AD-A142 010

UNCLASSIFIED

CANONICAL REALIZATIONS OF COMPLETELY REGULAR MODULAR 1/1
COMPUTING NETWORKS{U) INTEGRATED SYSTEMS INC PALO ALTO

CA H LEV-ARI MAY 84 1S1-41 N0O0O14-83-C-0377

F/G 9/2 NL

-

“m | O =8 2
— .. 32
=i
et A0
L =" b=
* Nl
JL2s flie. e

MICROCOPY RESOLUTION Tbx! CHARY

NATIINGL RORERL (F W TANTABN '6e 1 &

Y

éug o . ~

CANONICAL REALIZATIONS
OF COMPLETELY REGULAR
MODULAR CCMPUTING NETWORKS

HANOCH LEV-ARI

AD-A142 (610

PREPARED FOR:

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VIRGINIA 22217

ATTENTION: DR. DAVID W. MIZELL

T~
T Ee
PREPARED UNDER: \ SUN 1 3 1084
CONTRACT NO. NOOQ14-83-C-0377 &Y -
A
DTIC Fice g _— B
: LY for s T s e
ISI REPORT 41 e MAY 1984 S v

~ 151 University Avenue Palo Alto, CA. 94301

84 - 05 23 011

Ph 415/321-9773

Section

1
2

5
REFERENCES .
APPENDIX A:

TABLE OF CONTENTS

Title

INTRODUCTION .

COMPLETELY REGULAR MCNs
2.1 Space-Time Representations in Z° .
2.2 Spatia]l Projection of MCNs in 23 .
CLASSIFICATION OF HARDWARE ARCHITECTURES
3.1 Topological Equivalence
Architectura)l Equivalence . . .

Periodicity Analysis and Throughput

- W N

Boundary Analysis

‘N

SUBBATY s e e e e e e

Architectures with Local Memory . .

..O"‘WUUU

w ~

Boundary Amalysis
4.3.1 The Configurations LM1, L2,
4.3.2 The Configurations RM2, R3,
4.3.3 The Configurations HM3a, R4
4.3.4 SumBAaTy ¢ o s s o
4.4 Interleaving Architectures by Local
4.5 SumEBBYY ¢ ¢ 4 e e 8 0 s s s
CONCLUSIONS ¢« ¢ ¢ ¢ ¢ o + &

BQUIVALENCE VIA LINEAR TRANSFORMATION .

"CSIHICATION OF SPACE-TIME REPRESENTATION . . .

The Fundamental Space-Time Configurations . .

e o ¢« o o

Rz - 4 .
H3a, H3b

N

LT 3
ot \\ Wt

CUS WL Y

\

LR

0

™Y ”

.
Do b0 [

»
oM o,

SECTION 1
INTRODUCT ION

T
9; °
)

P

£

The multiplicity of possible hardware implementations for & given
computational scheme is efficiently displayed by & space—time

representation, a notational tool that has been incorporated into some

recent methodologies for modeling, analysis and design of parallel

architectures [1-9]. Coordinate transformations of a given space—time

representation produce distinct hardware configurations which are equivalent
in the sense of being the implementations of the same computational scheme.
The problem of mapping & given algorithm into a desired hardware
configuration can, therefore, be partly reduced to choosing the esppropriate
coordinate transformation in space—~time. Im particular, uniform recurrence
relations, which correspond to systolic-array architectures, are described

by regular space—time representations. This implies that only linear

coordinate transformations are required, and that the entire computational
scheme can be described by a small collection of vectors in space—time, the
dependence vectors [3,5,6,8]. Consequently, the selection of a desired
hardware architecture for a given algorithm reduces to the determination of
an appropriate monsingular matrix with integer entries.

Previous research has focused upon the algebra of such transformation

matrices in munltidimensional linear spaces, establishing conditions for the
mappadbility of given algorithms into systolic—array architectures. However,

since physical space is 3-dimensional the dimensionality of space-time

cannot exceed 4. Moreover, since VLSI hardware must be planar and no 5
intersection of wires is allowed, only 3-dimensional space-time '
: } representations are allowed. Consequently, the number of distinct systolic-

array architectures is very small; Miranker and Winkler have, in fact, shown

-~
& nntm——

that only three topologies--linear, rectsngular, hexagonal--are permitted
.
l - . for systolic arrays.
' This paper establishes a simple technique for transforming a given 3-

dimensional space-time representation into an equivalent canonical form., A

catalogue of canonical torms is constructed, showing a total of 34 distinct

systolic architectures. The taskh of selecting an appropriate transformation
for a given space-time representation reduces, therefore, to the
determination of the equivalent canonical form. The important result, which
has been overlooked in previous research, is that the canonical equivalent
of any given space—time representation is anique. This means that once a
space—time representation has been specified there is no flexibility left in
the process of mapping into systolic—array architectures.

A small fraction of space-time representation do allow some flexibility
in selecting the hardware architecture, but only at the cost of inefficient
implementation. The well-known example of matrix multiplication, which has
four distinct realizations (see [11)-[14]) turnms out to be ome of the few
cases where such flexibility is available. A closer examinaiion of the
structure of the matrices to be multiplied reveals that each realization is
efficient under a different set of structural assumptions,(see Section 4.3).
Thus, in summary, carefully specified algorithms lead to unique space-—time

representations which, in turn, lead to essentially unique architectures.
A

© o e ey

SECTION 2 4

A modulsar computing network (MCN) can be loosely defined as an
association of multivariable functions with the vertices of a directed
acyclic graph (see [7] for a rigorous definition). More precisely,
multivariable functions are associated only with internal vertices, which

are those vertices that have both incoming and outgoirg arcs. A vertex with

P; incoming arcs and Po outgoing arcs is associated with an input-output
map with Py input varisbles and P output variables,
A completely regular MCN is one that can be represented by a regular

multidimensional grid, and in ~vhich all input-output maps associated with

e

the vertices are idemnticrl, Thus, the vertices of a completely regular MCN 3
can be mapped into points of the multidimensional grid Z® in the

n-dimensional Euclidean space Rn, where Z denutes the set of integers;

ey

the arcs of a completely regular MCN become vectors (n—tuples of real
numbers) representing the directed straight iines commecting points of the
grid z®. Clearly, not all points in z" correspond to vertices of the
MCN. Those that do determine the domain T of the MCN in Z®. The

requirement of complete regularity translates into the statement that the

vectors (arcs) emanating from any point (vertex) im T do not depend upon

the choice of vertex, Consequently, the entire MCN is characterized by:

(1) the set of dependence vectors {di] emanating from a single
vertex; '

(ii) the domsin T C Z%

and

(i11) the auput vutput nap f
f: . e - e e
(x] xp) > ()] yp)
associated with every vertex in the domain ',

A curious consequence of this definition is that the input-output map f
has the seame number of inputs and outputs, since the number of arcs
crmanatirg from a point in ' is always the same as the number of arcs
converging to a point.

Not every set of dependence vectors (di] determines a valid MCN. For
instance, the directed graph representing an MCN has to be acyclic. In
terms of dependence vectors this means that it is impossible to find
positive integers {ki} such that Ekidi = 0. Another requirement is
that the ancestry of every vertex v ¢ ' (i.e., the set of all points from
which v can be reached) has to be finite. This constraint is trivial if
' is a finite set; however, if [is infinite (as is often the case with
signal processing algorithms) this constraint implies that T has to be
bounded in the directions {—di].

In the sequel we shall focus upon completely regular MCNs in Zs.
because such MCNs correspond to space—time representation of planar
systolic-array—-like architectures (see [3] - [7]). VWe shall impose the
constraint of causality resulting from the association of ’'time’ with one of
the coordinate axes in 23 and examine the flow of data through the

architecture in terms of the dependence vectors characterizing the MCN.

2.1 SPACE-TIME REPRESENTATIONS IN Z3

MCNs in 23 are characterized by 3-dimensional dependence vectors
(di}' which we shall represent by row vectors of length 3. The collection

of all dependence vectors

p:= 1410 (2.1)

forms 8 pxn matrix, which we shall cull the dependence matrix, The
boundary of the domuin 7 (un wlways be described ss oa pelyhcdren, 1t will
be sutficient for our purposes to consider only convex polyhedrs, and in
fact, only those that can be characterized in terms of the dependence
vectors (see Section 3.4 for a further discussion of this choice).

The interpretation of MCNs in 23 as space—time representations of
hardware architectures imposes the additional constraint of causality:
every dependence vector must have 8 positive time coordinate, since
computation and propagation of data cannot be accomplished in zero time.
Moreover, since data cannot propagate faster than the speed of
electromagnetic waves in metallic conductors, the directions of dependence
vectors must lie within a certain cone, the time-like cone in the space—time
continuum. By appropriate scaling of space and time coordinates we can

reduce this condition to the requirement
*
di {foo01] >1 (2.2)

which means that the third coordinate of di must be (an integer) larger or
equal to 1,

The association of time with the third coordinate of dependence vectors
allows us to express the finite anmcestry condition in simple form. The
exclusion of ancestors that are infinitely remote from a given vertex in the
domain T is equivalent to the requirement that T be a subspace of the
positive half space of 23, i.e., the half space corresponding to non-
negative time coordinates. Moreover, since hardware must always be finite,
the spatial extent of T must be bounded. Thus, the only directiom in
which T may remain unbounded is that of positive time, corresponding to a
computation that continues indefinitely in time (e.g., a filtering of an
infinite time-serjes), but produces results (outputs) at regular intervals.

Vertices in T' that share the same spatial coordinates are considered
as representing the same hardware processor at different instances in time,
Regularity implies that such isospatial vertices are spread in time at
regular intervals, This interval, which is the same for all processors,
will be called the periodicity index of the architecture., The periodicity
index corresponding to a given dependence matrix D is the smallest

solution n of the equation

wh - a0 0 1) (2.3)

where w is any row vcctor with integer (possibly negative) entries. To
prove this result we notice that) is an integer combination of
dependence vectors; moreover, if v(xl,yl,tl) and v(x2,y2,t2) are two
distinct vertices in !, then the vector connecting these vertices can
always be expressed in the form nD for an appropriate (possibly nonunique)
row vector n. If the two vertices share the same spatial coordinates, then
their irterconnecting vector is colinear with [0 O 1], and so (2.3)
satisfied for some mn,n. Finally, the smallest temporal displacement is
obtained when n is minimized in (2.3). The periodicity index =n can,
actually, be evaluated without an exhaustive search through sll possible
integer vectors of n that satisfy {(2.3), as is demonstrated in Section
2.2,

The most important attribute of the space-time representation of a
completely regular MCN is the invariance of the MCN under coordinate
transformations in space-time. This is so because coordinate
transformations do not affect the interconnection pattern of the space-time
representation, and consequently leave the corresponding directed graph
unaltered. In the case of regular space—time representations it is
sufficient to consider the effect of linear coordinate transformations; this

is done in detail in Sections 3 and 4.

2.2 SPATIAL PROJECTION OF MCNs IN Z°

The first two coordinates in a three—dimensional space—-time can be
interpreted as physical space. When a space-time representation is
projected into the plane formed by the first two coordinates, vertices
represent computing agents (i.e., processors) and arcs represent physical
interconnections (i.e., wires). The projection amounts to the trumcationm of

each dependence vector to its first two coordimates, viz.,

1
D :=DJ|O 1 (2.4)
0

The truncated dependence matrix l)g ('s' stands ftor 'spatial’) is vsually
suffircient to cloracterize the srchaitecture, since we cormenly assunc that
each dependence vector represents s computation that requires & unit of

time, and comseguently

(2.5)

e v e bbb

b
—_

This assumption is viclated only when D has a periodicity index =n(D) > 1
and, in addition, D contains a dependence vector of the form [0 O <].
This dependence vector is truncated to [0 O], so <t cannot be recovered
unless T =n or T =1. These, in fact, are the only two possille values
for t as explained in Section 4.4.

The truncated dependence matrix can be pictorially represented by a
conventional block-diagram such as Figure 2-1. Each truncated dependence
vector is represented by an arc with the appropriate spatial displacement,
while truncated dependence vectors of the form [0 0], which correspond

to local memory, are represented by self-arcs.

a. Block-Diagram Representation

1 1 1

D= |-1 1 D = |-
s

0 1 0

b. Dependence and Truncated Dependence Matrices

Figure 2-1. Example of a Regular Hardware Architecture

"llll'."'-.'-."-.'.'---'-"'-'!'l-IIlllllIll!l!-n-!!f*

The truncested equivalent of (2.3) becemes
nh = 0 (2.6)
s

s¢ that every feasible choice of 7 corresponds to an undirected loop in
the 2-dimensional block-diesgram representation, Thus, every feasible n is
obtained by considering all possible loops in the block-diagram
representation, If there are no self-loops on vertices, then Ds contains

no zero row and (2.5) holds. Consequently, by (2.3),
.
wi{6 06 11 =ql1 1 .. .11 =n

so n is obtained by adding up the entries of n. This is, in fact, done

by counting each arc along the loop as 1 if it coincides with the

orientation of the loop and as -1 if it points in the reverse direction.
Since the smallest value of n is required, only the shortest loops need to
be considered. We shall show in Section 3.3 that =n never exceeds 3 and is

seldom larger than 1.

2 i N i . - e

SECIION 3

Completely repular MCNs were characterized irn the previous section in
terms of their dependence vectors, Jt was also indicated that MCNs with
different dependence vectors may nevertheless be equivalent, namely they
will have equivalent space-time representations. The equivalence of
completely regular MCNs is easy to verify, since it amounts to the existence
of a nonsingular linear transformation relating the dependence matrice f
the MCNs in consideration.

The study of equivalence can be carried out at several different vels
of abstraction, At the lowest (most detailed) level each completely g ar

MCN is represented by a dependence matrix

. P
D := 40}, (3.1)
where di are row vectors of length 3 whose first two coordinates represent
the planar space of integrated circuits and the third coordinate represents
time, Thus, for instance, the MON of Figure 3-1 is characterized by the

dependence matrix

1 0 1
D=]0 1 1
1 1 1

Notice that the time coordinate of all three dependence vectors equals to 1,
reflecting the assumption that each dependence vector represents a
computation that requires a unit of time. This assumption can, of course,
be modified to incorporate computations with unequal processing times.
Notice also that the direction of dependence vectors coincides with that of

the arrows in Figure 3-1, pointing toward the successors of a given

processor, rather than toward the predecessors of the same processor, as in

{3l].

-/

Figure 3-1., Example of a Completely Regular NCN

At the intermediate level of abstraction only the spatial coordinates I

of each dependence vector are considered. This results in the elimination i

of the third column of the dependence matrix D, resulting in the truncated }
1
)

dependence matrix Ds

1 0

D =0 1
s

1 1

for the example of Figure 3-1. We shall show in the following section that
the truncated dependence matrix Ds provides, in fact, a complete, albeit
implicit, characterization of the MCN. This characterization can be
transformed in a unique manner into the explicit characterization D.

At the highest level of abstraction only the topology of the hardware
is considered. This means that the directed graph representing the flow of
data is replaced by the corresponding non-directed graph. Thus, for
instance, the MON of Figure 3-1 and that of Figure 3-2 are topologically

equivalent, even though the latter has & different dependence matrix, viz,

e

. 1 0
D = 0 1

$
-1 -1

10

& diy ol

| ; :
A J ‘ S
. ‘—bft \—————j\x- >
\T" \r\\\ é&

Figure 3-2., A Completely Regular MCN Which is Topologically Equivalent
to that of Figure 3-1

This section is devoted to the study of topologicel equivalence
followed by the study of architectural (Ds) equivalence, The more
complicated topic of space-time equivalence is presented in the following
section, where it is also shown that distinct hardware configurations may,

pevertheless, bhave equivalent space—time representations.

3.1 TOPOLOGICAL EQUIVALENCE

The topic of topological equivalence has been studied by Miranker and
Winkler [3], who have shown that there are only three distinct topologies
(Figure 3-3):

(1) The linear topology, with a single dependence vector,
D =1 0]

(2) The rectangular topology, with two dependence vectors,

11

a. The Linear Topology

c. The Hexagonal Topology

Figure 3-3, The Three Fundamental Topologies

12

(3) The hexagonal topolegy, with thyee dependence vectors,

Fvery systolic-array-like architecturc can bc releted by & linear
transfermation to one of these fundamental topologies. Also, it is
irpessitle te have more than three nom-colinear dependence vectors in e
rlanar architecture.

The same conclusion can be reached by a graph-theoretic esrgument, The
graph describing the hardware configuration of a completely regular MCN is
clearly a mosaic, i.e., a planar graph in which 2ll faces are bounded the
same number of edges and 8sll vertices (except those on the external toundary
of the graprh) have the same number of incident edges. As is well known,
there are only three possible mosaics [15]: triangular, rectangular and
hexagonal. The triangular mosaic has vertices of degree 6 and coincicdes
with the hexagonal topology. The rectangular mosaic has vertices of degree
4 and coincides with the rectangular topology. The hexagonal mosaic (Figure
3-4) does not correspond to a completely regular MCN, since it requires two
sets of dependence vectors rather than one. However, it can be rearranged
by combining pairs of adjacent processors into a single processor (Figure 3~
4b), so that the resultimng configuration has a rectangular topology. Thus,
there are only two mosaics corresponding to completely regular MCNs, which
combined with the linear configuration makes a total of 3 fundamental

topologies.

13

-
N

S

A S

L ahmee . elames. - teas

a. The Mosaic

b. Rearrangement as a Rectangular Topology

Figure 3-4. The Hexagonal Mosaic

14

3.2 AROHITECTURAL EOUIVAI FNCE

Fach of the interconnccting wires in the three fundamental topologies
can be associated with two direction vectors, one pointing along the wire inp
one way, the other in the reverse. This makes a total of three
possibilities for each interconmecting wire: (i) + d, (ii) -d, and
(iii) + d. This means that the linear topology results in 3~ =3
architectures, the rectangular topology in 32 = 9 architectures and the
hexagonal topology in 33 = 27 architectures. Since many of these
architectures are equivalent, a classification of the distinct architectures
is provided in Table 3-1. The nomenclature consists of a capital letter
(L, R or H) indicating the topology (linear, rectangular or hexagonal), s
digit indicating the number of dependence vectors and a lower case letter,
whenever required, to distinguish between architectures which have the same
topology and the same number of dependence vectors but are not equivalent,

e.g., H3a and H3b. The table lists gll equivalent configuratioms in a

single row,

3.3 PERIODICITY ANALYSIS AND THROUGHPUT

The occurrence of cycles (i.e., closed loops of directed arcs) in the
directed graph representing a hardware architecture provides important
information about the throughput rate of the architecture. 1In this

subsection we analyze this information and identify the configurations with

low throughput.
The periodicity index n of architectures has been defimed in Section

2.2. It can be computed either by examining undirected loops in the graph

representing the architecture or by solving the equation
uD. = 0 (3.2)

for every possible row vector n with integer elements, and summing the
elements of mn. The periodicity index n equals the smallest of these

15

- -

ST

~

TABLY 3-1.

CLASSTHICATION OF EARIDVAKL ARCHITLCIURES

Pair 3

- -~ Lot

| IS KN

3 e b I,, <_:
S

e N N ‘_l\ ;\T_;]
=N -

S
Hib \% l‘\ k l{ ’—N
S e
| R

A e s o s S © e e e i AY 3 e 0t 2 B SRl A Ot A e L 20 M 53 bt e AT 28 T

sums, If no solution n exists, n 1is defined to be 1. Following this

technique we conclude that Ll, R2 have noe solution and have a unit

periodicity index, while other architcctures have solutions, as follows:

3 (i) 12 has ¢ [1 1); hence n =2,

L]

(ii) R3 has ¢ [110]; hence n =2,

(iii) R4 has 1 {1100], [0011]); hence = = 2,

[11~-1); hence n =1,

(iv) H3a bhas 10

(v) H3b has 7 [111]; hence n = 3.

[11-10], [0011], [1101}; hence n =1.

(vi) H4a has 1

{1-101), [0011); hence n

]
[
.

(vii) H4b has 7

(viii) HS5 has n=[1010-1], [11000], [00110]; hence

n=1,

(ix) B6 has n=0[1010-10],[110000], [0011200],
[000011); hence n =1,

In the sequel we shall measure the throughputs of architectures
relative to the throughput of the linear architecture Ll (a2 classical
pipeline)., Since the time interval between two successive applications of
input equals the periodicity index, the relative throughput of a given

architecture is given by the formula

. . |
] | relative throughput periodicity imdex (3.3)
Thus, the relative throughput of L2, R3, R4 4is 1/2 and that of H3bd is
| 13,
i }

L .

3.4 BOUNDARY ANALYSIS

No assumption has been made up to this point about the shape of the
boundary of & given hardware architecture, However, since the shape of the
boundary is changed by linear transformation it has to be taken into
consideration in the process of classifying architectures. As an example
consider the 6 equivalent configurations denoted by H3a (Table 3-1). The
truncated dependence matrices of the first and third of these configurations

are related by a linear transformation, viz,

Now assume that the first configuration has a rectangular boundary, which

can be characterized by boundary matrix

1 0
Bs =
0 1
consisting of all dependence vectors colinear with the boundary. The linear {

transformation maps this boundary into

which characterizes a parallelogram rather than a rectangle. Thus, the
first H3a configuration with a rectangular boundary is equivalent to the
third H3a configuration with a parasllelogram boundary. It is not
equivalent, however, to the third H3a configuration with a rectangular

boundary. Clearly, we need to reclassify the entries of Table 3-1 according

to both the dependence mstrix and the boundary.
We shall be concerned only with boundaries that satisfy the two

following coaditions:

(i) The boundary curve is a closed comvex polygon

18

(ii) FEach segment of the boundary curve is colinear with some

dependence vector.,

Thus, the only possible directions for the segments of tbhe boundary curve
sre [1 0), [0 1] and (1 1]. Consequently, there are four possible
boundary curves (Figure 3-5): rectangle, parallelogram, lower triangle,
upper triangle. Of these, only the rectangle-shape boundary can be applied
to the linear (1) and rectangular (R) architectures. On the other hand, all
four possible boundaries can be combined with hexagonal () architectures,
However, since linear transformations map rectangles into parallelograms and
lower triangles into upper ones, we need only consider the combination of

each hexagonal entry of Table 3-1 with either a rectangular or & triangular

boundary.

19

N

c.

a., Rectangle

b.

Lower Triangle

Figure 3-§5,

Parallelogram

d. Upper Triangle

Fundamental Boundary Curves

20

TABLY 3-2., CLASSIFICATION OF HARDVWARE AKCHITEHCIUVRES
UM RECTANGUL AR BOUNDARTE S
e

11 ! 12 R2 ' K3 k4
1 0] 0 1 0] 0 1 ¢
-1 0 0 1 | -1 o -10
o 1 ’ 0o 1

i
: I U
B |
H3aa ! H3af H3b Bdea H4ap
1 0 -1 0 0 1 0 0
0 0 0 0 1 0

1 1 -1 -1 1 1 -1 0
-1 -1 -1 -1

Héba H4bp HSa BSp H6
0 0 1 1 0 1 0
o -1 -1 -1 0 -1 0
1 -1 0 1 0 1
-1 -1 1 -1 1 1
1 -1 -1 -1 -1

.

With rectangular boundaries we need to copsider matrices of the form

(2.4)

Clearly

which shows that the reversal of all dependence vectors does not produce a
new configuration, The 6 entries in each one of the rows H3a, B4a, H4b, HS
of Table 3-1 can, therefore, be considered as 3 pairs of conjugate
configurations, Of these, the second and third pair are still equivalent
when combined with rectangular boundaries, but the first pair is different.
Thus, the entries of Table 3-1, when combirned with rectangular boundaries,
can be reclassified as in Table 3-2. This time each architecture is
specified by its Ds matrix rather than by a pictorial description as in
Table 3-1.

Similarly, we can combine each hexagonal entry of Table 3-1 with a
lower triangular boundary. This will again produce two distinct
srchitectures for each one of the rows H3a, B4a, H4b, B5. However, there
is no need to do it explicitly, since the resulting configurations can
always be obtained by ’‘cutting’ the sppropriate hexagonal topology combined
with a rectanguler boundary along the main diagonal. Thus, it will be

sufficient to focus in the sequel upon rectangular boundaries alone.

3.5 SUMMARY

Systolic—array-like architectures have been classified by topology,
interconnection pattern and shape of boundary. We have shown that there are
only 15 distinct (non-equivalent) architectures (see table 3-2). We have

also shown that it is sufficient to consider only rectangular boundaries

which are of practical importance in the process of VLSI layout,

_

A gencslogical chart (Fajure 3-6)

copntained ALoany pivern

the ‘universsl architec

arthatectuse,

shows which architectures are

Fro pesticular, it show: thut bt IR

ture’ for systoelic arrayvs, containing every possible

architecture with a smaller number of dependence vectors.

Figure 3-6. Genealogical Chart for Architectures

SECLION 4
CLASSIFICATION. 01 SPACE- TIME RFPEESENTATION

The space—time representetion of e completely regular MCN was
characterized in the previcus section by the dependernce matrix D. The
hardware configuration was obtained by focusing upon the spatial coordinates
of the dependence vectors, which resulted in the truncated dependence matrix
Ds' Jt was observed that the temporal coordinate of all the architectures

described in Section 3 was always equal to 1, viz.,

D =)D . (4.1)

so that the dependence matrix D can be easily reconstructed for any given
Ds via (4,1). The properties of the corresponding space—time diagram can

then be deduced by analysis of the dependence matrix D.

4.1 THE FUNDAMENTAL SPACE-TIME CONFIGURATIONS

Each of the fundamental 11 architectures of Table 3-2 determimes a
fundamental space-time configuration. We shall focus our attention upon the
dependence matrix alone, without considering, for the present, the shape of
the boundary surface. Thus, equivalence between the fundamental space-time
configurations is established by relating the corresponding dependence
matrices by linear transformations. A simple analysis (see Appendix A)
shows that every dependence matrix with 2 vectors can be transformed into

the equivalent (canonical) form

(2)

D

et

B

M iden

N

e N

and every depondence noatria wath 3 o voceters car boe o transforpod ante the

cgravetlert tora

<
—
>

Consequently, L2 ~ R2 and R3 ~ H3a ~ H3b where the tilde (~) denotes
equivalence. For dependence matrices with more than 3 vectors it is
convenient to establish first a (porunique) canonical equivalent, i.e., an
equivalent dependence matrix whose first three rows are the identity matrix,

viz.,

[=i]
= O O

IO = O

Sorie canonical-form equivalents are listed in Table 4-1. The full list of
canonical equivalents will be discussed in later sections in conjunction
with the specification of boundary surfaces in the three—-dimensional space-

time continuum.

4.2 ARCHITECTURES WITH LOCAL MEMORY

The preceding analysis was based upon the assumption that processors
transmit the results of computations to their immediate neighbors and never
store them for further use. However, many applications do involve such
storage; this is true, in particular, for adaptive system/parameter
identification algorithms that store the identified parameters in fixed
location within the array and use the signals that flow through each
processor to time—update the locally stored parameters. In this section we

consider the architectures obtained by providing each processor with a local

memory.

TABLY 4 1. CANONICAL BFORM FGQUIVALENTS FOR FUNDAMENTAL AKCEITI CIUKES

11 12,R2 R3,H3a,H3b K4
’ 7
1 0 0 1 0 o0 1 0 o0 1 0 0 4
0 1 0 0 1 0 6 1 0 ’
0 1 0 0 1 L
1 -1 1
_ 1 i ;f
)
Héa T H4b H5 K6
1 0 1 0 0 1 0 0 1 0 o0
0 1 0 1 o0 0 1 o© 0 1 0
0o o 0 0 1 0 o0 1 o o0 1
3/2 -1 1/2 |-1/2 1 1/2 |-1/2 1 1/2 |{-1/2 1 1/2
3/2 -1 1/2

vy

. o
e s . v s min e

t

1
<
é
i
k

Tepolegarcally, local merory means the sddition ¢f a8 sclf leop to cudh
precescor thyypuere 4 1), bie Caredtyon o cadh artorcernoatyny bk cad
stidlb be cbosern 310 3 distinet weys, 8y erplaired 31 Scotien 2.2, resulting

in 11 new architectures (lable 4-2). Twe ipportant observations have to be

made regarding this table:

(i) The number of dependence vectors is larger by one than the number
of interconnections. Thus, for instance, RM2 has 4 direction

vectors, not 3,

(ii) The length of the last dependence vector, corresponding to the
local memory, equals the temporal displacement between two
consecutive occurrences of the same processor in the space-time
configuration, Thus, in general, this displacement is 1, except
for L2, R3, R4 whose temporal displacement is 2 (corresponding to
a periodicity index of 2), and except for H3b whose temporal

displacement is 3 (corresponding to a periodicity index of 3).

l.ocal memory can also be used to interleave computations and achieve

increased throughput with architectures whose relative throughput without

memory is less than 1. This possibility will be discussed in Section 4.4.
Analysis of equivalence between space-time configurations with local

memory reveals that:

(i) IM1, which has 2 linearly independent dependence vectors, is

equivalent to L2, R2.

(ii) RM2, which has 3 linearly independent dependence vectors is

equivalent to R3, H3a, H3b,

(iii) HM3a, which has 4 dependence vectors, is equivalent to R4.

In all three cases we can trade intercomnecting links for memory, therebdby

Qe BN

PR SN

("\j'““‘"-f\lg o }\

a. The Linear Topology with Memory (LM)

b. The Rectangular Topology with Memory (RM)

@ N

N

W

¢. The Hexagonal Topology with Memory (HM)

Figure 4-1. The Three Fundamental Topologies with Local Memory

29

G O

a

MEMORY

ARCHITECTURES WITH LOCAL

HARDW AR

FUNDAMEN'TAL

THE

4 2.

TABLL

RM3

RM2

LM2

‘ RM4

BM6

01

-1

0-1 1

-1 1

-1

-1

LM1

1

0 0

HMS

HM4b

0 1

-1

0-1 1

1

0

1

0 -1

-1 1

-1

MH4 a

1

1
1

1
-1 -1

1

0

1
3

-1 -1

0

1

1
0

30

reducing the number of physical wires required to construct & realization of
the architecture and sirplafyrng the Jayout preblem tor VIS implementotion,
Thus, for instance, the R2 sarchitecture which requires a planer networdl of
processors with 4 interconnecting ports at each processor can be replaced by
LMl which requires a linear network of processors with 2 interconmecting

ports at each processor and a local memory., Even more remarkably, the same
replacement also trades low throughput configurations for high throughput

ones.

4.3 BOUNDARY ANALYSIS

The relation between boundary shapes and equivalence between (planar)
architectures has been examined in Section 3.4 The combination of topology
and boundary has produced 15 distinct architectures which were summarized in
Teble 3-2, Since each one of these architectures has a rectangular
boundary, the resulting space-—time configuration always occupies &
rectangular prism (with the exception of low—dimensional architectures such
as L1, L2, R2 whose space—time configurations occupy 1 or 2-dimensional
subspaces).

Since linear transformations change the shape of the boundary, the
equivalence between space—-time configuration, discussed in Sections 4.1 -
4.2, has to be reexamined to include the effects of boundary
transformations., It will be sufficient to carry out this amalysis only for
collections of space-time configurations which have been declared as

equivalent in the preceding sections.

4.3.1 The Configurations IM1, L2, R2

The configurations LMl, R2 can be considered equivalent only when we
sssume that a single set of inputs is applied to R2 (rather than a time-

series). In this case R2 is characterized by

while [IMI iy c(heructerized by

1 0 1
“] G 0 1
1 ¢ 1
BJ 0 0 1

and the two are equivalent, being related by a linear transformation, viz.,

[1 0 1] Y [1 0]J
0 0 1 P 01 1

On the other hand, LMl and R2 are not equivalent to L2 for which

1 0 1
o B U R

1701
: 0 0 1

The D-part of this characterization can be related to the D-part of LMI,

1 0 1 |1 01
0 0 1 ~1 0 1

where the asterisks denote entries which can be chosen arbitrarily (subject

viz.,

2 00
L T
1 01

to the nonsingularity constraint of the linear transformation). BHowever,

when the dependence matrix is combined with the boundary matrix we obtain

1 0 1 1 0 1
o o1 |29 a0
17017 L) o, 1701
0O 0 1 -1 0 1

which does not match the B-part of L2. VWhen the inverse of this

transformation is applied to the dependence and boundary matrices of L2,

A Y

s ML

~
e

»
‘l.n-!
' v
v ~
\ ~
N
N N
\ ~ ~
\ ~
\ \’_\ ~
)
\ \\
\
\\’

Figure 4-2. Transformed L2 Configuration

xme vt o

the resulting configurstion (Figure 4 2) 1s equivalent te an LM
contagurstion of antanite order, the Jinite setave jert of the arcbitectuore
is shifted one cell te the vight every time 6 new input is appliced., Thus,

in summary, LMl and K2 are¢ cquivalent to cach othes but not to L2.

The truncated boundary matrix of thesc configurations was chosen in

Section 3.4 as

namely, the rectangular boundary. The corresponding boundary surface in the

space—time continuum is, therefore, characterized by the boundary matrix

(4.1)

=
u
[=2 0
OO
(O

When this boundary matrix is combined with the dependence matrices of RM2,
R3, H3aa, H3ap, H3b, equivalence is destroyed. For instance, tryimg to

relate H3aa to RM2 we obtain

1 0 1 1 0 1
D 0-1 0 0 11 0-1 0 011
111 11 0 1

. f-1 0o of = [|-2-1.1 41 0 o= [-2-2-1
B 11 1 101 11 1 101
H3aa - 01 1 001 1
0 0 1 11 1

The resulting D-part coincides with the dependence matrix of RM2, but the
boundary surface is different. The configuration obtained above by
transforming H3aa is in fact an RM2 hardware of infinite order in which
a finite active segment shifts along the diagonal by ome cell each time a
set of inputs is applied to the array. ‘This is, in fact, precisely what
happens in systolic arrays for matrix multiplication, The configuration
H3sa (of Weiser and Davis [12]) is suited for multiplying banded matrices.
When the same problem is implemented on an RM2 configuration (of S.Y. Kung

[13]) most cells in the array are idle while a small active rectangle,

34

corresponding to the bandwidth of the given matrices, shifts along the main
diangonnl of the ariasy. In snalepy, while multaiplying twe mutraces with
structure is carried out efficiently by an RM2 array, solving the same
problem on an H3a configuration involves many idle cells and a small

active segment that shifts along the main diagonal,

4.3.3 e Configurations M3a, R4

i

These configurations have the same boundary matrix, given by (4.1), as
RM2, R3, H3s and H3b, Since their dependence matrices are different, we
conclude that HM3aa, HM3aB, R4 are distinct configurations when the shape

of boundary surface is taken into account.

4.3.4 Summary

When boundary considerations are taken into account each of the 15
architectures of Teble 3-2 is distinct and cannot be related by equivelence
to any other architecture in this table. Incorporating local memory results

in doubling the total number of distinct configurations to 30.

4.4 INTERLEAVING ARCHITECTURES BY LOCAL MEMORY

The introduction of local memory in Section 4.2 involved the assumption
that locally stored data remain in memory until required, which makes
particular sense in data driven realization. Consequently, the duration of
storage for some architectures (L2, R3, R4, H3b) was longer than one time
unit., This fact can be used to construct mew architectures with higher
throughput, by interleaving computations in time and connecting the
interleaved computations via the local memory.

The simplest example of such construction is the architecture L2,
Without interleaving the throughput of L2, LM2 is 1/2 (Figure 4-3a).
With interlesving, which involves superimposing in time two L2 schemes and

interconnecting them via local memory, the resulting LiM2 configuration

35

|

time¥

- {
~O)
/
/
’
4
— (\/
/

2, Without Interleaving (LM2)

b. VWith Interleaving (LiM2)

Figure 4-3. Interleaving via Local Memory

(Figure 4 3b) bas throughput - 1. A similar approach produces the
Grehitectures RiM3I, KiM4 and HiM3bL, whost chetacterizations a1c givern i3
Table 4-3. The difference between these architectures and theis
noninterleaved counterparts is the shortening of the local memory dependence

vector from either [0 O 2} or [0 O 3] to [0 O 1].

TABLE 4-3. DEPENDENCE MATRICES FOR INTERLEAVED ARCHITECTURES

: LiM2 RiM3 | RiM4 BiN3b E
- 4 :
P 1 0 1 1 0 1 1 0 1
Co-1 -1 01] -1 0 1 0 1 1
.0 0 1 01 1 001 1 [-1-11

| 0 0 1 0-1 1 0 0 1

: 0 0 1

4.5 SUMMARY

Space-time configurations have been classified by topology,
interconnection pattern, shape of boundary, existence of local memory and
interleaving. The 15 fundamental architectures of Table 3-2 give rise to
another 15 configurations involving local memory. These, in turm, give rise

to 4 interleaved configurations, producing a total of 34 distinct space—time

configurations.

lpnoring

Corlapere ey

the shape of the bouvnduary

1esults 1 20 distancet

1) b1 11) Hdsa, Hbaf
1IN, 12, R2 12) M4ba, BALL
3) 1M 13) KM4

4) LiM2 14) RiM4

5) RM2, R3, H3aa, H3afi, B3b 15) liM4aa, HM4ap
6) RM3 16) HM4ba, HM4bR
7) RiM3 17) HSa, HS5p

8) HM3ao, HM3af, R4 18) HMS5a, HM5)
9) HM3b 19) he
10) Hi¥3b 20) HMG

Ignoring, in addition, the details of local memory (and, consequently, of
interleaving) results in 8 distinct configurations only as in Table 4-1.

Choosing the optimal configuration for a given computational scheme
requires a specification of both the interconnection pattern and the
boundary shape. This can be accomplished only when specific details of the
corresponding computational scheme are takem into account (e.g., bandedness
of matrices to be multiplied). When only partial information is considered
the designer is often able to choose the interconnection patterm but not the
boundary. Thus, multiplication of two matrices can be implemented in any of
the five equivalent hardware configurations RM2 [13], R3 [14], H3aa [12],
H3ap, H3b [11]. However, RM2 will be optimal if both matrices have no
particular structure; R3 will be optimal if only one of the matrices is
banded; and H3aa (or H3aB) will be optimal if both matrices are banded.
It is an historical curiosity that the first systolic array for matrix

multiplication, H3b, is never optima/, because it has relative throughput

of 1/3 and is otherwise equivalent to H3a.

SECTION 5

CONCLUSIONS

A clessification of canonica) reslizaticns for completely regular
modular computing networks has been presented., Threc levels of abstraction
were considered: topology, architecture and space-time representation. The
analysis revealed 3 canonical topologies, 15 caponical architectures and 34
canonical space-time configurations. It was shown that the unique canonical
counterpart of any given topology, architecture or space-time configuration
is obtained via a simple (and vnique) transformation of the corresponding
dependence end boundary matrices., It was also shown that only rectangular
boundaries are required to implement any canonicel realization. While
ignoring boundary details allows some flexibility of design, it also results
in inefficient implementations, as explained in Section 4.5.

It is interesting to observe that only a small fraction of the
architectures descridbed in this memo have actually been used in the design
of parallel algorithms. The most commonly encountered architectures are the
linear ones (L2, L1M) which are used for linear filtering (= convolution,
polynomial multiplication) and related computations. Next comes the
rectangular architecture RM2 and its equivalents-—R3, H3a, H3b—-which are
used in matrix products, matrix triangularizations, solutions of linear
equations, QR~factorizations for eigenvalue problems, and adaptive
multichannel least-squares algorithms. Thus, all applications involved, to
date, are only architectures with 3 dependence vectors or less. Notice alio
that the classical pipeline (L1) has no use as a signal processing
architecture,

The concept of completely regular M(Ns involves topologies which are
mosaics or completely regular graphs (excluding the boundaries), When this
requirement is relaxed to allow regular (but not completely regular) planar
graphs, s large variety of new architectures becomes feasible, including
regular trees, self-similar graphs (corresponding to self-recursive

algorithms) and trisngular mosaics. Such configurations, which occur in

San

s A §

— i an . A

various optimization end scarching problems, seem to hasve few signal

jrevestany applieationy,

:
. !

[1]

(2]

[3]

[4]

[6]

(7]

[8]

(9]

[10]

[11]

{12])

[13]

’

J.P. Roth and L.S. Levy, ‘Equivalence of Hardware and Software,
Research Report RC 9464, IBM Watson Center, Yorktown Heights, NY, May
1982,

M.C., Chen and C.A. Mead, 'Concurrent Algorithms as Space-Time
Recursion Equations,’ in S.Y. Kung, et al. (eds.), Modern Signal
Processing and VLS, Prentice Hall, 1984,

W.L. Miranker and A, Winkler, 'Spacetime Representations of Systolic
Computational Structures,’ IBM Research Report RC 9775, Dec. 1982.

P.R. Cappello and K. Steiglitz, 'Unifying VLSI Array Design with
Linear Transformations in Space-Time,’' Technical Report TRCS 83-03,
University of California, Santas Barbare, Dec. 1983.

D.J. Moldovan, 'On the Design of Algorithms for VLSI Systolic
Arrays,’ Proceedings of the IEEE, Vol. 71, Jan. 1983, pp. 113-120.

P. Quinton, 'The Systematic Design of Systolic Arrays,’' IRISA Report
No. 193, France, Apr. 1983.

H. Lev~-Ari, 'Modular Computing Networks: A New Methodology for
Analysis and Design of Parallel Algorithms/Architectures,' ISI
Technical Memo, ISI-29, Dec. 1983.

B. Lisper, 'Description and Synthesis of Systolic Arrays,’ The Royal
Institute of Technology Report TRITA-NA-8318, Stockholm, Sweden, 1983,

C.J. Kuo, B.C. Levy, B.R. Musicus, 'The Specification and Verification
of Systolic Wave Algorithms,’ MIT Report LIDS-P-1368, Cambridge, MA,
March 1984.

R.M. Karp, R.E. Miller, and S. Winograd, 'The Organization of
Computations for Uniform Recurrence Equations,’ JACM, Vol. 14, July
1967, pp. 563-590.

B.T. Kung, 'Why Systolic Architectures?’ IEEE Computer, pp. 37-46,
January 1982,

U. Weiser and A. Davis, ‘A Wavefront Notation Tool for VLSI Array

Design,’ in H.T. Kung, et al. (eds.), VLSI Systems and Computations,
Computer Science Press, 1981.

S.Y. Kung, et al., 'Wavefront Array Processor: Language, Architecture
and Applications,’ JEEE Trans, Comp., Vol. C-31, pp. 1054-1066, Nov.
1982,

s
Taa

"
H
|

F

114] S.K. Rao and 1. Kailath, 'bigital Filtering in VIS},' 181 Technicel i
Keport, bept, of b, Stanford Unaversity, Jan. 1984, v

(18] 0. Ore, Grephs and Their Uses, Muth., Asscoc. of Americen, Yale, 1963, .
.-

/s

1

APPENDIX A
EQUIVALEN(E. VIA LINEAK TRANSFORMATIONS

Twe derendence matrices, say, hl' DQ, are corsidered equivaloent when
there exists 2 nonsinguler linear transformation 1 and 8 permutation

matrix P such that

D, = PD.T A.l
2 1 ()
This reletion is clearly reflexive (with P = I, T = 1), symmetric and
transitive, so 'equivalence’ is indeed an equivalence—type reletion,
Denoting the length of dependence vectors by n, and the number of
dependence vectors by p, vwe conclude that every dependence matrix with

p {n and full (row) rank is equivalent to
p{P) .- (1, o (A.2)

which will be defined as the canonical equivalent of such dependence
matrices. When p > n, and the dependence matrix has full (column) rank,

we can always find & permutation matrix P so that
PD = T (A.3)

where T consists of the first n rows of the permuted matrix PD. Thus,
the canonical equivalent of dependence matrices with p > n is of the form
(A.3) and the properties of D can be studied by examining the structure of
the smaller matrix X,

However, since the submatrix X in (A.3) is not unique, it is required
first to find all possible canomical equivalents to a given dependence
matrix D, This can be done by applying all possible p! permutations P

to the rows of D and then computing X via (A.3). However, not all

43

R ez . R TS S

[O

-

-

pernutations gpenerate distinet X matrices. Jnoparticular, it we spply 8

Jereititrer ot the torr

b= (A.4)

where P], P2 are permutation matrices of sizes nxn and (p-n) x (p-n),
respectively, the resulting canonical equivalent is obtairned by solving the

vquaticn

which implies that T = Plnl and (essuming D] is nonsingular)

. -1,-1

X P2D2D1 P1
Thus, X 1is simply some row and column permutation of the fundamental
solution D D_l. To obtain X-matrices that are not permutations of the

271
fundamental solutionm it is necessary to choose a permutation matrix P

which does not have the block diagonal form (A.4). There are only ﬁ ways
of doing so, which is much less than (p!). Moreover, not all of these
choices result in distinct X-blocks. Thus, for instance, the dependence

matrix

OO r
- oo
e b

has only ome canonical equivalent, viz.,

-
-oro
- - O

while there are in general 24 possible permutations of its rows and 4 ways

to choose these permutations in a form that differs from (A.4).

44

-

Y

-

<

In summary, once all possible canonical equivalents of & given P have

beer conprted it i peletively easy te test whethes some otber degendonee

matrix D 1s equivalent toe P, One only necds te compute v single

canonical equivalent of D and compare it to the collection of canonicn)

equivalents of D: a match indicates that D is indeed equivalent to D.

45

j e
e ibemata m . maa h\‘ -

