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FOREWORD

This technical report summarizes the work performed by
the University of Dayton Research Institute under Materials
Laboratory Contract Number F33615-82-C-5030. The work was
performed between May 1982 and September 1983. Dr. Joseph A.
Moyzis of the Materials Laboratory was the Air Force Project
Monitor and Dr. Alan P. Berens of the University of Dayton was
the Principal Investigator.

The final -eport of this work comprises two volumes. A
complete description of the methods and results of the program
are contained in Volume I. As p.rt of the study, two computer
programs were written: a) a program rfor calculating effective
inspection reliability and exceedance probabilities for selected
POD functions and crack length distributions, and b) a progran
for simulating NDI experiments and estimating the parameters of
the POD function. A user's manual and the listings for these

programs are contained in Volume IT.
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SECTION 1
INTRODUCTION

Guaranteeing structural safety through damage tolerance
analysis has focused attention on quantifying the capability of

nondestructive inspection (NDI) systems. To predict the growth

. of the largest flaw that might be present at a critical location
requires knowledge of the flaw sizes that might be missed at an
inspection. However, factors beyond the control of the NDI system
influence the de.ectability of flaws at the small sizes of interest
and NDI capability must be characterized in probabilistic terms.
For a particular application of a given NDI system, capability is
defined as the probability of crack detection (POD) of all cracks

of fixed length, i.e., in terms of the function POD(a).

A one number characterization o NDI capability is currcntly
in use as defined by the minimum crack length for which there is a
fixed degree of confidence (CL) that at least a fixed proportion
(POD) of cracks will be detected, i.c¢., the POD/CL crack length.
For example, there is 95 percent confidence that at least 90 percent
of all cracks greater than the 90/95 crack length will be detected.
Several studies in recent years have resulted in a different approach
to characterizing NDI capability and have demonstrated weaknesses
in the POD/CL type characterization.

In the late 1970's, results from multiple, independent
inspections of the same fatigue cracks were generated under an Air
Force NDI reliability program known as the "Have Cracks Will Travel"
Program(l). These data demonstrated conclusively that different
cracks of the same length can have significantly different crack
detection probabilities. This realization led to a regression model
approach for estimating the POD(a) function and, further, permitted
realistic computer simulations of NDI experiments. The simulations,
in turn, demonstrated the extreme statistical instability of the
POD/CL type characterization (2). This instability implies that if
an NDI reliability demonstration program were repeated under rigidly
controlled conditions, the 90/95 crack lengths could be radically

different due only to the statistical variability of inspection

results.
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Further, the relation between a 90/9 crack lenc'h &nd the chinces

of wwut detecting a longer crack is e irely unkr. wn.

For damage tolerance calculati us at the doesiygn stages . &
aircraft development, the Air Force has circumvented the proba-
bilistic aspects of initial crack sizcs by specifying the crack
lengths which must be used for new and in-service inspected
structures. These numbers are only vaguely related to current
NDI capability as they were established on the basis of a broad
brush evaluatior of pre-1974 inspection capability and are also
considered to co.cr manufacturing or repair defects which are not
necessarily detectable by a specific NDI system. However, thec
specification does contain a provision for lowering the initial
flaw size assumptions for one category of virgin stru~ture basced on
a demonstration that the NDI system to be used has a lower 90,95

crack length.

In view of the apparent diffic ties with the 90/9% cra
length type of NDI reliability charac!erization, this program wvus
undertaken with two objectives: a) t« determine a procedure ‘' r
specifying crack size assumptions in c¢amage tolerance analyse: which
correlates NDI capability with the ris: of structural failure; .nd,
b) to review existing Air Force crack size assumptions and mal:
recommendations for incorporating thc new procedure. To achicve
these objectives considerable effort was devoted to developing

and evaluating methods for analyzing NDI reliability data.

This report comprises 6 Sections. In Section 2, the basis
for correlating inspection uncertainty with risk of structural
failure is established. This section emphasizes the need to account
for both the sizes of the cracks in the population of structural
details and the probability of crack detection as a function of
crack size. Section 3 presents an extensive discussion and
mathematical details related to the unalysis of NDI reliability
data. Section 4 presents a sensitivity analysis of reliability
characterizations and an evaluation of the effect of the sampling
variation in the estimates of the POD function parameters on the

probability of missing large cracks ..t an inspection. This section
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ties the material of Sections 2 and 3. Section 5 discusses the
Air Force Aircraft Structural Integrity Program (ASIP) ramifica-
tions of NDI reliability characterizations and presents recommenda-
tions for using the methods of this report in determining initial
flaw size assumptions in damage tolerance analyses. Conclusions
are presented in Section 6.
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SECTION 2
ANALYTICAL FRAMEWORK

The damage tolerance approach to structural safety is centered -
on a philosophy of insuring safe operation in the presence of flaws.

Accordingly, flaws are assumed to be present at all critical loca-

19 Yo (IR

tions and it is demonstrated that these flaws will not grow to a

[N

critical size in the usage environment during each period of opera-

tion. This process requires bounds on the sizes of the flaws that
may be in the structure and the bounds must be quantified in terms

amenable to analysis. Since fracture mechanics methods are used to

b
-
~
u
o

predict flaw growth, flaw sizes are stated in terms of a crack
length or an equivalent crack length. Manufacturing quality control
and field inspections are intended to detect all flaws but the

capability of current inspection systems can only be expressed in

probabilistic terms at the small crack sizes of interest. Since noc

,

guarantee can be given that all flaws greater than a predetermined
bound will be detected, the inspection element contributes to the

overall failure risk of the damage tolerance process.

This section presents a simple approach to measuring the

effect of inspection uncertainty on structural integrity by correla-

tats o md e e

ting the NDI system with the distribution of crack sizes in a
structure after inspection. This approach permits determining that
crack size for which there is a predetermined probability of
exceedance. Since the calculations require knowledge of the POD
function and the distribution of crack sizes in the structure, these

topics are also discussed.

..“‘.‘

et

E.f\' 2.1 QUANTIFYING NDI UNCERTAINTY FOR DAMAGE TOLERANCE ANALYSIS

ey

}I: The Air Force application of damage tolerance analysis is

;35 usually summarized as shown in the schematic of Figure 1. The as-
:fﬁ manufactured or virgin structural detail is assumed to have a flaw
o of length a_. The growth of this flaw is predicted for design usage
ﬁﬁz and will reach critical crack size, ag, after th flight hours. Since
;‘ﬁ the Air Force philosophy calls for an inspection at half the time

P".- . - .

:xd required for the potential crack to reach critical, the first
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tenance action is assumed to find and remove any flaw of length

1

L}

{

|
inspection is scheduled at tl = tD/2 flight hours. The main- :
greater than a

NDE S© that aNDE is the initial crack size for the

next usage period. Since a crack of length a is predicted to

NDE
reach critical size in t; flight hours, the second inspection
is scheduled at t2 = tl + tI/Z. The process continues until the

structure becomes uneconomical to ma :tain. {

The application of this process requires, a) extensive
knowledge concerning the location, geometry, and material properties ]
of all potentially critical areas of the structure; b) predicted
stress histories for each critical location during the service
usage period; and c) bounds on the sizes of potential flaws. The
first two of these factors are highly aircraft dependent as they
can be determined only for a specific design and usage. The third

factor is generally considered to be a measure of inspection
capability and/or an equivalent flaw size which covers possible

3)

. . (
defects resulting from the manufacturc or maintenance process .

Ostensibly, damage tolerance analysis is deterministic since
all potential flaw initiation and growth is assumed to be bounded
by the crack growth-life curve. In actuality, there are several

non-deterministic or random elements in the process which result in

a positive (albeit very small) probability of failure. These include
the random nature of the actual stresses to be encountered,
inspection uncertainty and the variability inherent in material
properties. At present, there are insufficient data to combine

all of the random elements and the potential joint effects of
adjacent structural details in a generally accepted model to |
realistically predict the structural failure probabilities. The
Air Force accounts for the uncertainty by a) tracking the severity
of usage of each individual aircraft in an attempt to account for
variations in stress spectra from that used in predictions; and,

b) performing inspections at one-half the predicted time for the
initial flaw to reach a critical size. Although the effect on

the risks of structural failure due to these procedures is unknown,
it should be noted that structural failures are relatively rarec in

(4)

comparison to other causes of acciden's and class A and B mishcs
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e To isolate the effect of NDI reliability on the risk of

ataadk Paata

L

structural failure, consider first tlie nature of inspection un-

a,
A,

certainty. Figure 2 presents a schematic of two POD functions.

The ideal inspection system would detect all flaws larger than

4

.‘.".‘
ey RN

- ANDE and none smaller than anpE® This inspection system would have
no uncertainty and would eliminate the inspection system from any

[l e I 4
AR A
. il

calculation of probability of structural failure. No such system
. exists and no system approaching this ideal is anticipated in the
near future. The realistic curve is typical of current inspection

‘35 capabilities. Although the POD function approaches one as the crack

;Y~ length increases, ANDE would have to be extremely large to obtain

the very high POD values required for structural reliability, say,

f% POD (aNDE)= 0.99999 or greater. Note also that if axpg 1S

R determined on the basis of a fixed POD value, say POD(aNDE) = 0.9,
3? there is no information available which links aype O the risk of
-, failure. All that is known is that if there is a crack in the

4
[3

TN VPN

| PSR

;i; structure greater than ANDE before the inspection, there is at
L least a 90 percent chance of detecting it. This is insufficient
information to account for inspection uncertainty in calculations
{ of failure probability.

Crack growth based calculations of the probability of failure
ey during a usage period must account for the distribution of flaw

; : sizes at the beginning of the period. Thus, the simplest link
between inspection uncertainty and failure risk is the effect of
the inspection on the flaw distribution that was present in the

¥ structure immediately prior to the inspection. In particular,

»
a
‘l“ a .k

.
o's

e let H(a) represent the probability of having a crack longer than a

iﬁ' in the structure after the inspection (all detected cracks are

2 repaired). Then

s o

L . H(a) = J/ [1-POD(x)1f(x) dx (1)

- a

N where :

CA -\ -

:ﬁ 1 - POD(x) = proportion of cracks of length x which are -
not detected. |

.

-—
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o 4,
- f(x) = probability density f inction of crack sizes in the

population of details immediately prior to the 4

inspection. j

If it can be assumed that any crack longer than the crack length, ?
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aANDE’ will grow to critical size in the usage period and that no

NDE NDE)
represents the probability of failure during the interval. This

crack smaller than a will reach critical size, then H(a

assumption is not valid in the Air Force application of damage
tolerance since periods of uninspected usage are scheduled at half

the time required for a crack of length a to grow to critical.

NDE

If this philosophy is conservative, H(aNDE) is an upper bound on

the probability of failure.

H(aNDE) provides a measure of inspection efficacy for fixed
aNDE and known crack size distribution and POD function. Converiely,
equation (1) can also be used to determine a crack length; say 1 ypg’
for which the probability of having ¢ cks greater than aypg 2! -er
inspection is less than a pre-specifi. .. probability . a;DE is
defined by the equation
9=/,  [-PODGOT £(x) ax - Hlag ) (2) |
NDE .
or 3
* -1 3
aypg = H (q) (3)

Since H(a) measures the effect of inspection uncertainty in
terms that would be required for any further crack
growth based structural reliability studies, this function was
selected as the basis for the evaluations of this program. The
calculation of H(a) does require information about the crack size
distribution prior to the inspection but this is the minimum
additional information that could link inspection uncertainty to
structural failure. Section 2.3 discusses the crack size
assumptions used in this study.
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There are several other calcul tions that will be used In
the following. Again, let POD(x) re .resent the proportion of
cracks of length x that are detected by a particular NDI system
and f (x) represent the probability censity function of crack
sizes. The probability of inspecting a detail witl: a crack longer
‘than a apd detecting it is given by

G(a) = /S POD(x) f(x) d (4)
a
Note that G(0) is the total percentage of details for which a
positive crack indication will be given, i.e., rejected by the
inspection. Let F(a) represent the proportion of cracks with

lengths less than or equal to a. Then

a
F(a) = J £(x) dx (5)
o
and 1-F(a) is the proportion of crac:s greater than a. Since

every crack greater than a is either detected or missed

H(a) + G(a) = 1-F(a) (6)

Of particular interest is the proportion of cracks which are larger
than a and are detected. This probability will be called the

effective inspection reliability, ER(a), and is calculated by

o ER(a) = oi2) (7)
The calculations of equations (1), (3), (4), and (7) will be

used extensively in the evaluation of the sampling variability of
the POD parameter estimates in Section 4 and in the interpretation
of inspection efficacy for damage tolerance analyses of Section 5.
The following paragraphs present the models used to describe the
POD functions and the distributions of crack sizes used in the
analytical studies of this program.
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T 2.2 POD FUNCTIONS

n:\‘.: '

:Q? The analytical model used to d scribe the POD function in
o this study was the log odds or log 1 .gistic model s given by the y
L\ ecuation

e o n o =1

e POD(a) = { +exp - [ \ = )]

’

Q{ The reasons for the choice c¢f this m .el and metho« for estimating
- the parameters | and ¢ are extensivel discussed ir Section 3. If
o aj s represents the median crack detection capability, i.e.

POD(a0 5) = 0.5, then
L i = ‘G
Tl u &n ay .5 9
The parameter ¢ is a measure of the “‘atness of th¢ POD funct: n:

o the larger the value of o, the slowe the POD function approac ics
‘.. one.

T

. Figure 3 presents the log odds OD function as obtiined
{ from 5 sets of NDI reliability data. The curve labeled o = 1.)7
o has a;, ¢ = 0.22 in. and was obtained from eddy current surface

N, scans of a C-130 wing box(l). The curve labeled o = 2.06 for v+hich
- a5.5 = 0.083 in. was also obtained from eddy current surface s :ans
' but this time from C-130 wing panels. These are the AET and BET i

data sets, respectively, of Reference 1. The curves labeled
o= 0.81 (a = 0.046 in.) and o= 1.58 (a

Wt
a4, a,

= 0.017 in.) were

”"3*55
LA

ﬁ calculated gégm the results of laboratory egé; current and ultra-

&: sonic inspection, respectively, of etched fatigue cracks in £1.t I
fﬁz 2219-T87 Al plates (data sets 33 and 35 of Reference 5). The p
??? curve labeled o= 1,25 (ao.5 = 0.019 in.) was calculated from -
t¥ inspection reliability data from an automatic eddy current bolt

,i hole scan of fatigue cracked specimens. These data were obtained '
{f in a private communication from an Air Force Air Logistics Center.
,§1 The curves of Figure 3 display the joint effects of 35.5 (or

2: equivalently, p) and c¢. The parameter ptends to locate the curve

!E at the shorter crack lengths whileo t~nds to dominate at the 1-nger ]
Eéz crack lengths.
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To eliminate one parameter fror the sensitivity studies to
be performed, all crack lengths were considered to be normalized

by dividing by the mdeian crack detection capability, i.e.,
] P
a' = a./ao‘5 (10)

For normalized crack lengths, 1 = 0 in the log odds POD model and

the location and scale parameters of crack length distributions are

b e

expressed as multiples of the median iletection capability.

Figure 4 displays POD as a function of normalized crack length
for selected values of o. As noted i1 Figure 3, existing manual
NDI systems have ¢ values of about 1 »nr greater. Highly automated
systems in laboratory reliability dem> nstration programs have
produced ¢ values in the range 0.3 to 0.6. No current system | as
been shown to have a ¢ value as small as 0.1. Therefore, this
pictured range of o values was select:d for the sensitivity
evaluations of this study.

2.3 CRACK SIZE DISTRIBUTIONS

PP PP

When a critical area of structure is inspected, there is a
conceptual population of details each of which may contain a flaw.

The population may arise from many lo« ations on a single structure,

denbendectusich it s

from similar locations on many structires, or both. If an "unflawed"
specimen is regarded as having a flaw >f length zero (or extrenmecly
small), then a population of flaw siz¢ s can be hypothesized for the p
inspection locations. Immediately prior to an inspection, the

size of the particular "flaw” to be inspected is unknown beyond its
distributional description.

The population of conceptual flaws at an inspection site can
also be postulated without reference to a population of inspection
sites. The material condition at an inspection location is the
result of a number of random effects which produce flaws of varying

4
o . . . !
RN magnitudes (including zero for no flaw). Examples of such random .
Efﬁ causes would be batch-to-batch production variation, the occurrence ‘
- of voids or inclusions of various sizes, manufacturing or maintenance \
N

errors, or actual stress and environmental effects. Since the exact
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Since the exact end result of these random stimuli is not

predictable, the effects can be modeled in terms of a probability

distribution which describes the potential flaw sizes at inspection.

The flaw size distribution is dynamic in a futigue environment.
At the start of the structure's life, the flaw size distribution is

the result of the manufacturing and quality control process. As the

y
:
K
K
i
.
3

structure is used, existing flaws will grow and new flaws will
initiate and grow as a function of service time. Although this
conceptual framework for the fatigue process is accepted, there is
no general agreement on methods for modeling the process as there
is very little data for estimating parameters and verifying proba-

bilistic models of the existing approaches.

In this study, two approaches were taken to modeling flaw

size distributions: the equivalent initial flaw size approach and

a "rogue" flaw approach. These are discussed in the followin:

paragraphs. In addition, a method for tracking a ilaw size d:stri-
bution throughout the life of a structure is also presented but the .
resulting complex characterizations of flaw size distributions were :

not used in the characterizations ¢f inspection uncertainty.

2.3.1 Equivalent Initial Flaw Size Distribution

Starting with the F-4 damage tolerance assessmeut(6),
and followed by the A-7 damage tolerance assessment,(7) the work on
quantifying fastener hole quality of Potter (8), and recent dura-

bility studies, )

the concept of an equivalent initial crack size
distribution has been used to characterize the quality of structure.
Very small initial "cracks" are equivalent to long times to crack
initiation when subjected to standard crack growth models (even
though, theoretically, the cracks are too small for the principles
of fracture mechanics to hold). Although an artifact, this method of
quantifying the initiation and growth of cracks is convenient in
damage tolerant analyses. Since a crack growth life curve must be
generated for every potential critical location, this analysis
provides a model for deterministically "growing" the equivalent
initial flaw size distribution. This approach assumes that the
randomness in crack sizes at a particular point in the life of a

stiucture is produced by the initial crack size ‘listribution.

15
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Different families of distributions have been c¢mployed o5

ol ) e

models for flaw size distributions. 1In Volume 4 of Reference 9.

.“'f crid M

L™

various families were tested against three sets of equivalent

.

initial flaw size data and three families could not be rejected.
. Two of these were rather complex, 4 or 5 parameter families wh:'le
the third was the Weibull family. For the purposes of this study
the 2 parameter Weibull distribution was judged to be an adequate
model for crack size distributions. The cumulative distribution
- function for the Weibull model is given by

. F(a) = 1 - exp [-( ) ] (1)

w|

- where B is the scale parameter and o is the shape parametcr. In
A this study it was assumed that a = 1.5 which is consistent with the
- data of Volume 4 Reference 9. The median crack length of th:

- Weibull distribution is given by )

[o1]
i

B exp [ % in ¢n 2] (1.)

( or, for n 1.5, i

W
"

0.7838 (1)

Thus, increasing B (or, equivalently, & ) would correspond to the

=
’ [} “ " " o
el

increasing crack sizes that would result in a fatique environment.

In keeping with the normalized crack lengths of the POD

.'-.\ "- _'»

functions, the scale parameters of the Weibull distributions were

Y

calculated to provide median crack lengths, a', of 0.1, 0.25, 0.5,

0.75 and 1.0. Thus, median crack lengths were assumed to rangc

from 10 percent of the median crack detection capability to the

3 K 823
-

.
T e¥a?

median crack detection capability. The crack size distribution

WS XX
VaLliagg

LY

for a' = 0.1 could be representative of initial quality in aircraft "

.

; as a median normalizcd crack length of 0.1 could correspond to a . )

real flaw on the order of 2 to 3 mils(7). The distributions for

““iﬂ

large a' values reprosent resulting damaging effects of fatigue

)
.
L

crack growth and could be present at later stages in the structural
Lite-. )
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Figure 5 presents these crack size probability )
density functions as a function of normalized crack length. Also
included in Figure 5 is the POD function with median detection
capability of 1.0 and o = 1.0.

2.3.2 Rogue Flaw Distribution

LN N

The second approach was directed at modeling the

relatively large and relatively rare flaw which is not typical of

VLN

)

the general population of structural details. These "rogue"

flaws can be introduced in the structure as the result of a manu-
facturing error or accidentally during routine maintenance.

Assuming that only a proportion, p, of all inspection sites contains
a rogue flaw, p H(a) is the total probability of having a flaw

greater than a and missing it at an inspection.

Three families of distributions were considered for
modeling the rogue flaws. These were the uniform, triangular and
exponential distributions. The uniform and triangular distribu-
tions are defined in terms of two parameters, the minimum and ma: 1-
mum possible crack lengths in the structural detail. The minimun
value would be zero and the maximum would be a length, say A, that
could not be exceeded. A realistic value for A would be the criti-
cal crack length, CY The exponential distribution is defined
in terms of one parameter, the average rogue flaw size, X. Figure
6 displays the three candidate density functions where the

exponential distribution is truncated at A.

Under the uniform distribution assumption, any size of a
rogue flaw is equally likely in the possible range of lengths.
The triangular distribution assumption implies that smaller values
are more likely. The truncated exponential distribution has more
small crack sizes for small values of X and approaches the uniform
distribution for large'values of A. In this study, A was chosen to
be 10 or 20 in the normalized crack length scale.

The rogue flaw approach to modeling crack sizes has an
intuitive appeal in that the inspection process is directed at the

elimination of large cracks. 1In aircraft structure relatively

17
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few cracks are detected in proportion to the total number of
inspections. Thus, the cracks being detected can be viewed as the

cracks in the upper tail of the equivalent crack size distributions.

L_Ai S

The shape of the density function in this upper tail region of

| ¥

the growing equivalent crack size distributions is reasonably - ]
Close to the probability density functions being considered for 1
the rogue flaw model. p
- 3

The complete probability density function for flaw sizes under D}

the rogue flaw model would be of the form .
f(a) = (1-p) fy(a) + p £, (a) (14) -

where p is the small proportion of details which contain "rogue"
flaws whose density is f,(a) and fl(a) is the equivalent crack size
density for modeling the initiation and growth of fatigue cracks
as discussed previously. However, the mixture of distributions
of equat o (14) was not used in this study as the complexity of a
tour parame ter model (at the minimum) was judged to be unwarrantecd.
Rather, the equivalent crack size model, fl(a), and the rogue flaw
model, fz(a) were treated separately and no attempt was made at

combining the results.

2.3.3 Tracking Flaw Size Distributions

At an inspection, some of the structural details
will be identified as containing flaws and these details will be
repaired (in some sense). After the inspection, the population of
details will be a mixture of the unrepaired and repaired structures.
Given the pre-inspection crack size distribution, f~ (x), the POD
function, and the equivalent flaw size distribution for the repaired
structure, fR(x), the post-inspection crack size density function,

£¥(x), can be calculated from the equation (10’11),

£ (x) = G(o) f(x) + [1-POD(x)] £ (x) (15)

20
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where -
G(o) = total proportion of details for which a positive ]
indication is given, equation (4). ®
This equation permits tracking the crack size distribution through- .]
out the life of the structure by an iterative procedure: Lﬂ
a) Estimate the flaw size distribution for the structural j;
elements prior to the manufacturer's quality inspection. Let f;(x) .{
represent this density function. ﬂf
b) Calculate the crack size density immediately after fi
inspection, f;(x), by application of equation (12). -
-
c) Analytically grow the cracks of the f;(x) under predicted g_
service usage to the time of the first inspection. Let fI(x) i;
represent the crack size distribution at this time. f}
d) Calculate the crack size density immediately after the ®;

. . . + . . . g
first inspection, fl(x) by application of equation (12). )
e) Continue steps c) and d) for the required number of '§
inspections. [
. . . o

Although this process is analytically tractable, there are too many .
uncertainties in estimating the individual elements. The process ;;
is not practically useful at this time. Therefore, this complex <
model of flaw sizes was not used in this program. Rather, NDI ;-
reliability characterizations were evaluated on the basis of -
simple but plausible crack size distributions which could be 1;
present at each inspection and no attempt was made to predict the fﬁ
crack size distribution at the next inspection. This simplifica- ;
tion did not affect the conclusions of the study. <
°
..
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SECTION 3 R

FLAW DETECTION RELIABILITY 1
]

a

Many factors influence the capability of an NDI system to
correctly identify flaws in a structure. These include system
factors which affect the ability of the system to consistently

produce and interpret the information upon which flaw decisions

= e

are made. They also include factors which are characteristics

of the individual flaws being inspected. The net effect is

uncertainty in the detection of flaws so that the process of

quantifying the inspection capability of a particular system

3
]

requires a careful NDI reliability demonstration program coupled
with a probabilistically based analysis of the data. This section
presents an extensive discussion directed primarily to the analysis
of NDI reliability data.

This section is organized into four parts. The first two
discuss the definition of flaw detection reliability and the causes
of uncertainty in an inspection process. The last two sections
discuss the estimation of the probability of detection function
including data analysis, sampling errors of parameter estimates and
flaw size selection considerations in conducting an NDI reliability

demonstration program.

3.1 DEFINITION OF FLAW DETECTION RELIABILITY

Flaw detection reliability is defined as the probability
of detecting a flaw under pre-specified inspection conditions.
As mentioned previously, this probability is associated with a

crack length for applications in damage tolerance analysis.

Figure 7 shows a plot of inspection results on individual
cracks emanating from fastener holes in a skin and stringer wing
assembly as inspected by eddy current surface scans (l). The
points represent the proportion of times individual flaws were

detected versus the length of the flaw. This figure illustrates
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that although the detection probabilities of individual flaws
generally increase with crack length, not all flaws of the same
length have the same detection probability. This variability in
detection probabilities at a crack length has resulted in different
interpretations of the definition of POD as a function of crack
length.

The different interpretations center on the use of the mean
trend in detection probabilities or a lower bound on detection
probabilities as the method for characterizing the POD function.
The exact formulation of the POD function should be consistent
with reliability calculations for the structure under inspection.
In calculating the reliability of a structure, the main concern
is the proportion of flaws of a specific length that remain in the
structure after an inspection. The POD function should, therefore,
be defined as the proportion of flaws that will be detected as a
function of crack length, i.e., the mean trend in detection

probabilities as a function of crack length.

The distribution of detection probabilities at a crack
length is illustrated in Figure 8. The curved line represents
the general trend in detection probabilities as a function of
crack length. The density function, fa(p), represents the distri-
bution of detection of probabilities of all cracks of a length a.
Let POD(a) represent the proportion of those cracks (i.e. of
length a) that would be detected by the NDI system. f_(p) is the
proportion of those cracks for which the detection probability
is p. That is, 100 p percent of these cracks will be detected
or 100 p fa(p) dp percent of all cracks will have a detection
probability of p and be detected. Adding (integrating) over all
values of p yields the total proportion of cracks of length a
that will be detected. Therefore

POD(a) =

O

P fa(p) dp (16)

The ?0OD(a) function defined by equation (16) is the function which
passes through the mean of detection probabilities at each crack

length, 1.e., the regression function.
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Figure 8. Schematic of Probability Density Function of
Crack Detection Probabilities at a Crack Length.
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Note that many individual cracks will have detection proba-
bilities below the POD(a) value calculated by equation (16}.
This observation has led to attempts to characterize inspection
capability in terms of some type of a lower bound on the detection ' 4
probabilities at each crack length. This latter definition is
different from that of traditional use, does not relate to the R
number of large cracks which may be missed at an inspection and

will not be used in this study. )

The variability of detection probabilities at a crack length

does not influence the POD function; however, it does influence

the method of analysing data to estimate the POD function. The

following sections discuss the nature of the variability in
detection probabilities and methods of analysing NDI reliability .
data collected with either single inspections per flaw or multiple :

inspections per flaw.

3.2 CAUSES OF UNCERTAINTY/SOURCES OF VARIATION

The reason for using sophisticated procedures in NDI is at
the very heart of the uncertainty associated with the inspection
results: the flaws that can cause failures are very hard to find.
In defining what 'hard to find' means in relation to NDI, the
nature of inspection uncertainty can be characterized. Although
Figure 7 illustrates the concept of inspection uncertainty, it .
does not cover the whole inspection process. The POD is the
measure of inspection uncertainty, not the cause. Causes of

uncertainty are better defined in terms of the inspection process.

Typical NDI systems apply a stimulus to a suspect area and
record the signal that returns from the specimen. A positive
flaw indication occurs if the signal is higher than a threshold

value. The flaws are hard to find for a number of reasons some

of which are:

a) the operator does not know where the flaw is and

therefore does not know where to aim the system,
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b) material variability causes unpredictable changes in
the stimulus before it reaches the flaw and in the signal before

it returns to the NDI system,

c) variability in flaw geometry and orientation produces

variability in the signal, and

d) calibration changes in the instruments from inspection

to inspection reduces the predictability of the signal.

All of these inspection factors make flaws hard to find by
contributing to the variability of the response signal; that 1is,
the response signal in an inspection is a random variable. Since
a flaw is detected if the response signal is larger than the
threshold, the POD is the probability that the response signal

is greater than the threshold.

In reasonable NDI systems the response signal increases with
flaw size; however, as noted in the previous paragraph, the response
signal and flaw size are not perfectly correlated. Figure 9 shows
an example of the response signal as a function of crack length
from a highly automated eddy current system as applied to fatigue
cracks emanating from engine bolt holes (unpublished data from the
General Electric Company). The response signal is measured as percent
peak voltage and the crack lengths have been normalized to the length
that results in a mean signal of twenty percent. In Figure 9, each
dot represents the results of a single inspection and inspections made

on the same flaw are connected by a straight line.

The variability in the response signal (&) is consistent
with the difficulties associated with the inspection process;
however, there is an interesting pattern to the deviations from
the mean. The a values from a single flaw are typically grouped
around a point that is shifted from the mean curve. This pattern
of grouping indicates that there are two sources of variation in
the response signal. One source is the variability in the mean a
from flaw to flaw, and the other is the variability in & from

inspection to inspection of the same flaw.
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The causes of uncertainty listed earlier can be grouped
to correspond to these two sources of variation. The material
properties, the flaw location, geometry, and orientation, and the
pattern of residual stresses are strictly associated with
individual flaws and do not change from inspection to inspection.
Factors that do change from inspection to inspection include human
factors such as attentiveness, skill, and health and equipment

factors such as transducer variability and calibration.

Because of these two distinct sources of variation, the
response signal has a compound distribution. This can be seen
in the steps of an inspection process. First a flaw is picked
at random along with its individual mean &. Then the human
factors and equipment factors come into play resulting in a
random deviation from the flaw mean for an individual inspection.
These are two distinct random processes with distinct random

variables.

The statistical procedure used to model compound distributions
is called a variance components model. The variance components
model breaks down the response signal into components that can be
attributed to specific sources of variation. For 4 values the model

would be:

a = f(a) +c +e (17)

where f(a) represents the overall mean trend in 4 as a function of
a, ¢ represents the flaw to flaw variation, and € represents the
variation from inspection to inspection of the same flaw. The
function f(a) is fixed while the variables ¢ and € are random
with means of 0. The random variables c and € are referred to

as the variance components of the model.

The importance of equation (17) comes into play 2n
analyzing a set of data to estimate the reliability of an inspection
system. All statistical analyses rely on assumptions about the
underlying distribution of the response variable and usually all

observations are assumed to be independent. Equation (17) points
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out that when more than one inspection is made of an individual
flaw, the results are not totally independent. Correlation

between inspections of the same flaw occurs because all inspection
of a single flaw have the same value for c. Therefore, specialized
statistical procedures are required when analysing NDI reliability
data that includes multiple inspections of individual flaws.

These methods will be presented in Subsection 3.3.3.

3.3 DATA ANALYSIS

The data collected in NDI reliability demonstration programs
have an unusual probabilistic structure and specialized analysis
techniques, as well as standard techniques applied to transforma-
tions of the variables, are required. This section discusses the
analysis of NDI reliability data, starting with a discussion of
the validity of the log logistic function as the basis of the
analysis. The last two sections present specific analysis
methods for data in which only the inspection result (pass or fail)
is recorded and for data in which the response signal (&) is

recorded.

3.3.1 Models for POD Functions

One of the more controversial aspects of NDI relia-
bility estimation is the selection of a model for the POD function.
In fact, the first attempts at estimating POD did not assume any
model. The crack lengths used in the first studies were divided
into subintervals and binomial distribution statistics were used
to put confidence bounds on the POD for each interval. This often
resulted in erratic curves for the lower confidence bound because
the sample size changed from interval to interval. Attempts at
smoothing the lower confidence curve involved intervals with
¢#ixed numbers of cracks and overlapping interfals; however, these
approaches were extremely conservative because the confidence
bound for an interval was plotted at the upper endpoint of the
interval. Another problem with the early approaches was that
the lower confidence bounds on the POD could not approach one.
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R The use of an assumed model for POD greatly simpli-
f;z fies the task of estimating NDI reliability. POD estimation with
. an assumed model reduces to estimating the parameters of the model

rather than the POD at crack length intervals. The smoothness of

s
g AR L_i

. the POD curve and its confidence bound is supplied by the model
N rather than an artificial interpolation technique and the confi-

dence bound can be formulated so that it converges to one.

Once the decision has been made to use a model for

.... - ,_ ‘
;'_A’fr't_Au_‘A'n.}:n'- )

POD estimation, the only question is what form the model should

(2)

take. A previous study suggested that the log logistic (or

log odds) function was a suitable choice based on the data from

(1)

the "Have Cracks Will Travel" program . The log logistic function

was picked over the Weibull distribution, the inverse Weibull

:ﬁ; distribution, the log normal distribution, and the arcsine distri-

jﬂ bution based on goodness of fit of the mean trend and on the

-~ structure of the deviations from the mean. The log logistic
function provided a good fit to the "Have Cracks" data over a wide

i& range of conditions; however, the evidence is still limited to

iis this one study.

. An analysis of the data collected by Yee et al.(S)
&5 was conducted to further investigate the general validity of the
.ﬁq log logistic model assumption. Eight data sets were analysed
- with essentially the same results. The analyses of two of the
g sets of data are presented in Figures 10 and 11. Each figure
$$ contains plots of POD curves for NDI reliability data collected
?S by a single operator using either ultrasonic (Figure 10) or
- eddy current (Figure 11) equipment. The three curves in each
ﬂ} plot represent the results of analyses using the Weibull (W), the
;i log-logistic (L.O.) and the lognormal (L.N.) distribution functions.
.-’ .
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In general, there is very little difference between
the fit provided by the three models; however, there is a systematic
pattern to the three curves. In each case the Weibull distribu-
tion function provided the highest estimate of POD in the tails
of the function while the log logistic distribution function
always provided the lowest estimate of POD. This indicates that
the log logistic function represents a conservative choice for the
POD model since structural safety is concerned more with the POD
at large crack lengths than with the POD at short and medium crack

lengths.

A further illustration of this concept is seen in

Figures 12-14. In these Figures, Weibull and log logistic functions
were forced to pass through a common pair of points. Since these
are each two parameter functions, they will only meet in two
points. Figures 12 and 13 show a log logistic function and two
Weibull functions, one that meets the log logistic function at the
fifty percent POD point and the ninety percent POD point and
another that meets the log logistic function at the ten and fifty
percent POD points. Figure 12 has a broad scatter in the POD
function and Figure 13 has a short scatter. Figure 14 shows Weibull
and log logistic functions that meet at the ten and ninety percent

POD points for a broad scatter and a short scatter.

The same ordering seen in the data collected by
Yee et al. (3) holds in the curves of Figures 12-14 also. At crack
lengths longer than the higher point of intersection and shorter
than the lower point of intersection, the Weibull function is
higher than the log logistic function. This indicates that an
analysis based on the Weibull distribution function would tend
to over estimate the probability of detection for long cracks
when the assumptions are not met. The log logistic function, on
the other hand, provides a degree of conservatism when used as the

basis for the analysis of NDI reliability data.
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The log logistic function has a number of other
features that make it a good choice for use as the model in analys-
ing NDI reliability data. It is analytically simple and results in

estimates that are similar to estimates provided by the Weibull and

log normal distribution functions. 1In fact, the log logistic function T
1s a close approximation to the cumulative log normal function. 1In f
addition, the analysis based on the log logistic function results in e
conservative estimates of POD in the safety critical areas of the POD
function. Therefore, the log logistics (or log odds) model was

selected as the POD model for all of the remaining analyses of this ‘3

program,

3.3.2 Pass/Fail Data

- A v R
P VPR G T AR P

Historically, NDI reliability data has been collected
as a crack length along with an indication of whether or not the
flaw was found on a particular inspection. The crack lengths are

determined through an independent means such as replicates or

L
5

tear-down inspection. During the inspections the flaws are only
identified by the inspection locations and the inspectors record

whether each site passed or failed the inspection. Because most

K IR
.
LA 3 o S oA B ot 4 & & 8 8

of the NDI reliability data currently available is in this pass/

fail format, the analysis of pass/fail data is covered first.

There are two analytically distinct ways to run an

NDI reliability demonstration experiment: one inspection per

flaw or multiple inspections per flaw. For data collected with

a single inspection per flaw, all the observations are independent
and the analysis is reasonably simple. Multiple inspections
conducted on the same flaw will be correlated so that there are
dependencies between observations when more than one inspection

is made on each flaw. These two types of experiments require

different analyses and are covered in separate sections.

3.3.2.1 One Inspection Per Flaw _ ;

There are two types of analyses based on
the log logistic model that can be applied to single inspection
pass/fail data. If the data can be conveniently grouped by

crack length, a regression analysis can be performed on trans-

formed variables. Typically, however, the crack lengths used 1ii
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an NDI reliability demonstration program cannot be conveniently
grouped. Maximum likelihood methods utilize the individual
inspection results in the (0,1) form and can therefore be
applied without grouping the data. Regression methods are more
appropriate for multiple inspection per flaw data and will be
E} discussed in the next section. This section deals with maximum

likelihood estimates of POD as modeled by the log logistic model.

The mathematical details of maximum
likelihood analysis of single inspection per flaw NDI reliability
data are covered in Appendix A, Section Al.2. The log logistic
model is reparameterized to provide a linear form in transformed
variables and to provide simpler maximum likelihood equations.

The maximum likelihood equations (Al8)and (Al9) are solved simul-
taneously for the maximum likelihood estimates & and é. Estimates
of the equation (8) location and scale parameters,p and o are then

given by:

o u=-0o/B
- (18)
: g = n/(BV3)

The estimates of POD and its lower confidence bound are calculated
using the linearized form of the log logistic model and the

. ~
parameter estimates o and B.

Figures 15-17 contain some examples of
maximum likelihood estimates (MLE) of POD from single inspection
per flaw NDI reliability data. The data were collected by the
General Electric Corporation under a contract with the Air Force
Materials Laboratory and are presented in a normalized scale
based on the crack length at which the POD was 50 percent. The
O arrows on the bottom and top axes represent inspection results:
detections on the top axis and misses on the bottom axis. The
solid line is the mean POD and the dashed line is the lower 95
N percent confidence bound.
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These three curves were picked to represent
three different capabilities in terms of the steepness of the POD
function. Figure 15 shows th& results for eddy current inspections
and 3 = 0.17. Ultrasonic inspections are presented in Figure 16
with G = 0.23. The slowest ascent is seen in the fluorescent penetrant

inspections shown in Figure 17 where 0= 0.50.

Some caution is necessary in applying the
maximum likelihood techniques of Appendix A. Iterative algorithms
on a computer are required to solve equations (Al8) and (Al9) and
there is a tendency to readily accept numbers produced by a
computer. In some instances, the algorithm will work and estimates
of the POD with a lower confidence bound will be produced; however,
the estimate of B may not be significantly different from O,

rendering the mean curve and the confidence bound meaningless.

Figure 18 shows an example of a nonsigni-
ficant estimate of B. There is only one miss in the data of
Figure 18 so that there is no trend in POD as a function of crack
length. The computer algorithm still computed estimates of the
POD and its lower confidence bound; however, the lower confidence
is not monotonically increasing. When 8 is significantly
different from 0, the lower confidence will converge to 1. An
estimate of B that is not significantly different from 0
basically means that the data do not display a trend in POD as a
function of crack length: that is, the POD is the same no matter

how long the crack.

Another problem results from the fact that
there might be more than one solution to equations (Al8 and Al9).
The particular solution that the computer algorithm will converge
to is a function of the initial estimates that are used. A method
that produced good initial estimates in analysing the GE data is
the method of moments. Method of moments estimators are linear
combinations of the inspection results and are therefore easy to
calculate. The details of method of moments estimators are given

in Appendix A.
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3.3.2.2 Multiple Inspections Per Flaw

There are two sources of variation in
inspection results when more than one inspection is performed on
each flaw. First, the detection probability for an individual
flaw is a random variable. Then, since detection probabilities
are not exactly 0 or 1, there is random variation in the number
of times an individual flaw is detected. Both maximum likelihood
and regression analysis methods can be used to analyze these
types of data. These methods are discussed in the following sections.

3.3.2.2.1 Maximum Likelihood Estimates

Maximum likelihood estimates
are based on the probability density function of the observed ran-

dom variable; in this case, the number of detections for each flaw.
For single inspection data, the number of detections for a single
flaw is a Bernoulli random variable with probability of success
given by POD(a). The distribution of the number of detections

for a single flaw becomes more complicated when more than one
inspection is performed. The conditional distribution for the
number of detections for a single flaw given the detection proba-
bility is a binomial random variable. The unconditional
distribution is not so easily described. The unconditional
distribution involves the integral of binomial probabilities tines
the density of detection probabilities.

There are a large number of
potential probability models for the density function of detection
probabilities.

The use of most of them, however, does not result

in a closed form for the unconditional distribution of the number of :f
detections of a single flaw. One exception is the Beta distribution -
and the resulting unconditional distribution of the number of detec- ;
tions is called a beta binomial distribution. Williams (12) shcws how 33

45 -




N R N T T S YA YA o T

T T T N T R T W T T TN T T Y T N Y e T T T T Y

the beta binomial distribution can be used to estimate the

parameters of a log logistic function.

A modification of Williams

ol Db Al b Fat

method was used to reanalyse the "Have Cracks Will Travel' data
and some of the results are presented in Figures 19-21. 1In all
three figures the plain solid line is the estimate of the POD

function from a regression analysis, the solid line with vertical

il A

bars is the estimate of the POD function from the maximum likeli-
hood analysis, and the dashed line represents the POD minus two
detection probability standard deviations calculated with maximum

likelihood estimates.

In all three figures, the POD
curves from the two methods are approximately equal and in Figures
19 and 20 the dashed line bounds the approximately correct
proportion of flaws; however, in Figure 21, the lower bound falls
on top of the POD curve even though the detection probabilities
for about 50 percent of the flaws fall below it. This highlights
a problem with maximum likelihood anslysis for multiple inspection
data when the number of inspections per flaw is not sufficiently

large.

The data in Figures 19 and 20
had 62 and 54 inspections per flaw, respectively. The detection
probability for each flaw is estimated fairly precisely and
therefore the variability in detection probabilities can be easily
estimated. The data in Figure 21 had 9 inspections per flaw. The
variability associated with estimating the individual detection
probabilities for the data in Figure 21 is large enough to mask
the variability in detection probabilities from flaw to flaw.

The maximum likelihood estimates will converge to 0 or a negative
number (usually near 0) for the estimate of the flaw to flaw
variation in detection probabilities in the type of situation
illustrated by Figure 21.
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Another current problem with
maximum likelihood estimates for the beta binomial model is that
formulas for the confidence bounds on the POD function have not
been developed and there is little motivation for developing them.
Since a large number of inspections per flaw are required to get
good estimates of the flaw to flaw variability in detection proba-
bilities, regression estimates can be easily implemented. The
major problem with regression estimates is that the transformation
of the detection probability used to provide a linear form is
undefined when the detection probability is 0 or 1. In data
analysis, the transformation is performed on the observed propor-
tion of detections for a flaw; which is commonly 0 or 1 when the
number of inspections per flaw is small. Since maximum likelihood
estimates also have problems for few inspections per flaw, the

regression estimates are recommended.

3.3.2.2.2 Regression Analysis

The mathematical details for
regression analysis of NDI reliability data are in Section Al.l
of Appendix A. The steps involved in conducting a regression
analysis of NDI reliability data for the log odds model are:

1. Reduce the data to a set of pairs (ai, pi) where a; is th-
crack length and P; is the proportion of detections (for multiple
inspections, a, is the length of an individual crack and for
grouped single inspection data a; is the midpoint of the interval

that defines the group.)

2. Transform the (ai, pi) pairs to (Xi, Yi) pairs using

equation (A5).

3. Calculate the standard linear regression coefficients using
equations (A6) and (A7).

4. Calculate estimates of the location and scale parameters

from a and 8 using equation (15).

5. Calculate a lower confidence bound on the mean of Y using

equation (Al0).

JEPY WP GT O RS SN | PRI I WO . )

And b

e afehaadie adnlith d i

]

ad o doinial ot 4

R PSRRI




——— T hat e J0nse S Snge Beust aae 0y - - -y
A A AR A Sr e, Are At A e i A AP e A A A e et e A SR SAC o B S e A A P
-~ . 3 . N . S M Mt

-

6. Use the inverse log-odds transformation on the mean Y and
o the lower confidence bound on the mean Y to get estimates of the

POD function and a lower confidence bound on the POD.

- Figure 22 contains an example

, of a regression analysis applied to the same data presented in fp
; Figure 7. The points in Figure 22 represent the inspection -
' results for a single flaw (i.e., an (ai, pi) pair). The mean 1is PY
N\ plotted as a solid line and the lower 95 percent confidence bound
is plotted as a dotted line. Note that the lower confidence

) bound lies above many of the individual detection probabilities.

™
3

The confidence bound is a bound on the mean of the detection
probabilities not the population of detection probabilities.
The POD is therefore predicted more precisely than the detection ]
probability for an individual flaw; hence, the tight confidence fﬂ

bound. :i*

3.3.3 Analysis of a Versus a Data T

In the section on causes of uncertainty, it was shown
(' that NDI uncertainty could be attributed to random variation in
the response signal or a value for an NDI system. The POD can be
. expressed as the probability that ais bigger than the detection
; threshold. This section discusses the analysis of a versus a data
and presents a framework for measuring the two sources of variation

. and for estimating the POD function.

“ Equation (17) supplies the basic model for the analysis
Q of a versus a data. The flaw related and flaw independent terms

s c and e are random variables with means equal to 0 and variances

equal to sg and Sgr respectively. The mean and variance of a for

~
. a single inspection of a flaw of size a picked at random are:
#] E(ala) = f(a), and (12)

; 2 2 2 (20)
S =

v var (ala) s_ + s

; If repeated measures of a single flaw are made, the conditional

A
mean and variance of a for the one flaw are:
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E (élflaw) = f(a) + ¢, and (21)
Var (;]flaw) = si (22)

Figures 23 illustrates equations (19) and (20) while Figure 24 illustrates

equations (21) and (22) with a linear function for f(a).

Figures 23 and 24 also illustrate the relationship
between a and the POD function. 1In Figure 23 the POD as a function

of a is aiven by the shaded area under the density function for a at

dashba ala’sa'a a4 koL

a, i.e., the proportion of a values greater than the threshold

P DI LR

for fixed a. The density functions in Figure 24 represent the distri-
butions of a for single flaws and the shaded areas represent the
detection probabilities for the individual flaws. The shaded i

areas in Figure 23 correspond to the POD function for the system 4

since the POD is the mean over all flaws.

The process of transforming the distribution of a

values to a POD function is further illustrated in Figure 25. The
top half of Figure 25 shows the mean a curve, f(a), as a solid
line and shifts of one and two standard deviations up and down as
dashed lines. For a normal distribution these shifts represent
the 2.3, 16, 84, and 97.7 percentiles of the a distribution. The

s I S

R P pas .
" m R .

f et ‘.

. P v e

Y]
a
A

.

PP P
Ve i)
v

I

crack lengths at which a horizontal line at a h crosses the per-

- t
FII centiles are projected down to the POD versus a axXes to form the

POD curve.

There are a wide variety of methods of analysing
data based on the model of equation(l7) with the appropriate
method dependent on the form of f(a) and the number of inspections

per flaw. Typically, f(a) can be converted to a linear form

through convenient transformations of a and a. As an example,
consider a linear relationship between ln(a) and ln(a). Equation

(17) then becomes

Pl g T

. Y=o+ BX + c + e, where (23)
. Y = ln(a) and X = 1ln(a). (24)
i ,‘-::?
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If the error variables ¢ and e are assumed to have normal

distributions, the POD function is given by

POD(a) = P (a > a,y)
= P {In(a) > In(a,)} (25)
=P (Y > Yth)
1 - 6 Yip- éa + BX)
where
.- /—gf—:—;j— (26)

C e

and ¢(x) is the standard normal distribution function. Using the

symmetry properties of ¢(x), equation (25) can be reduced to

) (27)
POD(a) = ¢

s/B

Equation (27) is the form of a lognormal distribution
function with mean and standard deviation of log crack length

given by:

=
!

(ln(ath) - a)/B, and (28)

o s/B (29)

In the previous analysis sections the log logistic function of
equation (8) was used to model the POD function; however, the log
logistic function is a close approximation to the lognormal
distribution. The use of the lognormal distribution instead of
the log logistic distribution will therefore result in very
similar estimates of the POD function.
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The parameters L and 0 can be estimated by substi*uting
L estimates of a, B, and s in equations (28) and (29). The paramtcrs
__" of the linear model, o, B, and s are estimated using the method:s of
35! Appendix A section Al.l. Equations (A6), (A7), and (A8) are usci "o

estimate « and B and equation Al0 provides the estimate for s.

i e

The example of Equation (23) was chosen because 1t
provided a reasonably good fit to a set of eddy current inspection

data generated by the General Electric Corporation and illustrated

Sundandendhidt b oadnbociiod

in Figure 26. The & values in Figure 26 are percent peak voltages

and the a values were normalized so that the mean &4 at a = 1 was

20 percent. The solid slanting line represents the mean trend in
a as a function of a and the horizontal lines represent three

threshold values (10, 20 and 40 percent) that were analyzed.

Equation (27) provided the estimated POD function
shown in Figure 27. 1Increasing the detection threshold has two
effects. First the median detection crack length increases with
the detection threshold. Second, the slope of the POD function
decreases as the detection threshold increases. The decreasing slope
is the result of a constant standard deviation of log crack lencth,
which translates to an increasing standard deviaticon of crack
length. If the plots of Figure 27 were done on a logarithmic

crack length scale, the three curves would be parallel.

A method described by Cheng and Iles (13) for

calculating confidence bounds on cumulative distributions can be

,ﬁ: adapted to calculate confidence bounds on the POD given by

b equation (27). The formulas given by Cheng and Iles for the P
?3% percent lower confidence bound can be adapted for the estimates

:EVQ of 1 and 0 of the POD function to give: k
t ]
20 POD(a) = ¢(z ), where (30) ]
e, 1
RN ]
o ) =2 1
-3 LY (X-X) ) (31 ‘
e 2 T ¢ [( -t ssx *1 ) 1
b
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In equation (31), n is the sample size, X is the Pth percentile
of a X2 distribution with two degrees of freedom distribution, SSX
is given by equation (Al2) of Appendix A, and

X-u
o

A~
2 =

(32)

An example of the 95% lower confidence bound given by equation(31)

for the data of Figure 26 with aTH=20 is given in Figure 28.

The analysis of the example was conducted by using
only one inspection per flaw. In this case the mean square error
of the regression analysis is an estimate of the combined variance

2 2

SC + Se . When more than one inspection is made of each flaw the

analysis must be modified to properly estimate the individual
variance components. The individual variance components, Sg and Si,
must be estimated using a variance components model for a nested
(repeated subsampling or hierarchal) experimental design. See

for example, Reference 14. §§ and §§ are then added to estimate

the combined variance for the POD function estimate of o.

The problems associated with analysing NDI reliability
data can be reduced by recording é values from the inspections for
the analysis. There are no potentially undefined transformations
and simpler models result in less complicated mathematics for
estimating POD model parameters. Finally, as will be shown, the

a vs a analysis is less sensitive to the distribution of crack

sizes in the NDI reliability experiment.

Tt T e

s L% 2 2.
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3.4 SAMPLING VARIABILITY OF POD PARAMETER ESTIMATES

This section discusses various factors in NDI reliability
demonstration programs that affect the sampling variability of the
estimates of the POD parameters. These factors include the type of

‘_LtL".._:..:A'AL Py G U

analysis and the statistical design of the experiment. The

statistical design of an experiment is the selection of the number

(sample size) and sizes of the flaws to be used in the experiment.
The effect of these factors on the sampling variability in POD

parameter estimates was investigated through computer simulations.

The computer simulation program used in this study was
modified from the program used in Reference (2). In the previous
study, only the pass/fail analysis was used. A major modification
required for the current study was the added simulation of & values
so that the a versus a analysis could be compared with the pass/
fail analysis. The modification was accomplished using equation (17)
as the model of & versus a. The terms c and e were combined for
the simulations since only one inspection per flaw type analyses

were investigated.

A schematic diagram of the simulation program is given in
Table 1. The input parameters include the POD model parameters,
the demonstration program crack length distribution parameters,
the sample size (n), and the number of simulations to be run (k).
The program selects parameters for the a versus a model and the
detection threshold to be compatable with the input POD function
utilizing equation (27). A flaw size is then picked at random
from a distribution of "specimen" crack lengths and the a versus
a model is used to randomly generate an 4 value. After a has been

determined, it is compared to the detection threshold to decide

whether a "flaw" is present. After generating n observations, the
4 versus a and pass/fail analyses were performed on the simulated
NDI reliability data. The results of each of the k data sets is

then printed to a file so that the POD model parameter estimates
can be analysed.
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In the simulated NDI reliability experiments of this study
it was assumed that the crack lengths in the specimens were
selected at random from a lognormal distribution with density

function as given by

f(a) = ——-L——-exp [-(log a —6)2/2x2] (33)
xav 2w
where A
§ = mean of the natural log of crack lengths or,
equivalently, the log of median crack length, and

A = standard deviation of the natural log of crack lengths
- By varying § and X (in comparison with u and o, the location and
;: flatness parameters of the POD(a) function) the effect of the
ﬁ: crack sizes in the NDI reliability experiment can be evaluatecd.
.

A summary of the results of the simulations are given in
Table 2. The means and standard deviations of the estimates of
u and o for both the pass/fail analysis (1; , 0, ) and the a
versus a analysis (ﬁz ' 32) are given for each simulated experi-

ment.

3.4.1 Effect of the Design of the Experiment

In this section, the design of the experiment refers
to the number and distribution of the flaw sizes used in a relia-
bility demonstration program. First, the effect of the sample size
on the distribution of POD parameter estimates is discussed, then,
the distribution of the flaw sizes used in the simulated NDI
reliability experiments is considered, including discussions of )
the scatter in the flaw sizes used and the location of the center
of the flaw sizes in relation to the center of the POD function.

The basic effect of sample size on the POD parameter
estimates is shown in Figures 29 - 34, which contain plots of the

tenth and ninetieth percentiles of the estimates of u and 5 for

R
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both the pass/fail analysis and the & versus a analysis as a
function of sample size. The range of parameter estimates and
therefore the scatter, decreases with sample size. The standard
deviations of {l and 8 are theoretically proportional to 1/vn and

the simulation results generally agree with this reduction.

Another view of the sample size effect as a function
of the flatness of the POD as measured by ¢ is shown in Figures
35-38. The curves in Figures 35-38 are plots of the tenth and
ninetieth percentiles for the sample sizes indicated. The pass/
fail and a versus a analyses are presented in separate figures.
The scatter in the POD parameter estimates increases with o;
that is, there is less scatter in the estimates for steep POD

functions than for flat POD functions.

A steep POD function gives more discriminatory power
than a flat POD function in the sense that a small change in crack

length will result in a larger change in POD for the steep POD than

for the flat POD. Since small ¢ values result in steep POD functions,

the smaller variance of parameter estimates for small ¢ is a result
of the better discriminatory power. The steepness of the POD
function is not, however, a design consideration since o is one of

the parameters to be estimated.

Figures 39 and 40 also show the effect of sample size
on the distribution of POD parameter estimates with a different
design. In Figures 39 and 40 , the center of the flaw size distri-
bution is 0.5 while the center of the POD function is 1. The shift
in the flaw sizes results in an increase in the scatter of the POD
parameter estimates. The cause of the increased variability in
the estimates is that for small sample sizes, the range ot flaw
sizes 1n a sample may not adequately span the POD function.

Because of the shift in location of the flaw sizes, there will be

fewer flaws in the center of the POD function.
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Figures 41 - 48 contain plots of percentiles o' &

and 9 :s a function of the standard deviation of the flaw sizes
used in the simulation. In each case there is a large amount of
scatter for small standard deviations. As the standard deviation
increases, the range of flaws used in an experiment increases.
After the range of flaw sizes increases sufficiently to span the
POD function, the scatter in the parameter estimates settles down

to a fixed level.

The foremost consideration in designing an DI
reliabilty demonstration program should include flaw sizes that
span the full range of POD values from 0 to 1. The distributions
of parameter estimates from the simulations were seen to contain
a large number of 'outliers' when the flaws fell in one tail of

the POD function. Reasonable distributions for ﬁ and © were

obtained when the distribution of flaw sizes is similar to the
POD function. Fairly stable distributions for ﬁ and 0 were
obtained when flaw sizes spanned the POD function and the sample

<1ze was 30 or larger.

3.4.%2 Typ:: of Analysis

The a versus a analysis is compared to the pass/fail
analysis on the basis of accuracy and precision, two measures of
an analysis method's ability to estimate a parameter. In estima-
tion, accuracy refers to the difference between the expected value,
or mean, of the estimate of the parameter and the true value. Often,
the expected value of a parameter estimate is the parameter itself,

expressed as

E(5) =8 {34)

If the expected value of 3 is not 9 , the difference between the

-®; two is called the bias and is given by

b = E(3) - (35)
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The ability of an estimator to repeat the same value
or close tao the same value is called precision. The precision is
usually measured by the variance or standard deviation of the
estimator. Biased estimators pose a unique problem in defining
precision. The variance and standard deviation measure the scatter
in a random variable about its mean; which in a biased estimator 1is
not the value of interest. The scatter about the parameter being
estimated is more pertinent to the ability of the estimator to
estimate the parameter.

PUCTEPNIN Y TR U iy (RO I S Iy . S s

The mean square error (MSE) is the measure of the

STy )

scatter of an estimator about the parameter it is estimating. The
MSE is given by

s

9 Py

MSE = E( 6-8 )% = Var 8+ b> (36)

The mean square error can be used to compare two analysis methods
regardless of any biasses.

The relative efficiency is a standard statistical
measure for comparing two analysis methods and is given by

W)

_ MSE (
RE = MSE T

2) (37)

)

ws

~

which is the relative efficiency of 8, with respect to 0,
Tables 3, 4, and 5 give the MSE's for both analysis methods and
the RE's of pass/fail analysis with respect to a versus a analysis

for ¢ and ¢. Relative efficiencies can be interpreted in terms
of the sample sizes required of the two analysis methods to
produce the same precision. The sample size required for 6:to
produce the same precision as 81 is RE times the sample size
{or 61. If RE is less than 1,82 requires a smaller sample than

9, and therefore is a better estimate.
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- TABLE 4. MEAN SQUARE ERRORS AND RELATIVE EFFICIENCY

- FOR TWO ANALYSIS METHODS AND SELECTED VALUES
- OF g and n - u=0, §=0, A=0.5
&
‘ * * % * * %

3 c n MSE, MSE., RE MSE, MSE, RE

= 0.1 10  0.015 0.0017  0.11 0.01 0.0009  0.090

- 30 0.0026 4x10-4 0.15 0.0045 0.0004 0.089

: 100 7.3x10"4 1x10-4 0.14 7.2x10-4 1x10-4 0.14

. 400  1.7x10-4 1.6x10"5 0.09 2x10=4  3x107>  0.13
o 0.25 10  0.026 0.01 0.38 0.043 0.0082  0.19
o 30 0.0081 0.0025 0.31 0.012 0.0025 0.21

- 100 0.0019 0.00083 0.43 0.0026 6.3x10-4 0.24

- 400 4.8x10"4 1.4x10-4 0.30 7.3x10"4 2x10-4 0.27
A
- 0.5 10 0.27 0.12 0.45 15,376 12,769 0.83
o 30 0.012 0.010 0.83 0.036 0.017 0.46
5 100 0.0049 0.0024 0.49 0.012 0.0054 0.46
% 400 0.0011 5.8x10-4 0.53 0.0022 0.0010 0.45

~ 1.0 10 139.8 0.22 0.0016 | 59,049 36,100 0.61

> 30 1.21 0.078 0.065 189 2.50 0.0026
e 100 0.020 0.012 0.62 0.12 0.12 1.02

. 400 0.0035 0.0025 0.72 0.018 0.0096 0.53
N 1.5 10 7.84 53.72 6.85 4x106 844,563 0.2l
P 30 0.58 44.3 76.2 8.05 784 97.3

o 100 0.044 0.033 0.74 4.51 0.54 0.12
% 400 0.0076 0.062 0.82 0.097 0.058 0.60

4 "

o Subscript 1 denotes pass/fail analysis

v Subscript 2 denotes a vs a analysis
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All the simulations summarized in Table 4used a loug-
normal Track length distribution with 8=0 and A=0.5 for the meun
and standard deviation of the log crack length. Sample sizes of
10, 30, 100 and 400 were used with the POD parameter 0=0.1, 0.25,
0.5, 1.0 and 1.5. The mean sguare errors increase with o,
implying that steeper POD functions are easier to estimate. The
relative efficiencies of 1 and a appear to increase with o0, but

are relatively unaffected by sample size.

The relative efficiencies are generally less than 1l
implying that the a versus a analysis is generally better than
the pass/fail analysis. The increasing relative efficiency
the pass/fail analysis with ¢ is a result of the change in . -ead
of the flaw sizes with respect to the spread of the POD fun: ‘on.
For small ¢, the spread in flaw sizes is much larger than t
spread in the POD function, resulting in more flaws in the s..ple
with POD's close to 0 and 1. In a pass/fail analysis, flaws with
POD's close to 0 or 1 supply practically no information about
the shape of the POD curve. The effective sample size is
decreased because the flaws in the tails do not supply as much
information as the flaws in the middle.

In the a versus a analysis, the shape of the POD
function is estimated from the distribution of deviations from
the mean. All flaws in the sample supply the same information
about the distribution of deviations; therefore, the effective
sample size is not diminished by flaws in the tails of the POL
function. The result is that the a versus a analysis is much
more efficient than the pass/fail analysis when the spread in

flaw sizes is larger than the spread in the POD function.

The results of simulations in which the spread in
flaw sizes were equal to the spread in the POD function are

summarized in Table 4. In two cases, the median of the flaw
sizes was 1 and in the third, the median flaw size was 0.5 to
investigate the effect of shifting flaw sizes away from the median
crack detection length. For o = 0.25 and 1.0 the relative

efficiencies are about the same as for o = » = 0.5 in Table 4.
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o EVALUATION OF POD CHARACTERISTICS j

The link between NDI reliability and risk of structural

ala Al e

failure is the exceedance probability of having a flaw greater

K

than the initial size (aO or aNDE) assumed to be present at the

beginning of a usage period. Given a particular inspection system

NDE)
However,

. -!.' ll Iy

and a population of details, this exceedance probability H{a

is constant regardless of the method for selecting ANDE

there is uncertainty in the estimation of the POD function and the

PP -
OO R Py
S b oot et

characteristics of the crack size distributions are not yet pre-
dictable.

The analyses of this section were made to evaluate the effects

of crack size distribution assumptions and variation in POD parame-
ter estimates on measures of inspection efficacy. First, it is
assumed that flaw sizes are modeled by the growth of Weibully distri-
buted equivalent initial cracks. Then, the rogue flaw models will be
analyzed. These results will be contrasted with those of the equiva-
lent flaw distribution approach. All of the calculations of this
section were made in terms of normalized crack lengtas. Therefore,
for notational simplicity, normalized crack lengths are designated

as a frather than a').

4.1 POD AND EQUIVALENT CRACK SIZE DISTRIBUTIONS

To evaluate the combined effect of inspection reliability and

equivalent crack size assumptions, it was assumed that each

structural detail contained an equivalent initial crack and that
these cracks would grow due to fatigue mechanisms. In this study,
it was assumed that the equivalent initial cracks were distributed
in accordance with the Weibull distribution with a constant shape
parameter of 1.5 and that the effect of the fatique environment

was measured by an increase in the median crack size. Figure 5

i~ illustrates the five equivalent crack size distributions that were

considered with median normalized crack lengths of &=0.1, 0.25, 0.5,

0.75 and 1.0, As noted previously, the equivalent crack distribution

with a normalized median crack length of 0.1 (i.e. a=0.1) is some- ;
what representative of the sizes of equivalent initial cracks that o

have been calculated in past studies. The other four would reproscnt -

'-a "A"L‘Fg’k"l:.\.‘ ‘ A




. the distribution of cracks that could be present at various ages
“; in the life of the structure.

1 For each of the 5 equivalent crack size distributions, the

probability of having a crack longer than a and missing it at an

L

inspection, H(a), was calculated for selected combinations of the

parameters y and o of the log logistics model of the POD(a)

e

function. First, the median detectable flaw length, a, g wWas
considered to be one (y = 2n ag g5 = 0) in the normalized crack

o - length scale and the sensitivity of H(a) to variations in median

- crack length, 3, and o was determined. Then, for selected values

‘ of o and a, the sensitivity of H(a) to variations in u was calculated.

- 4.1.1 Effect of Median Crack Length

b Figures 49 and 50 present the probability of having
N a crack greater than a in a structural detail after an inspection
for the 5 equivalent crack size distributions for ¢ = 0.5 and 1.0,
respectively. This probability of exceedance, H(a), can also be
interpreted as the proportion of inspection sites which will have

{ cracks greater than a after all sites have been inspected.

‘i Note first that a particular choice of an aANDE value
o can be evaluated using the H(a) function. For example, if the
median crack length is half the median detection capability

(a=0.5) and the ANDE value is twice the median detection capability,
(aNDE=2) than the proportion of cracks which will exceed ANDE
after the inspection is 0.0002 if the POD function has a 0=0.5
(Figure 49) and is 0.0008 (Figure 50) if the POD function has

a 0=1.0. Conversely, the exceedance probability can be defined

WYY

-

and the ANDE to yield this exceedance probability can be determined.

- For example, again letting a=0.5, if H(a) is desired to be 0.0001,
then ANDE would be 2.15 times the median inspection capability if

RS

0=0.5 or 2.4 times the median inspection capability if o=1.0.

The effect of the median crack size on the exceedance
. probabilities is quite significant. Under this model for equivalent
crack sizes and constant inspection capability, it is apparent that

a single value of aNDE

il

N Sl
i
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in orders of magnitude changes in the probabilities of having and

missing flaws greater than a in the structure. 1If too large a

value is selected, unneeded ?ggpections would result. If too small
a value is selected, the chances of structural failure increase
significantly. As will be shown, for aircraft structure, it is not
practical to have the median crack length of this model as large

as half the median detection capability.

Most of the dependence of the exceedance probabilities
on median crack length under this Weibull assumption is due to the
fact that the H(a) calculation is being dominated by the crack size
distribution. That is, the cracks are not long enough to be in the
effective range of the inspection system. This can be seen in
Figure 3 where the POD(a) function with ¢=1.0 is less than 0.9
over the dominant range of crack lengths.

The effective inspection reliability,ER(a), for these
crack length distributions are shown in Fiqures 51 and 52 for
0=0.5 and 1.0, respectively. The effective reliability is the
proportion of all cracks greater than a which will be detected
(equation (7)). As can be noted, these figures support the above
conclusion that this inspection capability is relatively ineffective
for the smaller crack size distributions. The curves for the three
shorter crack length distributions were truncated at the crack
length which is exceeded once in 10,000 details.

Figure 53 presents the percent of inspection sites
which will be rejected as a function of median crack length for four
o values. Approximately half of all sites will be rejected when
median crack length equals median detection capability regardle:ss
of 0. A relatively large proportion are rejected even when the

median crack leng’ ‘s half the median detection capability.
Whether or not t.- ~iection proportions are too large would
depend on the eco .f the application.
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4.1.2 Effect of o with Equivalent Crack Size Model

Figure 54 presents H(a) for 0=0.5 and 1.5 for the
median crack lengths of 0.1, 0.25, and 0.5. This figure illustrates
that variation in the flatness of the POD model (see Figure 4)
has a relatively small effect on the exceedance probabilities.

This can also be seen in the plots of Figure 55 which present
inspection limits, as defined by the crack lengths at which H(a)
reaches 0.00001, as a function of median crack length.

The detection limits so defined are insensitive to POD shape for

the smaller crack size distributions.

Again, this result is due in

large part to the lack of effectiveness of the inspection for the
bulk of the inspection sites. Figure 56 presents the effective
reliability for the four POD shapes when the median crack size is

one fourth the median detection capability (a = 0.25)

4.1.3 Effect of Median Detection Capability with

Equivalent Crack Size Model

Figure 57 displays the log odds POD model for five

values of median detectability (ao.5 = 0.5, 0.75, 1.0, 1.25 and 1.5)

with 0=0.5. H(a) was calculated for each of these POD functions

and for equivalent crack length medians of a=0.1, 0.25 and 0.50. )
These results are summarized in Figure 58 in which a pair of ]
Each

pair of H(a) function spans the range of median detection capa- '
bilities.

H(a) functions are presented for each median crack length.

The exceedance probabilities are rather insensitive
to changes in median inspection capability. Figure 59 presents
inspection limits defined in terms of the crack length correspond- |
ing to an exceedance probability 0.00001 as a function of median

detection capability for each of 4 values of o and a median crack
length of 0.25. Except for the steepest POD function (0=0.1), the
inspection limits are relatively insensitive to median detection

capability.

However, the inspection limits are separating as the
inspection capability approaches the median crack size. Figure 60
presents the effective inspection reliability for the 5 median dctec-
1.0 and & = 0.25. Obviously, the

effective reliability increases as the median detection capability

tion capabilities with ¢ =

{
|
I
i

decreases.
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4.2 POD AND ROGUE FLAW DISTRIBUTIONS

In the rogue flaw model for describing the flaw sizes in the

Leaa s

population of structural details, it is assumed that only a very
small proportion,p, of the details will contain a flaw. However,

the sizes of these flaws can range up to some maximum value, A, for -
example, the critical crack size for the structure (as determined
by the maximum expected stress level in the next usage period).
When considering the exceedance probabilities under this rogue flaw
model, p H(a) is the total proportion of details which will have

a flaw greater than a after the inspection. 1In this subsection,

WO

'
T

the factor p will not be considered as it is assumed to be a
constant (on the order of 0.001 or less).

In the following paragraphs, three rogue flaw distributions
are compared in terms of their effect on exceedance probabilities
and effective inspection reliabilities. It is concluded that for
the purposes of this study, the uniform distribution provides an
acceptable model. The uniform distribution is then used to evaluate
the sensitivity of POD variations on exceedance probabilities and
effective inspection reliabilities.

4.2.1 Comparison of Rogue Flaw Models

As discussed in Section 2, three families of distri-
butions were considered as candidate rogue flaw models: a) the
uniform distribution for which any flaw size between 0 and A is
equally likely; b) the triangular distribution which makes smaller
flaws more likely; and c¢) the exponential distribution truncated at
A which, for small median crack lengths, makes small sizes more

assumption is evaluated for the uniform distribution in a later

N likely than the triangular distribution. The probability density

Eﬂi functions for these distributions is shown in Figure 6.

Efi The exceedance probabilities, H(a), for the three

E’i rogue flaw models are presented in Figure 61 for the POD models i

- with a median detection capability of one and 0=0.5 and 1.0. p

252 For these calculations it was assumed that the maximum possible ﬂ

‘33 crack size,A, was 10 times the median detection capability. This i
2
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Figure 61. Exceedance Probabilities for Selected Rogue
Flaw Crack Size Models - 0 = 0.5 and 1.0.
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paragraph. A median crack of 2 was selected for the exponential
distribution as a compromise between over emphasis on small cracks
and getting too close to the triangular density function. Note
again that these H(a) values must be multiplied by the proportion
of rogue flaws,p, in the population to obtain the total probability
of exceedance.

The exceedance probabilities for the three models are
relatively close at about twice the median detection capability.
At the high a values, the exceedance probabilities are greater for
the uniform distribution, as would be expected. 1In the absence of
information from which the real rogue flaw model could be estimated,
this figure indicates that the uniform distribution would tend

to provide a conservative model if a were greater than 2.

NDE

The effective inspection reliabilities for the three
rogue flaw models are compared in Figure 62 for the same POD
parameters as in Figure 61, In Figure 62, 1-ER(a) is plotted versus
a to use the increased resolution provided by the semi-log plot.
The ER(a) curves indicate that effective inspection reliability

is not rogue flaw model sensitive for the models considered.

The uniform model is a conservative assumption for
larger crack sizes when considering exceedance probabilities and
effective inspection reliabilities are somewhat insensitive to
the three rogue models. Therefore, for the purposes of this study
it was assumed that the uniform rogue flaw model would be adequate
for evaluating the sensitivity of inspection reliability characteri-
zations. This topic will be further addressed in Section 4.3.

Assuming that rogue flaws will be distributed uni-
formly over the interval of 0 to A, consideration must be given to
a value for A. In the Air Force context, A could conceivably be
any number greater than 0.050 in. or 2 to 3 times the median
detection capabilities of advanced NDI systems. For some applica-
tions, the critical crack length could be quite large. To provide
an indication of the effect of A, H(a) and ER(a) were calculated
for A=10 and 20 when the median detection capability was 1 and
v=0.5 and 1.0. These results are presented in Figures 63 and 64.
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The effects of POD model are again greater than the
effect of A on both the exceedance probabilities and the effective
inspection reliabilities. Since A=10 provided larger (more conser-
vative) H(a) values over the practical range of inspection limits
and smaller effective inspection reliabilities, this value was

chosen for the evaluations of the POD function.

4.2.2 Effect of o with Uniform Distribution of Rogue Flaws

Figure 65 presents the exceedance probability as
a function of normalized crack size for o0=0.1, 0.25, 0.5, 1.0 and
1.5. The effect of 0 under these crack size assumptions is quite
significant. Note that for the large ¢ values, an arbitrarily
small value of H(a) is not achieved until a is greater than 9.
{H(a) must be equal to zero for a > 10 since it has been assumed
that there are no flaws greater than 10.) Thus, an arbitrarily
small exceedance probability can be selected only for inspection
systems with small ¢ (steep POD functions) if the inspection limit
is to be of a reasonable size. Figure 66 presents the inspection
limits corresponding to exceedance probabilities of 0.01, 0.001,
and 0.0001 as a function of o. For o less than 0.5, the inspection
limits are somewhat insensitive to o. Again, these exceedance
probabilities must be multiplied by the proportion of structural
details which contain rogue flaws to obtain the total probability
of having cracks greater than the detection limits in the population
of details after the inspection.

Since the rogue flaws are much larger than the
equivalent crack sizes of the previous paragraphs, the efficacy of
the inspection for these flaws is increased. Figure 67 presents
the effective inspection reliabilities for the four POD capabilities
of Figure 4. This figure indicates that even for o0=1.5 at least
80% of all rogue flaws will be detected and 90% of all rogue flaws
greater than twice the median detection capability will be detected.
For smaller ¢ values, the effective inspection reliability is much

greater. These results will be further discussed in Section 4.3.
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4.2.3 Effect of Median Detection Capability witn
Uniform Distribution of Rogue Flaws

To evaluate the effect of median detection capability
for fixed o, exceedance probabilities were calculated for a range
of ay 5 values with 0=0.5 and 0=1.0. (See Figure 57 for effect of
aj. g on POD function itself.) These results are presented in
Figures 68 and 69. The range of a5 5 values corresponds to
the range of j(=%n a0.5) of +1. Although the pictured range of

a5 5 values is broad, the effect of a on the calculation of

H(a) is significant. This effect canoéiso be seen in the plot of
detection limits as a function of median detection capability of
Figure 70. This figure (as well as Figure 68) can be used in
the evaluation of the statistical variation in the estimation of

p and o from reliability demonstration programs.

Effective inspection reliability for the five median
capabilities with 0=0.5 and 1.0 are presented in Figures 71 and

72, respectively. As anticipated, there is a significant effect

of median detection capability on the inspection efficacy. For
0=0.5, increasing the median crack detection capability by a

factor of 1.64 results in about a factor of 6 to 7 decrease in
effective inspection reliability. For o=1.0, the effective
inspection reliabilities decrease by a factor of 2 to 2.5 for every
factor of 1.64 increase.

‘4.3 DISCUSSION OF CRACK SIZE MODELS

The calculations of the preceeding paragraphs were performed
assuming two fundamentally different types of statistical models for
the flaw sizes in the population of structural details under
consideration. 1Ideally, a choice between the two assumptions (or
the applicability of either) would be made on the basis of real
data. However, the availability of such data is extremely limited
since, in the absence of an extensive feedback of inspection results
and subsequent analysis, the data can only come from teardown
inspection. Thus, the choice of the statistical models must be
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made on an interpretation of the available data and the plausi-

A

bility of the calculated results.

o

When a simple form of the crack size density was assumed
for the equivalent crack size distribution, the calculation of
exceedance probabilities after inspection and the effective

inspection reliabilities were somewhat insensitive to the POD

function. The crack sizes were generally too small to provide a

NPy AP UPUr Y W W PRy

Eln realistic measure of the effectiveness of the inspection against

I

:; big cracks. The POD effect on big flaws was masked by the 99.99

.
L2
e

percent of details with "no" or extremely small flaw sizes. When

the crack sizes were made larger by increasing the median, the

Py

results were not realistic in that a high proportion (25 percent
or more) of the details were rejected. A higher proportion of

large cracks would also result from a density function with a

"thicker" upper tail (for example, a log normal distribution of
crack sizes) but the expected changes were not considered to be
significantly different from those obtained under the Weibull

assumption.

While a more complex equivalent flaw size distributional

model might reduce the above deficiencies, they are also effectively
eliminated by the rogue flaw approach. The rogue flaw model does 1
measure the inspection effectiveness against the larger flaws that

cddhian

may be present in the structure. It also agrees with field

z

inspection data in that few inspections on aircraft structure

v

actually result in a positive call that a defect is present. The
major price to be paid for the benefits of this approach is the

AR b L p

assumption concerning the proportion of total details which contain
"rogue" flaws. This assumption is essentially equivalent to an
assumption concerning the right hand tail of the equivalent flaw
size distribution. However, field data will give an indication of
the total proportion of flawed specimens whereas equivalent flaw
size models tend to be dominated by the extremely small crack sizes.
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For the above reasons, the rogue flaw model was selected for
the characterization of inspection capability for damage tolerance
analyses. Further, it will be assumed that the rogue flaws will
be uniformly distributed between zero and an upper limit (nominally
considered to be the critical crack size). The uniform distribution
is considered conservative and is quite often assumed by statisti-
cians in the absence of information to the contrary. The use of
other distributions (e.g. the exponential and triangular) in the
rogue flaw model were judged to have an insignificant impact on
the conclusions of this study.
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SECTION 5
ASIP APPLICATIONS

The United States Air Force Aircraft Structural Integrity
Program (ASIP) is mandated by Air Force Regulation 80-13 and
defined by the requirements of MIL-STD-1530A. The damage tolerance
design requirements are specified in MIL-A-83444 and are imposed
on the airframe manufacturers to insure safety and operational
readiness throughout the life of the aircraft. These requirements
force the manufacturer to demonstrate through analyses and tests
that the airframe will not fail during periods of unrepaired
usage even if critical structural elements contain damage or flaws
of a pre-specified size. If necessary, the manufacturer is per-
mitted to assume depot or base level inspections at intervals of
about one-fourth of the design lifetime.

The MIL-A-83444 requirements are design reguirements and
are based on assumptions concerning design usage and stress levels.
Ideally, no base or depot level damage tolerance inspections would
be required in the design life of the aircraft (a goal achieved
by the F-16). However, if mid~life inspections were necessary,
presumably, they would be scheduled in accordance with the
MIL-A-83444 analyses and implemented through the Force Structural
Maintenance Plan which is required by the Force Management Tasks
of MIL-STD-1530. These inspections could also be called for due
to the update of analyses based on actual operational usage or
the occurrence of unanticipated problems.

Of prime concern to the objectives of this study are the
MIL-A-83444 initial flaw size and in-service inspection flaw size
assumptions. These flaw size assumptions are quite specific
but it is generally assumed that the specified sizes are subject
to change and the amount of change will depend on NDI capabilities.
Since the initial flaw size assumption is considered to be
distinct from the in-service inspection flaw size assumption,
these topics will be addressed separately in the following.
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5.1 INITIAL FLAW SIZE ASSUMPTION

Initial damage assumptions are applicable to two categories
of structure (slow crack growth and fail safe): for maximum _
damage in the most critical hole or cutout and a non-hole location j
of each structural element; and for every hole in every detail to A
represent manufacturing quality for continuing damage calculations.
Without loss of generality, the following discussion will focus
on the 0.050 in. crack assumed to be present at the most critical g
hole or cutout in slow crack growth or non-inspectable structure. a
The corresponding crack size assumption in fail safe, multiple
load path structure is 0.020" in MIL-A-83444. The initial crack
at a non-hole or cutout location is generally not the driver of
structural life. The 0.005 in. crack which is assumed to be
present in every hole as a measure of manufacturing and process-

ing operation is far below the reliable detection capability of
current NDI systo2ams, R

, . . .
s Btk B 2 AL

When MIL-A-83444 was first issued the initial flaw size
assumptions for the critical location (e.g. the 0.050 in flaw) R
were assumed to be indicative of inspection capability for a 0.9 g
POD at either a 95% confidence level for slow crack growth (15) é
structure or a 50% confidence level for fail safe structure . ‘
MIL-A-83444 does contain a provision for lowering the initial -

crack sizes in slow crack growth structure if an approved NDI

reliability demonstration program yields a 90/95 crack size limit
less than the specified values and the NDI system is applied
during quality control to all the relevant critical structures.

A b.vader interpretation of the initial crack sizes is
now being made in that the initial crack size assumption is also
considered to cover manufacturing defects which are not
necessarily amenable to detection by NDI systems. Examples of such
defects would be out-of-round or mislocated holes. The equiva-
lence between such defects and a crack size is based on engineer-

S ¥ Y

ing judgement and experience (satisfaction) with the current

»
-

N

initial crack size assumptions.
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Regardless of the question of the initial crack sizes being

: equivalent to non-detectable manufacturing or processing flaws,
FQ! the provision for lowering the initial crack size assumption

b based only on a lower 90/95 detectable crack length should be
L removed from the specification. This recommendation is based on
two reasons.

First, the 90/95 crack length characterizes the NDI
N reliability on the basis of a single point of the POD function.
This one number characterization of inspection capability does
not permit risk evaluations or cost benefit analyses since it is

decoupled from the structure (16).

Further, use of this

;Q characterization could lead to increased failure risks as shown
o by the following example. Figure 73 displays a hypothetical
distribution of flaw sizes and two POD functions representing

two inspection reliabilities. Given NDI reliability programs

. with very large sample sizes, the 90/95 limits for Pl(a) would
jﬁ% approach the "true" value of 0.025 while that of Pz(a) would

- approach 0.050 as indicated by the arrows. Under the current
specification, the initial crack size assumption could be

lowered to 25 mils. Figure 74 displays the exceedance probabili-
ties for the two inspection capabilities and the assumed crack
size density. Under the 50 mil initial crack size assumption,
there is a probability of 0.000035 of having a crack greater than
a, (=0.050 in.) in the structure after the inspection. Under

the increased inspection reliability (i.e. the 90/95 crack size

= 25 mils) there is a probability of 0.005 of having a crack
greater than ao(=0.025 in.) in the structure after the inspection.
To maintain the same exceedance probability as for the original

e inspection, as characterized by P2(a), a_ should only be reduced

) o}
-, to 0.046 in. Therefore, reducing a, to 90/95 crack lengths may

1
L e

A increase the probability of having cracks greater than a, in
o the structure and, hence, increase the risk of failure.
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Different assumptions would, of course, result in different

exceedance probabilities but the basic conclusion would remain

the same.

The second reason for not using 90/95 crack length
characterizations of NDI reliability pertains to the unacceptably
large degree of scatter in the estimates of POD/CL type limits
at the high values of POD and confidence required to insure
structural integrity. In a previous study (2), NDI reliability
experiments were simulated and selected POD/CL limits were calcu-
lated for each simulated experiment based on the "inspection"
of 400 cracks. The entire "experiment" was repeated 100 times
under a known POD function. Figure 75 presents histograms of the
90/95 and 95/90 limits for the simulation of 100 reliability
experiments with the known POD function as shown in the figure.
Estimating a 90/95 limit by an NDI reliability experiment with
this capability is approximated by drawing a value at random from
the cross-hatched histogram. For this POD function, the crack
length for which POD(a) = 0.9 is 20.1 mm. the average of the
90/95 limits were 45.0 mm with a total range of 25 to 85 mm.
These example results illustrate that a 90/95 limit is not a
precisely defined characteristic of NDI reliability but rather
is a random quantity with a relatively large degree of scatter.
Thus, consecutive NDI reliability experiments on the same equip-
ment using different cracked specimens could produce significantly
different 90/95 values and neither of them need be close to the
true crack length for which the POD is equal to 0.9. The POD/CL
limits become even less stable as the POD or the confidence level

increase.

The above paragraphs demonstrate that the 90/95 type NDI
reliability characterization should not be used as a basis for
lowering the crack size assumptions for damage tolerance analysis.
In fact, due to the extreme scatter in these estimates, the 90/95
characterization should possibly not be used to compare the
reliability of different NDI systems. Considerable caution is
required in the interpretation of 90/95 limits once they are
removed from the complete POD function.
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Even though the initial crack size assumptions of MIL-A-83444
are not expected to be lowered based on inspection capability
alone, it may be desireable to evaluate the 0.050 in. assumption
or any other in terms of its likelihood of being exceeded. It is
recommended that this evaluation be expressed in terms of the
exceedance probability and/or the effective inspection reliability
evaluated at ag-. The recommended assumptions and methods for
making these calculations will be discussed in the next subsection
as they may be more germane to the evaluation of in-service
inspections.

5.2 IN-SERVICE INSPECTION FLAW SIZE ASSUMPTIONS

The MIL-A-83444 post in-service inspection flaw sizes were

based on a broad brush evaluation of the limited amount of data

then available from which depot or base level inspection relia- [
bility could be inferred (14). When more data did become availa-

ble (1), they indicated that depot level inspection reliability

as quantified by a 90/95 crack length characterization was, in g
general, poorer than that assumed in MIL-A-83444. The current LB

16
depot capability is still considered at least somewhat unknown( )

but it is not clear what is meant by a general depot level capa-
bility.

MIL-A-83444 is considered by the Aeronautical Systems
Division to be a design specification. The flaw size assumptions
of this document are used by the manufacturer to demonstrate
that the airplane's structure will be damage tolerant. To date,

in-service inspection requirements to meet damage tolerance

objectives have only been performed as a result of damage toler-
ance assessments on pre MIL-A-83444 aircraft or in response to
specific problems. In these applications, post inspection flaw
sizes have been decided on a case-by-case basis taking into

Le. account all features of the structural element that could affect

Y
.
a

the detectability of the flaw being sought. Such features include
the specificity and accessability of the problem area; the

material, geometry, and physical condition of the inspected

T, T T
s
o
‘s (.'

detail; the consequences of failure versus cost of inspections;
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and a characterization of the proposed NDI system's reliability.
In general, there is very little or no NDI reliability data for

this detailed level of application. Thus, all of the features =

PR )

are subjectively evaluated and a consensus based on engineering

PR

judgement is used to arrive at the reset crack length for pre-

diction of future maintenance or retirement actions.

In view of the above there are two types of post-inspection 3
flaw size assumptions: the general measure of depot or base
level reliability (e.g. as stated in MIL-A-83444) and the component B
specific, reset crack length derived for each real application.

To distinguish between the two, define the inspection limit (aN )

to be the general measure of NDI reliability and the reset valugE
(aRS) to be the component specific measure. Then, an inspection
limit is one of the factors which enter into the establishment

of the reset value. This study has been directed at methods of

characterizing and estimating inspection limits.

*;«.'i.;.-'. 2 e a'a e e h ol

!

Modifications to the post-inspection flaw size assumptions

of MIL-A-83444 may be unwarranted since very little experience

PNy R R

has been realized with the current inspection limits and there
is no hard evidence to demonstrate that the overall Air Force
depot level capability is better or worse than that indicated.
However, two recommendations can be made. As more emphasis is
placed on NDI reliability, POD functions will be generated for
many NDI system/application combinations. These will lead to
classes of generic capabilities and a refined definition of Air
Force inspection limits will be possible. That is, one crack
length (e.g. 0.25 in.) may not be a sufficient description of

. .
PR T SR Pre

'
4

L]
.
atel

NDI reliability for all aircraft structure. Rather, different

categories of inspection limits will be possible as defined by

‘l .I .l " ‘. \.‘il
R

type of material, access to automated equipment, coatings, etc.

\

The second recommendation concerns the method of characteri-
zing NDI capability in terms of a single crack length. It is

assumed that the current characterization is based on a POD/CL

P e SIS B b AP e I 2y iy
R
- by

crack length type characterization and, for the reasons discusscd

in Subsection 5.2, it is recommended that this characterization

P P N YT Wi Uy B
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not be used in the future. To evaluate inspection reliability for

crack size assumptions, it is recommended that NDI systems be

characterized in terms of the exceedance probabilities, H(a),
as calcvlated from equation (1) or the effective inspection

reliability, ER(a), as calculated from equation (7). Pending

further information on the distribution of flaw sizes that may
exist in the structure, a uniform distribution of crack sizes

under the rogue flaw model approach is recommended. For a specific
structural detail, the flaws sizes should be uniformly distributed R
between zero and the critical crack size. For a generic characteri- ;

zation, the flaw sizes should be distributed between zero and a

Ssbeonah do 2

universally agreed upon multiple (say 10 or 20) of the median

crack detection capability.

Given the H(a) and ER(a) functions, crack sizes can easily
be determined which will yield a fixed probability of exceedance

or a fixed effective inspection reliability. Experience will be

B . - ‘. N . . . ‘.‘.j. 'l"‘ ., . N
VOPE WU S B DR IS I SRS § U

required with these measures to see if one will be preferred.
If a single POD function model (such as the log odds model)
becomes generally accepted, these evaluations could be made using

one set of normalized curves as, for example, in Figures 65 and

67. . Interpolating to the correct ¢ value and denormalizing
with the median detection capability would be the only required

calculations.

As an example, assume that a particular NDI system applica-
tion has a log odds model with p = 0.020 in. and o = 0.5. If the

inspection limit is to be determined such that one rogue flaw in

: 1,000 is to pass undetected, then from Figure 65 or Figure 66
"t the normalized detection limit would be 3.8 and the denormalized
detection limit would be about 3.8 (0.020) = 0.076 inches.

o Similarly, if the desired effe~tive inspection reliability is to

. . e =,
.;"-.‘1;:.1‘4-

s

be 0.999, then, from Figure 67, the normalized characterizing
crack length would be 4.8 which corresponds to 4.8 (0.020)= 0.096
inches. Thus, with this inspection system (with rogue flaws K
distributed uniformly between 0 and 0.2 in.), there is a proba-

v bility of 0.001 that a rogue greater than 0.076 inches would be

AN in the structure and not detected. Also, 99.9 percent of all
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flaws greater than 0.096 inches will be detected. Recall that
only a small proportion of details have rogue flaws so that the
proportion of all details which will contain undetected flaws
is considerably smaller than 0.001.

Finally, it is noted that to reflect the uncertainty

associated with the estimate of the POD function, a lower bound

on the entire POD function can be used in the calculations of ' H

equations (1) and (7). Paragraph 3.3 provides methods for calcu-

lating the lower confidence bound function. ..
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SECTION 6

CONCLUSIONS

This program comprised three somewhat distinct phases. The
major conclusions drawn from each of the phases are summarized in
the following.

6.1 POD ESTIMATION

Probability of detection as a function of crack size is
the basic element in characterizing inspection uncertainty. This
study assumed that POD(a) is adequately modeled by the log odds
function. Methods of estimating the parameters and placing
confidence limits on the log odds POD function were developed and
applied to simulated NDI expeirments for different types of data

and analyses procedures. The conclusions were as follows.

1. When inspection results are only available in a pass/
fail format, maximum likelihood estimation procedures should be
used if there is one inspection per flaw. If multiple inspections
per flaw are planned, at least 10 inspections should be performed
for each flaw and the regression analysis approach should be used.
The extra binomial variation model (i.e. assuming a beta distri-
bution for individual crack detection probabilities) requires
as many or more inspections per flaw with a large increase in
complexity. Further, confidence bounds on the POD function have
not yet been developed using this approach.

2. If the NDI system response signal, é, is available,
the a vs a approach to estimating the POD function should be
used. This analysis is approximately twice as efficient as
that of the pass/fail method in a well designed experiment.
That is, the pass/fail method requires twice as many samples to

obtain the same estimation precision as that of the a vs a approach.
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‘ The equation for estimating the parameters and placing confidence
bounds on the POD function are presented. This data format also
provides a convenient approach to testing the log odds model or

a to developing different models. The avs a analysis method

reduces the effect of a poor crack size selection in a demonstra-
tion program and also permits an analysis seeking the causes of
variation under designed experiments with multiple observations

per flaw.

3. In designing NDI reliability demonstration experiments
it is necessary to insure that the flaw sizes in the sample speci-
mens span the range of the POD function. Ideally, the cumulative
distribution of the sample specimen sizes would be approximately
the same as the POD function. The number of sample specimens
should be at least 30 if they have the appropriate size distribu-

tion and more, if not.

6.2 NDI RELIABILITY CHARACTERIZATION

While the POD function quantifies inspection uncertainty,
current inspection capabilities cannot guarantee that virtually
all cracks greater than a practical size for damage tolerance
analyses will be found at an inspection. Therefore, an NDI
reliability characterization was derived which correlates
inspection uncertainty with the probability of having "large"
flaws in a structure after inspection. The following conclusions

regarding this characterization were drawn.

1. Any link between inspection uncertainty and risk of
structural failure must account for the sizes of flaws in the
population of details before the inspection. The simplest
links are the exceedance probabilities and the effective inspection
reliability which are calculated from the POD function and the

pre~-inspection flaw size distribution.

2. Meaningful inspection crack size limits for reflecting
NDI reliability in particular applications can be calculated
from the exceedance probability function, H(a), or the effective

inspection reliability function, ER(a). From the exceedance
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probability function, an inspection limit can be determined

such that there is a pre-specified probability (presumably very
small) of having a crack greater than the inspection limit and
missing it. From the effective inspection reliability function,
an inspection limit can be determined such that a predetermined
proportion (presumably very large) of all cracks greater than the
inspection limit will be detected. A choice between these

criteria has not been made pending experience with applications.

3. Very little information is available concerning the
distribution of flaw sizes in aircraft structure. An equivalent
initial flaw size model with attendant fatigue growth did not
prove viable. A rogue flaw approach wherein only actual flaws
in the structure are included, was formulated. Assuming the

rogue flaws have a uniform distribution between 0 and the

critical crack size provided generally conservative inspection

limits.

6.3 ASIP APPLICATION

N P PRI

The conclusions regarding the use of the flaw detection

reliability characterization in ASIP applications are as follows.

P

1. The initial crack size assumptions for as-manufactured

‘a ‘s

structural details are intended to cover manufacturing defects
which are not necessarily detectable by conventional NDI systems.
The provision for lowering the initial crack size based on a 90/95

WRPOPE P

type inspection reliability characterization should be removed
from MIL-A-83444.

2. The in-service inspection flaw size assumptions of
MIL-A-83444 are values for computation during design and development

stages of an aircraft's life and are intended to be general measures

1
|
X
Y
}
i
N
N

@ ) of depot an~ base level inspection capability. These crack

} : sizes should be re-evaluated based on generic estimates of POD
EI capability and the exceedance probability function, H(a) and
ff_ the effective inspection reliability function ER(a).
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3. For determination of reset crack length after in-

service inspections of specific structural detail, inspection

capability is one of several factors which are evaluated. The 1
best estimate of the POD function for the specific application E
should be used with the uniform rogue flaw model between 0 and A
the critical crack length to calculate inspection limits as f
defined by H(a) and/or ER(a). ;

4. Experience is needed with respect to the evaluation of :
POD function and their characterization in terms of the H(a) %
and ER(a) functions. i
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APPENDIX A
STATISTICAL ESTIMATION OF POD

This appendix provides the details of some analysis techni-
ques for estimating POD functions. The first section provides
two techniques for analyzing NDI results when recorded only in the
pass/fail form. The second section describes the estimation of
POD from & versus a data.

A.l ANALYSIS OF PASS/FAIL DATA

There are two techniques that can be used to analyse pass/
fail data, depending on the type of data. A regression analysis
can be used to estimate the parameters of the POD model when there
are multiple inspections of each flaw or a large number of flaws.
For data with a single inspection per flaw, the maximum likelihood
method provides good estimates of the POD model parameters.

The analyses described in this section are based on the log
logistic function given in equation (8). A direct analysis of the
model when expressed in the form given by equation (8) is very

complicated. The analysis can be simplified by using the re-
parameterized model.

exp(a + B 2n(a)) (A1) )
1 +exp (a+ B n(a))

POD(a) =

The relationship between u and o of equation (8) and a and 8 9
of equation Al is:

U= -G/B (AZ)
g = n/(8/3) (A3)

" A'_L‘.A

For both the regression technique and the maximum likelihood
method, estimates of u and o can be calculated by substituting
the appropriate estimates of a and B into the right hand sides

. R
ISP PPNy NI

- of equations (A2) and (A3).
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A.l.1 Regression Analysis

A common name for the log logistic model is the log

R 3 b -
'”15‘!4nu2
Al o e s

L] PP ]

odds model which comes from the logarithm of the odds (p/(l-p)) X
(log odds) transformation. The log odds transformation converts ]
o0 equation (Al) to ]
o :
2 "
- )
. on (222A2) ) = 4 4 B 4n a, (Ad) - )
- 1-POD (a) ]
:2 which is linear in the transformed variables -
. o
._;’_. 4
\“ o
Y(a) = &n (—292121~) and X = %n a (AS) ':
- 1-POD (a) K
ﬁf Linear regression methods are then used to estimate a and B. ?
J‘
- Before performing a linear regression on NDI relia-
bility data, the data must be reduced to a set of n pairs,
:E: (a;, p;), where ay is the crack length for the ith pair and p; is
. the proportion of times the flaw (or flaws) were detected. 1If
(" the data contain multiple inspections of each flaw, a; will be

the length of a single flaw and P; will be the proportion of time
that the flaw was detected. If flaws are grouped into crack

;i length intervals, a; will be the midpoint of the ith interval

and P; will be the proportion of flaws in the ith interval that
were detected.

- Given the n pairs of (ai, pi) data points to be fit
by the regression analysis, the transformations of equation (aA5)
> are performed, resulting in a set of n (Xi’ Yi) pairs.

The variables X and Y are then used in a linear
regression analysis resulting in estimates & and B for o and B,

4
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. [ N e T

A

. A ~ A

respectively. The formulas for a and B are X
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n n
r X. r Y.
n e = S
L xiYi - A
~ i=1 (A6)
e = o n p)
2 r X,
T N O N
i=1 n
G =3%-8 X% (A7)
where ¥ and X are given by
n n
T Y, I X,
i . i
7. =~ x- 2 : (A8)
n ! n

The estimated mean Y as a function of a is given
by

Y(a) = & + é n a (A9)

The formula for a lower confidence bound on the mean Wyy for a

given value 1is

A A -2
y = - (8) 1 (X-X) (Al10)
Y, =B X =t o)y’  Vat ssx

where

y is the confidence coefficient

tn-2),y is the yth percentile of a t distribution
with n-2 degrees of freedom

(All) E

(y.-A-B X.) %
(AL12) :
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The inverse Y transformation applied to equation (A9)
gives the estimate of the POD and since the log odds transformation
1s monotonic, the inverse Y transformation of ?L gives the confi-
dence bound on the POD function. The equations for the estimate

of POD(a) and its lower confidence bound are:

exp (Y (a))
1 + exp(Y(a))

POD(a)

(A13)

and

egp(§L(a))
1 + exp (?L(a))

PODL(a) (Al4)
A problem in the use of regression analysis arises
when the observed proportion of detected cracks at a crack length
is zero or one. In either of these cases, the most useful trans-
formations can be undefined. To circumvent this problem, there
are several alternatives. In the Have Cracks Study (1), the
vaues of 0.01 and 0.999 were substituted for 0 and 1, respectively.
However, the regression results are sensitive to the arbitrarily
defined values. A more acceptable solution is to use a different

estimator for the detection probability.

The usual estimator for the detection probability
is taken as

A

p = 1i/n (A15)
where i is the number of detections and n is the number of specimens
with the crack of the fixed length. Other estimates of the propor-
tion which have acceptable statistical properties are the mean
estimate

if i> %
if i = n/2 (Al16)

if i<

|
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and the median estimate:

i-0.3 . n
n+0.4 if 1> 2
- 1 . .
P = 7 if 1 = n/2 (Al7)
i+0.7 . . n
nvo.a f i<y

The use of either equation Al6 or equation Al7 for observed
detection probabilities would eliminate an arbitrary definition when

the observed proportion of detections is zero or one.

A.l1l.2 Maximum Likelihood Estimates

Given the POD(a) model of equation (Al), an entirely
different method for estimating the parameters uses the principal
of maximum likelihood. In this type of estimation the parameter
estimates are the values which maximize the probability of
obtaining the observed data. The maximum likelihood estimates do
not require grouping of data when the experiment involves a single
inspection per crack. Instead, they are based directly on the
observed outcomes of 0 for a non~detection and 1 for a detection.
This paragraph presents the equations for the maximum likelihood
estimates of the log odds model and confidence limits when each
crack is inspected only once. Maximum likelihood estimates for
multiple inspections of each crack could also be developed.
Further, maximum likelihood estimators for parameters of models
other than equation (Al) could be developed, but the solutions

would not necessarily be in closed form.

Maximum likelihood estimation is based on the
concept that the data will take on values which are most likely
to occur under the chosen probability model. For example, in a
simple Bernoulli trial (which is the probabilistic representation
of a single inspection) the probability of success is p. If
p > 1/2 a success would be more likely than a failure. Conversely,

if a success were observed in one trial, it is more likely that
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p > 1/2. 1In the following, the philosophy of maximum likelihood .
estimation, the value of the unknown parameter that would give rise f
to the highz2st probability of obtaining the observed data is used .;

Q as the estimate. In the simple Bernoulli experiment if p were
equal to 1 the probability of observing a success would be 1.

Since probability cannot exceed 1, the maximum likelihood estimate

PP TR o B

of p when a success is observed in a single Bernoulli trial is 1.

. > I T S S S
- -',' P

To find the maximum likelihood estimates of equation ;
(Al) from a sample of single inspections of n cracks, the following 1

procedure adopted from Cox(l7) can be used. The maximum likelihood

estimates & and R of « and 8 satisfy the simultaneous equations. ]

n n ~og
0= ¢ Zi -5 exP(a"'?h:(ai)) (A18)
i=1 i=l l+exp (a+BLn(a;))
0= T Z;4n(aj)- I ¢n(ajlexp(a+pin(ai)) (A19)
.=l o=l Aﬁ‘ .
1 1 l+exp(4+B2&n(aj))
where z; = 1 if the flaw is detected and 0 if it is not. The .
variances and covariance of the estimates & and é are .!
. % _exp(a+Bin(aj))
Var (%) = I platPiniaj (A20) ]
i=1 (l+exp(a+Bin(aj))) e
- D (an(aj)) %expla+Bin(aj ‘
var (8) = & nlaj)) expla ;(al)) (A21) '
i=1 (l+exp(o+Bn(aj))) .
4
Cov (a,8) = I ln(ai)ex_g(u+89«n(a%)) (A22) ;
- i=l (l+exp(a+Bfn(aj)))
L
E; Estimates of these variances and covariance are calculated by °
4 substituting the estimates, 4 and B, in equations (A20), (A2l), ‘
:' and (A22).
P,'
. °.
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The maximum likelihood estimate of the POD function
is calculated by substituting & and £ for « and g in equation
(Al). The change of variables must be made using the same trans-

formation that was used in the regression analysis to obtain

log (p(a)/(1-p(a))) = Y(a) = a + £ &n (a;) (A23)

For very large sample sizes, estimates of the variances and co-
variance of a and B can be used to calculate a lower confidence

bound on Y(a) as given by

YL(a) = a+B ¢n(a) - ZY/S2 + 29n(a) S?\A N (9,n(a))252 (A24)
[0} aB R
where

Y is the confidence level,

Z satisfies P(Z < Z) = vy for the standard normal
Y distribution

Sé is the estimate of Var (a),

Séé is the estimate of Cov (&,8),

S% is the estimate of Var (8).
B

Since the log odds transformation is monotonic, the reverse
transformation of the confidence bound on Y(a) will be the confi-

dence bound on P(a). Specifically,

ey - _exp(Y(a))
POD (a) = Trexp (Y (2)) (A25)

v
pop. (a) = X L(a)) (A26)
L Lrexp (Y (a))

Generally, maximum likelihood estimates are better than regression
estimates from grouped data; however, if the number of flaws is
very large {greater than 100) and the groupings do not result in
many O0's and 1's for pi's, the results of the analyses should be

similar.
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R In inadequately designed NDI reliability cxperimi nt: it
. is possible to obtain estimates of é which are not significartly

greater than zero. See Subsection 3.3.2.1 for a discussion ¢f this

m problem.
e A2. METH D OF MOMENTS ESTIMATORS

Suitiuble initial estimates of the POD model paraileters are
nec:ssary 1n applying the maximum likelihood method. When the .
maximum likelihood equations have more than one solution, the
comosuter algorithm converges to the solution closest to the initial
est .mates. For estimating POD parameters, the initial estimators

wer :» chosen to be those as obtained from the method of moments.

The follow'ng paregraphs describe the application of tle meth>d of

o mom :nts to the loc odds model.

E
ah
3

The method cf moments is an algebraically simple comput itional
tec inique that is first used to calculate initial estirates cf
n aiwd o. Hquations A2 and A3 convert the estimates of i and 7 t»
« aid B for use ir the computer algorithm. The method of mon :nts
est .mates the parcémeters of a distribution function by equati g

the sample moments calculated from data to the theoret:cal moien-:s

expcressed .n terms of the parameters of the distributicn. Th:

lo¢ logistic function that is being used to model the 10D fun :tin ﬁ

is actually a cumulative distribution function and the p ané o 5

/ (of the functional parametrization of equation 8) are the mea: aid .

:5 standard deviatior, respectively. E

;ﬁa The application of the method of moments to NDI :i1eliability, .

.lg data is not straightforward. Direct measurementrs of random q

'%g variables with POD(a) as their distribution function are not .ad:. -

Eﬁ The only information available is the set of n (ai, pi) pairs. '
P However, this information can be used in the context of a non-

s
L

standard representation of the mean and variance of a distribition

bl
ey

_;._ as follows.
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The standard definition for the mean of a distribution, say :

F(x) is y

{g! u = [ x dF (x) (A29) '
» i 3
Integration by parts can convert equation (A29) to b

.4

o 0 '}

. u =/ [1-F(x)] dx - [/ F(x) dx (A30) x

0 - o0 .;1

N

:_1

In the log logistic function, u 1is the expected value of 1ln(a) -

so that the X transformation of equation (A5) must be used before ]

applying equation (A30). The log logistic function of equation

(8) is therefore converted to

POD(x) = [1 + exp ( —& ¢ % N . (A31)
V3

In terms of the POD function, equation (A30) is illustrated

&E in Figure ~1. In Fiqgure Al, area A represents the first ingetral
r!. of equatior (A30) and area B represents the second integral. The
" mean, 4, is area A minus area B. To apply the method 6f momerts

to NDI reliability data, the analog of Figure Al is drawn for a

{f set by NDI reliability data as Figure A2.

Figure A2 is a plot of the (x5 pi) pairs, where x, is the log )
transform of a;. The expected value of P; is POD(xi) so that the
curve consisting of the line segments connecting the (x,p) p¢irs -
ordered by increasing x is an approximation of the function I0D(x).
Areas C and D of Figure A2 correspond to areas A and B of Ficure
Al respectively so that the method of moments estimate of u is

n=C¢C-0D (A32)

The calculation of the method of moments estimate of p can
be simplified by choosing a scale so that all crack lengths are
greater than 1 and therefore all x values are greater than 0.

Crack leng'hs given in the units of mils usually satis'y this

A
N
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critcria. When all X values are greater than 0, the arca D w,l1ll
be 0 so that only area C need be calculated. The formula for the
method of moments estimate of u then becomes

~ = - 1 n
E= X - %) -5 L, (x-xg ) (pi+p; ) (A33)
where x's have been ordered so that X; < X, < ... < X . The

(R TUr I B W Y SV LN T

ordering should be strict so that if several flaws have the same
length, they should be grouped and p taken as the total proportion
of all inspcctions on all flaws of that length that were detections.

)

A sim:lar process can be used to show that the method of

s e i

moments estimate of o is

. A _ n ..
s o= N - AL - L, R RD (R ) -2 (a34)

The statistical properties of the method of moments estima-

tors of u and o depend on how well a numerical integration of the

4

true POD function based on the crack lengths of the sample data
approximates the true values of u and o. If the true POD can be
reasonably approximated prior to the NDI reliability experiment,
the experiment could be designed so that the method of moments
provided good estimates of the POD parameters. However, in most
applications the method of moments should be used only to provide

initial estimates for the maximum likelihood algorithm.

2t ddend oot aadd al B AL iends Bi At

a'e’ A’ A Mha.

154

A e teme - AL

DR A AR AP -’ A e Al &'-' -" Py l;(.-l—d- 4‘.-’ L(J.-' n'._l




-_.‘.

3 ‘uoT3IN

: fINQIAISTQ B JO UBSK SY3 I03J BTNWIOJ 93RUIB]TY JO UOT3IRIAISOTII *IV aanbtg
.m X - Y3abua yorid 0o

- 0

A3tTTqegoag aAIietnmna

- I AR A

..,
s

R
SR )
el arala

RTIARIR
o »
Axda

.
el

2
.

et
.ty
<, W
VW

et

Y

W

P}

o
AN

'
)

155

R

AJ

WY

L

. -¢..-l¢-.--fal




GRS T RIS MMM RMACMIr O AR NNGE 46 T T R T @
Ju -..-.....4--.\..- o . e .,...........-.._. SRR W W C ....r.,.‘. e ‘f ! ..-.“.

, : ...)
] - . A Av‘
v ..;
‘uotjiounyg (QOd P9AISSqO 103 seaay snoboleuy ‘zy 9InbTg »

A

e

X - yabusT 3oei1) HoT -4
X 0O T ’ . ”x

y . .. A
5 I 0 -
: b
g g
S "
" ¥
v.. .~.--
-.. ..\4
2 Q P
b, ..-..
a i
1 - 4
v. %
: s
. o H
. 5 ; .,
Y, z 4 g
p, e 5
-. e o
2 o g
. [ (Yo omu
s, A w m
3 ; £
o z
.. R g
b - o Mm
b, o w
L, b E .
p’ o o N
< (=2 .w .

[
ke - &
- o+ -
w,. ~ 7
.
4 +
o
w.
VI
g )

SIS - i A ol

i Sl SRS

et e
g FARRREE AR AR

gy




- - = = % oo W T W Tw T VT FT R T YTm s mEYYOOT T Ym0y R A N - R R vy A |




