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been defined by the Marine Corps after a careful analysis of each require-
ment's structure. The categories are:

1. Advance preparation and education.

2. Combat service support and logistics considerations.

3. Mission planning and preparationm.

4. Command control and task organization.

5. Execution.

6. Information and communication.

Taking the category model as a starting point, there is still the
problem of estimating K probabilities for each unit (in our case there
are 75 units in the study). The use of empirical Bayes methodology has
proven useful in the simultaneous estimation of many parameters and suggests
itself as a promising tool here. We will demonstrate that an appropriate

Bayes model, described below, does indeed lead to improved estimation of

the category probabilities.

2. The Category Model

For the N = 75 units in the present study we define Xij to be the
number of satisfied requirements in category j , for the i-th unit. Let
Mij be the number of requirements in category j that the i-th unit was

tested on. Due to practical constraints units are generally not evaluated

on all requirements. If eij is defined to be the probability of unit i

satisfying a requirement in the j~th category then we assume that Xij has

a binomial distribution, B(Mij,eij) . We further assume that given
Qi = (eil""’eiK) s Xil""’XiK are independent. These two assumptions

are consistent with the fact that, for a particular unit, performances on
different requirements are independent. Finally, we assume that Xl,...,XN
N N

are independent, where Xi = (Xil""’X'

) , i.e., the performances of
n, iK p
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different units are independent. These assumptions are summarized as:

Xij gv B(Mij,eij) , 1i=1,...,N, j=1,...,K (1)
Xil,...,XiK , given Si , are independent , (2)
%l,...,EN are independent. 3

The most critical assumption of the category model is that all require-
ments in the same category have the same probability of being satisfied.
Zacks, Marlow, and Barzily (1981) and Zacks and Marlow (1982) have concluded
that the assumption of equal probabilities within a category is tenable for
a ten category model similar to the one that we propose. We use a cross-
validation technique to investigate the appropriateness of the six categories.
The 234 requirements of section A were randomly split in half producing
two sets of count vectors, {%il),...,igé)} and {%iz),...,X§§)} . If the

probability of satisfying a requirement is a function only of its category

then we should have equal probabilities for X(l) and Xii) . More formally:

ij
Xiﬁ) voBal | efD) ()
xii) " B(Mii) , 85, (5)
and we want to test the hypotheses,
H: eiﬁ) - eii) , A=l,...,N 3 §=l,...,K (6)
vs. H,: some Giﬁ) + Gii) (7
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3. Verifying the Assumptions of the Category Model

IDINGY

For a particular unit and category, we can test whether 6§j i

by using Fisher's exact test (see Fisher (1925)). This test is illustrated

in Table 1 below.

Table 1

2x2 Contingency Table for Testing Whether

g{1x 602
1] 1]
Satisfied Not Satisfied
First Half Xg%) (Mg%) - X?%)) Mg%)
ij 1] 1] 13
Second Half ng) (Mgg) - X?%)) Mg%)
1] 1] 13 1]
c,. [ 1
ij 1] 1]
Fisher's test is based on the conditional distribution of Xii) given
(G A C.. ’ M( ) , and Mg?) . Under H., , we have
ij ij ij 0
M<1)\ (2
LD x<2>
P{X(l) <D c. T, u w®y o A =L/, (8)
i ij ij ij M.,
1]
C,.
1]

and the conditional significance level or "p-value' of the test is given by

6.. = ¢ px® - x[C.. 5, C.. » ulH u2y (9)
ij = 1j 1] 1] 1] 1]
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where

= b b — ke, B, D, @y e 2D e, @, u@D o)
ij ij’ "iji’ ij ij ~ - ij ij '"vij? vii’ Tij ij

After performing the test for each combination of (i,j) we are left
with the problem of combining all of the NK = 450 p-values to make an

inference about HO defined in (6). We use two different approaches to

address this issue. First note that if Xiﬁ) had a continuous distribution

then we could use the well-known result (see Fisher (1925)) that

- 2 fn &ij ~oy2r2] (11)

where Xz[v] denotes a chi-square random variable with v degrees of

freedom. We could then combine the tests by noting that

K
T (-2 %n &i.) (12)
1 §=1 J

[ e I~

i
. . . 2 L . . .
is distributed as X [2NK] . Of course Xij is a discrete random variable
but its conditional distribution is approximately continuous when
C.. , C.. , Mg%), and M?%) are all large.
ij ij ij ij
Another approach to combining the p-values is to note that under

HO » each aij is independent and has probability .95 of being greater

than .05 (again assuming continuity). Thus if we define

# of &i' greater than .05
W = ] (13)
NK

then W is distributed as B(NK, .95) if Giﬁ) = 9§§) , for all 1i,j .



T-486

Table 2 summarizes the results for twenty different random splittings
of the 234 requirements. The splittings were obtained using GGPER, an IMSL

subroutine which generates random permutations, and the aij were computed

using IMSL subroutine CTPR. All computations were performed on an IBM 370

computer.

If we first comsider the left part of the table, which includes all
cases for which Fisher's test is meaningful, we see that all values of W
are greater than .95, and all values of Q are less than 788 , the number
of degrees of freedom of the reference chi-square distribution. These results
clearly provide no cause for rejecting the hypothesis of equal probabilities
in each half. Looking at the right part of the table, we note that for some
splits of the requirements, W is less than .95. Seven of the twenty
values of W are below .95 but none are more than 1.6 standard deviations

below, where

SEW) = V(.95) (.05)/(#of applicable tests) . (14)

Using the Bonferroni method to set the overall significance level at .10,
none of the twenty W's provides significant evidence against the hypothesis
of equal probabilities in both halves. Note also that all twenty of the
Q's are less than the corresponding degrees of freedom which is clearly

consistent with the null hypothesis.

In summary, we find that the assumption of equal probabilities for
all requirements in the same category to be quite tenable. Using the
category model we now develop an empirical Bayes procedure to improve the

estimates of the category probabilities.

4. Empirical Bayes Estimates of the Category Probabilities

Our chief interest is in estimating 61,...,6N , a large number of
" N

multivariate parameters. Since these are not unrelated parameters, empirical
Bayes or James-Stein type (see James and Stein (1961)) estimators are
candidates for reducing the overall error of estimation of the N parameter
vectors. A lucid exposition of the applicability of empirical Bayes

estimators is given by Morris (1983).

-6 -
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Table 2

Combining Fisher's Tests Across All
Evaluations and Categories

Number of Number of
Applicable Applicable
Split Tests* Q* W* Tests** Q*%* W%
1L 394 426.9 .992 55 77.8 .982
2 394 463.0 1.000 55 74,6 1.000
3 393 505.3 .987 51 113.5 .922
4 394 428.7 .990 52 65.9 1.000
5 394 506.3 .980 53 85.0 .981
6 394 456.1 .977 47 65.7 .979
7 394 570.3 .975 50 73.2 .980
8 394 463.2 .987 45 68.6 .978
9 394 499,5 .977 55 . 84.1 .964
10 394 407.3 .982 55 75.3 .964
11 394 431.9 .987 50 69.4 .940
12 394 421.9 .992 55 91.0 1.000
13 394 483.8 .975 44 68.4 .932
14 394 469.5 .997 58 113.8 .983
15 394 520.9 .967 50 95.7 .920
16 394 424.7 .982 54 87.0 .926
17 394 410.5 .980 58 58.6 .983
18 394 445.8 .982 45 68.0 .933
19 394 503.4 .975 51 106.4 .902
20 394 462,.1 .982 55 78.4 .964
*Cases in which any of C,., C_., M(l) or % are 0 lead to a degenerate
1] 13 1] 1]
distribution for Xii) » These cases were omitted.

e
~

Only cases in which C.. M,(’,L)/M.. >5, % =1,2 and C.. l-iq’)/M.. >5, & =1,2,
1] 1] 1] 1] 1] 1]

are included.
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The basic assumptions we have made are that different evaluations

are independent, i.e. Xl’°"’§N are independent random variables, and
n
that each Xij , given Gi , is distributed as B(Mij,eij) . If the

M_j are all moderately large, then the Xij are approximately normal
i

and many well-known results can be applied. To further simplify the

analysis we make use of the variance stabilizing transformation

Yij = 2 arcsin ( VKXij + .5)/(Mij + 1)) . (15)

Y.. is distributed approximately as a normal variable with mean
i

N 5 = 2 arcsin (/6;5) (16)

and variance M;? (see Johnson and Kotz (1970)). . The usefulness of this
transformation is that the variance of Yij does not depend on any

unknown parameters. In this transformed scale assumption (2) implies

that Yil,...,YiK are independent, given Nipse o Nyg Let
Ii = (Yil,...,YiK) and Qi = (nil,...,niK) . We summarize the distribu-

tional assumptions by stating that

Ei Dy N(Qi’Di) , i=1,...,N, (17)
where
B . -1 -1
Di = diag {Mil,...,MiK} . (18)
KxK

A Bayesian model postulates that the vectors ni are independently
n

drawn from a (prior) distribution which, in our context, can be thought
of as representing the "superpopulation'" of combat units. It is

convenient to assume that the n, are drawn from a normal distribution,
v
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i.e., are i.i.d. vectors

Ql’.“’r\,N
n. v N (u,2) , i=1,...,N, (19)
a1 N

where U dis an arbitrary mean vector and I is an arbitrary positive
o

definite covariance matrix. It should be noted here that other prior
distributions are possible. Leonard (1972) considers models where

log (eij/(l—eij)) is normally distributed; Good (1965) allows eij to

have a beta distribution. While these alternative models are somewhat
tractable in a single category situation, it is difficult to incorporate

a dependence structure into the distribution of ei in either case.
N
Since the Mij are large enough for the assumption of normality to be

reasonable, there are no compelling reasons, in this application, for

using either of these alternative models.

Using (17) and (18), the predictive or unconditiomal distribution

of Y., is N(u, Z + D,) and the posterior distribution of 1. 1is
L v 1 L

Ri |zi v N(zi - B, (Ei - %i) s (I—Bi)Di) ’ (20)

where

- -1
Bi = Di(Di + %) 2 (21)

If p and Y were known, the Bayes estimate of ng s assuming squared
" oy

error loss, would be the posterior mean,

Qi = Ei - Bi (zi - %) . (22)

This estimator has been proposed by Efron and Morris (1972) for the case

in which Dl""’DN are equal.
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In order to use the estimator in (22), we need estimates of

B and X . The unconditional distribution of Y 1leads to the follow-
a N
ing simple estimates:

uk =Y (23)

n n

-1 N - =1
I* = N (Y, -Y) (Y, -Y¥) -D, (24)
ji=1 vVt v Al A

_ -1 N -1 N

where Y =N Z Y, ,D=N L D, . Although these estimates are not
~ S Sl

%
unreasonable, they are not the most efficient ones available and [ has
the added drawback of allowing negative estimates of variances. We instead

suggest estimates of u , I derived by maximizing the predictive likeli-

n
hood of Y. ,...,Y . This likelihood function, L(u, Z; Y,,...,Y.) 1is
’\Jl %N N At A

proportional to:

N

-1/2 1 - -1
I |z +D,| J exp {- —— (Y, -w” @ +D) " (Y, -w}. (25)
i=1 1 nt n 1 {\Jl "N

Instead of directly maximizing (25) we will make use of the EM algorithm
of Dempster, Laird, and Rubin (1977). The EM algorithm is designed for
missing data situations but it can be applied here if we think of

Nys+-+sNy as the missing '"'data." The algorithm consists of an E-step,
N v

computing the expectations of the sufficient statistics (nl,...,nw)
v Al

given the observed data together with the current estimates of the

parameters (u,%) , and an M-step in which the likelihood of the complete
~

data based on the estimated sufficient statistics is maximized. To define

the algorithm more specifically, let ﬁ(p) 5 %(p)

n
of (u, ) after p iteratiomns. From (22) and the independence of
A

be the current estimates

Ql""’QN » the E-step is given by

- 10 -
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£ vy 1) =y,

ﬁ(p+l)
Ad ? AL TN el

- ~(p) _~(p) _o~(p)
= E (Qi{ﬂ g o)

From standard results, if ﬁ£p+l),...,ﬁép+l) were in fact the observed
0 0

values of n,,...,Nn,, , the maximum likelihood estimates of u , I

would be

N
V] i:l f\ll
. :
alp+ - ~(p+ ~(p+ ~(p+ ~(p+l) . -
sptl) _ =1 (nfp 1) _ u(p 1y (ngp H o l)) _
el A% N nd ~

Equations (26) - (28) define the algorithm for our problem. Using R*

defined by (23), (24) as initial estimates led to convergence of the

algorithm (to four decimal places in all components of U and IZ) in
"

nine iterations. Table 3 gives the initial and final estimates. Note

that ﬁ and p* are very close but there are substantial differences
v "

between Z and ¥ .,

Using (22) we obtain the empirical Bayes estimates

~

Q. = %i = Bi (zi = %) y 1=l,...,N,

where ﬁi = Di (Di + Z)—l . Our interest is in estimating Gi and the
",

natural estimates to take are

N _ R 2 o i S
eij [sin (nij/Z)] , i=1,...,N ; j=1,...,K ,

although these are not exactly the Bayes estimates of {Gij} for the

assumed model.

- 11 -
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(26)

(27)

(28)

Tk

(29)

(30)
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Table 3

Initial and Final Estimates of H, z

2.3916  2.3837

2.3943  2.3843

.0693 .0426

.0087

0461 .0370

.0297

2.2332

2.2338

.0648
.0474

.0856

.0557
0447

.0673

- 12 -

2.4693

2.4691

.0558

.0475

.0809

.0866

.0573

.0460

.0692

0712

2.2211

2.2233

.0597

.0616

.0574

.0589

.1182

.0541

.0434

.0653

L0672

.0634

T-486

2.4081

2.4097

.0428

.0376

.0449

.0509

.0553

'0471._J

.0399
.0321
.0482
.0496
.0468

.0346
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5¢ Cross-Validation of the Bayesian Model

The motivation for using empirical Bayes estimates instead of
estimating the probabilities with the relative frequencies is the hope
that the overall error across all units will be smaller. Other empirical
studies (see Efron and Morris (1975) and Fay and Herriot (1979)) have
demonstrated that empirical Bayes techniques do lead to improved
estimation. In both of these studies the true parameter values were
available so the actual error of the estimates could be computed. We do
not have this luxury so we will again use cross-~validation to compare the

Bayes estimates with the sample proportions.

As described in section 2, we split the 234 requirements into two
halves. The first half was used to estimate the probabilities and the

relative frequencies in the second half were compared with these estimates.
Define ng to be the Bayes estimate computed from the first half and

let Sij denote the (modified) sample proportion from the first half,

(1)

A~ _ (D)
p.., = X i

i i + .5)/ (M + 1) . (31)

Let pij denote the (modified) sample proportion from the second half,

by = &+ /@ vy (32)

) . ~B
For each unit we would like measures of agreement between p. and p.

nt L
and between p, and p. . We propose two measures:
vt L
K ul? e - 382

B _ ij ij ij

C, = I > (33)

i =1 ~B Qa - ~B )

B ) ~B 2) ~B
L = ™ =) = =

i =2 jil{Iij P;; log (pij/pij) M (1 Py) log (A pij)/(l pij))}. (34)

- 13 -



T-486

P

J
in (33) and (34). Note that Ci is the Pearson chi-square statistic

In a similar manner define Ci and Li by replacing Egj with Si

and L, the likelihood~ratio statistic for comparing 5. and p, .
i L 1

By using these measures we are attempting to incorporate the variability

of p into the comparisons. Bishop, Fienberg, and Holland (1975) give
"

a complete discussion of the merits of using these statistics to compare
observed and estimated probabilities.

Table 4 summarizes our findings. We have summed Ci 5 C? Li ,

and L? over the N=75 evaluations. The results are strikingly in favor

of the Bayes estimates. For every one of the 20 splits of the require-
ments the Bayes estimates produced a smaller total "error" as measured by
either C or L . We have, for a number of splits, looked at the 75
values of C and L for each unit and it is clear that the Bayes
estimators are providing protection against gross errors in estimating

pij , as the large values of Ci or Li are almost exclusively observed
~B

for pij as opposed to pij 0

In summary, we have found that the empirical Bayes methodology
leads to a very tractable means of estimating a collection of vector
parameters and offers a considerable improvement over the typical method
of estimating each vector separately. To our knowledge this is the first
empirical study that assesses the efficacy of empirical Bayes estimators
for vector parameters. We hope that it leads to a greater usage of these

techniques in the future.

— 6 2



Cross-Validation of Bayes and Ordinary
Estimates of Probabilities

Table 4
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75 5 75 75
I ¢ > (T 3 i, T
Split i=1 i=1 i=1 i=1
1 824.3 539.2 614.6 506.7
2 898.5 547.2 702.7 512.8
3 788.1 563.7 678.0 555.1
4 784.9 572.6 596.5 513.8
5 809.2 533.9 709.9 552.8
6 780. 4 439.6 667.2 470.4
7 906.3 614.9 760.4 587.6
8 818.3 620.3 686.1 594.9
9 815.0 582.8 7064.4 565.8
10 895.7 665.4 655.0 558.3
11 863.0 587.3 657.9 533.4
12 970.2 588.8 637.2 511.0
13 850.5 563.5 673.8 508.6
14 704.8 541.1 656.4 565.1
15 1213.8 735.9 814.7 636.8
16 989.4 695.7 702.6 620.0
17 880.6 554.8 606.9 495.5
18 956.5 586.6 753.2 564.2
19 1125.1 611.8 793.9 570.8
20 914.7 574.1 652.2 529.1

- 15 -
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