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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain

feet 0.3048 metres

inches 2.54 centimetres

inches per second 0.0254 metres per second

pounds (mass) per 1.601846E+01 kilograms per
cubic foot cubic metre

pounds (force) per 6.894757 kilopascals
square inch
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A PROBABILISTIC ONE-DIMENSIONAL GROUND-SHOCK CODE

FOR LAYERED NONLINEAR HYSTERETIC MATERIALS

PART I: INTRODUCTION

1. The ground-shock calculation techniques currently used to predict

the states of stress and ground motions induced in earth masses by explosive

detonations are deterministic tools--that is, their input parameters (media

stress-strain and strength properties, density, location of layer interfaces,

surface airblast loadings, etc.) are specified as deterministic quantities or

functions. In actuality, however, both the properties of earth materials and

the characteristics of airblast pulses are random variables. Consequently,

the randomness of these 4nput variables dictates that resulting stresses and

ground motions are also random variables; therefore, ground-shock problems

should be analyzed probabilistically.

2. In general, ground shock from explosive bursts is a two-dimensional

(2D) problem. However, when superseismic conditions prevail, as often happens

in airslap problems, one-dimensional (I0) plane-wave analyses are quite

adequate for predicting free-field responses. It is both useful and appropri-

ate, therefore, to commence an examination of ID probabilistic ground shock

prior to investigating the more cumbersome 2D problem. A deterministic ID

wave-propagation code (ONED) developed and used extensively at the U. S. Army

Engineer Waterways Experiment Station (WES 1971) was the tool selected for

this task. ONED is a finite-difference code that treats arbitrary airslap

prescriptions and layered nonlinear hysteretic materials.

3. This report describes the conversion of the ONED code into a proba-

bilistic code using the method of partial derivatives (Benjamin and Cornell

1970). The method of partial derivatives (also referred to as the Taylor-

series approximation method) greatly alleviates the burden of conducting brute

force Monte Carlo analyses for probabilistic wave propagation problems.

Furthermore, the partial-derivative method has the advantage that it can be

used to quantitatively rank the relative effects of input variabilities

(uncertainties) on the dispersion of the output quantities.

4. In Part II, the deterministic ONED code is briefly described, and in

Part III the probabilistic solution is formulated. The merits of this

4



probabilistic solution technique are demonstrated for an actual field explo-

sive test in Part IV. The work is summarized in Part V. The probabilistic

code is evaluated against a closed-form solution in Appendix A.
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PART II: BRIEF DESCRIPTION OF THE DETERMINISTIC ONED CODE

5. The ONED code is described in great detail by Radhakrishnan and

Rohani (1971). Only the briefest description of the code (necessary for

undertaking the subsequent development of the probabilistic solution) is

presented in this part. ONED is based on a discrete model of continuum,

consisting of a series of lumped masses interconnected by springs and dash- V

pots. An arbitrary dynamic pressure (with a finite rise time) is applied at

the free (ground) surface. The equations of motion governing the dynamics of

the mass-spring system are integrated in a step-by-step manner using Newmark's

B-integration scheme. The code uses piecewise linear stress-strain relations

for both loading and unloading in order to closely approximate the nonlinear

hysteretic stress-strain curves of real earth materials. Provisions are made

in the computer code to input realistic tension cutoffs (material tensile

strengths) for each individual layer. The user must specify either a rigid or

an infinite bottom boundary condition. Code output consists of time histories

of stress a , particle velocity U , and particle displacement U at

selected depths within the medium.

6. The basic code input for a generic layer I is shown in Figure I

and consists of four blocks of information:

SS(I) = stress-strain relationship of the material

T(I) = tensile strength of the material

y(I) = density of the material

Z(I) = depth to the bottom of the layer from the surface

Therefore, including the surface pressure-time history P(t) , 4m+l input

blocks are required for a problem consisting of m layers.

6
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PART III: PROBABILISTIC ANALYSIS

7. The purpose of a probabilisLic analysis is to obtain a quantitative

understanding of h-i, tie variabilities or uncertainties in (independent) input

parameters for a particular problem affect the dispersion of the dependent

output variables. An extremely useful procedure for implementing such an

analysis is to apply the method of partial derivatives (Benjamin and Cornell

1970, Haugen 1968) to a deterministic scheme for solving the problem. The

method gives approximations for the moments of the dependent variables in

terms of functions of the moments of the independent variables. For example,

if a random variable Y is functionally related to the random variables X.

Y = Y(XI,X 2 .... 2 X) ()

and if the X. are uncorrelated, then according to the partial derivative

method the approximations for the expected value of Y, E[Y] , and the vari-

ance of Y, Var[Y] , are

n a2y
E[Y] Y(111, 2 ... n ) + 2 z 2 Var[X i (2)

i=1 X.
1 ( 1, 22 .... J n)

nl l1

Var[Y] z E *Y Var[Xi] (3)

where (Ll12' , n . ) denotes the respective means of the random variables

(X1,X2 ,. .. ,Xn) The first term on the right-hand side of Equation 2 corre-

sponds to the mean value of Y , i.e., the value of Y obtained using the

mean values of all of the random variables. The second term represents the

contributions to the expected value of Y due to uncertainties in the X'

This second term is negligible if Var[X i] and the nonlinearity in the func-

tion Y itself are not large.

8

71



8. As pointed out by Benjamin and Cornell (1970), Equation 3 "may be

interpreted as meaning that each of the n random variables Xi contributes

to the dispersion of Y in a manner proportional to its own variance

Var[Xi] and proportional to a factor a_ , which is

1/
(" G1 2* .... "n )

related to the sensitivity of changes in Y to changes in X ." Thus, this

equation can be used to conduct sensitivity analyses to quantify and rank the

relative effects of the individual input variabilities or uncertainties on the

dispersion of the output quantities.

9. The partial derivatives in Equations 2 and 3 can be evaluated

analytically if an explicit expression is available for the dependent variable
Y . However, as pointed out by Mlakar (1978), in many cases, even when such

an explicit relation exists, it is often more convenient to evaluate the

partial derivatives numerically using finite-difference approximations. Fol-

lowing the method proposed by Mlakar (1978), the partial derivatives may be

expressed numerically as

aY Y(6IJ..... i+kSi .... $n ) - Y(VI ..... i-kSiP..... n )ax. = 2kS. (4)

a 2 y Y ( U l ....V i k S i "n . .. ) - 2 Y ( p l .... i .. . n + ( l . . . + k S i b ... .9 1 n 
)

ax2 (kSi) 2

i =

The first partial derivative (Equation 4) is calculated from the functional

value of Y at k standard deviation kSi above and below the mean value of

9



X. (i.e., wi) where k* is a constant and Si is the standard deviation of

X i  Similarly, the second partial derivative (Equation 5) is calculated from

the mean value of Y and the functional values of Y at kSi above and r

below pi * Therefore, for a problem containing n random variables, the

application of Equations 2 through 5 requires 2n+l "point estimates" of the

function Y

10. The ONED code is used to calculate the time histories of the

dependent variables a , i , and U (at selected depths) for the requisite

combinations of the independent input variables P(t) , SS(1) , T(I)

Y(I) , and Z(I) shown in Table 1, where I = 1,2,...,m and m = number of

layers in a problem. Note that for a problem consisting of m layers, where

all input parameters are treated as random variables, a maximum of 2(4m+1)+i

ONED calculations are required for subsequent probabilistic analysis. In

practice, however, not all of these variables have to be treated probabilisti-

cally. For example, one may only be interested in the relative effects of

uncertainties in the surface airblast loading versus uncertainties in the soil

stress-strain properties in the topmost stratum. Therefore, the required

number of ONED calculations can often be greatly reduced. The results of the

ONED calculations are then used in Equations 2 through 5 to calculate the

expected value and variance of each of the dependent variables. A computer

program, referred to as PONED, has been developed for the express purpose of

numerically evaluating Equations 2 through 5 using the output from the ONED

code. Within this program, computations are made at successive times at

selected depths so that the time histories of the expected value and the

The term kS. in Equations 4 and 5 may be viewed as a finite difference

mesh spacing. The value of k is heuristically taken to be 1.0 by Mlakar
(1978). However, if either the standard deviations S or the nonlinearity
in the function Y are large, smaller values of k s~ould be tried until
the results are no longer affected by further reductions in k . In a
recent probabilistic analysis of plane ID wave propagation in homogeneous
bilinear hysteretic material, k was parametrically varied from 1.0 to 0.1
in order to determine the sensitivity of the final results to variations in
k (Rohani, 1982). This analysis indicated that reducing k by an order of
magnitude changed the results by only 6 percent (on the average) and at most
by 12 percent. Moreover, the bulk of these changes occurred in going from
k = 1.0 to k = 0.5 , because reducing the value of k from 0.5 to 0.1
only produced changes of 1 percent (on the average) and 3 percent (at most).

10
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variance of the dependent variables a , U , and U can be constructed. To

process the results of the ONED calculations, PONED first calculates an

expected value for the arrival time of the wave at any selected depth (using

the arrival time data from the individual ONED runs). PONED then translates

(shifts) all the waveforms to this common arrival time for processing. PONED

also computes and prints out explicit contributions of each of the input

(independent) random variables to the overall dispersion of the various output

quantities (dependent variables).

111



PART IV: NUMERICAL EXAMPLE

11. In this section we demonstrate the previously described methodology

for conducting probabilistic wave propagation analysis by presenting an exam-

ple problem. The example problem involves an actual field explosive experi-

ment consisting of a homogeneous half-space of soil subjected to a decaying

surface pressure-time history. The stress-strain properties of the soil and

applied surface pressure are treated as random variables in this problem.

Therefore, the probabilistic analysis of this problem would require five

deterministic calculations using the ONED code. The input parameters for the

problem are shown in Figures 2 through 4. Figure 2 portrays the surface pres-

sure-time relation out to a real time of 30 msec, while Figure 3 shows the
first 8 msec of these pulses on an expanded scale. These figures depict the

mean P and P±kS time histories of the surface airblast pulse (correspond-

ing to k=l) which were obtained from statistical analysis of nine blast pres-

sure measurements (Jackson 1982). Figure 4 shows the mean 4 and V±S

relations for the stress-strain properties of the soil. In Figure 4, the

unloading slopes of all three stress-strain curves are equal. Therefore, the

uncertainty in the soil properties is evaluated only for the loading portion

of the stress-strain curve. The tensile strength of the material is presumed

to be zero and deterministic. Moreover, since the uncertainty in the soil

density is small, it too is assumed to be deterministic and equal to 116.0
3

lb/ft.*

12. The five deterministic ONED calculations were conducted using the

input parameters shown in Figures 2 and 4. In accordance with Table 1, the

five calculations were conducted using the following combinations of random

input parameters: -

ONED Input
ONED Surface Pressure-Time Stress-Strain

Calculation Relation Relation

I IiU

2 u+S
3 li-S
4 ia+S
5 P-S u

* A table of factors for converting non-SI (metric) units of measurement is

presented on page 3.

12
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The results of these calculations were processed with PONED in order to obtain

the time histories of the expected values and variances of a and U

at selected depths. Probabilistic results are presented in Figures 5 through

00 for depths of 10, 15, and 20 ft. Figures 5, 7, and 9 show the expected

values of stress E[a] , particle velocity E[&] , and particle displacement

E[U] , respectively. The coefficients of variation of stress Vio] , particle

velocity V[6] , and particle displacement V[U] are shown in Figures 6, 8,

and 10, respectively. As mentioned before, the arrival times for these plots

at any depth correspond to the expected value of the arrival time at that

depth.

made regarding the wave propagation conditions for this problem. Consistent
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with the input surface pressure-time histories, the expected values of stress

(Figure 5) and particle velocity (Figure 7) initially increase with increasing

time and then decay after reaching their peak values. Peak values, of course,

attenuate with depth. The rise times of the waveforms, however, increase with

increasing depth due to the slight "softening" or dispersive characteristics

of the low-level stress-strain relations shown in Figure 4.

14. Turning now to Figures 6 and 8, it is observed that during the rise

portion of the curves there are sudden changes in the values of the coef-

ficients of variation, particularly in the case of stress (Figure 6). This

type of behavior is real and is due to differences and/or similarities in the

rise portions of the deterministic waveforms associated with each random var-

iable. After reaching peak values, the coefficients of variation drop sharply

and then oscillate around a constant value with increasing time. Therefore,

the largest uncertainties are associated with the rise portion of the stress

and particle velocity waveforms.

15. Two types of oscillations are recognized in Figures 6 and 8; low

frequency and high frequency. The low-frequency oscillations are real and are

due to the oscillatory nature of the input surface pressure-time relation

(Figure 2). The high-frequency oscillations, however, are due to the

numerical algorithm of the ONED code which introduces spurious oscillations in

the code output (there are provisions in the ONED code to input viscous

damping factors to substantially reduce such oscillations). Therefore, the

uncertainties introduced in the probabilistic analysis due to this type of

oscillation are not physical and are due to the solution technique itself.

The magnitude of such uncertainties depends on many factors such as integra-

tion time step, grid size, and stress-strain properties of the material. To

minimize these types of uncertainties, attempts should be made to reduce the

spurious oscillations in the ONED code output by using either artificial

viscosity or digital filtering.

16. The coefficient of variation of particle displacement (Figure 10)

also drops after reaching peak value and eventually becomes constant. The

expected value of particle displacement (Figure 9), of course, increases with

increasing time.

17. Figures 11 through 13 demonstrate how the probabilistic method can

be used to quantify and rank the relative effects of input uncertainties on

22



the dispersion of output quantities. These figures show, as a percentage, the

contribution of each input uncertainty to the overall output uncertainty. In

the case of stress (Figure 11) and particle velocity (Figure 12), the uncer-

tainties during the rise portions of the waveforms are due entirely to

uncertainty in soil compressibility (stress-strain relation). With increasing

time, however, the contribution due to soil compressibility diminishes while

the contribution due to airblast pressure steadily increases. This trend is

due to the fact that the unloading portion of the soil stress-strain relations

in Figure 4 was a constant and not a random variable. The contribution of

input uncertainties to output uncertainty for particle displacement is shown

in Figure 13. Again, during the early times (a time window corresponding to

the rise portion of the particle velocity waveform), the uncertainty in output

is due entirely to soil compressibility. The influence of soil compressibil-

ity gradually decreases with increasing time while the contribution due to

airblast impulse gradually increases.

23
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PART V: SUMMARY

18. The partial derivative method has been used to adapt the WES ONED

code (a deterministic ID plane wave propagation code for layered nonlinear i1

hysteretic media) into a probabilistic code referred to as PONED. The partial

derivatives are evaluated numerically using finite-difference approximations.

For a problem containing n input random variables, application of PONED

would require 2n+I deterministic ONED calculations. Within the PONED code,

computations are made at successive times at selected depths so that the time

histories of the expected value and the variance of the dependent variables

(stress, particle velocity, and particle displacement) can be constructed. 1,;

PONED also computes and prints out the explicit contributions of each of the

input random variables to the overall dispersion of the various output quan-

tities (dependent variables). To demonstrate the application of the solution

technique, a probabilistic wave propagation analysis is conducted for an

actual explosive test where the stress-strain properties of soil and the

applied airblast pressure are treated as random variables. Finally, PONED is

evaluated against a closed-form probabilistic solution for a two-layered

elastic medium where the location of the layer interface is treated as a

random variable (Appendix A).

27
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Table 1

ONED Calculations Required for Probabilistic Analysis

ONED ONED input for a Problem Consisting of m Layers
Calculation P(t) SS(1) T(1) y(1) Z(1) SS(m) T(m) Y(m) Z(m)

2 ii+kS 11 P P I PP P P

3 ii-kS P1 P1 Pi P I PP

4 p1 p-ikS p P P I PP P P

5 p1 P-kS pi Pi 1i U P V U

2( *l P .1 P U .1 I
2 .4rl+ 11 . 1 V 1. .ik

Noe P mea vaue S stndr devaton



APPENDIX A: COMPARISON OF CODE CALCULATION WITH ANALYTICAL SOLUTION

1. In this appendix, the PONED code is evaluated against a closed-form

probabilistic solution for a two-layered linear elastic medium subjected to a

step pulse at the free surface. Wave propagation conditions and input param-

eters for this problem are given in Figure Al. In this problem the location

of the layer interface is treated as a random variable. All other input

parameters are assumed to be deterministic. Therefore, the probabilistic

analysis of this problem would require three deterministic calculations using

the ONED code. As indicated in Figure Al, the mean P and P±kS values for

the location of the layer interface are 20 and 20±3 ft, respectively (cor-

responding to k = 1)

2. The three deterministic ONED calculations were conducted using the

input parameters shown in Figure Al. The calculations were performed for

layer interface locations of 20 (mean value p ), 23 (p+S), and 17 (p-S) ft.

The results of these calculations were processed with PONED in order to obtain

the time histories of the expected values and variances of stress a and

particle velocity U at selected depths. The probabilistic results are pres-

ented in Figures A2 through A5 for selected depths of 0, 10, 20, and 29 ft.

Figures A2 and A4 show the expected values of stress E[ol and particle

velocity E[U] , respectively. The standard deviations of stress S and0

particle velocity Sb are shown in Figures A3 and A5, respectively. Figures

A2 through A5 also contain the results of the analytical solution for the same

problem. These figures indicate that the code results and the analytical

solution are essentially identical.

3. Comparison of the analytical and code results is useful in that it

provides an opportunity to assess the uncertainties that might be introduced

in the solution of a problem due to the solution technique itself. In the

case of the ONED code, such uncertainties will usually be present because of

the numerical discretization of the problem which introduces spurious oscil-

lations in the code output. Figures A2 through A5 clearly demonstrate the

types of uncertainties that might be introduced in the solution of the problem

due to the numerical algorithm (solution technique) of the ONED code. For

example, consider S at Z = 29 ft in Figure A3. The standard deviation

should be zero up to a time of approximately 56 msec, as indicated by the

Al



analytical solution. The code solution, however, exhibits a small oscillatory

response for S prior to this time. The magnitude of such uncertainties
a

depends on many parameters such as integration time step, grid size, and the

stress-strain properties of the material. To minimize these types of

uncertainties, attempts should be made to reduce the spurious oscillations in

the ONED code output by using either artificial viscosity or digital

filtering.

4. An important observation can be made based on the results of this

problem. It is that in the case of a layered medium with a large mismatch in

material properties, such as soil over rock, uncertainties in the location of

the layer interface will have a significant effect on the dispersion of stress

and particle velocity. This effect is more pronounced on the dispersion of

particle velocity.
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Figure Al. Wave propagation conditions and input parameters
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APPENDIX B

NOTATION

E[ ] Expectation of a random variable

k Number of standard deviations above and below mean at which the
dependent random variable is evaluated

m Number of layers in a problem

P(t) Applied surface pressure-time history

SS(I) Stress-strain relation for generic layer I

S i  Standard deviation of X i

T(I) Tensile strength for generic layer I

U Particle displacement

Particle velocity

V[ I Coefficient of variation of a random variable
Var[ ] Variance of a random variable

X Functionally independent random variable

Y Functionally dependent random variable

Z(I) Depth to bottom of generic layer I from surface

y(I) Density for generic layer I

W. Mean of X.1 3.

o Stress

iB
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