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been defined by the Marine Corps after a careful analysis of each require- 

ment's structure.  The categories are: 

1. Advance preparation and education. 

2. Combat service support and logistics considerations. 

3. Mission planning and preparation. 

4. Command control and task organization. 

5. Execution. 

6. Information and communication. 

Taking the category model as a starting point, there is still the 

problem of estimating  K probabilities for each unit (in our case there 

are 75 units in the study)•  The use of empirical Bayes methodology has 

proven useful in the simultaneous estimation of many parameters and suggests 

itself as a promising tool here.  We will demonstrate that an appropriate 

Bayes model, described below, does indeed lead to improved estimation of 

the category probabilities. 

2.  The Category Model 

For the  N = 75  units in the present study we define X. .  to be the 

number of satisfied requirements in category j , for the i-th unit.  Let 

M..  be the number of requirements in category j  that the i-th unit was 

tested on.  Due to practical constraints units are generally not evaluated 

on all requirements.  If  9..  is defined to be the probability of unit  i 

satisfying a requirement in the j-th category then we assume that X..  has 

a binomial distribution,  S(M..,G..) .  We further assume that given 

0  = (6  ,...,G  )■' ,  X ,. . . ,X^  are independent.  These two assumptions 
\,1. IX        lix XX        XK 

are consistent with the fact that, for a particular unit, performances on 

different requirements are independent.  Finally, we assume that X , ...,X,^^ 

are independent,  where X. =   (X.-,,... ,X.^)   , i.e., the performances of 
r^X        XX XK 
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different units are independent.  These assumptions are summarized as: 

X.^ ^    '^^^'^ij'^ij) '  i=l.---.N ,  j=l,...,K       j       (1) 

X  ,...,X   , given  6. , are independent , (2) 
IJL IJS. r\_,i 

Xi,...,X.^ are independent. (3) 

The most critical assumption of the category model is that all require- 

ments in the same category have the same probability of being satisfied. 

Zacks, Marlow, and Barzlly (1981) and Zacks and Marlow (1982) have concluded 

that the assumption of equal probabilities within a category is tenable for 

a ten category model similar to the one that we propose.  We use a cross- 

validation technique to investigate the appropriateness of the six categories. 

The 234 requirements of section A were randomly split in half producing 

two sets of count vectors, {X^-^\ . . . ,X^l^ }     and  {Xp\...,X^Jh .  If the 

probability of satisfying a requirement is a function only of its category 

then we should have equal probabilities for X..  and X..  .  More formally: 

X(l) . S(M?1) , efl)) '        (4) 

x'^V  % B^l^V   , ef^^) , (5) 
IJ     IJ ' IJ 

and we want to test the hypotheses, 

0   13    13 

i, :       some 9."!"  , .. . 

Hn:  0,.^^ = e{j^ ,  i=l,...,N ;  3=1,..-.K      ;        (6) 

vs. H :  some e^"!"'' j^ B^V (7) 

- 3 



T-486 

3.  Verifying the Assumptions of the Category Model 

(1)    (2) 
For a particular unit and category, we can test whether 9..  = 6.t 

by using Fisher's exact test (see Fisher (1925)).  This test is illustrated 

in Table 1 below. 

Table 1 

2x2 Contingency Table for Testing Whether 

e(i). e(2) 

Satisfied Not   Satisfied 

First Half 

Second Half 

xfi> 
13 

(M^l)   -X^l)) 
3-J                 IJ iJ 

^(2) ,,,(2)       ^(2) 

C. . 
IJ 

C. . 
iJ ^ij 

.(1) Fisher's   test  is based on  the  conditional  distribution of    X.. 
ij 

C. .   ,   C. .   ,  M^"!-'*   ,   and    M^^^ 
ij ij ij ij 

given 

Under    H     ,  we have 

P{X(1)   =xfl)|   C 
ij ij IJ       IJ       IJ        IJ 

J      IJ 

IJ / \ IJ 

IJ J 
2) 

M. 
IJ 

(8) 

ij 

and  the  conditional  significance  level  or  "p-value"  of   the  test  is  given by 

a. 
ij X e I 

P{X?-'-^   = xlc.   ,   C..   ,  M^^\  M^^h   , 
ij I   ij   '     ij   '     ij   '     ij 

(9) 
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where 

'     iJ      iJ   iJ   ij   ij  -   ij    ij ' ij'  ij'  ij '  ij J'^-^^'' 

After performing the test for each combination of  (i,j) we are left 

with the problem of combining all of the NK = 450 p-values to make an 

inference about  H  defined in (6).  We use two different approaches to 

address this issue.  First note that if X..  had a continuous distribution 

then we could use the well-known result (see Fisher (1925)) that 

- 2 £n a^^ ^  x^[2] , (11) 

2 
where X [v]  denotes a chi-square random variable with v degrees of 

freedom.  We could then combine the tests by noting that 

N  K 
q =    Z      E  (-2 £n a..) (12) 

i=l j=l       "-^ 

2 (1) 
is distributed as  x [21^] .  Of course X./  is a discrete random variable 

but its conditional distribution is approximately continuous when 

C^  , C.  , M^-^\     and M^^^  are all large. 

Another approach to combining the p-values is to note that under 

HQ , each a   is independent and has probability  .95 of being greater 

than  .05 (again assuming continuity).  Thus if we define 

it of    a.,   greater than  .05 
W = 

then W is distributed as  B(NK, .95) if Q^-^^   = Q^V   ,   for all  i,i . 

- 5 - 
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Table 2 summarizes the results for twenty different random splittings 

of the 234 requirements.  The splittings were obtained using GGPER, an IMSL 

subroutine which generates random permutations, and the a.,  were computed 

using IMSL subroutine CTPR.  All computations were performed on an IBM 370 

computer. 

If we first consider the left part of the table, which includes all 

cases for which Fisher's test is meaningful, we see that all values of W 

are greater than  .95, and all values of  Q  are less than 788 , the number 

of degrees of freedom of the reference chi-square distribution.  These results 

clearly provide no cause for rejecting the hypothesis of equal probabilities 

in each half.  Looking at the right part of the table, we note that for some 

splits of the requirements,  W is less than  .95.  Seven of the twenty 

values of W are below  .95 but none are more than 1.6 standard deviations 

below, where 

SE(W) = /(.95) (.05)/(#of applicable tests) .       (14) 

Using the Bonferroni method to set the overall significance level at .10, 

none of the twenty W's  provides significant evidence against the hypothesis 

of equal probabilities in both halves.  Note also that all tv/enty of the 

Q's  are less than the corresponding degrees of freedom which is clearly 

consistent with the null hypothesis. 

In summary, we find that the assumption of equal probabilities for 

all requirements in the same category to be quite tenable.  Using the 

category model we now develop an empirical Bayes procedure to improve the 

estimates of the category probabilities. 

4.  Empirical Bayes Estimates of the Category Probabilities 

Our chief interest is in estimating 6,,...,6.^ ,  a large number of 

multivariate parameters.  Since these are not unrelated parameters, empirical 

Bayes or James-Stein type (see James and Stein (1961)) estimators are 

candidates for reducing the overall error of estimation of the N parameter 

vectors.  A lucid exposition of the applicability of empirical Bayes 

estimators is given by Morris (1983). 

- 6 - 
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Split 

Table 2 

Combining Fisher's Tests Across All 
Evaluations and Categories 

Niamber of 
Applicable 
Tests* W* 

Number of 
Applicable 

Tests** 1*A \]** 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

394 

394 

393 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

394 

426.9 

463.0 

505.3 

428.7 

506.3 

456.1 

570.3 

463.2 

499.5 

407.3 

431.9 

421.9 

483.8 

469.5 

520.9 

424.7 

410.5 

445.8 

503.4 

462.1 

.992 

1.000 

.987 

.990 

.980 

.977 

.975 

.987 

.977 

.982 

.987 

.992 

.975 

.997 

.967 

.982 

.980 

.982 

.975 

.982 

55 

55 

51 

52 

53 

47 

50 

45 

55 

55 

50 

55 

44 

58 

50 

54 

58 

45 

51 

55 

77.8 .982 

74.6 1.000 

113.5 .922 

65.9 1.000 

85.0 .981 

65.7 .979 

73.2 .980 

68.6 .978 

84.1 .964 

75.3 .964 

69.4 .940 

91.0 1.000 

68.4 .932 

113.8 .983 

95.7 .920 

87.0 .926 

58.6 .983 

68.0 .933 

106.4 .902 

78.4 .964 

* -     (1) (2) 
Cases in which any of  C _ , C^. ^, M)/ or M;^'^  are 0 lead to a degenerate 

distribution for X (1) 
ij 

** 

iJ   ij   ij     ij 

These cases were omitted. 

M) Only cases in which C.. M://M.. >  5,   Z  =  1,2 and  C. l-P^VM  > 5, 2, = 1 2 
13  ij  ij ij  ij  ij    '     ' ' 

are included. j 
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The basic assumptions we have made are that different evaluations 

are independent, i.e.   X^,...,X,  are independent random variables, and 

that each X.. , given 9. , is distributed as ^^^±^'^i^^   '     ^^   ^^^ 

M..  are all moderately large, then the X..  are approximately normal 
XJ J 

and many well-known results can be applied.  To further simplify the 

analysis we make use of the variance stabilizing transformation 

Y.. = 2 arcsin ( V(X.-. + .5)/(M  + 1)) . (15) 

Y   is distributed approximately as a normal variable with mean 

n..  = 2 arcsin (/eT.) , (16) 
ij ij ! 

and variance M..  (see Johnson and Kotz (1970)). . The usefulness of this 

transformation is that the variance of Y..  does not depend on any 

unknown parameters.  In this transformed scale assumption (2) implies 

that  Y  ,...,Y.   are independent, given n.,,...,n.Tr •  Let 
l-L       IK iX       iK 

Y. = (Y  ,...,Y  )  and T] . = (n.,,... ,ri-T^) •  We summarize the distribu- 
'\;l        IX IJS. r^jl       XX XK. 

tional assumptions by stating that ' 

Y n. '^  N(n. ,D ) ,   i=l,...,N , ! (17) 
r^l ' r^X       r^^X   X I 

where 

D.  = diag {M.]^,....M.J}  . I (18) 
CxK 

A Bayesian model postulates that the vectors  n.  are independently 

drawn from a (prior) distribution which, in our context, can be thought 

of as representing the "superpopulation" of combat units.  It is 

convenient to assume that the ri.  are drawn from a normal distribution, 
0.1 

- 8 - 
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i.e.,  ri-i.-'-jIv ^^^ i.i.d. vectors 

n- ^ N (u,Z) ,  i=l,...,N , (19) 

where y  is an arbitrary mean vector and Z  is an arbitrary positive 

definite covariance matrix.  It should be noted here that other prior 

distributions are possible.  Leonard (1972) considers models where 

log (e . ./(1-e. .))  is normally distributed; Good (1965) allows  9..  to 

have a beta distribution.  While these alternative models are somewhat 

tractable in a single category situation, it is difficult to incorporate 

a dependence structure into the distribution of  6.  in either case. 

Since the M..  are large enough for the assumption of normality to be 

reasonable, there are no compelling reasons, in this application, for 

using either of these alternative models. 

Using (17) and (18), the predictive or unconditional distribution 

of  Y.  is N(y, Z + D.)  and the posterior distribution of  n.  is 

n  [Y 'X. N(Y  - B  (Y  - y ) ,  (I-B )D ) ,    I (20) 

where 

B. E D. (D. + Z) "^  . ' (21) 

If y  and  Z were known, the Bayes estimate of T].   ,   assuming squared 

error loss, would be the posterior mean. 

n. = Y  - B  (Y  - y) . ! (22) 
'X.l   0^1    1  %i   % 

This estimator has been proposed by Efron and Morris (1972) for the case 

in which D^,...,D„ are equal. 
1    ' N      ^ 

- 9 - 
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In order to use the estimator in (22), we need estimates of 

y and  Z .  The unconditional distribution of  Y  leads to the follow- 

ing simple estimates: 

y* = Y  . (23) 

_1 N 
Z* = N   Z (Y. - Y) (Y. - Y)  - D ,      , (24) 

-   -1 ^ -1 ^ 
where Y=N   ZY.,D=N   ZD..  Although these estimates are not 

i=l ^^ i=l  ^ 

unreasonable, they are not the most efficient ones available and  Z  has 

the added drawback of allowing negative estimates of variances.  We instead 

suggest estimates of y , Z  derived by maximizing the predictive likeli- 

hood of Y ,.,.,Y  .  This likelihood function,  L(y, Z; Y^,..,,Y„)  is 

proportional to: 

^ ,      ,-1/2        1 -1 
n |Z + D I     exp {- ^ (Y. - y)MZ + D.) -" (Y. - y)} .    (25) 

-1 = 1 ^ ^    'Ajl    % 1       0.1    % 

Instead of directly maximizing (25) we will make use of the El algorithm 

of Dempster, Laird, and Rubin (19 77).  The Et-I algorithm is designed for 

missing data situations but it can be applied here if we think of 

ri,,...,ri  as the missing "data."  The algorithm consists of an  E-step, 

computing the expectations of the sufficient statistics (r\-, , . . . ,ri„) 
%1    fX/N 

given the observed data together with the current estimates of the 

parameters  (y,Z) , and an M-step in which the likelihood of the complete 

data based on the estimated sufficient statistics is maximized.  To define 

the algorithm more specifically, let y^^ , Z    be the current estimates 

of  (y, Z)  after p  iterations.  From (22) and the independence of 

r\, ,. .. ,r]     , the E-step is given by 

- 10 - 
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&^^^   =  E (n.ly^P^ , Z^P^ , Y^,...,Y.J = Y. - B?P> (Y. - y(P^) .     (26) 

From standard results, if  n ^   ,...,f|^/'     were in fact the observed 

values of  ri ,...,n,. , the maximum likelihood estimates of  y ,  E 

would be I 

u^P-*-^^ =N-i I   n/P-"'^ ;' ■      (27) 
'V i=i %i 

gcp+i) = ^-1 I (^(p+i) . -(p+D) (^(p+i) „ ;](p+l))^ (28) 

Equations (26) - (28) define the algorithm for our problem.  Using y* , E* , 

defined by (23), (24) as initial estimates led to convergence of the 

algorithm (to four decimal places in all components of \i    and Z)  in 

nine iterations.  Table 3 gives the initial and final estimates.  Note 

that y and y* are very close but there are substantial differences 

between E and Y.*   . 

Using (22) we obtain the empirical Bayes estimates 

n. = Y - B  (Y - y) ,  i=l,...,N , I (29) 
! 

y^ . ^   -1 
where B. = D. (D. + Z)   .  Our interest is in estimating 9.  and the 

111 'X.l 

natural estimates to take are i 

■ 

e^^ = [sin (n^j/2)]^ ,   i=l N ; j=l,...,K , (30) 

although these are not exactly the Bayes estimates of {9..}  for the 

assumed model. 

- 11 - 
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Initial and Final Estimates of ^, ^ 
'\; 

2.3916  2.3837  2.2332  2.4693  2.2211  2.4081 
^ 

U :   2.3943  2.3843  2.2338  2.4691  2.2233  2.4097 

^ 
.0693 .0426 .0648 .0558 .0597 .0428 

i. 

.0087 .0474 .0475 .0616 .0376 

.0856 .0809 .0574 .0449 

.0866 .0589 

.1182 

.0509 

.0553 

.0471 

.0461 0370 .0557 .0573 .0541 .0399 

0297 .0447 .0460 .0434 .0321 

.0673 .0692 .0653 .0482 

.0712 .0672 

.0634 

.0496 

.0468 

.0346 
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5»  Cross-Validation of the Bayesian Model 

The motivation for using empirical Bayes estimates instead of 

estimating the probabilities with the relative frequencies is the hope 

that the overall error across all units will be smaller.  Other empirical 

studies (see Efron and Morris (1975) and Fay and Herriot (1979)) have 

demonstrated that empirical Bayes techniques do lead to improved 

estimation.  In both of these studies the true parameter values were 

available so the actual error of the estimates could be computed.  We do 

not have this luxury so we will again use cross-validation to compare the 

Bayes estimates with the sample proportions. 

As described in section 2, we split the 234 requirements into two 

halves.  The first half was used to estimate the probabilities and the 

relative frequencies in the second half were compared with these estimates, 

'^B 
Define p..  to be the Bayes estimate computed from the first half and 

let  p..  denote the (modified) sample proportion from the first half, 

1 
i.e. 

Pij = ^^±f  + •5)/(M^J^ + 1) . (31) 

Let  p..  denote the (modified) sample proportion from the second half, 

P.. = (X^f + .5)/(M{f + 1) .       ' (32) 

■ 

X'R 
For each unit we would like measures of agreement between p.  and p. 

'X,-^ 'XJ-^ 

and between p.  and p. •  We propose two measures: 

ix 

C^ =  Z   -^ iJ -iJ   . (33) 
i   . ,    ^B   ,,   -B ,      ' , ^-^^^ 

J-l     P„   (l-Py) 

K 
C = 2 Z {M^2)    -^^g (p^./pj.) +M^f (1-p  ) log (d-p  )/(i-pB ))}. (34) 

- 13 - 
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In a similar manner define C.  and L.  by replacing p.. with p.. 

in (33) and (34).  Note that  C.  is the Pearson chl-square statistic 

and L.  the likelihood-ratio statistic for comparing p.  and p. 

By using these measures we are attempting to incorporate the variability 

of p into the comparisons.  Bishop, Fienberg, and Holland (1975) give 

a complete discussion of the merits of using these statistics to compare 

observed and estimated probabilities. 

TJ 

Table 4 summarizes our findings.  We have summed  C  , C  L 
i   i  i 

and L^ over the N=75 evaluations.  The results are strikingly in favor 

of the Bayes estimates.  For every one of the 20 splits of the require- 

ments the Bayes estimates produced a smaller total "error" as measured by 

either  C or L .  We have, for a number of splits, looked at the 75 

values of  C  and L  for each unit and it is clear that the Bayes 

estimators are providing protection against gross errors in estimating 

p^  , as the large values of  C.  or L.  are almost exclusively observed 

for  p..  as opposed to  p. . . 

In summary, we have found that the empirical Bayes methodology 

leads to a very tractable means of estimating a collection of vector 

parameters and offers a considerable improvement over the typical method 

of estimating each vector separately.  To our knowledge this is the first 

empirical study that assesses the efficacy of empirical Bayes estimators 

for vector parameters.  We hope that it leads to a greater usage of these 

techniques in the future. 

- 14 - 
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Split 

75 ^^        R 

i=l ^ 

75 
E L. 

i=l ^ i=l     ^ 

1 824.3 539.2 614.6 506.7 

2 898.5 547.2 702.7 512.8 

3 788.1 563.7 678.0 555.1 

4 784.9 572.6 596.5 513.8 

5 809.2 533.9 709.9 552.8 

6 780.4 439.6 667.2 470.4 

7 906.3 614.9 760.4 587.6 

8 818.3 620.3 686.1 594.9 

9 815.0 582.8 704.4 565.8 

10 895.7 665.4 655.0 558.3 

11 863.0 587.3 657.9 533.4 

12 970.2 588.8 637.2 511.0 

13 850.5 563.5 673.8 508.6 

14 704.8 541.1 656.4 565.1 

15 1213.8 735.9 814.7 636.8 

16 989.4 695.7 702.6 620.0 

17 880.6 554.8 606.9 495.5 

18 956.5 586.6 753.2 564.2 

19 1125.1 611.8 793.9 570.8 

20 914.7 574.1 652.2 529.1 
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