
AD A142010 CANONICAL REALICATONSOF COMPEELY REGULAR MODULAR 1/
D7 COMPUTING NETWORKSM INTEGRATED SYSTEMS INC PALOAT

CA H LEV AR] MAY 84 ISI-41 N00014-83-C-0377
UNCLASSIFIED F/6 9/2 NL

EEEIIIEIIIIE

84

~II B 32 ___-L

iii .0 L HI~ 1.2

111111.25 11111J.4 HB 6

MICROCOPY RESOLUTION IL, . HARI
V %1A ,; p Hm& N' 4-

intgrte

CANONICAL REALIZATIONS
! 1 OF COMPLETELY REGULAR

MODULAR COMPUTING NETWORKS I

I HANOCH LEV-ARI

AD-A142 010

I PREPARED FOR:

OFFICE OF NAVAL RESEARCHI 800 NORTH QUINCY STREET
ARLINGTON, VIRGINIA 22217

I ATTENTION: DR. DAVID W. MIZELL

I PREPARED UNDER: JN 1 31984
CONTRACT NO. N00014-83-C-03 7 7

I DRC FILE --py

ISI REPORT 41 *MAY 1984r

151 University Avenue Palo Alto, CA. 94301 Ph 415/321-9773

8 4 -05 23 01-1

II

TAIJLF OF CONTENTS, ',I

Section Title Page

I INTRODU CT ION 1

2 COMPLETELY REGULAR MCNs 3

2.1 Space-Time Representations in Z . 4 41

3
2.2 Spatial Projection of MCNs in Z.... 6

3 CLASSIFICATION OF HARDWARE ARCHITECTURES 9

3.1 Topological Equivalence 11

3.2 Architectural Equivalence 15

3.3 Periodicity Analysis and Throughput 15

3.4 Boundary Analyss. 18

3.5 Summary 22

4 (- "ISIFICATION OF SPACE-TIME REPRESENTATION 25

4.. The Fundamental Space-Time Configurations 25

4.2 Architectures with Local Memory 26

4.3 Boundary Analysis 31

4.3.1 The Configurations LM1, L2. R2 31

4.3.2 The Configurations RM2. R3, 13a, H3b 34

4.3.3 The Configurations HM3a, R4 35

4.3.4 Summary 35

4.4 Interleaving Architectures by Local Memory . . . 35

4.5 Summary 37

5 CONCLUSIONS 39

REFERENqCES 41

APPENDIX A: EQUIVALENCE VIA LINEAR TRANSFORMATION 43

: !

'I

SECTION 1I'

INTRODUCTION

The multiplicity of possible hardware implementations for a given

computational scheme is efficiently displayed by a space-time

representation, a notational tool that has been incorporated into some

recent methodologies for modeling, analysis and design of parallel

architectures (1-9]. Coordinate transformations of a given space-time

representation produce distinct hardware configurations which are equivalent

in the sense of being the implementations of the same computational scheme.

The problem of mapping a given algorithm into a desired hardware

configuration can, therefore, be partly reduced to choosing the appropriate

coordinate transformation in space-time. In particular, uniform recurrence

relations, which correspond to systolic-array architectures, are described

by regular space-time representations. This implies that only linear

coordinate transformations are required, and that the entire computational

scheme can be described by a small collection of vectors in space-time, the

dependence vectors (3,5,6,8]. Consequently, the selection of a desired

hardware architecture for a given algorithm reduces to the determination of

an appropriate nonsingular matrix with integer entries.

Previous research has focused upon the algebra of such transformation

matrices in multidimensional linear spaces, establishing conditions for the

mappability of given algorithms into systolic-array architectures. However,

since physical space is 3-dimensional the dimensionality of space-time

cannot exceed 4. Moreover, since VLSI hardware must be planar and no

intersection of wires is allowed, only 3-dimensional space-time

representations are allowed. Consequently, the number of distinct systolic-

array architectures is very small; Niranker and Winkler have, in fact, shown

that only three topologlies--linear, rectangular, hexagonal--are permitted

M-' ! I for systolic arrays.

"This paper establishes a simple technique for transforming a given 3-

* dimensional space-time representation into an equivalent canonical form. A

_ 1 , _.... - - -- . - . . -- ..

catalogue of canonical forms is constructed, showing a total of 34 distinct

systolic architectures. The tasl of selecting an a'piopriate transformation

for a given space-time representation reduces, therefore, to the

determination of the equivalent canonical form. The important result, which

has been overlooked in previous research, is that the canonical equivalent

of any given space-time representation is unique. This means that once a

space-time representation has been specified there is no flexibility left in

the process of mapping into systolic-array architectures.

A small fraction of space-time representation do allow some flexibility

in selecting the hardware architecture, but only at the cost of inefficient

implementation. The well-known example of matrix multiplication, which has

four distinct realizations (see [1l]-[14]) turns out to be one of the few

cases where such flexibility is available. A closer examination of the

structure of the matrices to be multiplied reveals that each realization is

efficient under a different set of structural assumptions,(see Section 4.3).

Thus, in summary, carefully specified algorithms lead to unique space-time

representations which, in turn, lead to essentially unique architectures.

2

I!

SECIION 2

COMPLETELY REGULAR MCNs

A modular computing network (MCN) can be loosely defined as an

association of multivariable functions with the vertices of a directed

acyclic graph (see E7] for a rigorous definition). More precisely.

multivariable functions are associated only with internal vertices, which

are those vertices that have both incoming and outgoirg arcs. A vertex with

Pi incoming arcs and p outgoing arcs is associated with an input-output

map with Pi input variables and p0 output variables.

A completely regular MCN is one that can be represented by a regular

multidimensional grid, and in ,hich all input-output maps associated with

the vertices are identicrl. Thus, the vertices of a completely regular MCN

can be mapped into points of the multidimensional grid Zn in the

n-dimensional Euclidean space Rn, where Z denutes the set of integers;

the arcs of a completely regular MCN become vectors (n-tuples of real

numbers) representing the directed straight lines connecting points of the

grid Zn. Clearly, not all points in Zn correspond to vertices of the

MCN. Those that do determine the domain r of the MCN in Zn. The

requirement of complete regularity translates into the statement that the

vectors (arcs) emanating from any point (vertex) in F do not depend upon

the choice of vertex. Consequently, the entire MCN is characterized by:

(i) the set of dependence vectors (di emanating from a single

vertex;

(ii) the domain r C Zn;

andI.

3

(i I the il.put uUti'ut n1 f

f: (I . . . p -- I pY .. YK

associated with every vertex in the domain 1'.

A curious consequence of this definition is that the input-output map f

has the same number of inputs and outputs, since the number of arcs

cmanatirg frowr a point in I' is always the same as the number of arcs

converging to a point.

Not every set of dependence vectors (d.] determines a valid MCN. For
1

instance, the directed graph representing an MCN has to be acyclic. In

terms of dependence vectors this means that it is impossible to find

positive integers [k.) such that E-kidi = 0. Another requirement is

that the ancestry of every vertex v v r (i.e., the set of all points from

which v can be reached) has to be finite. This constraint is trivial if

r is a finite set; however, if r is infinite (as is often the case with

signal processing algorithms) this constraint implies that ' has to be

bounded in the directions {-di).

In the sequel we shall focus upon completely regular MCNs in Z

because such MCNs correspond to space-time representation of planar

systolic-array-like architectures (see [3] - [7]). We shall impose the

constraint of causality resulting from the association of 'time' with one of

the coordinate axes in Z3 and examine the flow of data through the

architecture in terms of the dependence vectors characterizing the MCN.

2.1 SPACE-TIME REPRESENTATIONS IN Z3

MCNs in Z3 are characterized by 3-dimensional dependence vectors

(d i, which we shall represent by row vectors of length 3. The collection

of all dependence vectors

D := [d lj (2.1)

4

forms a pii matiix, which we shall call the depenidence mnatrix. Th c

b xtlai\ v't 1,t, doran ii szn alva)k S bt escrJbt d ci a ,, h(J (,I. It i I

b siti icic int i tcii pur,Osc s t o considt'r only conLx iol)hcdi 1, anit ii.

fact, only those that can be characterized in terms of the dependence

vectors (see Section 3.4 for a further discussion of this choice).

The interpretation of ?CNs in Z3 as space-time representations of !4

hardware architectures imposes the additional constraint of causalily:

every dependence vector must have a positive time coordinate, since

computation and propagation of data cannot be accomplished in zero time.

Moreover, since data cannot propagate faster than the speed of

electromagnetic waves in metallic conductors, the directions of dependence

vectors must lie within a certain cone, the time-like cone in the space-time

continuum. By appropriate scaling of space and time coordinates we can

reduce this condition to the requirement

d. [0 0 11 > 1 (2.2)1

which means that the third coordinate of d. must be (an integer) larger or

1
equal to 1.

The association of time with the third coordinate of dependence vectors

allows us to express the finite ancestry condition in simple form. The

exclusion of ancestors that are infinitely remote from a given vertex in the

domain r is equivalent to the requirement that r be a subspace of the

positive half space of Z , i.e., the half space corresponding to non-

negative time coordinates. Moreover, since hardware must always be finite,

the spatial extent of r must be bounded. Thus, the only direction in

which r may remain unbounded is that of positive time, corresponding to a

computation that continues indefinitely in time (e.g., a filtering of an

infinite time-series), but produces results (outputs) at regular intervals.

Vertices in r that share the same spatial coordinates are considered

as representing the same hardware processor at different instances in time.

Regularity implies that such isospatial vertices are spread in time at

regular intervals. This interval, which is the same for all processors,

will be called the yeriodicity index of the architecture. The periodicity

index corresponding to a given dependence matrix D is the smallest

j solution a of the equation

liS

ll) o o [0 11 (2.3)

whe r T| is any row ,ectur ith ilittgt'r (possibly' nIe ative) entries. To

prove this result we notice that q1) is an integer combination of

dependence vectors; moreover, if v(il,Yl,t 1) and v(x2 ,y2 ,t2) are two

distinct vertices in !', then the vector connecting these vertices can

always be expressed in the form ilD for an appropriate (possibly nonunique)

row vector T1. If the two vertices share the same spatial coordinates, then

their irterconnecting vector is colinear with 10 0 1], and so (2.3)

satisfied for some rl,r. Finally, the smallest temporal displacement is

obtained when n is minimized in (2.3). The periodicity index 7T can,

actually, be evaluated without an exhaustive search through all possible

integer vectors of il that satisfy (2.3), as is demonstrated in Section

2.2.

The most important attribute of the space-time representation of a

completely regular MCN is the invariance of the MCN under coordinate

transformations in space-time. This is so because coordinate

transformations do not affect the interconnection pattern of the space-time

representation, and consequently leave the corresponding directed graph

unaltered. In the case of regular space-time representations it is

sufficient to consider the effect of linear coordinate transformations; this

is done in detail in Sections 3 and 4.

2.2 SPATIAL PROJECTION OF MCNs IN Z3

The first two coordinates in a three-dimensional space-time can be

interpreted as physical space. When a space-time representation is

projected into the plane formed by the first two coordinates, vertices

represent computing agents (i.e., processors) and arcs represent physical

interconnections (i.e., wires). The projection amounts to the truncation of

each dependence vector to its first two.coordinates, viz.,

D D (2.4)

6

'lie truivitted drilendence Dnail ix 1) ('S' sta'ids hor spatial' is usuallJy

silI it itlIt to(' II c t VIi't t t i t I h tit II s% ii-tt .(Colin-1 h %S un.(ht

e ac IitI ,1 d e itdvit:v I:tvtt-zc Ic e' c ij' s t c. om ,11t a thi o(nt1 II th I cqV r CS at v1it o f

time, and consequently 10:

ED (2.5)

This assumption is violated only when D has a periodicity index 71(D) > 1

and, in addition, D contains a dependence vector of the form [0 0 T].

This dependence vector is truncated to [0 0], so x cannot be recovered

unless Tr = ii or 'r = 1. These, in fact, are the only two possit.le values

for T as explained in Section 4.4.

The truncated dependence matrix can be pictorially represented by a

conventional block-diagram such as Figure 2-1. Each truncated dependence

vector is represented by an arc with the appropriate spatial displacement,

while truncated dependence vectors of the form [0 0], which correspond

to local memory, are represented by self-arcs.

a. Block-Diagram Representation

b. Dependence and Truncated Dependence Matrices

Figure 2-1. Example of a Regular Hardware Archiltecture

L7

III : ((2 .6)

sc, that every feasible choice of 71 corresponds to an undirected loop in .1

the 2-dimensional block-diagram representation. Thus, every feasible 1 is

obtained by considering all possible loops in the block-diagram

iepresentation. If there are no self-loops on vertices, then 1) contains
s 10

no zero row and (2.5) holds. Consequently, by (2.3),

*

inD(O 0 I = id[I . . . iT

so n is obtained by adding up the entries of it. This is, in fact, done

by counting each arc along the loop as I if it coincides with the

orientation of the loop and as -1 if it points in the reverse direction.

Since the smallest value of n is required, only the shortest loops need to

be considered. We shall show in Section 3.3 that n never exceeds 3 and is

seldom larger than 1.

aI

II

Shll JON 3

CLASS] Fl (ATION 01, BARIAARF ARCIIITECT RES

('omp]etely repular MCNs vere characterized in the previous section in

terms of their dependence vectors. It was also indicated that MCNs with

different dependence vectors may nevertheless be equivalent, namely they

will have equivalent space-time representations. The equivalence of

completely regular MCNs is easy to verify, since it amounts to the existence

of a nonsingular linear transformation relating the dependence matrice f

the MCNs in consideration.

The study of equivalence can be carried out at several different vels

of abstraction. At the lowest (most detailed) level each completely L ir

MCN is represented by a dependence matrix

D := [d]P (3.1)

where d. are row vectors of length 3 whose first two coordinates represent

the planar space of integrated circuits and the third coordinate represents

time. Thus, for instance, the MCN1 of Figure 3-1 is characterized by the

dependence matrix

D=[2210 1

Notice that the time coordinate of all three dependence vectors equals to 1,

reflecting the assumption that each dependence vector represents a

computation that requires a unit of time. This assumption can, of course,

be modified to incorporate computations with unequal processing times.

Notice also that the direction of dependence vectors coincides with that of

[the arrows in Figure 3-1. pointing toward the successors of a given

processor, rather than toward the predecessors of the same processor, as in[3].

xI

V

\4

Figure 3-1. Example of a Completely Regular MTN

At the intermediate level of abstraction only the spatial coordinates

of each dependence vector are considered. This results in the elimination

of the third column of the dependence matrix D, resulting in the truncated

dependence matrix D

D 0 1

SS

for the example of Figure 3-1. We shall show in the following section that

the truncated dependence matrix D provides, in fact, a complete, albeits

implicit, characterization of the MCN. This characterization can be

transformed in a unique manner into the explicit characterization D.

At the highest level of abstraction only the topology of the hardware

is considered. This means that the directed graph representing the flow of

data is replaced by the corresponding non-directed graph. Thus, for

instance, the MCN of Figure 3-1 and that of Figure 3-2 are topologically

equivalent, even though the latter has a different dependence matrix, viz.

D 0l 11

~ -1 -1
10

: V

I

4 4 4

V " +

Figure 3-2. A Conpletely Regular MCN Which is Topologically Equivalent

to that of Figure 3-1

This section is devoted to the study of topological equivalence

followed by the study of architectural (D) equivalence. The moreS

complicated topic of space-time equivalence is presented in the following

section, where it is also shown that distinct hardware configurations may,

nevertheless, have equivalent space-time representations.

3.1 TOPOLOGICAL EQUIVALENCE

The topic of topological equivalence has been studied by Miranker and

Winkler [3], who have shown that there are only three distinct topologies

(Figure 3-3):

(1) The linear topology, with a single dependence vector,

D =[1 0]5

(2) The rectangular topology, with two dependence vectors,

i D s

[1 0

A

a. The Linear To'pology 1

b. The Rectangular Topology

C. The Hexagonal Topology

Figure 3-3. The Three Fundamental Topologies

12

3 I e hciag(onal to t,r) , 2th thice e id nc v (t z%

11

Ever) systolic-array-like architecture can bc related by a linear

transformation to one of these fundamental topologies. Also, it is

impossibI e t(have rorc than thrve non- col ineai dependence vectors i a

planar architecture.

The same conclusion can be reached by a graph-theoretic argument. The

graph describing the hardware configuration of a completely regular MCN is

clearly a mosaic, i.e., a planar graph in which all faces are bounded the

same number of edges and all vertices (except those on the external boundary

of the graph) have the same number of incident edges. As is well known,

there are only three possible mosaics [15]: triangular, rectangular and

hexagonal. The triangular mosaic has vertices of degree 6 and coincides

with the hexagonal topology. The rectangular mosaic has vertices of degree

4 and coincides with the rectangular topology. The hexagonal mosaic (Figure

3-4) does not correspond to a completely regular MCN, since it requires two

sets of dependence vectors rather than one. However, it can be rearranged

by combining pairs of adjacent processors into a single processor (Figure 3-

4b), so that the resulting configuration has a rectangular topology. Thus,

there are only two mosaics corresponding to completely regular MCNs, which

combined with the linear configuration makes a total of 3 fundamental

topologies.

13

10

a. The MosaicI

b. Rearrangement as a Rectangular Topology

Figure 3-4. The Hexagonal Mosaic

14

I
3.2 ARCIIiTECI1RAI. FOIUIVAl FNT

FEach of the intercvnnectint wires in the three fundamental topologies

can be associated with two direction vectors, one pointing along the wire in

one way. the other in the reverse. This makes a total of three

possibilities for each interconnecting wire: (i) + d, (ii) -d, and

(iii) + d. This means that the linear topology results in 31 3

architectures, the rectangular topology in 32 - 9 architectures and the

hexagonal topology in 33 = 27 architectures. Since many of these

architectures are equivalent, a classification of the distinct architectures

is provided in Table 3-1. The nomenclature consists of a capital letter

(L, R or H) indicating the topology (linear, rectangular or hexagonal), a

digit indicating the number of dependence vectors and a lower case letter,

whenever required, to distinguish between architectures which have the same

topology and the same number of dependence vectors but are not equivalent,

e.g., H3a and H3b. The table lists all equivalent configurations in a

single row.

3.3 PERIODICITY ANALYSIS AND THROUGHPUT

The occurrence of cycles (i.e., closed loops of directed arcs) in the

directed graph representing a hardware architecture provides important

information about the throughput rate of the architecture. In this

subsection we analyze this information and identify the configurations with

low throughput.

The periodicity index v of architectures has been defined in Section

2.2. It can be computed either by examining undirected loops in the graph

representing the architecture or by solving the equation

-Ds M 0 (3.2)

for every possible row vector q with integer elements, and summing the

elements of q. The periodicity index x equals the smallest of these

4

IAhlI 3- 1. ('ASS ill Al ION M,1 UARM-~Aldl AR(h Illi.('t1 IRI

1,2

A I-

R3 ~.4-

R4

H3a R-
H3b

H4a

H4bW4TC

H5

H6

16

I
slims. If no solution 1j eIists, ,i is defined to be 3. F'ollowinF this

technique we conclude that LI, R2 have no solution and have a unit

periodicity index, while other architectures have solutions, as follows:

(i) L2 has i = [1 1]; hence r = 2.

(ii) R3 has D1 [1 1 01; hence n = 2.

(iii) R4 has ii = [1 1 0 0], [0 0 1 1]; hence n = 2.

(iv) H3a has Tj = [1 1 -1]; hence n = 1.

(v) H3b has i = [1 1 1]; hence n = 3.

(vi) H4a has n = [1 1 -1 0], [0 0 1 1], [1 1 0 1]; hence a = 1.

(vii) H4b has q = [1 -1 0 1], [0 0 1 1]; hence n = 1.

(viii) H5 has q = [1 0 1 0 -1], (1 1 0 0 0], CO 0 1 1 01; hence

iT = 1.

(ix) H6 has q - [1 0 1 0 -1 0]. [1 1 0 0 0 0], [0 0 1 1 0 0],

[0 0 0 0 1 1]; hence f = 1.

In the sequel we shall measure the throughputs of architectures

relative to the throughput of the linear architecture Li (a classical

pipeline). Since the time interval between two successive applications of

input equals the periodicity index, the relative throughput of a given

architecture is given by the formula

relative throughput (3.3)
periodicity index

Thus, the relative throughput of L.2, R3. R4 is 1/2 and that of 13b is

1/3.

[17

3.4 BOUTNDARY ANALYSIS

No assum titn has b ti madt up to this lJizst about tit' shau t tit tht.

btuunder) tit a given iartlwitrt, architecture. bivtc ir * 'L t Oe "Shal-; (f tht

boundary is Shag ed by linear transformation it has to be taken into

consideration in the process of classifying architectures. As an example

consider the 6 equivalent configurations denoted by 113a (Table 3-1). Tht

truncated dependence matrices of the first and third of these configurations

are relrAtec by a linear transformation, viz.

I1 0 0 1

Now assume that the first configuration has a rectangular boundary, which

can be characterized by boundary matrix

consisting of all dependence vectors colinear with the boundary. The linear

transformation maps this boundary into

B '1B[2
s s 1 0 - 0

which characterizes a parallelogram rather than a rectangle. Thus, the

first 13a configuration with a rectangular boundary is equivalent to the

third 13a configuration with a parallelogram boundary. It is not

equivalent, however, to the third H3a configuration with a rectangular

boundary. Clearly, we need to reclassify the entries of Table 3-1 according

to both the dependence matrix and the boundary.

We shall be concerned only with boundaries that satisfy the two

following conditions:

(i) The boundary curve is a closed convex polygon

is

i) Each segment of the boundary curve is colinear %ith sore 1A
d c l ict C c CA or1

Thus, the only possible directions for the segments of the boundary curve

are [1 0], [0 1] and [1 1]. Consequently, there are four possible

boundary curves (Figure 3-5): rectangle, parallelogram, lower triangle,

upper triangle. Of these, only the rectangle-shape boundary can be applied

to the linear (1) and rectangular (R) architectures. On the other hand, all

four possible boundaries can be combined with hexagonal (I) architectures.

However, since linear transformations map rectangles into parallelograms and

lower triangles into upper ones, we need only consider the combination of

each hexagonal entry of Table 3-1 with either a rectangular or a triangular

boundary.

j

1 '
j~p

t1

a. Rectangle

b. Parallelogram

c. Lower Triangle d. Upper Triangle

Figure 3-5. Fundamental Boundary Curves

20

1ABI.T 3-2. (LASSIIICATION 01, IIAPIARI Alh'll(1 LIS

Ll 12 1R2 R3 k4

1 01 0 1 0 1 0

-1 0 0 1 -1 0 -1 0

0 1 0 1

HWaa B3ap H3b B4aa R4ap

1 0 -1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1

1 1 1 1 -1 -1 1 1 -1 0

-1 -1 -1 -1

B4ba Bl4b H5a BSA B6

1 0 1 0 1 '0 1 0 1 0

0 -1 0 1 -1 0 -1 0 -1 0

1 0 -1 0 1 0 1 0 1

"1 1 -1 1

"a2.

t-low

With rectanFular boundaries we need to consider matrices of the form

[x] (g2 .4

which shows that the reversal of all dependence vectors does not produce a

new configuration. The 6 entries in each one of the rows H3a, H4a, H4b, 15

of Table 3-1 can, therefore, be considered as 3 pairs of conjugate r

configurations. Of these, the second and third pair are still equivalent

when combired with rectangular boundaries, but the first pair is different.

Thus, the entries of Table 3-1, when combined with rectangular boundaries,

can be reclassified as in Table 3-2. This time each architecture is

specified by its D matrix rather than by a pictorial description as ins

Table 3-1.

Similarly, we can combine each hexagonal entry of Table 3-1 with a

lower triangular boundary. This will again produce two distinct

architectures for each one of the rows H3a, B4a, H4b, B5. However, there

is no need to do it explicitly, since the resulting configurations can

always be obtained by 'cutting' the appropriate hexagonal topology combined

with a rectangular boundary along the main diagonal. Thus, it will be

sufficient to focus in the sequel upon rectangular boundaries alone.

3.5 SUMMARY

Systolic-array-like architectures have been classified by topology,

interconnection pattern and shape of boundary. We have shown that there are

only 15 distinct (non-equivalent) architectures (see table 3-2). We have

also shown that it is sufficient to consider only rectangular boundaries

which are of practical importance in the process of VLSI layout.

22

A genvalorica1 chart (I iftirc 3-(1) sh(%s %hich archite-cturcs arlt

.L l i. L , ii, at, ix\ i k: .lt t Lt t. It pi t ij t . r0 ii -l., : Ziat I'. , I

t- ' li , V . I a s I l),it t t Iot s l , r S t kI i . itr1 1,\ s C(. , t ,it] j, n U I

architecture with a smaller number of dependence vectors.

1,1

12 R.

R3 ,H3b 13a H3a :

R4 H14a H4a&x H 4 b H4b a

Figure 3-6. Genealogical Chart for Architectures

23

SIA'J iON 4

CL ASSI] -CATIJO 01 S PAC!: T ki V_! Jl:.S NTA1 JON

The siace-timc representation of a completely regular K C' %as

characterized ir the previcus section by the dependence matrix]) Jht

hardware configuration was obtained by focusing upon the spatial coordinates

of the dependence vectors, which resulted in the truncated dependence matrix

I) . It was observed that the temporal coordinate of all the architecturess

described in Section 3 was always equal to 1, viz.,

D D (4.1)

so that the dependence matrix D can be easily reconstructed for any given

D via (4.1). The properties of the corresponding space-time diagram canS

then be deduced by analysis of the dependence matrix D.

4.1 THE FUNDAMENTAL SPACE-TIME CONFIGURATIONS

Each of the fundamental 11 architectures of Table 3-2 determines a

fundamental space-time configuration. We shall focus our attention upon the

dependence matrix alone, without considering, for the present, the shape of

the boundary surface. Thus, equivalence between the fundamental space-time

configurations is established by relating the corresponding dependence

matrices by linear transformations. A simple analysis (see Appendix A)

shows that every dependence matrix with 2 vectors can be transformed into

the equivalent (canonical) form

D (2) :
0 1 0

1 I, 0

1 1 3 0 J

0 0 1

Ccn seque ntly , L2 ~R2 and R3 - 113a - M~ where the tilde ()denotes

equivalence. For dependence matrices with more than 3 vectors it is

convvnient to establish first a (neimnique) canonical equivalent, i.e., an

equivalent dependence matrix whose first three rows are the identity matrix,

viz.,

1 0 01

D 0 1 0

Sore canonical-form equivalents are listed in Table 4-1. The full list of

canonical equivalents will be discussed in later sections in conjunction

with the specification of boundary surfaces in the three-dimensional space-

time continuum.

4.2 ARCHITECTURES WITH LOCAL MEMORY

The preceding analysis was based upon the assumption that processors

transmit the results of computations to their immediate neighbors and never

store them for further use. However, many applications do involve such

storage; this is true, in particular, for adaptive system/parameter

identification algorithms that store the identified parameters in fixed

location within the array and use the signals that flow through each

processor to time-update the locally stored parameters. In this section we

consider the architectures obtained by providing each processor with a local

memory.

26

1API." 4 1. (ANONI(AIl Iu IOU I\AI.ENTIs I*Oi ITNI A N' IAl. AIC11 Iii Sl

1I L2, R2 R3 , 13 a, 113 b !K4

1 0 0 1 0 0 1 0 0 1 0

0 01 01

H4a H4b H5 116

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

3/2 -1 1/2 -1/2 1 1/2 -1/2 1 1/2 -1/2 1 1/2

3/2 -1 1/2

27

'lolq 1 a I .I , l ,vi l nI rcnr x nlt ii .s ht addit 1 , & ,I ii si II ',)l t, tu v l

T It I, 'I . I It It I R I I t 'I t L 1 . t itl I(I I %t I I . I 11 L 1, I

3 il(1 tS " .c , it 3 t 'Ai. i I , V Y I l i Vcd iI S i ('1, 3.. rtsi.] 1 1;

lii 11 ne- h .- atctU cs (I1ab1t: 4 2). ' t)v inpor-taint L,bscrLt 1 ('s hav V t v bt

made regardizi this tabl :

(i) The number of dependence vectors is larger by one than the number

of interconnections. Thus, for instance, 1W!3 has 4 direction

vcctors, not 3.

(ii) The length of the last dependence vector, corresponding to the

local memory, equals the temporal displacement between two

consecutive occurrences of the sae processor in the space-time

configuration. Thus, in general, this displacement is 1, except

for L2, R3, R4 whose temporal displacement is 2 (corresponding to

a periodicity index of 2), and except fir H3b whose temporal

displacement is 3 (corresponding to a periodicity index of 3).

Local memory can also be used to interleave computations and achieve

increased throughput with architectures whose relative throughput without

memory is less than 1. This possibility will be discussed in Section 4.4.

Analysis of equivalence between space-time configurations with local

memory reveals that:

(i) 1, which has 2 linearly independent dependence vectors, is

equivalent to L2, R2.

(ii) RM2, which has 3 linearly independent dependence vectors is

equivalent to R3, B3a, H3b.

(iii) M]d3a, which has 4 dependence vectors, is equivalent to R4.

a

In all three cases we can trade interconnecting links for memory, thereby

28

.. S

a. The Linear Topolo~gy with Jievory (I)

r

IA

b. The Rectangular Topology with Memory (RM)

c. The Hexagonal Topology with Memory (HM)

Figure 4-1. The Three Fundamental Topologies with Local Memory

L 29

"AB;I.I. 4 2. 'i1l."!NIIAMIN'Al. IIARI)ARI AR(IIIIi.L(' S 'l11 ICOCAI. NT(MOI<Y

LM1 L2 RN2 RM3 RM4

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

0 0 1 -1 0 1 0 1 1 -1 0 1 -1 0 1

0 0 2 0 0 1 0 11 0 11

0 0 2 0 -1 -1
S0 0 2 1

IM3a iH1M3b I ME14a 1T,4 b HN5 I 11M6

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1 0 -1 1 -1 0 1 -1 0 1

1 1- 1 111 111 0 1 1 0 1 1

0 0 1 0 0 3 -1 -1 1 -1 -1 1 0 -1 1 0 -1 1

0 0 1 0 0 1 1 1 1 1 1 1

0 0 1 -1 -1 1

0 0 1

+1 30

reducing the number of physical ireb required to covstIuct a realization, of

tht ar) it C t I (PId 'i r p,1 1 iy t1 21s 1 t1 I t n 1 1 , l r VI 1SD i mt it 2P Ii o1t .

Thus, for i, stance , the 2 fi r(.h itt cture which requi rcs a planar teltori of

processors with 4 interconnecting ports at each processor can be replaced by

LMl which requires a linear network of processors with 2 interconnecting

ports at each processor and a local memory. Even more remarkably, the same

replacement also trades low throughput configurations for high throughput

ones.

4.3 BOUNDARY ANALYSIS

The relation between boundary shapes and equivalence between (planar)

architectures has been examined in Section 3.4 The combination of topology

and boundary has produced 15 distinct architectures which were summarized in

Table 3-2. Since each one of these architectures has a rectangular

boundary, the resulting space-time configuration always occupies a

rectangular prism (with the exception of low-dimensional architectures such

as L1, L2, R2 whose space-time configurations occupy I or 2-dimensional

subspaces).

Since linear transformations change the shape of the boundary, the

equivalence between space-time configuration, discussed in Sections 4.1 -

4.2, has to be reexamined to include the effects of boundary

transformations. It will be sufficient to carry out this analysis only for

collections of space-time configurations which have been declared as

equivalent in the preceding sections.

4.3.1 The Confiaurations LMI. L2. R2

The configurations LJI, R2 can be considered equivalent only when we

assume that a single set of inputs is applied to R2 (rather than a time-

series). In this case R2 is characterized by

[D] 1 . 0 1 _

0 1

j 31

A,

0)1 0 1
0 0 1

and the two are equivalent, being related by a lineai transformation, viz.,

On the other hand, LM1 and R2 are not equivalent to L2 for which

1 0 1
10 1
10 1

The D-part of this characterization can be related to the D-part of LMI,

viz.,

V11. ., 101

0 I 0 1 i oi

where the asterisks denote entries which can be chosen arbitrarily (subject

to the nonsingularity constraint of the linear transformation). However,

when the dependence matrix is combined with the boundary matrix we obtain

[A- -1 _ £ = t- I 1
0 0 1 -10 1

which does not match the B-part of L2. When the inverse of this

transformation is applied to the dependence and boundary matrices of 2,

viz.

1 0 1 r2 0 0 1 0 1

-1 0 1 0 1I- b -1 "'/2 0. 1 1
0 0 1 1/2 0 1

32

/

\ 'N~
N~ N

N

N
N

N N

I j

K

1hII~\
N N

N N
N

N

N

N N

N

N N

N N

N
N

N

N

Figure 4-2. Transformed L2 Configuration

1.
L
1 33

thet 1 st:I tiskg conlI iut ,i t(i (1l1kuie 4 2) is cq u jaIt n tto i 11411

1,0inl iii I 't i4I i tf 11. it I i t tnLor t l I h tnt i I, itt ,4 t I I i t .t k I. , k lIt t t4 Lt

i. s}if led Qzit ce]] I t t" ri ht t-, v r% tint :m ii f ln t i .t s a pp]Iicd. 'lITt! S,

is, sumnaz , LM!I and R2 arc ct'uivalent to eaih othe but itut to L2.

4.3.2 The Configurations RM2,_ .3 _3 a, 113b

The truncated boundar) matrix of these conligurations as chosen in

Section 3.4 as

Bs 0

namely, the rectangular boundary. The corresponding boundary surface in the

space-time continuum is, therefore, characterized by the boundary matrix1 0
B = 1] (4.1)

When this boundary matrix is combined with the dependence matrices of RM2,

113, H3ao, H3ap, H3b, equivalence is destroyed. For instance, trying to

relate H3aa to RM2 we obtain

01°,I Fl 011
F [o -1 01 0- ii - [-i I0 -- -

0 1

The resulting D-part coincides with the dependence matrix of 11)2, but the

boundary surface is different. The configuration obtained above by

transforming R3aa is in fact an 1R)1 hardware of infinite order in which

a finite active segment shifts along the diagonal by one cell each time a

set of inputs is applied to the array. This is, in fact, precisely what

happens in systolic arrays for matrix multiplication. The configuration

I3aa (of Weiser and Davis (12]) is suited for multiplying banded matrices.

When the same problem is implemented on an 11)2 configuration (of S.Y. Kung

[13]) moat cells in the array are idle while a small active rectangle,

34

corrLspondlij, to the bandwieth o the given matrices, shifts along th. majil:

st ucti, I t s t arried (ut eflicicaitly b,y a; lr2 array, s IIin tic' sa .c

problem on an 113a configuration involves many, idle cells and a small

active segment that shifts along the main diagonal.

4.3.3 The Cotfijyuura ti ons_ _ l!M:3 a, R4

These configurations have the same boundary matrix, given by (4.1), as

"'2, R3, H3a and lI3b. Since their dependence matrices are different, we

conclude that HM3aa, l'3ap, R4 are distinct configurations when the shape

of boundary surface is taken into account.

4.3.4 Summary

When boundary considerations are taken into account each of the 15

architectures of Table 3-2 is distinct and cannot be related by equivalence

to any other architecture in this table. Incorporating local memory results

in doubling the total number of distinct configurations to 30.

4.4 INTERLEAVING ARCHITECTURES BY LOCAL MEMORY

The introduction of local memory in Section 4.2 involved the assumption

that locally stored data remain in memory until required, which makes

particular sense in data driven realization. Consequently, the duration of

storage for some architectures (U2, R3, R4D D3b) was longer than one time

unit. This fact can be used to construct new architectures with higher

throughput, by interleaving computations in time and connecting the

interleaved computations via the local memory.

The simplest example of such construction is the architecture L2.

Without interleaving the throughput of L2, LK2 is 1/2 (Figure 4-3a).

With interleaving, which involves superimposing in time two 12 schemes and

interconnecting them vie local memory, the resulting LiM2 configuration

35

t i Il

21
'Al

a. Without Interleaving (122

space

t ime

b. Vith Interleaving (LiM2)

Figure 4-3. Interleaving via Local Memory

36

I

(I-ipure 4 3b) has throughput - I. A similar approach produces the
1 hi t. c C IU IC . R i P3, I? iINA a .J t 1]i Y:3 1) , W}11,s tC Ch I t U It Ii z, i ,, 11 t I vc1, itI

Iable 43. T'lit difteretic bt.twu en the t architcctire s and t, Le i

noninterleaved counterparts is the shortening of the local memory dependence

vector from either [0 0 21 or [0 0 3] to [0 0 1].

TABLE 4-3. DEPENDENCE MATFICES FOR INTERLEAVED ARCBITECTURES

Li,2 Ril43 RiW14 BiV3b

1 0 1 1 0 1 1 0 1 1 0 1

-1 0 1 -1 0 1 -1 0 1 0 1 1

0 0 1 0 1 1 011 -1-1 1

0 0 1 0-1 1 0 0 1

001

4.5 SUNMARY

Space-time configurations have been classified by topology,

interconnection pattern, shape of boundary, existence of local memory and

interleaving. The 15 fundamental architectures of Table 3-2 give rise to

another 15 configurations involving local memory. These, in turn, give rise

to 4 interleaved configurations, producing a total of 34 distinct space-time

configurations.

37

I ptioL i j t it c sIh ,t, ol tht- b, vitid ir) sir tI z esults 1 21 0 d(i s t i li ct

if

1) .1 11) i4a u, il4aj

2) 1 M 1 12, R2 12) 114 bu, 114I U

3) 1N2 13) 1014

4) 1 .i V'2 14) R i1 N4

5) R312, R3, I3ao, 113 i , V3b 15) li4aca, ,14a[,

6) R13 16) 1!4ba, Hll4 4bp

7) R i V3 17) H5a, HI5f;

8) tlW3ao, 13ap, R4 18) HM5o, 11M51;

9) 1lP13b 19) li

10) 11iN3b 20) HIV6

Ignoring, in addition, the details of local memory (and, consequently, of

interleaving) results in 8 distinct configurations only as in 'able 4-1.

Choosing the optimal configuration for a given computational scheme

requires a specification of both the interconnection pattern and the

boundary shape. This can be accomplished only when specific details of the

corresponding computational scheme are taken into account (e.g., bandedness

of matrices to be multiplied). When only partial information is considered

the designer is often able to choose the interconnection pattern but not the

boundary. Thus, multiplication of two matrices can be implemented in any of

the five equivalent hardware configurations RM2 113], R3 [14], H3aa [12],

Mlap, fl3b [11]. However, RM2 will be optimal if both matrices have no

particular structure; R3 will be optimal if only one of the matrices is

banded; and 3aa (or 3ap) will be optimal if both matrices are banded.

It is an historical curiosity that the first systolic array for matrix

multiplication, H3b, is never optimaO, because it has relative throughput

of 1/3 and is otherwise equivalent to 3a.

38

- M-

1

SE(TION 5

CON C1,I I'lON-S

A classification of canonical realizaticis for completely regular

modular computing networks has been presented. Three levels of abstraction

were considered: topology, architecture iad space-time representation. The

analysis revealed 3 canonical topologies, 15 canonical architectures and 34

canonical space-time configurations. It was shown that the unique canonical

counterpart of any given topology, architecture or space-time configuration

is obtained via a simple (and unique) transformation of the corresponding

dependence and boundary matrices. It was also shown that only rectangular

boundaries are required to implement any canonical realization, While

ignoring boundary details allows some flexibility of design, it also results

in inefficient implementations, as explained in Section 4.5.

It is interesting to observe that only a small fraction of the

architectures described in this memo have actually been used in the design

of parallel algorithms. The most commonly encountered architectures are the

linear ones (12, LIM) which are used for linear filtering (= convolution,

polynomial multiplication) and related computations. Next comes the

rectangular architecture RM2 and its equivalents--R3, E3a, H3b--which are

used in matrix products, matrix triangularizations, solutions of linear

equations, QR-factorizations for eigenvalue problems, and adaptive

multichannel least-squares algorithms. Thus, all applications involved, to

date, are only architectures with 3 dependence vectors or less. Notice algo

that the classical pipeline (Ll) has no use as a signal processing

architecture.

The concept of completely regular MOqs involves topologies which are

mosaics or completely regular graphs (excluding the boundaries). When this

requirement is relaxed to allow regular (but not completely regular) planar

graphs, a large variety of new architectures becomes feasible, including

regular trees, self-similar graphs (corresponding to self-recursive

algorithms) and triangular mosaics. Such configurations, which occur in

39

various optimiiatiom anid staiching problems, secem to have 1e signal

40

RlI' RIN CE S

[I] J.P. Roth and L.S. Levy, 'Equivalence of Hardware and Software,'

Research Report RC 9464, IBMI Watson Center, Yorktown Heights, NY, May

1982.

[21 M.C. Chen and C.A. Mead, 'Concurrent Algorithms as Space-Time
Recursion Equations,' in S.Y. Kung, et al. (eds.), Modern Signal
Processing and VLSI, Prentice Hall, 1984.

[3] W.L. Miranker and A. Winkler, 'Spacetime Representations of Systolic
Computational Structures,' IBM Research Report RC 9775, Dec. 1982.

[4] P.R. Cappello and K. Steiglitz, 'Unifying VLSI Array Design with
Linear Transformations in Space-Time,' Technical Report TRCS 83-03,
University of California, Santa Barbara, Dec. 1983.

[5] D.I. Moldovan, 'On the Design of Algorithms for VLSI Systolic
Arrays,' Proceedings of the IEEE, Vol. 71, Jan. 1983, pp. 113-120.

[61 P. Quinton, 'The Systematic Design of Systolic Arrays,' IRISA Report
No. 193, France, Apr. 1983.

[7] H. Lev-Ari, 'Modular Computing Networks: A New Methodology for
Analysis and Design of Parallel Algorithms/Architectures,' ISI
Technical Memo, ISI-29, Dec. 1983.

[8] B. Lisper, 'Description and Synthesis of Systolic Arrays,' The Royal
Institute of Technology Report TRITA-NA-8318, Stockholm, Sweden, 1983.

[9] C.J. Kuo, B.C. Levy, B.R. Musicus, 'The Specification and Verification
of Systolic Wave Algorithms,' MIT Report LIDS-P-1368, Cambridge, MA,
March 1984.

[10] R.M. Karp, R.E. Miller, and S. Winograd, 'The Organization of
Computations for Uniform Recurrence Equations,' JACM. Vol. 14, July
1967, pp. 563-590.

[11] H.T. Kung, 'Why Systolic Architectures?' IEEE Computer, pp. 37-46,

January 1982.

[12] U. Weiser and A. Davis, 'A Wavefront Notation Tool for VLSI Array

Design,' in H.T. Kung, et al. (eds.), VLSI Systems and Computations,
Computer Science Press, 1981.

[13] S.Y. Kung, et al., 'Wavefront Array Processor: Language, Architecture
and Applications,' IEEE Trans. Copn., Vol. C-31, pp. 1054-1066, Nov.
1982.

41

* 1~ i

1141 S.K. Rao and '1. kIailath, 'l)igital liltering in VISI,' ISI. 'echnical
Rt toIt, D(ip t. of I ,I s St a III kI(! ~ll I-(t N , .Jflt . I I' ..

1151 0. Ore, (;raphis _and lhtir .isc.s, Math. Assoc. oI A, ti h Yale. 1913.

/

i4

II

I'

APMNI)l X A

L~l' VALFN VA L.INEAR INANSFOROI A1IONs

TO derendence matrices, say, P1, l)2 arc ccrsidered 1),ijvahnt 1)er

therv exists a nonsingular linear transformation I and a permutation

matrix P such that

D2 = PDIT (A.1)

This relation is clearly reflexive (with P = I, T = 1), symmetric and

transitive, so 'equivalence' is indeed an equivalence-type relation.

Denoting the length of dependence vectors by n, and the number of

dependence vectors by p. we conclude that every dependence matrix with

p < n and full (row) rank is equivalent to

D (p) := [I 0] (A.2)

p

which will be defined as the canonical equivalent of such dependence

matrices. When p > n, and the dependence matrix has full (column) rank,

we can always find a permutation matrix P so that

PD = 1 T (A.3)

where T consists of the first n rows of the permuted matrix PD. Thus,

the canonical equivalent of dependence matrices with p > n is of the form

(A.3) and the properties of D can be studied by examining the structure of

the smaller matrix X.

However, since the submatrix X in (A.3) is not unique, it is required

first to find all possible canonical equivalents to a given dependence

matrix D. This can be done by applying all possible p! permutations P

to the rows of D and then computing X via (A.3). However, not all

L 4

iJt.r[1ttait'lls rne -ratt di tilict X niat iC S. II, ltittl lr, i t V l 1l

I u I t ; I I I I I l ', II

:; 12](A.4)

%here PV P2 are permutation matrices of sizes nxn and (p-n) x (p-n),

respectively, the resulting canoncical equivalent is obtained by solving the

equat i on

PD=E: 2 [D] 1 [1] T

which implies that T P 1) 1 and (assuming DI is nonsingular)

X = P2D2D-1 P-

S221 1

Thus, X is simply some row and column permutation of the fundamental

solution D D-1 . To obtain X-matrices that are not permutations of the
2 1

fundamental solution it is necessary to choose a permutation matrix P

which does not have the block diagonal form (A.4). There are only P waysn

of doing so, which is much less than (p!). Moreover, not all of these

choices result in distinct X-blocks. Thus, for instance, the dependence

matrix

-101

has only one canonical equivalent, viz.,

D~ 1
0 01

while there are in general 24 possible permutations of its rows and 4 ways

to choose these permutations in a form that differs from (A.4).

44

III suuary. once all potisible cainonicill equia (lits of' E Civcri 1) Cat

icc, tzi 1.41 it i iit t tk u t(- tt st ulit ti.t I %rat (.1 cy ('~ 1111 r(~ v~

-nt I i, 1) 1s equi valItnt to 1). 0jic o'nly needs t com;.pute t, si TiIl t

canonical equivalent of D. and compare it to the collect ji of Lavo.uiui~

equivalents of D): a match indicates that D) is indeed equivalent to D)./

44

