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Chapter One

. Introduction

! Modular programming supports the decomposition of large programs into subtasks
called modules [28]. Each module corresponds to "a bilack box" with a generally agreed
upon behavior. A moduie is defined by a specification (either formal or informal) giving its
interface and externally visible behavior. A module may have many implementations, each of
which must satisfy the module's specification. An implementation provides the mechanism |
by which the module's task is achieved; it offers an internal view of the black box. This

approach to program construction permits the implementations for distinct modules to be

developed independently because the modules’ specifications are fixed.

in theory, each of a module's implementations may be substituted for any of the others.

Because they satisty the same specification, they should all be equivalent. For two reasons,

however, this may not be true. First, some implementations may contain bugs or other

errors, and may not exhibit the correct external behavior. They fail to satisty the module's

specification. Second, the module's specification does not describe the complete behavior

of its implementations. Two implementations satisfying the same specification may differ in

small but potentially significant ways. For example, they could use different algorithms,

support different levels of metering and statistics-gathering, have different performance

‘ ' characteristics, or run on different target configurations. The specification may not address

such "micro-behaviors.”

To identity the implementation of a module that best meets his needs, the user must

evaluate the complete behavior of all the module’s implementations. The externally vigible

13




behavior described by the specification is not sufficient. The user selects from the module's

implementations based on their correctness with reference to the specification, and on any
micro-behaviors he considers significant. Thus, implementation identification requires the
user to have a complete understanding of the properties of and differences between

implementations.

Two factors make implementation identification difficult. The first is the sheer volume
of information. For a large program composed of many modules, each of which has multiple
implementations, the number of implementations may be staggering. The user cannot hope
to comprehend all of them. In addition, several distinct aspects of an implementation may be
of interest in different circumstances. For éxample, one user might be concerned about an
implementation's algorithm, while another focuses on its performance characteristics.
Multiple significant features per implementation add to the complexity by increasing the

amount of information the user must retain.

The second factor is sharing of modules. A large program is often developed by a
team of programmers, each of which is responsible for only a subset of a program'’s modules.
A programmer shares the modules created by his teammates, but is unlikely to fully

understand the distinctions between implementations of moduiles not under his control.

In this thesis, we propose a naming scheme to assist the user with implementation
identification. Names provide a means for users to refer to the implemenpations of a module.
Our approach allows users to express their insights about implementations as names. An
implementation's names record information about its properties. Names that reflect users’
understandings of the behavior of implementations document implementations’ micro-

behaviors and help preserve the user's comprehension of the differences between

implementations. They help the user retain and organize ihe large volume of information
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relevant to implementation identification. Expressive names also serve as communication
media among sharers of a module, identifying the significant features of and differences

between the module’s implementations.

1.1 Overview of the Research

Qurs is a descriptive approach to implementation identification. The names of an
implementation document its features and behavior. A user selects an implementation by
describing the behavior he would like, and then choosing an implementation whose names

indicate that it provides the desired behavior.

The following scenario demonstrates how expressive names may be used. Many
distinct properties may be useful to distinguish among the implementations of a module:
algorithm, performance, correctness, and so on. When a user determines that an aspect of
an implementation is a significant factor in understanding its behavior, he records that
property as one of the implementation's names. Expressive names associate a description of
its behavior with the ea'ch implementation. To select an implementation, a user identifies the
behavior he wants and formulates a description in terms of specific properties. The
description acts as a complex form of name, identitying an implementation whose names

match the properties required by the user.

This thesis is divided into four main parts. First, we analyze the problem of
implementation identification t0 determine what characteristics of a naming system can

support a descriptive approach as outlined above. We find six requirements on naming

systems that contribute to implementation identification.

o Expressiveness. Names should have the capacity to express a wide variety of
information in a form meaningful to people.

PRI
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o Multiplicity. The naming scheme should support multiple names per
implementation.

e Non-uniqueness. Non-unique names, referring to more than one
implementation, should be supported.

e Independence. The naming system should allow users to treat names
independently, without considering either other names for the same
implementation or names for other implementations.

o Commonality. The naming system should recognize and highlight commonality
occurring when two names reflect a single class of information.

e Mutability. The naming system should support dynamic name creation and
modification.

Second, we propose a naming System based on attributes that satisfies the
requirements articulated above. Each name in our scheme consists of a pair: an attribute
name and its value. The attribute name represents a class of information; the value
determines the instance of the c_lass. The attribute name expresses the meaning of the value,
and exposes commonality among the names of multiple implementations. Users may create
or modify names as necessary by specifying both the attribute names and values to be

associated with an implementation.

The remaining parts of the thesis explore two retrieval mechanisms based on user-
provided descriptions of the desired behavior. The first mechanism retrieves an
implementation for a single module given a description of its properties. A description is
represented by conditions on attributes. Retrieval is a process of searching for an
implementation whose attribute values satisfy the conditions specified by the description.
We offer a proposal for this simple kind of retrieval modeled after relational database queries.

A second retrieval problem consists of selecting implementations for each of the

modules in a program. This form of retrieval is significantly more complex for two reasons.
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First, it may involve sets of modules whose properties of interest are disjoint. Second, it is
likely to invoilve the work of several programmers, necessitating the sharing of modules
whose properties may not be well understood. These two factors combine to make writing a
description of the desired program behavior a very difficult task. We do not offer a finely-
tuned solution to this problem. Although we do suggest extensions to the mechanism for the
single module retrieval as a first cut at a solution for the multiple module case, our focus in

this area is expose the issues making programming composition a difficult problem.

1.2 Related Work

Research related to this thesis can be divided into two areas. the naming of
implementations in a programming support environment, and program composition, the
process of binding together implementations of several modules to make a complete
program. We first look at common practice in these two areas, then consider recent

research in each area.

In recent years, many programming support environments have been proposed. But
although each has a mechanism for naming implementations, very few have suggested
names designed to support implementation identification. Most use very simple naming
schemes. Three common approaches are represented by the Microprocessor Software
Control Facility (MSEF) [17], the Source Code Control System (SCCS) [22, 30, 36], and the
Ada Language System (ALS)[32). MSEF uses a hierarchical name space in which two
implementations of the same module share the same name, but are differentiated by version
numbers. SCCS aiso uses multi-level names for implementations. The first level identifies

the name of the module; successive levels are numbers. A_common convention defines the

second level 1o be the number of the most recent release, and the third to be the number of
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small revisions since the last release. The ALS uses three-level names, with the module

name again as the first level. The second level distinguishes major alternatives in
implementation, such as between implementations using different algorithms. The third

enumerates small revisions in the history of an alternative's development.

Current practice in program composition relies primarily on ad hoc mechanisms. In
general, when it is time to compose a program, each of the programmers collaborating on
the program submit the names of their "best" implementation for each of the modules they

are respaonsible for. We consider this chaotic approach unacceptable.

Few papers exist discussing the naming of implementations and its impact on
implementation identification. Huff [21] presents an analysis of naming issues supporting
implementation identification. Although we agree with her analysis as far as it goes, her
focus is on machine-derivable and controllable information. She recognizes other
distinctions between implementations, such as algorithms and performance properties, but
does not analyze them because they cannot be detected by machine. The naming scheme
she proposes relies mainly on history and derivation information, and consequently provides

minimal support for implementation identification.

Cheatham [10, 11, 20] performs a similar analysis. Because he also focuses on
machine-derivable information, his analysis suffers from the same defects as Huff's. In
contrast, however, he proposes a more versatile naming scheme based on partitionings. A
partitioning divides a set of implementations into mutually exclusive subsets called partitions.
it has a name, and each of its partitions also has a name. Each implementation has
associated with it a set of partitioning name - partition name pairs, identifying the partitions to
which it belongs. The user selecting an implementation specifies the module name, a set of

partitioning memberships, and a version number. This approach allows the user to express

18




the non-machine-derivable information as names in the form of partitioning-partition pairs.

The chief drawback of this proposal is that relies on a simplistic retrieval mechanism using

FRCNTRp E ST, FY, - B

. string pattern matching. Our research extends Cheatham's approach to develop a more

sophisticated naming scheme and retrieval mechanism.

Research on program composition can be divided into two general forms. The first

uses a specialized form of command file describing a program. The description enumerates

the program's component implementations and contains commands tor building the program
by compiting, linking. etc.. its components. A special tool interprets the description file and
invokes the commands. The Unix Make [14, 18, 36] and the Lisp Machine Makesystem [37]

facilities are examples of this approach.

Make uses a specialized command file called the "Makefile”, containing a description 5

of a program in the form of a tree. Each node represents a component in the program'’s j
development, for example, a source version of an implementation of one of the program'’s
modules, or an executable module formed by linking together the resuits of compiling source
versions of several modules. A node’'s children are the components it depends upon.
Associated with each node is a "make rule” that supplies the comn.and sequence for
building the node or re-making the node when any of its children nodes change. For
example, a make rule might specify that a node representing an executable module be built ' }
by linking together its children nodes.

The Lisp Machine Makesystem command provides a very similar facility. As with the
; Unix Make facility, Makesystem empioys a program description enumerating the
implementations comprising a program along with commands for building the program from
its components. Makesystem interprets the description and performs the specified actions.

- N

The second approach to composition is based on the work of DeRemer and Kron [16].

0 o 1




They argue that program development consists of two separable subtasks that they called

"programming in the large” and "programming in the small.” Programming in the large
defines and describes the structure of programs at the level of modules; programming in the
small is the lower level task of implementing individual modules. They propose a new class of
languages, called module interconnection languages, for programming in the large. Many
proposals for program composition are extensions of this basic idea. The work of Thomas
[35]. Tichy [34. 35], Schmidt and Lampson [23, 24, 31). Cooprider [13], Archibald [1], and the

members of the Gandalf [19, 20} and Mesa [27] projects fall within this category.

DeRemer's and Kron's original module interconnection language and all its
successors share a common approach and many basic concepts. A module description
defines the interface of a module, listing the resources (such as procedures or data objects)
it provides for others and the resources it requires of others. A system description specifies a
composition of modules and other systems, representing a complete program. A user buikis
a program by supplying an implementation for each of the modules contained in the system

description. The amount of automated support provided by these proposals varies.

We distinguish two subtasks of program composition: identitying the modules
comprising a program, and selecting implementations of each of them. Our focus is on the
second of the two aubtasks. In contrast, the two command file approaches described above
do not distinguish the two tasks at all. The special command files enumerate a program's
components to the implementation level, not at an abstract module ievel. The module
interconnection language proposals, on the other hand, do make the distinction, but focus

on the first of the two subtasks.

The work that appears to be most closely related to ours is Cargill's 7, 8) research on

organizing a family of programs in a file system. A family is a collection of closely related
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programs, identical in all but a few modules. For example, several versions of a portable

operating system targeted to different machines constitute a family. Cargill uses a file system
to store program components. He stores a module having one implementaﬁon shared by all
family members as a file. Modules for which different family members require different
implementations are stored as a directory whose entries are the implementations. Each of
these implementations is named by the family member to which it belongs. Cargill proposes
a tool that searches the file system and retrieves all the implementations belonging to a family

member specified by the user.

Although Cargill's naming scheme is less sophisticated than ours, his intention is to
aliow users to select a set of implementations with a specific property (which, in his case,
consists of membership in a particular family member's components). His approach,
however, is limited because only one name is permitted per implementation. This limitation
constrains the user to express only one property of the implementation. In addition, Cargill's
method cannot accommodate names that are not unique across the implementations of a

module.

1.3 Organization of the Thesis

We use the programming language CLU [25, 26] and the CLU programming support
environment as a basis for our work. Chapter 2 provides background information on the CLU
programming support environment, focusing in particular on a centralized software database
called the Library. It also introduces some details of CLU and CLU syntax used in examples
throughout the thesis. Chapter 3 cortains an analysis of naming issues, identifying six
characteristics of a naming system that support implementation identification. A proposal for
a naming scheme that satisfies these requirements is contained in Chapter 4. Chapters 5

i)




R b eoa Ao e it - wad aigan 2.y [

and 6 present the two retrieval mechanisms for implementations. An evaluation of our work

. and suggestions for further investigations are found in Chapter 7.
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Chapter Two

Background

In this chapter we describe the CLU programming environment and the program
development process using CLU {25, 26]. CLU is a strongly-typed programming language
supporting modular construction of programs. A CLU program is divided into a number of
modules. each of which contributes a part of the program’s function. individual modules are
developed and compiled separately, with the CLU programming support environment
performing inter-module type checking. Before a program is run, the compiled forms of its

modules are combined into an executable form.

Each module in a program implements an abstraction. CLU supports three kinds of
abstractions: procedural, control, and data. Procedural abstractions compute a set of
results from a set of arguments. Control abstractions compute a series of sets of results from
a set of arguments. They are used in conjunction with CLU control statements to perform
repetitive computations. Data abstractions define a new type of data object and also provide
a set of operations for manipulating the objects. From outside the abstraction, objects of the
new type may be accessed only through the provided operations. CLU also supports
parameterized abstractions which represent a whole class of abstractions. Parameterized
abstractions are not addressed by this thesis.

The CLU programming support environment is a collection of tools centered around a
software database called the Library. The Library contains all the information known about

'exisung abstractions. Library commands allow the user to create new abstractions or

programe, and 10 modify or retrieve information about existing ones. In addition, all tools in

the CLU programming support environment interact with the Library.
23
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The chapter is organized as follows. Section 2.1 discusses the Library and its
contents. Section 2.2 traces program development using CLU and the Library. Our model of
how an abstraction evolves and new implementations are developed is presented in Section

2.3. Finally, Section 2.4 introduces some notation used in examples throughout the thesis.

2.1 The CLU Library

Each abstraction is represented in the Library by a description unit, or du, which
contains all information relating to the abstraction. Although a variety of information may be
stored in a du, the only required component is the abstraction's interface specification.
Other optional components may include formal specifications, implementations, executable
programs (called compositions in the Library), documentation, test programs and results,
status information, and so on. Because of their important roles in program development, the
interface specification, implementations, and compositions are the focus of concern in this
thesis and are described in greater detail below. Figure 2-1 shows a simplified view of a du,

containing only these three kinds of components.

The interface specification defines the abstraction's external interface and provides

the information needed to support type.checking. It is represented in the Library as

Specification =  Interface signature
Set of abstraction bindings.

For procedural and control abstractions, the interface signature names the the number and
types of the arguments and results, as well as the names of any exceptional return conditions

and the number and types of results associated with each exception. For example,
proctype (T1) returns (T2, T3) signals (ExceptB (T4))

is the interface signature of a procedural abstraction taking one argument of type T1,

returning two results of type T2 and T3, and having an exceptional return condition named

24




interface
Specification

Implementation implementation

Implementation

Composition Composition

Composition

Figure 2-1:A Simplified View of a DU

ExceptB with a result of type T4. The interface signature of a data abstraction consists of the

intertace signatures of each of the abstraction's operations.

The abstraction bindings map the names of abstractions used in the interface
signature to dus in the library representing those abstractions. Thus, in the example above

the abstraction bindings would bind dus to the names T1, T2, T3, and T4. #

A du may contain an arbitrary number of implementations. Implementations provide an
inside view of the abstraction, supplying the mechanism by which the external behavior of
the abstraction is achieved. An implementation's representation in the Library has three

parts:

Implementation =  Source module
Binary module
Set of abstraction bindings.
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The source module is the CLU source code version of the implementation. The binary
modules contains the machine language version produced by compilation, along with
information about external references needed by the linker. The bindings are sets of
mappings resolving the names of subsidiary abstractions used in the source module. An
implementation's abstraction bindings record abstractions used in addition to those used in
the interface. For example, a dictionary example could be implemented in terms of a hashing
abstraction. The hashing abstraction does not appear in the dictionary abstraction's
interface, but implementations of the dictionary invoke operations provided by the hashing

abstraction.

A composition represents an executable form of the abstraction, formed by combining
an implementation of the abstraction with implementations of subsidiary abstractions. A du

may contain zero or more compositions. Each is represented as follows:

Composition =  Set of component implementations
Executable module.

The set of component implementations contains an implementation for each of the
abstractions comprising the program. The CLU linker combines these implementations to
produce the executable module. The executable module is the executable program form of

the abstraction that can be run by the user.

The Library itself is organized as a sea of dus. Each du is referred to by & unique

identifier. We assume that the CLU programming environment provides a more user-friendly

name space, but do not address that issue in this thesis.




2.2 Program Development Using the Library

CLU supports modular construction of programs. Instead of being a singie monolithic
unit. a CLU program is decomposed into multiple abstractions that cooperate to perform the
program's function. In general. at the highest level of abstraction, a program has a single
abstraction representing the whole program. The implementation of this abstraction invokes
implementations of others to perform subsidiary tasks. These may in turn invoke others, and

SO on.

A common device for describing the structure of a CLU program is the dependency
grach. A dependency in CLU is a relationship from an implementation to a subsidiary
abstraction. We say an implementation of abstraction A depends on abstraction B if the
implementation of A uses B to perform a subsidiary task. A dependency graph is a directed
graph whose nodes correspond to implementations and whose arcs record dependency
relations. The parent impiementation (at the tail of the arc) depends on the abstractions
implemented by its children. Cycles in the graph indicate recursion. A node with no parents

implements a top-level abstraction.

Aithough it is occasionally useful to build a program with more than one top-level
abstraction, in this thesis we address only simple programs with a single top-level
abstraction. It is possible, however, to generalize all results in this thesis to more complex

programs with multiple top-level abstractions.

In developing a new program, the user first determines the abstractions that will
comprise it. He creates dus to represent each of these abstractions in the Library, supplying
the interface specifications as part of the du-creation process. Implementations can be

created and compiled as necessary. Development of implementations of distinct
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abstractions proceeds independently, in any order. When implementations exist and have

been compiled for all the abstractions in the program's dependency graph, the user builds a
composition for the top-level abstraction, selecting implementations for each of the

abstractions in the program and binding them together into an executable module.

2.2.1 Defining a New Abstraction

When a user invents a new abstraction, he creates a du for it in the Library. As part of
du-creation, he must supply its interface specification, both the interface signature and the
bindings between used abstractions and the dus that represent them. This defines the
ahstraction to the outside world and allows it to be referred to by other abstractions. Note
that since the interface specification contains all information necessary to support type-
checking, an implementation referring to an abstraction may be compiled and fully type-
checked as soon as the abstraction's du is created, regardless of whether or not any

implementations of the abstraction exist.

The interface specification of an abstraction is not permitted to change. CLU supports
inter-module type checking by verifying at compilation that an implementation’s usage of a
subsidiary abstraction matches the interface specification in the subsidiary's du. If the
interface were subsequently modified, type checking would be invalidated. Consequently,

the Library prohibits modification.

2.2.2 Creating implementations

Once the du exists, a user may begin to enter implementations. As part of
implementation creation. the user supplies the source module. The Library checks to ensure

that the interface found in the source code matches the abstraction’s interface as defined by

the du's interface specification.




Sometimes users want to create several binary components using the same source
module. For example. an implementation compiled twice with different options or for
different target machines has multiple binary versions. In the Library. an implementation can
have only one binary module. To associate several binaries with the same source. the user
creates multiple implementations, each having a distinct binary module but sharing the same

source module.

The other two parts of an implementation are produced by compiling the source
module. The binary module is the compiled machine code version together with information
needed by the linker to resolve external references. The abstraction bindings record the dus

representing subsidiary abstractions referred to by the implementation.

To determine the bindings of external references and to support type-checking, the
compiler uses a compilation environment, or CE, supplied by the user. The CE contains
mappings between abstraction names and the dus representing them. When the compiler
encounters an external reference, it looks in the CE for the du bound to the abstraction
name. It records the binding in the implementation's abstraction bindings, and uses the du's

interface specification to verify type correctness.

Use of a separate compilation environhent allows users to reuse abstraction names.
The names of dus are unique across the Library: no two dus may have the same name. if the
abstraction name in an implementation's source module also specifies the du representing it,
then users have to be aware of all the dus in the Library to avoid conflict when naming a new
abstraction. Use of the CE circumvents this problem by decoupling abstraction and du

Note that this approach to compilation binds an implementation to its subsidiary

abstractions at compile-time. Because type-checking examines the du representing a
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subsidiary abstraction, type errors would result if an different du were used 1o represent the

abstraction after compilation. Consequently, substituting a different du is not allowed.

The components of an implementation are controlied by the Library to protect against
modification. The source module is supplied by the user as part of implementation creation
and may never be changed. The binary module and bindings are produced by compilation;
an implementation may be compiled only once. To achieve the etfects of source module

modification or implementation recompilation, the user must create a new implementation.

2.2.3 Building Compositions

Once implementations have been created and compiled for each of the abstractions in
the program, the user can bind them together to make an executable program. To create a
new composition, the user supplies the set of implementations which form its components.
The linker produces the executable module by extracting the binary modules from these

implementations, resolving their external references, and linking them together.

It is the user's responsibility to identify the component implementations. To
successfully create an executable form of a program, the set of implementations should
satisfy two conditions. First, the set of component implementations must contain an
implementation of the program's top-leve! abstraction. Second, the set must also contain an
implementation for every abstraction used by any implementation in the set. If one of the
implementations in the set refers to an abstraction for which there is no implementation, the
linker will find an unresolvable external reference and will be unable to build the executable

module.

The user can identify a satisfactory set of implementations by first selecting an

implementation for the program's top-level abstraction, then selecting an implementation for

0
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, : each of its subsidiary abstractions, then for their subsidiary abstractions. and so on. Chapter
K 6 contains a proposal for building a composition using this algorithm. In general, a set of
i component implementations meets the two conditions if it contains every implementation on

some dependency graph that has a node with no ancestors implementing the top-level

abstraction of the program.

In this thesis we assume that the set of component implementations contains exactly

one implementation per abstraction and that all uses of an abstraction in a composition

invoke the same implementation. However, sometimes it can be useful to include multiple
implementations of an abstraction in the same program. For example, one program might
contain two uses of a sorting abstraction. If one use sorts only a small number of items, and

the other sorts a large number, then two different sorting implementations may be preferred.

Although it is always safe to include two implementations of a procedural or control
abstraction in the same program, a program containing multiple implementations of a data
abstraction may yield erroneous results. An implementation of a data abstraction specifies a
data representation as well as a set of operations. The operations provided by an
implementation have certain expectations about objects of the data type, such as what
representation is used. Two implementations may have entirely different expectations. For
example, an abstraction representing points on a graph could have two implementations:
one assuming polar coordinates and the other assuming Cartesian. If multiple

implementations of a data abstraction exist in the same program, then an object conforming

to one implementation's expectations may be manipulated by operations having

incompatible expectations.

For this thesis, we make the simplitying assumption that multiple implementations of an

abstraction are not permitted. This restriction is enforced by the fat set structure used in the
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'-i Library to represent the set of component implementations. If greater flexibility is desired,

: the set structure can be replaced with a more complex graph structure, paralielling a

i composition's dependency graph. that permits distinct uses of an abstraction to invoke
ditferent implementations.

The two components of a composition are controfled by the Library to protect against
modification. The user is permitted to modify the set of component implementations until the
linker is invoked on the composition. After the executable module has been created, no
changes are permitted to the composition. To achieve the effect of changes, the user must

create a new composition.

2.3 A Model of Abstraction Evolution

This section presents our view of how an abstrgction evolves and new implementations
are developed. Our model of development recognizes two important relationships among
the implementations of an abstraction. One relationship partitions the set of implementations
into classes of similar implementations, while the other corresponds to a partial order based

on the notion of improvement.

We use this model for two purposes in this thesis. First, it provides a basis for
understanding the set of implementations in a du. It imposes order on the set by exposing
the historical relationships between individual implementations. Second, the model serves

as the foundation of software development conventions used in later chapters of this work.

Note that our work does not require the use of this particular model of abstraction evolutiont;

it could be adapted to use other models and conventions.
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2.3.1 Alternatives :

Often the set of implementations in a du can be divided into several distinct subsets.

P SR )

each of which represents an alternative way to implement the abstraction. For example. a

sorting abstraction might be partitioned into subsets based on the choice of algorithm. Some

implementations might use a bubblesort algorithm, others insertion sort. and still others
quicksort. Typically a user develops a series of implementations in a single subset rather
‘ than switching from subset to subset. A user of the sorting abstraction might deveiop a
number of bubblesort implementations, then deciding it is too inefficient, abandon
bubblesort to create a series of quicksort implementations. It would be unusual for him to

alternate between implementations of bubblesort and quicksort. |

We call this partitioning phenomenon the alternatives relationship among the
implementations of an abstractions. We say the subsets are the implementation alternatives
of a du, or alternatives for short. Partitioning a du into alternatives enhances a user's
understanding of a du by exposing the significant differences between implementations.
implementations belonging to distinct alternatives are inherently different; those in a single
alternative are subject only to more minor variations and are in some sense substitutable.

Each alternative meets a particular set of needs and is appropriate for different conditions.

No alternative is better than another for all circumstances.

Many criteria can be used to distinguish alternatives. As in the sorting abstraction,
algorithm often forms a useful basis for partitioning many dus, but requirements and

performance properties may dictate segregation in others. The users of a du determine what

differences are significant.
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2.3.2 Supersession

As an abstraction evolves over time, new implementations are added to correct bugs,
satisfy changing requirements, and so on. Where the alternatives mechanism partitions a
du's set of implementations into coequal subsets, the supersession relation captures the
notion of improvement between implementations. An implementation supersedes another
when the former improves in some sense upon the latter, for example by correcting an error
or by eliminating inefficiency. What constitutes improvement can only be determined by a
user familiar with the set of implementations. Because improvement is a transitive quality,

supersession is also trangitive.

Users implicitly rely on an understanding of supersession relations to select among the
implementations in a du. Most file systems and software databases use historical derivation
as an approximation of supersession. The implementations of an abstraction are ordered
linearly by creation date, with newer implementations assumed to supersede older
implementations. Unfortunately, creation order and supersession are not equivalent. When
two implementations are tuned to meet different requirements, neither can be said to
supersede the other. Similarly, a debugging version is different but not necessarily better
than the implementation from with it was created. Creation order is an inadequate model of
supersession because its linear view does not reflect the non-linear nature of abstraction

evolution.

Because understanding the supersession relations among implementations is critical
to understanding the evolution of an abstraction, the diagrams in this thesis display the set of
implementations in a du as a directed graph who nodes represent implementations and
whose arcs represent supersession relations. The implementation at the head of the arc

supersedes (and thus is considered a better implementation) than the implementation at the
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tail. For example, Figure 2-2 depicts a du containing four implementations represented by
numbered circles. The numbers order the set of implementations by creation order. The
directed arcs denoting supersession relations show that implementation 4 supersedes
implementation 2 which in turn supersedes implementation 1. Implementation 1 is also

superseded by implementation 3.

Figure 2-2:A DU With Supersession Relationships

2.4 Some Notation

In thig section we introduce some notation used in examples later in the text.

We use CLU and CLU syntax as the basis for much of our work. In CLU, an invocation

of a procedure named P has the form
P (arg1,arg2,...)

where argl, arg2, and so on are P's arguments. P can return any number of results,




depending on its interface type. An invocation of an operation named O provided by a data

abstraction T has the form
T$O (arg1, arg2,...).

Again, arg1, arg2 and so on are O's arguments, and O may return results, depending on its

interface. In the examples in this thesis, all invocations return a single result object.

CLU provides the ability to write invocations more conveniently through the use of
syntactic sugars. Syntactic sugars are textual substitutions: the compiler recognizes a
textual pattern and substitutes an invocation of a predetermined form. For example, one

sugar replaces the pattern
<arg1> <comparison operator> <arg2>

with an invocation of the form
T$<{corresponding comparison operation> (<arg1>, <arg2>)

when the arguments are of type T. Thus, the program text
T$Equal (A, B)

is substituted for
A=8B

it A and B are of type T. In this thesis, we use only sugars with obvious meanings, such as

sugars invoking standard comparison operations or boolean operations.

Finally, although in this thesis we do not address naming of components of a du other
than individual implementations, we frequently need to refer to the whole set of

implementations contained in a du. We use the notation
b

to denote the set of implementations in a du.
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Chapter Three

Analysis of Naming Requirements

Multiple implementations of an abstraction share a common specification but may
exhibit ditfering behavior for properties not addressed by the specification. To identify the
implementation that best suits his needs. a user must understand these differences. Without
help, it is difficult tor the user to comprehend the large volume of information describing an
abstraction’s implementations. Expressive names can reduce the burden on the user by
recording the properties of implementations. Such names support implementation
identification by documenting the significant differences between implementations and by

providing a medium through which users can share their insights.

Users create a new name for an implementation whenever they identify an important
aspect of an implementation’s behavior. In this way a description of each implementation’s
behavior is associated directly with the implementation. When a user selects an
implementation for use, he describes the behavior he wants. This description can be

matched against the description of each implementation to find the most satisfactory choice.

In this chapter, we analyze the problem of implementation identification to determine
what characteristics of a naming scheme support the above scenario. As a basis for our
analysis, we trace the development of an abstraction in the context of the CLU Library and
programming support environment. Our example is a hashing abstraction shared by two

projects. Then, examining the ways-in which its implementations can be identitied, we

identify six characteristics of naming systems that support implementation identification.




3.1 Development of a Hashing Abstraction: An Example

A programmer from Project X initiates development of the hashing abstraction,
specifying its interface and creating a du for it in the Library. At this point. he can begin to
enter implementations for it. His first implementation uses a small dense hash table, whose
entries point to linked lists of buckets stored separately from the hash table in an external
storage area. The expected loadfactor of the table is high, so each bucket is made large
enough to accommodate several entries. Several implementations are needed to correct

errors, but the fourth attempt produces a working version.

Betore starting development, a programmer from Project Y looks in the Library for
existing abstractions that can be shared. He discovers the hashing abstraction du created by
Project X and determines that its specification meets his needs. Inspecting the set of
implementations, however, he finds none that satisty his requirements. He creates his own,

entering them in the du now shared by the two projects.

His first implementation uses open addressing with a linear probe sequence. A second
version, needed to fix a bug, is incorporated into the Project Y's system. Experience with the
application, however, shows that the linear probe sequence is a bottleneck. The

programmer responds with a new version using a quadratic probe sequence.

The three open addressing implementations contain the code for the probe saguence
embedded within them. In a fourth open addressing implementation, the programmer
abstracts away the probe sequence, invoking it as a subsidiary abstraction. He also enters a
du for the new probe sequence abstraction into the Library. Project Y successfully

incorporates this new open addressing version into its system.

In the meantime, Project X's programmer proposes an alternate buckets version
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implementation 7's is quadratic. Although implementation 7 was created by editing
implementation 6, it is not an improvement; implemenrtations 6 and 7 are really variations,
each of which might be useful under difterent conditions. Thus, no arc connects 6 and 7.
Both implementations 6 and 7 improve on 5, however, so arcs connect the latter with each of
the former. Implementation 8 is the open addressing scheme with the probe sequence
decoupled as a separate abstraction and is therefore an improvement on both 6 and 7.
Implementations 9-11 ure external single-valued buckets. As with implementations 6 and 7,
implementation 9 is a variation rather than an improvement on imnlementation 4 so no arc
joins them. Implementations 10 and 11 share the same CLU source but were compiled using
different options. Thus, they both improve on implementation 9, but neither improves on the

other.

The snapshot view of Figure 3-1 offers the user a basic understanding of the state of
the hashing abstraction at a particular instant in time. The set of implementations can be
partitioned into two subsets which represent two alternative imptementation schemes: those
implementations using open addressing and those using external buckets. Every
implementation developed so far is a member of one of these alternatives. The buckets
alternative can be further subdivided into those with single-valued buckets and those with
larger multi-valued buckets. The directed arcs trace the debugging history. Branches or
separate subtrees in the history graph mark alternatives, such as the choice of probe

sequence in the open addressing subset. The fully debugged and usable implementations

are found at the leaves of the graph.




3.2 Identifying Implementations of the Hashing

Abstraction

A user selects an implementation of an abstraction based on its behavior and
properties. Which aspects of an implementation are considered significant depends both on
the user and on the circumstances. Two users may choose to use widely differing qualities
and even a single user may consider distinct properties in different circumstances. In this
section, we examine what qualities infiluence users of the hashing abstraction in selecting an

implementation.

At first. while developing the initial implementations, Project X's programmer almost
always chooses to work with the most recently created version. He relies primarily on his
understanding of the debugging history. Later, he also considers external factors that
influence the implementations, such as pertormance requirements imposed on the
abstraction by the Project. If he returns to the abstraction after a long absence, he may be
interested in more basic propefties of the implementations, such as the major differences in

algorithm.

Other members of Project X are likely to use status information and configuration
management information: they need to know which implementations have been approved for

use by the rest of the project and whether or not the approved versions contain any bugs.

If Project X has a long lifetime, the hashing abstraction may be turned over to a new
programmer for maintenance. The maintainer is concerned with some form of absolute
identity and with derivation information. If the hashing routine in Project X's production
version breaks, he needs to know exactly which implementation is involved and how to

recreate the faulty system.
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On discovering the du in the library, the Project Y programmer responsible for the
hashing abstraction is interested in many different aspects of each of the existing
implementations because he has no knowledge whatsoever of the abstraction. He needs to
understand the implementations’ debugging histories; he needs to know which
implementations have been tested and which contain bugs; he needs to know if there are any
authorization restrictions that would prevent him from sharing any of the implementations or
if there is a default implementation recommended for all users. Once the Project Y
programmer is familiar with the du and begins to enter new implementations himself, he
mirrors Project X's programmer, primarily considering debugging history and external

requirements like hash table loadfactor.

Other Project Y members rely on configuration management and performance
intormation. {f an error is found, they may also be interested in knowing that the optimized
version incorporated into the Project Y system shares its CLU source with an unoptimized

impiementation.

3.3 Naming Support for Implementation Identification

Using the hashing abstraction as a starting point, we can identify six characteristics of

naming systems that support implementation identification.

3.3.1 Expressiveness

Names must have the capacity to convey a diverse collection of information about
implementations in a form meaningful to people. Names supporting implementation
identification act as a kind of documentation, recording properties of the implementations

they are associated with. Human convenience, rather than machine efficiency, is the goal.

42
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The naming system should allow a user to express a wide range of information,
corresponding to the many different properties he considers helpful in discriminating among
implementations. In the hashing example, we found that the two programmers relied on
debugging history, external requirements, implementation details (like algorithm).
correctness. and so on. while other project members were concerned with information about
status. configuration management, and implementation derivation. in general, the
information expressed as names can range from very concrete data like implementation
storage requirements (perhaps derived automatically by the programming environment) to

high-level descriptions (provided by the user) of semantic properties of implementations.

1t is not possible to delineate the set of information relevant to implementation
identification. The user determines what information should be conveyed. An item of
intormation is relevant if it helps to distinguish between several implementations or otherwise
aids a user in understanding the set of implementations contained in a du. Each user of an
implementation has his own requirements, needs, and tastes, and thus may desire different
information. In addition, much useful information is abstraction-specific, for example, the
choice of algorithm or data structures. The naming scheme cannot predetermine the classes

of useful information.

Although it is impossible to enumerate the particular items that are important,
generalizing from the hashing example leads to a number of classes of information that will
often be usetul in distinguishing among the implementations found in a du. The following list
is not intended to be complete. It merely suggests the range of information that can be useful

in solving the problem of version identification.

e |dentification, derivation and historical information. This class of
information provides some form of absolute identification for each
implementation, perhaps in the form of a unique identifier. It also specifies how
each implementation was created and what role it plays in the evolution of the
abstraction. Such information inclu... .1e date the implementation was
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created, the name of the user who created it. the version and parameters of any
tools used to create it, a comment explaining why it was created and a list of the
subsidiary abstractions used. It should specity the implementation’s role in the
debugging history. It might also describe the source of ideas used in this
implementation. for example. when an implementation is ported from another
instaliation or is based on a published algorithm.

o Role in compositions. This information at a minimum specifies what
compositions contain each implementation. It could also specify a default
implementation to be used by the general public. and configuration management
information for specific projects. For example, it might name the
implementations released to the public or to specific user groups, or it might
identify a particular project or subsystem to which an implementation belongs. It
could also describe an implementation’s use to date, detailing how long it has
been in service and providing statistics.

e External requirements. External factors such as project conventions, target
hardware, and software performance needs may influence the functional
characteristics of some implementations. For example, external requirements
could specify performance or optimization levels, target hardware, programming
language conventions or minor customizations. This information might also
document instrumentation, assertion generation, conditional compilation, or
host/target dependencies. *

e Algorithmic or Other Descriptive Properties. This class of information
describes basic properties of an implementation. If the specification and
external requirements define the externally visible behavior ot a black box, then
this information provides a view inside. It describes how an implementation
works, what algorithm is followed, and what data are used. It might include an
invariant, an abstraction function or a set of relevant assertions. It could ofter
advice on how to maintain the implementation or run it optimally.

o Status. This information describes the status of individual implementations. It
should include testing history and results, a description of known bugs and
perhaps advice on avoiding or correcting them. It could also include a
performance evaluation, describing how well an implementation meets its
specification and requirements. It might specify what phase of the software
lifecycle an implementation represents {(e.g., experimental versus production).

e Authorization. Authorization information controls access to implementations
in the du.
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3.3.2 Muitiplicity

A second property of naming systems supporting implementation identification is
multiplicity of names. Many distinct aspects of an implementation may be of interest to users
in different situations. A single implementation may at various times be identified by its
derivation history, its functional or performance properties, its status, or its role in
compositions. For example. the Project X programmer responsible for the hashing
abstraction used intormation about debugging history. external requirements satisfied, and
implementation details to identify implementations, but other members of the project used

status and configuration management information.

Consequently, each implementation may need more than one name. A naming
scheme limited to a single name per implementation cannot express the full range of

information required by several programmers engaged in diverse activities.

3.3.3 Non-uniqueness

A name may not identify an implementation uniquely; instead it may be shared among
several implementations. Names express information about properties of the
implementations they are associated with. Two implementations, however, may exhibit the
same behavior with respect to a particular property. A name reflecting that property will be

identical for both implementations.

For example, a name in the hashing abstraction might describe whether the
implementation used open addressing or external buckets. Since implementations 5 through
8 all use open addressing, behaving itentically with respect to this property, they would

share a common hame.




A consequence of non-uniqueness is that names are ambiguous. Multiple names may

be required to unambiguously identity a particular implementation.

3.3.4 Independence

The naming scheme should offer users the ability to create a new name for an
implementation independently, without considering other implementations or their names.
When a user determines that a property is a significant factor in understanding an
implementation’s behavior, he creates a new name for the implementation reflecting that
property. He should not be required to supply corresponding names for other
implementations, documenting their behavior with respect to that property. Such a

requirement would place an unreasonable burden on the user.

An additional argument in favor of name independence is that the property described
by a new name may not be pertinent to other implementations. Some names do reflect
properties applicable to the implementations of all abstractions. For example, all
implementations have a creator and a derivation; other qualities are shared as well. Some
qualities, however, are specific to a particular abstraction. For example, there may be
several possible algorithms for a particular abstraction. Although the concept "algorithm” is
applicable to all abstractions, the particular choices are specific to the abstraction. Even
within a du, the significant aspects of one implementation may be either irrelevant or
uninteresting with respect to another. In the hashing example, information about the probe
sequence is relevant only to those implementations using open addressing. In contrast,

information about hash table size applies to all implementations.

Multiple users sharing a du may aiso cause information use to be partitioned among

subsets of the implementations. If each of the sharers is interested in a distinct subset,
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collectively they superimpose their differing information needs on the du. In the hashing
example, Project Y's information needs dominate the open addressing implementations

because Project X is not interested in those implementations.

Note that it is sometimes desirable to recognize dependencies among the names of an
implementation. Names expressing retated properties may be more informative viewed
together. A name documenting bugs in an implementation complements a name recording
its test status. Dependencies may also exist among the names of distinct implementations.
Names recording the properties of one implementation relative to another introduce a
question of consistency. Consequently, a user creating a new name for an implementation
may choose to consider the already existing names of implementations. However, other
names do not share in dependency relationships that contribute significantly to a user's
understanding of the associated impiementations. Users should have the ability to treat

these names independently.

3.3.5 Commonality

Although the naming system should not require the user to record corresponding
information about multiple implementations, it is frequently useful to compare the behavior of
two implementations with respect to the same quality. When both implementations are
identified by names reflecting one property, the naming scheme should expose this
commonality. Pairs ot implementations with identical behavior should have identical names;
pairs with differing behavior should have distinct but related names, highlighting the fact that

they express the same class of information.

In the hashing abstraction example, the four open addressing implementations could

all have names identifying the probe sequence used. The two using a linear probe sequence
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would have identical names. The other two, using a quadratic probe sequence and a probe
sequence decoupled from the hashing abstraction, would have different names. It should be

recognizable, however, that all four names express information about the same property.

3.3.6 Mutability

The collection of names identifying an implementation may change over time. It is a
mutable set, growing as different aspects of the implementation become of interest. A user

may create new names at his own discretion.

A user may also modify names. Some properties of an implementation are fixed over
time. Others, however, change as the abstraction evolves or as a user's perception of the
abstraction changes. For example, names refiecting status information may need to be
modified as an implementation is tested. Similarly, names reporting the properties of one

implementation relative to others may change as new implementations are developed.

3.4 Summary

In this chapter, we used an example tracing the development of a hashing abstraction

to investigate the naming of implementations. Our analysis found several characteristics of

naming systems support users in identifying implementations. First, names must be
expressive, recording the properties of implementations in a form meaningful to people.
Names may be used to express a wide range of information, chosen at the user's discretion.
Second, because many different aspects of an implementation may be important in different

situations, each implementation may be identified by several names. Each name may aiso be

associated with multiple implementations: implementations exhibiting the same behavior
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with respect to some property may share an identical name reflecting that property.
Consequently. muitiple names may be required to identify an implementation uniquely.
Another characteristic of naming systems that supports implementation identification is
name independence. Although dependencies may exist among the information expressed
by some names. the user may often want to view names independently. The naming scheme
should offer him the ability to do so. Commonality of information, however, should be
exposed. In particular. two names conveying information about the same property should be
related. A final characteristic supporting implementation identification is mutability. Over
time, a user's view of the significant features of an implementation may change. The naming
system must allow him to create and modify names as needed. As a result, the set of names

identifying an implementation may evoive.
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Chapter Four

Naming Implementations in the CLU Library

In this chapter we propose a naming system for use in the CLU programming support

environment. We discuss the structure and use of names identifying the implementations

g . found in description units in the Library. We also present operations for creating and
inspecting names. Additional operations allowing users to retrieve implementations from the

Library are described in Chapters 5 and 6. Our proposal exhibits the six characteristics

supporting implementation identification enumerated by Chapter 3.

The chapter is organized as follows. Section 4.1 introduces the abstract concepts that

form the basis of our proposal. They are abstract in the sense that they are neither

‘: programming language nor programming support environment dependent. Section ;
4.2 adapts these concepts for use in the CLU programming support environment, and i
develops a propaosal for naming implementations in the CLU Library. Section 4.3 illustrate
our proposal with examples of names and demonstrates use of the name manipulation
operations. Section 4.4 assesses the impact on our naming system of a problem occurring in

all fong-iived systems written in CLU, such as the Library. Finally, our proposal provides for

some standard classes of names. Section 4.5 suggests some sample classes for use in the

CLU programming support environment.

i g

s
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T o R ™

4.1 Basics Concepts

In this section we introduce basic concepts that are the foundation of our proposal for

naming implementations: names, classes of names, and operations for manipulating names.

A name in our proposal takes the form of an attribute that is associated in the Library

with the implementation being named. An attribute records some fact about the
implementation that the user creating the name considers significant. We introduce the
notion of a class of names. represented by a class of attributes, to accommodate
commonality among multiple names documenting the same property of implementations.
Each class corresponds to a property of implementations. Individual attributes describe a
particular implementation’s behavior with respect to the property. We also present abstract
definitions of operations for manipulating names (attributes) and classes of names (attribute

classes).

After presenting the foundations of our proposal, we argue that these basic concepts
can be combined in a naming system that provides all six of the characteristics enumerated

in Chapter 3 as supporting implementation identification.

4.1.1 Attributes

An attribute is a pair, consisting of an attribute name and a value. The attribute name
reflects a class of information, expressing the intended meaning of the attribute and
providing a context in which to interpret the attribute’s value. For example, a user of the
hashing abstraction of Chapter 3 could name an implementation with an attribute describing i
its hashtable size. The attribute name informs users that the value represents the
implementation’'s table size. The integer value records the_specilic table size used by the

implementation.
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The naming scheme is used as follows. A user creates a new name for an
implementation to document some property of its behavior. To do so. he invokes an attribute
creation operation of the programming support environment. specitying the implementation.
an atinbute name representing the property. and a value corresponding to the
implementation’s behavior with respect to the property The operation associates in the
programming support environment a mapping between the attribute name and value with the
implementation. If the implementation’s behavior with respect to property changes later. the
user can modify the name using the same operation to replace the attribute’'s value with a

new value corresponding to the modified behavior.

A user can also inspect the names of an implementation or a set of implementations.
Using one programming support environment operation, a user can inspect all the names of
an implementation. The operation reirieves from the environment copies of all the attributes
describing an implementation specified by the user. Another operation reports the behavior
of an implementatiocn with respect to a given property. When the user specifies an
implementation and an attribute name representing the property, the operation retrieves the
value of any attribute associated with the implementation that has the attribute name
specified by the user. A third inspection operation allows a user to inspect all the names on a
set of implementations that document a single property. The user specifies a set of
implementations and an attribute name. The operation locates all the attributes having the

specified attribute name associated with any of the implementations in the set.

Names in the form ot attributes can also be used to retrieve implementations from the
programming support environment. Implementation retrieval, however, is a more complex

operation. We deter its discussion to Chapters 5 and 6, each of which proposes an operation

using attributes to retrieve implementations from a programming support environment.




4.1.2 Attribute Classes

Each attribute is a member of a class of attributes, all sharing the _ame attribute name.
An attribute class corresponds to a property of implementations; its member attributes record
the behavior of specific implementations with respect to that property. For example, the
hashtable attribute described above is a member of a class of attributes whose attribute
name is shared by all members of the class. Each attribute in the class reports the hashtable

size used by the associated implementation.

Users may often want to compare two attributes in the same class. Consequently, we
require all attributes in a class to draw their values from the same set, which is called the
domain of the class. The domain defines the set of legal values for members of the class. In
the hashtable example, the domain associated with the class is the set of positive integers:
all attributes in the class must have positive integral values. A programming environment can
enforce the requirement that every attribute draw its value from its class's domain with a
domain checking mechanism: before allowing an attribute to be created or modified, the
programming environment examines the attribute value to verify that the value is contained in

the attribute's domain.

A programming support environment provides a set of standard attribute classes
representing basic properties applicable to all implementations. These may include
derivation, algorithm, status, properties relating to program development conventions in use,
and so on. The attribute names and corresponding domains of the standard attribute classes

are predetermined and built into the programming support environment.

It is not possible to enumerate av set of standard classes suitable for all programming
support environments because many useful properties may be dependent on the

programming language, environment, and conventions in use. Section 4.5 suggests sample
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standard attribute classes that might be useful in the CLU programming support
environment. Experience with a naming system of this sort is needed to determine precisely

which standard classes should be provided.

The set of standard attribute classes will not satisty the needs of all users because they
only record properties common to ail implementations of all abstractions. However, users
may also want to record properties ¢f impiementations that are specific to an abstraction or
to a project. Our proposal allows users {0 create new attribute classes to express these
abstraction or project specific properties. New attribute classes created by users are called

customized attribute classes.

We view the standard attribute classes as the basic naming structure for
implementations in a programming support environment. Standard classes provide a
common base of properties applicable to all implementations and understood by all users.

Customized attribute classes offer flexibility, allowing a user to extend this basic naming

structure. Users should be able to rely on the standard classes for the majority of their
needs. Only users with special needs should require this added flexibility. If the set of
standard classes provided by a programming support environment encompasses a
reasonably complete range of properties of implementations, then users should rarely need

to create new attribute classes.

L, An attribute class is defined by binding a domain to an attribute name. For standard
attribute classes, the definition is built into the programming support environment. For
customized classes, however, the user creating the new class must provide a definition. An
attribute class definition operation provided by the programming environment allows a user
to define a new customized class by specifying the domain of legal values to be bound to the

new attribute name.




The class definition operation also requires the user creating a customized class to
provide a description of the new class's intended meaning. This description promotes a
consensus among users about the use of a customized attribute class. A user encountering
an attribute from a customized attribute class for the first time can look up its meaning in the

attribute's class definition.

4.1.3 Abstract Operations

In this section we propose five operations for creating and inspecting attributes. Only
abstract syntax is presented; the choice of human interface will depend on the philosophy

and conventions of the programming support environment.

The operation DefineAttribute defines a new class of names. It has the form
DefineAttribute <AttributeName> <Domain> <{Description>.

DefineAttribute associates the set of values <Domain> with the name <{AttributeNames> to
define a new class of attributes. The <Description) is user-provided text documenting the

intended meaning of the attribute class and its member attributes.

The operation SetAttribute creates a new name or modifies an existing one. It has the

form
SetAttribute <Implementation> (AttributeNan.e><Value>

where (Value> is an expression denoting a member of the domain associated with the name
{AttributeName> in some attribute class definition. For an implementation <Implementation>
with no already existing attribute in the class <AttributeName>, this operation creates a new
attribute with attribute name <AttributeName> and value <{Value>. It <{Implementation>

already has an attribute member of the class, the attribute’s value is modified to be (Value>.

This operation fails if no class with attribute name <AttributeName> has been defined.




The operation ReadAttribute allows a user to inspect a single name from a class of

names. It has the form
ReadAttribute <Implementation) <AttributeName).

This operation returns the value of the attribute with attribute name <AttributeName>
associated with implementation <!mplementation>. It fails if {Implementation> does not have

an attribute member of class {AttributeName>.

The operation ReadAllAttributes allows a user to inspect all the names of an

implementation. it has the form
ReadAllAttributes <Implementation).

This operation returns a set of mappings from attribute names to attribute vatues, where each

mapping corresponds to an attribute associated with implementation <Implementation).

The operation ReadAttributeOnSet allows a user to inspect ail members of a class of

names associated with any implementation in a set of implementations. It has the form
ReadAttributeOnSet <Set{Implementations]> <AttributeName).

This operations collects the values of all instances of an attribute class across a set of
implementations. It returns a set of mappings from implementations to attribute values. For
each of the implementations in <Set[Implementations]> having an attribute in the class

(AttributeName>, a mapping from the implementation to the attribute's value is returned.

4.1.4 Discussion

Combining the concepts described above ieads to a naming system that exhibits the
six characteristics enumerated in Chapter 3 supporting implementation identification. First, it
allows the user to convey a wide range of information as names. Users can define attribute
classes to represent any property of an implementation they choose. String attribute names

express the intended meaning of the attribute, providing a context in which to interpret the
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attribute’s value. The value documents the behavior of an implementation with respect to the

property represented by the attribute.

Attributes provide name multiplicity, non-uniqueness, and independence. With the
SetAttribute operation the user explicitly identifies the attribute name and value comprising a
new attribute and the implementation to which the attribute will be bound. No constraints on
this operation prevent the user from applying more than one attribute to the same
implementation, or the same attribute to multiple implementations. The SetAttribute
operation allows the user to create a name for an individual implementation, without

reference to other implementations or their names.

Commonality among names is expressed via the attribute class mechanism. Two
attributes belonging to the same attribute class reflect the same property of implementations
and convey the same kind of information. Because all the attributes in a class draw their
values from the same set, the class's domain, the behavior of two implementations with
respect to the same property can be compared. The shared attribute name highlights
commonality: users can easily recognize that two attributes reflect the same property of

implementations because the attributes share a common attribute name.

Finally, the naming scheme allows users to create and modify names at will. The
SetAttribute operation can be invoked an any time to create an attribute for an

implementation or to modify an attribute's value. Thus, the set of names identifying an

implementation may change over time.




R

4.2 A Naming System for the CLU Library

The preceding section introduced a basic naming structure applicable in any
programming support environment. For the rest of the chapter we tocus on the CLU
programming support environment. In this section we examine the issues that arise when
attempting to embed this general naming structure in the CLU Library. Such issues include
the nature of attribute names. the representation of attribute values and attribute class
domains. and the use of standard attribute classes. We suggest ways to adapt the basic
concepts presented above for use in the CLU programming support environment and

develop a complete proposal for using attributes to name implementations in the Library.

4.2.1 Attribute Names

In this section we consider issues relating to the specification of attribute names for

use in the CLU Library.

The CLU Library is a centralized storage facility used by all CLU users. Because the

Library is shared by n:any users, contention over attribute names may be a problem. Two

users may want to convey different information with attributes having the same attribute
name. For example, two projects may want to define an attribute class to record information
about implementations promoted as official releases. If one project divides releases into
releases to the customer (often called baselines) and minor releases to project members
(called updates) while the other has only one kind of release, the attribute representing
release number will be a point of conflict between the two projects. The first project requires
a composite value to name both baseline and update while the second needs only a simple

value, omitting the update number.




Globally unique attribute names force all users to agree on common meanings and
definitions. This approach is unacceptable because it does not allow users to tailor

attributes to their own needs without referring to all other users.

i To support reuse of attribute names, we propose a context mechanism. Users define
attribute classes within a context. Attribute names are qualified by the name of the context in
which their class definition can be found. Consequently, users with different contexts can
share an unqualified attribute name without conflict. Two attributes with different qualified
attribute names but the same unqualified attribute name may in fact be associated with the
same implementation. Contexts provides a finer grain of name control by allowing attribute
classes to be defined locally. Using separate contexts, users can reuse names. Controlled
sharing of attribute classes among project members or other interested individuals can be

accomplished by sharing contexts.

We expect each context to be organized around a concept, such as a project or an
abstraction, that unifies the contained class definitions. In particular, each du has a du-
specific context (perhaps empty) containing the definitions of classes applicable only to

itself. For example, the hashing abstraction’s du-specific context could include definitions

for attribute classes recording probe sequence and hashtable size. Independent contexts,
containing the definitions of classes applicable across several dus, represent concepts such

projects, subsystems, or a particular programmer's work.

Although all operations for manipulating attributes in the Library require the use of
qualified attribute names, we provide a mechanism supporting the use of unqualified
attribute names in some circumstances, An unqualified attribute reference is permitted when

the Library can deduce the name of the context containing the attribute's class definition.

The definitions for standard attributes classes are contained in a special context built into the




Library. Unqualified attribute names may always be used for attributes from the standard

attribute classes. Users may refer to customized attribute classes with unqualified names by
first invoking a Library operation to specify a default context. The Library automatically uses
the default context to resolve all unqualified references to customized attributes. The default

may be overridden by explicitly qualifying an attribute reterence.

We use unqualified attribute references for the examples in this thesis. The existence

of a default context containing definitions for all our customized attribute classes is assumed.

4.2.2 Attribute Values and Attribute Class Domains

In this section we consider issues concerning representation of attribute values and

attribute class domains in the CLU programming environment.

In the CLU programming support environment, we represent attribute values as CLU
objects, and attribute class domains as the set of objects created using a single composition
of a data abstraction. We call this composition the domain specitier of the attribute class and
call the abstraction implemented by the composition the domain type of the attribute class

and its member attributes.

Our rationale for representing attribute vaiues and class domains in this way is as
follows. In CLU, all values are represented by typed objects. Consequently, an attribute
value is a single typed object and an attribute is a mapping from an attribute name to an
object. A domain corresponds to a set of objects. The CLU data abstraction mechanism,
defining a set of objects and some operations for manipulating them, is a natural paralie! for
this concept. A domain's set of values corresponds to the abstraction’s set of objects. An
individual attribute's value is represented by one of the abstraction’s objects. The set of
values defined by a data abstraction thus provides an intuitive representation for an attribute

class domain.
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In CLU, an object may be manipulated only using the operations provided by its type.

in addition, it may only be manipulated using the particular composition of its type used to
create the object originally. This is a consequence of the constraint discussed in Section
2.2.3 regarding multiple instances of a data abstraction. Each implementation of a data
abstraction has certain expectations about the representation and invariant properties of
objects of the type. A computation in which an operation provided by one implementation is
used to manipulate an object created using another implementation may yield erroneous
results because the two implementations may have incompatible expectations. We therefore

disallow mixing two compositions of a data abstractions in a single computation.

In the course of creating and maintaining attributes, the Library must manipulate the
6biects representing attribute values. For example, creating or modifying an attribute may
require creating an new object to [epresent its value. Similarly, when an attribute's value is
inspected, the Library makes a copy of the value object. Consequently, the Library must
have access 10 every composition used 10 create an object stored in the Library as an

attribute value.

Although an attribute class domain, as a set of values, maps intuitively into the set of
values defined by a data abstraction, we prefer to further constrain the representation of
domains. Using a composition of a data abstraction to generate the set of objects from
which an attribute class's values may be chosen guarantees that a single composition may
safely be used by the Library to manipulate all objects representing the values of attributes in
the class. In contrast, no single composition may be used when a domain is identified only

with a data abstraction.

In addition, using a composition of a data abstraction to specify a domain supports the

comparison of attribute values. It is not possible to use an oberation provided by a data type




to compare two objects created with distinct compositions of the type. For example, suppose

two objects x, and x, created us;ng different compositions C,and C2 of type T represent the
values of two attributes in the same class. No operation provided by type T can compare the
values of these attributes, because x, can only be manipulated using composition C1 while x,,
can only be touched with Cz‘ Requiring all objects representing values in an attribute class
to be created using the same composition allows the Library to invoke the comparison

operators provided by the domain type to compare any two attributes in the class.

4.2.2.1 Domain Types

An important issue concerns the range of types that may be specified as domain types.
One restriction is that each domain type is required to provide a specific set of operations
needed by the Library to manipulate attribute value objects. The exact set of operations
required by the Library is not defined by this thesis. We anticipate, however, that it will
include operators to create new objects, 10 copy objects, 10 compare two objects tor equality,
and so on. Abstractions that do not provide the required operations may not be used as

domain types.

Given this restriction, what abstractions may be selected as domain types? For
example, are user-defined abstractions acceptable? The CLU programming support
environment allows any type providing the required operations, including user-defined types,
to serve as a domain type. Section 4.2.2.2 discusses an alternate proposal restricting domain

types to a predetermined set of abstractions.

Our approach does not restrict domain types to a predetermined set. Users may
choose arbitrary types, including user-defined types, to represent domains. This approach
allows users to represent values in an intuitive manner. With user-defined data abstractions,

users can model a domain precisely, creating a new data abstraction whose objects

correspond one-for-one with the domain's values.
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A consequence ol this is that domain checking is equivalent to checking the
composition of an attribute value object. Whenever a user creates or modifies an attribute,
the programming support environment must perform a domain check 10 ensure that the new
attribute value is an element of the attribute's domain. In the Library, the domain check is
accomplished by verifying that the object representing the new value was created by the
attribute’s domain specifier, the composition generating all legal values for the attribute
class. Because the set of objects created with this composition represents exactly those
| values contained in the attribute's domain, verifying that the attribute value object was
created with the domain specifier also ensures that the value falls within the attribute's

domain.

There are several disadvantages to allowing arbitrary types to be used as domain

types. The first concerns the safety of the information represented in the Library as
attributes. When a user defines a new attribute class, he provides a composition to be used i
as the domain specifier. The Library uses this composition to create and manipulate objects
representing attribute values. !f the domain specifier implements a user-defined type, then

the Library invokes user-supplied code to maintain the values of attributes in the class.

The Library assumes that the operations provided by all domain specifiers obey certain
simple conventions designed to sateguard the information in the Library. For example, the

Library assumes that all copy operations are merely observers and do not modity the value of

the objects they touch. Operations not observing these conventions compromise the
security of the Library and the information it contains. When a user-defined type is used as a
domain type, the Library must trust the composition provided by the user to behave in a safe

manner. The Library cannot guarantee that it does so.

e O -

A second disadvantage concerns Library optimization. Many database systems ; :




comparable to the Library perform optimizations based on a knowledge of what actions can
result sfrom procedure invocations. When the database system is self-contained.
optimizations can be quite extensive because the database has full knowledge of the range
of possible actions. The use of arbitrary types. however, introduces user-supplied
procedures into the the Library. When user-supplied procedures are invoked by the Library
to manipulate attribute values, the range of actions that can result is unknown, making
optimization significantly more difficult.  Optimization must be restricted to exclude

operations by user-supplied procedures.

4.2.2.2 An Alternative: Restricting the Set of Domain Types

An alternative to allowing any type providing the operations required by the Library to
serve as a domain type is to restrict domain types to a small set of predetermined types. For
example, in the CLU programming environment, the set might include all the built-in types,
plus a few predefined abstract types found to be especially useful for version identification,
such as status types, usernames, and 32 on. An advantage of this approach is that
compositions of the supported domain types can be built into the Library implementation.
The domain specifier supplied by the user in an attribute class definition need only identify a

type to model the domain. The Library itself can supply the composition.

This approach eliminates the disadvantages resulting from the use of arbitrary types as
domain types. Because a composition for each of the possible domain types can be built in,
the Library can guarantee that no user code can accidentally or maliciously tamper with the

objects representing attribute values. Library optimization also is easier because the range

of actions that can result from invoking an operation of the domain specifier is known.

We feel this approach is unsatisfactory, however, because some domains do not map

easily into the provided types. Users are forced to encode the values of such domains in an
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unnatural form. In addition, domain checking is difficult. For domains that map naturally into
the provided types. checking the composition used to create the value object serves as an
adequate test that an attribute's value falls within its domain. But for many domains,
composition checking is likely to be an inaccurate measure. For example, if no dates type
were provided in the set of permissible domain typ2s. a user might specify a domain
representing dates with a composition of a record type containing three integers. Type and
composition checking would only verify the record structure: it would fail to catch errors due

to illegal values for months or days.

4.2.2.3 Library Interface Issues

The most natural representation for many attributes is in the form of enumeration
types. For example, the probe sequence of a hashing abstraction could be represented by
an enumeration type named "HashProbeSequence" whose value set is composed of the
values "Linear." "Quadratic,” and so on. An attribute could therefore be defined with name

3 "ProbeSequence” and type “HashProbeSequence”.

Although CLU offers users the ability to define any set of values as an abstract type,
enumeration types are not represented conveniently in CLU. This minor inconvenience
could perhaps be alleviated by providing additional support for creating enumeration types at

the Library interface, but will not be addressed further in this thesis.

Another interface issue concerns literals for user-defined types. Literals provide a
convenient medium for the user and the Library to communicate values of attributes. The
Library prints out the values of attributes at the request of users browsing in a du; a user

types in a new value to create or modify an attribute. CLU does not support user-defined

type literals.




One possible solution is 10 add user-defined type literals to CLU. A second is o
provide a facility for converting between text strings and user-defined values at the interface
of the Library. Each abstraction used as the domain type of an attribute class would be
required to provide operations for parsing a text string representing a value and for providing
a text string representation of an abstract object. The Library could invoke these operations

to interpret user-defined type literals typed by the user and to print the values of attributes.

In this thesis. we assume that some mechanism exists to support user-defined type

literals. We represent such values as
{Type>#<{Value>

where <Type> specilies the data abstraction whose value is being expressed and <Value) is a

text string representing the literal's value.

4.2.3 Standard Vs. Customized Attribute Classes

In this section we describe the use of standard attribute classes by the CLU
programming support environment, and examine the differences in the treatment of standard
and customized classes. Standard attribute classes are predefined classes iepresenting
properties common to all implementations of all abstractions. Customized classes are

defined by users to represent project or abstraction specific properties of implementations.

Tools in the CLU programming support environment and the conventions of the CLU
development methodology require certain types of information to be available about all
implementations. For example, the CLU linker must have access to information enumerating
the subsidiary abstractions of an implementation being included in a composition. A subset

of the standard attribute classes are used to maintain this required information in the Library.

The CLU programming support environment partitions the set of standard attribute
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classes nlo mandatory classes. recording the information needed by tools in the CLU
programming support environment or by CLU methodology conventions. and optional
attribute classes, expressing commonly-useful information. The Library requires every
implementation to be named by an attribute from each ot the mandatory classes. The

optional classes are provided for the convenience of the user.

Because CLU environment tools and conventions depend on the information
expressed by the standard attnbute classes, the Library maintains a measure of control over
the standard attributes. Attributes from the mandatory classes are protected. users are
permitted to modify standard attributes only in controlled ways. Tools in the CLU
environment can automatically derive the values of many standard attributes. In aadition, the
Library enforces consistency constraints on some standard attribute classes. For example,
the user is prohibited from designating more than one implementation as the default

implementation for a du.

In contrast. the Library exercises no control over customized classes. Customized
attribute classes are subject only to normal authorization procedures: they are not protected
by the Library. Note that this thesis does not address authorization procedures for attribute
use. Neither do we propose any mechanism for allowing the user to specily consistency

constraints to be applied to attributes of customized classes.

4.2.4 The Operations: Abstract Syntax and Semantics

Seven Library operations allow the user to define new attribute classes, create and
modify attributes. inspect attributes. and specify contexts for resolving attribute names. This

section presents the abstract syntax and semantics of these operations.

We use qualified attribute names in the definitions of all operations. Users, however,




may use unqualified attribute names for customized attributes by specifying a default
context. The Library automatically uses the default context to qualify all references to
customized attributes. Similarly, the Library qualifies all references to standard attributes
with the name of the built-in context containing the definitions of the standard ciasses; users

may use unqualified attribute names for standard attributes at any time.

An authorization scheme is needed to control the use of these operations. This thesis.

however. does not address authorization issues.

4.2.4.1 Attribute Class Definition

The Library operation DefineAttribute makes a class of names available for use by

specifying their definition. Its abstract syntax is
DetineAttribute <(Qualified attribute name> {(Domain specitier> <(Description>.

The qualified attribute name identifies the class of attributes being defined and has the form
<Context name>.<{Unqualified attribute name>. It specifies the name of the context in which
the class is to be defined as well as an unqualified attribute name. <Domain specifier> is an
expression denoting a composition of a data abstraction. The abstraction is the domain type
of the attribute class; its composition is used to manipulate the class's value objects.

<Description? is a textual explanation of the meaning of the class.

When the user invokes this operation, the Library stores a definition for the new class
of attributes in the context named by the qualified attribute name. The stored definition is the

tuple
[<Unqualified attribute name>, <Domain specifier>, <Descriptiond}.

it is an error if the context named by this operation already contains a definition for the
attribute class. The operation fails if the context does not exist, if the unqualified attribute

name is already defined in the named context, or if the domain specifier does not represent a

composition of a data abstraction.




The tollowing pseudo-code describes the operation.

It there is no context named <Context name> or if <Unqualified attribute name>
is already defined in the context <Context name> then fail

Else store the tuple [<Unqualitied attribute name>, <Domain specifier>, <Description>]
in the context <Context name)

4.2.4.2 Attribute Creation and Modification

SetAttribute creates a new name for an implementation by specifying a new attribute.

it may also be used to modity the value of an existing attribute. Its abstract syntax is
SetAttribute <implementation> <Qualified attribute name> <{Value.

dmplementation> is an expression denoting an implementation. <Vaiue> is an expression of

the domain type bound to the qualified attribute name.

When the user invokes this operation, the Library evaluates the value expression to get
the new attribute's value. Using the attribute definition found in the context named by the
qualified attribute name, the Library performs a domain check to ensure that the expression
denotes an object of the domain type created using the domain specifier. If the
implementation already has an attribute with the same qualified attribute name, the existing
attribute is modified to record the new value. Otherwise, the Library creates a new attribute,
mapping the qualified attribute name to the value of the expression. SetAttribute fails if the

context does not exist, if the attribute name is not defined in the specified context, or if the

expression denoting the attribute's value fails the domain test.

The following pseudo-code describes the operation.

It there is no context named <Context name> or if <Unqualified attribute name> is not
defined in context <Context name> then fail

Look up the domain specifier D bound to the name “Unqualified attribute name>
in context <Context name>

If <Value> does not denote an object of the domain type created with the
K the domain specifier D then fail
i Let V be the result of evaluating (Vatue>
y Store a mapping [<Quahfied attribute name>, V] with <Implementation> in the Library




In this thesis we use the following syntactic sugar to denote an invocation of

SetAttribute:
{mplementation>.<Qualified attribute name> : = <(Vaiued.

4.2.4.3 Attribute Inspection

Three operations allow a user to inspect the attributes associated with an

implementation or set of implementations.

ReadAttribute retrieves a copy of the value of an attribute on a single implementation.

its abstract syntax is
ReadAttribute <Implementation> <Qualified attribute name>

where <Implementation> is an expression denoting an implementation. ReadAttribute
searches the attributes associated with the specified implementation for an attribute whose
name matches the qualified attribute name. If it finds a matching attribute, the Library

returns a copy of its value. ReadAttribute fails if no such attribute exists.

The following pseudo-code describes the operation.
If <Implementation> has an attribute with name <Qualified attribute name> then
Return a copy of its value
Else fail

In this thesis we use the following syntactic sugar to denote an invocation of

ReadAttribute:
<Implementation>.<Qualitied attribute name>.

ReadAttributeOnSet retrieves copies of the values of an attribute on a set of

implementations. Its abstract syntax is
ReadAttributeOnSet <(Set of implementations> <(Qualified attribute name>

where <(Set of implementations> is an expression denoting a set of implementations.

ReadAttributeOnSet returns a set of mappings from implementations in the set to copies of
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their values for the specified qualified attribute name. Implementations for which the

attribute is not specified are not included in the returned mapping.

The following pseudo-code describes the operation.

Let M be an empty set of mappings
For each implementation | in <Set of impiementations> do
it | has an attribute with name <Qualified attribute name> then
Add a mapping [, copy of the attribute's value] to M
End for
Return M

In this thesis we use the following syntactic sugar to denote an invocation of

ReadAttributeOnSet:
<Set of implementations>.<Qualified attribute name).

ReadAllAttributes retrieves copies of all the attributes associated with a single

implementation. Its abstract syntax is
ReadAllAttributes <implementation)

where {Implementation> is an expression denoting an implementation. ReadAiiAttributes
returns a set of mappings from attribute names to attribute values, where each mapping

corresponds to an attribute associated with the implementation.

The following pseudo-code describes the operation.

Let M be an empty set of mappings

For each attribute associated with implementation <Implementation> do
Add a mapping [attribute's name, copy of the attribute's value] to M

End for

Return M

4.2.4.4 Context Operations

The Library operation NewContext creates a new context in which attribute classes

may be defined. lts abstract syntax is
NewContext <Context name>

where {Context name) is the name to be given a new context.
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The Library operation DefaultContext specifies a default context with which the Library

can resolve all unqualified references to customized attribute classes. Its abstract syntax is
DefauitContext <Context name>

where <Context name> is the name of an existing context. This operation fails if no context

of this name exists.

4.2.5 Summary of the Proposal

We propose an expressive naming scheme using attributes as names for

implementations in the CLU Library. An attribute is a pair
[<Qualified attribute name), <Value>}

The value may by any CLU object. A qualified attribute name consists of an unqualified

attribute name and the name of a context. We use the notation
<{Context name> : <Unqualified attribute name>

to denote a qualified attribute name. An unqualified attribute name is any string. This thesis

assumes the existence of a user-friendly naming environment for contexts.

A qualified attribute name identifies a class of attributes; it represents a property of
implementations. A class's member attributes record the behavior of individual

implementations with respect to that property.

An attribute class definition binds the qualified attribute name shared by all the
member attributes to the domain from which the member attributes’ values are drawn. The
definition is stored in the context identified by the context name part of the class's qualified
attribute name. The definition consists of a mapping from the unqualified attribute name to a
domain specifier and a description of the intended use of the class. A domain specifier is a
composition of a data abstraction used to generate the set of objects comprising the class's

domain. The abstraction implemented by the domain specifier is called the domain type.
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Subject to the restriction that a domain type must provide certain operations needed by the
Library to manipulate attribute value objects, any data abstraction (including a user-defined

abstraction) may be selected as a domain type.

For example, an attribute [C:A,V] with qualified attribute name C:A and value object V
created with composition D of type T, belongs to a class of attributes defined in context
C. The definition of this class is represented by a mapping in C from the class’s unqualified
attribute name A to composition D of T and a description of the meaning of the class. The set
of legal values for the class’s attributes consists of those object that can be created with

composition D.

The Library provides a set of predefined attribute classes whose definitions are found

in a built-in context. These are divided into mandatory classes and optional ciasses. The

former record information needed by the CLU programming environment and are required

for all impiementations. Users are also permitted to define new, customized classes of

attributes.

' Several operations are provided by the Library to allow users to create and inspect

attributes. The abstract syntax of these operations follows. We use the notation
— <Resuit>

to indicate that the operation returns the object <Result>.

DefineAttricute <Qualfied attribute name> <Domain specifier>
" SetAttrnibute <implementation> <Qualified attribute name> (Value>
ReadAttribute <Implementation> <Qualified attribute name>
— <Attribute value object>
ReadAttributeOnSet <Set of implementations> <Qualified attribute name>
— <Mapping[<Implementation> {Attribute value object>]
ReadAllAttributes <implementation>
— <Mapping[<Qualified attribute name> Attribute value object>)
NewContext <(Context name>
DefaultContext <Context name>
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Although the operations above require the use of qualitied attribute names, the Library
permits a user to use unqualitied names for any reference to a standard attribute class.
Unqualified references are also permitted for customized attribute classes if a default context

for resolving such references has been specified.

4.3 Examples

We return to the hashing abstraction of Section 3.1 to present some examples. We
assume the existence of a default context named DefaultCxt containing the detinitions of all

customized attribute classes used in these examples.

Every implementation is automatically supplied with attributes from the mandatory
predefined attribute classes. These include the attribute CreationTimestamp with domain
type Timestamp, recording the implementation's creation date, and the attribute CreatedBy
with domain type User, recording its creator. Additionally, the creator is asked 1o supply an
explanation of why this implementation was created as the value of attribute Purpose.
Compiling an implementation automatically applies the SubsidiaryAbstractions attribute,
whose value lists the dus referred to in compilation. Similarly, BinaryUsedin's value is the set
of compositions containing the binary component of an implementation. Two
implementations sharing a source component list each other as the value of the mandatory
attribute SourceSharedWith. Finally, one implementation is marked as the default
implementation to be used by the general public using the attribute DefaultForDU with value
True. An alternatives relationship based on algorithm can be expressed with the mandatory
attribute Alternative. Users supply each implementation with either the value "Buckets" or

the value "Open addressing” for this attribute.
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To discriminate among versions in the same alternative (sharing the same algorithm),

users define customized attribute classes. The invocation
DefineAttribute HashTableSize <Domain specifier>

defines a new attribute class recording hashtable size, storing the class definition in the
detault context DefaultCxt. The <Domain specifier>, in this case, denotes a composition for
the integer abstraction. A second customized attribute class, HashProbeSequence, could be

defined with a user-defined enumeration type as its domain type.

Users create names for individual implementations by creating new attributes with the

SetAttribute operation. The syntactic sugar
|.HashTableSize := n

represents an invocation of the operation
SetAttribute | HashTableSize n

which creates an attribute with qualified attribute name DefaultCxt:HashTableSize and value
n for implementation |. Because the user specified an unqualified attribute name, the context

name is resolved to the default context.

A user retrieves the values of attributes using the operations ReadAttribute and

ReadAttributeOnSet. The invocation
ReadAttribute | HashTableSize

returns a copy of the value of the attribute named DefaultCxt:HashTableSize associated with

implementation |. it can also be written as the syntactic sugar
I.HashTableSize.

it J denotes a set of implementations then
J.HashTableSize

reprasents an invocation of
ReadAttributeOnSet J HashTableSize

and returns a set of mappings from each implementation in J named by an attribute with

attribute name DefaultCxt:HashTableSize to a copy of the attribute's value.
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Figure 4-1 depicts the set of implementations for the hashing abstraction with some of
the associated attributes. Note that only a subset of the implementations’ attributes are

shown.

4.4 The Library as aLong-Lived System

. in any long-lived system. such as the Library. the question of evolution arises. Over
time users create better implementations of abstractions and develop new abstractions to
improve on old ones. They want to incorporate these new implementations and abstractions
into their running system. Furthermore, they want t0 make such changes dynamically,
without halting the system or losing any of its previous state. In CLU, however, dynamically
replacing an implementation of a data abstraction with another implementation of the same
abstraction. or replacing one abstraction with another may (or may not) yield erroneous

results.

in a long-lived CLU system, state takes the form of a set of objects. If the
implementation used to create one of the objects comprising a system's state is replaced
with another implementation of the same data abstraction, operations of the new
implementation may be used to manipulate the object created by the oid implementation.
This is an instance of mixing two compositions of a data abstraction, which was discussed in
Sections 2.2.3 and 4.2.2. if the two implementations have incompatible expectations about
the representation and invariant properties of the object, the computation will be erroneous.
Sometimes, however, the expectations of the two implementations may be compatible, in

which case one may safely be replaced by the other.

Similarly. a user may want to replace one abstraction with another. Using one
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DetaultForDU: True

Figure 4-1:Attributes for the Hashing Abstraction
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abstraction instead of another is a type error in CLU. Sometimes. however, two abstractions

may be compatible and a user may want to ignore the breach of type safety. For example, a

type extension could add to the set of operators provided by the original type. if the
extension preserves the set of values represented by the onginal type and 1s not detectable
by any of the original type's operations, then operations provided by the extension may safely
be used to manipulate objects created by the original type. Other replacements, such as
modifying the number of arguments in an operation's interface. may not be benign.

Unfortunately, the constraints determining when it is safe to replace one abstraction with

another are not well understood.

Dynamic replacement in a long-lived system impacts our naming system as follows.
We represent names as attributes which are stored in the Library as mappings from attribute

names to objects.

Attribute value objects thus constitute state in a long-lived system.

Dynamically replacirig one implementation of a domain type with another, or a domain type
with a new abstraction may result in errors if the Library contains pre-existing attributes {and

therefore pre-existing attribute value objects) from the attribute class.

For simplicity, we prohibit modifications to domain specifications. If experience with
the Library shows that users often want to replace domain specifiers, other solutions are

possible. We refer the reader to [6] for a study of this problem.

4.5 Sample Built-In Attribute Classes

The Library supports both customized and predefined attribute classes. Customized
attribute classes model information specific to a project, an abstraction, and so on. They are

defined by the user as described earlier.
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The definitions of predefined attribute classes are already known to the Library,
allowing them to be used without being explicitly defined. Predefined classes are divided
into mandatory attributes and optional attributes. Mandatory attribute classes encapsulate
information needed by tools in the CLU programming support environment and by CLU
methodology conventions. Optional attribute classes are provided as a convenience to

users, encoding commonly used information such as project and subsystem membership.

In this section we suggest standard attnbute classes for use in the CLU programming
environment. Experience is needed to determine precisely which classes should be

provided.

4.5.1 Mandatory Attributes

The mandatory attribute classes express basic information necessary to construct and
use implementations, to understand the evolution of an abstraction and to maintain the du in
a consistent state. For each implementation, these classes convey information uniquely
identifying it. recording its use in compositions, enumerating its subsidiary abstractions,
explaining how to derive or recreate it, and reporting its role in the evolution of the
abstraction. Mandatory attributes are required on all implementations: every implementation
must be named by an attribute from each of the mandatory classes. Mandatory attribute

classes are defined in a predefined context protected by the Library.

The information encapsulated by the mandatory attributes is used by the Library and
other tools in the CLU environment. To ensure the safety of this information. the Library
maintains complete control over alt mandatory attributes. When a new implementation is
submitted. all mandatory attributes are automatically applied to it. The Library can derive

automatically many of the necessary values, such as creation date. This is a convenience for
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the user and also ensures greater information reliability. The user 1s prompted for the values
ot attributes the Library cannot deduce. like his reason for creating an implementation. To
protect the mandatory information from errors and malicious tampering. the Library pertorms

checks tor consistency and safety before permitting modification of these attributes.

A list of suggested mandatory attribute classes and their descriptions foliow. Five
special attribute classes. Ailternative, Supersedes, SupersededBy, DefaultForDU, and
DefaultForAiternative deserve greater attention because they play a central role in many

Library operations. They are described in detail in sections 4.5.1.1,45.1.2, and 45.1.3.

CreationTimestamp
records the date and time at which an implementation is entered into the
Library. CreationTimestamp is derived automatically by the Library when
the implementation is created. [t may not be modified by users.

CreatedBy records the username of the user who enters an implementation into the
Library. CreatedBy is derived automatically by the Library when the
implementation is created. It may not be mndified by users.

CompilationTimestamp
records the date and time at which an implementation is compiled.
CompilationTimestamp is recorded automatically by the CLU compiler
when the implementation is compiled. It may not be modified by users.

CompiledBy records the username of the user who invokes the compiler for an
implementation. CompiledBy is recorded automatically by the CLU
compiler when the implementation is compiled. It may not be modified by
users.

SourceDerivation records how the source component of an implementation is created. In
particular, it names other impiementations and/or tools and tool options
used to derive the implementation. Tools used to create the source
module automatically record this information. If no tools are used, the
Library marks it as unknown. SourceDerivation may not be modified by
users.

BinDerivation records how the binary component of an implementation is created. In
particular, it names the compiler and compiler options used. as well as
the set equates and subsidiary abstractions available to the compiler.
BinDerivation 1s recorded automatically by the CLU compiler when the
implementation is compiled. It may not be moditied by users.
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SourceSharedWith
Iists the set of implementations using the same CLU source component.

Many different binary components can be produced from a single source
component, this attribute records the set of implementations containing
the same source component but diflerent btinary components.
SourceSharedWith is derived automatically by the Library when the
implementation is created. it may not be modified by users.

SubsidiaryAbstractions
lists the set of subsidiary abstractions used by an implementation.
SubsidiaryAbstractions s recorded automatically by the CLU compiler
when the implementation is compiled !t may not be modified by users.

BinaryUsedIn records the set of executable programs that contain an implementation.
BinaryUsedin is maintained automatically by the Library as compositions
are created. it may not be moditied by users.

implementationNumber
is a unique identifier for an implementation. Implementations are ;
assigned implementation numbers in order by creation timestamp, !
starting from one. Aithough the same implementation number may be !
used in two different dus, an implementation number is never reused
within a single du. implementationNumber is assigned automatically by

the Library. It may not be moditied by users. 4

Purpose records the rationale for the creation of an implementation. The user
provides this explanation when he enters the implementation into the
Library. it may be modified at any time.

4.5.1.1 The Alternative Attribute

The mandatory string-valued attribute Afternative encapsulates the alternatives
phenomenon described in Section 2.3.1. The value of this attribute names the alternative to
which each implementation belongs. Users determine what criteria to use to partition the set
of implementations and then assign values that reflect the chosen criteria. For example, the
hashing abstraction might be split into two alternatives based on algorithm  The Alternative

attnbute would have the value "Buckets” tor implementations using external buckets and

"Open addressing” for the rest

Some dus have no obwious partiions  Uf there are no significant differences to
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emphasize. alf the implementations in the do dare viewed as belonging to a single uniwversal

alternative

The Library asks the user 0 sappd, the ~anee of ae pementation s alternative when o

s created  The Alternative aUnDute ma, Lee oot gt any time

4.5.1.2 The Supersedes and SupersededBy Attributes

The Library makes supersession exphicit through twe special mandatory attiibute
classes Supersedes and SupersededBy whose vatues are sets of implementations. These
attnibutes record the supersession relationship described n Section 2.32. For each
implementation, Supersedes records the implementations improved upon; SupersededBy
lists those that improve upon it The Library's users determine what implementations
supersede others because only users can determine improvement: improvement is not a
syntactic or historical quahty that can be deduced automatically by a programming support
tool. Users must state exphcitly what supersession relations are recorded in the Library. To

ease the burden on the user, 1n many situat.ons the Library can make common assumptions

and ask the «,ser for confirmation.

Tne Library enforces three restrictions on the use of these attributes. First. the
Supersedes and SupersededBy attributes must be consistent acrcs,  pairs  of
implementations. If implementation A hists implementation B in its Supersedes attribute. then

implementation B's SupersededBy attribute must also include A.

Second. an implementation may only supersede (or be superseded by)
implementatons in the same alternative. Because two alternatives are intended for use
under difterent conditions, it 1s meaniniless to say that an implementation i one alternative

supersades an implementation of the other.
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Figure 4-2:A Supersession Cycle

Finally, the Library prohibits relations in which an older impiementation supersedes a
more recently created one. This restriction eliminates supersession cycles. Cycles indicate
an inconsistency in the supersession relations. Figure 4-2 exhibits a cycle among three
implementations. Directed arcs. with the superseded implementation at the tail, mark
supersession relations. By transitivity, implementation 3 supersedes implementation 1. But
implementation 1 also supersedes implementation 3. Two implementations cannot each be
better than the other. Although it is possible for an older implementation to improve upon a
more recent one, such situations are extremely rare, resulting primarily from errors in
development. Productive implementation evolution proceeds forward with time. This
constraint allows the Library to prevent contradictions in supersession relations without

costly checking Itis unlikely to be a major inconvenience.

In addition. the Library automatically preserves transitive supersession relationships

when an implementation is deleted Figure 4 3 demonstrates this operation. Initially,

implementation 2 supersedes an impiementation 1 transitively through implementation 2. i




implementation 2 is deleted. all knowledge of the refationship between impiementations 1
and 3 could be lost. To prevent this, the Library automatically inserts implementation 3 into

the value of 1's attribute SupersededBy and implementation 1 into 3's attribute Supersedes.

[ ) delete @ [

Figure 4-3:The Eftect of iImplementation Deletion on Supersession

4.5.1.3 The DefaultForDU and DefaultForAlternative Attributes

We identity two kinds of default implementations. One implementation may be chosen
the default across all implementations of a du. In addition, one implementation may be
designated the default within each alternative. Two mandatory attribute classes embody

these two notions of default.

The DetaultForDU attribute identifies an implementation designated as the default
across all implementations in a du. DefaultForDu is bound to boolean values; a True value
marks the default implementation. At most one implementation may be chosen as the

detault. The Library enforces this constraint, permitting only one implementation at a time to




have the value True for this attribute. All other implementations have the value False Users
are permitied to modity this attribute subject to this constraint: to dehine a new delault

implementation. a user must first eiiminate the old default by changing its value for this

attribute to False.

The DefaultForAlternative attribute identities a default implementation within an '
alternative Like the DefaultForDU attribute. this attribute takes boolean values. with a True
value marking a default implementation. The Library enforces two constraints on this
attribute class.  First. each alternatve may have at most one default implementation.
Conseqguently, no two implementations within the same alternative are permitted to have the
value True for this implementation. Second, the default implementation for the whole du is f

necessarily the default implementation for the alternative containing it; no other

implementation in that alternative may have DefaultForAlternative True. The Library allows

users to modify the DefaultForAlternative attribute subject to these two constraints.

4.5.2 Optional Attributes

Optional attribute classes express commonly-useful forms of information. For
example. two optional attribute classes describe implementation algorithm and test status. ]
They are provided solely for the convenience of the user, permitting them to express
common forms of 'nformation without explicitly defining new attribute classes. Like

mandatory attribute classes, optional attribute classes are predefined in a special built-in

context.

Attributes from optional classes are maintained by the user and are not protected in
any way by the hbrary. The Library cannot derive their values and does not seek to control
their usagz.  An authorization scheme can be used to control the manipulation of these

attributes. but this thesis does not address authorization issues.
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A list of suggested optional attribute classes and their descriptions follow.

Algorithm

DataUsed

Invariant

is a textual comment explaining the algorithm used by an implementation.

is a textual comment describing the major data structures used by an
implementation.

records invariant properties of an implementation.

AbstractionFunction

XrefList

Authorization

Project

Subsystem

ReleaseNumber

OutOfDate

DebugStatus
TestStatus

LifeStatus

Optimization

SizelnBytes

records the abstraction function of an implementation. It is only relevant
for implementations of abstract data types.

records the use of identifiers in an implementation.

records the names of users and usergroups permitted to read. compile.
or execute an implementation.

records the name of the project responsible for creating an
implementation.

records the name of the subsystem of a large program responsible for
creating an implementation.

identities an implementation distributed as part of an official release of
some system.

marks an implementation no longer considered valid, for example, an
implementation containing pathological bugs.

documents known bugs in an implementation.
records the results of tests of an implementation.

records the stage of the software lifecycle represented by an
implementation.

records whether an implementation is optimized and if so, whether for
space or time.

records the size of the binary component of an implementation.
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Chapter Five

Retrieving An Implementation

The expressive naming system defined in Chapter 4 allows the user to record the
properties of implementations as names. This Chapter and the succeeding one explore
mechanisms using these names to retrieve implementations from the CLU Library. In this
Chapter we consider the problem of selecting an implementation of a single abstraction from
its du; Chapter 6 addresses the more complex problem of retrieving implementations of

multiple abstractions in the context of program composition.

To select an implementation from a du, the user describes the behavior he wants the

.
selected implementation 10 have. He specifies the desired properties in terms of conditions
on attributes. For example, to select an implementation created by Joe after a certain date,
the user specifies the attribute CreatedBy have value Joe and the value of the CreationDate
attribute be greater than the specified date. To retrieve an implementation with the desired

behavior, the Library.tries to match the user's description against the attributes of

implementations in the du.

The Library Select command embodies retrieval based on the properties of

implementations. It has the form
Select <implementation-characterization>

where the <implementation-characterization>, or characterization, is the user's description of
the desired behavior. Select is executed in the context of a du. It retrieves an
implementation described by the characterization from the implied du. We say that the

implementation retrieved satisfies the characterization provided by the user.

]
|
i
|
|
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We view selection as a filtering process on the set of implementations in adu. A filter s
a function on a set whose result I1s a subset of its argument set. We call the set being filtered
the input set of the fiiter and the subset produced the resuit set of the fiiter. Select's input set
1s the set of implementations in a du. lts goal s a singleton set containing an implementation
satistying the charactenization It achieves its effect by applying a series of nested filters.

successively reducing the number of implementations under consideration

This chapter explores the semantics of Select. Section 5.1 proposes a simple model of
selection based on an analogy to reiational databases Analysis of the model reveals three
problems. discussed in Section 5.2. Sections 5.3. 5.4. and 55 propose extensions to the
relational database approach as solutions to the three problems. Section 5.6 summarizes the
semantics of a proposal combining the three extensions. The ssue of missing attributes is
addressed by Section 57 Finally. Section 5.8 presents an example using the full retrieval

mechanism.

5.1 A Simple Relational Database Approach

In this section. we note an analogy between the retrieval of implementations using
attributes and relational database queries. We first show how the set of implementations in a
du can be modeled as a refational database. Then. using this model, we propose a simple

retnieval mechamsm based on relational database queries,

A relational database represents information in the form of tables [12. 15]. Each row
represents an obyect being described in the database: columns represent properties of the
objects The set of implementations in a du can be modeled as a relational database

consisting ot a single table. whose rows correspond to implementations. Columns represent




properties of implementations or attribute classes. Each entry in the table describes the
implementation’s behawvior with respect to a property. in this model. a table entry represents
an attribute: the entry contains the value ot an attribute from the attribute class represented

by the column for the implementation represented by the row.

Because every row in a table has the same number of columns. the relational database
model of a du assumes that all impiementations have attributes from the same classes. If any
implementation has an attribute from a specific class, then ali the implementations in the du
must also have attributes from that class. This assumption conflicts with one of the
properties of naming systems supporting implementation identification enumerated in
Chapter 3. Name independence allows a user to provide a name for an individual
implementation, without reference to other implementations in the du or their names.
Consequently, two implementations in a du may have attributes from different attribute

classes; one may not have an attribute from a class for which the other has an attribute.

A similar problem occurs in relational database systems when the value of a particular
table entry is not specified. The database solution postulates an unknown value
corresponding to an unspecified entry. The same mechanism can be used to preserve name
independence in the relational database madel of the set of implementations in a du: we
postulate an unknown value corresponding to an unspecified attribute. All implementations
in a du are viewed as having attributes from every class, but an attribute not explicitly
provided for a given implementation has an unknown value. In the Library we represent the

unknown value as a special object called Ni/. Nil is not contained in any data type.

Using this relational database model nf the set of implementations, we can pattern the
Library implementation selection mechanism after relational database queries. As a
simplification, we assume that all attributes are defined for all implementations, none have

the special value Nil. Treatment of Nil 1s reserved for Section 5.7.
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We turn to System R [3. 4. 5. 9] for examples of relational database queries Because
the model of a du has a single table. we cons«der only queries on a database consisting of
one table. A System R query on a singie table i.ads its result by two subsetting operations on
the table. The first extracts a subset ot the rows of the table: the second projec:s a subset of

the columns onto the extracted rows. The query has the following format:
SELECT <result> FROM <table> WHERE <expression> ;

{Table> names the single table involved in the retrnieval. <Expression> 1s a boolean

expression. characternizing the rows to be extracted. which 1s evaluated once for each row in
the table. When evaluating the expression for a given row. references to columns are
replaced by the value of the table entry for the specified row ang column. Rows for which the
expression is True are extracted. <Result> specifies the information desired. It names the

columns of interest, which are then projected onto the extracted rows.

For retrieva! in a du. the table name and desired information are superfiuous: there is
only one table in the du and the result is always an implementation Implementation selection
therefore focuses on characterizing the implementations ot interest. The Library retrieval

operation reduces to a simphfied form of the relational database operation, with a single

subsetting operation selecting the rows (implementations) satisfying the characterization.

5.1.1 The Basic Proposal

A simple proposal for Select treats implemartaticn reteeval exactly like relational
database queries In csgence tha Library Select command s a filter:ing operation based on
the characterization. The input set 1s the set of impicmentations in the du. The result set is

| the subset of iImplementations that satisty the charactenzation.

Following the retimonal databaze analogy. oo define the characterization to be a

boolean vyicsion References to attnbute values are encoded in the characterization as




invocatons to the Library attribute reading operations ReadAttribute and
ReadAttributeOnSet. described in section 4.2 4. ReadAttribute returns a copy of the value of
an attribute on a single implementation; ReadAttributeOnSet returns mappings from

implementations to coptes of their attribute values.

Select iterates over the set of implementations in the du. examining each one in turn.
The implementation being evaluated is called the current implementation. A special symbo!
* 1s used in a characterization to refer to the current implementation Thus.
* Cattribute-name>, a sugar for ReadAttribute(*, <attribute-name>). instantates an
attribute reference with the value of the attribute at the current implementation. An
implementation satisfies the characterization and is retrieved if the characterization's value is

True when evaluated with respect to the implementation.

The semantics of this approach to selection can be summarized by the following

pseudo-code:

Let C be the characierization
Let the input set IS be the set of implementations in the du
Let the result set RS be the empty set
For each implementation | in IS do
Evaluate C with * bound to |
It C is True then insert | into RS
End For
Retrieve the imptementations in RS

Note that the characterization can be arbitrarily complex. Because multiple
implementations may share an identical attribute, a characterization specifying a single
property may not identify a unique implementation. More than one property may be needed
to isolate a particular implementation. A characterization specifying several properties may

be viewed as a form of composite name, containing boolean subconditions representing

each of the properties. For example, a user retrieving an implementation with a particular




algorithm and optimized tor space could specity a charactenzation with two subconditions

joined by a boolean And operator.

5.1.2 Examples

In this suction. we discuss the retrieval of implementations from a du with five
implementations ang three attribute classes. Figures 5-1 and 5-2 show two views of the set of
mplementations and their attributes. The tormer diagrams the du. using numbered circles to
represent implementations and directed darcs to mark supersess:on relations. The latter
depicts the single table relational database model of this set. Its rows, columns, and entries
represent implementations, attribute classes, and attribute values. respectively. We use the
du shown in these figures as the context for two sample invocations of Select descrit«d

below.

To retrieve the implementation created by Jim after 3/13/83. the user submits the

following command to the Library:
SELECT * CreatedBy = User # Jim & *.CreationDate>Date # 3/13/83

The du s imphed by the context in which Select is invoked. CreatedBy and CreationDate are
mandatory attnibutes. * CreatedBy and *.CreattonDate represent invocations of
ReadAttribute. reading attribute values for the current implementation. The notation
{typename> & <text> denotes a user-defined type Iiteral. The operator & invokes a boolean

And operator.

in response to the above command, the Library examines each of the five
implementations (in arbitrary order)  Evaluating the charactenzation for Implementation 1
invokes ReadAttrbute to copy :ts values for CreatedBy and CreationDate  John s not equal
to Jim and the date ' not later than the 13%th sa the expression’'s value with respect to

Implemert (on 1as Falne mphementation 1 does ret satishy the charactenzation and is not




CreatedBy: John
CreationTimestamp: 3/1/83
Tablesize: 256

CreatedBy: John CreatedBy: John

Creatianimestamp: 3/2/83 CreationTimestamp: 3/16/83
Tablesize: 256 Tablesize: 512

CreatedBy: Jim
0 CreationTimestamp: 3/10/83
Tablesize: 512

CreatedBy: Jim

i o CreationTimestamp: 3/14/83
3 Tablesize: 512

Figure 5-1:A Sampie Du: Graph View

* . ] _CreatedBy | CreationDate | Tablesize
fmpler  -.iona | John 3-1.83 256
implem.e. tation 2 } John 3-2.83 256
implementation3 | Jim 3-10-83 512
Implementation 4 ] Jim 3-14.83 512
Implementation 5 | John 3-16-83 512

Figure 5.2:A Sample DU: Relational Database Model

retrieved. Neither are Implementations 2, 3, or 5. Implementation 4, however, is retrieved
because the characterization expression's value is True when evaluated with Implementation

4's attribute values.




In another example. the user selects implementations with the argest tablesize:
SELECT * Tablesize - traxsize(d. Tablesize)

where Tablesize 1s an attnbute bound to integers 3 denotes the set of implementations in the
du. J.Tablesize s a sugar for the invocation icadAttnibuteOnSet (3. Tablesize). returning a
set of mappings from implementations in the du to copres of their values tor the Tablesize
attribute  Maxsize 1s a user-provided function. taking the set of mappings and returning the
largest of the attnbute values Implementations 3. 4. and 5 are retrieved because they all

have a Tablesize of 512 the largest valtue for Tablesize in the du

5.2 Problems With the Relational Database Approach

In this section. we identify three problems with the simple relational database appreach
described above Three succeeding sections (Sections 5.3 to 5.5) propose extensions to

each of the problems we discuss here.

5.2.1 Describing a Unique Implementation

In selecting ..n implementation. the user specifies the properties he would like the
retrieved tmplementation to possess. The relational database approach retrieves all the
implementations providhing thos2 properties. The user's goal 1s to provide a characterization
that umguely describes a single implementation. However, 1if he provides too general or too
specific a description the refational database approach may find either multiple or zero

matching impiementations.

+
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characterization is ambiguous: several implementations may satisty it. In this situation, a
r-trieval mechanism cannot recover on its own. Its only recourse is to consult with the user

for further assistance in selecting an implementation.

Retrieving zero implementations, on the other hand. is a consequence of over.
specilication. The user has specified too many properties: no implementation possesses all

of them. No implementation satisfies the user's request.

Over-specification can occur in two ways. One way marks an error condition. The
user requires the retrieved implementation to provide all the specified properties. No such

implementation -xists. Retrieval fails.

Over-specification also occurs when the user specifies more properties than he
actually requires. He specifies some inessential properties, properties that are desirable but
not necessary. He may be satisfied by an implementation providing only a subset of the
specified properties. Given that no implementation exists satisfying his full request, he is
willing to give up some of the properties specified by the characterization. This scenario is
probably very common. A user frequently views the properties comprising a characterization
as having various levels of importance; he assigns differing weights to them. We expect that
users will often specify some propenrties deScribing absolute requirements, others that he
views as important but not critical, and still others that are not particularly important by
themselves, but are primarily useful to disambiguate among the subset of a du's

implementations satisfying other more important properties.

For example, although he provides a characterization with properties specifying target
machine and optimization requirements, a ‘user may find unoptimized implementations
targeted to his machine acceptable. He requires that the target machine condition be met,

and would prefer that both properties were satisfied, but might be willing to forego
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optimization if no implementation exists with satistying both conditions. Optimization is a
secondary concern, of interest only it there exist several implementations targeted to the

specified machine.

To support the user in isolating a single implementation, a retrieval mechanism should
allow the user to express his perceptions of the relative weights of properties, and to identify
less important properties that can be eliminated if no implementation satisfies the full
characterization. In this way. the user can supply detailed descriptions, without risking
failure due to over-specification. A less important property can be used to select among the
implementations satisfying more important properties, but can be ignored or eliminated if no
implementations satisfy both the less important property and more important properties. |f
no implementation satisfies the characterization, the retrieval mechanism can try to select an
implementation using a subset of the characterization’s properties, eliminating properties
identified by the user an inessential. The user's view of the relative importance of properties

determines what subset of the properties to use.

The relational database approach cannot provide the above support because it uses a
single monolithic characterization. The individual properties specified by the user are not
represented explicitly as subconditions, but instead are buried within the characterization
expression as boolean subexpressions. They cannot be identified independently, assigned
relative weights, or selectively eliminated from the characterization. All properties are viewed

as having equal weight; none are considered inessential.

5.2.2 Supporting Standard Practices

A second failing of the relational database approach is that it does not incorporate

mechanisms commonly used in implementation identification. Existing programming
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environments use several standard mechanisms for retrieving implementations. For
example. one mechanism embodies the notion of defaults. One implementation is
designated as the standard, to be retrieved whenever a user requests an implementation, but
does not identify a particular implementation. Another common practice is based on the
observation that users seldom select an implementation that has been superseded by
another. Usually, if a user has a choice between two implementations. only one of which has
been superseded by another implementation, he chooses the unsuperseded version. Most
current programming environments support this practice using creation order to
approximate supersession relations, retrieving the most recently developed implementation

satisfying the user's requirements.

Because these practices are so widely supported by other programming environments
and have been found to be extremely useful, we believe they should be incorporated into the
retrieval mechanism for the CLU programming environment. They are used so frequently
that the user should not have to specify them explicitly. For example, the retrieval
mechanism should adopt the common convention that unless the user explicitly disagrees,
an unsuperseded impiementation is more desirable than a superseded but otherwise equally

acceptable implementation.

The relational database approach to retrieval does not incorporate these standard
practices. It supports them only to the extent that users can explicitly encode standard
practices as part of the characterization. For example, the user could use the convention
selecting unsuperseded implementations over superseded ones by specifying a condition on
the mandatory SupersededBy attribute as part of the characterization. This approach is

inadequate because it requires extra v}ork on the user's part to express practices used in

almost every retrieval operation.




5.2.3 Efficiency

The relational database approach of evaluating the characterization once for each
implementation in the du can be very inefficient under certain conditions. For example, if the

user specifies the characterization
*Size = Minsize(J.Size)

where J.Size invokes the operation ReadAttributeOnSet to collect the values of the Size
attribute on all implementations in the du. and Minsize is a user-provided function that takes
the set of implementation/attribute value mappings returned by ReadAttributeOnSet and
returns the smailest of the attribute values, then the smallest size is caiculated over and over,

even though its value does not change.

The inelticiency is due to the fact that the characterization contains a subexpression
not dependent on the current implementation. Because each iteration introduces a new
current implementation, values dependent on the current implementation, like attribute
references, vary as the selection mechanism iterates over the set of implementations in a du.
Computations not dependent on the current implementation, however, are constant over all

iterations. It is inefficient to recompute them unnecessarily.

5.3 Support for Composite Characterizations

In this section we present an extension to the relational database approach that
addresses the first of the three problems enumerated by Section 5.2. The problem concerns

finding the correct level of detail for describing a unique implementation. A general

~ description may be ambiguous, matching multiple implementations; a detailed description

specifying more properties, however, may result in over-specification, causing no

satisfactory implementations to be found.
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Our solution replaces the monolithic description of the relational database approach
with a composite characterization composed of subconditions called criteria. The composite
form allows users to express their perceptions of the relative weights of properties
comprising the characterization. and to designate less important properties that can be
ignored if no implementation satisfies the complete characterization. Support for detailed
descriptions containing properties identified as inessential helps the user in describing a
unique implementation because the inessential properties are considered only to help
disambiguate among otherwise acceptable implementations. They cannot cause failure due

to over-specification.

Each criterion contain.® a subset of the properties specified by the characterization.
There are two kinds of criteria. One single criterion may be designated the requirements
criterion of a characterization. A requirements criterion specifies minimum conditions that
must be satistied by any acceptable implementation. All other criteria are called preference
criteria. Preference criteria express properties that are desirable but not necessary. They
represent inessential properties that can be ignored if no implementation can be found
satisfying all the properties specified by the characterization. Preference criteria are used to

discriminate among the implementations satisfying the requirements criterion.

For example, a user requiring an implementation targeted to a particular operating
system could request particular algorithms and/or performance properties as preference
criteria. The requirements criterion would specify the target operating system. If only one
implementation targeted to the appropriate operating system exists, it is retrieved regardless
of whether or not it satisfies the preference criteria. If multiple implementations satisty the
requirements criterion, but none satisfy all the preference criteria as well, then a subset of the
preferences is used to select an implementation from those that satisfy the requirements

criterion.
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A priority mechanism on criteria aliows users to express the relative importance of
properties. Each criterion corresponds to a level of priority. Properties viewed by the user as
having equai weight can be combined in a single criterion; properties of differing weights are
assigned to distinct criteria. Note that only one requirements criterion is needed because all
required properties are equally important. Inessential properties may not all be of equal
weight, however, so multiple preference criteria may be needed. Prelerence criteria are
ordered by the user to reflect the relative weights of the properties they express. By

definition, the requirements criterion is of greater priority than any of the preference criteria.

By assigning priorities to criteria, the user controls which subset of the properties
expressed by a characterization should be used to select an implementation if no
implementation satisfies the complete characterization. Properties expressed by higher

priority criteria are considered before those expressed by lower priority criteria.

? 5.3.1 A Proposal For Composite Characterizations

We extend the relational database approach to support detailed descriptions
containing identifiably inessential properties as follows. A characterization is defined to be a
composite form of description partitioned into subconditions called criteria. it contains an
arbitrary number of preference criteria ordered by decreasing priority and at most one
special criterion designated a requirements criterion. The requirements criterion, if it exists, T
is of greater priority than all of the preference criteria. Like the characterization of the
relational database model, each criterion is an arbitrary boolean expression used as a filter.
References to attribute values are encoded as calls to the Library attribute reading functions,

ReadAttribute and ReadAttributeOnSet.- ﬂ

The selection mechanism uses a model of repeated subsetting, with each of the H
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characterization's component criteria corresponding to one subsetting operation. Each
criterion is used as a filter to disambiguate among the set of implementations satisfying the
previous criteria, reducing the number of implementations still under consideration. Criteria
are applied in order of decreasing priority, with the result set of one criterion serving as the
input set of the next. Thus, the requirements criterion is applied to the set of
implementations in a du. yielding the set of implementations satistying the requirements. The
first preference criterion filters the result set of the requirements criterion. Each succeeding

criterion filters the resuit set of the previous criterion.

Figure 5-3 traces selection of implementations using a characterization comprising
three criteria. The outermost circle (labeled 0) circumscribes the set of implementations in a
du and serves as the input set for the highest priority criterion. The circle labeled 1 is its
result set and also serves as the input set to the criterion of next highest priority. The circle
numbered 2 is the result set of this criterion and the input set to the remaining criterion.
Finally, as the result set of this final criterion, the innermost circle circumscribes the set of

implementations retrieved.

Each subsetting operation corresponds to a single criterion. We call the criterion
being processed the current criterion, and its input and result sets are the current input set
and current output sel. In contrast to the relational database model, the input set of a
criterion is not predetermined. In the relational database model, the input set of the single
expression characterization is the set of implementations in the du and can be referenced in
the characterization as J. In this more complex approach, however, the input set of a
criterion is computed based on previous criteria. There is no way to statically name the

current input set. The special symbol ** can be used in a criterion to refer to the

dynamically determined current input set.




{Implementations in the du} = IS,

RS, = {Retrieved
implementations}

0

Figure 5-3:Tracing a Selection Operation

Each subsetting operation has two parts. The first is a filtering operation on the
current input set using the current criterion. This operation is completely analogous to
filtering the set of implementations in a du using the characterization in the relational
database approach. The current criterion is a boolean expression, evaluated once for each

implementation in its input set. The implementation being evaluated is called the current
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implementation and can be referred to in the current criterion with the special symbol *. An
implementation satisfies the current criterion and is included in the current result set it the

criterion’s expression is True when evaluated with respect to the implementation.

The second part of the subsetting operation tests the current result set. If the current
result set is not empty. then the subsetting operation yields the current result set. If it is
empty. we say the current criterion is void. The Library's treatment of a void criterion

depends on whether the criterion specifies requirements or preferences.

Selection fails if the result set of the requirements criterion is empty. The requirements
criterion specifies minimum standards for accepting an implementation. If no

implementation meets these standards, the Library cannot possibly select one.

Preference criteria, on the other hand, are only guides for narrowing down the number
of choices. They express inessential properties. Presumably all the implementations that
satisfy the requirements criterion are acceptable to the user; the preference criteria merely
help to find the most attractive of the acceptable alternatives. A void preference criterion
should not cause the selection operation to fail. An empty result set for a preference
criterion merely indicates that the particular criterion cannot contribute to determining the

best choice of implementation.

In our proposal, a void preference criterion is ignored. it has no eftect on the selection
process. No subsetting occurs as a result of a void preference criterion. Instead, the current
input set is passed along as the current result set, as if all of its implementations had satisfied
the void criterion. Thus, the input set of the succeeding criterion is the same as the input set

of the void criterion.

Note that the implementation forming the singleton result set of any criterion is
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retrieved regardless of whether or not the criterion is the last in the characterization. For
each succeeding criterion, either the implementation satisfies the criterion, in which case its
result set is the singleton set, or the criterion is void. Since no criteria precede the
requirements criterion. the succeeding criterion must be a preference, so the singleton input
set is substituted for an empty result set. In either case, the succeeding criterion

rubberstamps the implementation, passing the singleton set along as its result set.

If the result set of the lowest priority criterion is not a singleton set, the Library is

unable to retrieve a unique impiementation. ts only recourse is to consult with the user.

5.3.2 Summary

A characterization is an ordered set of components called criteria. The order defines
the relative priority of criteria. The highest priority criterion may be designated a
requirements criterion; all others are preference criteria. Each criterion is an arbitrary

boolean expression.

The following pseudo-code summarizes the semantics of our proposal for

implementation retrieval using composite characterizations.

% Requirements criterion filter
Let C be the characterization
Let IS be the set of implementations in the du
Let RS be the empty result set
For each implementation | in IS do
Evaluate the requirements criterion R of C with * bound to |,
** bound to IS
if R is True then insert | into RS
End For
If RS = the empty set then selection fails

% Preference criteria filters
For each preference criterion Pin C do
Letthe inputset IS := RS
Let IRS be an empty intermediate result set
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For each imptementation | in IS do
Evaluate P with * bound to |, ** bound to IS
. It Pis True then insert | into IRS

End For
If o{IRS) > 0then RS : = IRS
EiseRS:= IS

End For

% Check for non-unique result
it o(RS) > 1 then consult with the user
Eise retrieve the implementation in RS

The first half processes the requirements criterion, collecting the acceptable

implementations in the result set RS and failing if no implementations meet the requir  ‘ents.

The second half iterates through the preference criteria. The vanable IS. initialize  ‘ith the

result set of the requirements criterion, is updated to reflect each preferenc iterion

applied.

5.3.3 Examples

Figure 5-4 depicts the set of implementations in a sorting abstraction and some of the
implementations' attributes.

A selection command with the characterization

Requirements:  *.TargetMachine = Machine # Vax
Preferences: * Color = Color # Red
*.Project = Project # QRS

selects implementations 2, 4, and 5. The requirements criterion eliminates implementation 3,

leaving implementations 1, 2, 4, and 5 as the set of acceptable implementations to be

selected among by the preferences. The first preference, *.Color = Color # Red, is applied

to those four impiementations. None of them, however, have Color equal to Red, so this
criterion’s intermediate result is void. Its input set is substituted for its empty result set. It

does not contribute any information to disambiguating among the implementations satisfying
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Target: Vax
Project: XYZ
Alternative: Quicksort
Optimization: None
Color: Green

Target: IBM

Project: QRS
Alternative: Quicksort
Optimization: None

Target:Vax Color: Blue

Project: QRS

Alternative: Quicksort

Optimization: Speed

Color: Green
Target:: Vax
Project: QRS

o Alternative: Bubblesort
Optimization: None
Color: Blue

Target: Vax
Project: QRS

e Alternative: Bubblesort
Optimization: Speed
Color: Blue
DefaultForDU: True

Figure 5-4:A Sorting Abstraction

the criteria of higher priority, so it is ignorec. The second preference is applied to the same
set of impiementations. Of these, implementations 2, 4, and 5 satisfy the criterion. Because
this i1s the last preference, the Library must consult the user to determine which of these

implementations to retrieve.

Suppose the user adds more preferences, making the characterization

Requirements;  *.TargetMachine = Machine # Vax
Preferences: *.Color = Color # Red
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*.Project = Project # QRS
] *.Alternative = “Quicksort"
3 * Optimization = Optimization # Speed
implementations 2, 4, and 5 form the input set {0 the third preference criterion. Its result set
is a singleton, consisting of impiementation 2. The last preference criterion is void, so its

input set replaces its empty result set. Thus, it rubberstamps the single implementation it

received. Implementation 2 is retrieved.

5.4 Incorporating Common Practices

The second of the three problems identified in Section 5.2 is that the relational
database approach does not provide adequate support for practices commonly used in
implementation retrieval. Although these practices have consistently been found very useful,
the relational database approach provides no convenient mechanism for including them in

implementation identification operations.

We propose that commonly used practices be incorporated directly into the retrieval
mechanism. Because the common case has the user employ these practices, we propose
that they be invoked automatically by the retrieval mechanism, relieving the user of the
burden of explicitly invoking them himself. Library options can be provided to allow users the
ability to suppress invocation in the rare cases when he does not want to observe these

practices.

In this section, we identify two classes of mechanisms that are commonly used in !
implementation retrieval. We propose three filtering operations based on mandatory
attributes that support these practices. Subject to user control by Library options, these

filters are used to select among the set of implementations satistying a characterization. !
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Thus. they constitute three additional subsetting operations applied to the result set of the

last criterion in the characterization.

Note that the filters we propose are only examples. We have chosen filters that
embody two common practices. If experience shows that other conventions are observed
frequently by users retrieving implementations, then new automatic filters couid be added to

incorporate these practices.

5.4.1 Using Supersession Relations

The supersession filter is based on the observation that users seldom select an
implementation that has been superseded by another. it reflects a common practice in whiéh
most current programming support environments, using creation order to approximate
supersession, automatically supply the most recent version. Taking the characterization's
result set as its input set, the supersession filter eliminates implementations superseded by
others in the input set. One implementation can supersede another either directly or
ransitively through another implementation or implementations. If the supersession filter's
input set contains an implementation superseded by another, the superseded

implementation is eliminated from consideration.

Throughout this thesis, we have displayed the set of implementations in a du as a
directed graph, with the arcs marking supersession relationships. Using this view of a du, a
characterization's resuit set is the subgraph composed of those nodes satisfying the
characterization. Figure 5-5 depicts the result set of some characterization. Continuous
arcs represent explicit supersession relations. Dotted arcs represent supersession relations
derived by transitivity through an implementation or impiementations not contained in the

result set of the characterization. The supersession filter eliminates all non-leaf nodes from
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the set of implementations under consideration. Its result set contains multiple

implementations if the supersession graph includes branches or disjoint subtrees.

A Library option is provided to give the user explicit control over the supersession
filter. If the option is set, the filter's result set contains the leaf nodes as described above. |f
not, the result set is defined to be the entire input set (i.e.. the result set of the
characterization). Because cycles in the supersession relation are prohibited by the
definitions of the supersession attributes, it is impossible to get an empty resu!t set from this

filter. given an non-empty input set.

Returning to the Figure 5-5, we see that the characterization's result set consists of
implementations 1 through 3, 7, 8 10, and 12 Implementation 10 supersedes
implementation 1 transitively through at least one implementation not contained in the figure.
Similarly, implementation 12 supersedes implementation 8. I the Library option is set to
allow filtering based on supersession, the result set of the supersession filter contains the
three leaf nodes, implementations 3, 10, and 12. If the option is not set, non-leaf nodes are

returned as well; the result set is the full graph shown in Figure 5-5.

5.4.2 Using Defaults

After the supersession filter, two filters based on defaults are applied. Both are subject
to user control via Library options. Because of constraints imposed by the Library on the
mandatory attributes used by these filters, these two filters yield the same result when
applied in either order: they are commutative. For simplicity, we assume the filter using the

DetaultForDU attribute is applied first.

The first filter uses the DefaultForDU attribute and takes the result set of the

supersession filter as its input set. If the option controlling this filter is set and the input set
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Figure 5-5:Supersession's Role in Selection

contains the implementation whose value for the mandatory attribute DefaultForDU is True,
then the result set is the singleton set consisting of that implementation. Otherwise, the

filter's result set is the same as its input set.

The second filter is applied to the result set of the DefaultForDU filter. f all the
implementations in its input set are part of the same alternative, it selects the default
implementation for the alternative. More precisely, if the option controlling the filter is set,
and all the implementations in its input set share the same value for the mandatory attribute
Alternative, and the input set contains an implementation whose value for the mandatory
attribute ' . “orAlternative is True, then the result set is the singleton set consisting of

thatimp - “therwise, the lilter's result set is the same as its input set.

If applying . ‘. three automatic filters does not yield a unique implementation, the user

is consulted. At this point, the Library has no more information that can be used to deduce
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the user’s intention. Only the user can determine which of the several implementations

satisfying the characterization. supersession. and defaults fiiters best suit his needs.

5.5 Optimization

The third problem identified in the relational database approach is inefficiency.
Computations not dependent on the current implementation are repeatedly performed. once
for each implementation being evaluated. This recomputation is unnecessary because only

values dependent on the current implementation should change.

Searching for a solution, we turn again to the example of System R. System R queries
limit the functions that can be invoked from the boolean expression corresponding to the
characterization to a small set of predefined functions. Because the behavior of all these
functions is known, System R can safely perform optimizations eliminating superfluous

recomputations.

Our proposal, however, allows arbitrary invocations to appear in the characterization
expression. Because the behavior of arbitrary invocations cannot be predicted,
optimizations cannot be done safely. In particular, it is not safe to optimize characterizations
invoking functions with side effects. The result set of the characterization invoking the
function having side effects only once may be different from the result set if the function is

invoked repeatedly.

To support optimization and eliminate unnecessary computation, the Library selection
mechanism prohibits side effects from invocations in the characterization. Without side
effects, the Library can isolate subexpressions not dependent on the current implementation,

compute their values once, and use the values to evaluate the characterization with respect
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to each implementation. Although this places a restriction on the functions that can be
invoked in the characterization, we believe it is justifiable, not only for the sake of efficiency,
but also because side effects are undesirable here. Selection shouid be a benign operation,
evaluating each implementation solely on the basis of its properties. The decision to select a
given implementation should not depend on whether or not other implementations have

already been evaluated.

Note that because the current input set of a criterion is computed dynamically using
the higher priority criteria as filters, subexpressions of a criterion not dependent on the
current implementation but dependent on the current input set cannot be computed until all
tne higher priority criteria have been processed. Subexpressions not dependent on either

can be computed betore any of the characterization has been applied.

5.6 Summary of Selection Semantics

Combining the mechanisms proposed in sections 5.3, 54, and 5.5 leads to the

selection process summarized below.

% Requirements criterion filter

Let C be the characterization

Let IS be the set of implementations in the du

Let RS be the empty resuilt set

Let E1. Ez,... be the values of any subexpressions of the
requirements criterion R of C not dependent on the current
implementation

For each implementation | in 1S do
Evaluate R with * bound to |, ** bound to IS, and using the

values E,, E,,.... as necessary

It R is True then insert | into RS

End For :

It RS = the empty set then selection failg

% Preference criteria filters
For each preference criterion P in C do
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Let the input set IS : = RS
Let IRS be an empty intermediate result set
LetE,. E2.... be the any subexpressions of P
not dependent on the current implementation
For each implementation | in IS do
Evaluate P with * bound to |, ** bound to IS, and using
the values E . E2.... as necessary
If | P is True then insert t into IRS

End For
If o(IRS) > 0 then RS : = IRS
EiseRS:= IS

End For

% Supersession filter
If supersession option set then
IS:= RS
For each implementation lin IS do
If 1 is superseded by any other implementation in IS then
Delete | from RS
End For

% DefaultForDU filter
if default for du option set then
IS:= RS
For each implementation 1 in IS do
it 1.DefauitForDU = True then
RS : = the singleton set containing !
End For

% DefaultForAlternative filter
i defauit for alternative option on then
iIS:= RS
For each implementation 1 in IS do
if 1.DefaultForAlternative = True then
RS : = the singleton set containing |
End For

% Check for non-unique result

If o(RS)>1 then consult the user
Else retrieve the implementation in RS
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5.7 Coping With Unspecified Attribute Values

The relational database model that is the basis of our proposal requires each
implementation to have an attribute belonging to every attribute class for which another
implementation in the du has an attribute. This requirement conflicts with the goal of name
independence. allowing users to provide an attribute for one impiementation without
considering other implementations in its du. In Section 5.1, we borrowed a standard
relational database solution 10 this problem and introduced a unknown attribute value,
represented in the Library by a special object calied Nil. The unknown value acts as a
placeholder for the values of unspecified attributes. By substituting for values of attributes
not explicitly provided by the user, Nil supports the relational database constraint requiring

every implementation to have an attribute from every class.

Up to this point in the chapter, we have ignored the question of unspecified attributes.
Our proposal was based on the simplifying assumption that no attributes were Nil-valued. In
this section, we consider the consequences of supporting attributes with unknown values,
and propose an extension to our retrieval mechanism to handle references to Nil-valued

attributes in characterizations.

Nil-valued attributes impact implementation retrieval because they indicate missing
information. An attribute records an implementation's behavior with respect to some
property. If an attribute is Nil-valued, then its behavior with respect to that property is
unknown. How can an implementation be evaluated if a characterization specifies a

condition on a property for which the implementation’s behavior is unknown?

To determine what behavior is desirable, we consider three examples. The first

examines a simple criterion, the others more complex criteria composed of multiple
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properties joined by boolean operators. The examples are based on a du with four
implementations and two of their attributes, shown in Figure 5-6. CreatedBy is a mandatory
attribute bound to usernames; Subsystem is a string-valued optiona! standard attribute. Note
that implementation 2 does not have attribute Subsystem; its value is Nil. Figure 5-7 depicts

the relational database model of this du.

CreatedBy: John
Subsystem: A

@ CreatedBy: Bill

CreatedBy: John
@ Subsystem: 8

Figure 5-6:The Nil Attribute Value: Graph View

| _CreatedB
Implementation 1 | John A
impiementation 2 | Bill 4
Implementation 3 ] Bill B
Implementation 4 | John 8

Figure 5-7:The Nil Attribute Value: Relation Database View

For the simple criterion
* Subsystem = "B"

the Library should retrieve only implementations 3 and 4. implementation 1 fails because it
has the wrong subsystem. Implementation 2, however, has no subsystem attribute. With no
information available, the Library must assume that the implementation does not satisfy the

criterion,
17




The criterion

* Subsystem = "B" & *.CreatedBy = User # Bill
cannot be evaluated for Implementation 2 because it has a Nil value for the Subsystem
attribute. One plausible interpretation is that Implementation 2 is not part of Subsystem B or
else someone would have recorded the fact in an attribute. The user does not want
Implementation 2 because it does not have a value for one of the conditions he is interested

in.

On the other hand, for
* Subsystem = "B" | *.CreatedBy = User # Bill

one could imagine the user is someone who can use any implementation created either by
Bill or for subsystem B. An acceptable implementation need not have both attributes. The
user would want to select both Implementations 2 and 3. despite the fact that Implementation

2 does not have a Subsystem attribute.

The three examples offer conflicting views of "correct” behavior in the presence of Nil.
The first and second assume a Nil value for a referenced attribute automatically eliminates an
implementation from consideration. A Nil value fails every condition. This is the approach
taken by relational databases. The third example, however, takes a more liberal view,
treating Nil as an unknown but not necessarily pathological quantity. itignores the Nif value,

using other subconditions to evaluate the implementation.

Either perspective is reasonable. The Library should support both, allowing the user to

determine which is appropriate to a given situation.

5.7.1 Treatment of Nil in System R

In System R, the operations that can be invoked in the characterization expression are
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limited to a predefined set of operations. They include boolean operations. arithmetic

operations, comparison operators and a few special operators like max and count
Treatment of Nif is included in the specification of these functions. For example, an
arithmetic comparison operator takes two integers and returns a boolean. But if one or both

of its inputs denotes an attribute whose value is Nil. it returns False.

The characterization expression may take on any of the values True. False. or Nil. A

row is extracted only if the expression's value is True with respect to it.

5.7.2 A Goal for the Library

Unlike System R, characterization expressions in the Library selection mechanism may
invoke arbitrary functions. Invocations are not restricted to0 a predefined set. Adopting
System R’s solution would mean requiring any function invoked from a characterization and
depending on an astribute value to be prepared for Nil arguments. Because Nil is a special
value not contained in any type, functions used in characterizations would therefore have to

be written with arguments of union types (uniting Nil with T for an argument of type T).

This approach i$ unacceptable for a number of reasons. First, it unreasonably burdens
the user, requiring him to determine for each function invoked in a characterization what
behavior is desired in the presence of Nil arguments. Second, it complicates the code he
must write. Each function must not only perform its normal computation but must also
handle exceptional conditions due to Nil arguments. In particular, the user must provide two
functions if different circumstances require a different response to Nil-induced exceptions.
Finally, since many attributes will be bound to built-in types, the built-in types must be

modified to accept Nil.

Our goal is to contain Nil at the Library interface. User functions should not have to




cope with Nil; they should be able to assume that. if they get invoked. all their arguments are

of the correct type. The Library can “trap” Nil values when the attribute reading operation
returns. User functions depending on an attribute reference should only be invoked if the

value is not Nil.

5.7.3 Evaluating Implementations in the Presence of Nil

in this section, we propose an extension to our retrieval mechanism that allows
implementations to be evaluated despite missing information and Nil attribute values. The
basis of our proposal is a modified definition far criteria, using an expression in three-phase
logic, with values True, False and Nil. Three-phase logic operators joining subconditions
represented by boolean expressions act as firewalls, controlling the propagation of Nil
between subconuitions. An implementation satisfies a criterion if the expression’s value is

True with respect to it. Neither False nor Nil are acceptabie.

To prevent users fram having to deal with Nil, we say all functions preserve Nil. If any
of their inputs are Nil, then all of their outputs are automatically assumed to be Nil. This
allows the Library to trap Nil-valued arguments and avoid invocation of functions expecting

non-Nil arguments.

When the Library encounters an invocation to the attribute reading operation
ReadAttribute. it checks to see if the attribute has been applied to that implementation. if it
has, the Library makes a copy of the value and continues to evaluate the expression. If it has
not, the value of the attribute is Nil. The outputs of all functions depending on the attribute
value are assumed (without execution) to be Nil. For example, if the attribute A were not
applied to an implementation, then its value would be Nil. in evaluating the criterion

expression

*A=68*B=7
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the Library traps the Nil value of attribute A in the reading operation *.A. Nitis an input to the
integer Equal operation, so its result 1s assumed to be Nil. Preserving Nil. the boolean And
operation also returns Nil, yielding a Nil result for the expression and eliminating the

implementation from selection.

5.7.3.1 Three-Phase Logic Operators

Three special operators, Intersect, Union. and Tilda. are pravided to manipulate three-
phase logic values. They are the only operations that do not preserve Nil. Treatment of Nil is
explicitly a part of their specification and they are executed regardless of whether or not an

argument is Nil.

The three operators parallel the boolean operators And, Or, and Not, exhibiting
precisely the same behaviors for True and False operands. Nil represents an unknown truth
value. It is assumed to be either True or False, but it is impossible to know which. Three-
phase operations involving Nil can be evaluated by converting them to boolean expressions
and instantiating Nil with True and False. If the corresponding boolean operation has the
same truth value result when Nil is replaced with both True and False, then the three-phase
expression has the same truth value result. If instantiating Nil with True and False yields
ditferent values, then the three-phase expression has the unknown truth value, Nil. For
example, False Intersect Nil is False because both False And True and False And False yield
Faise. True Intersect Nil, however, yields Nil since True And True does not equal True And

False.

Intersect, Union and Tilda, written N, U and ~, correspond to boolean And, Or and

Not, respectively. The complete truth tables for the three-phase logic operators foliow.

[ 1 L S S U [T F L 1=
T | T F L T |1 1 71 T|F
F | F F F F T F 1 FT
1L F 1 L ]1 11 1] 1
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5.7.3.2 User Control of Nil

The three-phase operators allow users to controi the effect of Nil n criteria by
controlling propagation of Nil from one subcondition to another. In an expression consisting
of two subconditions joined by a three-phase logic operator, a Nil value for one propagates
beyond the subcondition only if the truth value of the expression cannot be determined from
the other subcondition. The three-phase logic operator isolates the effect of Nil to the
subcondition in which it appears. For example, a merge operation evaluates each
implementation independent!y with respect to each of the subconditions. An implementation

satisfies the expression if either of the two subconditions are True. The criterion
*A=6UU *B=7

retrieves an implementation with a value of 7 for attribute B but for which attribute A had not
been applied at all. The Library traps Nil at the reading operation *.A, fercing a Nif result for
the dependent integer equal operation. The union operation, however, acts as a firewalil
against that Nil, preventing it from propagating farther in the expression. Because the other

subexpression, *.B = 7,is True. the implementation satisties the criterion.

Both three-phase logic operators and boolean operators are needed to offer the user
complete contro! over the effect of Nil. boolean operators are used to join two subconditions
viewed by the user as being integrally bound together; three-phase logic operators join
subconditions that may be evaluated independently and may compensate for each other. We

return to the examples of Section 5.7 to demonstrate use of the two kinds of operators.

To get the strict behavior shown in the second of the three examples. the user uses

boolean operators:
* Subsystem = "B" & ".CreatedBy = User # Bill

Implementation 1 fails because it has the wrong Subsystem value; Implementation two fails
bicause the expression evaluates to Nil as a result of the missing attribute; Iimplementations
3 and 4 satisty the criterion.
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To get the more liberal behavior of the third example, the user uses three-phase logic

operators:
*.Subsystem = "B" U *.CreatedBy = User # Bill

implementation 1 fails because it has the wrong Subsystem, but Implementations 2, 3. and 4
all satisfy the criterion. Implementation 2 has a Nil value for Subsystem which impiies a Nil
value for the String$Equal operation. The union operation, however, keeps the Nil value's
effect local to one subcondition. Since the other subcondition's value is True the

implementation satisfies the criterion.

5.8 Example

This section presents an example selecting an implementation for a set abstraction.
Figure 5-8 depicts a set of twelve implementations in the abstraction’s du. The
implementations are partitioned into three alternatives based on data representation. list,
t{ree, and characteristic vectors. In the vector alternative, Implementations 4 through 6 trace
debugging history; Implementations 9 and 10 do the same for the tree alternative. The list
alternative, however, has a more complex structure. Implementations 1 through 3, 11, and 12
represent sets as unordered lists. Implementations 11 and 12 check for and eliminate
duplicates at insertions; Implementations 1 through 3 do not. Sorted lists are used in

implementations 7 and 8.

The figure also shows some of the attributes applied to these implementations.

CreatedBy, Alternative, DefaultForAlternative, and DefaultForDU are mandatory standard

attributes defined in Section 4.5. Project, Subsystem are string-valued optional standard
attributes. LanguageSubset is a customized attribute bound to a type of the same name.

DeletionWork give a gross measure of how difficult it is to do a deletion in an given 3
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Figure 5-8:Retrieval in a Set Abstraction

CreatedBy: Bill
Aiternative: List
DeletionWork: Medium
LanguageSubset: NoExits

CreatedBYy: Bill
Alternative: List
DeletionWork: Medium
LanguageSubset: NoExits

CreatedBy: Jim
Allernative: Characteristic Vector

CreatedBy: Jim
Alternative: CharacteristicVector

Created By: Jim
Alternative: CharacteristicVector
DefaultForDU: True
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CreatedBy: Bill
Aiternative: List

CreatedBy: Bill
Alternative: List

e DeletionWork: Hard

CreatedBy: Jim
LanguageSubset:
NoAnys

CreatedBy: Bill
Alternative: List
DeletionWork: Medium

CreatedBy: Bill
Alternative: List

Deletion Work: Medium
DefautForAlternative: True

CreatedBy: Joe
Alternative: Tree

e Project: XYZ

Subsystem: ABC

CreatedBy: Joe

@ Alternative: Tree

Project: XY2
Subsystem: ABC
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implementation. Its type, Measure, is an enumeration type with values £asy. Medium, and

Hard.

Figures 5-9 to 5-15 trace the selection of an implementation for the Set abstraction du

using the following characterization:

Requirements: * Project = "XYZ" & *.Subsystem = "ABC"
)
* .CreatedBy = User # 8ill

Preferences: * Alternative = "List"
* LanguageSubset = LanguageSubset # NoAnys
* DeletionWork = Measure$Minimize(* *.DeletionWork)
Minimize is a function that yields the smallest attribute value for DeletionWork found on any
of the implementations in the criterion’s input set. The Library options for the automatic

filters tor supersession and the defaults filters are set. For the sake of readability, the figures

show only those attributes used in subsequent criteria.

The requirements criterion eliminates all the implementations in the vector alternative
plus implementation 3 in the list alternative because they satisfy neither of the subconditions
joined by the union operator. Implementations 9 and 10 meet the Project and Subsystem
subcondition; Implemantations 1, 2, 7, 8, 11, and 12 meet the other. The union operator acts
like a set union operator, merging the results of these two subconditions. to yield the

implementations shown in Figure 5-9 as the criterion's result set.

The ftirst preference criterion, taking Figure 5-9 as its input set, eliminates the tree
alternative from consideration. Its result set, Implementations 1, 2, 7, 8, 11, and 12, is shown

in Figure 5-10.

No implementations satisfy the second preference criterion. Of the implementations in

its input set, only Implementations 7 and 8 have the attribute LanguageSubset. Neither of
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Alternative: List
DeletionWork: Hard

Alternative: List
DeletionWork: Medium

LanguageSubset: NoExits
@ Alternative: List

Alternative: List DeletionWork: Medium
DeletionWork: Medium
LanguageSubset: NoExits

Alternative: List
Deletion Work: Medium
DefautForAlternative: True

e Alternative: Tree
@ Alternative: Tree

Figure 5-9:Retrieval - Result Set of the Requirements Criterion

those have the correct value, so the expression's value is Faise. For all the others, the
expression yields Nil. The criterion is void and its input set is passed on as its result set

(Figure 5-11).

R b iy

The invocation of Measure$Minimize does not depend on the current implementation.
it is thus subject to optimization. Before considering any implementation, the Library
computes the value of the Measure$Minimize invocation. When evaluating the criterion
expression for each implementation in the input set, the previously computed value is

substituted for the invocation.
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DeletionWork: Hard

DeletionWork: Medium
LanguageSubset: NoExits

DeletionWork: Medium

DeletionWork: Medium
LanguageSubset: NoExits

Deletion Work: Medium
DefautForAlternative: True

Figure 5- 10:Retrieval - Result Set of the First Preference Criterion

For implementation 1 the expression yields Nil because Implementation 1 is missing
this attribute. The minimum value, as found by Minimize, is Medium, so Implementations 7, 8,

11, and 12, are selected (Figure 5-12).

The Supersession filter eliminates Iﬁwplementations 7 and 11 because they are
superseded by 8 and 12, respectively (Figure 5-13). The DefaultForDU filter does not apply
because the implementation with DefaultForDU set to True, Implementation 6, is not
contained in its input set. Its result set, shown in Figure 5-14, is therefore equivalent to its

input set.

Finally, the DefaultForAiternative filter yields a single implementation resuit (Figure

§-15). Both implementations in the input set are part of the list alternative and
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0 DeletionWork: Medium e DeletionWork: Hard

e DeletionWork: Medium Q DeletionWork: Medium

DeletionWork: Medium
DefaultForAlternative: True

Figure 5-11:Retrieval - Result Set of the Second Preference Criterion

o @ DefaultForAlternative: True

Figure 5-12:Retrieval - Result Set of the Third Preference Criterion

- -

implementation 12 has the value True for DetfaultForAlternative. Implementation 12 is the

result set of the whole selection process and is retrieved.
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@ DefaultF orAlternative: True

Figure 5-13:Retrieval - Result Set of the Supersession Filter

@ DetaultForAlternative: True

Figure 5-14:Retrieval - Result Set of the Du Default Filter

®

Figure 5-15:Retrieval - Result Set of the Alternative Default Filter
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Chapter Six

Program Composition

Chapter 5 explored the use of the attribute naming scheme in retrieving an
implementation of an abstraction from a du in the CLU Library. A more complex
implementation retrieval operation occurs in program composition, the process of

assembling a set of implementations into a working program called a composition.

in this chapter we explore a descriptive or non-procedural approach to program
composition for use in the CLU programming support environment. The user identifies an
abstraction for which a composition is to be built, and specifies the properties he would like
the composition to have. As w;th selecting an implementation for a single abstraction,
properties are represented by conditions on attributes. The Library determines what

abstractions are contained in the compasition and selects an implementation satisfying the

specified properties for each.

The Library Compose command embodies composition based on the properties of

programs and their constituent abstractions. It has the form
Compose <Composition-characterization)

Executed in the context of the du representing the top-level abstraction of the program,
Compose builds a composition for the abstraction and stores it in the abstraction’s du. The
<{Composition-characterization>, or characterization for short, describes the properties of the
composition built, and is used to determine which implementations of each of the component

abstractions to include. We say that the composition built satisties the characterization.

Using the Compose command as a basis, this chapter explores the descriptive
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approach to program composition. Composition is a complex problem, offering many
challenges that we cannot hope to solve in this document. It is not our intention to propose a
finely-tuned solution. Instead, we analyze the issues involved, presenting a simple solution

only as an aid to the analysis.

The chapter 1s organized as follows. An analysis of the issues raised by composition
occupies Section 6.1. Section 6.2 presents a simple proposal for Compose. Examples and
discussion of the proposal are contained in Section 6.3. Section 6.4 considers the problem
of moditying an already existing composition. Finally, Section 6.5 summarizes our findings

about composition.

6.1 An Analysis of Program Composition

Program composition consists of two subproblems: identifying the abstractions
comprising a program and selecting implementations for each. As will be shown below, in
the CLU programming support environment the first can be reduced to naming the top-level
abstraction of the composition by using information stored in the Library. The second

subproblem therefore comprises the heart of the problem.

6.1.1 Identifying the Component Abstractions

The abstractions comprising a program are the top-level abstraction, its subsidiary
abstractions, their subsidiaries, and so on. By invoking the Compose command in the
context of its du, the user identifies the top-level abstraction. The other abstractions can be

deduced from information in the Library.

Because two implementations of an abstraction may depend on different abstractions,
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the subsidiary abstractions of an abstraction depend on the choice of implementation. As
discussed in Chapter 2. the names of the abstractions referred to in the CLU source module
ot an implementation are bound to dus at compile-time. This information is saved in the

Library and provides explicit identification of subsidiary abstractions.

Thus, the Library can iteratively identify the abstractions comprising a program as it
selects implementations for the abstractions it already knows. Given the identity of the
top-level abstraction. the first step is 1o select an implementation for it. The Library can then
look up the dus representing the implementation’s subsidiary abstractions in the Library, and
select implementations for them. it can look up those implementations’ subsidiaries, and so

on.

Interleaving implementation selection with abstraction identification, therefore,

reduces the problem of identifying a program’s constituent abstractions to naming the top-

level abstraction. To determine the rest of the abstractions, Compose uses the information in
the Library to walk the dependency tree of the composition being built. Nested selection

operations choose implementations for each of the abstractions found in the dependency

tree.

6.1.2 Selecting Implementations

Chapter 4 analyzed implementation selection for a single abstraction. Implementation
selection in the context of composition is a more complex operation involving multiple
abstractions. This section analyzes this compound form to see how it differs from the single

abstraction case.

One difference between retrieval from a single du and retrieval for composition is that

Compose must select only compiled implementations. Because its function is to build an
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executable program. Compose cannot use an uncompiled version. Compose can retrieve a
compiled version either by considering only those implementations that have already been
compiled, or by considenng all existing implementations. and invoking the compiler if an
uncompiled implementation is selected. Although either approach is feasible. for simplicity

in this work we choose the former.

We would like Compose to parallel Select as much as is feasible. drawing on ideas
developed for selection in a single du. In particular, we would like to have Select and
Compose be compatible. sharing mechanisms and semantics as much as possible. Subject
to the restriction requiring selection of compiled implementations only, we would like every
implementation characterization accepted by Select to be a valid composition
characterization for Compose. and to have all characterizations accepted by both be treated

identically by the two operations.

We believe that implementation selection for a single abstraction and for composition
are very similar. For the single du case of Chapter 5, we modeled descriptions of
implementations as sets of properties and introduced issues such as weighting of properties,
default application of common properties, and the treatment of properties involving
unspecified values. The mode! and all the issues raised in Chapter 4 are relevant to
implementation selection as a part of composition. However, we identify two issues
introduced by composition that are not present in the single abstraction case. The following

sections discuss them in detail.

6.1.2.1 Partitioning Users’ Knowledge

To select an implementation of an abstraction, the user must understand what
implementations are available for use. But in a large program composed of many

abstractions a user often has varying levels of familiarity with ditferent parts of the program.
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Some abstractions he may understand very well, others only slightly. For example. each user
ts typically very familiar with the abstractions he is responsible for and less familiar with the
abstractions written by colleagues responsible for other parts of the program. For an
abstraction not created specifically for the user's project but instead borrowed from the store
of general-purpose abstractions available in the Library. the user is likely to have atmost no

information at all.

Because the user's understanding of the abstractions .1 his program is so varied, he
may want to describe distinct parts of the program at ditterenc wvels of detail. corresponding
to his levels of understanding. He could describe the abstractions he maintains using very
detailed descriptions of functional properties and perhaps even du-specific properties.
Knowledge of program evolution might also be important. For abstractions created by other
members of the proiect, he might use properties based on configuration management
information and would depend less on program evolution. For general-purpose abstractions
found in the Library, no implementation is tailored especially for his project. Hence, the user
would probably not attempt any description at all, relying instead on the Library defaults to

select the designated version.

Our conclusion is that a single description is inadequate. Because a user's
understanding of the abstractions in a program varies, he might want to partition the
description correspondingly.  Partitioning the description allows him to express the
properties of the program in the way he feels is most natural, providing the maximum amount
of detail for those parts of the program he understands well and less for the others. Without
a partitioning mechanism, he would be forced to maintain a uniform tevel of description
across all abstractions in the .Lysteﬁw, either omitting detail for the abstractions he

understands well or fabricating detail for the abstractions with which he is less tamiliar.
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6.1.2.2 The Library as a Non-Uniform Database

Not all attributes are relevant to all abstractions. Different attributes make sense in
different dus. For example. some attributes, like CreationTimestamp, are applicable to all
abstractions; others might be relevant only to a limited set of abstractions, such as the
abstractions developed by a single user, or comprising a particular program. Du-specific

attributes are the extreme case of this, applying only to a single abstraction.

We say that an attribute that is relevant to an abstraction is meaningfuf for the
abstraction and its du. An attribute that is meaningless has no reasonable valu 1 in the

abstraction's du. We say that its value for each implementation in the du is undefined.

Attribute meaningfuiness impacts program composition because the composition
characterization describes properties of the desired system in terms of attribute values. A
characterization referring to an attribute not meaningful for some du is not interpretable with
respect to the du because it specifies a property that doesn't make sense. In composition, if
the characterization refers to an attribute not meaningful across all abstractions in the
program, then the Library will not be able to interpret the characterization and select

implementations for all of the abstractions in the program.

One solution would prohibit the use of meaningless attributes in characterizations:
composition fails if the Library encounters a reference to an attribute not meaningful for
some abstraction in the program. We reject this solution for three reasons. First, 1t is
inflexible. constraining the set of attributes that can be used in composition to those
meaningful across all abstractions in the pragram. This approach discourages the user from
using du-specific attributes or attributes relevant to only a subset of the abstractions in a
program. To use such an attribute. the user ié forced to manufacture nonsensical values for

the attribute in abstractions where it is meaningless. Second, for every new abstraction




added to a program. the user must supply values for all the attributes used in composition of
the containing program. This could require significant effort. deterring the user from
modifying his program. it also conflicts with attribute independence, one of the six
characteristics of naming systems supporting implementation identification.  Finally, it
discourages the user from borrowing existing abstractions trom the Library because they

would not have program or project specific attributes defined.

Therefore, we need a way to interpret the characterization and select an
implementation from a du in the presence of meaningless attribute references. An intuitive
approach is to treat an undefined attribute like the unspecified attribute value discussed in
Chapter 4. Selection in the presence of meaningless attribute references is accomplished by
interpreting those references identically to references to unspecified attribute vaiues. This
approach is reasonable because, although undefined refers to attributes and abstractions
while unspecified refers to attributes and implementations, both represent unknown attribute
values. Properties based on either have unknown truth values and can be viewed as the

same.

However, one can easily imagine situations in which the difference between undefined
and unspecified values is significant. For example, consider a property based on an attribute
Project. recording the name of the project to which each implementation belongs.
Abstractions maintained in the Library as part of the general store available for use by all are
not created for a specific project; the Project attribute is meaningiess in their dus.
Implementations created specifically for a user's project are identified using this attribute. in
selecting an implementation from a du, the user wants to ignore properties based on the
Project attribute if it is not meaningful because those abstractions come from the general
store and are not project-specific. If the Project attribute is meaningful, the user wants to

select only from those implementations explicitly identitied as belonging to his project. In
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general, a user might want a property to matter only if it makes sense. That i1s. a property
referring only to meaningful attributes is satisfied only by implementations with explicitly

" specified values; all implementations satisfy properties relerring to meaningiess attributes.

An interesting problem concerns how to determine whether or not an attribute is
meaningful for some abstraction. Clearly, if any of the du's implementations have the
attribute applied. then it is meaningful. But suppose an attribute is not applied to any of the
implementations. Is there any way to know whether it is meaningful or not? Perhaps it is
meaningful. but none of the values for the implementation have been specified (and all are
therefore Nil). We claim that only the user can know what attributes are meaningful in the
context of a du. Any proposal for composition must also include a mechanism allowing the

user to declare which attributes are meaningful in a du.

6.2 A Simple Proposal for Compose

This section presents a simple proposal for Compose. Compose walks the
dependency tree of the program, selecting an implementation for each of its component
abstractions. Interleaving abstraction identification with implementation selection, as

gescribed in Section 6.1.1, allows Compcse to use the information about subsidiary

abstractions stored in the Library to identify the abstractions comprising the program.

For each of the abstractions encountered in a program's dependency tree, a compiled

implementation is selected hased on the composition characterization and on Library

R AL

options. Selection in the context of composition closely parallels the Select command, using
i a composite characterization cpiit into discrete conditions called criteria. Each criterion is
used as a filter on the set of implementations, resulting in a semantics of repeated subsetting

as each criterion filter is applied to the resuit of the previous criterion.
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A single mechanism, based on a mare complex form of criterion. addresses the two
1ssues (discussed in Section 6.1.2) distinguishing implementation selection for composition
trom the single-du case. Each criterion may have an associated applicabiity test that
controls whether or not the criterion is applied in a given du. The test is evaluated once for
each du in the dependency tree. Only those criteria whose applicability tests evaluate to

True are applied in a given du.

Applicabibty tests directly support a user's ability to partition a characterization to
accommodate his differing levels of knowledge. The effect of each criterion may be isolated
to a subset of a program’s abstractions by imposing an applicability test True only for those

abstractions.

Applicability tests aiso allow a user to control the interpretation of undefined attributes.
We use a single unknown value to represent both undefined attributes and unspecified
attribute values. Consequently, the default case views them as identical. To treat undefined
attributes difterently from unspecified attribute values, a user supplies multiple criteria with

applicability tests that check for attribute meaningfulness.

6.2.1 Walking the Dependency Tree

Compose uses information stored in the Library reccrding each compiled
implementation's subsidiary abstractions to simultaneously construct and walk a program's
dependency tree. Compose maintains a list of dus representing abstractions in the program
for which implementations may not yet have been selected. For each du in the list, it selects
a compiled implementation, fooks up the dus representing tha implementation’s subsidiary
abstractions in the Library, and adds them to the list. As its implementation is selected, the

du is eliminated from the list. Initially, the list contains only the du representing the top-level
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abstraction. given by the user as the cantext tor the Compose command The Library selects
an implementation for this abstraction and adds the the dus tor its subsidianies to the hist. As

their implementations are selected. their subsidiaries are added. and so on, deratively

selecting implementations for all abstractions in the dependency tree

Often an abstraction will be referenced by several abstractions in a program, causing it
to be added to the st repeatedly. as a subsidiary of each of the referencing abstractions.
Compose does not repeat selection each time. Instead, it checks to see if an implementation

has already been selected for a du. before proceeding with implementation selection.

Compose fails if an impiementation cannot be selected for one of the abstractions in :
the program. This occurs either because no implementations exist or because

implementations exist but none are acceptable to the user. |f impiementations exist. but the

normal selection process yields the empty set, the user is oftered the opportunity to select

one himself and prevent the failure.

6.2.2 The Characterization

Like the implementation characterization of the Select command, the composition

characterization is an ordered set of subconditions called criteria. The set of criteria is

partitioned into requirements and preferences. Although the implementation

e

& characterization of Select contains only a single requirements criterion, the composition

characterization might have an arbitrary number of requirements criteria as well as an

arbitrary number of preterence criteria.

Criteria for composition take a more complex form than in implementation

characterizations. The following grammar describes the legal criteria. Non-terminals appear

inside angle brackets. The vertical bar denotes or.




{criterion) . = {simple-criterion> | <qualified-criterion>

{qualified-criterion> :: = <applicability-test> = <{simple-criterion>

{simple-criterion> :: = {expression)

<applicability test> ;; = <expression>

Each criterion is either a simple criterion or a qualified criterion. ldentical to the

criteria used in implementation characterizations, a simple criterion is an expression that
evaluates to a three-phase logic value. A quaiified criterion consists of a nested simple
criterion and an applicability test used to control whether or not the nested criterion is

applied. We say the test qualifies the criterion. Both the applicability test and the nested

criterion are arbitrary three-phase logic expressions.

6.2.3 The Semantics of Implementation Selection

Patterned after implementation selection for Select, Compose applies a series of filters
to the set of implementations contained in a du, successively subsetting the set of
implementations under consideration. Compose first applies the requirements criteria as
filters, followed by the preferences criteria. Then, under user control via Library options, it
automatically applies the three filters based on y attributes described in Section 5.4: the
Supersession filter, the DefaultForDU filter, and the DefaultForAlternative filter. The user is

consulted if this selection process does not yield a unique implementation.

The two kinds of criteria are evaluated differently. A simple criterion, consisting of a
single three-phase logic expression, is analogous to the criteria of Select. It is evaluated
once for each implementation in the criterion’s input set, with the symbols * and ** bound to
the current implementation (the implementation being evaluated) and the current input set
(the criterion's input set), respectively.‘ Attribute values are read using ReadAttribute and
ReadAttributeOnSet. The result set, containing those implementations satisfying the

criterion, is the subset of implementations in the input set for which the expression evaluates
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to True. For the sake of efficiency. subexpressicns of the criterion expression not depencent

on the current implementation are evaluated once instead of repeatedly.

A qualified criterion contains two three-phase logic expressions. an applicability test
and a nested simple criterion. A qualified criterion i1s evaluated as follows. First, the
applicability test is evaluated. If the test yields True, then the nested simple criterion is
evaluated once tor each impiementation in the current input set, as described above, with the
result set containing those implementations for which the nested criterion evaluates to True.
If the applicability test does not yield True, the qualified criterion’s result set is the same as its
input set. In both expressions, attribute values are read using ReadAttribute and
ReadAttributeOnSet, and the symbol ** is bound to the criterion's input set. The symbol *
has no meaning in the applicability test but refers to the -urrent implementation in the nested

simple criterion.

Selection fails and the user is consuited if the result set of a requirements criterion is
empty. !f the result set of a preference criterion is empty, its input set is passed along as the

result set.

6.2.4 Unknown-Valued Attributes

We use the single unknown value Nil, defined in Chapter 4, to represent both
undefined and unspecified attribute values. Thus, the attribute reading functions
ReadAttribute and ReadAttributeOnSet return Nil for both meaningless attributes and
meaningful but unspecified attributes. All functions except the three.phase logic operators,

U, N, and ~, preserve Nil.c4

Two Library commands allow a user to contro! what attributes are meaningful in a

given du.
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Meaningful <Attributename>
is exeguted in the context of a du and tells the Library that the named attnibute i1s meamingful

in the du.
Meaningless <attributename>

is the opposite. telling the Library that an attribute previously considered meaningful in the
du is now meaningless. An attribute name for which neither command has been invoked is
assumed to be meaningless. We assume that any attribute applied to an implementation in a

du is meaningful for the abstraction, so applying an attribute to some implementation

automatically invokes the Meaningful command. The reverse. however. is not true.
Removing the last use of an attribute trom a du does not necessarily imply that the attribute is
no longer meaningful for the abstraction. Therefore, we make the user explicitly invoke the
Meaningless command to make an already known attribute meaningless for a du.

*

The Library maintains with each du a list of the attributes that are meaningful. The user

can access this information using a function provided by the Library.
isMeaningful (Attributename)

when called in the context of a du returns True if the attribute is meaningful in the du and

False otherwise.

6.2.5 Summary of Composition Semantics

This section presents pseudo-code summarizing the above proposal. The pseudo-

code is divided into three parts. The first is the top-level of Compose and gives the algorithm

fer walking the dependency tree of the composition being built. The second and third parts
7 are supporting procedures. One selects an implementation from a du given a

characterization: the other filters a set of implementations using a given criterion.

Let C be the characterization supplied by the user
‘ Let S be the set of dus tor which implementations have not yet been selected
‘ Let T be the set of dus for which implementations have already been selected
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Let U be the set of selected implementations

the singleton set consisting of the du tor the top-level abstraction
the empty set
the empty set

S
T:
u

For eachduDin Sdo
11D € T then delete D from S
Else select an implementation | from D by invoking Selectimplementation (D, C)
Insert linto U
Move DfromSinto T
Look up the dus representing subsidiary abstractions of |
and insert theminto S
End For
Build a composition from the implementations in U and store it in
the du tor the top-level abstraction.

S contains dus in the dependency tree for which implementations might not have been
found: T contains those for which implementations have already been retrieved. Initially, T is
empty and S contains only the root du. As each implementation is selected, its du is
transferred from S to T and the dus for its subsidiary abstractions are added to S. Retrieved
implementations are saved in the set U.The set T is checked before selecting an

implementation for a du in case one has already been selected.

Selectimplementation = Procedure (D: du, C: characterization)
Returns (I: implementation)

Let RS be the empty result set

Let IS be in the set of implementations in the du D

% Apply each criterion as a filter
For each criterion B do
RS : = Filter (IS, B)
if RS is empty then
If B required then selection fails - Consult the user
ElseRS:= IS
IS:= RS
End For

% Apply the automatic filters

if the Library Supersession option is set then
RS : = result set of Supersession filter applied to IS
IS:= RS
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1f the Library DetaultForDU option is set then
RS : = result set of DefaultForDU filter applied to IS
IS:= RS
If the Library DefaultForAlternative option is set then
RS : = result set of DefaultForAlternative filter applied to IS

% Test for Non-unique result -- RS contains the result of selection
If o(RS) = 1 then consult the user
Else return the implementation in RS

Given a du and a charactenization, this function tries to select an implementation
satisfying the characterization. It first applies the characterization's criteria as fiiters, then
applies the automatic filters based on supersession and defaults. If a requirements criterion
fiter yields the empty set. or if the selection process does not produce a single

implementation result, the user is consulted.

Filter = procedure (S: the criterion’s input set of implementations. B: Criterion)
returns (RS: result set)

% Qualitied Criterion

If B is a qualified filter with applicability test A and nested simple criterion G then
Evaluate A with ISbound to **
It A is True then RS : = filter (IS, G)
ElseRS:= IS

% Simple Criterion
Else RS : = the empty result set
For each implementation i in IS do
Evaluate B with IS bound tc ** and I bound to * ;
If Bis True then insert | into RS !
End For
e Return (RS) 4
y End Filter

N

This procedure filters a set of implementations using a given criterion. For a qualified

e ey

criterion it evaluates the applicability test, recursing to filter the set using the nested simple
criterion only it the test yields True. A simple criterion is evaluated once for each

implementation in the set, sel.cting those which yield True.
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6.3 Examples and Discussion

In this section we demonstrate how our proposal addresses the two issues introduced
by program composition. We then present an example using our proposal to compose a

program consisting of four abstractions.

6.3.1 Sample Applicability Tests

The first of the two issues not present in retrieval for a single du concerns the
partitioning of a user's knowledge. Applicability tests can be used to ,artition a
characterization as follows. A simple criterion is applied to ail abstractions in a program, but
the nested siniple criterion of a qualified criterion is applied only to those abstractions in
which the applicability test evaluates to True. Thus. an applicability test can limit the effect of

a criterion, identifying the abstractions to which the nested criterion is to be applied by

checking for attributes and specific attribute values.

The following series of sample applicability tests demonstrate this ability to partition a
characterization. **.<attribute name>, an invocation of ReadAttributeOnSet, denotes a
mapping from impleme;\tations to attribute values, and * <attributed invokes ReadAttribute to
read the value of an attribute on a single implementation. Mapping{T]$lsin checks for a

specific value in a mapping from implementations to values of type 7. The # notation again

denotes a user-delined type literal.

First, three applicability tests can be used to partition the abstractions in a program

into three classes depending on how they were developed.

Mapping[User]$isin (User & Me, **.CreatedBy)

—Mapping[User]$lsin (User # Me, **.CreatedBy) &
Mapping[String]$isin {"Mine", **.Project)
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—Mapping[String]$isin ("Mine", * * Project)

CreatedBy is a mandatory attribute of type User. Project 1s an optional attribute bound to
stnings The first of the three applicability tests ider.tit-2s dus for abstractions containing
implementations developed by the user named "Me". It "Me" refers to the user composing
the program. then criteria associated with this test are only applied in dus representing
abstractions for which the user is responsible. The second example identifies atstractions
created by other members of the user’'s project The third identifies abstractions not created

specifically for the user's project.

Two other examples partition a characterization based on optimization needs and

history. The applicability test
isMeaningtul (OptimizedF or)

checks to see if a customized attribute OptimizedFor recording optimization requirements is
meaningful. It is associated with criteria to be applied only for abstractions in which

optimization strategies are important. Finally,

Date$Atter (Date # 6/18/83, **.CreationTimestamp)
uses values of the mandatory attribute CreationTimestamp to identify recently modified

abstractions.

The second issue affecting retrieval in the context of composition is the possibility of
undefined attributes. The analysis in Section 6.1.2.2 found that two conflicting
interpretations of meaningless attributes are possible. One view unites undefined attributes
with the unspecified attributes discussed in Chapter 4; the other makes a distinction between
them. Both are reasonable. Using applicability tests and a single unknown value, our

proposal allows the user to contro! which interpretation is taken.

Our proposal assumes the first view as the default case, representing both undefined
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! and unspecified attributes by o single unknown value. Nil.  To force the second
interpretation, the user writes one or more qualified criteria, testing for attribute

meaningfulness in the applicability test. For example, simple criterion

e o

* Project = "Mine"”
unifies the two unknown values and takes the first view. Qualified criteria distinguish

! between them. The user can write the

IsMeaningful (Project) = *.Project = "Mine"

to skip the criterion if Project is undefined. Or he may write a sequence of criteria,

IsMeuningtul (Project) = *.Project = "Mine",
~isMeaningful (Project) = * CreatedBy = User # Me

to substitute a property based on the CreatedBy attribute if Project 1s not meaningful. ’

6.3.2 A Composition Example

In this section we offer an example of composition for a program consisting of four
abstractions. We will first look at implementation selection for the top-levet abstraction of the
program, then trace the abstraction identification process as Compose walks the program's
dependency tree. We c¢mit implementation selection for the three non-root abstractions

because of the similarity to selection for the top-level abstraction.

The user invokes Compose in the context of the du for abstraction A using the

following composition characterization

Requirements: * Project = "X",
Mapping[User]$isin (User £ Bill, **.CreatedBy) &
IsMeaningful (Optimizedtor) =
* OptimizedFor = ProjectOptimization # Retrieval
Preferences: * Datasize = Size # Small,
Mapping[String]$isin ("Y", ** Subsystem) =
* Subsystem = "Y" & *.ReleaseState = Release # Public

where Project and Subsystem are string-valued attributes, OptimizedFor and ReleaseState
are attnibutes having user defined types, and CreatedBy is a ~andatory attnibute of type

User.
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Figure 6-1 displays the set ot implementations for abstraction A. We assume that in
addimon 1o the y attributes only those attributes displayed in the figure are meaningful in the
du. We also assume that the Library options are set to allow the filters based on

supersession and detfauits to be automatically applied.

{ To build a composition for A, Compose's first step 1s to select an implementation from
A's du. successively applying the requirements criteria. the preference criteria and the

Q automatic filters  The first criterion applied specifies that the implementation be associated

with Project X. Implementation 1 has a Nil value for the attribute Project and 1s elininated. all

others satisty this criterion.

CreatedBy: Bill
° ReleaseState. Private

CreatedBy: Bill

Project: X

Subsystem: Y CreatedBy: Bill
Project: X
Subsystem: Y

ReleaseState: Public

CreatedBy: Bill
Project: X
Subsystem: Y
DefaultForDU: True

Figure 6-1:A Composition Example. The Top-Level Du

The second requirements criterion is a gualified criterion, so the applicability test is

evaluated before examining any of the implementations. Because the attribute OptimizedFor
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1s not meaningful in this du. the apphcability tesy taiis  The nested simple criterion s not
applied. The result set of the criternion 1s the same as its input set (Implementations 2. 3, and

4),

Next. the first preference criterion 1s evaluated The value of Datasizc for every
implementation is Nil because Datasize is not meaningful in this du. Thus. none of the
implementations satisfy this property. and the result set of the tilter 1s empty As a preference
criterion. however. the criterion’s input set (Implementations 2. 3. ana 4) s substituted for its

empty result set.

The last preference criterion is qualified by a condition on the Subsystem attrioute.
Several of the implementations are associated with Subsystem VY, so the applicability test
succeeds, aliowing Compose to evaiuate the implementations in the criterion’s input set.
implementation 2 does not satisty the criterion because it has the value Nil for attribute

ReleaseState. The result set of the criterion contains Implementations 3 and 4.

Finally the automatic filters based on mandatory attributes are applied. The
Supersession filter does not narrow down the set of implementations under consideration,

but the DefauttForDU tilter selects Implementation 3.

Figure 6-2 shows the dependency tree of the program rooted at A. As always, small
numbered circles represent implementations and straight arrows mark supersession
relationships. lLarge ovals represent dus. Wavy arrows from an implementation to a du

represent references by the implementation to a subsidiary abstraction.

Compose now looks in the Library to see what abstractions are eferenced in the
selected implementation of A. It finds that abstractions B and C are the implementation's

subsidiary abstractions. Turning to C. it selects Implementation 2. Implementation 2 has no
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Figure 6-2:A Composition Example: The Dependency Graph
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subsidiary abstractions. For B 1t selects Implementation 3, whose subsidiaries are
abstractions C and D. Note that C is the subsidiary of both A's and B's implementations.
Before selecting an implementation for C as a subsidiary of B, it checks to see if an
implementation has aiready been selected. Because one already has, reselection is avoided.
Finally, Compose seiects impiememation 3 for abstraction D. The selected implementations

are marked with double circles on Figure 6-2.

6.4 Modifying Existing Compositions

Thus far in the chapter, we have considered the process of constructing a composition
e from scratch, using only the identity of the composition's top-level abstraction and a
characterization describing the desired behavior. Alternative methods could use existing

compositions either as components or as the bases of new compositions.

One possibility incorporates existing compositions of subsidiary abstractions of a
program as components of the composition being built. The name: of implementations can K
change, however, and the same characterization used twice may retrieve different ‘
implementations or build different compositions. Conseguently, we do not understand when

it is safe to use an existing composition as a component of another. This problem is a

manifestation of a larger issue. We defer its discussion to Section 7.3.

A In this section, we examine the problem of modifying an existing composition. As
G defined in Section 2.1, a composition is a set of implementations that can be combined into
an executable program. Modifying a compasition means replacing an implementation with

another implementation of the same abstraction.

Every implementation includea in a composition except the implementation of the
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program's top-level abstraction implements a subsidiary abstraction of some other
implementation in the program. A composition must include an implementation of the top-
level abstraction and implementations of all the abstractions needed by other
implementations in the composition. Consequently, a single implementation cannot be

eliminated or replaced with an implementation of another abstraction.

Replacing one implementation, however, may force other changes to the composition.
Because the new implementation may have different subsidiary abstractions than the old
one. we view modification of a composition as an operation on a subgraph of the

composition's dependency graph rooted at the implementation being changed.

An example shows how this is true. Figure 6-3 depicts the dependency tree of a
composition of abstraction A. Each node represents an implementation of an abstraction; the
abstraction is identified by the letter marking the node. Wavy directed arrows indicate
dependencies: the implementation at the tall of the arrow depends on the abstraction
implemented by the node at the head. The implementation of B depends on abstractions D
and E. Moditying the composition of A by replacing this implementation of B with an
implementation depending instead on abstractions D and F is an operation on the subgraph
rooted at the node implementing B. The implementation of E is eliminated from the
composition and an implementation of F must be added. In addition, under different

circumstances, the user may or may not want to replace the impiementation of D.

We propose an alternative composition command that modifies an existing
composition, replacing implementations and possibly abstractions. The Library Recompose

command
Recompose {Composition> {Implementation> {Composition-characterization>

embodies this idea. <Composition> is an expression denoting a composition to be modified.
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Figure 6-3:The Ccpendency Graph of a Composition
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d{mplementation) is an expression denoting the impiementation that acts as the root of the
subgraph to be changed. The implementation must be contained in the composition. The
comgosition characterization is used to select new implementations for the abstractions in
the subgraph being modified. A Library option allows the user to control whether or not new
implementations are selected for abstractions (such as D, above) in the modified subgraph

for which the composition already contains impiementations.

This simple reco.mposmon operation address the two kinds of changes that we expect
would be most common. One change replaces an implementation containing a bug with
another impiementation of the same abstraction The user specifies this type of change
simply by replacing the buggy implementation Another common change occurs when a
user incorporates a private version of a subsystem into a standard version of a program. In
this case. the user replaces the implementation of the top-level abstraction of the subsystem.
If other patterns of modification are desired. they can be achieved by identifying the nodes in

the dependency graph to be changed and teratively replacing their subgraphs.
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6.5 Summary and Evaluation

in our analysis of program composition, we found that composition can be divided into
two subproblems, abstraction identification and implementation selection. Using information

in the Library about subsidiary abstractions. the former can be reduced 1o identifying the

w—————

top-level abstraction of a program, leaving the latter as the interesting part of the problem.

Drawing on our understanding of implementation selection in a single du. we found that

implementation selection in the context of composition introduces two issues not present in
the single du case. Our goal was to develop a proposal for composition that would address

these two 1ssues while preserving as much paralielism with single du selection as paossible.

Section 6.2 presents a proposal tor Compose that meets this goal. It shares
mechanisms and semantics with the single du case. Selection in Compose is an extension of
Select: every implementation-characterization is a legal composition-characterization and

analogous characterizations are treated identically by the two commands, subject to the

constraint that Compose retnieves only compiled implementations. A variation on Compose ]

presented in Section 6.4 allows a user 1o create a new composition by moditying an old one.

Both Compose and Recompose address the two issues distinguishing compaosition
from retrieval of an individual implementation The use of qualified criteria allows users to
partition a charactenization, using difterent criteria to describe distinct abstractions or sets of
abstractions contained i a program Qualfied criteria testing attribute meaningfulness allow

users to control the interpretation of undefined attributes.

Our sumph: proposal is a rough first cut at a solution to the problem of program
composition it is intended onty a3 a mechanism for exploring the issues. Although it is
adequate tor ample cases and has sufficient expressive power for complex cases, it can be

tedious ta wete and theretore inconvenient to use.
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For exampie. in our solution. applicability tests are associated with individual criteria.
When an applicability test is shared by several criteria, it must be repeated in the

characterization for each of the sharing criteria. Thus, the user must specify

T=:C1.
T=:»C2

for two criteria, C, and Cz. sharing a common test T. Similarly, two qualified criteria with

complementary appiicability tests are needed to specify criteria that are alternatives:
T=C,.
T = C2.

We can imagine solutions that would reduce the amount of repetition and make
characterizations more convenient to use. For example, a grouping mechanism could allow
several criteria to share an applicability test, as in

T={C,. CQ}.
However. the interpretation of this construct is not immediately clear. Several questions
must be answered. For example, when and how many times is the applicability test
evaluated? And. how does the grouping mechanism interact with the priority mechanism that

is based on the order of criteria? Similar questions arise about possible solutions to the

problem of criterion alternatives.

Although we recognize these deficiencies in our proposal, we do not suggest

solutions. Further study is needed to develop a more elegant solution.
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Chapter Seven

Conclusions

in this chapter we review the work of this thesis. Sections 7.1 and 7.2 first summarize

and then evaluate our research. Finally, Section 7.3 suggests directions tor turther inquiry.

7.1 Summary

This thesis addresses the problem of identifying the implementations of an abstraction.
To identify the implementation that best suits his needs, a user must und-.stand the
complete behavior of each of the‘ abstraction's implementations. This is a difficult task
because of the sheer volume of information required to describe all the different aspects of
many implementations. In addition. when several programmers collaborate on a program
composed of many abstractions, they must share their insights about implementations, each

teaching the others about the abstractions he is responsible for.

To assist the user with implementation identification. we proposed a system for naming
implementations that allows users to capture and record their insights about implementations
as names. Names that reflect users’ understanding of an implementation’s behavior serve as
documentation of the implementation’s significant features. Expressive names thus help the
user to retain and organize the information he needs for implementation identification, and

act as a communication medium among users.

We began our work with an analysis of the problem of implementation identification,

and determined that six characteristics of naming schemes support the user in this activity.
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e The naming scheme should have the capability of expressing a wide range of
information in a form meaningful for users.

¢ Multiple names per impiementation should be allowed.

o Non-unique names, referring to more than one implementation, shoulid be
supported.

o The naming system should allow users to treat names independently, without
considering either other names of the same implementation or the names of
other implementations

e The naming system should recognize and highlight commonality among the
information conveyed by multiple names.

e Dynamic name creation and moditiability should be supported.
The above criteria suggest goals for designing a naming scheme and provide some axes by

which existing naming schemes can be measured.

We foung that a naming system based on attributes satisfies the above criteria and
supports implementation identification. Each name in our scheme consists of a pair: an
attribute name and a value. An attribute name represents a class of information; its value
documents the behavior of the specific impiementation with which it is associated. Attribute
class definitions specify the range of values an attribute may take. A set of predefined
classes of attributes provide a basic vocabulary for describing properties of implementations.
These classes express commonly used information and information required by the CLU
programming support environment. Users may extend this set by defining new classes to
represent information specific to a project or an abstraction. A context mechanism supports

the reuse and controlled sharing of attribute names.

The remainder of our work explored mechanisms for identifying implementations
exhibiting behaviors specified by the user. A user describes the desired properties by

specifying conditions on attributes representing those properties. The Library then retrieves
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implementations whose attributes satisty the specified conditions, indicating the desired

behaviors are provided.

The first mechanism addresses the problem of selecting an implementation of a single
abstraction. Our approach is an extension of the relational database model, addressing
issues peculiar to our problem domain. In particular, we introduced the notion of a
composite description to express priorities among subconditions, acknowledged a
distinction between required conditions and conditions that are merely preferences,
recognized the existence of common subconditions, and introduced . three-phase logic

system to confront the issue of name independence.

The second mechanism addresses the much more complex problem of program
composition. We have shown that selection of implementations for composition is
complicated by two issues: first, that users have varied degrees of familiarity with and
knowledge about ditferent abstractions comprising a program, and second, that different
properties (and therefore different attributes) are relevant to the implementations of distinct
abstractions. To explore these issues fully, we proposed a composition scheme based on

the mechanism introduced for the single abstraction case.

7.2 Evaluation

The basic issue in evaluating our work is whether or not the naming scheme we

propose can help in implementation identification. We believe our work represents a

significant improvement over the naming mechanisms commonly used in current practice.

However, only experience with our naming system can verity our belief. We have neither

built nor used a system of this nature, but we strongly recommend that the next step in




investigating naming schemes of this sort be the incorporation of such a scheme into a

soltware database to permit expernimentation with its use.

In lieu of experience we can only conjecture. It is our infuition that the effectiveness of

our proposal depends on two factors. The first is the interface presented to the user. Our

work does not address interface issues. We describe the basic structure of names, present

the abstract syntax of Library operations for creating and manipulating names, and explore

mechanisms for retrieving implementations from the Library, but do not consider how the

names and operations can be integrated into the Library interface. The convenience and

user-friendliness of the interface will have a significant effect on the usefulness of our

proposal.

A second factor concerns a user's needs when naming implementations. We believe

that users often are more interested in a particular behavior than in the specific

implementation that exhibits it. In situations where this is the case, a naming system such as

ours can significantly aid the user in implementation identification because it offers him the

ability to conveniently describe the behavior of implementations. In contrast, current

practice in naming implementations relies on unique identifiers which at best are awkward

media for encoding descriptions.

For situations in which the user already knows precisely which implementation suits his

needs. our proposal is of less assistance. Although in this case unique identifiers are

adequate, we maintain that our approach still benefits the user by encouraging planning and

coordination in the name space. We encourage users to determine what properties they

Although

consider significant, then reflect those properties in implementations' names.

name spaces of unique identifiers can be similarly planned in advance, users tend to take an

ad hoc approach. In addition. as a part of our proposal, we actively encourage users to think
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about the semantic differences between implementations. expressing these as higher-level

names. rather than relying on the primarily syntactic and historical properties most often

represented by unique idertifiers.

One concern about using the proposed naming scheme is the rehability of information
expressed as names. Qur approach allows users to document therr insights about
implementations. But users’ insights are not always correct. In contrast. the information
derived by tools in the CLU programming environment inspires greater confidence and s
more likely to be correct. but tends to be less informative. Use of authorization procedures to
safeguard user-supplied information can enhance but not c¢asure correctness. Users

selecting an implementation must be cognizant of the source of the information they use.

We have three comments about the implementation retrieval mechanisms proposed in
Chapters 5 and 6. First. many issues combine to make impiementation retrieval a very
difficult problem. Our goal was to explore implementation identification by suggesting
mechanisms to address each of the issues we raised. We believe that our analysis of the
issues offers new perspectives on implementation retrieval and that our proposals provide

capabilities for property-based retrieval of implementations not previously available.

One drawback of our approach to composition is that it eliminates the need to think
about program structure. Approaches based on module-interconnection languages, first
proposed by DeRemer anid Kron [16], view program structure design as a separate task in
program development. Programmers are forced to be consciously aware of the structure of
a program. Our approach circumvents this requirement by making the Library responsible
for determining program structure during composition. This is a significant loss. Archibald
[2] reports that users derive significant benefits from actively considering program structure

using technigues such as module-interconnection languages. In response, we suggest
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investigation into methods by which these two approaches can be combined. preserving the

benefits of both.

Another failing is that our program compasition mechanism does not supports multipte
implementations of an abstraction within a program. It is sometime desirable to use several
implementations of an abstraction in the same program. satisfyirg the differing needs of the
abstractions that depend upon them. For example. two subsystems of a program might
choose different implementations of a set abstraction if only one of them performs deletions.
Multiple implementations of a data abstraction, however, may cause erroneous results.
Although muitiple implementations of procedural and control abstractions are always safe,
the question of when it is safe to have multiple implementations of a data abstraction is not
well understood. Consequently, we chose to limit our approach to a single implementation
per abstraction as a simplification. Further work is required to extend our proposal to accept

multiple implementations per abstraction.

Finally. aithough our research is based on CLU and the CLU programming
methodology. we believe our results have implications for other languages and environments
as well. The basis for our work is the distinction between abstractions and their
implementations. In CLU this notion is very strong; in other languages the distinction is
sometimes weaker. For example, in Ada the distinction is represented by public and private
parts of a module. Sometimes, however, the public part contains information that is
implementation specific, such as data representation used for compiling procedure
invocations in-line. Despite these weaker notions, we believe our approach can be extended
to support all languages making a reasonable distinction between abstractions and their
implementations. !n particular, we believe our approach can be applied in multi-language

systems, such as distributed programming environments in which each host machine may

choose a different language.
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We also rely on the CLU data abstraction mechanism to mode! the domains of classes
of attributes. If an analogous mechanism is not available. domains must be restricted to
whatever types are available. As discussed in Section 4.2.2.2, this approach i1s adequate,

although it has several disadvantages.

in CLU. compilation binds an implementation to its subsidiary abstractions. These
bindings are used by the program composition mechanism to determine what abstractions
comprise a program. For languages in which these bindings are not avalable as a result of
compiation. some other mechanism must be substituted for determining a program's
component abstractions. Possibilities include supplying the composition mechanism with a
dependency graph or a module-interconnection language description of the program being

composed.

7.3 Future Work

The previous section identified engineering and experimentation with an expressive
nanung scheme as an area in which we believe further research is critical. Engineering
entails determining what style of interface will best support the naming system. and
implementing the needed mechanisms. Experimentation should provide many insights:
identifying commonly used classes of information that should be represented as standard
attributes. detecting gatterns of attribute use, and so on. !t may also identity methodology or
policy issues that could support implementation identification. For example, one policy
decision might require users to supply attributes to distinguish every existing implementation
of an abstraction from every other: no two implementations would be permitted to share an

identical set of names.
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Further work also is needed in program composition. Our intention was to identity the
issues that make composition a hard problem and propose a simplistic solution. Developing
a sophusticated sofution is an open research problem of significant magnitude. We suggest
as one avenue to pursue an attempt to unite our approach with module-interconnection
language program structure descriptions. We view program compositton as consisting of
two subproblems: abstraction identification and implementation selection. Our proposal
uses information in the Library recording subsidiary abstractions to accomplish the former.
An alternative approach could use a program structure description to determine which
abstractions compnse a program. Qur selection mechanisms could be used to retrieve an
implementation tor each of the program's abstractions. Such a solution would offer the
venefts of both approaches. requinng users to consciously consider the structure of their
crograms while retaining the ability to describe implementations and select them on the basis

af their behavior

Tre information expressed as attributes is not secure and cannot be relied upon
~thiut an authonzation scheme to control creation and moditication of names. Although we
©vaetacdress authorization in our work, a suitable protection mechanism must be designed

Lpperlar expressive naming scheme.

£s discussed in Chapter 4, the Library can enforce consistency constraints on
-tynddarg classes of attributes. Consistency constraints support the correct use of attributes
t, venifying that no two implementations have attributes expressing conflicting information.
For example. the Library enforces a constraint prohibiting more than one implementation of
an abstraction from having the value True for the mandatory DefaultForDu attribute. This
constraint supports the correct use of'defaults, preventing more than one implementation
from being designated the defauit implementation for a du. Knowledge of consistency

constraints on standard attribute classes is built-in to the Library  Although the information
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expressed as customized attribute classes may aiso be subject to constraints, we have not

considered the questian of how such constraints may be expressed or enforced.

A final issue concerns the dynamic nature of names in our approach. Subject to
authorization. users are permitted to create and modify names for implementations. Thus, an
implementation's set of names may change over time. This mutability raises issues of
consistency and repeatability. A user selecting an implementation twice with the same
description may not retrieve the same impiementation because some or all of the attributes
he considered have changed. Similarly, two composition operations using the same
description may produce compositions containing ditferent implementations. One
implication of this is that a composition may not be constructed using existing compositions
as components, even if both composition operations use identical descriptions, because
attribute values used to construct the existing composition may have changed. We do not
understand the consaquences of this ability to rename implementations and suggest further

study to determine its effects.
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