u (tho z

transform of i being purely formal).

We can now write tie power spectral deu.,.ity of ,- as

' - a)2 J 2 2a(b - a) cos, A]1= +. . (39)

where

01= 2(ýwoA-l)

62 1 - 2 w,0A + w 02 A2
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As before, we compare the ccntinuous second order Markov process,
plottid in figure 6, with the forward difference discrete approximation,
figtirets 7(n) and (b). It is seen the discrete power spectral density
diverges from the continuous more rapidly with integration step interval
than it did for the first order Markov case. This can be attributed to
a A "resonance" in the power spectrum (for any given w), regarding I now
as a function of A, and is illustrated in figure 7(c).

As before, we have constraints on A imposed by the requirements of the
continuous power spectral density being small at the Nyquist frequency,
and of the discrete power spectral density being close to the
continuous. These are more difficult to apply to the second order
Markov process. After some manipulation it can be shown that, for the
aliasing and discrete approximation errors to be less than a fraction c,
the sampling interval must satisfy

A < V býlf/a 2 (40)

and

(b 2 + a 2 o1)ý eA< (b2 
- abN0o + a2 W)w 0  (4o

3.4.2 Modified Euler algorithm

We will now derive the modified Euler approximations to the first and
second order Markov generating equations and compare them with the
results of the Section 3.4.1.

Substituting equation (31) into equation (12) and taking the z transform
gives

r(l+uV) z - (1-vV)] X aV(l+z)U (42)

where V = A/2.

We can immediately write down the power spectral density of x to be

2a2 V2 (1+ cosA)*

4, x( -1 + 2 A2 
- (1 - 2 A2 ) COS(•A (43)

This function is plotted as a function of w for a = 1 = 1 and A = 0,1,2
in figure 5. Comparing with figure 4 we see there is a substantial
(about four times in this case) improvement on accuracy for a given A.
Note that the forward difference approximation amplifies the power
spectral density at high frequencies, while the modified Euler
approximation diminishes it. These properties are to be expected from
their respective frequency response functions (see figure 2).

Limitations on the size of A exist from the same constraints as
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discussed in Section 3.4.1 and lead to:

A < TrT//U (44)

A < 3Y.Tu (45)

Comparing equation (45) with (37) shows the modified Euler approximation
allows larger time intervals for a given accuracy.

We now turn to our final case: the modified Euler approximation to the
differential equations defining the second order Markov process.
Substituting equation (31) into equations (14) and (15), and taking the
z transform gives

[(1 + 2ý.0 V+ W •V 2 )z 2 + 2(v2W - l)z + (1 - 2ýwoV)IX

= V[ (bV + a) z 2 + 2bV.z + (bV - a)]U (46)

whore b c + 2a•w

which givws for the powtor spectral density

2 2[ a2 + 3V 2 ] + 4b 2V2 cos wa + (b 2 V2 - a 2 )cos 2w A] (47)

x 03 + + 5V + 20 4 (03 + 05 )cos cA+ 20305 cos 2wL (7

whe re

03 =1- 21h0 V +w 27

Equation (47) is pl~otted as a function of w, for several values of A, III
figure 8. Comparing with figure 7 shows that the modified Euler method
is able to use much larger valukis of A before there is a significant
difference between the continuous and discrete spectra. It is
interesting that the modified Euler approximation produces not only a
diminution of power at higher frequencies, but also a lowering of the
frequency of maximum power. In place of equations (40) and (41) we have
the following inequalities which must be satisfied for the discrete
approximation to model the continuous second order Harkov noise
adequately:

A < rb V. /a" L (48)
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A<- 6(b' + w n a]e ½

•o Ib2 (1 + 4ý2) + 2o al

• 2•V• (49)

We have summarised the results of Sections 2 and 3 in Tables 1 through
3. We have included the expressions for .autocorrelation function in
Table 1, because it is sometimes this, rather than the power spectral
density of the random process, which is measured and to which the
theoretical noise process is fitted to determine the parameters a, u or
a, c, we' 4.

3.5 Summary

A continuous white noise stochastic process, with power spectral density T
(or, equivalently with autocorrelation function T6D) can be modelled in a

discrete simulation by a sequence of uncorrelated random numbers at the
simulation times, whose variance is 02 = T/A where A is the discrete time
interval of the simulation. This discrete white noise also has a uniform
power spectral density equal to T, but it is band limited to the angular
frequency range - 'n/A < w < '/A (see figure 1).

Although white noise never occurs in nature., its benefit lies in the fact
that noise of any given power spectral density can be generated
analytically by the solution of differential equations whose forcing
function is white noise. The first order Markov process has the power
spectral density (see figure 3)

2 a2
'D.: v2 +W2*'I

and is generated by the first order differential equation

k = -UX + au

where u is the white noise input, and is always chosen so that T = 1.
The second order Markov process (see figure 6)

a a 2 W
2 + (C + 2 0o a) 2

x W 4 + (2w 9 - I)w + WO•

is generated by the coupled pair of equations

- y+au

= -Wo X - 2ý Woy + CU

Given an observed power spectrum for noise we are then able to model the
stochastic process which has this power spectrum by choosing the
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coefficients of the equations (viz: a, u; or a, c, w , 4) so the resultant

power spectral density fits the observed power spectrum.

In discrete simulation of these processes, the differential equations are
replaced by difference equations. As is discussed in the text, care must
be taken in choosing a suitable algorithm with which to implement the
differential operator. The best compromise between :--curacy and ease of
implementation appears to be the modified Euler method , which

xl (n+l)AI = xlnAJ + ½1xl (n+l)AI + k[nAJ

where the derivatives, x, are replaced by the equations to be integrated.
The numerical procedure which implements this relation is a two step
iteration, because an estimate of ý(n+l) must be made. When writing the
code for the discrete simulation, care must be taken to be consistent in
the use of the random numbers generated to simulate the white noise forcing
function; viz: the number generated for u at the second step in the
calculation of y(n+l) should also be used in the first step in the
calculation of y(n+2).

As discussed in the text, integration routines such as fourth order Runge-
Kutta, which require calculations at times intermediate to those at which
the difference equation is evaluated, are unsuitable for the implementation
of noise. This is because of the problem of what value to assign to the
random variable at the intermediate steps. How this is done makes a large
difference to the power spectral density of the process. Hence we
recommend simpler integration routines, thereby obviating the problem.

A further matter which must be considered is that the power spectral
density of a discrete Markov process calculated by difference equations
differs from that given by the exact solution of the differential
equations. This suggests that the Markov coefficients should be calculated
by fitting the observed spectrum to the power spectral density of the
discrete process. This is not recommended, because the fitment is no
longer valid if the tiMe Step, 4, of the . imulation is changed. It is
preferable to fit the continuous ;pect rum to the obsrrvations and not-e the
"error iatroduced by discrete simulation for various time step intervnls.

4. AC KNOW IEXGEMIEN17
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,4; NOTATI ON

a coefficient of white noise in differential equation for Markov
process

b c+2a wC

c coefficient of white noise in differenLial equtLion for Markov
process

C correlation function

E expected value of a variation

m measured value of a state variable (v+n)

n continuous noise process

p probability density function

P pc•a:r (= integrated spectral density from -- to -)

R covariance funct ion

S Laplace transform variable (=jw)

t time

T time interval for integration (in -h* limit ITI"-)

u white noise stochastic process

v true value of a state variable

x ?arkov process derived from white noise
(a) first order = exponentially correlated noise
(b) second ordtr t damped cosine, correlated noise

y intermediate variable in deriviag second order Harkov process

z z transform variable (= exp(sA))

61) Dirac delta (naction. 6 (c-x)dx 1 if a:c>b; 0 otherwise
DUJ a

6 Kronecker dolta. 6 Kr(M) = I if t = 0; 0 othorwise
Kr K

A time interval of discrete process

4'V =AJ/2

C fra..tional error in discrete approximation to continuous power
spectral density

C damping ratio in second ocder farkov proce,'.

u• mean value

u correlation time in first order Markov process
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"a standard deviation of Gami.sioan random number sequence used for
discrete simulation of white noise

T time lag, argument of autocorrelation function

"•"F power spectral density (two sided and function of w)

. subsidiary expressions involving 4, o A

w Fourier transform variable. Frequency in radian s"1

W undamped natural frequency in -i,.cond order Markov process

Ispectral density of continuous white noise (Laken 1)

.4'2

Wi

4'"

44.
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APPENDIX I

AN EXAMPLE OF DISCRETE NOISE SIMULATION

Suppose we wish to model, in a djiscrete simulation computitr program, the noise
on the output of an angle measuring device whose measured noise power spectral
density is given in figure 9. This approximates to a second order Markov
process, and so we will assume that it can be generated from white noise, u,
by the following pair of stochastic differential equations.

5-,•W = x - 2tcO oy+cu deg s- 2  (1.i)

x= y + au deg s- (1.2)

As shown in the text, the power spectrum of x generated by these equations is

S(a 2  2 + b2 ) deg2/(rad s 1)
X .o + 2w(2w 2 

- 1)to 2 +wo

where b = c + 2a~wo, and T is the power spectral density of u. Since c and a

appear as multipliers of u, defining T will fix c and a. It is convenient to
take T as unity, and we will therefore do this:

viz: I= deg' /(rad s')

The parameters a, b, wo, C are then chosen to fit ( to the observed power
* x

spectral density. This is partly trial and error, partly in,,elligent
- guesswork; for example the frequency and relative amplitude of the maximum

suggests that w -2.5 and C-0.5. We have plotted in figure 9 the calculated
0

ci curve for the following values of the parameters, which give a satisfactory
fit:

a = 1.6 rad s

c = 0.7 (rad s"1)2

W = 2.6 (red s-')
0

0.6

. b = c+2a4 w 5.7 (red s

4' To generate the discrete 2nd order Markov process corresponding to x, we
replace the differentials in equations (1.1) and (1.2) by a finite difference
algorithm. As explained in the text, a good compromise between convenience
aud accuracy is given by the a..-dified Euler methcd. Using this method, and
assuming that we require an accuracy of better than 20" in the discrete
modelling of the continuous procesa, equations (48) and (49), give the
following constraints on the in.egration stop size:
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We have plotted in figure 9 the power spectrum of the discrete process
corresponding to a 0.5 s time step, out to the Nyquist frequency

"•(/A = 6.3 sece-).

In figure 10 we have plotted 100 s of the discrete random process generated by
the modified Euler algorithm applied to the differential equations, with the
calculated values for the parameters, generated from discrete white noise
given by Gaussian random number sequence of variance:

a2 = / 2 de2

1Th theoreLicail variance of the second order Markov proc:ess derived by these
"means is given by (see Table 1):

2 = (a,2 + b)
% theory 4'z 0

- 1.18 deg2

This value should be compared with the variance of the calculated random
number sequence plotted in figure 10:

2.calc 2 = 1.0 deg2

where the sum has been taken over 500 steps. It is wise to make this
comparison as a chock on the discrete simulation program. These values could
also have been obtained by integrating under the corresponding curves in
figure 9. The 20- accuracy between the continuous and discrete power is

No generally adequate for most applications. It is not often that the estimate
of an error is required with greater accuracy.

In this example we started with a given power spectral density. If tie
measurements of the noise process had been of the autocorrelation function, we
could determine the p-- ýmeters a, c, w 1 C by fitting the theoretical to

observed autocorrelation function, and then proceed to model the noise in the
same manner.

IE 0
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APPENDIX [I

DISCRETE MODELLING OF ATMOSPHERIC TURBULENCE

The purpose of this Appendix is to demonstrate how the methods of this Report
can be applied to the simulation of atmospheric turbulence. In simulating
turbulence it is necessary to use an analytical expression for the power
spectral density of the lateral turbulent atmospheric motions. We shall apply
the Dryden formula, which is commonly used; it has the advantages of being
analytically simple, whilst at the same time fitting the observed spectra very
well.

In this Appendix we do not intend to give, nor is this the place for, an
exegesis on atmospheric turbulence, its variability and the validity of the
several analytical expressions for its power spectral density. These topics
are covered, for example, in references 12 and 13.

The Dryden expressions for the power spectral density of the longitudinal and
lateral components of atmospheric turbulence are:

- 2.+a L2L (ms'1)2

'€long 1= +(rad L-a) (II. 1)

2)'• 1 + 3L2 E 2

"D lat 2 L . [1 + L2 92 2]2 (11.2)

where

= spatial frequency (rad m-1 )

02 = mean square gust velocity (ms'1) 2

L = scale of turbulence (m/red)

The longitudinal component refers to those random atmospheric motions along
the line to which the spatial frequency is reierred; the lateral component
refers to motions (vertical or horizontal) perpendicular to this line.

If the above equations are compared with the Dryden formulae usually quoted,
it will be noted that they contain an extra factor of (21m)/2. The factor 21T
is because the power spectral density of atmospheric turbalence is commonly
defined so that its integral gives the variance, a2. However, we prefer to
retain the relation between power spectral density and variance given by
equation (7), since this is in line with the standard definitions of the
Laplace and Fourier transforms. The factor 2 arises because we are using a
two-sided power spectral dens'ty of to be consiste.nt with |le main text,
"rather than the one-sided density which is commonly used. Finally, note that
L and S1 are in radians and not cycles.

Numerous observations of turbulence have shown theft o typically lies in ý.he

range 0.5 to 3 ms-, with the lower values occurcing more frequently(ref.14)
L varies from 150 m/rad to 500 m/red, ex, pt near the ground when I, is
proportional to altitude. Reference 12 recommends using 300 m/rad for L ill
the free atmosphere.

•% A . . .. .. . . ... .. ,p,. , ,



WSRL-0292-TM 26 -

When considering the effect of turbulence on an aircraft, it is standard
practice to assume that the aircraft moves through a spatial field given by
equation (11.1) which is "frozen". This approximation, called the Taylor
hypothesis, holds as long as the aircraft velocity is much greater than all
the turbulent motions. The aircraft then sees these spatial structures as an
equivalent frequency, w, given by

W = V.Q rad s-I

where V is the velocity of the aircraft. Substituting into equations (II.1)
and (11.2) gives the power spectral density of turbulence, seen by an

aircraft, at a frequency w rad s'i as

202 L 1(MS-1)2
long V "1 ÷ (L/V) 2  (rad ) (11.3)

Slat - [1 + (L4V)1] (I1.4)

We now wish to show how these spectra can be generated by using the methods
developed in this report. Comparing with equations (13) and (17) it is seer.
that the Dryden spectra, chosen because they give a good fit to observations
while at the same time being similar in form to the theoretically exact von
Karmen turbulent spectrum, can be modelled exactly by the first and second
order Markov processes:

for longitudinal motions: x -ux + a'u ms'1

for lateral motions: x = y + au ms-

2-y -(A•OX-2na( oy*Cu ms"

where x is the desired output and u is white noise of power spectral density
T. The parameters in these equations are related to those of the Uryden

.spectra by

Su = V/I.

a12 ,2oAV/L/ll

"= V/L
0

S.' -i•a' = 3a2VlLjlt

W b =joV'/L' 2 /T

-- ,q
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where

b = c + 2aw0

and, as discussed in the text, we let the white noise input have unit power

spectral density T ? = 1 (ms-1 )2 /rad s-' .

The table below shows the value of these parameters for L = 300 m/rad and
three values of RMS gust velocity, as observed by an aircraft travelling at

170 ms- 1:

0 m s-1 0.5 1.5 3.0

a' rad s-' 0.53 1.60 3.20

a rad s"I 0.65 1.96 3.92

b (rad s-')2 0.21 0.65 1.29

c (rad s-) 2  -0.53 -1.59 -3.19

= 0.57 red s-1 for all 0.0

Note that this approach to modelling atmospheric turbulence produces motions
of all scales. There is no need to add long period sinusoids to the model in
order to simulate the large scale motions, as we have seen done elsewhere.

For completeness we will note the autocorrelation functions corresponding to
the Dryden longitudinal and lateral pownr spectral densities
(equations (11.1), (11.2)).

C long = o2exp[-kI/LI (m/s) 2

IC lat o 2 (l-j41ll,)exp(-j4j/L) (mls) 2

These equations give a bettor indication of the meaning of L than do the
expressions for the power spectral density.

A%.;

V.,,

* .•
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APPENDIX III

DISCRETE SIMULATION OF THE WIENER PROCESS

The Wiener process, also known as random walk and the process of uncorrelated
increments, is formally defined as the integral of white noise (references 1
and 11):

x = au (IlL 1)

This process differs from those examined in the text by having an
autocorrelation function whose expectation does not converge to a constant
value for large time. On the contrary, Lhe autocorrelation of the Weiner
process increases linearly with time:

C(t'X) = a2Tt t.<T(I .2

where t is the elapsed time from the start of the process, and we will again
take the white noise process to be of unit strength, TI = 1.

The discrete equivalent of the Wiener process, using the modified Euler
integration algorithm, is

xj(n+l)AJ = x(nA) + j aA(u[(n+l)A] + u(nA)} (111.3)

where, as discussed in the text, u(nA) is a sequence of random numbers whose
variance is a' = '/A. We can rewrite this equation as

n_

l (n.l)I aL½uoa u(0) u(u4) t ½ u (n+1)61

1

The autocorrelation function can therefore be written as, letting m<n:

C r(m,n) = Flx(mA) x(nA)i

,=• = E( •,A ), E ju (ma ) u(InA )]

(aA) 1 z0 o r - n1)
i• =~(M - A7)(a•oA)2 K

where the # arises from the end point weighting of u.

Substituting the relation o2 = T and setting t=mh gives

e (M.n) = (M-u t /Moai ?t m<n.

We see that discrete simulation gives the same, autocorrelation as the



- 29 - WSRIL-O292-TM

continuous process, except for the factor (m - J)/m, ie the accuracy of the

discrete simulation increases with the number of steps. The step size can
therefore be chosen to give the desired accuracy at any specified time.

Because of the time dependent property of the autocorrelation function, the
power spectral density is not defined.

,-.4

'4

.o
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Figure 4
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Figure 5
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Figure 7(c)
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Figure 9
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