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FOREWORD

This technical report summarizes the work performed by

the University of Dayton Research Institute under Materials

Laboratory Contract Number F33615-82-C-5030. The work was

performed between May 1982 and September 1983. Dr. Joseph A.

Moyzis of the Materials Laboratory was the Air Force Project

Monitor and Dr. Alan P. Berens of the University of Dayton was

the Principal Investigator.

The final eport of this work comprises two volumes. A

complete description of the methods and results of the programn

are contained in Volume I. As prt of the study, two computer

programs were written: a) a program for calculating effective

inspection reliability and exceedance probabilities for selected

POD functions and crack length distributions, and b) a prograi-

for simulating NDI experiments and est'imating the parameters (,f

the POD function. A user's manual and the listings for these

programs are contained in Volume II.

.1*

J,.

2

'S....41

iii

"'" " " " ¢ ".'-" '-"- " '- ' - "  " "- """ ' '" " """-" "-'"-""'-'-"-"'" -'- " :" " - ' "': " " 'i.

:.'- .?,,') z2..'..''. ',.. -2-/'g€ -/..''.''.'/- '.". ..'-. .*',&.*.*"*-'. k .. v t ,
" .

.. .. . ..
3 .

"" "• "



TABLE OF CON, TENTS

SECTION PAGE

INTRODUCTION 1

2 ANALYTICAL FRAMEWORK 4

2.1 QUANTIFYING NDI UNCERTAINTY FOR DAMAGE
TOLERANCE ANALYSIS 4

2.2 POD FUNCTIONS 11

2.3 CRACK SIZE DISTRIBUTIONS 13

.3.1 Equivalent Initial Flaw Size
Distribution 15

2.3.2 Rogue Flaw Distribution 17

2.3.3 Tracking Flaw Size Distributions 20

3 FLAW DETECTION RELIABILITY 22

3.1 DEFINITION OF FLAW DETECTION RELIABILITY 22

3.2 CAUSES OF UNCERTAINTY/SOURCES OF
VARIATION 26

J, 3.3 DATA ANALYSIS 30

3.3.1 Models for POD Functions 30

3.3.2 Pass/Fail Data 38

3.3.2.1 One Inspection Per Flaw 38

3.3.2.2 Multiple Inspections Per Flaw 45

3.3.2.2.1 Maximum Likelihood
Estimates 45

3.3.2.2.2 Regression Anilysis 50

3.3.3 Analysis of a \ersus a Data 51

3.4 SAMPLING VARIABILITY OF POD PARAMETER 63
ESTIM4ATES

3.4.1 Effect of the Design of the Experiment 65
3.4.2 Type of Analysis 80

• 4 EVALUATION OF POD CHARACTERISTICS 94

4.1 POD AND EQUIVALENT CRACK SIZE DISTRIBUTIONS 94 9

4.1.1 Effect of Median Crack Length 95

4.1.2 Effect of owith Equivalent Crack
Size Model 102

4.1.3 Effect of Median Detection Capability
with Equivalent Crack Size Model 102

! v4% -. , . . . . - . .. . - . - .. . . . - .. . . .- . . . . . . ... . . . . . . . - .
'I L ? ' < v .. ' .'- -- - .-. ,. -- .- , ..-- ..- -? ?.-. ----. : k ... .::i.?



TABLE OF CONTENTS (Concluded)

SECTI ON PAGE

4.2 POD AND ROGUE FLAW DISTRIBUTIONS 110

4.2.1 Comparison of Rogue Flaw Models 110

4.2.2 Effect of a with Uniform Distribution
of Rogue Flaws 116

, 4.2.3 Effect of Median Detection Capability

with Uniform Distribution of Rogue
Flaws 120

4.3 DISCUSSION OF CRACK SIZE MODELS 120

5 ASIP APPLICATIONS 128

5.1 INITIAL FLAW SIZE ASSUMPTION 129

I.. 5.2 IN-SERVICE INSPECTION FLAW SIZE
ASSUMPTIONS 135

6 CONCLUSIONS 139

6.1 POD ESTIMATION 139

6.2 NDI RELIABILITY CHARACTERIZATION 140

6.3 ASIP APPLICATION 141

REFERENCES 143

APPENDIX A - STATISTICAL ESTIMATION OF POD 145

l'

vi

'p° . - . . -. .°, " - • - o - - . " % " -", .". % .° . o. . " 2 J , , . -. / - -



LIST OF ILLUSTRATIONS

FIGURE PAGE

1 Crack Growth-Life Curve to Second Inspection. 5

2 Schematic of Probability of Detection Curves. 8

3 Log Odds POD Functions for Five Data Sets. 12

4 Example POD Functions for Normalized Crack Lengths. 14

5 Crack Size Distributions as Modeled by Equivalent
Initial .-rack Sizes. 18

6 Example Rogue Flaw Probability Density Functions. 19

7 Crack Detection Probabilities for Individual Flaws
as a Function of Crack Size. 23

8 Schematic of Probability Density Function of Crack
Detection Probabilities at a Crack Length. 25

9 Observed Peak Eddy Current Response Voltages from
Two Measurements on Each Crack. 28

10 Comparative Analysis of Ultrasonic Inspection
Capability. 32

11 Comparative Analysis of Eddy Current Inspection
Capability. 33

12 Comparison of a Log Logistic Function with Similar
Weibull Functions (broad scatter). 35

13 Comparison of a Log Logistic Function with Similar
Weibull Functions (short scatter). 36

14 Comparison of a Log Logistic Function with a Similar
Weibull Function for Broad and Short Scatter. 37

15 Normalized Example of MLE's for an Eddy Current
.-. Inspection Process. 40

. 16 Normalized Example of MLE's for an Ultrasonic
Inspection Process. 41

17 Normalized Example of MLE's for a Fluoropenetrant
Inspection Process. 42

18 Normalized Example of a Nonsignificant POD Fit. 44

19 Comparison of Regression and Maximum LikelihoodK Estimates of POD for Eddy Current Inspections of a
C-130 Skin and Stringer Wing Assembly. 47

vii

j .....



. -~oW -,*

LIST OF ILLUSTRATIONS (Continued)

FIGURE PAGE

20 Comparison of Regression and Maximum Likelihood
Estimates of POD for Ultrasonic Inspections of a C-130
Skin and Stringer Wing Assembly. 48

21 Comparisons of Regression and Maximum Likelihood
Estimates of POD for Eddy Current Inspections of
C-130 Skin & Stringer Wing Segments. 49

22 Example Application of Log Odds-Regression Analysis. 52

23 Example of the Distributions of Single a Values as
a Function of a. 54

24 Example of Distributions of a for Individual Flaws. 55

25 ?rojection of a Distribution to the POD Function. 56

26 Example of a Versus a Eddy^Current Inspection Data
with a Linear Trend in Pn a & a Function of Zn a. 59

27 POD Estimates as a Function of Threshold for Data
In Figure 26. 60

28 Mean POD with Confidence Bound Calculated from a
vs a Analysis. 62

29 Tenth and 90th Percentiles of Estimates of it as a
Function of Sample Size for POD with 11 = 0 and
a = 0.25 Lognormal Crack Sizes with 6 = 0 and A = 0.25. 67

30 Tenth and 90th Percentiles of Estimates of (; as a
Function of Sample Size for POD with P = 0 and
o = 0.25 Lognormal Crack Sizes with 6 = 0 and X =0.25. 68

31 Tenth and 90th Percentiles of Estimates of it as a
Function of Sample Size for POD with . = 0 and

= 0.5 Lognormal Crack Sizes with 6 = 0 and A = 0.5. 69

32 Tenth and 90th Percentiles of Estimates of o as a
Function of Sample Size for POD with ii = 0 and
o = 0.5 Lognormal Crack Sizes with 6 = 0 and A = 0.5. 70

33 Tenth and 90th Percentile Estimates of iu as a Function
of Sample Size for POD with It 0 and a =1 Lognormal
Crack Sizes with 6 =0 and A 1.0. 71

'viii

.4,' N .*~. . . . . . . |-. . . . . . . . . - ..



[..1
[.4

LIST OF ILLUSTRATIONS (Continued)

FIGURE - • PAGE

34 Tenth and 90th Percentile Estimates of o as a
Function of Sample Size for POD with = 0 and a = 1
Lognormal Crack Sizes with 6 = 0 and X = 1.0. 72

35 Tenth and 90th Percentiles of Estimates of ui as
a Function of a for Selected Sample Sizes - Pass/Fail
Analysis. 73

36 Tenth ard 90th Percentiles of Estimates of u as
a Functiua of a for Selected Sample Sizes - Pass/Fail
Analysis. 74

37 Tenth and 90th Percentiles of Estimates of p as a
Function of a for Selected Sample Sizes-a vs a
Analysis. 75

38 Tenth and 90th Percentiles of Estimates of as a
Function of a for Selected Sample Sizes - a vs a
Analysis. 76

39 Tenth and 90th Percentiles of Estimates of i. as a
Function of Sample Size for PCD with p = 0 and a = 0.5
Lognormal Crack Sizes with 6 = kn 0.5 and = 0.5. 78

40 Tenth and 90th Percentiles of Estimates of ; as a
Function of Sample Size for POD with = 0 and a = 0.5
Lognormal Crack Sizes with 6 = in 0.5 and = 0.5. 79

41 Tenth and 90th Percentiles of Estimates of i, as a
Function of Standard Deviation of Log Flaw Sizes with

,A Average Log Flaw Size of 0.5 and Sample Size of 30 -
• POD a = 1. 81

42 Tenth and 90th Percentiles of Estimates of ( as a
Function of Standard Deviation of Log Flaw Sizes with

• Average Log Flaw Size of 0.5 and Sample Size of 30 -
POD = . 82

43 Tenth and 90th Percentiles of Estimates of i as a

Function of Standard Deviation of Log Flaw Sizes with
Average Log Flaw Size of 2.0 and Sample Size of 30 -
POD a = 1. 83

44 Tenth and 90th Percentiles of Estimates of 2 as a

Function of Standard Deviation of Log Flaw Sizes with
Average Log Flaw Size of 2.0 and Sample Size of 30
POD =. 84 S

ix
04. i X .- -

a . -°- ... '



LIST OF ILLUSTRATONS (Continued)

FIGURE PAGE

45 Tenth and 90th Percentiles of Estimates of p as a
Function of Standard Deviation of Log Flaw Sizes
with Average Log Flaw Size of 0.5 and Sample Size
of 100 - POD a = 1. 85

46 Tenth and 90th Percentiles of Estimates of a as a
Function of Standard Deviation of Log Flaw Sizes
with Average Log Flaw Size of 0.5 and Sample Size
of 100 - POD a = 1.

47 Tenth a:.d 90th Percentiles of Estimates of P as a
Function of Standard Deviation of Log Flaw Sizes
with Average Log Flaw Size of 2.0 and Sample Size
of 100 - POD u =1. 87

48 Tenth and 90th Percentiles of Estimates of a as a

Function of Standard Deviation of Log Flaw Sizes
with Average Log Flaw Size )f 2.0 and Sample Size
of 100 - POD 0 1. 88

49 Exceedance Probabilities for Selected Medan Crack
Sizes - 3 = 0.5. 96

50 Exceedance Probabilities for Selected Medjan Crack
Size - o = 1.0. 97

51 Effective Inspection Reliability for Selected
Median Crack Sizes - = 0.5. 99

52 Effective Inspection-Reliability for Selected
Median Crack Sizes - a = 1.0. 100

53 Proportion of Rejected Structural Details as Function
of Median Crack Size. 101

54 Exceedance Probabilities for Selected Median Crack
Sizes and Ranges of a. 103

55 Inspection Limit Crack Length for H(a) = 0.00001 as
a function of Median Crack Length for Selected a. 104

56 Effective Inspection Reliability for Selected a
Values - Median Crack Length = 0.25. 105

57 POD Functions for Selected Median Inspection
Capabilities - o = 0.5. 106

x



LIST OF IT.LUS±RATION' (Continued)

FIGURE PAGE

58 Exceedance Probabilities for Selected Median Crack
Sizes and Ranges of Median Inspection Capabilities
a = 1.0. 107

59 Inspection Limits for H(a) = 0.00001 as a Function
of Median Detection Capability for Selected a -
Median Crack Length = 0.25. 108

60 Effective Inspection Reliability for Selected Median
Detecti -- Capabilities - Median Crack Length = 0.25,
" = 1.0. 109

61 Exceedance Probabilities for Selected Rogue Flaw
Crack Size Models - o = 0.5 and 1.0. i1

62 Effective Inspection Reliability for Selected
Flaw Crack Size Models - o = 0.5 and 1.0. 113

. 63 Exceedance Probabilities for Jniform Rociue Plaw
Models with 2 Maximum Flaw S:ies - ( 0.5 ind 1.0. 114

64 Effective Inspection ReliabiL -ty for Uniform Rogue
Flaw Models with 2 Maximum FLiw Sizes - 0.5 ond 115
1.0.

65 Exceedance Probabilities for Uniform Rogue Flaw Model
and Selected a Values. 117

66 Inspection Limits for Selected H(a) Values as a
Function of a. 118

67 Effective Inspection Reliability for Uniform Rogue
Flaw Model and Selected a Values. 119

68 Exceedance Probabilities for Selected Median
Detection Capabilities - a = 0.5. 121

69 Exceedance Probabilities for Selected Median
Detection Capabilities - a = 1.0. 122

70 Inspection Limits as a Function of Median
Detection Capability for Selected a and H(a). 123

. j xi. 
.

A--"s



LIST OF ILLUSTRATIONS (Concluded)

FIGURE PAGE

71 Effective Reliability for Selected Median Detection
Capabilities - o 0.5. 124

72 Effective Reliability for Selected Median Detection
Capabilities a = 1.0. 125

73 Example POD Functions for Increased NDI Capability. 131

' 74 Exceedance Probabilities for Increased NDI Capability. 132

75 Example Distribution of 90/95 and 95/90 Limits from
Simulated NDI Reliability Experiments. 134

xii

* S * * 7



W.

LIST OF TABLES

TABLE AGE

1--FLOW DIAGRAM OF NDI RELIABILITY EXPERIMENT

SIMULATION 64

2 MEANS AND STANDARD DEVIATIONS (SD) FOR POD

PARAMETER ESTIMATES FROM SIMULATED NDI

" RELIABILITY EXPERIMENTS 66

3 MEAN SQUARE ERRORS AND RELATIVE EFFICIENCIES

FOR TWO ANALYSIS METHODS AND SELECTED VALUES

OF 6, X AND n - j=0, o=1. 90

4 MEAN SQUARE ERRORS AND RELATIVE EFFICIENCY

FOR TWO ANALYSIS METHODS AND SELECTED VALUES

OF a AND n -iH=0, 6=0, \=0.5. 91

5 MEAN SQUARE ERRORS AND RELATIVE EFFICIENCY

FOR TWO ANALYSIS METHODS AND SELECTED VALUES

OF 6, A, ;, AND n -p = 0 . 92

,I-:.

2.1

r..°

: xiii .

-I- .- * ".. ., - *,.. -- ..-. .-... . . , . .. . .. .. * . . .-- * . .. •



SECTION I

INTRODUCTION

Guaranteeing structural safety through damage tolerance

analysis has focused attention on quantifying the capability of

nondestructive inspection (NDI) systems. To predict the growth

of the largest flaw that might be present at a critical location

requires knowledge of the flaw sizes that might be missed at an

inspection. However, factors beyond the control of the NDI system

influence the deL-ectability of flaws at the small sizes of interest

and NDI capability must be characterized in probabilistic terms.

For a particular application of a given NDI system, capability is

defined as the probability of crack detection (POD) of all cracks

of fixed length, i.e., in terms of the function POD(a).

A one number characterization (: NDI capability is curr(ntly

in use as defined by the minimum crack length for which there is a

fixed degree of confidence (CL) that -it least a fixed proportion

(POD) of cracks will be detected, i.e., the POD/CL crack length.

For example, there is 95 percent confidence that at least 90 percent

of all cracks greater than the 90/95 crack length will be detected.

Several studies in recent years have resulted in a different ,Approach

.-.- to characterizing NDI capability and have demonstrated weaknesses

in the POD/CL type characterization.

In the late 1970's, results from multiple, independent

inspections of the same fatigue cracks were generated under an Air

Force NDI reliability program known as the "Have Cracks Will Travel"

Program(1) These data demonstrated conclusively that different

cracks of the same length can have significantly different crack

detection probabilities. This realization led to a regression model

approach for estimating the POD(a) function and, further, permitted

realistic computer simulations of NDI experiments. The simulations,

in turn, demonstrated the extreme statistical instability of the

P. POD/CL type characterization (2) This instability implies that if

an NDI reliability demonstration program were repeated under rigidly

controlled conditions, the 90/95 crack lengths could be radically
. different due only to the statistical variability of inspection

results.

*1.
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Further, the relation between a 90/9 crack lenaih jnd the ch. nces

of iutt detecting a longer crack is e irely unkr. wn.

For damage tolerance calculati :is at the d sign stages

aircraft development, the Air Force hzs circumvented the probj-

bilistic aspects of initial crack sizes by specifying the crack

- lengths which must be used for new and in-service inspected

structures. These numbers are only vaguely related to current
NDI capability as they were established on the basis of a broad

brush evaluatio- of pre-1974 inspection capability and are also

considered to ccoc r manufacturing or repai- defects which are not

necessarily detectable by a specific NDI system. However, the

specification does contain a provision for lowerini the initial

flaw size assumptions for one category of virgin stru-ture based on

a demonstration that the NDI system to be used has a lower 90,795

crack length.

In view of the apparent diffic ties with th( 90/95 cra,

length type of NDI reliability characerization, this program .'as

undertaken with two objectives: a) t( determine a procedure ,r

specifying crack size assumptions in (amage tolerance analyse:. which

correlates NDI capability with the ri.z of structural failure; ind,

b) to review existing Air Force crack size assumptions and mai,.

recommendations for incorporating the new procedure. To achieve

these objectives considerable effort was devoted to developinq
and evaluating methods for analyzing NDI reliability data.

This report comprises 6 Sections. In Section 2, the basis

for correlating inspection uncertainty with risk of structural

failure is established. This section emphasizes the need to account

for both the sizes of the cracks in the population of structuril

details and the probability of crack detection as a function of

crack size. Section 3 presents an extensive discussion and

mathematical details related to the inalysis of NDI reliability

data. Section 4 presents a sensitivity analysis of reliability

.4100 characterizations and an evaluation of the effect of the sampling

variation in the estimates of the POD function parameters on the
probability of missing large cracks it an inspection. This section

• %'°%
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ties the material of Sections 2 and 3. Section 5 discusses the

Air Force Aircraft Structural Integrity Program (ASIP) ramifica-

tions of NDI reliability characterizations and presents recommenda-

tions for using the methods of this report in determining initial 0

flaw size assumptions in damage tolerance analyses. Conclusions

are presented in Section 6.
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SECTION 2

ANALYTICAL FRAMEWORK

The damage tolerance approach to structural safety is centered

on a philosophy of insuring safe operation in the presence of flaws.

Accordingly, flaws are assumed to be present at all critical loca-

tions and it is demonstrated that these flaws will not grow to a

critical size in the usage environment during each period of opera-

tion. This process requires bounds on the sizes of the flaws that

may be in the structure and the bounds must be quantified in terms

amenable to analysis. Since fracture mechanics methods are used to

predict flaw growth, flaw sizes are stated in terms of a crack

length or an equivalent crack length. Manufacturing quality control

and field inspections are intended to detect all flaws but the

capability of current inspection systems can only be expressed in

probabilistic terms at the small crack sizes of interest. Since no

guarantee can be given that all flaws greater than a predetermined

bound will be detected, the inspection element contributes to the

overall failure risk of the damage tolerance process.

This section presents a simple approach to measuring the

effect of inspection uncertainty on structural integrity by correla-

ting the NDI system with the distribution of crack sizes in a

structure after inspection. This approach permits determining that

crack size for which there is a predetermined probability of

exceedance. Since the calculations require knowledge of the POD

function and the distribution of crack sizes in the structure, these

topics are also discussed.

2.1 QUANTIFYING NDI UNCERTAINTY FOR DAMAGE TOLERANCE ANALYSIS

The Air Force application of damage tolerance analysis is

usually summarized as shown in the schematic of Figure 1. The as-

manufactured or virgin structural detail is assumed to have a flaw

of length a O . The growth of this flaw is predicted for design usage
and will reach critical crack size, af, after tD flight hours. Since

the Air Force philosophy calls for an inspection at half the time

required for the potential crack to reach critical, the first

. 4
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inspection is scheduled at tI = tD/2 flight hours. The main-

. tenance action is assumed to find and remove any flaw of length

greater than aNDE so that a NDE is the initial crack size for the

next usage period. Since a crack of length aNDE is predicted to

reach critical size in tI flight hours, the second inspection

is scheduled at t2 = t1 + t1 /2. The process continues until the

structure becomes uneconomical to ma :itain.

The application of this process requires, a) extensive

knowledge concerning the location, geometry, and material properties

of all potentially critical areas of the structure; b) predicted

stress histories for each critical location during the service

usage period; and c) bounds on the sizes of potential flaws. The

first two of these factors are highly aircraft dependent as they

can be determined only for a specific design and usage. The third

factor is generally considered to be a measure of inspection

y< capability and/or an equivalent flaw size which covers possibl-
(3)

. defects resulting from the manufacture or maintenance process

Ostensibly, damage tolerance analysis is deterministic since

all potential flaw initiation and growth is assumed to be bounded

by the crack growth-life curve. In actuality, there are several

IN non-deterministic or random elementsin the process which result in

a positive (albeit very small) probability of failure. These include

the random nature of the actual stresses to be encountered,

,* inspection uncertainty and the variability inherent in material

properties. At present, there are insufficient data to combine

all of the random elements and the potential joint effects of

adjacent structural details in a generally accepted model to

realistically predict the structural failure probabilities. The

Air Force accounts for the uncertainty by a) tracking the severity

of usage of each individual aircraft in an attempt to account for

variations in stress spectra from that used in predictions; and,

b) performing inspections at one-half the predicted time for the

initial flaw to reach a critical size. Although the effect on

the risks of structural failure due to these procedures is unknown,
it should be noted that structural failures are relatively rare in
comparison to other causes of accidenws and class A and B mishc- 4
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To isolate the effect of NDI reliability on the risk of

structural failure, consider first the nature of inspection un-

certainty. Figure 2 presents a schematic of two POD functions.

The ideal inspection system would detect all flaws larger than

a and none smaller than a This inspection system would have.. NDE an oesalrta NDE .

no uncertainty and would eliminate the inspection system from any

calculation of probability of structural failure. No such system

exists and no system approaching this ideal is anticipated in the

near future. The realistic curve is typical of current inspection

• capabilities. Although the POD function approaches one as the crack

- length increases, a NDE would have to be extremely large to obtain

the very high POD values required for structural reliability, say,

POD (aNDE)= 0.99999 or greater. Note also that if aNDE is

determined on the basis of a fixed POD value, say POD(aNDE) = 0.9,

there is no information available which links aNDE to the risk of

failure. All that is known is that if there is a crack in the

structure greater than aNDE before the inspection, there is at

least a 90 percent chance of detecting it. This is insufficient

information to account for inspection uncertainty in calculations

of failure probability.

Crack growth based calculations of the probability of failure

during a usage period must account for the distribution of flaw

sizes at the beginning of the period. Thus, the simplest link

between inspection uncertainty and failure risk is the effect of

the inspection on the flaw distribution that was present in the

structure immediately prior to the inspection. In particular,

let H(a) represent the probability of having a crack longer than a

in the structure after the inspection (all detected cracks are

repaired). Then

H(a) = f [l-POD(x)]f(x) dx (1)
a

where

1 - POD(x) = proportion of cracks of length x which are

not detected.

7
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f(x) = probability density finction of crack sizes in the

population of details immediately prior to the

inspection.

If it can be assumed that any crack longer than the crack length,

aNDE, will grow to critical size in the usage period and that no

crack smaller than a will reach critical size, then H(aNDE)

represents the probability of failure during the interval. This

assumption is not valid in the Air Force application of damage

tolerance since periods of uninspected usage are scheduled at half

the time required for a crack of length aNDE to grow to critical.

If this philosophy is conservative, H(aNDE) is an upper bound on

the probability of failure.

H(aNDE) provides a measure of inspection efficacy for fixed

aNDE and known crack size distribution and POD function. Conversely,
*

equation (1) can also be used to determine a crack length, say a NDE'

for which the probability of having c cks greater than aNDE ai .er

inspection is less than a pre-specifi.., probability j. aNDE is

defined by the equation

q 1 [l-POD(x)] f(x) dx = H(aNDE) (2)
aNDE

or
* -i
aNDE= H (q) (3)

Since H(a) measures the effect of inspection uncertainty in
terms that would be required for any further crack

growth based structural reliability studies, this function was

selected as the basis for the evaluations of this program. The

calculation of H(a) does require information about the crack size

distribution prior to the inspection but this is the minimum
additional information that could link inspection uncertainty to

structural failure. Section 2.3 discusses the crack size

assumptions used in this study.

4 9
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* There are several other calcul tions that will be used in 0

the following. Again, let POD(x) re.,resent the proportion of

cracks of length x that are detected by a particular NDI system

and f(x) represent the probability density function of crack

sizes. The probability of inspecting a detail wit a crack l-nger

'than a and detecting it is iiven by

co

G(a) = f POD(x) f(x) d (4)
a .

Note that G(0) is the total percentage of details for which a

positive crack indication will be given, i.e., rejected by the

inspection. Let F(a) represent the proportion of cracks with

lengths less than or equal to a. Then

a
F(a) = f f(x) dx (5)

0

and l-F(a) is the proportion of crac:s greater than a. Since.4.

every crack greater than a is either detected or missed

H(a) + G(a) = l-F(a) (6)

Of particular interest is the proportion of cracks which are larger

than a and are detected. This probability will be called the

effective inspection reliability, ER(a), and is calculated by

4' G(a) (7)
ER(a) - I-F(a)

The calculations of equations (1), (3), (4), and (7) will be

used extensively in the evaluation of the sampling variability of

the POD parameter estimates in Section 4 and in the interpretation

of inspection efficacy for damage tolerance analyses of Section 5.

The following paragraphs present the models used to describe the •

POD functions and the distributions of crack sizes used in the

analytical studies of this program.

10
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2.2 POD FUNCTIONS

The analytical model used to d scribe the POD function in

this study was the log odds oi log 1 ,iistic model j,; given by the

ec uat ion

POD(a) = { +exp - [ )J]

The reasons for the choice cf this m .el and metho( for estimating

. the parameters , and a are extensivel, discussed ir Section 3. If

a0 5 represents the median crack detection capability, i.e.

POD(a 0 5 ) = 0.5, then

= Zn a 0 5

The parameter a is a measure of the m-atness of th( POD funct! )rl:

the larger the value of a, the slowe the POD funct ion approa( JC3

one.

Figure 3 presents the log odds OD function as obtiined

from 5 sets of NDI reliability data. The curve labeled (< = 1. )7

has a0 .5 
= 0.22 in. and was obtained from eddy current surfac("* . (1

scans of a C-130 wing box . The curve labeled a = 2.06 for *hich
a 0 5 = 0.083 in. was also obtained from eddy current surface s -ansa~0.5
but this time from C-130 wing panels. These are the AET and BFT

data sets, respectively, of Reference 1. The curves labeled

a= 0. 81 (a =0.046 in.) and a = 1.58 (a0  = 0.017 in.) were. 0.5 0
calculated from the results of laboratory eddy current and ultra-

sonic inspection, respectively, of etched fatigue cracks in fl it

2219-T87 Al plates (data sets 33 and 35 of Reference 5). The

curve labeled a = 1.25 (a0 5  0.019 in.) was calculated from

inspection reliability data from an automatic eddy current bolt

hole scan of fatigue cracked specimens. These data were obtained

in a private communication from an Air Force Air Logistics Center.

The curves of Figure 3 display the joint effects of a0 5 (or

equivalently, v) and c. The parameter ptends to locate the curve

at the shorter crack lengths whilea +i-nds to dominate at the 1-]nger

crack lengths.

11
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To eliminate one parameter frol the sensitivity studies Lo

be performed, all crack lengths were considered to be normalized

by dividing by the mdeian crack detection capability, i.e.,

a' = (10)

For normalized crack lengths, L = 0 i:i the log odds POD model and

the location and scale parameters of -rack length distributions are

expressed as multiples of the median detection capability.

Figure 4 displays POD as a function of normalized crack length

for selected values of a. As noted ii Figure 3, existing manual

NDI systems have c values of about 1 dr greater. Highly automated

systems in laboratory reliability demonstration programs have
produced a values in the range 0.3 to 0.6. No current system Y us

been shown to have a a value as small as 0.1. Therefore, this

pictured range of a values was selectd for the sensitivity

evaluations of this study.

2.3 CRACK SIZE DISTRIBUTIONS

When a critical area of structuie is inspected, there is a

conceptual population of details each of which may contain a fl,1w.

The population may arise from many loc tions on a single structure,

from similar locations on many structi res, or both. If an "unflawed"

specimen is regarded as having a flaw )f length zero (or extremely

small), then a population of flaw sizE can be hypothesized for the

inspection locations. Immediately prior to an inspection, the

size of the particular "flaw" to be inspected is unknown beyond its

distributional description.

The population of conceptual flaws at an inspection site can

also be postulated without reference to a population of inspection

sites. The material condition at an inspection location is the

result of a number of random effects which produce flaws of varying
-magnitudes (including zero for no flaw). Examples of such random

causes would be batch-to-batch production variation, the occurrence

of voids or inclusions of various sizes, manufacturing or maintenance

errors, or actual stress and environmental effects. Since the exact

.3
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Since the exact end result of these random stimuli is not

predictable, the effects can be modeled in terms of a probability

distribution which describes the potential flaw sizes at inspection.

The flaw size distribution is dynamic in a fitigue environment.

At the start of the structure's life, the flaw size distribution is

the result of the manufacturing and quality control process. As the

structure is used, existing flaws will grow and new flaws will

initiate and grow as a function of service time. Although this

conceptual framework for the fatigue orocess is accepted, there is

no general agreement on methods for modeling the process as there

*. is very little data for estimating parameters and verifying proba-

bilistic models of the existing approaches.

In this study, two approaches were taken to modeling flaw

size distributions: the equivalent initial flaw size approach and

a "rogue" flaw approach. These are discussed in the followin-

paragraphs. In addition, a method for tracking a flaw size d stri-

bution throughout the life of a structure is also presented but the

resulting complex characterizations of flaw size distributions were

not used in the characterizations of inspection uncertainty.

2.3.1 Equivalent Initial Flaw Size Distribution

Starting with the F-4 damage tolerance assessment(6)

and followed by the A-7 damage tolerance assessment,(7) the work on

quantifying fastener hole quality of Potter (8) and recent dura-
(9)bility studies, the concept of an equivalent initial crack size

distribution has been used to characterize the quality of structure.

Very small initial "cracks" are equivalent to long times tocrack

initiation when subjected to standard crack growth models (even

though, theoretically, the cracks are too small for the principles

of fracture mechanics to hold). Although an artifact, this method of

quantifying the initiation and growth of cracks is convenient in

damage tolerant analyses. Since a crack growth life curve must be

generated for every potential critical location, this analysis

provides a model for deterministically "growing" the equivalent

initial flaw size distribution. This approach assumes that the

randomness in crack sizes at a particular point in the life of a

strii'ture is prodaced by the initial crack size li:;tribljtion.

15
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Different families of distributions have been cmpluycd -3

models for flaw size distributions. In Volume 4 of Reference 9.

various families were tested against three sets of equivalent

initial flaw size data and three families could not be rejected.

Two of these were rather complex, 4 or 5 parameter families whle

the third was the Weibull family. For the purposes of this study

the 2 parameter Weibull distribution was judged to be an adequate

model for crack size distributions. The cumulative distribution

function for the Weibull model is given by

F(a) = 1 - exp [-( a

where B is the scale parameter and o is the shape parameter. In

this study it was assumed that a = 1.5 which is consistent with the

data of Volume 4 Reference 9. The median crack length of th.,

Weibull distribution is given by

1
3 exp [ 1 9 n Qn 21 (i.')

or, for a = 1.5,

= 0.7836 (U )

Thus, increasing 5 (or, equivalently, a ) would correspond to the

increasing crack sizes that would result in a fatigue environme-nt.

In keeping with the normalized crack lengths of the POD

functions, the scale parameters of the Weibull distributions were

calculated to provide median crack lengths, a', of 0.1, 0.25, 0.5,

0.75 and 1.0. Thus, median crack lengths were assumed to range

from 10 percent of the median crack detection capability to the

median crack detection capability. The crack size distribution

for a' = 0.1 could be representative of initial quality in aircraft

as a median normalized crack length of 0.1 could correspond to a p
(7)

real flaw on the order of 2 to 3 mils The distributions for

large a' values represent resulting damaging effects of fatigu-

crack growth and could be present at later stages in the structural

16
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Figure 5 presents these crack size probability

density functions as a function of normalized crack length. Also

included in Figure 5 is the POD function with median detection

capability of 1.0 and a = 1.0.

2.3.2 Rogue Flaw Distribution

The second approach was directed at modeling the

relatively large and relatively rare flaw which is not typical of

the general population of structural details. These "rogue"

flaws can be introduced in the structure as the result of a manu-

facturing error or accidentally during routine maintenance.

Assuming that only a proportion, p, of all inspection sites contains

a rogue flaw, p H(a) is the total probability of having a flaw

greater than a and missing it at an inspection.

Three families of distributions were considered for

modeling the rogue flaws. These were the uniform, triangular and

exponential distributions. The uniform and triangular distribu-

tions are defined in terms of two parameters, the minimum and ma: i-

mum possible crack lengths in the structural detail. The minimn

value would be zero and the maximum would be a length, say A, that

could not be exceeded. A realistic value for A would be the criti-

cal crack length, acr. The exponential distribution is defined

in terms of one parameter, the average rogue flaw size, X. Figure

6 displays the three candidate density functions where the

exponential distribution is truncated at A.

Under the uniform distribution assumption, any size of a

rogue flaw is equally likely in the possible range of lengths.

The triangular distribution assumption implies that smaller values P

are more likely. The truncated exponential distribution has more
small crack sizes for small values of X and approaches the uniform

distribution for large values of X. In this study, A was chosen to

be 10 or 20 in the normalized crack length scale.

The rogue flaw approach to modeling crack sizes has an

intuitive appeal in that the inspection process is directed at the

elimination of large cracks. In aircraft structure relatively

17
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few cracks are detected in proportion to the total number of

inspections. Thus, the cracks being detected can be viewed as the

cracks in the upper tail of the equivalent crack size distributions.

The shape of the density function in this upper tail region of

the growing equivalent crack size distributions is reasonably

close to the probability density functions being considered for

the rogue flaw model.

The complete probability density function for flaw sizes under 5
the rogue flaw model would be of the form

f(a) (l-p) fl(a) + p f 2  (a) (14)

where p is the small proportion of details which contain "rogue"
flaws whose density is f2 (a) and fl(a) is the equivalent crack size
density for modeling the initiation and growth of fatigue cracks

as discussed previously. However, the mixture of distributions

of equat 1 (14) was not used in this study as the complexity of a
tour paramcter model (at the minimum) was judged 'to be unwarranted.
iHather, tht equivalent crack size model, fl(a), and the rogue flaw

model, f2 (a) were treated separately and no attempt was made at p

combininq the resuilts.

2.3.3 Tracking Flaw Size Distributions
I-..

At an inspection, some of the structural details
will be identified as containing flaws and these details will be
repaired (in some sense). After the inspection, the population of

details will be a mixture of the unrepaired and repaired structures.

Given the pre-inspection crack size distribution, f-(x), the POD p
function, and the equivalent flaw size distribution for the repaired

structure, fR(x), the post-inspection crack size density function,
+ . (10,11)f x), can be calculated from the equation

f+(x) = G(o) fR(x) + [b-POD(x)] f (x) (15)

20
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where

G(o) = total proportion of details for which a positive

indication is given, equation (4).

This equation permits tracking the crack size distribution through-

out the life of the structure by an iterative procedure:

9 a) Estimate the flaw size distribution for the structural

elements prior to the manufacturer's quality inspection. Let f(x)

represent this density function.

b) Calculate the crack size density immediately after

inspection, f +(x), by application of equation (12).0 +

c) Analytically grow the cracks of the f (x) under predicted S0
service usage to the time of the first inspection. Let f (x) r

represent the crack size distribution at this time.

d) Calculate the crack size density immediately after the

first inspection f(x) by application of equation (12).

e) Continue steps c) and d) for the required number of

inspections.

Although this process is analytically tractable, there are too many

uncertainties in estimating the individual elements. The process

is not practically useful at this time. Therefore, this complex

model of flaw sizes was not used in this program. Rather, NDI
reliability characterizations were evaluated on the basis of .

simple but plausible crack size distributions which could be

present at each inspection and no attempt was made to predict the
crack size distribution at the next inspection. This simplifica-

tion did not affect the conclusions of the study.

.12
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SECTION 3

FLAW DETECTION RELIABILITY

Many factors influence the capability of an NDI system to

correctly identify flaws in a structure. These include system

factors which affec-t the ability of the system to consistently

produce and interpret the information upon which flaw decisions

are made. They also include factors which are characteristics

of the individual flaws being inspected. The net effect is

uncertainty in the detection of flaws so that the process of

quantifying the inspection capability of a particular system

requires a careful NDI reliability demonstration program coupled

with a probabilistically based analysis of the data. This section

presents an extensive discussion directed primarily to the analysis

of NDI reliability data.

This section is organized into four parts. The first two

discuss the definition of flaw detection reliabili-ty and the causes

of uncertainty in an inspection process. The last two sections

discuss the estimation of the probability of detection function

including data analysis, sampling errors of parameter estimates and

flaw size selection considerations in conducting an NDI reliability

demonstration program.

I

3.1 DEFINITION OF FLAW DETECTION RELIABILITY

Flaw detection reliability is defined as the probability

of detecting a flaw under pre-specified inspection conditions.

As mentioned previously, this probability is associated with a

crack length for applications in damage tolerance analysis.

Figure 7 shows a plot of inspection results on individual

cracks emanating from fastener holes in a skin and stringer wing
assembly as inspected by eddy current surface scans The

points represent the proportion of times individual flaws were

detected versus the length of the flaw. This figure illustrates

22
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that although the detection probabilities of individual flaws

generally increase with crack length, not all flaws of the same

length have the same detection probability. This variability in

detection probabilities at a crack length has resulted in different

%- interpretations of the definition of POD as a function of crack

length.

" ~. The different interpretations center on the use of the mean

trend in detection probabilities or a lower bound on detection

. probabilities as the method for characterizing the POD function.

"*'-. The exact formulation of the POD function should be consistent

with reliability calculations for the structure under inspection.

In calculating the reliability of a structure, the main concern

is the proportion of flaws of a specific length that remain in the

structure after an inspection. The POD function should, therefore,

be defined as the proportion of flaws that will be detected as a

function of crack length, i.e., the mean trend in detection

probabilities as a function of crack length.

-'. -'. The distribution of detection probabilities at a crack

length is illustrated in Figure 8. The curved line represents
the general trend in detection probabilities as a function of

crack length. The density function, f (p), represents the distri-
a

bution of detection of probabilities of all cracks of a length a.

Let POD(a) represent the proportion of those cracks (i.e. of

length a) that would be detected by the NDI system. fa(p) is the

proportion of those cracks for which the detection probability

is p. That is, 100 p percent of these cracks will be detected

or 100 p f (p) dp percent of all cracks will have a detection~a
probability of p and be detected. Adding (integrating) over all

values of p yields the total proportion of cracks of length a

that will be detected. Therefore

1
POD(a) = f p f (p) dp (16)0 a

The POD(a) function defined by equation (16) is the function which

passes through the mean of detection probabilities at each crack

length, i.e., the regression function.

24
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Note that many individual cracks will have detection proba-

bilities below the POD(a) value calculated by equation (16).

This observation has led to attempts to characterize inspection

capability in terms of some type of a lower bound on the detection

• .probabilities at each crack length. This latter definition is

different from that of traditional use, does not relate to the

number of large cracks which may be missed at an inspection and

will not be used in this study.

The variability of detection probabilities at a crack length

does not influence the POD function; however, it does influence

* the method of analysing data to estimate the POD function. The

*. following sections discuss the nature of the variability in

detection probabilities and methods of analysing NDI reliability

data collected with either single inspections per flaw or multiple

inspections per flaw.
wI,

3.2 CAUSES OF UNCERTAINTY/SOURCES OF VARIATION

The reason for using sophisticated procedures in NDI is at

the very heart of the uncertainty associated with the inspection

results: the flaws that can cause failures are very hard to find.

In defining what 'hard to find' means in relation to NDI, the

nature of inspection uncertainty can be characterized. Although

Figure 7 illustrates the concept of inspection uncertainty, it

does not cover the whole inspection process. The POD is the

measure of inspection uncertainty, not the cause. Causes of

uncertainty are better defined in terms of the inspection process.

Typical NDI systems apply a stimulus to a suspect area and

record the signal that returns from the specimen. A positive

flaw indication occurs if the signal is higher than a threshold

value. The flaws are hard to find for a number of reasons some

of which are:

a) the operator does not know where the flaw is and

therefore does not know where to aim the system,

26
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b) material variability causes unpredictable changes in

the stimulus before it reaches the flaw and in the signal before

it returns to the NDI system,

c) variability in flaw geometry and orientation produces

variability in the signal, and

d) calibration changes in the instruments from inspection

to inspection reduces the predictability of the signal.

All of these inspection factors make flaws hard to find by

contributing to the variability of the response signal; that is,

the response signal in an inspection is a random variable. Since

a flaw is detected if the response signal is larger than the

threshold, the POD is the probability that the response signal

is greater than the threshold.

In reasonable NDI systems the response signal increases with

flaw size; however, as noted in the previous paragraph, the response O

signal and flaw size are not perfectly correlated. Figure 9 shows

an example of the response signal as a function of crack length

from a highly automated eddy current system as applied to fatigue

cracks emanating from engine bolt holes (unpublished data from the

General Electric Company). The response signal is measured as percent

peak voltage and the crack lengths have been normalized to the length

that results in a mean signal of twenty percent. In Figure 9, each

dot represents the results of a single inspection and inspections made

on the same flaw are connected by a straight line.

The variability in the response signal ( ) is consistent

with the difficulties associated with the inspection process;

however, there is an interesting pattern to the deviations from

the mean. The a values from a single flaw are typically grouped

around a point that is shifted from the mean curve. This pattern

of grouping indicates that there are two sources of variation in

the response signal. One source is the variability in the mean a

from flaw to flaw, and the other is the variability in 5 from

inspection to inspection of the same flaw.

27
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The causes of uncertainty listed earlier can be grouped

to correspond to these two sources of variation. The material

properties, the flaw location, geometry, and orientation, and the

pattern of residual stresses are strictly associated with

individual flaws and do not change from inspection to inspection.

Factors that do change from inspection to inspection include human

factors such as attentiveness, skill, and health and equipment

factors such as transducer variability and calibration.

Because of these two distinct sources of variation, the

response signal has a compound distribution. This can be seen

in the steps of an inspection process. First a flaw is picked

at random along with its individual mean a. Then the human
factors and equipment factors come into play resulting in a

random deviation from the flaw mean for an individual inspection.

These are two distinct random processes with distinct random

variables.

The statistical procedure used to model compound distributions

is called a variance components model. The variance components

model breaks down the response signal into components that can be

attributed to specific sources of variation. For a values the model

would be:

= f(a) + c + e (17)

where f(a) represents the overall mean trend in a as a function of

a, c represents the flaw to flaw variation, and e represents the

variation from inspection to inspection of the same flaw. The

function f(a) is fixed while the variables c and e are random

with means of 0. The random variables c and e are referred to

as the variance components of the model.

The importance of equation (17) comes into play n

analyzing a set of data to estimate the reliability of an inspection

system. All statistical analyses rely on assumptions about the

underlying distribution of the response variable and usually all

observations are assumed to be independent. Equation (17) points
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.. out that when more than one inspection is made of an individual

flaw, the results are not totally independent. Correlation

between inspections of the same flaw occurs because all inspection

of a single flaw have the same value for c. Therefore, specialized 0

statistical procedures are required when analysing NDI reliability

data that includes multiple inspections of individual flaws.

These methods will be presented in Subsection 3.3.3.

* 3.3 DATA ANALYSIS

The data collected in NDI reliability demonstration programs

have an unusual probabilistic structure and specialized analysis

techniques, as well as standard techniques applied to transforma-

- tions of the variables, are required. This section discusses the

analysis of NDI reliability data, starting with a discussion of

the validity of the log logistic function as the basis of the

analysis. The last two sections present specific analysis

methods for data in which only the inspection result (pass or fail)

is recorded and for data in which the response signal (.) is

recorded.

3.3.1 Models for POD Functions

One of the more controversial aspects of NDI relia-

bility estimation is the selection of a model for the POD function.

In fact, the first attempts at estimating POD did not assume any 0

model. The crack lengths used in the first studies were divided

into subintervals and binomial distribution statistics were used

to put confidence bounds on the POD for each interval. This often

resulted in erratic curves for the lower confidence bound because

the sample size changed from interval to interval. Attempts at

smoothing the lower confidence curve involved intervals with

fixed numbers of cracks and overlapping interfals; however, these

approaches were extremely conservative because the confidence 0

bound for an interval was plotted at the upper endpoint of the

interval. Another problem with the early approaches was that

the lower confidence bounds on the POD could not approach one.
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The use of an assumed model for POD greatly simpli-

fies the task of estimating NDI reliability. POD estimation with

an assumed model reduces to estimating the parameters of the model

rather than the POD at crack length intervals. The smoothness of

the POD curve and its confidence bound is supplied by the model

rather than an artificial interpolation technique and the confi-

dence bound can be formulated so that it converges to one.

Once the decision has been made to use a model for

POD estimation, the only question is what form the model should

take. A previous study (2) suggested that the log logistic (or

log odds) function was a suitable choice based on the data from

the "Have Cracks Will Travel" program (1 )  The log logistic function

was picked over the Weibull distribution, the inverse Weibull

distribution, the log normal distribution, and the arcsine distri-

bution based on goodness of fit of the mean trend and on the

structure of the deviations from the mean. The log logistic

function provided a good fit to the "Have Cracks" data over a wide

range of conditions; however, the evidence is still limited to

this one study.

An analysis of the data collected by Yee et al.

was conducted to further investigate the general validity of the

log logistic model assumption. Eight data sets were analysed

with essentially the same results. The analyses of two of the

sets of data are presented in Figures 10 and 11. Each figure

contains plots of POD curves for NDI reliability data collected

by a single operator using either ultrasonic (Figure 10) or

eddy current (Figure 11) equipment. The three curves in each

plot represent the results of analyses using the Weibull (W), the

log-logistic (L.O.) and the lognormal (L.N.) distribution functions.
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7 M

In general, there is very little difference between

the fit provided by the three models; however, there is a systematic

pattern to the three curves. In each case the Weibull distribu-

tion function provided the highest estimate of POD in the tails

of the function while the log logistic distribution function

always provided the lowest estimate of POD. This indicates that

the log logistic function represents a conservative choice for the

POD model since structural safety is concerned more with the POD

at large crack lengths than with the POD at short and medium crack

lengths.

A further illustration of this concept is seen in

Figures 12-14. In these Figures, Weibull and log logistic functions

were forced to pass through a common pair of points. Since these

are each two parameter functions, they will only meet in two

points. Figures 12 and 13 show a log logistic function and two

Weibull functions, one that meets the log logistic function at the

fifty percent POD point and the ninety percent POD point and

another that meets the log logistic function at the ten and fifty

percent POD points. Figure 12 has a broad scatter in the POD

function and Figure 13 has a short scatter. Figure 14 shows Weibull

- . and log logistic functions that meet at the ten and ninety percent

POD points for a broad scatter and a short scatter.

The same ordering seen in the data collected by

Yee et al. (5) holds in the curves of Figures 12-14 also. At crack

lengths longer than the higher point of intersection and shorter

than the lower point of intersection, the Weibull function is

higher than the log logistic function. This indicates that an

analysis based on the Weibull distribution function would tend

to over estimate the probability of detection for long cracks

when the assumptions are not met. The log logistic function, on

the other hand, provides a degree of conservatism when used as the

basis for the analysis of NDI reliability data.
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The log logistic function has a number of other

features that make it a good choice for use as the model in analys-

ing NDI reliability data. It is analytically simple and results in
estimates that are similar to estimates provided by the Weibull and
log normal distribution functions. In fact, the log logistic function

is a close approximation to the cumulative log normal function. In

addition, the analysis based on the log logistic function results in
conservative estimates of POD in the safety critical areas of the POD

function. Therefore, the log logistics (or log odds) model was

selected as the POD model for all of the remaining analyses of this

program.

3.3.2 Pass/Fail Data

Historically, NDI reliability data has been collected

as a crack length along with an indication of whether or not the

flaw was found on a particular inspection. The crack lengths are

determined through an independent means such as replicates or

tear-down inspection. During the inspections the flaws are only

identified by the inspection locations and the inspectors record

whether each site passed or failed the inspection. Because most

of the NDI reliability data currently available is in this pass/ S

fail format, the analysis of pass/fail data is covered first.

There are two analytically distinct ways to run an
NDI reliability demonstration experiment: one inspection per

flaw or multiple inspections per flaw. For data collected with

a single inspection per flaw, all the observations are independent

and the analysis is reasonably simple. Multiple inspections

conducted on the same flaw will be correlated so that there are

dependencies between observations when more than one inspection

is made on each flaw. These two types of experiments require

different analyses and are covered in separate sections.

3.3.2.1 One Inspection Per Flaw

There are two types of analyses based on

the log logistic model that can be applied to single inspection

pass/fail data. If the data can be conveniently grouped by

crack length, a regression analysis can be performed on trans-

formed vriables. Typically, however, the crack lengths used ii
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anNDI reliability demonstration program cannot be conveniently

grouped. Maximum likelihood methods utilize the individual

inspection results in the (0,1) form and can therefore be

applied without grouping the data. Regression methods are more p

. appropriate for multiple inspection per flaw data and will be

" discussed in the next section. This section deals with maximum

. likelihood estimates of POD as modeled by the log logistic model.

The mathematical details of maximum

likelihood analysis of single inspection per flaw NDI reliability

data are covered in Appendix A,Section A1.2. The log logistic

model is reparameterized to provide a linear form in transformed

variables and to provide simpler maximum likelihood equations.

The maximum likelihood equations (Al8)and (A19) are solved simul-

taneously for the maximum likelihood estimates a and 3. Estimates

of the equation (8) location and scale parameters, i and i are then

given by:

= " r / ( , ' ). "
p.

The estimates of POD and its lower confidence bound are calculated

using the linearized form of the log logistic model and the

parameter estimates Q and 6.

Figures 15-17 contain some examples of
maximum likelihood estimates (MLE) of POD from single inspection

per flaw NDI reliability data. The data were collected by the

General Electric Corporation under a contract with the Air Force

Materials Laboratory and are presented in a normalized scale .

based on the crack length at which the POD was 50 percent. The

arrows on the bottom and top axes represent inspection results:

detections on the top axis and misses on the bottom axis. The

solid line is the mean POD and the dashed line is the lower 95

percent confidence bound.
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These three curves were picked to represent

three different capabilities in terms of the steepness of the POD

* function. Figure 15 shows the results for eddy current inspections

and u = 0.17. Ultrasonic inspections are presented in Figure 16

". with a = 0.23. The slowest ascent is seen in the fluorescent penetrant

inspections shown in Figure 17 where 0= 0.50.

Some caution is necessary in applying the

maximum likelihood techniques of Appendix A. Iterative algorithms

on a computer are required to solve equations (A18) and (A19) and

there is a tendency to readily accept numbers produced by a

computer. In some instances, the algorithm will work and estimates

of the POD with a lower confidence bound will be produced; however,

the estimate of 3 may not be significantly different from 0,

rendering the mean curve and the confidence bound meaningless.

Figure 18 shows an example of a nonsigni-

ficant estimate of 5. There is only one miss in the data of

" Figure 18 so that there is no trend in POD as a function of crack

length. The computer algorithm still computed estimates of the

POD and its lower confidence bound; however, the lower confidence

is not monotonically increasing. When S is significantly

different from 0, the lower confidence will converge to 1. An

estimate of S that is not significantly different from 0

basically means that the data do not display a trend in POD as a

function of crack lengthT that is, the POD is the same no matter

how long the crack.

Another problem results from the fact that

there might be more than one solution to equations (A18 and A19).

The particular solution that the computer algorithm will converge

to is a function of the initial estimates that are used. A method

that produced good initial estimates in analysing the GE data is
the method of moments. Method of moments estimators are linear S

combinations of the inspection results and are therefore easy to

calculate. The details of method of moments estimators are given

in Appendix A.
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3.3.2.2 Multiple Inspections Per Flaw

There are two sources of variation in

inspection results when more than one inspection is performed on

each flaw. First, the detection probability for an individual

flaw is a random variable. Then, since detection probabilities

are not exactly 0 or 1, there is random variation in the number

of times an individual flaw is detected. Both maximum likelihood

and regression analysis methods can be used to analyze these

types of data. These methods are discussed in the following sections.

3.3.2.2.1 Maximum Likelihood Estimates

Maximum likelihood estimates

are based on the probability density function of the observed ran-

dom variable; in this case, the number of detections for each flaw.

For single inspection data, the number of detections for a single

flaw is a Bernoulli random variable with probability of success

given by POD(a). The distribution of the number of detections
for a single flaw becomes more complicated when more than one

inspection is performed. The conditional distribution for the

number of detections for a single flaw given the detection proba-

bility is a binomial random variable. The unconditional

distribution is not so easily described. The unconditional

distribution involves the integral of binomial probabilities tines

the density of detection probabilities.

There are a large number of
potential probability models for the density function of detection

probabilities. The use of most of them, however, does not result

in a closed form for the unconditional distribution of the number of

detections of a single flaw. One exception is the Beta distribution

and the resulting unconditional distribution of the number of detec-

Williams(12)tions is called a beta binomial distribution. Williams sh(ws how
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the beta binomial distribution can be used to estimate the

parameters of a log logistic function.

A modification of Williams
method was used to reanalyse the "Have Cracks Will Travel' data
and some of the results are presented in Figures 19-21. In all

three figures the plain solid line is the estimate of the POD
function from a regression analysis, the solid line with vertical

bars is the estimate of the POD function from the maximum likeli-

hood analysis, and the dashed line represents the POD minus two
detection probability standard deviations calculated with maximum

likelihood estimates.

In all three figures, the POD
curves from the two methods are approximately equal and in Figures

19 and 20 the dashed line bounds the approximately correct
proportion of flaws; however, in Figure 21, the lower bound falls

on top of the POD curve even though the detection probabilities
-"-. for about 50 percent of the flaws fall below it. This highlights

-- a problem with maximum likelihood anslysis for multiple inspection

data when the number of inspections per flaw is not sufficiently

large.

The data in Figures 19 and 20
had 62 and 54 inspections per flaw, respectively. The detection

probability for each flaw is estimated fairly precisely and
therefore the variability in detection probabilities can be easily

' estimated. The data in Figure 21 had 9 inspections per flaw. The

variability associated with estimating the individual detection

probabilities for the data in Figure 21 is large enough to mask
the variability in detection probabilities from flaw to flaw.
The maximum likelihood estimates will converge to 0 or a negative

number (usually near 0) for the estimate of the flaw to flaw
variation in detection probabilities in the type of situation

illustrated by Figure 21.
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Another current problem with

maximum likelihood estimates for the beta binomial model is that

formulas for the confidence bounds on the POD function have not

been developed and there is little motivation for developing them.

Since a large number of inspections per flaw are required to get

good estimates of the flaw to flaw variability in detection proba-

bilities, regression estimates can be easily implemented. The

major problem with regression estimates is that the transformation

of the detection probability used to provide a linear form is

undefined when the detection probability is 0 or 1. In data

analysis, the transformation is performed on the observed propor-

tion of detections for a flaw; which is commonly 0 or 1 when the

number of inspections per flaw is small. Since maximum likelihood

estimates also have problems for few inspections per flaw, the

regression estimates are recommended.

3.3.2.2.2 Regression Analysis

The mathematical details for

regression analysis of NDI reliability data are in Section A1.1

of Appendix A. The steps involved in conducting a regression

anaiysis of NDI reliability data for the log odds model are:

1. Reduce the data to a set of pairs (ai, pi) where ai is t1

crack length and pi is the proportion of detections (for multiple

inspections, ai is the length of an individual crack and for

grouped single inspection data a. is the midpoint of the interval

that defines the group.)

4 2. Transform the (ai, pi) pairs to (Xi, Yi) pairs using
* + equation (A5).

3. Calculate the standard linear regression coefficients using

equations (A6) and (A7).

4. Calculate estimates of the location and scale parameters

from rX and r using equation (15).

:- 5. Calculate a lower confidence bound on the mean of Y using

equ0ition (A10).
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6. Use the inverse log-odds transformation on the mean Y and

the lower confidence bound on the mean Y to get estimates of the

POD function and a lower confidence bound on the POD.
0

Figure 22 contains an example

of a regression analysis applied to the same data presented in

Figure 7. The points in Figure 22 represent the inspection

results for a single flaw (i.e., an (ai , pi) pair). The mean is

plotted as a solid line and the lower 95 percent confidence bound

is plotted as a dotted line. Note that the lower confidence

bound lies above many of the individual detection probabilities.

The confidence bound is a bound on the mean of the detection

probabilities not the population of detection probabilities.

The POD is therefore predicted more precisely than the detection

probability for an individual flaw; hence, the tight confidence

bound.

3.3.3 Analysis of a Versus a Data

In the section on causes of uncertainty, it was shown

that NDI uncertainty could be attributed to random variation in

the response signal or S value for an NDI system. The POD can be

expressed as the probability that a is bigger than the detection

threshold. This section discusses the analysis of a versus a data

and presents a framework for measuring the two sources of variation

and for estimating the POD function.

Equation (17) supplies the basic model for the analysis

of a versus a data. The flaw related and flaw independent terms

c and e are random variables with means equal to 0 and variances O0
~2 andequal to s2 and se respectively. The mean and variance of a for

c e
a single inspection of a flaw of size a picked at random are:

E(ala) = f(a), and (19)

V 2 (20)Var (ala) =s c + .

If repeated measures of a single flaw are made, the conditional

mean and variance of a for the one flaw are:
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E (alflaw) =f(a) + c, and (21)

2
Var (aiflaw) =s (22)~e

Figures 23 illustrates equations (19) and (20) while Figure 24 illustrates

equations (21)and (22)with a linear function for f(a).

Figures 23 and 24 also illustrate the relationship
between a and the POD function. In Figure 23 the POD as a function

of a is aiven by the shaded area under the density function for a at
a, i.e., the proportion of a values greater than the threshold

for fixed a. The density functions in Figure 24 represent the distri-

butions of a for single flaws and the shaded areas represent the
detection probabilities for the individual flaws. The shaded

areas in Figure 23 correspond to the POD function for the system
since the POD is the mean over all flaws.

The process of transforming the distribution of a

values to a POD function is further illustrated in Figure 25. The

top half of Figure 25 shows the mean a curve, f(a), as a solid

line and shifts of one and two standard deviations up and down as

dashed lines. For a normal distribution these shifts represent

the 2.3, 16, 84, and 97.7 percentiles of the a distribution. The

crack lengths at which a horizontal line at ath crosses the per-

centiles are projected down to the POD versus a axes to form the
POD curve.

There are a wide variety of methods of analysing

data based on the model of equation(17) with the appropriate

method dependent on the form of f(a) and the number of inspections

per flaw. Typically, f(a) can be converted to a linear form

" through convenient transformations of a and a. As an example,
consider a linear relationship between ln(a) and ln(a). Equation

(17) then becomes

Y = + 1X + c + e, where (23)

Y = ln(a) and X = ln(a). (24)

53

.3

. . . .. . . . . . . . . . . . . . . . . . . . . . . .



LLI

U)U

I-.z
I~l (I)

LU 44
0)

0 CINI O

54-



~cr

4-4

z 0

4

40 0

Q))

S Q4

4

-4

-IVN!IS IO

55x



f a+ 2s(a) f (a) +s(8

- 0 o .f (a)-2SCO
Ioo f (-

-J 0o o Je
4ol010

0, #0

0.977

o0.84

0.5

0

S0. 16

0.023

CRACK LENGTH - a
Figure 25. Projection of aDistribution to the POD Function.

* 56



If the error variables c and e are assumed to have normal

distributions, the POD function is given by

POD(a) = P (a > ath)

" P {ln(a) > ln(ath) (25)

-P (Y Y• %, g > th )

Yth- (a + SX)
S

where

= 2  2  (26)
c e

and P(x) is the standard normal distribution function. Using the

symmetry properties of 4(x), equation (25) can be reduced to

X th (27)

POD(a) = ( X-.((

s/

Equation (27) is the form of a lognormal distribution

function with mean and standard deviation of log crack length

- given by:

-= (ln(ath) - a)/8, and (28)

a = s/a (29)

In the previous analysis sections the log logistic function of

equation (8) was used to model the POD function; however, the log

logistic function is a close approximation to the lognormal

O. distribution. The use of the lognormal distribution instead of

the log logistic distribution will therefore result in very

similar estimates of the POD function.
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The parameters p and G can be estimated by subt1utini

estimates of a, , and s in equations (28) and (29). The paramters

of the linear model, a, , and s are estimated using the method; of

Appendix A section Al.l. Equations (A6), (A7), and (AS) aro usu )

estimate r and and equation A10 provides the estimate for s.

The example of Equation (23) was chosen because if
provided a reasonably good fit to a set of eddy current inspection

data generated by the General Electric Corporation and illustrated

in Figure 26. The & values in Figure 26 are percent peak voltages

and the a values were normalized so that the mean & at a : 1 was

20 percent. The solid slanting line represents the mean trend in

a as a function of a and the horizontal lines represent three

threshold values (10, 20 and 40 percent) that were analyzed.

Equation (27) provided the estimated POD function.

shown in Figure 27. Increasing the detection threshold has two

effects. First the median detection crack length increases with

the deteftion threshold. Second, the slope of the POD function

decrease3 as the detection threshold increases. The decreasing slope

is the result of a constant standard deviation of log crack len th,

which translates to an increasing standard deviation of crack

length. If the plots of Figure 27 were done on a logarithmic

.- crack length scale, the three curves would be parallel.

A method described by Cheng and Iles (13) for

calculating confidence bounds on cumulative distributions can be

adapted to calculate confidence bounds on the POD given by

equation (27). The formulas given by Cheng and Iles for the P

percent lower confidence bound can be adapted for the estimates

of i and a of the POD function to give:

POD(a) =(zL), where (30)

z L %0 = sx) + 1) (31)
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In equation (31), n is the sample size, X is the Pth percentile

of a X distribution with two degrees of freedom distribution, SSX

is given by equation (A12) of Appendix A, and

SX 32)

An example of the 95% lower confidence bound given by equation(31)

for the data of Figure 26 with aTH=2 0 is given in Figure 28.

The analysis of the example was conducted by using

only one inspection per flaw. In this case the mean square error

of the regression analysis is an estimate of the combined variance
S2 + S2 When more than one inspection is made of each flaw the

[-i 'c e "
analysis must be modified to properly estimate the individual

varincecomonets. The2 2
variance components. The individual variance components, S and Se' c e '
must be estimated using a variance components model for a nested

(repeated subsampling or hierarchal) experimental design. See

for example, Reference 14. 2 and S are then added to estimate
c ethe combined variance for the POD function estimate of a.

The problems associated with analysing NDI reliability

data can be reduced by recording a values from the inspections for

the analysis. There are no potentially undefined transformations

and simpler models result in less complicated mathematics for

estimating POD model parameters. Finally, as will be shown, the

a vs a analysis is less sensitive to the distribution of crack

sizes in the NDI reliability experiment.
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3.4 SAMPLING VARIABILITY OF POD PARAMETER ESTIMATES

This section discusses various factors in NDI reliability

demonstration programs that affect the sampling variability of the

estimates of the POD parameters. These factors include the type of

analysis and the statistical design of the experiment. The

statistical design of an experiment is the selection of the number

(sample size) and sizes of the flaws to be used in the experiment.

The effect of these factors on the sampling variability in POD

parameter estimates was investigated through computer simulations.

The computer simulation program used in this study was

modified from the program used in Reference (2). In the previous

study, only the pass/fail analysis was used. A major modification

required for the current study was the added simulation of a values

so that the a versus a analysis could be compared with the pass/

fail analysis. The modification was accomplished using equation (17)

as the model of a versus a. The terms c and e were combined for

the simulations since only one inspection per flaw type analyses

were investigated.

A schematic diagram of the simulation program is given in

Table 1. The input parameters include the POD model parameters,

the demonstration program crack length distribution parameters,

the sample size (n), and the number of simulations to be run (k).

The program selects parameters for the a versus a model and the

detection threshold to be compatable with the input POD function

utilizing equation (27). A flaw size is then picked at random

from a distribution of "specimen" crack lengths and the a versus

a model is used to randomly generate an a value. After a has been

determined, it is compared to the detection threshold to decide

whether a "flaw" is present. After generating n observations, the

a versus a and pass/fail analyses were performed on the simulated

NDI reliability data. The results of each of the k data sets is

"". ... then printed to a file so that the POD model parameter estimates

can be analysed.
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TABLE 1. FLOW DIAGRAM OF NDI RELIABILITY EXPERIMENT SIMULATIO)N

Randomly Select
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In the simulated NDI reliability experiments of this study

- it was assumed that the crack lengths in the specimens were

selected at random from a lognormal distribution with density

function as given by

f(a) - 1 exp [-(log a -6) 2 /2X1 (33)

where

= mean of the natural log of crack lengths or,

equivalently, the log of median crack length, and

X= standard deviation of the natural log of crack lengths
p

By varying 6 and X (in comparison with V and a, the location and

flatness parameters of the POD(a) function) the effect of the

crack sizes in the NDI reliability experiment can be evaluated.

A summary of the results of the simulations are given in

Table 2. The means and standard deviations of the estimates of

P and a for both the pass/fail analysis (pi , 01 ) and the a

versus a analysis (172 , 02 ) are given for each simulated experi-

ment.

3.4.1 Effect of the Design of the Experiment

In this section, the design of the experiment refers

to the number and distribution of the flaw sizes used in a relia- p

bility demonstration program. First, the effect of the sample size

on the distribution of POD parameter estimates is discussed, then,

the distribution of the flaw sizes used in the simulated NDI

reliability experiments is considered, including discussions of
the scatter in the flaw sizes used and the location of the center

of the flaw sizes in relation to the center of the POD function.

The basic effect of sample size on the POD parameter

estimates is shown in Figures 29 - 34, which contain plots of the

tenth and ninetieth percentiles of the estimates of ji and rY f )r
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Figure 30. Tenth and 90th Percentiles of Estimation of aas a
Function of Sample Size for POD with jj 0 and 0 .2')
Lognormial Crack Sizes with 6 =0 and A = .25.
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*0 H
both the pass/fail analysis and the versus a analysis as a

function of sample size. The range of parameter estimates and

therefore the scatter, decreases with sample size. The standard

deviations of i and d are theoretically proportional to i//n and

the simulation results generally agree with this reduction.

Another view of the sample size effect as a function

of the flatness of the POD as measured by a is shown in Figures

35-38. The curves in Figures 35-38 are plots of the tenth and

ninetieth percentiles for the sample sizes indicated. The pass/

fail and a versus a analyses are presented in separate figures.

The scatter in the POD parameter estimates increases with a;

that is, there is less scatter in the estimates for steep POD

functions than for flat POD functions.

A steep POD function gives more discriminatory power

than a flat POD function in the sense that a small change in crack

length will result in a larger change in POD for the steep POD than

for the flat POD. Since small a values result in steep POD functions,

*• ° the smaller variance of parameter estimates for small o is a result

of the better discriminatory power. The steepness of the POD

function is not, however, a design consideration since o is one of

- *- the parameters to be estimated.

Figures 39 and 40 also show the effect of sample size

on the distribution of POD parameter estimates with a different

design. In Figures 39 and 40 , the center of the flaw size distri-

bution is 0.5 while the center of the POD function is 1. The shift

in the flaw sizes results in an increase in the scatter of the POD

parameter estimates. The cause of the increased variability in

the estimates is that for small sample sizes, the range ot flaw

sizes in a sample may not adequately span the POD function.

Because of the shift in location of the flaw sizes, there will be

fewer flaws in the center of the POD function.
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Figures 41 - 48 contain plots of percentiles o'

* and u =s a function of the standard deviation of the flaw sizes

used in the simulation. In each case there is a large amount of

scatter for small standard deviations. As the standard deviation

increases, the range of flaws used in an experiment increases.

After the range of flaw sizes increases sufficiently to span the

* POD function, the scatter in the parameter estimates settles down

to a fixed level.

The foremost consideration in designing an NDI

*reliabilty demonstration program should include flaw sizes that

span the full range of POD values from 0 to 1. The distributions

of parameter estimates from the simulations were seen to contain

a large number of 'outliers' when the flaws fell in one tail of

the POD function. Reasonable distributions for ii and were

obtained when the distribution of flaw sizes is similar to the

POD function. Fairly stable distributions for l and n were

obtained when flaw sizes spanned the POD function and the sample

:ize was 30 or larger.

3.4.2 Typ, of Analysis

The a versus a analysis is compared to the pass/fail

analysis on the basis of accuracy and precision, two measures of

an analysis method's ability to estimate a parameter. In estima-

* tion, accuracy refers to the difference between the expected value,

or mean, of the estimate of the parameter and the true value. Often,

the expected value of a parameter estimate is the parameter itself,

expressed as

E(6) 6 (34)

If the expected value of 3 is not 0 , the difference between the

two is called the bias and is given by

b = E(3) -0 (3
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The ability of an estimator to repeat the same value

or close to the same value is called precision. The precision is

usually measured by the variance or standard deviation of the

estimator. Biased estimators pose a unique problem in defining

precision. The variance and standard deviation measure the scatter

in a random variable about its mean; which in a biased estimator is

not the value of interest. The scatter about the parameter being

estimated is more pertinent to the ability of the estimator to

estimate the parameter.

The mean square error (MSE) is the measure of the

scatter of an estimator about the parameter it is estimating. The

MSE is given by

2 b2MSE = E( 0-0 ) =Var a+ b (36)

The mean square error can be used to compare two analysis methods

regardless of any biasses.

The relative efficiency is a standard statistical

measure for comparing two analysis methods and is given by

RE = MSE (32) (37)
MSE (j1)

which is the relative efficiency of 81 with respect to 02

Tables 3, 4, and 5 give the MSE's for both analysis methods and

the RE's of pass/fail analysis with respect to a versus a analysis

for p and a. Relative efficiencies can be interpreted in terms

of the sample sizes required of the two analysis methods to
produce the same precision. The sample size required for 02to

produce the same precision as 6, is RE times the sample size

" for 01. If RE is less than 1,62 requires a smaller sample than

01 and therefore is a better estimate.

r-
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TABLE 4. MEAN SQUARE ERRORS AND RELATIVE EFFICIENCY
FOR TWO ANALYSIS METHODS AND SELECTED VALUES
OF a and n - v=0, 6=0, X=0.5

. n MSE1  MSE2  RE MSE] MSE2  RE

0.1 10 0.015 0.0017 0.11 0.01 0.0009 0.090
30 0.0026 4x10- 4  0.15 0.0045 0.0004 0.089

100 7.3x10- 4  1xl0 - 4  0.14 7.2x10- 4 ixl0 - 4  0.14
400 1.7x10- 4  1.6x10- 5  0.09 2xi0-4  3x10 - 5  0.13

0.25 10 0.026 0.01 0.38 0.043 0.0082 0.19
30 0.0081 0.0025 0.31 0.012 0.0025 0.21

100 0.0019 0.00083 0.43 0.0026 6.3x10- 4  0.24
400 4.8x10- 4 1.4x10- 4 0.30 7.3xi0 - 4  2x10 -4  0.27

0.5 10 0.27 0.12 0.45 15,376 12,769 0.83
30 0.012 0.010 0.83 0.036 0.017 0.46

100 0.0049 0.0024 0.49 0.012 0.0054 0.46
400 0.0011 5.8xi0-4  0.53 0.0022 0.0010 0.45

1.0 10 139.8 0.22 0.0016 59,049 36,100 0.61
30 1.21 0.078 0.065 189 2.50 0.0026

100 0.020 0.012 0.62 0.12 0.12 1.02
400 0.0035 0.0025 0.72 0.018 0.0096 0.53

1.5 10 7.84 53.72 6.85 4x106  844,563 0.21
30 0.58 44.3 76.2 8.05 784 97.3

100 0.044 0.033 0.74 4.51 0.54 0.12
400 0.0076 0.062 0.82 0.097 0.058 0.60

Subscript 1 denotes pass/fail analysis

Subscript 2 denotes a vs a analysis
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All the simulations summarized in Table 4used a log-
normal track length distribution with 6=0 and X=0.5 for the me n

and standard deviation of the log crack length. Sample sizes of

10, 30, 100 and 400 were used with the POD parameter G=0.1, 0.25,

0.5, 1.0 and 1.5. The mean square errors increase with 0,

implying that steeper POD functions are easier to estimate. The

relative efficiencies of vj and a appear to increase with a, but

are relatively unaffected by sample size.

The relative efficiencies are generally less than 1

implying that the a versus a analysis is generally better than

the pass/fail analyeis. The increasing relative efficiency

the pass/fail analysis with a is a result of the change in 7 -ead

of the flaw sizes with respect to the spread of the POD fun, 4on.

For small a, the spread in flaw sizes is much larger than t

spread in the POD function, resulting in more flaws in the s-...Ple

with POD's close to 0 and 1. In a pass/fail analysis, flaws with

POD's close to 0 or 1 supply practically no information about

the shape of the POD curve. The effective sample size is

decreased because the flaws in the tails do not supply as much

information as the flaws in the middle.
A

In the a versus a analysis, the shape of the POD

function is estimated from the distribution of deviations from

the mean. All flaws in the sample supply the same information

about the distribution of deviations; therefore, the effective

sample size is not diminished by flaws in the tails of the POL

function. The result is that the a versus a analysis is much

more efficient than the pass/fail analysis when the spread in

flaw sizes is larger than the spread in the POD function.

The results of simulations in which the spread in

flaw sizes were equal to the spread in the POD function are

summarized in Table 4. In two cases, the median of the flaw

sizes was 1 and in the third, the median flaw size was 0.5 to

investigate the effect of shifting flaw sizes away from the median

crack detection length. For a = 0.25 and 1.0 the relative

efficiencies are about the same as for a = X 0.5 in Table 4.
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SECTION 4

EVALUATION OF POD CHARACTERISTICS

The link between NDI reliability and risk of structural

failure is the exceedance probability of having a flaw greater

than the initial size (a or a assumed to be present at the
o aNDE)

beginning of a usage period. Given a particular inspection system
and a population of details, this exceedance probability H(aNDE)

is constant regardless of the method for selecting aNDE. However,

there is uncertainty in the estimation of the POD function and the

characteristics of the crack size distributions are not yet pre-

dictable.

The analyses of this section were made to evaluate the effects

of crack size distribution assumptions and variation in POD parame-

ter estimates on measures of inspection efficacy. First, it is

assumed that flaw sizes are modeled by the growth of Weibully distri-

buted equivalent initial cracks. Then, the rogue flaw models will be

analyzed. These results will be contrasted with those of the equiva-

lent flaw distribution approach. All of the calculations of this

section were made in terms of normalized crack lengths. Therefore,

for notational simplicity, normalized crack lengths are desianated

-i (rathf.r than a').

4.1 LOD AND) EQUIVALENT CRACK SIZE DISTRIBUTIONS

To evaluate the combined effect of inspection reliability and

equivalent crack size assumptions, it was assumed that each

structural detail contained an equivalent initial crack and that

these cracks would grow due to fatigue mechanisms. In this study,

it was assumed that the equivalent initial cracks were distributed

in accordance with the Weibull distribution with a constant shape

parameter of 1.5 and that the effect of the fatigue environment

was measured by an increase in the median crack size. Figure 5

illustrates the five equivalent crack size distributions that were

considered with median normalized crack lengths of &=0.1, 0.25, 0.5,

0.75 and 1.0. As noted previously, the equivalent crack distribution

with a normalized median crack length of 0.1 (i.e. a=0.1) is some-

what representative of the sizes of equivalent initial cracks that

have been calculated in past studies. The other four would repisunt
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*the distribution of cracks that could be present at various ages

*' i in the life of the structure.

For each of the 5 equivalent crack size distributions, the

probability of having a crack longer than a and missing it at an

inspection, H(a), was calculated for selected combinations of the

parameters p and a of the log logistics model of the POD(a)
4.. function. First, the median detectable flaw length, a 0 5 , was

considered to be one (P = £n a0. 5 = 0) in the normalized crack

, length scale and the sensitivity of H(a) to variations in median

crack length, a, and a was determined. Then, for selected values

of a and a, the sensitivity of H(a) to variations in p was calculated.

4.1.1 Effect of Median Crack Length

Figures 49 and 50 present the probability of having

a crack greater than a in a structural detail after an inspection

* for the 5 equivalent crack size distributions for a = 0.5 and 1.0,
respectively. This probability of exceedance, H(a), can also be

interpreted as the proportion of inspection sites which will have

cracks greater than a after all sites have been inspected.

Note first that a particular choice of an a value

can be evaluated using the H(a) function. For example, if the

median crack length is half the median detection capability

(i=0.5) and the aNE value is twice the median detection capability, S
(aNDE=2) than the proportion of cracks which will exceed aNDE

.-.
4.after the inspection is 0.0002 if the POD function has a 0=0.5

(Figure 49) and is 0.0008 (Figure 50) if the POD function has

a o=1.0. Conversely, the exceedance probability can be defined

and the aNDE to yield this exceedance probability can be determined.

For example, again letting a=0.5, if H(a) is desired to be 0.0001,

then aNDE would be 2.15 times the median inspection capability if

a=0.5 or 2.4 times the median inspection capability if o=1.0. Q'1

The effect of the median crack size on the exceedance
probabilities is quite significant. Under this model for equivalent

crack sizes and constant inspection capability, it is apparent that

a single value of aNDE throughout the life of the structure results

4' 95
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in orders of magnitude changes in the probabilities of having and

missing flaws greater than aNDE in the structure. If too large a j
value is selected, unneeded inspections would result. If too small

a value is selected, the chances of structural failure increase

significantly. As will be shown, for aircraft structure, it is not

practical to have the median crack length of this model as large

as half the median detection capability.

Most of the dependence of the exceedance probabilities

on median crack length under this Weibull assumption is due to the

fact that the H(a) calculation is being dominated by the crack size

distribution. That is, the cracks are not long enough to be in the

effective range of the inspection system. This can be seen in

Figure 3 where the POD(a) function with c=l.0 is less than 0.9

over the dominant range of crack lengths.

The effective inspection reliability,ER(a), for these

crack length distributions are shown in Figures 51 and 52 for

a=0.5 and 1.0, respectively. The effective reliability is the

proportion of all cracks greater than a which will be detected

(equation (7)). As can be noted, these figures support the above

*conclusion that this inspection capability is relatively ineffective

for the smaller crack size distributions. The curves for the three

shorter crack length distributions were truncated at the crack

length which is exceeded once in 10,000 details.

Figure 53 presents the percent of inspection sites

which will be rejected as a function of median crack length for four

o values. Approximately half of all sites will be rejected when

median crack length equals median detection capability regardlei;s

of a. A relatively large proportion are rejected even when the

median crack leng! s half the median detection capability.

Whether or not t.- -ection proportions are too large would

depend on the eco f the application.
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4.1.2 Effect of a with Equivalent Crack Size Model

Figure 54 presents H(a) for o=0.5 and 1.5 for the

median crack lengths of 0.1, 0.25, and 0.5. This figure illustrates

that variation in the flatness of the POD model (see Figure 4)

has a relatively small effect on the exceedance probabilities.

This can also be seen in the plots of Figure 55 which present

inspection limits, as defined by the crack lengths at which H(a)

reaches 0.00001, as a function of median crack length.

The detection limits so defined are insensitive to POD shape for

the smaller crack size distributions. Again, this result is due in

large part to the lack of effectiveness of the inspection for the

bulk of the inspection sites. Figure 56 presents the effective

. reliability for the four POD shapes when the median crack size is

one fourth the median detection capability (a = 0.25)

4.1.3 Effect of Median Detection Capability with
Equivalent Crack Size Model

.'- Figure 57 displays the log odds POD model for five

. values of median detectability (a0 .5 = 0.5, 0.75, 1.0, 1.25 and 1.5)

with o=0.5. H(a) was calculated for each of these POD functions

.." and for equivalent crack length medians of a=0.1, 0.25 and 0.50.

* . These results are summarized in Figure 58 in which a pair of

H(a) functions are presented for each median crack length. Each

pair of H(a) function spans the range of median detection capa-

- bilities. The exceedance probabilities are rather insensitive

to changes in median inspection capability. Figure 59 presents

inspection limits defined in terms of the crack length correspond-

ing to an exceedance probability 0.00001 as a function of median

detection capability for each of 4 values of a and a median crack

length of 0.25. Except for the steepest POD function (a=0.1), the

inspection limits are relatively insensitive to median detection

capability. However, the inspection limits are separating as the

inspection capability approaches the median crack size. Figure 60

presents the effective inspection reliability for the 5 median detec-

tion capabilities with o = 1.0 and a = 0.25. Obviously, the

effective reliability increases as the median detection capability

•. decreases.
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4.2 POD AND ROGUE FLAW DISTRIBUTIONS

In the rogue flaw model for describing the flaw sizes in the
population of structural details, it is assumed that only a very

small proportion,p, of the details will contain a flaw. However,

the sizes of these flaws can range up to some maximum value, A, for

example, the critical crack size for the structure (as determined

by the maximum expected stress level in the next usage period).

When considering the exceedance probabilities under this rogue flaw

model, p H(a) is the total proportion of details which will have

a flaw greater than a after the inspection. In this subsection,
the factor p will not be considered as it is assumed to be a

constant (on the order of 0.001 or less).

In the following paragraphs, three rogue flaw distributions

are compared in terms of their effect on exceedance probabilities

and effective inspection reliabilities. It is concluded that for

the purposes of this study, the uniform distribution provides an

acceptable model. The uniform distribution is then used to evaluate

the sensitivity of POD variations on exceedance probabilities and

effective inspection reliabilities.

4.2.1 Comparison of Rogue Flaw Models

As discussed in Section 2, three families of distri-

butions were considered as candidate rogue flaw models: a) the

uniform distribution for which any flaw size between 0 and A is

equally likely; b) the triangular distribution which makes smaller

flaws more likely; and c) the exponential distribution truncated at

A which, for small median crack lengths, makes small sizes more

likely than the triangular distribution. The probability density

functions for these distributions is shown in Figure 6.

The exceedance probabilities, H(a), for the three

rogue flaw models are presented in Figure 61 for the POD models

with a median detection capability of one and a=0.5 and 1.0.

For these calculations it was assumed that the maximum possible

crack size,A, was 10 times the median detection capability. This

assumption is evaluated for the uniform distribution in a later
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paragraph. A median crack of 2 was selected for the exponential

distribution as a compromise between over emphasis on small cracks

and getting too close to the triangular density function. Note

again that these H(a) values must be multiplied by the proportion

of rogue flaws,p, in the population to obtain the total probability

of exceedance.

The exceedance probabilities for the three models are

relatively close at about twice the median detection capability.

At the high a values, the exceedance probabilities are greater for

the uniform distribution, as would be expected. In the absence of

information from which the real rogue flaw model could be estimated,

this figure indicates that the uniform distribution would tend

to provide a conservative model if aNDE were greater than 2.

The effective inspection reliabilities for the three

rogue flaw models are compared in Figure 62 for the same POD

parameters as in Figure 61. In Figure 62, l-ER(a) is plotted versus

a to use the increased resolution provided by the semi-log plot.

The ER(a) curves indicate that effective inspection reliability

is not rogue flaw model sensitive for the models considered.

*1[.* The uniform model is a conservative assumption for

-. larger crack sizes when considering exceedance probabilities and

effective inspection reliabilities are somewhat insensitive to

the three rogue models. Therefore, for the purposes of this study

it was assumed that the uniform rogue flaw model would be adequate

for evaluating the sensitivity of inspection reliability characteri-

zations. This topic will be further addressed in Section 4.3.

Assuming that rogue flaws will be distributed uni-

formly over the interval of 0 to A, consideration must be given to

a value for A. In the Air Force context, A could conceivably be

any number greater than 0.050 in. or 2 to 3 times the median

detection capabilities of advanced NDI systems. For some applica-

tions, the critical crack length could be quite large. To provide

-1. an indication of the effect of A, H(a) and ER(a) were calculated

lop for A=10 and 20 when the median detection capability was 1 and

o=0.5 and 1.0. These results are presented in Figures 63 and 64.
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The effects of POD model are again greater than the

effect of A on both the exceedance probabilities and the effective

inspection reliabilities. Since A=10 provided larger (more conser-

vative) H(a) values over the practical range of inspection limits

and smaller effective inspection reliabilities, this value was

chosen for the evaluations of the POD function.

4.2.2 Effect of a with Uniform Distribution of Rogue Flaws

Figure 65 presents the exceedance probability as

a function of normalized crack size for a=0.1, 0.25, 0.5, 1.0 and

1.5. The effect of a under these crack size assumptions is quite

significant. Note that for the large a values, an arbitrarily

S1small value of H(a) is not achieved until a is greater than 9.

(H(a) must be equal to zero for a > 10 since it has been assumed

that there are no flaws greater than 10.) Thus, an arbitrarily

small exceedance probability can be selected only for inspection

systems with small a (steep POD functions) if the inspection limit

is to be of a reasonable size. Figure 66 presents the inspection

limits corresponding to exceedance probabilities of 0.01, 0.001,

and 0.0001 as a function of a. For a less than 0.5, the inspection

limits are somewhat insensitive to a. Again, these exceedance

"" probabilities must be multiplied by the proportion of structural

* details which contain rogue flaws to obtain the total probability

of having cracks greater than the detection limits in the population

of details after the inspection.

Since the rogue flaws are much larger than the...

equivalent crack sizes of the previous paragraphs, the efficacy of

the inspection for these flaws is increased. Figure 67 presents

the effective inspection reliabilities for the four POD capabilities

of Figure 4. This figure indicates that even for a=1.5 at least

80% of all rogue flaws will be detected and 90% of all rogue flaws

greater than twice the median detection capability will be detected.

For smaller a values, the effective inspection reliability is much

greater. These results will be further discussed in Section 4.3.

116
4*.-

L % 
°

- • . • . ° . , - . . * * . - . . . *



.7.;

.POD(a) 0.o Od, o 5 =1.0

f(a) 1/10, 0 < a < 10

U
z

0 
.

U
w

LL
0

-

L0 1

0.0 2.5 5.0 7.5 IL.O

NORMAL IZEDJ CRACK LENGTH -

Figure 65. Exceedance Probabilities for Uniform Rogue

Flaw Model and Selected a Values.

7;- 117



U)

U)

00

o 
-4

4 
0

L C)

r-4 00
v~ 0 41~

9-44

1-.4 44r2

0* -' d
Id 9 -r a

LOIIWI1NI3dN

9-4 -110



POD(a) -Log Odds, a0  = 1.0

f(a) =1/10, 0< a <'10

I1.5

w1 0

-4

LI

~LL

WI. 1

U)

z

W Ia =0.25
z IL emha
0

0=0.1

7.055 19.7.
NORMALIZED CRACK LENGTH -a

Figure 67. Effective Inspection Reliability for Unifor-m
Rogue Flaw Model and Selected a Values.

119



7 .. mj

4.2.3 Effect of Median Detection Capability witn
Uniform Distribution of Rogue Flaws

To evaluate the effect of median detection capability
for fixed a, exceedance probabilities were calculated for a range

of a0 .5 values with a=0.5 and G=1.0. (See Figure 57 for effect of

a0 .5 on POD function itself.) These results are presented in

Figures 68 and 69. The range of a0. 5 values corresponds to

the range of l(=£n a0 5 ) of +1. Although the pictured range of

a0 .5 values is broad, the effect of a0 .5 on the calculation of

H(a) is significant. This effect can also be seen in the plot of

detection limits as a function of median detection capability of p

Figure 70. This figure (as well as Figure 68) can be used in

the evaluation of the statistical variation in the estimation of

and a from reliability demonstration programs.

Effective inspection reliability for the five median

capabilities with a=0.5 and 1.0 are presented in Figures 71 and

72, respectively. As anticipated, there is a significant effect
of median detection capability on the inspection efficacy. For

a=0.5, increasing the median crack detection capability by a

factor of 1.64 results in about a factor of 6 to 7 decrease in

effective inspection reliability. For a=1.0, the effective

inspection reliabilities decrease by a factor of 2 to 2.5 for every

factor of 1.64 increase.

-4.3 DISCUSSION OF CRACK SIZE MODELS

The calculations of the preceeding paragraphs were performed

assuming two fundamentally different types of statistical models for

the flaw sizes in the population of structural details under

consideration. Ideally, a choice between the two assumptions (or
the applicability of either) would be made on the basis of real

data. However, the availability of such data is extremely limited

since, in the absence of an extensive feedback of inspection results

and subsequent analysis, the data can only come from teardown

inspection. Thus, the choice of the statistical models must be
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made on an interpretation of the available data and the plausi-

bility of the calculated results.

When a simple form of the crack size density was assumed

for the equivalent crack size distribution, the calculation of

exceedance probabilities after inspection and the effective

inspection reliabilities were somewhat insensitive to the POD

function. The crack sizes were generally too small to provide a

realistic measure of the effectiveness of the inspection against
big cracks. The POD effect on big flaws was masked by the 99.99

percent of details with "no" or extremely small flaw sizes. When

the crack sizes were made larger by increasing the median, the

* results were not realistic in that a high proportion (25 percent

or more) of the details were rejected. A higher proportion of

large cracks would also result from a density function with a

"thicker" upper tail (for example, a log normal distribution of

crack sizes) but the expected changes were not considered to be

significantly different from those obtained under the Weibull

assumption.

While a more complex equivalent flaw size distributional

model might reduce the above deficiencies, they are also effectively

eliminated by the rogue flaw approach. The rogue flaw model does

measure the inspection effectiveness against the larger flaws that

may be present in the structure. It also agrees with field

inspection data in that few inspections on aircraft structure

actually result in a positive call that a defect is present. The

major price to be paid for the benefits of this approach is the

assumption concerning the proportion of total details which contain
"rogue" flaws. This assumption is essentially equivalent to an

*i assumption concerning the right hand tail of the equivalent flaw

size distribution. However, field data will give an indication of

the total proportion of flawed specimens whereas equivalent flaw

size models tend to be dominated by the extremely small crack sizes.
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For the above reasons, the rogue flaw model was selected for

the characterization of inspection capability for damage tolerance

analyses. Further, it will be assumed that the rogue flaws will

be uniformly distributed between zero and an upper limit (nominally

*." considered to be the critical crack size). The uniform distribution

is considered conservative and is quite often assumed by statisti-

cians in the absence of information to the contrary. The use of

other distributions (e.g. the exponential and triangular) in the

rogue flaw model were judged to have an insignificant impact on

the conclusions of this study.
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SECTION 5

ASIP APPLICATIONS

The United States Air Force Aircraft Structural Integrity

Program (ASIP) is mandated by Air Force Regulation 80-13 and

defined by the requirements of MIL-STD-1530A. The damage tolerance

design requirements are specified in MIL-A-83444 and are imposed

on the airframe manufacturers to insure safety and operational

readiness throughout the life of the aircraft. These requirements

force the manufacturer to demonstrate through analyses and tests

that the airframe will not fail during periods of unrepaired

usage even if critical structural elements contain damage or flaws

of a pre-specified size. If necessary, the manufacturer is per-

mitted to assume depot or base level inspections at intervals of

about one-fourth of the design lifetime.

The MIL-A-83444 requirements are design rcquirements and

are based on assumptions concerning design usage and stress levels.

Ideally, no base or depot level damage tolerance inspections would

be required in the design life of the aircraft (a goal achieved

by the F-16). However, if mid-life inspections were necessary,

22" presumably, they would be scheduled in accordance with the

MIL-A-83444 analyses and implemented through the Force Structural

Maintenance Plan which is required by the Force Management Tasks

of MIL-STD-1530. These inspections could also be called for due

to the update of analyses based on actual operational usage or

the occurrence of unanticipated problems.

Of prime concern to the objectives of this study are the

MIL-A-83444 initial flaw size and in-service inspection flaw size

assumptions. These flaw size assumptions are quite specific

:-  but it is generally assumed that the specified sizes are subject

to change and the amount of change will depend on NDI capabilities.

Since the initial flaw size assumption is considered to be

distinct from the in-service inspection flaw size assumption,

these topics will be addressed separately in the following.
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5.1 INITIAL FLAW SIZE ASSUMPTION

Initial damage assumptions are applicable to two categories

of structure (slow crack growth and fail safe) ; for maximum

damage in the most critical hole or cutout and a non-hole location 2
of each structural element; and for every hole in every detail to

represent manufacturing quality for continuing damage calculations.

Without loss of generality, the following discussion will focus

on the 0.050 in. crack assumed to be present at the most critical

hole or cutout in slow crack growth or non-inspectable structure.

The corresponding crack size assumption in fail safe, multiple

load path structure is 0.020" in MIL-A-83444. The initial crack

at a non-hole or cutout location is generally not the driver of

structural life. The 0.005 in. crack which is assumed to be

present in every hole as a measure of manufacturing and process-

ing operation is far below the reliable detection capability of

current NDI syste3ms.

When MIL-A-83444 was first issued the initial flaw size

assumptions for the critical location (e.g. the 0.050 in flaw)

were assumed to be indicative of inspection capability for a 0.9 j
POD at either a 95% confidence level for slow crack growth

(15)
structure or a 50% confidence level for fail safe structure

MIL-A-83444 does contain a provision for lowering the initial

crack sizes in slow crack growth structure if an approved NDI

reliability demonstration program yields a 90/95 crack size limit

less than the specified values and the NDI system is applied

during quality control to all the relevant critical structures.

A b.oader interpretation of the initial crack sizes is

now being made in that the initial crack size assumption is also

'--iconsidered to cover manufacturing defects which are not

necessarily amenable to detection by NDI systems. Examples of such

defects would be out-of-round or mislocated holes. The equiva-
Q :' lence between such defects and a crack size is based on engineer-

ing judgement and experience (satisfaction) with the current

initial crack size assumptions.
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Regardless of the question of the initial crack sizes being
equivalent to non-detectable manufacturing or processing flaws,
the provision for lowering the initial crack size assumption

based only on a lower 90/95 detectable crack length should be
removed from the specification. This recommendation is based on

two reasons.

First, the 90/95 crack length characterizes the NDI
reliability on the basis of a single point of the POD function.
This one number characterization of inspection capability does
not permit risk evaluations or cost benefit analyses since it is

decoupled from the structure (16) Further, use of this

characterization could lead to increased failure risks as shown
by the following example. Figure 73 displays a hypothetical
distribution of flaw sizes and two POD functions representing
two inspection reliabilities. Given NDI reliability programs
with very large sample sizes, the 90/95 limits for Pl(a) would
approach the "true" value of 0.025 while that of P2 (a) would
approach 0.050 as indicated by the arrows. Under the current

specification, the initial crack size assumption could be
lowered to 25 mils. Figure 74 displays the exceedance probabili-
ties for the two inspection capabilities and the assumed crack
size density. Under the 50 mil initial crack size assumption,

there is a probability of 0.000035 of having a crack greater than
a (=0.050 in.) in the structure after the inspection. Under
0

the increased inspection reliability (i.e. the 90/95 crack size
- 25 mils) there is a probability of 0.005 of having a crack
greater than ao(=0.025 in.) in the structure after the inspection.

To maintain the same exceedance probability as for the original
inspection, as characterized by P2 (a), a should only be reduced

to 0.046 in. Therefore, reducing a to 90/95 crack lengths may
increase the probability of having cracks greater than a in

0
the structure and, hence, increase the risk of failure.
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Different assumptions would, of course, result in different

exceedance probabilities but the basic conclusion would remain

the same.

The second reason for not using 90/95 crack length

characterizations of NDI reliability pertains to the unacceptably

large degree of scatter in the estimates of POD/CL type limits

at the high values of POD and confidence required to insure

structural integrity. In a previous study (2), NDI reliability

experiments were simulated and selected POD/CL limits were calcu-

lated for each simulated experiment based on the "inspection"

of 400 cracks. The entire "experiment" was repeated 100 times

under a known POD function. Figure 75 presents histograms of the

90/95 and 95/90 limits for the simulation of 100 reliability

experiments with the known POD function as shown in the figure.

Estimating a 90/95 limit by an NDI reliability experiment with

this capability is approximated by drawing a value at random from

the cross-hatched histogram. For this POD function, the crack

length for which POD(a) = 0.9 is 20.1 mm. the average of the

90/95 limits were 45.0 mm with a total range of 25 to 85 mm.

These example results illustrate that a 90/95 limit is not a

precisely defined characteristic of NDI reliability but rather

is a random quantity with a relatively large degree of scatter.

Thus, consecutive NDI reliability experiments on the same equip-

ment using different cracked specimens could produce significantly

different 90/95 values and neither of them need be close to the

true crack length for which the POD is equal to 0.9. The POD/CL

limits become even less stable as the POD or the confidence level

increase.

The above paragraphs demonstrate that the 90/95 type NDI
reliability characterization should not be used as a basis for

lowering the crack size assumptions for damage tolerance analysis.

In fact, due to the extreme scatter in these estimates, the 90/95

characterization should possibly not be used to compare the

reliability of different NDI systems. Considerable caution is

required in the interpretation of 90/95 limits once they are

removed from the complete POD function.
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Even though the initial crack size assumptions of MIL-A-83444

are not expected to be lowered based on inspection capability

alone, it may be desireable to evaluate the 0.050 in. assumption

or any other in terms of its likelihood of being exceeded. It is

recommended that this evaluation be expressed in terms of the

exceedance probability and/or the effective inspection reliability

evaluated at a0 . The recommended assumptions and methods for

making these calculations will be discussed in the next subsection

as they may be more germane to the evaluation of in-service

inspections.

5.2 IN-SERVICE INSPECTION FLAW SIZE ASSUMPTIONS

The MIL-A-83444 post in-service inspection flaw sizes were

based on a broad brush evaluation of the limited amount of data

then available from which depot or base level inspection relia- P

bility could be inferred (14) When more data did become availa-
(1)ble , they indicated that depot level inspection reliability

as quantified by a 90/95 crack length characterization was, in

general, poorer than that assumed in MIL-A-83444. The current
(16)

depot capability is still considered at least somewhat unknown

but it is not clear what is meant by a general depot level capa-

bility.

MIL-A-83444 is considered by the Aeronautical Systems

Division to be a design specification. The flaw size assumptions

of this document are used by the manufacturer to demonstrate

that the airplane's structure will be damage tolerant. To date,

in-service inspection requirements to meet damage tolerance

objectives have only been performed as a result of damage toler-

ance assessments on pre MIL-A-83444 aircraft or in response to

specific problems. In these applications, post inspection flaw

sizes have been decided on a case-by-case basis taking into

account all features of the structural element that could affect

the detectability of the flaw being sought. Such features include

the specificity and accessability of the problem area; the

material, geometry, and physical condition of the inspected

detail; the consequences of failure versus cost of inspections;
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and a characterization of the proposed NDI system's reliability.

In general, there is very little or no NDI reliability data for

this detailed level of application. Thus, all of the features

are subjectively evaluated and a consensus based on engineering

judgement is used to arrive at the reset crack length for pre-

diction of future maintenance or retirement actions.

In view of the above there are two types of post-inspection

flaw size assumptions: the general measure of depot or base

level reliability (e.g. as stated in MIL-A-83444) and the component

specific, reset crack length derived for each real application.

To distinguish between the two, define the inspection limit (aNDE

to be the general measure of NDI reliability and the reset value

(a RS) to be the component specific measure. Then, an inspection

limit is one of the factors which enter into the establishment

of the reset value. This study has been directed at methods of

characterizing and estimating inspection limits.

Modifications to the post-inspection flaw size assumptions

of MIL-A-83444 may be unwarranted since very little experience

has been realized with the current inspection limits and there

is no hard evidence to demonstrate that the overall Air Force

depot level capability is better or worse than that indicated.

However, two recommendations can be made. As more emphasis is

placed on NDI reliability, POD functions will be generated for

many NDI system/application combinations. These will lead to

classes of generic capabilities and a refined definition of Air

Force inspection limits will be possible. That is, one crack

length (e.g. 0.25 in.) may not be a sufficient description of

NDI reliability for all aircraft structure. Rather, different

categories of inspection limits will be possible as defined by

type of material, access to automated equipment, coatings, etc.

The second recommendation concerns the method of characteri-

zing NDI capability in terms of a single crack length. It is

assumed that the current characterization is based on a POD/CL
crack length type characterization and, for the reasons discussed

in Subsection 5.2, it is recommended that this characterization

136



not be used in the future. To evaluate inspection reliability for

crack size assumptions, it is recommended that NDI systems be

characterized in terms of the exceedance probabilities, H(a),
as calculated from equation (1) or the effective inspection

reliability, ER(a), as calculated from equation (7). Pending

further information on the distribution of flaw sizes that may

exist in the structure, a uniform distribution of crack sizes

under the rogue flaw model approach is recommended. For a specific

structural detail, the flaws sizes should be uniformly distributed

between zero and the critical crack size. For a generic characteri-

i zation, the flaw sizes should be distributed between zero and a

universally agreed upon multiple (say 10 or 20) of the median

crack detection capability.

Given the H(a) and ER(a) functions, crack sizes can easily

be determined which will yield a fixed probability of exceedance

or a fixed effective inspection reliability. Experience will be

required with these measures to see if one will be preferred.

If a single POD function model (such as the log odds model)

becomes generally accepted, these evaluations could be made using
one set of normalized curves as, for example, in Figures 65 and

67. Interpolating to the correct u value and denormalizing

with the median detection capability would be the only required

calculations.

As an example, assume that a particular NDI system applica-

tion has a log odds model with p = 0.020 in. and a = 0.5. If the

inspection limit is to be determined such that one rogue flaw in

1,000 is to pass undetected, then from Figure 65 or Figure 66
the normalized detection limit would be 3.8 and the denormalized

detection limit would be about 3.8 (0.020) 0.076 inches.

Similarly, if the desired effective inspection reliability is to

e. be 0.999, then, from Figure 67, the normalized characterizing
. crack length would be 4.8 which corresponds to 4.8 (0.020)= 0.096

* inches. Thus, with this inspection system (with rogue flaws

* distributed uniformly between 0 and 0.2 in.), there is a proba-

bility of 0.001 that a rogue greater than 0.076 inches would be

in the structure and not detected. Also, 99.9 percent of all
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flaws greater than 0.096 inches will be detected. Recall that

4-i only a small proportion of details have rogue flaws so that the

proportion of all details which will contain undetected flaws

is considerably smaller than 0.001.

Finally, it is noted that to reflect the uncertainty

associated with the estimate of the POD function, a lower bound

on the entire POD function can be used in the calculations of

equations (1) and (7). Paragraph 3.3 provides methods for calcu-

lating the lower confidence bound fun,.tion.
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SECTION 6

CONCLUSIONS

This program comprised three somewhat distinct phases. The

major conclusions drawn from each of the phases are summarized in

the following.

6.1 POD ESTIMATION

Probability of detection as a function of crack size is

the basic element in characterizing inspection uncertainty. This

study assumed that POD(a) is adequately modeled by the log odds

function. Methods of estimating the parameters and placing

confidence limits on the log odds POD function were developed and

applied to simulated NDI expeirments for different types of data

*. -. and analyses procedures. The conclusions were as follows.

1. When inspection results are only available in a pass/

fail format, maximum likelihood estimation procedures should be

used if there is one inspection per flaw. If multiple inspections

per flaw are planned, at least 10 inspections should be performed

- for each flaw and the regression analysis approach should be used.

The extra binomial variation model (i.e. assuming a beta distri-

bution for individual crack detection probabilities) requires

as many or more inspections per flaw with a large increase in

complexity. Further, confidence bounds on the POD function have

not yet been developed using this approach.

2. If the NDI system response signal, a, is available,

the a vs a approach to estimating the POD function should be

used. This analysis is approximately twice as efficient as

that of the pass/fail method in a well designed experiment.

That is, the pass/fail method requires twice as many samples to

obtain the same estimation precision as that of the a vs a approach.
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The equation for estimating the parameters and placing confidence

bounds on the POD function are presented. This data format also

provides a convenient approach to testing the log odds model or
A0

to developing different models. The a vs a analysis method

reduces the effect of a poor crack size selection in a demonstra-

tion program and also permits an analysis seeking the causes of

variation under designed experiments with multiple observations 0
per flaw.

3. In designing NDI reliability demonstration experiments

it is necessary to insure that the flaw sizes in the sample speci-

mens span the range of the POD function. Ideally, the cumulative

distribution of the sample specimen sizes would be approximately

the same as the POD function. The number of sample specimens

should be at least 30 if they have the appropriate size distribu-

tion and more, if not.

6.2 NDI RELIABILITY CHARACTERIZATION

While the POD function quantifies inspection uncertainty,

current inspection capabilities cannot guarantee that virtually

all cracks greater than a practical size for damage tolerance

analyses will be found at an inspection. Therefore, an NDI

reliability characterization was derived which correlates

inspection uncertainty with the probability of having "large"

flaws in a structure after inspection. The following conclusions

regarding this characterization were drawn.

1. Any link between inspection uncertainty and risk of

structural failure must account for the sizes of flaws in the

population of details before the inspection. The simplest

links are the exceedance probabilities and the effective inspection

reliability which are calculated from the POD function and the

pre-inspection flaw size distribution.

2. Meaningful inspection crack size limits for reflecting

NDI reliability in particular applications can be calculated

from the exceedance probability function, H(a), or the effective
inspection reliability function, ER(a). From the exceedance
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probability function, an inspection limit can be determined

such that there is a pre-specified probability (presumably very

small) of having a crack greater than the inspection limit and

missing it. From the effective inspection reliability function,

an inspection limit can be determined such that a predetermined

proportion (presumably very large) of all cracks greater than the

inspection limit will be detected. A choice between these

criteria has not been made pending experience with applications.

3. very little information is available concerning the

distribution of flaw sizes in aircraft structure. An equivalent

initial flaw size model with attendant fatigue growth did not

prove viable. A rogue flaw approach wherein only actual flaws

in the structure are included, was formulated. Assuming the

rogue flaws have a uniform distribution between 0 and the

critical crack size provided generally conservative inspection

limits.

6.3 ASIP APPLICATION

The conclusions regarding the use of the flaw detection

reliability characterization in ASIP applications are as follows.

1. The initial crack size assumptions for as-manufactured

structural details are intended to cover manufacturing defects

which are not necessarily detectable by conventional NDI systems.

The provision for lowering the initial crack size based on a 90/95

type inspection reliability characterization should be removed

from MIL-A-83444.

2. The in-service inspection flaw size assumptions of

MIL-A-83444 are values for computation during design and development

stages of an aircraft's life and are intended to be general measures

of depot anr- base level inspection capability. These crack

sizes should be re-evaluated based on generic estimates of POD

capability and the exceedance probability function, H(a) and

the effective inspection reliability function ER(a).
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3. For determination of reset crack length after in-

service inspections of specific structural detail, inspection

capability is one of several factors which are evaluated. The

best estimate of the POD function for the specific application

should be used with the uniform rogue flaw model between 0 and

the critical crack length to calculate inspection limits as

defined by H(a) and/or ER(a).

4. Experience is needed with respect to the evaluation of

POD function and their characterization in terms of the H(a)

and ER(a) functions.
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APPENDIX A

STATISTICAL ESTIMATION OF POD

This appendix provides the details of some analysis techni-

ques for estimating POD functions. The first section provides

two techniques for analyzing NDI results when recorded only in the

pass/fail form. The second section describes the estimation of

POD from & versus a data.

A.1 ANALYSIS OF PASS/FAIL DATA

There are two techniques that can be used to analyse pass/

fail data, depending on the type of data. A regression analysis

can be used to estimate the parameters of the POD model when there

are multiple inspections of each flaw or a large number of flaws.

For data with a single inspection per flaw, the maximum likelihood

method provides good estimates of the POD model parameters.

The analyses described in this section are based on the log

logistic function given in equation (8). A direct analysis of the

model when expressed in the form given by equation (8) is very

complicated. The analysis can be simplified by using the re-

parameterized model.

POD(a) = exp(a + a £n(a)) (Al)
1 + exp (a + a £n(a))

The relationship between io and a of equation (8) and a and R

of equation Al is:

P= -ova (A2)

a = n/( v3) (A3)

For both the regression technique and the maximum likelihood

method, estimates of p and a can be calculated by substituting

the appropriate estimates of a and 0 into the right hand sides

of equations (A2) and (A3).
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A.1.1 Regression Analysis

A common name for the log logistic model is the log
odds model which comes from the logarithm of the odds (p/(1-p))

(log odds) transformation. The log odds transformation converts

equation (Al) to

Xn (POD(a) ) a + a Zn a, (A4)

1-POD (a)

which is linear in the transformed variables

Y(a) = kn (POD(a) ) and X = £n a (A5)
1-POD (a)

Linear regression methods are then used to estimate a and 3.

Before performing a linear regression on NDI relia-
bility data, the data must be reduced to a set of n pairs,
(ai , pi), where ai is the crack length for the ith pair and pi is

the proportion of times the flaw (or flaws) were detected. If
the data contain multiple inspections of each flaw, a. will be1 1
the length of a single flaw and pi will be the proportion of time

that the flaw was detected. If flaws are grouped into crack

length intervals, ai will be the midpoint of the ith interval
1

and pi will be the proportion of flaws in the ith interval that
were detected.

Given the n pairs of (ai, p data points to be fit
by the regression analysis, the transformations of equation (A5)

are performed, resulting in a set of n (Xi, Yi) pairs.

The variables X and Y are then used in a linear
regression analysis resulting in estimates a and 8 for a and 8,

respectively. The formulas for a and are
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n nl

E x. E

i~l 11 n 2
S 2 - E X.

i=1 n

a =Y-(A7)

Kwhere and X are given by

n ni
E Y. r x.

Yn n

The estimated mean Y as a function fai ie

by

Y (a) a+ 2na (9

The formula for a lower confidence bound 
on the mean 1PYL for a

given value is

y = +~ -t 2 )( -2(AlO)

where

Y is the confidence coefficient

t is the yth percentile of a t distribution(n-2) ,y
with n-2 degrees of freedom

S - ~ (y-A-B X 2

nn

2 2
nS 2 i1l i (A12)
i-i n
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The inverse Y transformation applied to equation (A9)

gives the estimate of the POD and since the log odds transformation

is monotonic, the inverse Y transformation of YL gives the confi-

dence bound on the POD function. The equations for the estimate

of POD(a) and its lower confidence bound are:

POD(a) -exp(Y(a)) (A13)
1 + exp(Y(a))

and

°(A14)

POD (a) exp(YL(a)) (A14)
L -1 + exp (YL(a))

A problem in the use of regression analysis arises

* .-"when the observed proportion of detected cracks at a crack length

is zero or one. In either of these cases, the most useful trans-

* . formations can be undefined. To circumvent this problem, there

are several alternatives. In the Have Cracks Study (i), the

vaues of 0.01 and 0.999 were substituted for 0 and 1, respectively.

However, the regression results are sensitive to the arbitrarily

defined values. A more acceptable solution is to use a different

estimator for the detection probability.

The usual estimator for the detection probability

is taken as

p i/n (A15)

where i is the number of detections and n is the number of specimens

with the crack of the fixed length. Other estimates of the propor-

tion which have acceptable statistical properties are the mean

estimate

i n[.- n~iif i>
n+i

= if i = n/2 (AI6)

.1 i±l if i< n
-n+i 2
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and the median estimate:

i-0.3 nn+0.4 f i >
n +O. 4 2

1 if i = n/2 (A17)

i+0.7 if i<
n+0.4 2

The use of either equation A16 or equation A17 for observed

detection probabilities would eliminate an arbitrary definition when

the observed proportion of detections is zero or one.

A.1.2 Maximum Likelihood Estimates

Given the POD(a) model of equation (Al), an entirely

different method for estimating the parameters uses the principal

of maximum likelihood. In this type of estimation the parameter

estimates are the values which maximize the probability of

obtaining the observed data. The maximum likelihood estimates do

not require grouping of data when the experiment involves a single

inspection per crack. Instead, they are based directly on the

observed outcomes of 0 for a non-detection and 1 for a detection.

This paragraph presents the equations for the maximum likelihood

estimates of the log odds model and confidence limits when each

crack is inspected only once. Maximum likelihood estimates for

multiple inspections of each crack could also be developed.

Further, maximum likelihood estimators for parameters of models

other than equation (Al) could be developed, but the solutions

would not necessarily be in closed form.

Maximum likelihood estimation is based on the

concept that the data will take on values which are most likely

to occur under the chosen probability model. For example, in a

simple Bernoulli trial (which is the probabilistic representation

of a single inspection) the probability of success is p. If

p > 1/2 a success would be more likely than a failure. Conversely,

if a success were observed in one trial, it is more likely that
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p 1/2. In the following, the philosophy of maximum likelihood

estimation, the value of the unknown parameter that would give rise

to the highast probability of obtaining the observed data is used

as the estimate. In the simple Bernoulli experiment if p were

equal to 1 the probability of observing a success would be 1.

Since probability cannot exceed 1, the maximum likelihood estimate

of p when a success is observed in a single Bernoulli trial is 1.

To find the maximum likelihood estimates of equation

(Al) from a sample of single inspections of n cracks, the following

procedure adopted from Cox( 1 7 ) can be used. The maximum likelihood

estimates -A and of ( and 3 satisfy the simultaneous equations. S

n n
ex]2 (ct+ Bn (ai))

0 = l' -z Z. (A18)
i=1  i=l l+exp(a+6kn(ai))
n n O

0 = Z Z ikn(ai)- kn(ai)exp(a+ Zn(ai))=l i=l l+exp(&+B£n(ai))

where z. = 1 if the flaw is detected and 0 if it is not. The1 6
variances and covariance of the estimates & and 8 are

ar n exp(a+ Zn(ai))Var (a) = E. (A20)

i=l (l+exp(a+ Zn(ai)))

n 2ex p
Var (6) = E (2n(ai)) (a+8n(ai)) (A21)

i=l (l+exp(c+a£n(ai)))2

64
n £n(ai)exp(a+8tn(ai))

Cov (,S) = 2 (A22)
i=l (l+exp (a+6kn (ai))) 2

Estimates of these variances and covariance are calculated by

substituting the estimates, a and 6, in equations (A20), (A21),

and (A22).
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The maximum likelihood estimate of the POD function

is calculated by substituting ci and 3 for u and f in equation

(Al). The change of variables must be made using the same trans-

formation that was used in the regression analysis to obtain

log (p(a)/(l-p(a))) = Y(a) = ( + 9 kn (a.) (A23)

For very large sample sizes, estimates of the variances and co-

variance of a and can be used to calculate a lower confidence

bound on Y(a) as given by

* Y (a) = a+6 kn(a) - Z /S2 2 2S2 (A24)
L Y S + 29n(a) SO + (9n(a)) S.

a at

where

y is the confidence level,

Z satisfies P(Z < Z ) = y for the standard normal
distribution

2
Sa is the estimate of Var (5)

2S^< is the estimate of Coy (S),

2
S, is the estimate of Var (B).

Since the log odds transformation is monotonic, the reverse

transformation of the confidence bound on Y(a) will be the confi-

dence bound on P(a). Specifically,

I tip (a) exp(Y(a))POD(a) (A25)
l+exp(Y (a))

YPOD(a) = exp( L(a)) (A26)DL l+exp(YL(a))

Generally, maximum likelihood estimates are better than regression

estimates from grouped data; however, if the number of flaws is

very large (greater than 100) and the groupings do not result in

many 0's and l's for pi's, the results of the analyses should be

similar.
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In inadequately desiqned NDI reliability experim, nt,; it

is possible to obtain estimates of which are not sigiificai tly

greater than zero. See Subsection 3.3.2.1 for a discussion c f this

problem.

A2. METlI D OF MO)MENTS ESTIMATORS

Suitable inLtial estimates of the POD model para~ieters arf
necessary in applying the maximum likelihood method. When the

mdxLmum likelihood equations have more than one solution, the

comnuter algorithm converges to the solution closest to the initial
*' estLmates. For estimating POD parameters, the initial estimators

u wer chosen to be those as obtained from the method of moments.
The followng para.graphs describe the application of tle method of

mom nts to the .oc odds model.

The method cf moments is an algebraically simple computitirnal
tecinique T hat is first used to calculate initial estirates CF

.1 a Ed . I.quations A2 and A3 convert the estimates of pi and t)
t a id 3 for use ir the computer algorithm. The method of mon nti
est~mates the parameters of a distribution function by equatiig
the sample moments calculated from data to the theoretrcal moien~s

expcessed .,n terms of the parameters of the distributi n. Th.,
"ob logistic function that is being used to model the IOD fun :ti)n

is actuall a cumulative distribution function and th( ji an6 C5
(of the functional parametrization of equation 8) are the meai aid

standard deviatior, respectively.

The application of the method of moments to NDI ieliabiLit/
data is not straightforward. Direct measurementr of random
variables with POD(a) as their distribution function are not .ad,.

The only information available is the set of n (ai , pi) pairs.
However, this information can be used in the context of a non-

standard representation of the mean and variance of a distribiti~n

as follows.
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The standard definition for the mean of a distribution, say

F(x) is

00

fo xdF(x) (A29)

Integration by parts can convert equation (A29) to

00 0
= [l-F(x)] dx - f F(x) dx (A30)

000

In the log logistic function, pi is the expected value of ln(a)

so that the X transformation of equation (A5) must be used before

applying equation (A30). The log logistic function of equation

(8) is therefore converted to

POD(x) = [1 + exp ( - ( ))] . (A31)/3

In tf rms of the POD function, equation (A30) is illustrated

in Figure /;l. In Figure Al, area A represents the first ingetral

of equatior (A30) and area B represents the second integral. The

mean, p, is area A minus area B. To apply the method of momerts

to NDI reliability data, the analog of Figure Al is drawn foi a

set by NDI reliability data as Figure A2.

Figure A2 is a plot of the (xi, pi) pairs, where xi is the log

transform of a1 . The expected value of pi is POD(x i ) so that the

curve consisting of the line segments connecting the (x,p) p ir.

ordered by increasing x is an approximation of the function IOD(x).
Areas C and D of Figure A2 correspond to areas A and B of Ficurc

Al respectively so that the method of moments estimate of p is

C -D (A32)

The calculation of the method of moments estimate of w can

be simplified by choosing a scale so that all crack lengths are

greater than 1 and therefore all x values are greater than 0.
Crack leng-hs givn in the units of mils usually satis y thi-
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criteria. When all X values are greater than 0, the area D wll

be 0 so that only area C need be calculated. The formula for the

method of moments estimate of p then becomes

". ' =- _ 1 n
,X- n X- i12 (xi-xi_1 ) (pi+Pil) (A33)

where x's have been ordered so that X < X < ... < Xn . The
1 2 n'

ordering should be strict so that if several flaws have the same

length, they should be grouped and p taken as the total proportion

- ""of all insp;ctions on all flaws of that length that were detections.

A simlar process can be used to show that the method of

*- - moments estimate of a is

"-" - 2 i2 ( Xi- -l (Pi+Pi-i)} - 2

The statistical properties of the method of moments estima-

tors of p and a depend on how well a numerical integration of the

true POD function based on the crack lengths of the sample data

- approximates the true values of p and a. If the true POD can be

*reasonably approximated prior to the NDI reliability experiment,

the experiment could be designed so that the method of moments

provided good estimates of the POD parameters. However, in most

applications the method of moments should be used only to provide

initial estimates for the maximum likelihood algorithm.

• ..
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