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ERROR ESTIMATIONS AND ADAPTIVE TECHNIQUES FOR "

NONLINEARI ZED PARAMETRI ZED EQUATIONS

by

Werner C. Rheinboldt
1C Department of Mathematics and Statistics

University of Pittsburgh

i " 1. INTRODUCTION

Many problems in science and engineering concern the determination of

steady-state equilibrium solutions of nonlinear equations. In general, for

-! .such problems, interest centers not so much of the computation of a few specific

- -; equilibria rather than on an assessment of the response of the system to the

gaction of various external or internal influence quantities. In other words,

we are interested in the effect of changes of the values of certain parameters

upon the computed equilibria. Thus, other than in the typical linear case,

for-nonlinear problems we usually have to consider equations of the form

F(z,i) = 0 (1.1)

which depend nonlinearly not only on the state variable z but also on a

parameter vector x. Typically, z varies in some infinite-dimensional

space Z while A belongs to a space A with some finite dimension m > 1.

In line with the indicated objectives it is not enough to find solutions

z of (1.1) for a few a priori specified parameter vectors X. Instead, we

have to look at the solutions of (1.1) as points (z,X) in the product

1) This paper was in part supported by the Office of Naval Research under
Contract N014-80-C-0455 and the National Science Foundation under Grant
MCS-83-09926.
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X = Z x A of the state and parameter space. Under fairly general conditions,

the set of all solutions (z,x) of (1.1) in X forms a smooth surface -- or

more precisely an m-dimensional differentiable manifold -- in that space.

When (1.1) represents the equilibrium equation of a mechahical system, this

manifold has been called the equilibrium surface of the system,(see e.g. [31]).

Broadly speaking, our task then is the computational analysis of this

solution manifold of (1.1). The specific aims of that analysis depend on

the problem at hand. For example, practical needs often demand the explicit -4

computation of a sufficient number of points in a selected portion of the

manifold which may be used, for instance, as the basis of certain post-

processing calculations. Another need may concern the determination of the

stability properties of the system. In terms of the manifold this leads

typically to the study of structural stability as defined by modern bifurcation

theory. In essence, an equilibrium point on the manifold is structurally

stable if in some neighborhood all points on the manifold have the same

qualitative behavior and the task is to determine the points where structural

stability is lost and what behavior may be expected there. (See e.g. [33]

for some interesting applications in mechanical engineering.) .

These are only two of the many different aspects of an analysis of the

solution manifold of a parametrized equation (1.1). In this presentation,

we consider some of the questions relating to a computational determination

of parts of the manifold. As with all engineering computations, the aim

here is to obtain solutions which are sufficiently accurate and reliable to

allow for a decision about the system under study. For this it has become

widely accepted that the computational procedures should include, at least,

(i) facilities for the efficient and reliable estimation of the

errors of the computed results; and

a .
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(ii) adaptive controls of the computation to achieve the desired
error tolerances with minimal cost.

For the solution of certain classes of linear problems by finite element

techniques algorithms for these and other desirable features are now

beginning to be well understood (see e.g. [1], [10]). But in the nonlinear

case much still needs to be done before satisfactory procedures of this type

are available. The a)'n of this paper is to survey some recent results in the

area and to point to various open questions.

""0 It turns out that a central aspect of any computational study of a mani-

fold is the availability of simple, but effective local coordinate systems.

Some approach to this is sketched in Section 2 below. Then in Section 3 we

turn to the question of estimating the discretization errors between the

original manifold and that of a corresponding discretized equation. It is

important to note that these errors also depend on the choice of the local

coordinate system. Section 4 then presents a new approach to the calculation

of a posteriori estimates of the discretization errors and shows their*of

efficiency in the case of a two-dimensional nonlinear boundary value problem.

: * In Section 5 we discuss the basic form of a continuation method for approxi-

mating one-dimensional manifolds and relate it to a general form of feedback

" . "process. This in turn opens up questions about measuring the performance of

*1: :the method. Finally, in Section 6 we outline an algorithm for the adaptive

control of the discretization errors during the course of the continuation

procedure and show its performance in the case of a model problem.

M,
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2. LOCAL COORDINATES

As noted before, under certain conditions the solution manifold of

equation (1.1) is a finite-dimensional, differentiable manifold. In practical

applications (1.1) is usually a boundary value problem. Thus it is natural

to assume that the mapping F is a Fredholm mapping of class C r > 1,

and index m > 1 from an open subset S of a real Banach space X into

another such space Y. We denote by DF(x) the (Frechet) derivative of F

at the point x E S. A point x E S is a regular point of F if DF(x)

maps X onto Y, and a point y e Y is a regular value of F if the

solution set

F(-')(y)= {x e S, F(x) = y -

contains only regular points. Then for any regular value y c Y the set

M- M = F('')(y) is an m-dimensional cr-manifold in X without boundary
y

(see e.g. [14]).

For all computations on such a manifold M we need an efficient compu-

tational scheme for fixing local coordinate systems at any point of M. .

Among the many possibilities, a simple linear scheme appears to be most

advantageous. In order to motivate the idea, let M be a one-dimensional

c1-manifold in R3. At a given point x0 E M we choose a one-dimensional

subspace T and a two-dimensional plane W C R3, as shown in Figure 1, such

that for sufficiently small t e T the plane x' + t + W intersects M in

a unique point which we call x(t). In this way, we obtain a mapping

t - x(t) from some (small) open neighborhood of the origin in R1 onto a

neighborhood of x0  in M. This will be the desired local coordinate system

0 '

of M at x.

IN v .7.. ],- 1 . 4 a * g --- . -



5
".:

0*0

+i

4Figure 1

Clearly, T and W cannot be chosen arbitrarily. Certainly the direct

sum TO W should be all of R3  and, in order to get unique intersections
0 of

* * x(t), we should avoid that W contains the tangent manifold ker DF(x

-0 0 0M at x°. If DwF(x°) denotes the partial derivative of F at x with

respect to W, then this means that we should enforce ker DwF(x°) = 0}.

I ~The approach carries over directly to the general case. With a slight

notational change the following result was proved in [15]:

up

Theorem 2.1: Let y be a regular value of F and x° 0 M ,. Suppose that

T, W are subspaces of X such that X = TO W, dim T = m, and

ker D D(x°) = (0}. Set x° = to + w° , to E T, w° c T. Then there existw
-, open neighborhoods V c T of to  and U C X of x°  and a unique

Cr-function w: V -o W such that w(t° ) = w°  and

M 11 U {x E X; x t + w(t), t v 
y

IAI
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This result means that a basis for the m-dimensional space T may
serve as a local coordinate system on M near x . Of course, if our

y
original decomposition of X into the state space Z and parameter space

A satisfies ker DzF(x°) = {O} then A itself may be used to parametrize -

M near x°. Generally, any x° e S, where ker Dz F(x°) = {0}, is called

a non-singular point of F with respect to the original (natural) parametri-

zation; otherwise x°  is a singular point. In connection with mechanical

problems the most frequently occurring singular points are turning points

and simple bifurcation points (buckling points). Generally, if x S is

a nonsingular point, then the partial derivative Dz F(x°) is an isomorphism 0

of the state space Z onto the range space Y.

-%
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UI 3. ERROR ESTIMATION

N We consider a nonlinear mapping F: S c X Y which satisfies the

A! conditions discussed in Section 2 and assume that a natural decomposition of

X = Z IDA into a state space Z and m-dimensional parameter space A has

been given. If 0 c Y is a regular value then we know that the solution

set of the equation (1.1) is indeed an m-dimensional Cr-manifold M in X.

As noted before, in applications the equation (1.1) usually represents

-j ' some boundary value problem. Hence for the computation, it becomes necessary

to replace (1.1) by some finite-dimensional (discretized) approximating
do

equation. But since the parameter space A is already finite dimensional,

it is only the state variable z that has to be discretized. Thus, the

approximating equations, in general, have the form

Fh(Zh,,) = 0 (3.1)a .;=

where now Fh maps a discretized space Xh Zh @ A to another such space

Yh"

If Fh again satisfies the needed differentiability conditions and

0 C Yh is a regular value for it, then the solution set of (3.1) forms an

m-dimensional differentiable manifold M in Xh Usually, in finite element

computations we have Xh - X and our task then is to assess the approximation

' error between these manifolds measured, for instance, in the norm of X.

The development of a rigorous theory of these errors is a fairly recent

undertaking. For a one-dimensional parameter space A a priori estimates

were first developed in [13], [17] and then [14]. The latter results were

generalized in [15] to a parameter space A of arbitrary finite dimension.

.V All these results involve a family of approximate problems (3.1) which

IQ converge in some sense to the original problem (1.1) when the real discreti-

i.""" " """ ' " ' " "" '" " q "* '" "'"" " " "."'.."" " •. - *: "ex~ * "' ." "" r " V" "g,' "--" "" "" "' t" """"""" - "
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zation index h > 0 tends to zero. Then it is shown that for sufficiently

small h and in a neighborhood of some point of the solution manifold M of

(1.1) the approximate problems also possess solution manifolds Mh for

which the distance to M in X can be estimated. A different approach was

taken in [16]. There only a single discretized equation (3.1) is considered

instead of a converging family of such equations, and estimates are obtained

which are local in nature analogous to the local error estimates in the

numerical solution of initial value problems for ordinary differential equations. -*

These a priori estimates are of considerable theoretical interest. But

for the computational task outlined in the Introduction we rcquire a posteriori

estimates which measure the error of the specific computed points on the

approximate solution manifold Mh. However, before we turn to these

a posteriori estimates, we need to clarify how these errors are to be defined.

hWithout any further information, we may compare a computed point x on

Mh with any point x° on M. But then the distance 1jx-xh lx can hardly

be expected to represent a good measure of the quality of the computation.

In order to correlate points better we need to choose a local coordinate

system at the desired exact point x°  on the manifold M. As discussed in

the previous section, this means that a coordinate space T C X and

complementary space W c X are selected for which Theorem 2.1 holds. Then,

when the approximation is sufficiently good, the manifold M will be closeh

to M and the same local coordinate system can also be used in a neighborhood

on Mh of the point xh for which x -xh E W. This is schematically shown

in Figure 2.

- .

'4
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'.'- iThus the resulting error estimate depends on the choice of the local

' coordinate system on . This is an important point which cannot be overlooked.

" With a change of the local coordinate system the error-norms change. If x

.,- ; is a non-singular point of M( then, of course, we may define the local co-

ordinate system in terms of the natural parameter space A and the state space

,, Z. In other words, we then compare x° = (z°,X ° ) on M£ with the point

hx =(zh, x° } on Mh. for which the parameter vector Xo is the same. Certainly,

at singular points of F, such as the limit point in Figure 3, this

choice fails. Moreover, as the figure indicates even at non-singular

points xa near R the error-norms ux xe, X based on the natural co-

ordinate system may be unduly large.

,%- noan

hIopaaetro etany
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Figure 3

All of the cited articles on a priori error estimations utilize

appropriate local coordinate systems at the various types of points. For

example, the three papers of [13] treat separately the case of non-singular

points, limit points and simple bifurcation points and use a suitable

coordinate at each of these points. In [14] and [15] general local coordinate

systems in the sense of Theorem 2.1 are utilized to avoid the need of

distinguishing between the different types of points.

..



4. A POSTERIORI ESTIMATES

For the finite-element solution of various classes of linear problems

the theory and application of reliable, a posteriori error estimates has

advanced considerably in recent years (see e.g. [2], [3], [5], [6], [7], [8],

[10]). Not surprisingly, in the nonlinear case -- where even a priori

estimates were developed only recently -- the available results on a posteriori

estimates are few. An interesting approach was considered in [19], [20], [21],

and in [10] and [25] it was shown that for certain model problems in one space

dimension it is possible to generalize the techniques of the linear theory.

While the resulting estimates did prove to be reliable, their computational

cost was still somewhat high.

We sketch here a new approach -- first outlined in [27] -- which produces

very effective and reliable a posteriori estimates for a broad class of non-

linear problems and which turns out to be computationally very inexpensive.

We use again the setting of the previous sections and assume that the

solution set of the original problem (1.1) is an m-dimensional, differentiable

manifold M in X = Z x A and that Mh represents the corresponding solution

- manifold of some discretized equation (3.1) in Xh = Zh x A c X. As we saw in

. Section 3, any error estimate depends on the particular choice of the local

coordinate system on M. The a posteriori estimates discussed here can be

"- . developed for any local coordinate system for which Theorem 2.1 holds. But

in order to avoid certain technical details, which may obscure the ideas, we

"~ ' .restrict ourselves here to the case of a non-singular point x° = (z°,X ° ) C ml

and the choice of the natural coordinate system based on the parameter space

A and the state space Z.

We assume that F is of class Cr, r > 2, on its open domain S in X.

J*"If x° E M is a non-singular point, then -- by definition -- the partial

4:-* "
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derivative 0 F(x° ) is non-singular and hence the same is true at any point 6Z
S= (zoX) in some neighborhood of x in S. Hence we can apply a

Newton step to the equation G(z) = F(z,X ° ) starting from zo. The first

iterate z is obtained from the solution w of the linearized equation

F(z0 ,X0 ) + DzF(ZOx°)w = 0 (4.1)

by setting = zo + w. By the Newton-Kantorovich theorem (see e.g. [23])

..- it follows that

.: 12 H1wll < I z0-?iIH < 211wll, (4.2)

provided only that io is within the attraction ball specified by that

theorem (see, especially, the formulation given in [24]).

In our setting, x = (z°,X°) e Mh is the computed approximation of

the desired point x° = (z°,X°). Hence the required error 11z 0-i01I can

be estimated in terms of the norm iIwil of the solution w of the

linearized equation (4.1). Of course, (4.1) is still an infinite-dimensional

problem which can only be solved approximately. But here we turn out to be .'

exactly in the setting of the theory of linear a posteriori error estimates

and hence can apply the relevant results.

.. Rather than elaborate on the general theory we illustrate the technique

on the following one-dimensional problem

-2-'..'

--:A(-) + B(z,s,x) 0 0, V s E I - (0,l), (4.3)

z(O) = z(l) 0 0

• . .

<',- ,. .".$ .".C.., , """''"""g,..,, rg, " ''' " ." ."." .",","."w"""""" , """"", .I .' ¢' '''''"" ,',1
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with sufficiently smooth coefficient functions A, B. A weak formulation

is
o..

N(z,X)v E [A(z')v' -B(z,s,X)v]ds = 0, V v E H (1) (4.4)
JO 0

and the corresponding linearized problem (4.1) has the form

1.
L[z,X]wv N(z,X)v + (DA(z')w'v' DuB(zs,)wv)ds -0,

0

V v H1(I) (4.5)

For simplicity, suppose that piecewise linear elements are used on some

mesh

A: 0 s < 1 < S 2 <. < Sn+ =1, n =n(A). ,S

In other words, we restrict consideration to the finite dimensional subspace

=n

K(A) = {z E Ho(I); z(s) yI xii(s), 0 < s <l}
il

where Oi denotes the standard, piecewise linear "hat function" with
.i ) = 6ij, i,j = l,...,n. Then the exact solution z°  and the finite-

element solution zo are the unique functions z° E H1(1) and zo e K(A)

00" such that (4.4) holds for all v in Hlo(M and K(A), respectively.-

We wish to estimate the norm of the solution w of (4.5) at ^o. that

is, of the problem

L[z°,X°]wv 0, V v E H 1 ). (4.6)

f'q-- :0
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0Evidently, the zero-function w 0 is the solution of (4.6) when v

is restricted to K(A). Hence, w represents the error of the finite-

element solution of (4.6), and our problem of estimating HjwI is exactly

the problem of computing an a posteriori error estimate of the finite -- .

element solution w° of the linearized problem (4.6).

Since, by (4.2), any approximation of jjwll represents an a posteriori

error estimate of the finite element error lz°-i °ll of the nonlinear

problem, it remains to apply the theory of linear a posteriori estimates to

the problem (4.6). In the case of our model problem, a simple approach is

to use a quadratic finite element approximation w = w(s), 0 < s < 1, of

the solution of (4.6); that is,

w(s) = pii(s) for si_l <S <s i ,

(4.7)

G',, (s-s i- l ) (s i - s )  ""
=.(swi(s)-= 4 ) - i = l,...,n+l.

(si'si-I

On each one of the n+l elements of A the evaluation of the corresponding

unknown pi represents a very simple calculation. Hence, say, the quantities

ni = (s)) ds) i = 1,...,n+l (4.8)Jsi 1 "

represent error indicators on these elements and our a posteriori estimate

becomes I
nl2 1/2

= (il n ) / (4.9)

" 
I,
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Other forms of the error indicators and other norms may be used as well.

For more details and proofs we refer to [3], [5], [7], [8].

- We shall return to the model problem (4.4) in Section 6. As an example

kof the reliability of the estimates developed here we consider the two-

dimensional problem

N(z,X)v f [A (zs,zt)vs +A2(zs,zt)vt-C(s,t,X)v]dsdt = 0

V V H 1) (4.10)

where 2 is the unit square [0,1] x [0,1] in R2. More specifically, we

use
2 2

A1 (zIzt) = a(zs+Z2 )z

- A2 (zszt) = a(z2+z2)zt

a(o) =- 1 -

and choose the coefficient function C such that the exact solution has the

. -. form

z°(s,t) X s(l-s)t(l-t) (4.11)
y + (s-0.75)2 + (t-0.25)2

with some constant y > 0.

S tp The linearized problem now has the form

1 N(z,X)v + (VSVt)M(s,t) s dsdt : 0 (4.12)

.... 

.

t
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where

/ DIAl (ZZt) D2AI(Zs:Zt))

M(s,t) =

D1 A2(z,z) 22 s t

and D.A., i,j = 1,2, denotes the derivative of the coefficient function
1-.

A. with respect to its i-th variable. The problem (4.12) has the form

used in the FEARS-system (see [36]) and hence for the computation of jwj -

we can apply the a posteriori error estimates developed for that class of

linear problems (see e.g. [3], [22]).

The tables below present some computational results obtained in this

case. Bilinear elements on square, uniform meshes with the indicated mesh

size h and number of degrees of freedom n were used throughout. The-C

continuation process was applied to the one-dimensional solution manifold

passing through the origin for x = 0. The points with parameter values

x = 1,2,3,4,5 were chosen as target points. In all cases the energy norm

for (4.12) was used.

The table reflects our general experience that the effectivity of the

estimates is excellent. The performance corresponds to that reported for

the linear case (loc.cit.)

The solution (4.11) has a singularity at (0.75,0.25) when the constant

y is zero. Thus when y tends to zero we expect the errors to increase.

This is indeed the case but the performance of the error estimation remains

excellent for errors up to about 10-15%. In Table 2 we give only some results

for y = 0.1 and the case h = 1/16; that is, n = 225.

• , .
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hn Ilell 4 I l I -%-c %
I UTJ11

0  TTh1T'

X = 1, llull = 0.1646

1/8 49 .2025(-l) .2069(-l) 12.30 12.57 102.2

1/16 225 .1013(-1) .1017(-1) 6.152 6.172 100.3

1/24 529 .6756(-1) .6763(-1) 4.102 4.106 100.1

= 2, Ilull = 0.3647

1/8 49 .4204(-1) .4396(-l) 11.56 12.09 104.6

1/16 225 .2102(-1) .2120(-l) 5.763 5.812 100.9

1/24 529 .1401(-1) .1406(-l) 3.840 3.853 100.3

X = 3, Ilull = 0.6465

1/8 49 .6903(-1) .7711(-1) 10.73 11.98 111.7

1/16 225 .3445(-1) .3543(-1) 5.332 5.482 102.8

1/24 529 .2296(-l) .2324(-1) 3.551 3.594 101.2

X = 4, Ilull = .9553

1/8 49 .1003 .1171 10.54 12.31 116.7

i : 1/16 225 .5012(-I ) .5231 (-l) 5.250 5.478 104.4

1/24 529 .3341(-I) .3405(-1) 3.496 3.564 101.9

x = 5, Ilull = 1.246

1/8 49 .1329 .1582 10.70 12.73 119.0

1/16 225 .6632(-1) .6968(-1) 5.323 5.592 105.0

1/24 529 .4420(-l) .4521(-1) 3.456 3.627 102.3

.',..... ..... ....,,... % ," " .% ' ,, i,' '',"," " 3 " - ** S,""', ". , ,"" ". ".% ~~ (4,"..,"' .-.-.....-. ,,''-',' ,,4-.#.-,..
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'I.

hell l E E

= 1, Ilull = 0.8614 -

0.6990(-1) 0.710(-1) 8.115 8.244 101.6

A = 2, llull = 1.733

0.1525 0.1542 8.801 8.897 101.1

= 3, Ilull = 2.552

0.2285 0.2302 8.957 9.022 100.7

S= 4, lull = 3.368

0.3042 0.3036 9.032 9.016 99.83

= 5, Ilull = 4.186

0.3805 0.3783 9.090 9.037 99.42

S.%

'

4., . . . ... , . ,",:-".'., . ," --. " ". ' '.-..' ''' ''''';/ ''' """"""" ',,'," ' ,: , ,, g' ' , ... ,g',.
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g i5. CONTINUATION PROCESSES ON MANIFOLDS

Suppose again that M denotes the m-dimensional solution manifold of a

- given parametrized equation (1.1). In line with the comments in the Intro-

Irw duction we are interested in computing a sufficient number of points on M

which may be used, for instance, as the basis for further postprocessing.

:. ".y All practically useful methods for this purpose compute sequences of points

along prescribed one-dimensional submanifolds N of M, although there is

certainly room for some different approaches.

There are various ways of defining such submanifolds N. In many appli-

cations the usual technique is to specify a parameter combination with one

degree of freedom. For instance, in a structural problem the parameter vector

may represent a general load vector. Then the chosen parameter combination

may determine a load direction while the remaining degree of freedom is the

load intensity.
The restriction to the submanifold N is equivalent with the construction

of a modified parametrized equation for which the parameter space is one-

dimensional (see e.g. [15]). Thus after discretization the problem reduces

%! to a form

. G(z,X) = 0 (5.1)

where G: R n+l R n is a given, sufficiently differentiable function of n+l

variables and n components.

The one-dimensional solution manifold N of (5.1) may have several

,.' connected components and our objective is to determine numerically the

component N of N that contains a specified starting point x° c N.

* : %Most commonly used processes for accomplishing this

*~P,
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task belong to the class of predictor-corrector continuation methods.

Starting from x°  these methods produce a sequence x°,x ,x2,... of points

on N0 . For any k > 0 the computations involved in the step from xk to

x k+l correspond essentially to the construction of the local coordinate

systems discussed in Section 2.

The situation is sketched in Figure 4. We calculate first a suitably

Nkt k k
oriented tangent vector p of N0 at x. Then a unit vector t with

k Tk k(p ) t 0 is chosen to define the parametrization subspace T = span(t k)
kof a local coordinate system at x . Typical choices are

tk = k (pseudo-arclength choice) (5.2)

and

k k-
tk =e (local variable choice)

whr ' n+l l
where eI ....,e denote the unit basis vectors of Rn+l The orthogonal

complement of T is used as the space W. Now a suitable step along the

-k k ktangent direction is chosen. This fixes the predicted point = x + hkp

and with it the (n-l)-dimensional plane Rk + W that passes through k and

is orthogonal to tk. Finally, a corrector iteration is applied which -- when
started at xk -- produces in xk + W a sequence of iterates that converges

to thek+lto the desired next point x on N0  If the iteration fails a new attempt

is made with a reduced stepsize hk.*

In recent years the literature on these continuation processes or

incremental methods, as they are also called, has been growing at a rapid pace.
4-..

Accordingly, there is no need to discuss here any algorithmic details. For
.~.

some surveys of these processes we refer, for instance, to [30], [34] and for

a description of a particular general program to [28], [29].

4'
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At each step, these methods use heuristic techniques to choose various

quantities for which only incomplete information is available, as, for

instance, the parametrization direction tk and the steplength hk. Thus,

broadly speaking, they may be called feedback or adaptive methods. In [26]

a precise definition of these terms was developed which applies to many of

the adaptive procedures in numerical analysis, and in [4] it was used to

prove various results about adaptive mesh-refinement processes for linear

~finite element computations. There is certainly a need to develop such

results also for the continuation methods here under discussion. But, so

4 " far, no attempt along this line appears to have been made.

- We shall not go into the details of the theory in [26] but identify

only some of the main questions. Most of the processes under consideration

can be modeled as a discrete, state-space system. We denote the discrete

time set by M ({0,1,2,...1 and the state space by X. A pair (k,x)

2,.'
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with k e 1N, x c X is called an event and interpreted to mean that at time

k the system is in state x. The system is assumed to work on any problem

p in a class P. Its operation is described by a state transition function

r: IN x X x P - X which provides that when (k,x) is the current event

then feedback from the given problem p will lead to a transition to the state

X' = T(k,x,p). Thus, for any problem p e P and starting state x0 e X, the

system produces a trajectory of events

W(p,x 0) = {(O,x0),(l,xl),(2,x 2 ),...}, xk+l = T(k,xk,P), k > 0.

The entire system Z is specified by the three sets N, X, and P and the

function T. In view of the interpretation of the dependence of T upon

the problem p as a feedback from that problem, we call z a general feed-

back system.

As stated before, many computational procedures can be modeled as such

general feedback systems. Interest then centers on measuring their performance.

A fairly general performance measure for may be defined as a mapping

U: M(z) M from the set
5'...

= {W(P,x0); p e P, x0 e X}

of all possible trajectories of Z into a given partially ordered set M

of performance indices. Recall that in a partially ordered set M an element '

m* E M is minimal if there is no m c M such that m < m*; that is, if for

any m E M either m > m* or m and m* are not comparable. Accordingly,

in [26] a feedback system E is called an adaptive system under the

performance measure u if there exists a non-empty subset Q(11) -. x X

such that p(w(p,xo)) is minimal in M for any (p,xo) Q( ). Th size

0 0
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of the set Q() may be taken as a measure of the robustness of Z (see

e.g. [35]).

- "" A simple, albeit very frequently used type of performance measure

distinguishes only between acceptable and unacceptable performance. Here

we use M = {0,1} with the natural ordering and call the trajectory

= W(Px) acceptable or unacceptable if p(w) = 0 or M= 1,

respectively. Hence, the feedback system is adaptive under j if the set

Q = {(p,xo) 6 P X X, P(c(P,Xo)) = 0)

turns out to be non-empty.

. .- >Clearly, the continuation processes discussed above are feedback systems

under this definition. But,surprisinglythere is little discussion in the

literature how to specify suitable' performance measures for such processes,

let alone how to prove that the methods are adaptive for any one of them.

There are, of course, many possible performance measures that might be

considered for continuation methods. If a specific target points x* is to

be reached on the given one-dimensional manifold N, then we may define

as a measure of the total number of points needed to step from x to x*

or of the total work involved in reaching the target. But in many appli-

cations no such target point is desired or even meaningful. In that case,

a possible choice of a performance measure might be a "velocity" that

indicates how fast the process is moving along N. Already simplified model
0*

studies provide here sometimes rather startling results. For example,

suppose that the corrector iteration is guaranteed to converge whenever the

OP wi predicted point is within a prescribed distance c > 0 of N . Then for

various model curves as N one can derive asymptotic relationships for the0
'ON distance s between successive steps. For instance, when the pseudo arc-

. -
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to length choice (5.2) is used for the local parametrization, then, under 6

certain assumptions, it can be shown that

s =O(-) as 0 -O

where K is the curvature of N On the other hand, when the local
0

variable choice (5.3) is used then, in general, it follows that

s NO() as c -0.

Figure 5

oil Hence, it should be expected that along strongly curved segments of N 0the

Ar pseudo-arclength process will take many small steps while there is no effect

.-..

upon the local-variable method. Indeed, this can be observed in practical

situations.

...........................
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These represent only some early results in a more detailed study of

Si-suitable performance measures for continuation methods. But they indicate

". . that there is certainly a need for systematic studies in this area which

can provide a basis for an assessment of the efficiency of the various

techniques utilized in practical programs.

-:... -.
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6. ADAPTIVE ERROR CONTROLS

When a continuation process is used for problems where the error estimates

of Section 4 are applicable, then, in most cases, the discretization errors

show marked variations along any computed one-dimensional sub-manifold. In -

fact, it may even happen that there are solutions of the discretized problem

which do not approximate exact solutions. A simple example of such spurious

solutions arises, for instance, in the case of the classical Euler-Bernoulli

rod problem (see e.g. [9]).

As noted in the Introduction, for our problems it is certainly desirable

to provide facilities in the continuation procedures that can control the

discretization errors along the computed submanifolds. The basic control

mechanism is here the adaptive refinement or de-refinement of the mesh used

in the discretization. The continuation process is applied in its normal

form but at each computed point a posteriori error estimates are determined.

4 k
Then, an appropriate procedure decides when the errors at any point x are

unacceptable. In that case a new mesh A+ is created from the mesh A used

in the computation of xk by uniformly subdividing some elements of A and

k +coalescing certain contiguous clusters of others. Then a new point (x

is determined by interpolation and the continuation process for the new

discretized problem is started from (xk)

Certainly, this type of combined continuation and mesh-refinement

procedure is a feedback process in the sense of the previous section. The

question is how to define the decision process and the desired performance

measures so that the procedure indeed becomes adaptive. This is as yet an

open problem. We shall outline here only some possible approaches that

appear to be very promising.

Our primary aim is to compute a sequence of points x °x,... which

. . ;-.>.:..- .



27

approximate points on the desired manifold N of the original problem in

such a way that the error estimates Eoe1 ,... at these points satisfy

k <tolk = dabs + 6 rellIxk , k = 0,1,... (6.1)

with given tolerance coefficients 6abs and 6 re The secondary aim is.p, .h,

to avoid frequent re-meshing and re-starting. More ideally the decision

procedure should be such that the total work required for computing a sufficient

number of points along a prescribed segment of N is less than that required
0

for other choices of re-meshing points and associated meshes for which (6.1)

is satisfied.

We restrict this discussion to the case of the problem (4.3). The

corresponding linearized problem (4.4) has the general form

1"[a(s)w'v'-b(s)wv]ds : c(s)vds, 1 (6.2[ [1 V v e H1  (6.2
Jo Jo

considered in [7]. Any continuous, strictly monotonically increasing function

on I = [0,1] with C(0) = 0, C(l) = 1, together with the specifications

! m (Sj): j :0,1,. ,N~n+l

the solution of (6.2) and consider the partition function

os  (Y s 2]i/3ds,

... (s =Y [a(s) (w ",(s))2] 1 s E I, (6.3a)

j o '

-{ 1  21/3 }-1
:' .YO = [a(s)(w"(s)) 3ds . (6.3b)

-.

11
-4 dfins afamiy o mehes (~,), = ,1,.., n I Letw cH ()'b

"/ , ,F ; ". "- ,, ,' ',2 '. ', 'o,, ',' " ." .; . ', . ,' ., ,' '. '.. .. i, € "•; .? ..'. .' " ', .. ,, .¢ .. ." "0.
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Then it was shown in [7] that under suitable conditions the family of meshes

A(EOn) generated by Eo is asymptotically optimal with

.. ell2 1 - 2 3 (l+0(5)) as h 0 (6.4)
12(n+l) YO

where h = max{s j- sj j = l,...,N}. In other words, for any other

admissible partition function E the error for the mesh A(Cn) is not less

than that for A(E ,n) for all sufficiently small h.

Moreover, it was shown in [7] that for any mesh A the error under the

energy norm can be expressed as

r '2 n+l 2

Ow.. 2= n IellE V C (1+0(h)) as h -0 (6.5)

.. where."

21/3= 21/3
(12J)/ [a(s)(w"(s)) ]/ds (1+0(1)) as h 0 (6.6)

s j-1

This suggests the definition of the piecewise constant function p on I

-for which

'p.. ~p~ss < sj s< s. (6.7)

Evidently, the value of i on each subinterval represents some average of.i
Sa(w) on that interval, and we have

S S.[a(s)(w"(s)) ]3 ds = ,I/(s)ds (1+0(1)) as h 0. (6.8)

Sjl s1 j-1

- .° * * * * * ~ .
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If we use instead of the cj in (6.7) the computed error indicators,

such as (4.8), then we obtain an approximation 'p of , and with it, from

(6.8) and (6.3), an approximate optimal partition function This provides
*0

us with a basic mesh-refinement strategy. A point xk  is declared un-
0¢k

acceptable when E > r tolk where tolk is the tolerance defined by (6.1)

k
and T is some factor, say, T = 0.75. From the error indicators at x

the approximate optimal partition function 0 and its associated factor

0T (see (6.3a) and (6.3b)) can be computed. Then (6.4) suggests the use

of the relation

k 1

.T4C

-. 12(R+ )2 ¥o

Ifor obtaining an "ideal" mesh size n, and with it an associated mesh

Now the desired new mesh A at x can be generated as an approxi-

00:'.' "'mation of (-o6;that is, we suibdivide certain intervals and re-combine

others so as to match a(Toh,6) as closely as possible. This can be

accomplished in various ways and we shall not elaborate upon these procedures.

But note that in general the size n(A+ ) of the new mesh need not be exactly

equal to n.

' As an example for the operation of this procedure we consider the simple

model problem (4.4) with the coefficients

Ao) = a/(l+o), B(z,sx) X

F .in which case the exact solution is

. z~)= s+ -nC(eX-l )s + 1] 0 < s < I

| ''-.'-, ' w , , "-- ."-", , '-". ". " ". ,X
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For growing X this solution increases rapidly within a small interval near -

s = 0. Table 3 gives the results of the above procedure when started with

x = 0 at X = 0. The tolerance was computed with abs 0075 6reI = .05
and was

and the decision factor was - = .75.

Figure 6 illustrates the changing meshes during the course of the

process.

As the example indicates the procedure performs as expected. This is

- . our general experience for a number of problems of varying complexity. The

simplicity of the approach certainly makes it very attractive. At the same

time, there are several aspects that may be worthy of improvement:

(i) The function used in the definition of the approximate,
optimal partition function o incorporates only information

,* at the current point and does not attempt to predict the future
'. course of the process.

(ii) The decision factor T upon which the acceptance or rejection
of a point is based and which features in the determination of
the "ideal" mesh A(,n) does not change with the conditions
during the computation.

(iii) In its present form, it is not clear how to generalize the
procedure to problems with higher space dimension.

,. .,

Preliminary results indicate that the procedure can be improved to account

for these points by utilizing some of the concepts and approaches developed in

[11] and [12] for the case of parabolic equations. A prototype software

system, for the adaptive finite element solution of a class of two-dimensional,

2parametrized non-linear problems is now under construction which will
incorporate such a more general decision procedure. An outline of this

system -- called NFEARS -- has been given in [32].

.1.t

. "
* " *,,,-" '.- ,- ,','.''.U.?'



Table 3 31

error exact
- Nd Nidea 1  estim error tolerance decision

0 32 - 0 0 proceed

0.110 32 5 0.1005(-2) 0.1361(-2) 0.9102(-2) proceed

0.444 32 13 0.4205(-2) 0.1013(-l) 0.1391(-1) proceed

" 1.337 32 22 0.1814(-1) 0.1814(-1) 0.2736(-l) proceed

2.238 32 33 0.5570(-l) 0.5586(-l) 0.4248(-l) refine

4 33 24 0.3077(-1) 0.3077(-1) 0.4261(-1) proceed

* 2.350 33 26 0.3456(-l) 0.3465(-1) 0.4466(-l) proceed
. I

.=,. 2.685 33 32 0.4947(-I) 0.5242(-l) 0.5105(-1) proceed

3.589 33 39 0.1451 0.1466 0.7130 refine

37 27 0.4777(-l) 0.4776(-l) 0.7193(-l) proceed

3.700 37 28 0.5248(-l) 0.5251(-l) 0.7484(-l) proceed

4.036 37 32 0.7163(-l) 0.7606(-1) 0.8399(-l) proceed

4.938 37 45 0.2082 0.2094 0.1147 refine

45 44 0.1112 0.1109 0.1153 proceed

5.049 45 48 0.1267 0.1267 0.1198 refine

44 31 0.7810(-l) 0.7857(-l) 0.1202 proceed

5.161 44 31 0.7620(-1) 0.8644(-l) 0.1249 proceed

5.497 44 38 0.1193 0.1254 0.1398

.

.'
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