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THE SPOT OF ARAGO AND ITS ROLE

IN ABERRATION ANALYSIS

Donald Ross Erbschloe

B.A., Physics, University of Virginia, 1976
M.S., Physics, University of New Mexico, 1983

The Spot of Arago is the bright diffraction spot in the center of

the shadow behind a circular obstacle. Because this pattern is the

result of diffraction at the edge of the obstacle, the spot contains

information about the incident beam. If the incident beam contains

aberrations, the shape and intensity of the diffraction pattern should

change.)

For points on and near the optical axis, analytical solutions to

the Rayleigh-Sommerfeld diffraction integral are possible for a circu-

lar obscuration and an annular aperture illuminated by a plane wave of

uniform or gaussian intensity distribution and containing defocus

and/or spherical aberration. Computer studies of these cases show

excellent agreement with experiment. The amount of defocus and spher-

ical aberration can be deduced by intensity measurements and shift in

positions of on axis intensity extrema behind an annular aperture. An

empirical study of astigmatism revealed a predictable change in the

diffraction pattern allowing for the verification of the aberration to

within .05 wavelengths.

The Spot of Arago is inherent in many optical systems due to the

. .viii
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I geometry of components. The technique of aberration determination by

changes in the diffraction pattern should be useful in such systems.
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aperture. c = .625. Viewing distance: 2 - 2.05m.
Magnification 6X. Exposure time 1 second.
130 countertilt. Maximum on axis ... .......... .227
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6.74 5/16" diameter obstacle with 1/2" diameter S
aperture. E = .625. Viewing distance: 2 - 2.
O5m. Magnification 6X. Exposure time 1 second.
140 countertilt. Minimum on axis ... .......... .228

6.75 5/16" diameter Qostacle with 112" diameter
aperture. E = .625. Viewing distance: 2 - 2.05m.
Magnification 6X. Exposure time 1 second.

140 countertilt. Maximum on axis ... .......... .225
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Magnification 6X. Exposure time 1 second.
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Magnification 4X. Exposure time 1 second.
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6.81 3/16" diameter obstacle with 7mm diameter
aperture. c = .68. Viewing distance: .6 - .65m.
Magnification 4X. Exposure time I second.
240 countertilt. Maximum on axis ... .......... .231

6.82 3/16" diameter obstacle with 7mm uiameter
aperture. £ = .68. Viewing distance: .6 - .65m.

Magnification 4X. Exposure time 1 second.
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6.83 3/16" diameter obstacle with 7mm diameter

aperture. c = .68. Viewing distance: .6 - .65m.
Magnification 4X. Exposure time 1 second.

260 countertilt. Maximum on axis ... .......... .232 '
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6.84 3/16" diameter obstacle with 7mm diameter
aperture. e = .68. Viewing distance: .6 - .65m.

MYagnification 4X. Exposure time 1 second.
280 countertilt. Maximum on axis ... .......... .233

6.85 3/16" diameter obstacle with 7mm diameter
aperture. c = .68. Viewing distance: .6 - .65m.

Magnification 4X. Exposure time 1 second.
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6.87 1/2" diameter obstacle with 5/8" diameter

aperture. E = .8. Viewing distance: 2.05 - 2.15m.
Magnification 6X. Exposure time 1 second.
100 countertilt. Minimum on axis ............ .. 234

6.88 1/2" diameter obstacle with 5/8" diameter
aperture. : = .8. Viewing distance: 2.05 - 2.15m.
Magnification 6X. Exposure time 1 second.
100 countertilt. Maximum on axis ............. .235

6.89 1/2" diameter obstacle with 5/8" diameter
aperture. E = .8. Viewing distance: 2.05 - 2.15m.
Magnification 6X. Exposure time 1 second.
120 countertilt. Maximum on axis ... .......... .235

6.90 3/16" diameter obstacle with 5/8" diameter
aperture. Viewing distance 2m. 80 counter-
tilt ........... ........................ .241

6.91 3/16" diameter obstacle with 5/8" diameter
aperture. Viewing distance 2.05m. 80 counter-
tilt ........... ........................ .242
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Chapter 1

INTRODUCTION

Annular apertures are commonplace in optical systems. For exam-

ple, Cassegrain telescopes (reflecting) have a secondary mirror which

acts as a central obscuration in an otherwise circular field. A

circular stop deliberately placed on the objective of a refracting

primary mirror
secondary

mirrorm

7I

Field

Figure 1.1

Cassegrain Mirror System and Cross-section of Field1

telescope can increase the depth of focus and the resolving power of

62
the system.2

6
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Statement of the Problem I

Laser systems often have annular apertures as part of an optical

resonator configuration. The diagram below depicts an elliptical out-

coupling mirror set-up that acts as the optical analog of an annular

aperture.

scraper
mirrors incident

be am

shadow sladow

analog

incident beam
Figure 1.2

Elliptical Scraper Mirror and Its Optical Analog

This last configuration appears in the design of many High Energy

Laser (HEL) resonators. It has created a particular nuisance for its

developers. In the center of the shadow produced by this effective

annular aperture is a hot spot. (The frequencies of the HEL output

are in the infrared range.) The spot is a consequence of the con-

structive interference of radiation diffracted from the outer and
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inner edges of the "aperture." This spot is related to the spot of

Arago -- the diffraction spot formed by light incident upon a circular

obstacle.3 The intensity of the spot can be as high as four times the

intensity of the incident beam. This makes it an unwanted addition to

a designated "shadow" area. Left uncheckeI the spot can burn up vital

optical components or produce thermal deformations in components.

Designs must include provisions to diffract or reflect the aggravating

manifestation into an optical dump. The attituc, of the HEL workers

is reminiscent of Lady Macbeth's plea "Out, damned spot! out, I say!"4

It is frequently necessary to perform real-time HEL diagnostics

to test beam quality. This requires additional gratings, beam split-

ters, or other beam-sampling components which add to the overall

weight, size and complexity of the design. If the hot spot contains

information about beam quality, namely, if its shape and size is

characteristic of aberrations in the incident wave front, it could be

used as an integral part of the required diagnostic process. Such a

scheme would eliminate the need for a lot of hardware.

James E. Harvey and James L. Forgham have demonstrated that the

9 shape of the spot in the shadow of a circular obstacle illuminated by

a plane wave does change with increased aberration (astigmatism).
5

The feasibility of a diagnostic package using the spot as input

* depends on the answers to the following questions:

1. What types of aberrations produce measurable changes in the
spot?

0 2. How sensitive are changes in the spot to changes in amount of
aberration?

... :..• .. : -.. T.:...:-.... -- :.,.:: . - :" . . . -. :, , -. ..... ........ :i : , . ."-



4 4

3. Given specific spot characteristics, can the aberrations
present be determined?

Thesis Content

This thesis will address itself to the solutions of the preceding

questions for the following Seidel aberrations: defocus, spherical

aberration, coma and astigmatism. First the remarkable history of the

spot of Arago will be traced from the eighteenth century to current

research. A detailed analysis for the unaberrated cases of the spots

produced by circular obscurations and annular apertures will serve as

standards against which to compare the aberrated cases. It turns out

that analytic solutions to the Rayleigh-Sommerfeld diffraction inte-

gral are possible for the rotationally symmetric aberrations (defocus,

spherical aberration) for certain restrictive, but physically impor-

tant cases. The non-rotationally symmetric aberrations (coma, astig-

matism) require numerical or empirical analysis. Where possible,

theory is tested against experimental results. Each aberration is

handled separately but various strategies to separate combinations of

aberrations are discussed. The main body of the thesis culminates in

a discussion of experimental and theoretical results, suggestions for

future research, and overall conclusions. Several appendices are

included which contain material of historical interest, lengthy deri-

vations and computer program listings.

Potential applications exist for a variety of optical systems;

- -- ' - , .' .-i . " .? i , . i . . . ", " - " - -,'
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however, the High Energy Laser was cited as a specific example of a

system which might benefit from a sensor package capable of performing

wavefront analysis upon the diffraction spot. This is because the

diffraction spot is an inherent part of the output of any annular HEL

beam and the use of a separate beam sampling component for diagnostic

purposes can degrade the beam quality. The possibility that this

diffraction pattern gives measurable and meaningful information is the

incentive for the research that follows.

2o ,~

S

*
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Chapter 2

HISTORICAL BACKGROUND

The Wave Theory vs. the Corpuscular Theory of Light

One of the great ideological clashes in the history of physics is

the controversy between the corpuscular and wave theories of light.

The center of the conflict rested on the very nature of light. Advo-

cates of the corpuscular theory agreed with Sir Isaac Newton that

light was composed of minute particles. The wave theorists sided with

Rene Descartes, Robert Hooke and Christian Kuyghens who felt light was

the result of waves undulating in a medium called the ether.
1

By the beginning of the nineteenth century the corpuscular theory

was firmly ensconced as the preferred theory. Peter Anton Pay pro-

poses the popularity of the particle theory originated in the philo-

sophical battle between inductivism and deductivism:

'What occupied scientists was not a battle of waves vs. corpuscles
* . . nor blind allegiance to Newton's authority. Rather, it was
a basic and deeply felt difference of opinion as to how and where
scientific truth was to be found and whether the ultimate canons
of scientific justification were to be experimental or deductive.

2

Newton's approach in his work Opticks was experimental and this had

great appeal for the scientists of the eighteenth century. The cor-

puscular theory was adopted almost by consequence.
3

To win over the scientific community the wave theorists needed to



show experimentally the conclusive advantages of their theory. The

first advance was made by Thomas Young. He conducted a series of

experiments exploring a variety of diffraction effects (including the

famous double slit experiment). Despite publication of his papers and I-
the delivery of a lecture and demonstration before the Royal Society

of London in 1801, Young's work won little immediate support for the

wave theory.4 However he did gain a very important convert -- the

Frenchman Dominique Francois Jean Arago.

In 1811 Arago studied the Newton's rings phenomena in calcite in

conjunction with his work on polarization. The failure of the corpus-

cular theory to explain many of his results encouraged him to consider

the wave theory. He began a correspondence with Young and was soon

convinced of the truth of Young's theory.5

The next advance in the cause of the wave theory came from Augus-

tin Jean Fresnel. He met briefly with Arago in 1815. Arago intro-

duced Fresnel to Young's treatises and persuaded him to come to Paris

in 1816 to begin his researches in diffraction. The timing of the

research was ripe, for in January 1817 a commission composed of Pierre

Simon Laplace, Jean-Baptiste Biot, Claude Louis Berthollet and Jacques

Alexandre C6sar Charles chose diffraction as the subject for a prize

sponsored by the Academie des Sciences.6

Fresnel entered his memoir on diffraction in the contest. In _

July 1818 a panel of five was chosen to judge the entries. The panel

members were Laplace, Biot, Arago, Sime6n Denis Poisson and Joseph -

Louis Gay-Lussac. Laplace, Biot and Poisson were staunch adherents of P

the particle theory of light while Arago advocated Fresnel's view.

P
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9

Gay-Lussac, a chemist, was 
impartial.

7

In reviewing Fresnel's theory, Poisson saw that the simple geome-

try of light diffracted by an opaque circular disc suggested the

existence of a bright spot of light in the center of the disc's

shadow. This, he felt, was contrary to experience and thus Fresnel's

theory must be wrong.
8

Arago tested Poisson's prediction in the laboratory. He affixed

a disc 2mm in diameter to a plate of glass and using sunlight observed

the spot in the center of the shadow.9 (This is an irony Pay should

appreciate -- Poisson attempted to discredit Fresnel's wave theory

based on deductive reasoning; Arago vindicated Fresnel through experi-

ment.) Since this time the phenomena has been known as either Pois-
S

son s spot or Arago's spot. (This paper adopts the terminology of

crediting Arago, who trusted in the spot's existence.) Arago's dis-

covery was powerful evidence in favor of the wave theory of light.

Fresnel won the prize from the Academi4 and his entry became known as

his Crown Memoir.'O

Although the demonstration of the spot did much to usurp the

corpuscular theory, the controversy between waves and particles con-

tinued through the nineteenth century in a series of incarnations.

Earlier Observations of the Spot

Many sources mention that Arago was not the first to observe

the bright point of light. John William Strutt (Lord Rayleigh) and

d
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E. Verdet in his Lecons d'Optique Phisique note that Joseph Nicholas

Delisle, a French astronomer, discovered a bright spot in the center

of a circular shadow "in the earlier half of the 18th century," a

discovery which subsequently "passed into oblivion."
11 John Strong,

Max Born and Emil Wolf credit Maraldi, another French astronomer, with

the finding. Born and Wolf say that Maraldi's observation occured "a

century earlier" than Arago's experiment and "had bee- forgotten." 1 2

Strong claims that Maraldi found the bright spot "over half a century

earlier. '13

Joseph Nicholas Delisle (1688-1768) was one of a family of famous I

French scientists. One brother, Guillame, was a geographer and histor-

ian, another brother, Louis, was also an astronomer. Catherine the

Great invited Joseph and Louis to come to Russia in 1726 to run the I

observatory at St. Petersburg. Louis died while in Russia and Joseph

Nicholas came back to Paris. Delisle became a member of the Academi

des Sciences in 1714 and in 1724 was elected to the Royal Society of 0

London.14

As a member of the Academie des Sciences, Deslisle could have met

and worked with two Maraldis. Neither Born and Wolf's text nor

Strong's book mentions Maraldi's first name.

Jacques-Phillipe Maraldi (1665-1729) was the nephew of Dominique

Cassini -- the discoverer of the famous division in the rings of

Saturn. Jacques-Phillipe also became an astronomer and joined the

Academie des Sciences in 1694.

Jean-Dominique Maraldi (1709-1788) was the nephew of Jacques-

Phillip Maraldi. He was inducted into the Academia des Sciences in
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1731-15

The vague references from Rayleigh, Verdet, Strong and Born and

Wolf do not allow one to pinpoint the date of the first observation,

the circumstances surrounding the discovery, who made it or even which

Maraldi was involved. Because Delisle and both Maraldis lived and

worked in Paris at overlapping times and belonged to the same scien-

tific organization it is possible that the "discovery" by the second

party was actually a verification of a phenomenon observed by the

first.

4 The sources also suggest the observations of Delisle and Maraldi

about the spot faded into the limbo of untimely scientific discov-

eries. That Poisson was unaware of these findings is evident from the

challenge he made against Fresnel's theory. Arago, however, did know

about the earlier sightings. On February 26, 1816 (two years before

he sat on the judging commission with Poisson) he presented to the

National Institute observations about diffraction and an early draft

of Fresnel's memoir. Here he mentions that besides Grimaldi, Maraldi

and Delisle showed that light could penetrate the geometric shadow

behind an opaque body.16 This knowledge may have provided additional

impetus for Arago to verify Poisson's skeptical prediction.

Rinzs Around the Spot

The ease with which one could produce the spot made it an ideal

subj'ct for study by the new legions of wave theorists. The following
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is a description of an experiment by Richard Potter to test the inten-

sity of the spot.

I prepared . . . discs of brass of 1/10, 2/10, 3/10, 4/10 and
7/10 and with watch makers implements of 1/20 inch. The discs
were attached by thin films of cement to a plate of glass. The

sun's light was reflected horizontally through a window shutter
of a darkened room, and the sun's image, formed by a lens of 1/6
inch focal length was at 60 inches distance from the disc at the

same time the focus of the eyelens, by which the phenomena of
diffraction were examined, was at 60 inches distance on the other

side. When the whole was adjusted, on looking through an eyelens
of about 1 inch focal length, at the centre of the shadow cast by

the disc, there was seen a bright central spot, of a white color
slightly tinged with brown, surrounded by a greater or lesser
number of coloured rings, according to the size of the disc.

17

The colors observed by Potter stem from the fact that light from the

sun is not monochromatic.

The concentric ring structure was given a mathematical foundation

by the British Astronomer Royal, George Biddell Airy. In a paper

entitled "On the Diffraction of an Annular Aperture," Airy constructed

a table by which one could deduce the spacing of the ring structure

produced in three cases: monochromatic light falling on a circular

aperture, a circular obscuration or an annular aperture.
18

Lommel's Work

0

The definitive study of diffraction by a circular obstacle and a

circular aperture was made by Emil Lommel in the 1880s. Lommel solved

the diffraction integral by using Bessel functions. He found the

intensity distribution of light in the shadow of a circular obstacle
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satisfies the expression:

2 +S (II-1)

2

where M is the intensity and C and S are integrals whose solutions

contain the Lommel functions:

Born and Wolf list the Lommel functions as

U (u, v) = V (-1)S(n+2s j (v) (11-2)
n v Jn+2ss=O

V (n, v) = (-1)s( n+2s (v) (11-3)
n s=0 v n+2s

where u and v are dimensionless parameters based on the geometry of

the set-up and Jn+2s is the Bessel function of the first kind and n +

2sth order.19 The Lommel functions have the disadvantage of being

slowly convergent.

Lommel performed the experiment to verify his theory. He used

sunlight and a prism to obtain fairly monochromatic light. With an

eyelens etched with a micrometer he measured the ring structure of

both the obstacle and the aperture and found it to be in excellent

agreement with theory.20

Experiments at the Turn of the Century

It is interesting that Lommel relied on the somewhat crude method

of sunlight and prism to make a light beam with narrow band width.
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The nineteenth century saw major advances in the production of high

intensity light sources. In 1825 Thomas Drummond invented lime-

light. 2 1 The carbon arc-light was developed by a number of people.

Frederick Holmes built a cumbersome working model in 1857. By the mid

1870s practical commercial arc-lamps were being sold.22

The widespread use of arc-lamps in laboratories at the turn of

the century renewed interest in the spot of Arago. Using a spec-

trometer one could isolate an intense monochromatic signal from the

carbon spectrum. This was important because photographs of the phe-

nomenon were possible.

W. Arkadiew published a famous series of photographs in 1913.

Using a variety of lens combinations he altered the virtual distance

between object and image planes to observe the change in spot size.23

In April 1914 two papers appeared which demonstrated that a

circular obstacle could be used in place of a lens to produce an

image. Alfred W. Porter noticed that "the bright spot is in reality

an image of the source of light." 24 Porter used a set-up similar to

the one described by Mason E. Hufford and depicted below.

box

arc collimating opening suspended photographic
lamp lens with sphere plate

transparency

Figure 2.1

Experimental Set-up to Demonstrate Imaging by a Disc

. .. .. ...
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Hufford reported that "each point in the aperture (opening to the box)

produces a corresponding effect in the shadow. This suggests, there-

fore, that the aperture may be any sort of figure and in the shadow of

the disc or sphere there should be an inverted image of it." 2 5 Porter

used a triangular opening to produce a three-sided image. Hufford,

with a bit more flair, made a monogram out of the letters I and U (he

was a professor at Indiana University) as one opening and a transpar-

ency of the profile of Woodrow Wilson as another. The resultant image

of the latter appears in Jenkins and White. 2 b

Hufford also made photographs of the ring structure in the shadow

of a circular obstacle. Loimmel had only measured the radii of a few

rings immediately surrounding the central spot. By exposing a photo-

graphic plate for several hours Hufford got photographs showing a

large number of rings. These rings could be measured to check Loin-

mel's theory. There was excellent agreement with theory (less than 2%

|difference in radius size for the outer rings.

At a meeting of the Physical Society of London in 1925, A. 0.

Rankine projected several images using a 7mm ball bearing. He noted

that each point in the light source produces an image in the shadow. -

Since only one source point is on the optical axis, a circular obsta-

cle creates some aberration. 2 8 The aberrations can be understood by

noticing that points in the source off the optical axis do not enjoy

the special symmetry that the axial point does.

I
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source obstacle sourJe obstacle

Figure 2.2 Figure 2.3

Disk Illuminated by Disk Illuminated by
On-axis Source Point: Off-axis Source Point:

Equal Optical Path Distances Different Optical Path Distances

i

Optical path differences in Figure 2.3 lead to phase differences upon

diffraction. If one substitutes a spherical obstacle, the circular

cross section restores the symmetry for every source point.

I

* source obstacle

Figure 2.4

Sphere Illuminated by Off-axis Source Points:
Equal Optical Path Distances for Each Point

Dissimilarities in the intensities of the Arago spots for circular

obstacles and spherical obstacles was the subject of a 1926 paper by

C. V. Raman and K. S. Krishnan. They mounted a sphere and a disc to a

*
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glass plate and measured the central spot intensities for both cases.

If the observation distance behind the obstacles was small, the circu-

lar obstacle produced a brighter central spot than the spherical

obstacle. Raman and Krishnan explained it this way. Rays diffracted

by the edge of a circular obstacle can reach the observation point

directly. For a spherical obstacle one must construct a cone tangent

x x

incident
light -

Circular obstacle Spherical obstacle

Figure 2.5

Diffraction Edge Sources for Rays Converging at Point P

to the back side of the sphere with the observation point as the apex.

"The disturbance incident on the surface of the sphere has to creep

round it, as it were, over the arc XY before the rays diffracted out
4I

by the sphere can reach the point of observation, and must suffer a

very considerable dimunation in the process." As the distance from

the obstacle to P increases, the arc XY decreases in length and the

difference in intensity between the spherical and circular obstacle

diffraction spots becomes smaller.29

The promise of imaging by a disc or sphere was never fully real-

ized. The ring structure associated with each image point led to



4 18

smearing and poor image quality. With no forseeable practical appli-

cation, interest in the spot of Arago waned until the next major

advance in production of monochromatic light.

The Advent of the Laser

A laser is a source of coherent, intense, monochromutic light.

It provides a simple means of observing the spot of Arago. A circular

or spherical obstacle placed in an expanded beam from a laser creates

a bright spot and ring structure that in many cases is visible with

the naked eye.30

The importance of the laser prompted innovative uses for the

spot. One area with great potential is the use of the spot in the

detection of aberrations.

In an interdepartmental correspondence from Hughes Aircraft, 1

J. A. Jenny showed a way to detect tilt in a wavefront. A plane wave

propagating in the direction of an optical axis normal to a circular

obstacle will image a bright spot at every point on axis behind the

obstacle. If the incident wave direction vector makes a small angle

with the optical axis the spot is offset from the axis by a calculable

distance. Thus a circular obstacle placed in a wavefront to be tested

can be used to measure the amount of tilt present.
3 1

Harvey and Forgham solved the Fresnel region Rayleigh-Sommerfeld

diffraction integral for a spherical obstacle with an incident plane

wave of uniform or gaussian distribution of intensity. The intensity
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pattern in the image plane has a J0
2 dependence, where J is the

zeroth order Bessel function. They also derived a formula for the

intensity on axis behind an annular aperture. Introducing known

amounts of aberration (astigmatism) in the incident wavefront they

demonstrated the shape and pattern of the spot and ring structure

changes.32

This last experiment is the embarkation point for this thesis. p

4 5

i.p
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Chapter 3

THEORY I: UNABERRATED CASES

Consider a monochromatic plane wave incident upon an aperture in

an otherwise opaque plane screen. The disturbance at a point P, be-

hind the screen is given by the Rayleigh-Sommerfeld diffraction inte-

gral:1

U(P:) f f U(P ikl cos (n, 1) r drld01  (111-i)

plane

screen plane observation plane

. Figure 3.1

Diffraction by an Aperture in a Plane Screen

S



24

X is the wavelength of the incident wave. U(PI) is the disturbance

function in the plane of screen where:

U(PI) = A(rj, 01) eikW(rl, 0I) T(r,, 01) (111-2)

A(rj, Q1) = amplitude function

W(r1 , 01) - aberration function

T(r,, 0,) = aperture function = 1 if (r,, 01) is in the aperture

= 0 otherwise

n is a unit vector normal to the plane of the screen

cos (n, 1) is the cosine obliquity factor

1 is the vector from point P1 to point P2
!S

It is possible to obtain l1 in terms of the factors r1 , r2, , Q

and z, the normal distance from point P2 to the screen plane. 'S
2 r,

r1 
r

~ssceeenplne observation plane'7

Figure 3.2

General Geometrical Layout

As shown in the above diagram:

* >

z +r (r- 3

4" !
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But by the law of cosines:

2 2 2

z , r + r 2-2r r Cos (0 -Qr rcs( - ) (111-5)J

Case 1: Circular Obstacle with Uniform Illumination

The first case to consider is that of a circular obstacle in the

14screen plane. The diameter of the obstacle is d. The optical axis

will be defined as the line normal to the obstacle and passing through

the center of the obstacle, which is the origin of a cylindrical

coordinate system.

z

d/2

4
Figure 3.3

Geometrical Layout for Diffraction by a Circular Obstacle

If the incident plane wave is of uniform illumination (constant

amplitude A) and contains no aberrations then the disturbance function

4 U in the obstacle plane is given by:

r AT(r 6 1) (111-6)

4



[' 26

The aperture function T can be transferred to the limits of integra-

tion and the Rayleigh-Sommerfeld diffraction integral becomes:

Go. 2Ti
21ikl

U(r 0 z) = - os (n, ) r dr d 1  (111-7) .
2 2) f

d/2 01

Intensity on Axis S
zu

The cosine obliquity factor can be replaced by the term ._ . It1

is convenient to change the variable of integration to 1.

r1

z P2

Figure 3.4

Determination of 1 for On-axis Points

r

12 z2 + r dl=_i dr (111-8)

Thus the integral becomes:

w 27r

U(0, 0, z) =Az ejl

ikl

_ 271Az e dl (III-9)

i 1

z2d /4

p

coS
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To evaluate this integral, integrate by parts:

~) 1 l eikl

g'(l) eM
f'(l) = -12 g(1) =1iki

12 iike

U(0, 0, z) 27tAz - - e e  +
ix i z2+24

S1 eikl dl
S2/4 ki (111-10)

i

This second integral contains a term, otherwise it is identical to

the original integral. Unless one looks immediately behind the obsta-

cle (a distance on the order of a few wavelengths or less) then kl is

much greater than 1. Thus the second integral is negligibly small.

The expression for the disturbance at P2 is:

U(O, 0, z) 2Az ek
k jz+2/4

2-,but since k L
z ik z7+d/4

U(0, 0, z) = A e
+d2/( -11)

What does this expression mean physically? The factor A is the

amplitude for the incident plane wave. z /;z7 + d2/4 is the cosine

obliquity factor for rays diffracted by the edge of the obstacle to

4 " S . - -•"- •--". .°j .•2 J. " ' . .'
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P2 . eik z+d 2 4 is the phase difference from the edge points to the2

point P2 " This indicates only the rays diffracted from the edge of

the obstacle cause a disturbance on axis. Since the optical path

length is identical for each edge-diffracted ray converging at P2 the

overall interference effect will be constructive.

The on-axis intensity distribution is given by the expression:

I(O, 0, Z) = IU(O, 0, z)1 2

z2 /= A2 Z d214( 
I - 2

Substituting the incident intensity I0 = A2 in the expression yields:

1I(0, 0, Z) =  d2 I

1 + 4 (111-13)

4z.1

Thus the intensity on axis behind a circular obscuration is equal to

the incident intensity times the square of the cosine obliquity factor

for edge diffracted rays. For large values of z, d2/4z2 is much less

than 1 (the cosine obliquity factor in essence becomes 1) and the

intensity on axis is the same as if no obstacle were present.

Below is a graph of 1(0, 0, z) / 10 as a function of z for a 1cm

diameter obstacle.

4 p
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ON AXIS INTENSITY (NORMALIZED TO To) BEHIND A I CM OBSTACLE

N /
0! /
R N

AE /
L N .6- /
1IS 71
ZI
E ID V 4

.2- /S

2 4 6 8

DISTANCE BEHIND OBSIACLE (CM)

Graph 3.1

The intensity rapidly approaches its normalized value of 1. In fact

it has reached a value of .9 at a distance of one and one half times

the obstacle diameter behind the obstacle. 2

10 0= 11d) I

I(O, 0, 1.5d) / I = 1 + d2 /(4x2.25di) 1 + 1/9

= .9 (111-14)

if Axis intensity Function

To find the disturbance at a point P near the optical axis, but
2

off it, it is necessary to impose restrictions. The observation plane

.s placed a distance z behind the obstacle plane such that:

d/ << 1 (111-15)

Looking only at points near the optical axis implies the restriction:

9

. •
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r
2 << (111-16)

d/2

These two restrictions insure that the cosine obliquity factor is

approximately equal to 1.

With these restrictions it is possible to expand 1. By 111-5

1 2 z 2+ r2 + r 2- 2r r cos (0 0 112 z2+ r 22 1

r
For the region where __L << 1 thenz

r1
2  r2

2  r1 r2
1 Z + - - - - cos (02 - 0)2z +2z z 2 1(111-17)

If 1 is multiplied by a large number (like k) then all the above

expansion terms must be kept, otherwise 1 is approximately equal to z.

The Rayleigh-Sommerfeld integral of interest is:

CO(T iki
U(r2 ' 02' z) A e 1 cos (n, 1) r dr dO1

d/2 0 (111-7)

Inserting the cosine obliquity factor of I and the approximate expan-

sions of 1 yields:

or 2, 02k z) i k ik - ik .2_U(r 2  iz - e e 2ze 2 z

d/2 0

r r
-ik - cos (0 -0) r dr dO

x e z 2 1 1 1 1

(111-18)

To solve the integral over $, one can use the identity for the Bessel

function:3

.. .- . ..i.: .- ." " .- : . ". .. ..i .. ..
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(x) i-n  eixcosa indaJ n (x -- e e d
0 (111-19)

When n 0 and a = (02- ) then

Jo( krlr2) J( k rL2)

f0r rlr 21 f27 ik -- o (r2-r, d@1

2rj 0 (111-20)

Substituting the above in 111-18 gives: :

2r2
2A ikz ik

Ur2 z) z e e 2z

f/ kr dr1  (111-21)

(Up to this point the treatment is identical to Lommel's formulation.

He proceeded to solve the integral by substituting in a Bessel func-

tion identity and integrating by parts to obtain a series of cascading

higher order Bessel functions.) lo

The integral to be evaluated is:

ik -!_ kr r\

e 2z Jo( _2) r dr

Both the exponential term and the zero order Bessel function are

oscillatory of similar period. (The period of the Bessel function
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":? 2r 2  ''

approaches 2,T.) The argument of the Bessel function is times the
r1

argument of the exponential. When - << 1 the Bessel function will

oscillate much mcre slowly than the exponential term. One can divide

the interval [d/- ] into subintervals sufficiently small that the

Bessel function term is essentially constant over the subinterval.

One can also im;:3e the restriction that for neighboring subintervals

the Bessel function terms are approximately equal. That is, if

o [- represents the Bessel term for the i subinterval then:

S(krir2) (kri+ r2 ) (111-22)

Since this term is taken as constant it can be pulled out of the

integral. The integral over the ith subinterval is thus:

1 /kr r \ /kr.r r

e k 2z 1 2 rldr I J 0( L J e k2z r dr.

r. r.

r 2
J (krr eik r I rS I rA- o Z i i.

(krir\ 2(ri ~) r 2

• z - ik
= ik oe 2z e J (111-23)

It is clear by 111-22 that the upper integration limit for the ith

* subinterval will negate the lower integration limit for the i = Ith

subinterval. This pairwise cancellation will continue over the
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4 p.

subintervals and leave two unpaired terms corresponding to rI  d/2

and r =. Thus the original integral becomes:

D/2 2f ilk L (kr r 2
I kdr2 ik 2

d/2 (111-24)

The final, radially symmetric form for the disturbance at P,

is:

2 kdr2 d2

27A ikz ikr /2z z 2 i k-
U(r2, z) = e--e e 2 ik 2z e 8z

ikz ikr2 /2z ikd 2/8z _kdr2_"

-A e 2 (2 (111-25)eI

(Notice the disturbance function is independent of angle 0.).

The intensity at P is:
2

p

/kdr2
I(r,, z) = jU(r 2 , z)1 2 = A2 j2 \2 (111-26) 202z (11-26

Since J (0) - 1, it is readily apparent the intensity on axis0

equals the incident intensity (A2), which is expected for the region

where d << 1.
2z

An intensity contour plot and related radial intensity profile

for a 3/16 inch diameter obstacle viewed 50cm away is given below.

S

4'
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I Ti

Graph 3.3.
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As is characteristic of an Airy pattern, the spot of Arago is I

surrounded by a series of increasingly dimmer rings. (The reference

to the Airy pattern is intentional. Both the pattern and the spot are

images of a light source produced by a circular aperture and obstacle I

respectively.) The ratios of the maximum intensities to the intensity

on axis as well as the positions of the maxima and minima can be

determined readily from a table of zeroes for J0 and J I

Extrema occur when:

d 2j (kdr\2
dr 0

-kd \ / k r
_A2kd r2 2 =0

'z 21 zz (111-27)

I
,kdr2 =-"

Minima occur when Jo ( = 0 and maxima when J (--r-) 0. The0
2z

table below shows the radial distances (in terms of k-) and normalized

intensities (normalized to 1(0, 0, Z)) for the first fourteen intensi-

ty extrema based on the table of values for J and J found in the CRC
0 1

Standard Math Tables, 13th student edition, pages 326-329.

IL

-- 1

p
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S

Table 3.1

Extrema of Diffraction Ring Structure

Radial distance I(r /z) / I(O,z) =

kd 2 (kdr 2\X 2 J0
2  Extremum type

0 1.0 Maximum S
2.405 0.0 Minimum

3.832 0.162 Maximum

5.502 0.0 Minimum

7.016 0.09 Maximum

8.654 0.0 Minimum

10.174 0.062 Maximum

11.792 0.0 Minimum

13.324 0.048 Maximum

14.931 0.0 Minimum

16.471 0.039 Maximum

18.071 0.0 Minimum

19.616 0.032 Maximum

21.212 0.0 Minimum

An examination of the factors k, ry, d and z in the argument of

the Bessel function provides insight into characteristics of the spot

and its ring structure. The argument is:

kdr tdr
2 2

2z Xz (111-28)

If the argument is set equal to a constant, then r. is proportional to
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\and z and inversely proportional to d. The larger r 2 is for a given

argument the more "spread out" the ring pattern is in the observation

plane. The pattern will increase in size the longer the wavelength of

incident light, the farther along the optical axis the observation is

made or the smaller the diameter of the obstacle. Likewise the pat-

* tern shrinks if one has a shorter wavelength light, moves closer to

the obstacle or uses a larger diameter obstruction.

For a given obstacle diameter and incident wavelength, the spot

of Arago, (the central maximum) can be thought of as a slowly widening

sheath surrounding the optical axis for increasing distance z. This

concept has an intriguing consequence. If one observes the spot at a

sufficient distance, the diameter of the spot will be equal to or

a greater than the diameter of the shadow. In short, the shadow will

disappear. If the preceding theory is valid in this range then this

will occur when:

2=2.405 with r
2z 22

z > .653 (111-29)

For a 1cm diameter obstacle illuminated by He-Ne laser light of 632811

wavelength, then theory predicts shadow saturation when:

a > 103m (111-30)

One must view the above numbers with some caution. One restriction
2r-

the theory was based on was ((< 1 . The theory may not be valid for
* d

this large a value of r-.
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The graphs below show the change in radial intensity distribution

for variations in X, d and z. Unless specified, the wavelength is

taken to be 6328g.
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Case 2: Circular Obstacle Illuminated with
Caussian Intensity Distribution

Up to this point the formulation has depended upon an incident

plane wave of uniform intensity. Light from a laser has a character-

istic gaussian distribution. Consider an incident plane wave with a

gaussian intensity distribution centered on the optical axis. Let the

gaussian distribution be of the form:

r
2

e- d 2

where d is the diameter of the obstacle

r is the radial distance off the optical axis

c is a characteristic constant.

Thus when r = - the gaussian factor becomes:

2S
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CS

The edge diffracted rays define the disturbance at points in the

shadow. One expects a reproduction of the previous results multiplied

by the gaussian factor e- for the diffraction of a wave with a

gaussian distribution.

The Rayleigh-Sommerfeld integral is:
S

r 2f r 2

z )  ik- ikz -c 1-
U(r, i = e 2z e e d2

d/2 0

r 2  r r .

ik 1 -ik 12 cos (0- 0)x e 2z e z 2 1 r dr d.

27A ik ikz f 2[ - 1 r 2rr_
i- e 2z e e J r dr

d/2
S

(111-31)

The evaluation of the integral follows the method presented in the

preceding section with the result for the disturbance function:

2 2c d IU~r z)-- 27A zd2 e ik 2z e - eik -z Je\--/
U r Z) -- ed ztk e-' e 8z~ (Kr 2)2 iAz ikd 2-2zc 24

[r22- d2] /kdr 2\A _2ei +
e 4 eL2z 8z Jo

2zc 0O\2z/
(111-32)

• ,- . .. . . .:,. -_... - -.. . .
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The intensity distribution is:

A2  Sn kd2
I(r 2 , z) = e 2 J --dr

1-4 2
k2d 4  (111-33)

2 2
-Dr most cases of interest 4 L- << 1 and can be neglected. (For z

k2d
4

on the order of 1 meter, C = 10 and d on the order of .01m then

S 10-4  Then the intensity distribution reduces to the antic-
k d

ipated form:

c~ A2ked0 r 2

* I~r 2 , z) = A2 e J2 kdz) (111-34)

The resulting intensity on axis and radial intensity distributions are

c
reduced by the gaussian factor e 2'

The following graphs demonstrate the intensity distribution on and

off the optical axis for different values of the gaussian constant c.

ON AXIS NORMALI2ED INTENSITY BEHIND A I CM OBSTACLE: INCIDENT CAUSSIAW WAUES
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Case 3: Annular Aperture with Uniform Illumination

The geometrical layout for diffraction by an annular aperture is

depicted below. The Rayleigh-Sommerfeld integral is given by 111-7

T33

r r

/1

Figure 3.5

Geometrical Layout for Diffraction by an Annular Aperture

Dsubstituting - in for the upper limit for the integral over r
21

D/2 2
M A e

U(r2 2 z iA cos (n, 1) r 1 drld0I

d/2 0 (111-35)

On Axis Intensity

The arguments follow those for the circular obscuration with the
f

final result for the disturbance at point P (from III-10) being:
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U(o, 0, z) 2TrAz 1 ikl + D 2 /4

U3(0, 0, Z) ix -A , e___ 1 2

=~ ~ ~ N i-- -e 
2 + d 2 / 4

U(o, 0, z) =-A [ z ik rz-2+D2/4

z2D2/4

z ekz2+d2/4

j2 4 (111-36)

o The on axis intensity distribution is thus:

2 z2

1(0, 0, z) = IU(0, 0, z)2 = A [ 2  + z2

2

-i / e i k  fz4 eA - 22k4

e e

; A2F ___ 1 + 1____ 1
A 2 + 2V D

i+ D 2 I+ d !+_

4z 4z 4z2

x (cos(k(z224 -+Ad/4))+ cos (k( z 2 +d 2 /4 -

Cfz72 )))J 
p

-'.. . . • . . ."". .. " " " . 2 ". " " . °-o "
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2 2=A2 [ i + 12

LdA1+-1+ D-2 1+ -- 1+ D 2 1+

4z2  4z2  4z2  4z 2

x cos kiVl -Dd421+z (111-37)

The above expression is valid fo- z greater that a few wavelengths.

If the observation plane is in the region ihere T << 1 and <<1,1Z
L  

14Z
2

one can employ the expansions:

D2- d2 1+ d+ D z + -+d 1+ -

4Z 2  8z 2  4z 2) 8z 2

to obtain:

1(0, 0, z) A2 2  (D + d2) -2cos ( (D2 -d2),,
8z2  z

(111-38)

which, upon neglecting the second term, reduces to:

1(0, 0, z) ; A2 2 - 2cos (D2 _ d2) (111-39)

To gain physical insight into these results one should look at 111-36.

z ik -z+21

U(0, 0, z) = Z- 2 +D
2 /4 4 2/4

2

I

. - , .- ,
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z eik Z2+d2/4]

% is the amplitude for the disturbance of the incident wave in the

iperture plane. The coefficients in front of the exponentials are the

cosine obliquity factors for points on the edges of the aperture. The

exponential terms are the phase factors for rays reaching P from the
2

inside and outside boundaries (through distances z+d 2/4 and

1z2 AD2/4 respectively). As with the case for the circular obstacle

the edge diffracted rays cause the disturbance at P2. Those for the

circular obstacle are all in phase for axial points and thus interfere

constructively. For the annular aperture the rays from the inside and

outside borders will interfere to varying degrees based on the rela-
tive phases. This phase difference is given by - +

For large z the phase difference will vary slowly with changes in z.

Thus one has a disturbance function that oscillates between -2A and 2A,

rapidly close behind the aperture. The intensity oscillates between 0

and 4 times the incident intensity.
r2 d2

In the region where w- << 1 and Tz2 << 1, maxima will occur on

axis when the cosine term equals -1. This happens when the argument

is an odd multiple of 7T.

ka (D2 - d 2 ) = (2n + 1)v n = 0, 1, 2 ....

D2-d
2

z = 4X(2n+1) (111-40)

I
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Minima will occur when:

D2 -d 2 1,2,z= 8mX ,2

(111-41)

The last maximum on axis occurs when n = 0 or when:

D2-d
2

z 4 (111-42)

The last miminum :before the intensity is driven to zero at infinite

z) occurs when m = 1 or:

D2_d
2

z 8X (111-43)

The last maximum defines the boundary for the oscillatory behavior of

the intensity on axis. The distance to the last maximum will decrease

for increased wavelength or decreased factor (D - 12). (D - can

be written as D2(1 - c') where c is the obscuration ratio, the ratio

of the inner to outer diameters. Thus a smaller obscuration ratio

(for fixed D) will decrease the distance to the last maximum and a

smaller outer diameter (for fixed c) will accomplish the same thing.

Below are graphs depicting the intensity on axis for variations

in the parameters X, D and E. (Unless specified, the wavelength is

assumed to be 6328 .)

I.

I
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The circular a:erture as a special case of the annular aperture.

If there is no central obscuration the annular aperture problem re-

duces to that for a circular aperture. This is equivalent to letting

d equal zero in the preceeding treatment. Then 111-36 reduces to:

U(O, 0, z) =-A [ -~ e ik Vz;2+ 74 e eikz J (1-
z 2D 2 /  

(111-44)

The fir3t term in the parenthesis reflects the edge diffracted rays.

The second term is the phase factor due to tne distance a ray travels

down the optical axis (notice for this case the cosine obliquity

factor equals 1). Thus the disturbance at an on axis point P beind.

2' I



a circular obstacle results from interference between rays diffracted 
S

from the edge and from the center of the aperture.

The intensity on axis is given by:

1(0, 0, z) A2 1 2 cos(kz +C1 -1

D2  4z2

4z2  4 2

(111-45) S

WhenD << 1 this reduces to:
4zZ

1(0, 0, z) = A2 [2 - 2cos (f D2)](1-)S

For the circular aperture the last maximum on axis occurs when

D2
•

Z 4X(2n+l) (111-47)

A graph of the intensity on axis behind a 1cm anerture avuears 
below.
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The Circular Obscuration as a Special Case of the Annular Aper-

ture. If the diameter of the outside rim of th aperture is taken to

infinity the problem of the annular aperture reduces to that of the

circular obscuration. Equation 111-36 becomes:

zik 2d/4

U(O, 0, z) = A e
;7d 2/4 (111-48)

which is the same expression as in III-11. Thus all previously de-

rived results for the intensity on axis behind a circular obscuration

can be reproduced.

Off Axis Intensit'

The derivation of the disturbance function U(r2 ,  z) for the

annular aperture case follows that for the circ-lar obscuration. The

only difference is the upper limit of integration is now L. Making2

this substitution, equation 111-25 becomes:

r 2

2A eikz 2 z kDr 2  D2ikD  kdr2) i 2
U(r z) = 2 e e ikz [ e 2zz e 8z -J e 8z

izik r, kr\ /k2kdr\i d2 1
= -Ae e 2z [ - 8z - 82 J

(111-49)

The intensity at P, = (r,, ,2, z) is given by:

I(r 2 , z) - IU(r,, z) 1 2

2?S
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2 2 J02 2..2 2 kDr\) kd r )

A J02 2z'~7 2z 2 0-

- d 2)) (111-50)

If r2 = 0 then the above reduces to equation 111-39. If D becomes

infinite then J z (- r2 ) goes to zero and the above reduces to the I

result for the circular obscuration. When d equals zero one obtains

the intensity function for diffraction by a circular aperture.

I~r Z) =A[ ( -2 J ( )cos (ID(1 51)

The intensity pattern produced by an annular aperture is a com-

plicated series of bright, dim and dark rings of various radii. The

following intensity contour plots and radial intensity profiles show

the diffraction patterns for a .3333cm diameter circular obstacle, a

1cm diameter circular aperture and their resultant annular aperture

combination at .5 meters.

4D
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Beats and the ring structure. The radial intensity plot for the

annular aperture of obscuration ratio 1/3 above yields zeroes for

intensity at the radial distances depicted in the table below.

Table 3.2

Radial Positions of Intensity Zeroes for Annular Aperture

(D 01 , c = 1/3, z = .495m)

Radial distance Distance to
from center (mm) next zero (mm)

.081 .094

.175 .094

.269 .093

.362 .094

.456

average .09375mm + .000

This very regular pattern also appears in the spacing of minima for

the circular aperture. A table of the radial positions of these

appear below.

.......... ,c. - -. -< --- . .1 -. . . ...-.i[ ['. ,- . - - -" -.-. . - i- " - I - - . L [ L ? [



Table 3.3

Radial Position of Intensity Minima for Circular Aperture

(D = .01, z =.495m)

Radial distance Distance to
from center (mm) next minimra (mmz)

.009 .061

.070 .064

.134 .061

.195 .064

.259 .062

.321 .063

.384 .062

.446 .063

.509

average .0625nz + .0012

The frequency of zeroes f' r the annular case is:

V ann -5_____ 10666.7m- 11-2
4 ann. 9.375x10% (11-

The frequency of minima for the circular aperture case is:

V circ. - .51 5 - 16000m 1 (1-3

6./ v = 2/ (111-53)

V ann. Vcirc. 2/ 11-4
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To understand the above ratio, one can approximate the Bessel function

as a sinusoidal function. The period for J0 for large arguments

approaches 27. The amplitude for large arguments is essentially

constant (very slowly decreasing). The Bessel functions in equation

111-51 are of the form:

J 0 (27vir2) = csin(2-v.r-) i = 1, 2

where vI  2-- and v - The sinusoidal approximations are thus:
1 2Nz 2 2Nz

J (2rvr2) r c sin (2vir2' i= 1, 2 (111-55)

40 i 2 i 2

v is different than v, and the combination of the two periodic pat-

terns will lead to beating. This beat frequency is given by the

expression:
4

Vbeat =  
\ -2(111-56)

1 2

= -- (D - d)

=VI (I -E) (111-57)

For the case where c = 1/3 then:

beat =1 3 3 1 (111-58)

The frequency, ,beat , corresponds to the frequency of intensity

zeroes radially for the annular aperture case. The frequency *

corresponds to the frequency of minima for the circular aperture case.

6D
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The frequency j2 applies to the circular obscuration case.

V V .01m = 15962m-11 2Xz 2 x 6.328 x 10 'm x .495m

(111-59)

D-d (.01 - .003333)m = i0642m 1
an beat 2Xz 2 x 6.328 x 10-m x .495m

(111-60)

The concept of beats provides insight into the outlying ring

structure of the diffraction pattern of an annular aperture. The

ring structure will oscillate within a beat envelope whose radial

width is given by 1 / Van or 2Z. The intensity pattern is thean D-d

square of the beat structure from the disturbance function. The

result is a series of dark bands (corresponding to the regions around

the zeroes of the beat envelopes) and bright bands (corresponding to

the regions around the maxima of the beat envelopes) which contain an

underlying dark and bright ring structure. These bands will be wide

for large obscuration ratios. (The beat envelope width is inversely

proportional to (1 - &)). For C very close to 1 the beat envelope is

very broad and one will observe a ring structure whose frequency of

intensity zeroes approaches that of the frequency of minima for the

circular aperture and circular obstacle. For very small £ the beat

envelope is very narrow. iThe study of aberration effects or. the

diffraction pattern will ir ive chanr;es in the ring struc2ture. A

wide beat envelope will provide a better opportunity to -bserve devia-

Stions. Thus an aperture with a high obscuration ratio is better for

aberration testing.
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The graphs and table below illustrate the concepts discussed in

this section.
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Table 3.4

Comparison of Measured Envelope Widths to Theory

Theoretical Measured
;raph from Average measured distance ann.
which measure- distance between 2..z Percent
ments taken beat zeroes (mm) D-d Difference circ. (1-,)

Graph 3.30 .0784 + .0019 .0779 .6 % .795 .8

Graph 3.32 .1270 + .0011 .1271 .08% .500 .5

Graph 3.34 .5330 + .0005 .6333 .05% .100 .1

Graph 3.36 .9053 + .0009 .9052 .11% .666 .667

Graph 3.38 .665 + .0005 .679 2. 1 .102 .1

Tolerances in patterns with on-axis shifts. The preceding charts

and graphs were made for planes at positions of maxima along thle

optical axis behind the annular apertures. The intensity of the

central spot changes with distance z. Mathematically this stemns from

the cosine interference term in equation 111-50. One can view the

argument for the cosine, .~.(D
2 

-d
2 ), as a phase term. For constant

0Z

z, Dl and d this phase term will be fixed. This phase term will affect

the intensity of the rings and their positions. A null on axis will

push ring structure out from the center.

Below are graphs which demonstrate the change in the diffraction

patterns for shifts to the next minima on axis for two previously

calculated cases for c =1/3 and E -9.
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The diffraction pattern makes its most dramatic change as the

central spot shifts from on-axis maximum to on-axis minimum. This

relates to a change in the argument of the cosine term by !. Desig-

nating the argument by a one has:

k (D2 - d2 )

8z (
I

-sk - d2 )  Az
8z

2

(keeping k, D and d constant) (111-61)

Let 6a an. Then:

Az 4aX z2-

D2-d2  (111-62)

Thus the necessary shift on axis by a phase factor a n is quadratic

in the initial distance z. As z increases a greater shift on axis is

necessary to produce a given change in the diffraction pattern.

4 Case 4: Annular Aperture Illuminated with
Gaussian Intensity Distribution

The treatment of an annular aperture illuminated by a plane waver2

with a gaussian intensity of the form e D2 follows that already done

for the circular obscuration with the substitution of - for the upper

limit of the integral in equation 111-31. The disturbance function

becomes:

. . . - -" - " " " " " . . .. . " . ". -: .- ', ... -5- i.- . "" . ." + - ;-i- ? '-
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r{ 2
27

_ r2 I

U(r 2 , z) A ikz ik z i k R 2 kDr
-2zc e e e- 4 e 8z J0 k 2z -

2- 2z 2z

kD2

c d k d  2 /ZJ kdr\

D e 8z J z ( -63)

The intensity function is: S

A2 Sw 2 (kDr 2 c d 2  2kdr_
I(r., z) 302 -z) + e 2 D2 -j0 -

14z2c2 0 22

k2D•

2 (kfr2\ (kdr /k 2\1
2eJ 4 2+ ]0 c 2 j 0 2) Cos (D2  d2)

(111-64)
Z22

As with the circular obscuration case, the term 4 1 << 1 for small
kD

z and can be neglected.

On axis r2 = 0 and the Bessel functions go to 1. The intensity

function becomes:

1(0, z) A2 e 2 e- - 2e D COS z d 2 )

(111-65)

!S
The positions of maxima on axis are given by equation 111-40. At the

maxima, the intensity is:

I(o, z ) A2  e- + e-"
max Fe + Dj (111-66)

L .S

KY.".> *
* -"- ,. .
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The position of minima on axis are given by equation 111-41. At the P

minima, the intensity is:

1(0, zi) A2  e 4- e-
min [ (111-67)

Thus for a gaussi-n intensity distribution the intensity on axis

oscillates between the two limits given by the equations above. If c

is not zero then the intensity on axis never reaches zero. Likewise

the intensity at the maxima is always less than four times the inci-

dent intensity.

Physically the above result stems from difference in amplitude of

the diffracted rays from the inner and outer edges. The amplitude of

light rays reaching an aperture point a distance r from the center are
r2

diminished by the gaussian term e .D
2  The amplitudes of rays at the

outer edge are decreased more than amplitudes of rays at the inner -

edge. Therefore the destructive interference of diffracted rays is
.w.

not total. The constructive interference of diffracted rays is re-

duced by a combination of the gaussian terms.

The following graphs show the intensity on axis behind an annular

aperture of obscuration ratio .5 for gaussian constants c of .5, 2 and

5.

. . . . .L
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For large z or for large gaussian constants c the term 24 zD in

the denominator in equation 111-64 is no longer negligible. This

drives the intensity on axis to zero at large observing distances.
P

As the gaussian constant c increases the maximum intensity on

axis decreases. The minimum intensity starts at zero for c equal to

zero and increases as c does. But it reaches a maximum value beyond

which the exponential decrease starts to drive the minimum intensity

back to zero. For fixed obscuration ratios one can maximize the

minimum intensity on axis by changing the gaussian constant. The
3

following graphs depict the maximum and minimum on axis intensities as

functions of gaussian constants for obscuration ratios of .1, .2, .4,

.6 and .8.
S
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Case 5: Disclaced Obstacle and Aperture
Illuminated with Uniform Intensity

If the obstacle and aperture do not lie in the same plane, it is

still possible to derive expressions for the on and off P-is intensity

distribution functions. The layout depicted below cor ponds to the

eventual experimental set-up. As with the previous tr ment the

origin of the cylindrical coordinate system is taken t, b che center

of the aperture.

aperture

obstacle

ziobstacle 1z

Figure 3.6

Geometrical Layout for Diffraction by
Displaced Aperture and Obstacle

The observation plane lies a distance z behind the aperture and a

distance z 2 z I+ z behind the obstacle. The rays diffracted by the*2 1

obstacle which converge at point P project an effective obstacle in

the aperture plane. By similar triangles, the diameter of this phan-

U
tomn obstacle is d' = -Id. The light rays striking the aperture are

parallel to the optical axis, but those striking the effective

'A



7S

obscuration are converging to the axis, thus there will be a phase

difference.

d

Figure 3.7

Phase Difference for Obstacle Diffracted Rays

The diffracted rays travel through distance 1 to the effective obsta-

cle.

IS

1 z2 +( 2 2

= ~d2 ~ ~d)

(2  4z2) (111-68)

5i

Taking d2 1< this becomes
4z 2

2

+I

1 Z ( 2 - 1)(\ 2) (111-69) '
The phase difference of the rays striking the edge of the effective

obstacle is then:

k(1 (z. z1 )) -hd (z2 -z 1) (111-70)

8z 2

%7,
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To evaluate the Rayleigh-Sommerfeld integral for the effective

annular aperture, the following assumptions are made:

2 2
. 1, -<- <<

4z2  4z2

2. The effect from rays diffracted by the obstacle striking the

aperture is negligible. The rays striking the aperture are considered

parallel to the optical axis.

3. As with previous treatments only those rays diffracted by the

outer aperture edge and the inner effective edge contribute to the

ultimate diffraction pattern.

4. The rays hitting the inside and outside edges of the effec-

tive annular aperture have a phase difference given by equation III-

68.

The Rayleigh-Sommerfeld integral for the disturbance at a point P

in the observation plane is:

27T D/2

U(r2, z1 , z 2 ) = J dO1  cos (n, 1)8 (rj) rldr1

id

Z22
(111-71)

where:

D
for r1  2

d2 zl

ik - (z-z) for Zdek-- 2  1 for r2= - - (111-72)
S28z

The result follows from previous derivations:

S
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kD%

U[ 1 z1 i r22 2 Ak D k r 2)U(r2, zl, z2) = ek e e 8z Jo -292 1 2z

d]2 (z2z) o 2  1
e 1 8 2 e 8 ?2 Zl) 2 5

2 2  kflr\Aeikzl eikr 2 /2z, eik (2-2 2z1) -Ae I e 2 [ 8z, J0  -2i
ikd 

2  / (krd
28z2  Jo-z (111-73)

S

Thus the disturbance function has the reassuring form of having the

effect from the aperture edge at distance Z1 , coupled with the effect

from the obstacle edge at distance Z2 . The intensity distribution

function is:

kDr 2 \ + kdr2 kfr 2  i kdrI(r , z) A2  J 2  - 2Joj.2( /jo ._r22 9 2 O 2 \ z 2% k 2z1  0 2z 2

SCOS z 1 z2  (111-74)

9
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Chapter 4

THEORY I. THE ABERRATED CASES

General Aberration Considerations

Wavefront aberrations are deviations from spherical wavefront

behavior. Consider an arbitrary wavefront in space. (A wavefront is

defined as a surface of constant phase.) It is convenient to project

this wavefront onto a spherical wavefront. This reference wavefront

shares the phase and optical axis point with the arbitrary wavefront.

The radius of curvature is the distance to the source if a diverging

wavefront or the distance to the focal point if a converging wave-

front. The projections onto the reference wavefront reflect phase

arbitrary wavefront

spherical
reference

wavefront

Figure 4.1

Aberrated Wavefront

L
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differences due to the optical path differences between corresponding

points on the two wavefronts. The phase differences can be charac-

terized by an aberration function W where W(r, r, 0) is the optical

path difference between the point (r, V, 1) on the reference wave-

front and its complement on the arbitrary wavefront. Thus the phase

differences appear in the form:

e ik74

First Order and Seidel Aberrations

The aberration function can be expanded in terms of a complete

set of polynomials called the Zernicke polynomials. In many cases it

is sufficient to expand the aberration function in terms of primary

aberrations. Convenient expressions for these primary aberrations

were made by Seidel and the third order aberrations now bear his name.

The wavefront aberration representations appear in Table 4.1. The

coefficients Wabc are constants with the dimension of length. 0 is

the polar coordinate angle of points in the reference plane. r is the

radial distance in the reference plane normalized to a given pupil

radius. When the pupil is the outer edge of an annular aperture r =

r 1
-- " Similarly, B is a normalized field parameter. When the source

is a point source £ is a constant and can be absorbed into the coeffi-

cients W . Table 4.2 lists field independent wavefront aberrations.ar-c

In the field independent situation field curvature acts like defocus

and distortion like tilt.
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Table 4.1

The Primary Wavef rant Aberrations

reAberration type Representation

Defocus W002First order

Tilt w e1 r cos0 aberrations

Spherical aberration W 4r 4

Coma W1 31 ar
3cos0 Third order

Astigmatism W222 02r2cos
2o (Seidel)

*Field curvature W22 a2r2  aberrations

Distortion w 1 1
3r cosO

Table 4.2

Field Independent Wavefront Aberrations

Aberration type Rereetation

Defocus / Field Curvature 4W 2 0r1
2ID2

-A

0 Tilt / Distortion 2W11rlcos0/D

Spherical aberration 16WW Abr,4ra

Coma 8Wl~ ros 3brain

Coma Wl~31 cs 1hr c o der

Astigmatism 4W2 rrs 2cos /D2

Citortoa 83122 cos

TalS.

Fil0needn aern brain

Aberaton yp Re resentation N
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Aberrations Produced by Plane Parallel Plates

Consider a diverging wavefront incident upon a tilted plane

parallel plate. The tilt angle is given by e and u is the half angle

uS

Aberration Production by Plane Parallel Plate

of the cone of illumination. u is related to the f-number by the •
2'"

formula:2

F# (Iv-i)
2u

The thickness of the plate is t. It is clear to see that phase

differences result from passage through the plate by breaking up the

wavefront into rays. Rays corresponding to different f-numbers will

strike the plate at different angles. By Snell's law the refraction

angles will not be the same and the path lengths through the plate

will differ. Because light moves more slowly in glass than in air, 5

transit times vary and phase differences ensue. The phase differences

appear as aberrations in the wavefront. A table of the primary wave-

front aberrations coefficients as functions of n, u, 9 and t produced

by a plane parallel plate appears below: 3

.. . . 'S -
:.: : . ... :--:-- . -- : .-- . -.-:--.-.. " :.-:-::. :-- ::-:--.. : : -. .. ::: ::: ,::::-,-ii , . - . . :- 1
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Table 4.3

Aberration Coefficients Due to Tilted
Plane Parallel Plate

Aberration Coefficient Expression

W (Astigmatism) 1 n2-1
22W- tu 2 e2
22 2 n 3

W (Coma) 1 n2-1tu3e
31 nT 3

n-

W (Spherical Aberration) I n21 tu440 8 n0

Notice the coefficient for coma is an odd function of the tilt

angle e. By countertilting two plane parallel plates of equal indices

of refraction and thickness comatic effects can be neutralized. At

the same time the coefficients for astigmatism and spherical aberra-

tion double.

Table 4.4

Aberration Coefficients for Two Countertilted
Plane Parallel Plates

Aberration coefficient Expression

r 22 n2 -1 2
W (Astigmatism) tue22 n3 ue2

W (Coma) 0
31

W (Spherical Aberration) 1 n - - tu4

0 4 " ..
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Typically the aberration coefficients are very small numbers, having the

magnitude of order of optical wavelengths. It is convenient to express

the aberration coefficients in terms of wavelengths of the incident

light. The two graphs below illustrate the aberration coefficient

curves for a single plate and two counter tilted plates. The incident

wavelength is taken as 6328A, the thickness of one plate is 12.7mm (1/2

inch), the index of refraction n = 1.517 and the angle u = .1 (5.740).

The aberration coefficients are plotted as functions of the plate tilt

angle L

ABERRATION COEFFICIENTS PRODUCED BY SINCLE PLANE PARALLEL PLATE2 .5 0 . _ _ I ,I"

W 2.00

G 1.50 -- , _

q i.0____ .f ____

.50 __ _ _ 1 _ __ _ _ __"__ _ _ __ ____.- ..... --o_.. ... __'

a 4 8

TILT ANCLE (DEGREES)
SOLID LINE W22 DASHED LINE =48 DOTTED LINE W3I

Graph 4.1

• .° • .,-6 ./ .. . . .: . : , .. . . .: .._ ., . .'' , ": , o /
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ARERRTION COEFFICIENTS PRODUCED BY COUNTERTILTED PLANE PARALLEL PLATES
__ _ _ _ _ _ __ _ _ __ _ _ _ _ _ _ _ _ I I

5.8 ____t____j_ _ _ _ _ _ _ _I '

C E

S.8 T / I

N _ t _ _ _ _ _"_

T 2,8 T j"

S I__ __ _ __ _ _ _ ___ _

1.8 I._ _ _ _ i ___ __ _ __

..... ... ., ..... . ........ ....i. .

8 4 8 12

TILT ANGLE (DECREES)
SOLID LINE W22 DASHED LINE W48

Graph 4.2

Symmetries in the Primary Aberrations

The primary aberrations have characteristic symmetries which will

ultimately determine their contributions to the diffraction pattern.

Both defocus and spherical aberration are independent of E. They are

rotationally symmetric and as such should have little or no effect on

the rotationally symmetric diffraction patterns discussed in Chapter 3. 3

Tilt and coma are products of odd functions in r and even functions in

6. Because cos = cos (-0.), the aberration terms for tilt and coma will

have equal values for fixed r and + 0. This means there is one plane of •

symmetry for these terms. Astigmatism is the product of an even func-

tion in r and the even function cos . Because co&QZ) = co (Tr -) =

cos(r + 0) = cos2 (2T - 0) astigmatism exhibits two planes of symmetry. .

Each primary aberration will be discussed separately.

• .. ,° ... + . . +. . " . • • . ° ' . - •. + , . '+ .S
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Defocus

Defocus can best be discribed as a shift of the focal point on

the optical axis. In effect the reference spherical wavefront is

changed as the radius of curvature changes. If the focal point shift

on optical axis is designated as Az then the coefficient of defocus

for a point on the reference spherical wavefront with f-number F# is:4

Az

8(F 112 
(IV-2)

Case 6: Circular Obscuration

The Rayleigh-Sommerfeld integral of interest is:

A ikz ikr 2
U(r 2  0., z2') z e e e 2z e d2

0 d/2

r 1 r 2
-ik - cos ( -

x e z 2 01) ridrid01

27rA ikz ikr 2 /2z ik [L+- ]~r,S 2 2 z d'-

d/2

* /kr 1 r 2 )x J 0 I z) r 1dr 1  (IV-3)

The solution of the above integral follows the procedures set forth in

Chapter 3.

,0.- - . - ".- - '- -' ... - - " .. - -- " " - " " "., . - -i ' " - " " " .- , " ""  - '- " -

I"~ ~~ .' " " " - - " ' '' " " " ' " '. " * " " . . ' " " - ""
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r22 [ 4W201

kA zd2  ikz ik 2 ik 1 +d 2

U(r 2, z) Az e e 2z eL2z
ik(d2+8W20z)

x J0(-dr )

r 2
/kdrkd

= -A 1 ik(z +- 2-- _ -- + Jo20

e2zr2)0 z -

8 W20z e2z 8 ~) 2 )
22

d (IV-4)

The intensity distribution is:

r 2

2 d kdr\d

20

alent to the unaberrated case in equation 111-26. The Bessel function

term is identical to that for the unaberrated case -- as expected this

rotationally symmetric aberration does not affect the rotationally sym-

metric diffraction pattern. Where defocus does enter is in the overall( 8W2 °z 2

intensity. For positive defocus the factor 1 / 1+ - decreases

20 2

as the distance along the optical axis z increases. The effect of

positive defocus is to decrease the overall intensity for large z.

Something interesting happens when the coefficient of defocus is nega-

tive. At one value of z the intensity on axis goes to infinity. This

z corresponds the focal point of the system. To see this, the denom-

inater goes to zero when:

dd2

8W2 0  (IV-6)

t ..ve A one v of z th intesit y o a g to infinity. This.".
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The obscuration (or aperture) will act as a focusing system. With no

aberration present it would ,bey the lens law.

1 1 1+ =0
s i f (1V-7)

inere s is the distance to the source, i is the distance to the image

and f is the focal distance of the system. With defocus present the

lens law is replaced by:
4

1 1 1
s i f (IV-8)

W(r 4W r 2
Where = 2 =2 20

r 2 r 2d21 1

8W
20

d2  (IV-9)

* - With no aberration present the terms s, i and f in equation IV-7 are

all infinite. With defocus s and i remain infinite and f changes.

Then:

f

f = d
2

8W2 0  (IV-bo)

Thus the focal point of the system is the singularity on the optical

axis.

As the magnitude of defocus is increased, the focal point moves

in from infinity and approaches the aperture. For negative defocus

the on axis intensity will increase until the focal point is reached.

........................................ "- - .i- i-1 / . I... "-.....i . -i".-
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Then it will decrease. (If the coefficient of defocus is positive the

system focal point occurs at negative z and the decreasing intensity

already discussed is an extension of the decrease from the focal

point.)

The singularity intensity is reminiscent of the geometrical op-

tics limit where the intensity at the focal point is infinite. Appen-

dix 5 demonstrates the infinite intensity is a result of an infinite

plane wave striking a circular obscuration. Physically the extent of
d,

the incident wave is always finite so the intensity at z - will,h20

never go to infinity. The graphs below demonstrate these effects for on

and off axis intensity plots.

ON AXIS INTENSITY BEHIND I CM DIAM. CIRCULAR OBSTACLE: VARIOUS DEFOCUS VUALUES

0!1 .8*
R N
MT7
L N
I S .

o-.2l le.ET .2
D--.-- --p g , I i - -

o 28 40 62 122

AXIAL DIST NCE (METERS)
SOLID:W28:.81 DASHED:W28:, DOTTED:2W:.25 SQUARFE:W2:1 THIN DASHED:W128:5

Graph 4.3

-o " + " . ..- 2 ' '
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ON AXIS INTENSITY BEHIND A ! CM DIAME'ER OBSTACLE WITH -,5 NAVELEN.GTHS DEFOCUS
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Graph 4.5
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ON AXIS INTENSITY BEHIND A I CM DIAMETER OBSTACLE WITH .5 WAVELENGTHS DEFOCIS
1.8t

N
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M T
A I

I S k I J i l I

D Y .4-

9 40 89 120 168 202

AXIAL DISTACE (METERS)

Graph 4.6

ON AXIS INTENSITY BEHIND ANNULAR APERTURE: SPHERICAL ABERRATION EgACT SOLUTION
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Graph 4.7
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The on axis intensity is characteristic of the defocus present.

By measuring the intensity a given distance z along the optical axis

one can readily determine the amount of defocus in the incident beam.

From equation IV-5:

I
I 0
meas.

d2
W2~ 3 Z

82 I0a + i for W < 0 and z->
e20 IW20 1

(IV-11)

Case 7: Annular Aperture

In the case of the annular aperture the aberration function is

normalized to the aperture outer radius. The expression for W is:

2 2
W 4W

20 D2  (IV-12)

Substituting the above into equation IV-3 and changing the upper

integration limit for r to D/2 allows one to write out the di.tur-
i

* bance function from equation IV-4.
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A r2 [ 0+ (kDr\
r ' .

r e z I 8z 2[D + W20] . -  -  -
) 8W 2 0z 2

2D2

k d2 \ AD 2  kF 2 1(z W20 J 0 0 kd-3
D 2z(IV-4

The intensity distribution is: a

A2 kDr2 2kdr2 (kDr2A

I ,,- Z) 8,1A 0'' 2 2Z ,- -) + jo 2z2-- ) -2Jo )!
+ 2 

o

COS 8z ~20 2

cos (D2z d2 1 [8

D2DV--I):'I"--.'

cos (D2 -d 2 ) + W01-=cs ( 2  2) ]

8z 2 0 D2V15 "'

When no defocus is present the intensity distribution reduces to that

for the unaberrated case. I

Defocus will affect the diffraction pattern of an annular aper-

ture in two ways. The first is in the change of the overall intensi-

ty. The intensity distribution is multiplied by the same term 1 / ,

(1 + 8Woz/D )2 as for the circular obscuration case. The coefficient

S

* N - . . .
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for defocus also enters the cosine term. Thus the second effect

defocus has is to shift the positions of maxima and minima on axis.

Maxima will occur when the argument of the cosine term equals an

odd multiple of T.

k (D2 d2)  +--- (2n + 1) n= 0, 1, 2, . . . S
8z D

Z 2(D2-d2)

B= (2n+l)D2  SW 20 k(D2 -d2 )

20!

z D2(I-C2)

4X(2n+1) - 8W2 0 (1-C2) (IV-16)

Minima occur for:

D2 ( -E2)  
•.

8nX - 8W20(I-C2) (IV-17)

The last maximum on axis occurs when n =0 at a distance

D2(I2).-

4X - 8W0(I-e2 ) (IV-18)4X 8201-

The above formula suggests the last maximum or axis will occur at infi-

nite z when the denominater goes to zero, or when:

1
W20 X 0 -2(1-2) (IV-19)

0



But there is a second effect to consider. The coefficient 1 / (1 +

8W z/D 2 ) 2 goes to zero for infinite z. This term is the upper limit20

for the on-axis intensity. The intensity oscillates between 0 and

this upper bound. The result that the last maximum on axis occurs at

infinite z is a statement that there is no last maximum on axis behind

the aperture -- the oscillations continue to infinity. In general

this will be the case whenever:

8W2 0 (1 - >
2 ) > 4X (2n + 1)

W20 . (2n+1) X n = 0, 1, 2,

2(l-E2)
(IV-20)

Notice this implies positive defocus.

Although the positions of the maxima on axis have changed from

the unaberrated case, the spacing of the maxima has the same form.

From equation 111-62 the spacing between adjacent maxima for the

unaberrated case is:

Lz 4 z2

SD2d2 (111-62)

With defocus present:

A 1- (D2 - d2) 1  W2 0z = A argument
8z D;?

8W2 oz] k 8W2 o

- --(D2 - 1- d AZ+-(D 2 -d 2 )z 2Tr

8z2  D2 8z D2

.* - " . ' " " - . "' _ : . = . .. - ' - • ": o - • . - " " " ' •" -
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k (D2 - d2 ) Az = 2w
8z2

zI

AZ 8X Z2 8 Z2

D2-d 2  (I-2) D2  (IV-21)

The following graphs demonstrate the on axis intensities behind a one

centimeter outer diameter annular aperture with C = .5 and with de-

focus coefficients of .5X, -.5X, .667X and 2A. (.667X corresponds to

the case where the last maximum occurs at infinity.) The envelope

I/ (I + 8W 2 0z/D
2)2 is also plotted.

ON AXIS INTENSITY BEHIND A I CH OUTER DIAKETER ANNULAR APERTUJP.E
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Graph 4.8
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ON AXIS INTENSITY BEHIND A I CM OUTER DIAMETER ANNULAR APERTURE
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ON AXIS INTENSITY BEHIND A I CH OUTEF DIAMETER ANNULAR APERTURE
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Graph 4.11

The annular aperture provides two methods of determining the

coefficient of defocus. The first is to seek out an on axis maximum

and measure the intensity. This intensity must lie on the curve:

1(0, z) = 1
8W2 0z\

2

D /(IV-22)
(Li

The amount of defocus present can be found in the same way discussed

for the circular obscuration. The previous graphs show the limita-

tions of measuring the intensity at a maximum to find the coefficient

for defocus. The curve defining the upper bound for the oscillations

is very steep around the focal point. This curve is tangent to the

on-axis intensity distribution and the actual intensity maximum does

not necessarily coincide with this tangent point. For example, from

: ]. , : .. .... - 7 .- ,*.. .. .-. . ,.-:.. . .: : : .. . . . . - .-. - .-..: --- . ... ... .. . ,
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araph 4.9 for minus one half wavelength of defocus the last maximum on

axis as given by equation IV-18 occurs at:

z =  ____ _= 16.93m

4A - 8W (1-c2 ) (IV-23)
20(I-)

The actual (measured) intensity maximum occurs at z = 20m with a rnzr-

malized intensity of 13.6. Putting these values into equation IV-'I

yields a calculated value for W20:

( -1. 4.6 x 10-7 m =-.72

20 z 'meas. (IV-24)

-- a 44% difference from the actual value. When using this technique

to find the coefficient for defocus one should take measurements at

values of z far away from the effective focal point of the system.

The second method is to measure the shift of extrema on axis. With no

defocus the nth maximum occurs at:

zo D2(1_C21 (IV2]

4X(2n+l) (IV-25)

With defocus it occurs at:

z' =  D2(I-C2)

4X(2n+I) - 8W2 0(1-s
2) (IV-26)

The shift on axis is then:

Az Z- _ D2(I-C2) 4X(2n+l)1

4X(2n+1) - 8' 2 0(1-C
2 )

2W2 0 (1-C
2)

= z0.UX(2n+1) - 2W20(1-e
2) (IV-27)

. . . .. .. ." - " " • " ' " " .-:' :- .--- i.. "' . .. -'-

, .. . . . .. .... .. . .. . . . . ::, : . ... , $ ' - - -,' '. / , '
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w (2n+1)X az
20 2(1-c 2) z' (IV-28)

This method will be effective if the maximum of order n for the

aberrated case can be determined. A good criterion for this is if the

shift on axis is less than the spacing to the next maximum. Comparing

equations IV-21 and IV-25, one must satisfy (W2 0 in this case is

negative):

2W 20(1- 2 ) 8 z02
20 8) 1E2) DX(2n+l) - 2W2 0(I-c

2) (I- 2) D2

W0(I- 2) > 2W2 0 (1-E2 ) X

20 20_ 2n+l
1W20I < X 2n+l ].

20 2 2n-1 "

(1-2) (IV-29)

For large n 1 and the coefficient for defocus should be less2n-1

than half the minimum value in equation IV-19.

Tilt

When tilt is present in the incident beam the center of the

diffraction pattern moves off the optical axis without changing its

functional form. Tilt will not be investigated in the experimental

phase.
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Spherical Aberration

Spherical aberration is a rotationally symmetric aberration. As

with defocus the presence of spherical aberration should rot a fect

the overall diffraction pattern. However the intensities and r:si-

tions of on-axis extrema should be influenced.

Case 8: Circular Obscuration

The Rayleigh-Sonmerfeld integral for this case is:

z) Ai kz ikr 2 /2z ik 2 ik16W r
= --i-z) e ze 2 2ze 40d

rlr

-ik 2 cos (0 2- Ix e z21

kA  ikz ikr 2/2z / eik[ + 16W4 dri]r2

- e e 2 fd/2 e 1z 4

X J 0 (krl-- ) rldr, (IV-30)

The evaluation of the integral requires several steps. Consider the

function:

zeikri 2 
-[i 1 2

g(r1 ) = L~e + 16W 2]
1d 4

S 32W"0r2z ik r] 240r12]

g'(r ) -- I re -2z d+

(IV-31)



Then rewrite the original integral as:

r 22
ik 1 + 4 ( 1 2

e 2z 4+ r dr

d/2

S ( kr r 32W, ,

f ' o(r) dr d2 zr 4

d /2

ik kr1 r 3+dr

e 2zd4 1  z r 1 drI

d/2

(IV-32)

The first integral on the left side is solved as in Chapter 3 with the

solution:

g'1  kr1r2k 
2 ~ ik d2 1 1+ 8W. ]

f '(r ) (k dr 1 ik e 8z e Z

(IV-33)

Consider the second integral. Let g(r,) be the same as in IV-31 and

f ~kr r 2
f(r) _r 2 j 0(Ir 2 ) (IV-34)

Then:

e k 2z d4 J (krr) r1
3 drl

d/2

. .. . - . ~ i"S



r I - •- ~.j- -

32W 4 0z ik

x g' (r) r ) dr, J e 2z

2 d/2

32W40r1 
2 ~

i+ 4- f (r )  r 3dr "

d (IV-35)

The diffraction effects come from the edge where r, d/2. Making the

assumption f(r ) oscillates siowly compared to g'(r ) the first inte-

gral is solved by the method of Chapter 3.

00

, Z d 2  ik 1 +8 - -

g (r ) f(r ) dr = Ti- -e 2 0 - -kdr 2

1 1 k4 e 8z L d2  2
d/2

(IV-36)

Grouping the terms thus evaluated yields for the original integral:

CO 2
[ 0 r1 z 2) r1dr

+ d4  0 k r r

d/2

ko 2 
2.8W z

ikO j( e2 8z L 1

432W4 0  k8--- + 4
+ f~2 e 8zL

+ d d/2

x Jo~ r r5 drl

0 (krr 2)(IV-37)

If the last integral is evaluated using the function:

[S



,kr 2h(r )  r r 4j J0 ) (IV-38)

one obtains the next term in the series (I - (8W40z/d2) + )

which is: p

(d 4z) r =d/2 (d~z2 (IV-39)

The expected solution to the original integral is:

z o -)(r2  ik d28z LI + T8W1~oz] 8W~lnod z p"

/ kdr2 eik d2- [ W 4oZ] ,+ 8W4°z -1

(Iv-4o)

1,8W z

for I-2-- < 1

Notice this implies z <*:1--- Z = - 8-0is the effective focal

point of the system. The disturbance function is therefore:

r22 40Z2o14O

z A k +

e [ 7e

i 2 (z + 8 z) d

(kdr r 8
0 -z / (IV-41)

The intensity function is:

2 S. - d

+. " W 4 z

. . - d2.
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A 2 (kdr 2)I(r2z) ( 8W 0 z )2 2
d2 (IV-42)

The intensity distribution behind a circular obscuration has an

identical form spherical aberration and defocus. In fact if both

defocus and spherical aberration are present the intensity distribu-

tion is:

1(r 2 , z) A28w2z (kdr)A21+ --L 0o 2 zT-

d 2 Y (IV-43)

where W' W + W (IV-44)
20 40

All previously derived results for defocus in this case hold for

spherical aberration for the region of validity z < - . This

region of validity includes normal laboratory conditions for typical

amounts of spherical aberration. If an upper limit of W4 0 = 15 1 is

assumed for a one centimeter diameter obscuration then equation IV-42

will hold for z < 4 meters.

Case 9: Annular Aperture

The aberration function for spherical aberration for the annular

aperture case is:

r 
4

W= 16W40
D4  (IV-45)

The disturbance function is found from expression IV-31 with the

upper limit evaluation of r, -

. ... .'."-. .. i. . .
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r 2 [Dr 8W
2k _____ ikL1+U(r2 , z) -Ae eik z e 8z29 2-- 1 D2

1+8 ik4o__1+8z402

D
2

X J 2z - e 8z D4"
8W zd 2

1+ 40

D
4

2 0\--z (IV-4 6)

The intensity distribution is:

I(r2 _)=_ f)kDr A2+

2 A[+ 8 0 4-/ 0 8W2 ) 2

/ + -40

-2r 2) (tK2)2 (kdr) cos

40 z o0_( 8W z 8W ozd 2- \-

D2 /

x (D2 - d 2 ) + kW~u [ - ) '-

D' (IV-47) .•-

Intensity on axis. The intensity on axis is described by the

following:

[ .
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( 8 08

1( , ) A D41 2 WZ 4 0  + Z d2

2 1 + D 1+
/ D D2 D 14

4S

x Cos ( (D2 -d 2) + kW

L Dt (IV-48)

The intensities for the maxima and minima lie on the curves

() =A2[ + 1 1 2
max 8W4 0z 8W 0 zd

2

1+ -41

D2 
I+

D 
2

1(0, Zmin) 8W4 0z 8 d
40i - 8 4 0 zd2

L 1+ 1+J'.. D2 I
D2 (IV-49)

As with the case of the annular aperture illuminated by a plane wave

with a gaussian intensity distribution the on-axis intensity distribu-

tion oscillates between an upper and lower bound with the lower bound

non-zero (except for z = 0 and z = ). For positive W4 0 the upper

bound is a decreasing function with increasing z. The lower bound

will increase to a maximum value then go to zero for large z. This

maximum occurs when:

dl.1 8W /D2

mi0 +dn 0 2A2  11+

dzI+ O8W 40Z I+ 8W4 0 zd 2 + 8W Uz\ 2  5

D D2

-. ~~~D D2- . - - - - - - - - - - - - -
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404

8W4 0 zd
2

1+ 4U zd 8W40 Z1 d2[ 4D[ D2 jD 2

D
3

8W4 0 d (IV-50)

Since D > 1

D3  > D2

8W4 0 d 8W4 0 (IV-51)

Thus the maximum lies beyond the limit where equation IV-43 is valid.

In the region where the equation holds the minimum intensity boundary

curve is a constantly increasing function.

The amount of spherical aberration produced by plane parallel

plates is very small. In addition the experimental phase will involve

distances z on the order of one meter. In all cases of concern the

following approximations are valid:

8W4 0z

<< 
1

Dg 4(IV-52)

With these restrictions the denominators in equation IV-48 are
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replaced by their expansions tD first order. The intensity on axis

then is:

I(0' z) A 2  2 1610 + d 2 1 80 z +

D 2  
D2  D2

cos ( D 2 
- d2 ) + [-140 1 D_-53

If one measures the intensity at a maximum on axis the spherical

aberration coefficient is found to be:

40

40 32z(1+E2 ) 4'oJ (111-54)

As with the defocus case, spherical aberration also causes an

axial shift of maxima and minima. Maxima will occur when:

k (D 2 - d 2 ) + kwo (1C 2n + 1)
8z 40

Z D2(I-E 2 )

4X(2n+I) - 8W 4(-c4 ) (IV-55)40(C

Minima occur when

Z D 2 (1-c2 )WZ -8W4=1C4 (1V-56)

The spacing on axis from the nth order maximum to the n + 1th order

maximum is:

4 z2

(1-C 2 ) D2  (IV-57)

4 5*1
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As before the spacing is independent of aberration. The coefficient

for spherical aberration can be calculated from the axial shift of

maxima on axis. Following the argument in the section on defocus:
S

= (2n+l)X Az

W.0 2(1-_C4) z (IV-58)

where Iz is the axial shift and z' is the new position of the nth

order maximum. By measuring minima the above becomes:

1-C0 Z (IV-59)

The following graphs show the differences between equations IV-40

and IV-53 for a 1cm annular aperture with c .5 and W = + .5N (for

z < 4m, 

40

D
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INtTENSITY EHIND ANNtULAR APERTURE: SPHERICAL ABERRATIOF APPRO)YIMATF SCLUTION
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INTENSITY BEHIND ANNULAR APERTURE: SPHERICAL ABERRATION APPROYIMATE SOLUTION
5,.,
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N
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Graph 4.15

Off axis intensity distribution. Off axis, the intensity behind

the annular aperture is:

p

(kDr ( zd2.  .
I(r2, z) A2 L -l 6W0 J02-z +  - 40 2) RD2)

04 2 Z D2  J 0 2 z

J( -d )cos-+- - d))]x 8z\ / o (D2 - 2 ) + kW40(I - 4)

(IV-6o)

The following graphs show the patterns for an on axis maximum

with WO = . 25,\, 2.5X and -2.5X. There is very little change in the

patterns.

I%

... .. ... .. ... .. ... .. ................. ;~ " • -I.-. - - . .. "
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'efocus and Spherical Aberration Combined

8W z

Earlier the restriction << 1 was imposed. A resonable

assumption under this restriction is that << I (the amount of
D'

defocus is of a similar order as that of spherical aberration). When

this is the case the intensity distribution becomes:

K1  / kDr2\
1(r 2 , ) A 2  - 16 _ (W2 0 + W4 0 )) j02 I 1+

Sd2  
2 (kdr 2

(1-16 -D (W2 0 + W 2 - 0-))J0 \2z-

- - .- -m
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(1 +2 / kr2 kdr2
2(1 8 (W0 + W~~ (1+z~2~~d 2

D2 - 40 D 2 ) 0 z 0 0

x cos z (D2 - d2) + kW2 4 - j+ kW4 4 ---i
(Iv-61)

To separate the two aberrations one must capitalize on the basic

[4difference between them. Spherical aberration has a r 1  dependence

while defocus has only a r1 2 dependence. Varying the obscuration

ratio (that is varying the inner diameter of the aperture, keeping the

outer diameter constant) will change the intensity of maxima on axis.

Measure two maxima on axis. These will occur at z 1 and z . The

d I

first measurement will be I, with obscuration ratio £ = - and the

d,1
second will be I, with E2 = -" Then:

z2 D

1I0 ( - 16- + + (1 - 16 --L( + 14 2)) +
D2 (W20 W40 20 40 C I

2(l- 8 -(W + W (1 + 2))
D2 20 40 1

Iiz z
W= - 48 -_ (32 -L (I + c 2))

02 D 40 2 1

W =4 4- (4 o - W 240  (1 + 2) (IV-62)

A second measurement will replace I, z and £ by I., z and •

1 1 2 2

Then subtracting the two and solving for W 40 yields:

2w 12 2) = D2 1 --'1 21

03 1 2 Z12 J olZ1  Z -I

40 3 1 2 -8 Z =-
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D2  (41 (z 2 z ) + (I2 z - I z 2
32zz 2(E 12 -E 22 )I 0 2 1 21 22 2 (12 0 (IV-63)

Putting this result back into IV-62 yields:

/ D,2 4_ _ _ D2

20 48z 4 0 -3 32z z(E 2)1 0 1

(1I Z- Z 2))(1 + 12)

Dz (I + C 2 )(4I - I ) +

48zz I(E 2-_ 2 ) L1 1 0 2
1 2 01 2

z2(1 + E2
2 )(I 1 - 41) ] (IV-64)

The separation of the aberrations is also possible by considering axial

shifts of maxima, with different obscuration ratios. it is clear by

looking at equation IV-61 that the term in the cosine k(W (1- 2) +

W 40(i-4)) acts like a phase factor. Unless one varies c the two

cannot be separated.

Maxima on axis will occur when

8- -(1 - £2) + kW2 0 (1-E 2 ) + kW40(l C4 )

8z +2W0"1 - ~ (2n + 1)T

L Z ---- E2

4X(2n+l) - 8W2 0 (I-C 2 ) - 8W 40(1-C) (IV-6)

If the n th maximum is measured at z with obscuration ratio and at

z with obscuration ratio L 2 then the respective axial shifts from the

*i .. - :- . _ .; -i i .i, : i ; i ' ). ' i : : .. .: .. -;;:: i!
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unaberrated case are:

D2(- 2 L~2+)-2
4 X(2n~l) 20 (1-C.2) -2W (1-F 4) X(n1

10 40 j

i =1, 2

D2(,_ 2)W 2 + w 4(1+E.2)

4X(2n+l)[IX(2n+l) - 2142 0 (1-E *2) -2W 4 0 (1-C 4)

(IV-66)

After much aI-Sebra (see Appendix 6) the resolved aberration coeffi-

cients are:

w 20 =2X
2 (2n+1) 2  S

x (D2[6z 1j-e2
2)2(1-E1

2) - z(1-E12)2(1 2 )]

4X(2n+1)Az Az (1
1 4- 4))

*~~~ 2D(- 2) +2 z4X2+

DI 1c z1 4X(2n+l))(D
2(1-e 2) +A X2~)

J (IV-67)

U = 2X2 (2n+1)2

40 2C 21- 2)

D2 LZ1(1-C 2)2 - A~z, (1 2)2] 4Xl+)zA E2E2

(D2(1-c 2) + 6z I4X(2n+1))(D 2(1-c 22) + Az 24X(2n+1))

(IV-68)
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Solving the above expressions is a tedious task. There is another

drawback to separating the aberration coefficients using axial shifts

-- the difficulty of locating the nth order maximum. With the re-

strictions at the beginning of this section imposed, small values of z

are implied. Small z means high orders of maxima and small spacing

between maxima. To verify the order of the maxima in both cases will

require assiduous measurements.

Astigmatism

The aberration function for astigmatism is:

r2
W =412 - cos2O1

D2  (IV-69)

The Rayleigh-Sommerfeld formula for the disturbance function with

r 2 dD/2 rr 2

A ikz ik r 2 2  ikr 2 /2z -ik ---- cos (0 021

0 d/2

1

x e i4kW 2 2 1cs2 rldrd 1  (IV-70)

The above must be evaluated numerically. As explained earlier the ex-

pected diffraction pattern will have two planes of symmetry. Astigma-

tism is the predominant aberration generated by tilting parallel

plates. Thus an empirical study of this aberration is possible.

*,



Coma

The aberration functici for coma is:

r 3

D3 (I-71)

The Rayleigh-Sommerfeld formula with coma is:

2A ikz . ik r2 2 f D/2Cos (r2-1)

U(r2 , z) A e e -zz 22 C1

r3
1

eik8W3 1 -1- 1drld01  (IV-72)

The above has no apparent analytic solution and must be evaluated

numerically. The amount of coma produced by the plane parallel plates

is small particularly in comparison to the amount of astigmatism. It

is doubtful any comatic effects will be observable during the experi-

mental phase.

Summary

Chapters 3 and 4 included many formulas for intensity distribu-

tions on and off axis. Below is a review of the formulas and equation

numbers.
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Unaberrated Cases

Uniform intensity plane wave incident upon circular obscurration:

On axis:

1(0, 0, z) A2  z2

z2+d2/4 (111-12)

Off axis:

( kd r..
I(r2 , .) A2J02  2- / ) (111-26)

Uniform intensity plane wave incident upon annular aperture:

On axis:

1(0, 0, z) A2 2 - 2cos ) (ITT-39)

Off axis:

2(r Z) Iu(r, Z)

2(kr2) (kdr 2 kDr 2 kdr 2
A 2( 2 kd 2J 220 2 z 2z o 2"z

x Cos - (D2 - d2)

(TII-5C ,

Gaussian intensity plane wave incident upon circular obscuration:

On axis:

1(0, z) = A2  1 e -c/2

1+ d2 /4z (TV-73)

!I
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r2Off axis:

c~ 2/kdr2
l(r2 , z) = A2 e- 2 0 2z (111-34)

50 Gaussian intensity plane wave incident upon annular obscuration:

On axis:

(0, z) A2  e 2 -- e-C 2  - 2e- d + co'~ cos -z ( D 2  - d )

(111-65)

* Off axis:

cd2  jd

I(r 2 , z) A2 [e- 2 j 0
2 (-D) + e j02 (- -2 ) -

2- j ] (kDr t (kdr2  k( _ d2) I
2e 4 jD2 Jo-)~\ 2/ O z'

O] (IV-74)

Uniform plane wave incident upon displaced obstacle and aperture:

On axis:

1(0, Zl, 2  2 -
2 cos k D 2  d2

2) 8 z Z2  (IV-75)

Off axis:

Ij (kDr2 / kdr 2J (kDr2

I(r2  Z1 9 z2) = A2 2 )+j2 - !2
2 - 2 z
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(kdr1
x J 2 Cos kID 2  Id2

\8z Lz22 (111-74)

Aberrated Cases

Uniform intensity plane wave containing defocus incident upon

circular obscuration:

On axis:

A
2

1(0, z) = + 2

(+ 8W20

d2 J(IV-76)

Off axis:

2  /kdr2
I(r , A 2 2  2)

2 1+8W 2 z2 0\ /

d2  / (IV-5)

Uniform intensity plane wave containing defocus incident upon

annular aperture:

On axis:

1(0, Z) 2  2 2cos(Tk (D2 d2) 1 +-7

D2 (IV-77)

Io

,S
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Off axis:

[ kDr kdr 
-I (r z) A 12 2\ +32j 2 A -2JO ( 2

2( + 8 Wq z \ [0 \ 2 z / o z )zy a

(kdr\ d2 1
x Jo \- Z) cos yz (D2  d2 ) + kW2 0 1 - ) J

S
(Iv-14)

Uniform intensity plane wave containing spherical aberration inci-

dent upon circular obscuration

On axis:

1(0, z) = A2  1- 16 --tz
d2 (IV-78;,

Off axis:

!,2' z l kdr2 2

I(r , z) A2 [ - 16 0  2d2  2(IV-79)

Uniform intensity plane wave containing spherical aberration inci-

dent upon annular apertue

On axis:

F 1 6 W 4 z 
/ 8 W 4 zA 2

1(0, z) --A2  2 40 (1+- - 2 I -4 +-L D2  D2  D2  D2

x cos( (D 2 -d
2 ) + kW 1 )

8z 40 D4IY53
(IV-53)



127

Off axis:

217 / ~kDr\ d
I(r, z) = A2 [ 16W - 2 z -1 - 16W zd2

(kdr2) [d2) kr2) "

x 302 ( 2z) 2 -[1 8W4 ) (.D.

X 0 (-z ) 8z (D2 - d2 , + kW O(). - c4)

(IV-60)

From all the preceding, one can construct a general formula con-

taining all of the soluble elements discussed in the two chapters:

WI40 ZI
1-16 D2 J.

22 0 A2  ",.J2  -

z d2

1-16W0 c d 2  /D2 e 2 j 2kdr

W02 0 -

Wg0] Z+z _ 2

1+ 4 +

D2  D2J

S0 (kd. d

;.:. :i~i: . i_ ' - ' '" _ _ Cos . .. " :_
k• , .[ "- + , '1 ) . . . .. . (IV-80)
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Chapter 5

EXPERIMENTAL PROCEDURES

The experiment contained three phases. The first phase involved
I

calibrating the aberration generator an. determining the gaussian con-

stants for the beams used. The second phase included preliminary runs

which suggested the ultimate tests for the final (testing) phase.

I

Laboratory Equipment

Below is a photograph of the laboratory set-up. The next page is

a diagram labelling the components.

I,

Photograph 5.1: Laboratory Set-up

p.
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The laser used was a Spectra-physics helium-neon laser with a .5mW

power output. The spatial filter was composed of either a 20X or 60X

microscope objective (to change the gaussian distribution constant for

the incident beam) and a 25 micron pinhole. The plane parallel plates

were half-inch thick and made of BK-17 glass with index of refraction

1.517. The plates were mounted on posts allowing for somewhat precise

(+ half degree) tilt angles. The collimating lens was a 100mm focal

length achromatic doublet. The lens could be translated to introduce

defocus. The obstacles were ball bearings of diameters 3/16, 5/16,

1/2 and 3/4 inches mounted on plane parallel plates. Disks drilled

with different sized holes provided the apertures. A Caertner travel-

ling microscope with a 20X objective was used to make measurements of

the diffraction structure on and off the optical axis. Photographs of

the spot and ring patterns were made with a Bausch and Lomb stereo

viewer with Polaroid camera attachment. The camera attachment had

adjustable shutter speed and used Polaroid 3000 black and white film.

Calibration

The aberration coefficients for given parallel plate tilt angles

in tables 4.3 and 4.4 were verified by taking and analyzing interfero-

grams pr2duced by aberrated wavefronts. A Smartt point diffraction

interferometer created the interferograms. The interferograms in-

cluded a variety of tilt angles using one plate, two plates counter-

rotated or two plates rotated in the same direction. Photographs were

made of the interference pattern using Polaroid 3000 black and white

film. The photographs were digitized and run through an analysis

4 I,
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program called FRINGE at the Fringe Reduction Facility at the Air

Force Weapons Laboratory at Kirtland AFB. The results were then

compared with theory (see Chapter 6).

The gaussian intensity widths of the two microscope objectives

used in the spatial filter were investigated using two methods. The

first method was the knife edge test. A collecting lens focused the

plane wave output of the lab set-up (no plane parallel plates or

target) into a power meter (a hv 6328A meter). A razor blade on a

translation stage is introduced into the beam before the collecting

lens.

30cm 10cm 20-0c

razor blade on

translation stage power meter

plane waves collecting
from svstem lens

(250mm focal length)

Figure .2

Set-up for Determination of Gaussian Constants 1

As the razor blade is moved farther into the bean the percent of the

beam still reaching the power meter is measured as a function of the

distance of translation of the blade. A best fit line for the data*
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points is calculated. The distance between the position where 84.2% 

transmission occurs and the point where 15.8% transmission occurs is

designated Ax. This difference corresponds to the radius of the beam

at the e-2 points (the radius at which the intensity drops to e-5

times the maximum value). The desired form of the gaussian distribu-

tion is given by e- c 7[. Equating the two and substituting "x for r

yields: 5

-2 -c (Ax)
2

e =e D 2

2D2  S
C 

=

(Ax) 2  (V-1)

As expected the gaussian constant will depend on the size of the aper-

ture D taken as the normalization value.

The second method of finding the gaussian constant is a method by

Stijns. I A wire or cylindrical object is used in place of the blade.

Instead of wholescale screening of the incident beam, selective shad-

ing is possible. The wire is moved across the beam until a minimam in

power registered by the meter occurs. As the figures below suggest

this minimum corresponds to the point at which the wire i centered in

i di:ribut ion

minimum po-u.er

Figure 5.3

Wire Method of Gaussian Constant Detemination

wS
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the beam. The ratio of the power at the minimum to the unobstructed 1

power is compared to an error function. Use of a graph enables one to

obtain a value for the ratio of the wire diameter to the radius Wo of

the e- 2 points. In a similar method to equation V-i, the gaussian 1

constant can be determined.

Preliminary Runs

The dry run phase involved taking measurements to verify theory

and to perfect experimental techniques for the final trials.

Final Tests

The ultimate experiment involved:

1) Verification of theory for the unaberrated case.

2) Measurement of defocus aberration coefficients by axial
shifting of on-axis extrema.

3) Measurement of spherical aberration coefficients by
shifting of on-axis extrema.

4) Study of astigmatism.

Verification of theory. The testing of the theory presented in

Chapter 3 was accomplished by varying a number of parameters. These

parameters were the obstacle diameter, the aperture diameter (for the

annular aperture), the gaussian constant, the distance along the I

optical axis and the separation of the obstacle and aperture. The

travelling microscope allowed for on and off axis measurements. In

addition, some photographs were taken to compare with computer gener-

ated intensity contour plots.
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Measurement of defcus coefficients. The positions of maxima and

minima on axis behind various annular apertures were measured, marked

and their orders determined. Defocus was introduced by moving the

collimating lens. The shift of the lens position becomes the Lz term

in equation IV-2. The coefficient of defocus thus obtained can be

compared to the coefficient found by equation IV-28 from the shift on

axis.

It is important to note that by decollimating the incident beam

the wavefront is no longer planar. The beam will diverge or converge

depending on the sign of defocus. But the spherical obscuration is

mounted on a plane parallel plate. Will the now diverging or converg-

ing wave contain more aberrations upon plate passage? Since the plate

is not tilted some spherical aberration will be produced but only a

negligible amount. Tie non-converging rays still strike the plate at

essentially perpendicular angles.

Measurement of spherical aberration coefficients. Spherical

aberration was introduced by inserting one or two parallel plates in

the diverging beam from the spatial filter. Measurements were taken

using the same method employed for defocus. The aberration coeffi-

cients were calculate,. from the expression for spherical aberration in

tables 4.3 and 4.4. These were compared with the results obtained

from equations IV-58 and IV-59.

Study of astigmatism. Astigmatism was intro-ced i.. to the wave-

front by countertilting two plane parallel plates. Photographs were

4 "
. . .• .
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taken of the diffraction pattern of a circular obstacle for one degree S

increments in tilt angle. This became the standard by which every

other photograph was evaluated. Various axial distances and obstacle

diameters were tried. To investigate the annular aperture, the obsta-

cle was purposely offset from center so the diffraction patterns from

the outer and inner edges were separated. The changes in each pattern

by the addition of astigmatism were photographed. The effect of the p

aberration was then observed for a variety of annular apertures and

these were compared with the circular obscuration cases. Finally it

was demonstrated that astigmatism also shifts the position of extrema

on axis.

Numerical Studies p

The unaberrated cases and those with defocus and spherical aber-

ration lent themselves to study using an IBM PC computer. Appendix 8

contains program listings of the routines used to generate the plots

and graphs in this thesis. Appendix 7 gi .-s a comparison of the use

of single precision numbers versus double precision numbers for the

analysis.
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Notes

1
1 Erik Stijns, "Measuring the Spot Size of Gaussian Beam with an

Oscillating Wire." IIEE Jourial of Quantum Electronics. QE-16 (Decem-

ber 1980), 1298-1299.
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Chapter 6

EXPERl;IENTAL RESULTS p

The presentation of the results of the experiment will follow the

order presented in Chapter 5. p

Determination of the Beam Parameters

Two different microscope objectives were used in the spatial

filter. The 60X objective produced a wide intensity pattern, suggest-

ing a low gaussian constant. This objective was employed to study

annular apertures. If no arerture was used then the 13/16 inch diame-

ter mount for the collimating lens became the aperture stop for the

system. To minimize the edge-diffracted effects from the mount, the

objective used was by the 20X objective. This produces a narrow

gaussian beam.

The methods employed to find the gaussian constants were the

knife-edge test and the wire test.

Knife-edge Test

The power of the uninterrupted beam reaching the detector was

0.418mW. The table below gives the knife edge position, the power

measurement and the percent transmission past the knife edge.

S
! -1

.--
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Table 6.1

Knife Edge Test Data for 60X Objective

Knife Edge

Position (mm) Power (mW) % Transmission

44 .418 100

46 .400 95.7

47 .396 94.7

48 .390 93.3

49 .379 90.7

50 .362 86.6

51 .345 82.5 -

52 .328 78.5

53 .300 71.8

54 .281 67.2

55 .253 60.5

56 .223 53.3

57 .209 50.0

58 .185 44.2

59 .146 34.9

60 .104 24.9

61 .050 12.0

The ;ercent transmission Levels off at the extremes of the knife

edge position. The best fit line for the data points should neglect
*7

these regions. The suggested procedure is to consider data points

between 15.8% and 84.24 transmission and extrapolate. A least squares

linear fit of the data from 51mm to 60mm yields a percent transmission

function of the form:
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( transmission) = 400 - 6.184 x (knife edge position) (VI-1)

The coefficient of determination is .9883. The 15.8% and 84.2% trans-

mission points occur at 62.13 and 51.06mm respectively giving a x of

11.07m. Then by equation V-i, the gaussian constant is:

22 16320 D2 m- 2  (VI-2)C6x=(AX)2

For example, a one centimeter diameter aperture will yield a gaussian

constant of 1.632.

The 20X objective yielded a total beam power of .438mW. The
Si

table of data for this objective appears below:

Table 6.2

Knife Edge Test Data for 20X Objective

Knife Edge
Position (mm) Power (mW) % Transmission

61 .431 98.4

62 .421 96.1

63 .405 92.5

64 .379 86.5

65 .341 77.9

66 .300 68.5
*

67 .249 56.8

68 .184 42.0

69 .136 31.1

70 .090 20.5

71 .048 11.0
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The least squares linear fit through the data points from 65mm to 70mm 3

gives a linear function:

(90 transmission) = 847.9 - 11.8 x (knife edge position) (VI-3)

The coefficient of determination is .9967. The x term is 5.87mm, the

difference between the 15.8% point at 70.43mm and the 84.2% pctnt at

64.56mm. The gaussian constant for the 20X objective is:

C = 58044 D2m- 2  (VI-4)C20x

Wire Test

Four cylindrical objects of different diameters were used in this

test. These are listed in the table below:

Table 6.3

Diameters of Objects Used in Wire Test

Measured Diameter

Object Inches Millimeters

Paper clip wire .0345 + .0005 .876 + .013

Nail #1 .0950 4 .0005 2.413 + .013

Nail #2 .1178 + .0005 2.992 + .013

Pen insert .1246 + .0005 3.165 + .013

The measured unobstructed power for the 60X objective was .418mW.

.- - . . ' . .- .. -. - -. . - A-- ~ -.- . - . - . 1 -1 -. .- . . .: - . . . • ... . .- .. .-.: : : .
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This is designated P The wire was moved into the beam until the

minimum power Pa was reached. By Stijns' method:

NEW 0 2
P a 2 f e edt

P 0 T 00 (WI-5)

where a is the radius of the wire and W is the radius of the e
0

points. The table below gives the measured minimum power, and the

related parameters used find W .

o0

Table 6.4

Wire Test Parameters for 60X Objective

Paperclip .376 .90 .125 7.01
wire

Nail #1 .295 .706 .370 6.52 0

Nail #2 .275 .655 .445 6.72

Pen insert .268 .641 .463 6.88

The average gaussian radius for the e- 2 points is 6.78mm (+ .21-m). 0

(The term in parentheses is the standard deviation.) Using this

average value to find Ine gaussian constant C yields:

C 2D2  43510 D2m - 2

c -O 4312 Dm (VI- 6) "-I
w2

00

! . *1
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This differs from the result found by the knife edge test by a factor

of over 2.5.

The comparison between te tw, tests was mich closer for the 2O'X

objective. In this test t-.e biicwtr>:.: r was .445mW. The table

below shows the parameters to fin, oi

D

Wire Test ?arameters for -':j Ajective

Minimum
Object Power (rW) oa /P a/W W (mm)

Paperclip
wire .389 .868 .160 5.48

Nail #1 .300 .670 .435 5.55

Nail #2 .271 .6C5 .515 5.81

Pen insert .266 .594 .540 5.86

The average gaussian radius for the e points is 5.68m (+ .19mm).

Notice the radius measured using the knife edge method (5.87m) is

within one standard deviation of the above. The gaussian constant

determined by the wire test is:

C = 61990 D2m-r (VI-7)

The wire test method gave very consistent results. Unfortunate-

ly, the results were much too high. For a 16mm aperture the gaussian

- . . . . .. .... . - . . . .. .. . . / .S
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constant for a bJX microscope objective is 11.14 using the wire method

value. This constant is sufficiently large to eliminate the effects

of the outer aperture. The diffraction pattern should be just that of

an obstacle alone. This is not what is observed. There are diffrac-

tion effects from the outer edge. One possibility for the difference

between the two tests is the beam might not be perfectly gaussian. In

this case the res,;lts from both tests are suspect. For the purpose of

plotting graphs, the values of the gaussian constants from the knife-

edge test will be used as the standards.

Aberration Coefficient Curves

Defocus

The coefficient of defocus as a function of the shift in position

J of the collimating lens is given by equation IV-2.

w -W - 8 (IV-2). •8 ( F 11 ) 2

The f number is determined by the radius of aperture used. The aber-

ration coefficient curves for aperture diameters of 7mm (solid line),

10mm (dashed line) and 16rm (dottei line) appear below.

*
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Graph 6.1

Spherical Aberration

As shown in Chapter 4, the coefficient of spherical aberration

will be constant. The table below lists the spherical aberration

coefficients for apertures of diameters 7, 10 and 16mm.

Table 6.6

Spherical Aberration Coefficients

Aperture W o-one plate W- -two plates
* Diameter "'MM) (wavelen__.'ths-) wavelenths)

7 - ' 1-~- .'

- 11716 66
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Astigmatism

Early in the experiment the latcrat.r - w~s f:und to con-

tain background astigmatism. Th ma :r. .. 4 S...t seemed

to come from the plane parallel plates. : removed the

diffraction patterns of all obstacles were t,- :t-:ri ring patterns

predicted by theory. When the plates wer-e I~erte t:.,e patterns were

aberrated to various degrees depending on the diameter of the obsta-

cle. The residual astigmatism seemed to be positive. The astigmatism

produced by countertilting two plates has a negative sign. Thus one

can balance out the background positive astigmatism by introducing

negative aberration. By measuring these required plate tilt angles

for various sized obstacles the amount of background astigmatism can

be determined. The table below lists the countertilt angles using

obstacles of diameters 5/16, 1/2 and 5/8 inches and the associated

aberration coefficients. The error term in the aberration coefficient

Table 6.7

Measure of Background Astigmatism

Tilt angle required

Obstacle to balance out
Diameter (mm) background aberration (o) _ _W_______

7.938 5 + .5 .090 + .018

12.7 3.5 + .5 .113 + .032

15.875 2.5 + .5 .090 + .03

S
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is the average deviation based upon the half angle uncertainty in the

tilt angle. The aberration coefficient for the background astigmatism

is taken as .0975 , the average of the above values. This is added to

the expression from Table 4.4 for W22

n2-1 tu2 2

n 3  (VI-8)

Interferograms using the point diffraction interferometer were

made to verify the above. The data points obtained from interferogram

analysis are plotted against the curve of equation V1-3 for a 13/16

inch diameter aperture. The error bars reflect the incertainty in

tilt angles and the associated uncertainty in W 22

ASTICMATISM ABEREPTION COEFFICIEKqS FOE 13/16 INCH APERTURE
20.8 T 0

I -

N - 5 0..A C
EEA .-..

E¢ E A O,R F V

A I L 0
T CE 10.0
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1
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Seven interferograms were selected from over thirty taken to be

reduced. These are shown below. The first is of one plate inserted

with no tilt. The next three show two countertilted plates of 4.50,

100 and 200 each. The effect of increasing astigmatism is seer. to

compress the interferogram pattern from concentric circles to concen-

tric ellipses. The last three show the effects of two plates -ilted

in the same direction at angles of 50, 100 and 150. Coma enters into

these patterns and sweeps the fringes to one side. Photograph 6.6

contains a dark spot in the center of the pattern. This is the result

of the :xctograph being taken of the pattern on the side of negative

defocus. All the other photographs show patterns on the positive

defocus side of the null (zero focus) position.

j.LI* %

Photograph 6.1

One plate - no tilt

L .-



Photograph 6.2

a Two plates -4.5O countertilt

* Photograph 6.3

Two plates -10countertilt
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Photograph 6.6

Two plates -100 tilt in same direction

Photograph 6.7

Two plates -150 tilt in same direction



In each photograph the center of the pattern was measured. (In

the case of Photograph 6.7 which is not symmetric, the position of

center had to be estimated.) This became the center of the pattern to

be digitized for the computer analysis. This was necessary because a

shift in position from the center will introduce extraneous aberra-

tions. To see this take a simple example. Assume the only aberration
0

present is defocus. Let the x-position of the center be shifted by

Lx, (,x << 1). Then the aberration function becomes:

W = W r2  W (x2 + y 2) > W ((x + Lx)2 + v2 )
20 20 20

W W (x2 + 2xAx + 0 + y2 )
20

= W2 (x2 + y 2) + 2AxW20 x

SW r2 + 2AxW r cos0
20 20

=W r2 + W 'r cos0 (VI-9)

A shift in the x-direction manifests itself by the introduction of an

extraneous tilt term. If the pattern is not centered when put into

the reduction program the output will contain many of these manufac-

tured aberrations.

Verification of Theory for the Unaberrated Case

Three features of the diffraction pattern predicted by the theory

of Chapter 5 were investigated. The first was the position and spacing

. ... .. 1-:o



153

of the rings in the diffraction pattern. This was accomplished in

conjunction with the observations of the other two features. The

second was the increase of the overall pattern size for increased

optical axis distance Z. The third was the decrease in the cverall

pattern size for increased obstacle diameter.

S
Circular Obstacle

The following photographs show the diffraction patterns behind a

3/16 inch diameter circular obstacle observed at 20, 25, 50 and 75
S

centimeters. The 20X microscope objective was used ±n the spatial

filter. The stereo-viewer was set at a magnification of 6X. The

exposure times were all 1/2 second. The photographs demonstrate not

only the increase in pattern size with increased z, but the regular

spacing of the ring structure and the brightness of the central spot

in comparison to the rings.

Quantitative measurements of the increased pattern size came from

looking behind a 5/16 inch diameter ball bearing at 40cm and at 75cm.

The tables below compare experiment and theory for these cases. The

calibrations on the travelling microscope allowed for measurement

accuracy within + .005mm. Additional uncertainty arose from the

judgement of where the brightest and darkest points in the ring struc-

ture occurred.
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10

Photograph 6.8

z =20cm
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Photograph 6.10

z =50cm

r -41

0:

0 Photograph 6.11

z =75cm

S 
...
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Table 6.8 ,1
Comparison of Theory and Experiment:
Positions of Ring Minima and Maxima.

5/16 Inch Diameter Obstacle Viewed at 40cm

Distance from Center (am)
PercentRing Structure Experiment Theory Difference

Minimum #1 .023 .024 4.2

Maximum #1 .046 .039 17.9

* Minimum #2 .057 .056 1.8

Maximum #2 .072 .071 1.4

Minimum #3 .091 .088 3.4

Maximum #3 .108 .103 4.9

Minimum #4 .126 .120 5.0

Maximum #4 .143 .135 5.9

Minimum #5 .154 .152 1.3

Maximum #5 .172 .167 6.o

Minimum #6 .194 .183 6.0

Maximum #6 .209 .199 5.0 L
Minimum #7 .227 .215 5.6

I [".'

I'9
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Table 6.9

Comparison of Theory and Experiment:

Positions of Ring Minina and Maxima.
5/16 Inch Diameter Obstacle Viewed at 75cm

Distance from Center Uom)
Percent

Ring Structure Experiment TheorZ Difference

Minimum #1 .045 .046 2.2

Maximum #1 .070 .073 4.1

Minimum #2 .103 .105 1.9

Maximum #2 .134 .134 0.0

Minimum #3 .162 .164 1.2

Maximum #3 .189 .194 2.6

Minimum #4 .230 .224 2.7

Maximum #4 .256 .254 0.8

Minimum #5 .287 .284 1.1

Maximum #5 .317 .313 1.3

Minimum #6 .344 .344 0.0

Maximum #6 .374 .373 0.3

Minimum #7 .405 .404 0.2

The above tables show that the experiment agrees with predicted

* values. The spacing between the rings shows almost a 100% increase

from the 40cm measurements to the respective 75cm measurements. There

6..
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were larger deviations from theory for the pattern viewed at 40cm than I

for the 75cm pattern. This is reasonable because the uncertainty in

measurements results in a larger percentage of difference.

The photographs on the next page show the diffraction patterns

behind a 3/16 inch diameter obstacle and a 5/16 inch diameter obstacle

viewed at a distance of 60cm. A 20X microscope objective was used and

the binocular viewer set to mag-nification 6X. Photograph 6.12 had an

exposure time of 1/8 second while photograph 6.13 was timed for 1/2

second. The diffraction pattern for the 3/16 inch obstacle is much

laioger than that for the 5/16 inch obstacle.

Ii

rS

Photograph 6.12

3/16" diameter obstacle at 60cm

°-. , .- " :S
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Photograph 6.13

5/16" diameter obstacle at 60cm

The positions of the first six ring intensity maxima were taken

for the above cases as well as for a 1/2 inch diameter obstacle. The

comparisons with theory appear in the tables below.

I I

I I

I I
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Table 6.10

Comparison of Theory and Experiment:
Positions of Ring Maxima.

3/16 Inch Diameter Obstacle Viewed at 60cm

I

Distance from Center (mm)
Ring # Percent

(Iaximum) Exneriment Theory Difference

1 .095 .097 2.1

2 .180 .178 1.1

3 .262 .258 1.6

4 .345 .338 2.1

5 .415 .418 0.7

6 .511 .498 2.6

I

Table 6.11

Comparison of Theory and Experiment:
Positions of Ring Maxima. 0

5/16 Inch Diameter Obstacle Viewed at rOct

Distance from 'enter (mm)
Ring # Percent

(Maximum) Experiment Theory Difference

1 .057 .058 1.7

2 .107 .107 0.0

7 .153 .155 1.3

4 .203 .203 0.0 3

5 .252 .251 0.4

6 .209 .299 0.0

1b
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D

Table 6.12

Comparison of Theory and Experiment:

Positions of Ring Maxima.
1/2 Inch Diameter Obstacle Viewed at 60cm

Ring # Percent
(maximum) Experiment Theor Difference

1 .034 .036 5.6 I

2 .069 .067 3.0

3 .100 .127 3.1

4 .123 .127 3.1

5 .154 .157 1.9 I

As the diam. of the obstacle increases the scale of the p at- 0

tern diminishes. As previously seen the smallest pattern has the

largest average percent difference from theory.

Annular Aperture

To test the theory for the annular aperture, three obstacle sizes

and six aperture sizes were used. The table below lists the obscura-

tion ratios for the possible combinations.V 4
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Table 6.13

Obscurati:n Ratios

* Obstacle Diame:ers (cm)

Aperture
Diameters (cm) 5/16" (.47625) 5/16" (.79375) 1/2" (1.27)

3/6" (.9525) .5 .833

1.0 .476 .794

1/2" (1.27) .375 .625 1.00

5 .0 .193 .496 .

The following photographs and graphs compare the experimental

results with theoretical predictions for a variety of 2ombinations.

The scale factors in the intensity contour plots were reduced from

those used in Cha-t-rs 3 and 4 in consideration of the reduced overall

intensity resulting from a gaussian intensity distribution of the

incident wave. They were reduced again by half in the contour -lots

accompanying the last two pogratnc3.

I

6
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4 65

Photograph 6.14

3/16" diameter obstacle with 7mm diameter aperture.
Viewing distance = 62cm. Obstacle-aperture separation =1cm.

Magnification 5X. Exposure time =1/2 sec.
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Graph 6.3

3/16" obstacle with 7mam aperture
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* G~raph 6.4

Intensity profile for 3/16" obstacle with 7mm aperture
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Photograph 6.15

3/16" diameter obstacle with 10mm diameter aperture.
Viewing distance = 59.1cm. Obstacle-aperture separation - 1.3cm.

Magnification 6X. Exposure time - 1 sec.

4I
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Graph 6.5

3.16"it droiameteor3/ obstacle with 10mm aperture
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4 I0

Photograph 6.16

43/16" diameter obstacle with 10mm diameter aperture.
Viewing distance - 60.3cm. Obstacle-aperture separation =1.3cm.

Magnification 6X. Exposure time 1 sec.
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Photograph 6.17

* 3/16" diameter obstacle with 3/8" diameter aperture.
Viewing distance = 60.2cm. Obstacle-aperture separation =1.3cm.

Magnification 6X. Exposure time =1 sec.
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Graph 6.10

Intensity profile for 3/16" obstacle
with 3/8" diameter aperture
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PhotograpTh 6.19

0 1/2" diameter obstacle with 5/8" di ameter aperture.
Viewding distance = 2.120m. Obstacle-a~perture centered.

Magnification 6X. Exposure time I sec.
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Graph 6.11

1/2" diameter obstacle with 5/8" diameter aperture
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Graph 6.12

Intensity profile of 1/2" diameter obstacle
with 5/8" diameter aperture



Photograph 6.19

* 1/2" diameter obstacle with 5/8" diameter aperture.
Viewing distance = 2.003m. Obstacle-aperture centered.

Magnification 6X. Exposure time =1sec.
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Graph 6.13

1/2" diameter obstacle with 5/8" aperture
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Graph 6.14

intensity profile for 1/2" diameter obstacle

with 5/8" diameter aperture



75

The photographs show excellent agreement with theory. Photograph

6.15 depicts a 3/16 inch diameter obstacle with a 10mm diameter aper-

ture at an on-axis minimum. The corresponding "itensity contour plot

does not have a dark center. This is due to the resol: 'ion of the

contour plotting routine. The central .inimum an this -lot is too

narrow for the routine to observe. It does shc; up in the comzanion

intensity distribution curve. Of >±tc-rest is the fact that the on-

axis intensities are non-zero in the minimum on-axis plots. This is a

conseque~nce of the gaussian nature of the incident beam. This effect

is most easily seen in photograph 6.19 where th center of the dif-

fraction pattern is not dark. Photographs 6.16 and 6.1- show very

similar patterns. This is expected because of similar obscuration

ratios. Photograph 6.15 corresponds to a ratio of .48 and photograph

6.16 to a ratio of .5.

A quantitative comparison of radial positions of diffraction

pattern minima and maxima for theory and experiment follows. 5
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Table 6.14

Comparison of Theory and Experiment:
Positions of Ring Maxima and Minima.

3/16 Inch Diameter Obstacle with
1cm Diameter Aperture, Viewing Distance = 50.2cm,

Obstacle-Aperture Separation = 1cm

Distance from
Normalized Center (mm)

Qualitative Intensity Percent
Description Theory) Experiment Theory Difference

Center (minimim) .061 .000 .000 --

Maximum ring 1 .475 .030 .031 3.2

Minimum .000 .059 .055 7.3

Maximum ring 2 .277 .073 .076 3.9

Dark band .0 .092-.154 .113-.130 --

Maximum ring 3 .132 .171 .165 3.6 .

Minimum .000 .190 .188 1.1

Maximum ring 4
(faint) .071 .208 .209 .5

Dark band ~ .0 .216-.282 .242-.271

Maximum ring 5 .086 .296 .298 .7

Minimum .000 .317 .323 1.9

| Maximum ring 6
* (faint) .023 .332 .341 2.6

*' " ' " " " ' i . . ' - " . . ". . . " " L " .. ° " , " i' -" "

-- ..- ' . - ' " .' ... . . -- " - " . ""*' ."- - " . .. .. ." i ..-" " -. ..-2 .. " " .-
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Table 6.15

Comparison of Theory and Experiment:
Positions of Ring Maxima and Minima.

3/16 Inch Diameter Obstacle with 1.6cm Diameter Aperture,
Viewing Distance = 59.9cm, Obstacle-Aperture Separation = .8cm

Distance from
Normalized Center (mm)

Qualitative Intensity Percent
Description (Theory) Experiment Theory Difference

Center (minimim) .314 .000 .000 --

aximum ring 1 .697 .027 .023 17.4

Minimum .000 .051 .057 10.5

Maximum ring 2 .196 .102 .099 3.0

Minimum .000 .159 .147 8.2

Maximum ring 3 .103 .172 .174 1.1

Minimum .000 .227 .226 0.4

Maximum ring 4 .056 .245 .248 1.2

Minimum .000 .304 .303 0.3

Maximum ring 5 .026 .322 .323 0.3IL

Minimum .000 .378 .380 0.5

4D

• . . -" . - . . -p . . ..
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Table 6.16

Comparison of Theory and Experiment:
Positions of Ring Maxima and Minima.k

5/16 Inch Diameter Obstacle with 5/8 Inch Diameter Aperture,
Viewing Distance - 62.8cm

Distance from
Normalized Center (mm)

Qualitative Intensity Percent
Description (Theory) Experiment Theory Difference

Cernter (minimim) 1.232D .000 .000 -

30k)n O~ .035 .034 2.9

Maximum ring 1 09.0-73 .071 2.8

mll2-.901 .090 0.0

Maxi.-am ring *.3~.111 .l09 1.8

Minmu .132 0.3

Maximum ring .174 .172 1.2

Xr, i mu m.00.<&0.

Maximum~ ring 4 .045 C2 .0905

Maximum ring 5 .02C .274 .272 0.7

Minimum .000 .291 .22 0.3

Maximu :i 6 .032 3,-j 0.3

Maximu-.. .015 .771 .iT.23

Minimum .000 L0.

Maximum ring 8 .024 .. ' ~
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The above tables demonstrate close agreement between experiment and

theory. An interesting feature is the relative nature of minima and

maxima. Table 6.15 shows the central minimum has an intensity (theo-

* retical) higher than the maximum intensity in most of the surrounding

rings! Clearly the appearance of a maximum or minimum depends on the

immediate intensity background.

The final study for the unaberrated case involved the positions

and spacing of maxima and minima on axis behind annular apertures.

Three combinations of apertures and obstacles were employed. The

40 first was a 3/16 inch diameter obstacle with a 7mm diameter aperture.

A maximum or minimum on axis was found and its postion measured to the

nearest centimeter. The corresponding position on the scale of the

travelling microscope was noted. The microscope was translated along

the optical axis and the spacings between the extrema measured. The

microscope could be moved a total distance of 5.5cm.) The scale al-

lowed for a maximum uncertainty in measurement of approximately .01cm.

The first case includes measurements starting at various positions

along the optical axis. The last two involve just one starting posi-

tion. A quirk of the scale on the travelling microscope is that scale

measurements are inversely related to optical axis distances. A

decrease of position by 2cm on the microscope scale means an increase

of 2cm along the optical axis.

.. .... . .... .. . . .
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Table 6.17

Comparison of Theory and Experiment:
Positions and Spacing of On Axis Extrema.

3/16 Inch Diameter Obstacle with 7mm Aperture Separated by 1cm

Measured Starting Position (+ .5cm): 33cm

Experiment Theory

Scale Distance from Optical axis Distance from
Extremum Reading Starting point Distance Starting Point
Type (cm) (cm) (cm) (cm) Difference

Minimum 4.85 0.0 33.31 0.0 --

Maximum 3.94 .91 34.36 1.05 13.3

Minimum 2.68 2.17 35.48 2.17 0.0

Maximum 1.60 3.25 36.67 3.36 3.3

Minimum .33 4.52 37.96 4.65 2.8

Measured Starting Position (t .5cm): 40cm

Experiment Theory

Scale Distance from Optical axis Distance from

Extremum Reading Starting point Distance Starting Point
Type (cm) (cm) (cm) (cm) Difference

Maximum 5.22 0.0 39.33 0.0 --

Minimum 3.76 1.46 40.82 1.49 2.0

Maximum 2.07 3.17 42.42 3.09 2.6

Minimum .37 4.87 44.15 4.82 1.0

-. 7°" - .- , -.-:...i. -. • -. • . -. - - -"...... ... .... - . -,. .,, , . ,-., . . ,
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Table 6.17 (Cont.)

Comparison of Theory and Experiment:
Positions and Spacing of On Axis Extrema.

3/16 Inch Diameter Obstacle with 7mm Aperture Separated by 1cm

Measured Starting Position (t .5cm): 50cm

Experiment Theory

Scale Distance from Optical axis Distance frcm
Extremum Reading Starting point Distance Starting Point
Type (cm) (cm) (cm) (cm) Difference

I5

Maximum 5.85 0.0 50.34 0.0 --

Minimum 3.20 2.65 52.82 2.48 6.6

Maximum .64 5.21 55.56 5.22 0.2

Measured Starting Position (+ .5cm): 75cm

Experiment Theory

Scale Distance from Optical axis Distance from
Extremum Reading Starting point Distance Starting Point
Type (cm) (cm) (cm) (cm) Difference

Minimum 4.36 0.0 75.11 0.0 00

Maximum .89 3.47 80.82 5.71 28.8

I

9
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Table 6.18

Comparison of Theory and Experiment:

Positions and Spacing of On Axis Extrema.
3/16 Inch Diameter Obstacle with 5/8 Inch Diameter Aperture

Separated by .25cm. Starting Position = Minimum at 76cm (+ .5cm) o

Experiment Theory

Scale Distance from Optical axis Distance from
Extremum Reading Starting point Distance Starting Point A

Type (cm) (cm) (cm) (cm) Difference

Minimum 5.34 0.0 75.53 0.0 --

Maximum 4.71 .63 76.16 .63 0.0

Minimum 4.09 1.25 76.81 1.28 2.3

Maximum 3.38 1.96 77.46 1.93 1.6

Minimum 2.74 2.60 78.13 2.60 0.0

Maximum 2.03 3.31 78.81 3.28 0.9

Minimum 1.35 3.99 79.50 3.97 0.5

Maximum .57 4.77 80.20 4.67 2.1

4- .

SP

. 1

-" J-' " .. ' --'. ". " i.'i ." .-' ? '2 ". ". " i; " '-'i ," '- .. .' -.i , ,'": , -- ". .' .-.". ' .''. i' , -i ,'.' " .' , . .
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Table 6.19

Comparison of Theory and Experiment:
Positions and Spacing of On Axis Extrema.

5/16 Inch Diameter Obstacle Centered with 5/8 Inch Diameter Aperture.
Starting Position - Minimum at 60cm (+ .5cm)

Experiment Theory

Scale Distance from Optical axis Distance from
Extremum Reading Starting point Distance Starting Point

Type (cm) (cm) (cm) (cm) Difference

Minimum 5.43 0.0 60.22 0.0 --

Maximum 4.94 .49 60.71 .49 0.0

Minimum 4.43 1.00 61.21 .99 1.0

Maximum 3.94 1.49 61.71 1.49 O.C

Minimum 3.41 2.02 62.23 2.01 0.5

Maximum 2.87 2.56 62.75 2.53 1.2

Minimum 2.35 3.08 63.28 3.06 0.7

Maximum 1.84 3.59 63.82 3.60 0.3

Minimum 1.23 4.20 64.37 4.15 1.2

Maximum .73 4.70 64.93 4.71 0.2

Minimum .14 5.29 65.50 5.28 0.2

The above tables show excellent agreement between theory and

experiment. Table 6.17 demonstrates the increased spacing between

extrema with increased distance along the optical axis. This table

had the highest average percent difference as well as the largest

0
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single deviation from theory (almost 30% difference between theory and

experiment for the spacing of extrema at 75cm). This table illus-

trates the major difficulty in measuring the positions of on axis

extrema. When the spacing between adjacent maxima and minima is large

"" (more than 2cm), it becomes difficult to judge the exact position of
% .

_. the extremum. The pattern changes so slowly with z translation large

amounts of uncertainty in measurements are introduced. This source of

potential error can be avoided by limiting measurements to the region

on the optical axis where extremum spacing is small. The extent of

this region increases with larger aperture size and smaller obscura-

tion ratio.

Verification of Theory for the Aberrated Case

Defocus

Defocus was introduced by axially translating the collimating

lens. For each shift of the lens the change in the on-axis position

* of a minimum of known order was measured. This was possible by shift-

ing the lens in .1mm movements so as to make the resulting on-axis

change be less than the spacing between adjacent minima. The aberra-

* tion coefficient W20 for each measurement was calculated from equation

IV-28. These points were plotted against the aberration coefficient

curve given by equation IV-2. There was an uncertainty of + .05cm in

the measurements of the on-axis extrema. The error bars based on this

uncertainty were included in the plots, but the error range for any

0-
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given point is practically negligible.

The following graphs illustrate the comparison of theory and

experiment for three cases: The first was a 3/16 inch diameter obsta-

cle with a 71mm diameter aperture. The measurements were based on -.he

7horder minimum at 75.11cm behind the aperture. The second was a

3/16 inch diameter obstacle with a l1nun diameter aperture. The mea-

surements were based on the 2 0t order minimum at 76.65cm. The final

case involved a 3/16 inch diameter obstacle and a 16mm diameter aper-

ture. The 60 th order minimum at 76. 69cm was used.

6.

N .
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I Graph 6.15
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DEFOCUS: 3/16 INCH OBSTACLE WITH 18 MM APETURE
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The graphs show remarkable agree-.ent betwee. theory and experi-

ment. The shift of extrema on axis is a ver-., effective method of

measuring defocus.

Spherical Aberration

The attempts to verify the theor-, for sherical aberration were

mostly unsuccessful. Because the coefficient of spherical aberration

is pr: portional to the fourth power of the diameter of the outer edge

of the annular aperture the largest sized apertures were used. A 16:m

diameter aperture had W equal to -.0766 wavelengths when two half
40

inch thick plates were inserted in the system. From equation IV-58,

the shift on axis for the nth order maximum with spherical aberration

present is:

2W (l-c4)40
Az = (2n+i)X z (VI-IO)

A 1/2 inch diameter obstacle with a 16mm diameter aperture has

its 9 th order maximum at 1.97m. The addition of two plates will

result in a shift of position of nearly 1cm. Even a shift as large as

this is hard to distinguish when one considers the distance to the

nearest minimum is 8cm. To pinpoint the position of the maximum is

very difficult without intensity measurements. The uncertainty is at

least on the order of a centimeter. In short, the best case gives a

predicted shift less than the experimental error.

Many of the results were conflicting, e.g., the insertion of one

plate seemed to move the 11 th order maximum at 1.7m a distance of
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0.4cm. This gave a value for W of .043k -- a 13% error. When

remeasured, the shifts for one and two plates appeared to be 1.18cm

and 3.1cm, giving values for W of .127\ and .33'. -- 4 times larger

than actual.

Additional uncertainty arose from the need to reposition the

collimating lens when a plate was inserted or removed. For each plate

the lens had to be moved:
1

d n-'

n

1.517-1 S
- . 1.27cm

= .433cm (VI-II)

This displacement was verified by observing the size of the beam at

various distances along the optical axis, and by observing the inter-

ference pa;> -n produced by a shear plate (when the beam is colli-

mated, one obtains a null pattern). As demonstrated in the previous

section on defocus, a change in the position of the collimating lens

introduces defocus which also shifts the on-axis position of minima.

For a 16mm diameter aperture, an error of .1mm in the position of the

collimating lens from the proper position will yield a defocus term on

the order of .1), which will shift the positions of extrema at 1.7m by

nearly 2cm.

One can introduce a substantial amount of spherical aberration by

reversing the achromatic collimating lens. Unfortunately, this involves

realigning the system. This technique was considered impractical.
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Study of Astigmatism

Circular Aperture

To study the effect of astigmatism on the diffracti- pattern of

a circular obstacle, a standard had to be established. The 5/16 inch

diameter obstacle provided this standard. There were two benefits to

using this obstacle. Because this diameter fell in the center of the

range of obstacle diameters used (3/16 inch, 5/16 inch and 1/2 inch),

one could investigate the change in pattern by increasing or decreas-

ing the diameter. In addition, the diffraction pattern of the 5/16

inch diameter obstacle changed at a convenient rate with the increase

of parallel plate tilt angle. An increase of one degree in tilt angle

resulted in a noticeable, but not dramatic, change. A series of photo-

graphs of degree increments in tilt angle offered a wide spectrum of

astigmatic effects and yet allowed one to observe subtle differences.

The following photographs are of a 5/16 inch diameter obstacle

observed at 60cm. The first photograph used magnification of 6X and

an exposure time of 1/2 seconds. All the other photographs were

magnified seven times and had one second exposure times. The astigma-

tism was produced by two half-inch plane parallel plates. In the

range from tilt angles of 100 to 180 photographs were made of plates

countertilted and tilted in the same direction. This was to observe

whether coma had any effect on the diffraction pattern. Each caption

lists the amount of astigmatism present (given by equation VI-3) as

well as the upper and lower bounds of the aberration (in parentheses) 5

based upon an uncertainty of + .50 in the tilt angle.
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Photograph 6.20

00 tilt. w 22 .098\ (.o97,x, -0970)

22tgrp 62

50 cuntrtit. W .081 .025, -011



-. -

Vt.- ~I

AI

22

Photograph 6.22

100 countertilt. W2 2 -261\ (-.226x, -298\)

10 til jaedrcin - -2 (.2- .9.
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Photograph 6.24

i0countertilt. W 22 -419X (-.377s., -.463))

22

4
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Photograph 6.26

130 countertilt. W 22 - .5O9 (-.463),, -. 5571)

* Photograph 6.27

130 tilt same direction. W -.509, (-.463,,-:7.
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Photograph 6.28

140 countertilt. W 22 -.606N (-.557X, -.657\ )

Photograph 6.29

140 tilt same direction. W = -.606. (-.5571, -.657N)
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Photograph 6.30

150 countertilt. W 21 -.710\ (-.657x, -.765")

I Photograph 6.31

150 tilt same direction. W =-.710,1 (-.657, -.765N )
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Photograph 6.32

160 countertilt. W =-.821, (-.7651, -.880x)
22S

Photograph 6.3 0

160 tilt same direction. W 8 .21' (-.765' -, 8'
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Photograph 6.34

170 countertilt. W 22 -.940,1 (-.880\,, -1.002')

e22

SS

* Photograph 6.35

170 tilt same direction. W_ -.940' (-.830 , -1.002\)



18 -o n er i t W -1.65 .- . -1- 131A)

Photograph 6.36

180 t edrti . W -1 . 065 ' (-1 .002' % -1131

b*



I2 2

A1

Photograph 6.3-)

200 countertilt. W, = -338 (-1.267, -1.411')

. mem .omobu
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Ph.)tograph 6.40

210 countertilt. W 22 -1.485~ (-1.411, -1.562x)

I Photograph 6.41 I

220 countertilt. w. -1.640 (-l .562',, -.7 2 0)
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Photograph 6.42

230 courntertilt. W =-1 .801', (-1.720',, -1.8851)

k -1

*- 
- TV

*Photog-raph IS.43

240 countertilt. W =-1 .970 -1.b 207
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Photograph 6.44

250 coaintertilt. W 22 2.146', (-2.057',, -2.237 ,)

Photograph 6.45

260 countertilt. W =-2. 329, (-2.237..,-.2)



27 co n e t . W " -2- 19 (- - 2 - - . 1 '

Photograph 6.47

2701 countertilt. W -2.7519 (-2.42>,7 -2. 617)

L
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I At
Photograph 6.48

1290 countertilt. W~, -2.921"A (-2.818\ , -3-026-)

Photograph 6.49

300 countertilt. W_ -3. 133, (-3 026 , -3.2421)
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There are a number of important features in these photographs. I

The first thing one notices is the lack of distinction between pat-

terns produced by countertilting or tilting in the same direction.

Coma has no noticable effect on the images. This may be due to the

difference in magnitude. At 180 tilt the amount of astigmatism is

-1.065X. The amount of coma at that same angle is a mere -.135\.

Astigmatism breaks up the ring structure into separate nodules. The

disintegration of the rings begins in the center of the diffraction

pattern. The greater the amount of astigmatism the greater the number

of fractured rings.

A ring will break up in a predictable way. If the number of the

ring (counting from the center) is n, then the ring will split into 4n

nodules and form a square of n + 1 nodules per side.

To describe the process of ring break up, it is convenient to

define some new terms. The first effect of astigmatism on a given

ring is to distort it from its circular shape. The ring is pushed out

at points on the top and bottom an" left and right. These points are

spaced by right angles. As such, they suggest the directions north,

south, east and west, and will be referred to as compass points. The

compass point at the top of the photograph (the arbitrary "up" direc-

tion) will be designated north. A ring e ;iting departure from

circular shape with the appearance of compass points will be said to

be distorted.

After the ring becomes distorted, an increase in astigmatism will

cause lobing. The width of the ring is no longer uniform, but concen-

trated in regions which will become nodules -- remnants of the ring

_9-
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when finally and fully split. The actual point of ring break-up will

be defined as when at least half of the ring is established into

separate nodules. The region inside the most newly broken ring will

be called the aberrated area.

The analysis of some sample photographs will fortify these con-

cepts. Photograph 6.20 (O tilt) shows the first ring slightly dis-

torted. This is evidence of presence of background (positive) astig-

matism. Photograph 6.21 is a very symmetric set of concentric rings

indicating near absence of astigmatism. Photographs 6.22 through

6.27 chronicle the increased lobing in the first ring to eventual

ring break-up at 130 tilt. The difference between lobing and ring

break-up is seen in photographs 6.38 and 6.39. At 190 tilt the

fourth ring shows definite lobing. At 200 tilt the fourth ring has

broken up into distinct nodules. Notice that for large amounts of

astigmatism (over i), distortion extends far beyond the region of

broken rings.

The breakup of the ring structure has a linear dependence on the

amount of astigmatism at the outer edge of the obstacle (W 22). A

review of the photographs shows the first ring disintegrates between

120 and 130 tilt. The table below lists the angles for which dif-

ferent rings break up. If one plots the ring number versus the aber-

ration coefficient W20 at which the ring breaks up, one sees the

linear relationship. (The error bars represent the + .50 tilt angle

uncertainty.) This plot, though, is misleading. The abscissa is

uniformly spaced. Spatially the rings are not evenly distributed.

Plotting the required astigmatism at ring breakup as a function of

i
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the radial distance from the center of the spot provides a much

better perspective on the domain of influence of the aberration.

Table 6.20

Required Countertilt Angles for Diffraction
Pattern Ring Break-up

Ring Number Tilt Angle W,, (wavelengths)

1 12 - 130 -.419 - -.509

2 150 -.710

3 180 -1.065

4 200 -1.338

5 220 -1.64

6 240 -1.97

7 250 -2.146

8 270 -2.519

9 290 -2.921

0
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W22 VERSUS RING BREARUP (RING NUMBER)
-3.W

N -2.5 -
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The plotted line is the best fit to the data by minimizing the root

mean square deviation. One can multiply the radial distance by the

constant kd/2z and obtain the argument for the J0 Bessel function for

the unaberrated case. A graph of W as a function of the Bessel
22

function argument appears below. Graphs 6.19 and 6.20 demonstrate the

radius of the region of ring break-up expands linearly with increased

W22 UERSUS BESSEL FUHCTION ARGUMEKT
-3.00 T

6 4-2.50. .If
A .

W U
2 E -2.00
2L
E

N G~I -1.0

S

-. 50

5 16 15 20 25 30

BESSEL FUNCTION ARGUMENT (kdr/2z)

Graph 6.20

astigmatism. In particular when the aberration coefficient W2 2 corre-
k-drsponds to a parameter x= - which is a maximum of J0(x), the ring at

2z0

distance r will break up.

The position of the outermost broken ring is a very noticable and

convenient measure of astigmatism present in the incident beam. There

are, however, subtle astigmatic effects which bear mention. In the

unaberrated diffraction pattern the region of highest intensity is the

°o1
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central spot. As astigmatism is introduced this region moves out from

the center. For example, Photographs 6.24 through 6.29 chronicle the

shift of maximum intensity from the center to the first (broken) ring.

At W = -.71X (Photograph 6.30) the central spot has entirely disap-22

peared. Photographs 6.34 and 6.35 show at W = -.94X the second

(broken) ring is becoming the most intense area. The central spot is

reappearing and the first ring is dimming. At W 22 = -1.065X (Photo-

graph 6.36), the third ring has split, the second ring is the most

intense, the first ring has disappeared and the central maximum is

bright. This pattern continues through the remaining photographs. As

the amount of astigmatism increases the area of greatest intensity

spreads out from the center like the crest of a wave. Ahead of this

crest distortion occurs and immediately in front of it ring break-up

takes place. This crest is composed of either one or two rings.

Immediately behind this maximum intensity "wave," there is a dark

region. The broken rings left behind by the crest form a checkerboard

pattern. The center and even rings, and the odd rings wax and wane

alternately. All these areas of the pattern are characteristic of the

amount of astigmatism present. This will be important when studying

the diffraction patterns of annular apertures where only the region

around the central spot remains intact.

4 The central spot first becomes dark when W2 -.71X. The cycle

of having a dark center occurs with added multiples of -.808) (+ .035N).

An interesting feature of Photographs 6.40 - 6.49 is the concen-

*4 tration of intensity at the compass points of distorted rings. This

concentration extends beyond the region where ring break-up takes

• ~~~........ -......... .........-.-....... ,..- .+..
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place. The ultimate astigmatic diffraction pattern seems to be a

bright diamond outline with spikes at the compass points.

The photographed patterns seem to be slightly canted. Using the

compass analogy, they don't point to true north. A certain amount of

the angular deviation may stem from the optics of the Bausch and Lomb

stereo viewer. However, photographs taken using just a mounted camera -

back also revealed a slight angle of tilt. The origin of this tilt

may lie in the background astigmatism. The orientations of the planes

of symmetry of the astigmatism produced by the plane parallel plates

lie in the vertical and horizontal directions. The background astig-

matism is not necessarily oriented in these directions. The diffrac-

tion patterns are the result of the combination of these two aberra-

tion sources. A difference in orientations may create a tilted pat-

tern. If this is true and if the tilt angle is characteristic of the

individual orientations, this may provide the means of determining an

unknown angle of orientation. One could introduce astigmatism of

known orientation and observe the combination.

The diffraction pattern behind a circular obstacle for the unab-

errated case does not change shape when viewed at different optical

axis distances. The pattern with astigmatism present is also constant

in shape. The following photographs show the diffraction patterns for

three different distances, .35m, .60m and 3m. The first photograph 0

was taken with magnification 7X; the remaining two with magnification

6X. The patterns are identical.
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Photograph 6.50

.35m behind 5/16" diameter obstacle.
150 countertilt. W,,, -.701\. 1/2 sec. exposure.

*V

AIIL

Photograph 6.51

.60m behind 5/16" diameter obstacle.
150 countertilt. W_ -7U1 N. 1/2 sec. exposure.
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K -,

Photograph 6.52

3m behind 5/16" diameter obstacle.
150 countertilt. W = -.701X. 1/2 sec. exposure.22

The fact the shape of the diffraction pattern for the circular

obstacle is independent of optical axis distance z means Graph 6.20

(W2 as a function of the Bessel function argument kdr/2z) is valid
22

for all z. One can determine the amount of astigmatism present by

observing the pattern for a given obstacle at any distance.

Research reveals that the shape of the diffraction pattern is

also independent of obstacle dia:,eter. What determines the eventual

diffraction image is the amount of A.ti-matism at the edge of the

obstacle (W). The following photographs of patterns produced by

the 3/16 inch and 1/2 inch diameter obstacles demonstrate this. The

first two photographs show patterns very similar to Photograph 6.30
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(W. -.701Nk). The remaining two photographs correspond closely to

Photograph 6.40 (W 2 2 = 1.485k).

Photogrph 6.5

N.0

.60mbehnd /16"diaete obsacl. 2 couterilt

W -. 47N(-.16X,-.68,N, Mgnifcaton X. /4 sc. xpoure
42
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Photograph 6.54

3m behi4nd 1/2" diameter obstacle. 90 countertilt.
-.22 647k (-.566\, -.732\), Magnification 4X. 1/2 sec. exposure.

4I

Photograph 6.55

.50m behind 3/16" diameter obstacle. 350 countertilt.
W -1-485", (-1.4411, -1-5311), Magnification 6X. 1/8 sec. exposure.

a2
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Photograph 6.56

3m behind 1/2" diameter obstacle. 130 countertilt.
W = -1.455, (-1.338,, -1.577), Magnification 6X. 1/2 sec. exposure.

There is close agreement in the amount of astigmatism for the three
I

obstacle diameters. The first series of photographs give W,_ within

.05X and the second series within .03x. Comparisons of photographs

not reproduced here gave results consistently within .05'A.

There is an obvious application of the above. A catalog of

diffraction patterns for some arbitrary obstacle diameter with the

corresponding amounts of astigmatism can be produced very simply.
I

(For example, Photographs 6.20 - 6.49 could be used.) To find the

amount of astigmatism in a test bean, one need only compare the dif-

fraction pattern behind any sized circular obstacle to those in the

catalog. The coefficient W is readily determined.

• 1n
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Annular Aperture 3

The diffraction pattern behind an annular aperture is a combina-

tion of diffraction effects from the inner and outer edges. Each

edge contributes its own Arago spot and ring pattern. It is instruc-

tive to purposely offset the two patterns and observe how each changes

when astigmatism is introduced. The following series of photographs

shows the diffraction patterns of a 1/2 inch diameter obstacle with a

5/8 inch diameter aperture separated by 1.1cm. The spot on the left

is that produced by the aperture. All the photographs were taken at

a viewing distance of 2 meters and magnified four times with exposure

times of 1 second.

I

II

Photograph 6.57

1/2 diameter obstacle with 5/8" diameter aperture.
50 countertilt.

! -
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Photograph 6.58

1/2" diameter obstacle with 5/8" diameter aperture.
60 countertilt.

Photograph 6.59

1/2" diameter obstacle with 5/8" diameter aperture.
70 countertilt.
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Photograph 6.60

112" diameter obstacle with 5/8" diameter aperture.
80 counitertilt.

Photograph 6.61

1/2" diameter obstacle with 5/8" diameter aperture.
90 countertilt.
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Ph otcgr-ir U~

1/2" diameter obstacle with Jam ,ttr Eqr. -
1Ccountrti!'

The table below compares tn'e %ofcetso st-,--.-'13r fr-m the

above photographzc to the ~of ~ z~7. ior ltttro from. the

circular obstacle case.
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Table 6.21 I

Astigmatism Coefficients of Off-set Diffraction Patterns

1/2" obstacle 5/16" obstacle comparison

Countertilt W 2  Countertilt

Angle (wavelength) Angle (wavelength)

I

60 -.233 100 -.261

70 -.352 110 -.337

80 -.492 130 -.509

90 -.647 150 -.710

10o  -.821 170 -.940

5/8" aperture 5/16" obstacle comparison

Countertilt W" Countertilt W-)
Angle (wavelength) Angle (wavelength)

60 -.419 120 -.419

70 -.606 140 -.606

90 -1.065 190 -1.198

(The diffraction patterns from the aperture for countertilt angles of

ani i °o could not be determined.) The individual patterns are
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characteristic of the different amounts of astigmatism at the inner

and outer edges of the aperture.

A system containing an annular aperture will have offset edge

diffraction patterns unless the obstacle is perfectly centered in the

aperture. If the purpose of the obstacle is to produce a pattern to

measure the degree of astigmatism in a test beam, a separation of the

two diffraction images may be desired. The two patterns provide a •

double measurement for astigmatism.

As seen in Photographs 6.EO and 6.62, when the offset patterns

are close and the amount of astigmatism large a great deal of inter- S

ference occurs. This interference is the source of the very complex

structures are observed when an astigmatic beam illuminates a perfect-

ly centered annular aperture. The following photographs show diffrac- S

tion patterns produced by a variety of annular apertures.

Photograph 6.63
3/16" diameter obstacle with 5/8" diameter aperture.

c - .3. Viewing distance: 2 - 2.2m. Magnification 4X.
Exposure time 1/4 second. 70 countertilt. Minimum on axis.

9
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Photograph 6.64
3/16" diameter obstacle with 5/8" diameter aperture.

e = .3. Viewing distance: 2 - 2.2m. Magnification 4X.
Exposure time 1/4 second. 70 countertilt. Maximum on axis.

h&

Photograph 6.65
4 3/16" diameter obstacle with 5/8" diameter aperture.

E= .3. Viewing distance: 2 - 2.2m. Magnification 4X.
Exposure time 1/4 second. 100 countertilt. Minimum on axis.
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Photograph 6.66
3/16" diameter obstacle with 5/8" diameter aperture.
-.3. Viewing distance: 2 - 2.2m. Magnification 4X.

Exposure time 1/4 second. 100 countertilt. Maximum on axis.

Photograph 6.67
3/16" diameter obstacle with 5/8" diameter aperture.
-.3. Viewing distance: 2 2.2m. Magnification 4X.

Exposure time 1/4 second. 120 countertilt. Minimum on axis.

0 .
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Photograph 6.68
3/16" diameter obstacle with 5/8" diameter aperture.

E = .3. Viewing distance: 2 - 2.2m. Magnification 4X.
Exposure time 1/4 second. 120 countertilt. Maximum on axis.

~7 7

Photograph 6.69

* 5/16" diameter obstacle with 1/2" diameter aperture.
c - .625. Viewing distance: 2 - 2.05m. Magnification 6X.
Exposure time 1 second. 100 countertilt. Minimum on axis.
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Photograph 6.70
5/16" diameter obstacle with 1/2" diameter r:erture.

= .625. Viewing distance: 2 - 2.05m. Magnification 6X.

Exposure time 1 second. 110 countertilt. Maximum on axis.

,it7

* 
I

Photograph 6.71
5/16" diameter obstacle with 1/2" diameter aperture.

= .625. Viewing distance: 2 - 2.05m. Magnification 6X.

Exposure time 1 second. 120 countertilt. Maximum on axis.

,1
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Photograph 6.72
5/16" diameter obstacle with 1/2" diameter aperture.

c = .625. Viewing distance: 2 - 2.05m. Magnification 6X.
Exposure time 1 second. 130 countertilt. Minimum on axis.

Photograph 6.73
* 5/16" diameter obstacle with 1/2" diameter aperture.

= .625. Viewing distance: 2 - 2.05m. Magnification 6X.
Exposure time I second. 130 countertilt. Maximum on axis.

6
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Photograph 6.74
5/16" diameter obstacle with 1/2" diameter aperture.

=.625. Viewing distance: 2 -2.05m. N1,agnification 6X.

Exposure time 1 second. 140 countertilt. 1-Kinimu-m on axis.

Photogrqh 6.75
5,1 -iameter ubstac Is t,,-, dA" 'iameter aperture.

C b .25. Viewint7 distance: 2 5 m brn Magnifi cation 6"X.
Exposure time 1 seconld. 140 countertilt. M'aximrum on axis.
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Photograph 6.76
5/16" diameter obstacle with 1/2" diameter aperture.

E=.625. Viewing distance: 2 -2.05m. Magnification 6X.
Exposure time 1 second. 150 countertilt. Minimum on axis.

Photograph 6.77
*5/16" diameter obstacle wi;4tn, 1/2" diameter aperture.

=.625. Viewing distance: 2 -
2 .05.m Magnification 6X.

Exposure time 1 second. 150 countertilt. Maximum on axis.
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.6. Viwn ditne .6 -•6m Mgiiato X

Photograph 6.79
3/16" diameter obstacle with 7mm diameter aperture.
--.68. Viewing distance: .6 - .65m. Magnification 4X.

Exposure time 1 second. 220 countertilt. Maximum on axis.

• I

Photograph 6.78
3/16" diameter obstacle with 7mm diameter aperture.
-. 68. Viewing distance: .6 - .65m. Magnification 4X.

Exposure time 1 second. 220 countertilt. Minimum on axis.

•'=.8 iwn ditace .6-.65 .Maniiato 4X .
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Photograph 6.80
3/16" diameter obstacle with 7mw diameter aperture.

E=.68. Viewing distance: .6 - .65m. Magnification 4X.
Exposure time 1 second. 240 courntertilt. Minimum on axis.

4 4S

Photograph 6.81
3/16" diameter obstacle with 7xrm diameter aperture.
=.68. Viewing distance: .6 - .65m. Magnification 4X.

Exposure time 1 second. 240 countertilt. Maximum on axis.
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Photograph 6.82
3/16" diameter obstacle with 7mm. diameter aperture.

£=.68. Viewing distance: .6 - .65m. Magnification 4X.
Exposure time 1 second. 260 countertilt. Minimum on axis.

Photograph 6.83
3116" diameter obstacle with 7mm diameter aperture.

F =.63. Viewing distance: .6 - .65m. Magnification 4X.
Exposure time I second. 2060 countertilt. Naximumn on axis.
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Photogr'aph 6.84
3/16" diam-,eter obstacle with 7mm, diameter acerture.

E=.68. Viewing distance: .6 - .65mr. Magnification 4X.
Exposure time 1 second. 280 countertilt. Maximum on axis.

Photograph 6.S5
I 3/ <'diameter obstacle wi th Tmrm Iiamre'nr apertlre.

=.68. Vi ewing distance: .6 - . 6 5m. Na~nification 4X.
Exposure time I second. 300 ccuntertilt. Xaximum on axis.



Photograrh 6.8-6
1/2" diameter obstacle with 5/8" diameter aperture.

=.8. Viewing distance: 2.05 - 2.15m. Magnification 6X.
Exposure tine 1 second. 90 countertilt. ,inimum on axis.

C4

Photogzrap. 6.8b7

6 1/2" diamete-r 3bctacle with 5/')" diamtter -'aer'ture.
- ~ iwng d i otan ce: 2.- - 2. 15. Y-,- agnifi cation 6X.

Exposure time I second. 100 cj omtertilt. M'inimum on axis.
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Photograph 6.88
1/2" diameter obstacle with 5/8' diameter aperture.c .8. Viewing distance: 2.05 - 2 .15m. Magnification 6X.

Exposure time 1 second. 100 countertilt. Maximum on axis.

II

c .8- Viewing distance: 2.05 - 2.15,n. Magnification 6X.Exposure time 1 second. 120 countertilt. Maximum on axis.
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The diffraction patterns behind annular apertures with high ob-

scuration ratios are quite similar to those produced by a circular

obstacle. The resemblance decreases as the obscuration ratio does.

The outer areas of the aberrated region cease to show lobing and ring

break-up but give way to intricate symmetries. When the obscuration

ratio is as low as .3 none of the structures seen in the circular

obscuration case are manifested.

An effect seen in the unaberrated case seems to be exaggerated

when astigmatism is present. This is the dramatic change in the

overall pattern from the position at a maximum on axis to a minimum on

axis. Photographs 6.65 and 6.66, 6.67 and 6.68, 6.74 and 6.75, and

6.80 and 6.81 are good examples of this effect. Because the patterns

can vary to such a large extent a catalog of diffraction patterns, as

suggested for the circular obscuration, is impractical. The changes

go through cycles corresponding to the cycles of on-axis extrema. The

pattern at any viewing distance z will be associated with a given

point in the cycle and so the shape of the pattern will be repeated

many times as one moves along the optical axis.

4 This change from maximum to minimum must be taken into account

when comparing the annular aperture photographs to the circular obsta-

cle photographs. For example Photograph 6.87 shows the pattern behind

an annular aperture of obscuration ratio .8 at an on-axis minimum.

(It is clear this is a minimum on axis because the number and extent

of tne bright rings in the center is maximum. Compare this to Photo-

* graph 6.19.) The prominent central feature is the absence of the

bright central spot and the four very bright nodules composing the

i " . , , -- . .. , , .. ... , - '
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split first ring. This is reminiscent of Photograph 6.30 corresponding

to W22 = -.71X. However, this is incorrect. The last broken ring in

Photograph 6.87 is the third and the fourth ring shows severe lobing.

This is suggestive of Photograph 6.38 corresponding to W = -1.198,.

A comparison of Photograph 6.88 to the circular obstacle photographs

confirms this. In this photograph the center spot is bright and the

similarity to Photograph 6.38 is immediately apparent. A good rule of

thumb when comparing photographs of annular aperture diffraction pat-

terns to circular obscuration diffraction patterns is to count broken

rings if the pattern is at an on-axis minimum and match interior

patterns when at an on-axis maximum. Table 6.22 lists the results of

a comparison of some photographs from 6.70 - 6.90 to photographs 6.20

- 6.49. The figures in parentheses represent the high and low limits

to W based upon an uncertainty in tilt angle measurement of + .50.

The preceeding table shows that the astigmatism at the outer edge of

the annular aperture drives the diffraction pattern.

Apertures of similar obscuration ratios exhibit similar diffrac-

tion patterns with similar amounts of astigmatism. Photograph 6.74

corresponds to c = .625 and W,2 = -1.704), at the outer edge. This

pattern compares very closely to Photograph 6.81 with c = .68 and W22

-1.51\ at the outer edge. Photograph 6.72 with W,, = -1.97\ is

similar to Photograph 6.83 with W = -1.791.

It was suggested in Chapter 3 that annular apertures with high

obscuration ratios are better suited for aberration studies. This is

due to the larger number of rings in the beat envelopes. More of the

ring structure stays intact between modulations so any deviations in

4
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the ring pattern is easier to spot. This raises the question, can the

amount of astigmatism be determined from patterns of an annular aper-

ture with a low obscuration ratio? The answer is a guarded yes. A

rough measure of the aberration present is possible. The region of

aberration extends a distance out from the center of the diffraction

pattern. This radial distance can be me.isured and compared to the

radial distance for ring breakup found in the previous section. -

To prepare the following table, the average radii of the regions

of aberration for photographs of the 3/16 inch diameter obstacle with

a 5/8 inch diameter aperture were measured. (The aberrated region was

taken as the area out to the last bright band which showed looping or

separation in the band. For example, in Photograph 6.66 this was the

third band from the center.) These were compared to the known ring

Table 6.23

Radii of Aberrated Areas in Diffraction Patterns
Behind an Annular Aperture with E = .3

W22 at Radius of aberrated kdr
Tilt angle outer edge ( ) area (mm) 2z

7 -.606 (-.509,-.710) .17 6.69

8 -.821 (-.710,-.940) .195 7.68

10 -1.338 (-1.198,-1.485) .33 13.00

12 -1.970 (-1.801,-2.146) .45 17.73

14 -2.717 (-2.519,-2.921) .56 22.10

o .
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spacing for the annular aperture with no aberrations present. The

actual radial distance of the extent of the region of aberration was

calculated. The Bessel function argument kir/2z was calculated also.
I

The results from the tab>e are plotted against the line found in

Graph 6.20. The points suggest a line of steeper slope than that from

Graph 6.20. Recall the line .. lotte i n Grah 6.2; corresponded to the

radius of the aberrated area when defined as the region of broken

rings. The distance which correlates to this radius in the annular

aperture case seems to be different from that measured in Table 6.23.

A new line with a different slope should enable one to determine W2

from measurements of the diffraction patterns of an annular aperture

with a low obscuration ratio.

I

WZ2 VERSUS BESSEL FUNCTION A RUMENT (Mr/2z: r ABRMPEr AREA RAPDIUS)

-3.00

W -2.59 1

2 L
E

I _ ._Ni 
-

-.50

0 5 10 15 2. 25

PESSEL FUCT!O AR14UPEHT

Graph 6.21

* "" . , , .: . . i .: : ,
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An interesting feature is seen in the photographs for the annular

aperture. The center of the diffraction pattern often contains a + or

x structure. These are seen quite readily in the Dhotographs below.

i

S

Photograph 6.90 S

3/16" diameter obstacle with 5/8" diameter aperture.
Viewing distance 2m. 80 countertilt.
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•p

Photograph 6.91

3/lo" diameter obstacle with 5/8" diameter aperture.
Viewing distance 2.05m. 8° countertilt.

The structures are also seen in Photographs 6.63, 6.64, 6.67, 6.68,

6.78 and 6.79. In these last two instances the + and x are dark

structures at the center. These seem to be related to the positions

of maxima and minima on axis. A bright + appears to be composed of

4 the bright central spot and the first broken ring. A bright x looks

to be made of the bright central spot and the northeast, southeast,

southwest and northwest nodules in the second broken ring. .Minimum

Iintensities in these areas give rise to the dark structures.

Astigmatism, like spherical aberration and defocus, shifts the

position of on-axis extrema. This was verified using the same proce-

4 dure aa for t, e previously mentioned aberrations. The first run

involved the shift of the 7 t
h order minimum at 65cm behind an annular

I
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aperture composed of a 3/16 inch diameter obstacle with a 7mm diameter

aperture separated by 1cm. The second run involve- ,:;e shift of the

2 3 rd order minimum at 66.5cm behind a 3/16 inch diameter obstacle with

a 10mm diameter aperture separated by .3cm. The gra:hs below plot the

data points for each run. The line is the line of best fit by mini-

mizing the root Mean square deviations.

0

ASIIGMATISM: 3/16 INCH DIAMETER OBSTACLE WITH 7 MM D!A"ETER APERTURE

-,6

AIwu -.5 ..

2 E
2 L -.4
E

IN

H -.2 .
S

---
8.5 1 1,5

AXIAL SHIFT OF WT1P1MUM (CN)

Graph 6.22
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ASTIGMATISM 3/16 INCH DIAMETER OBSTACLE WITH 19 MM DIAMETER APERTURE

- tW

2 E
2 L
E -.3--

I N

T
H -2

S-

.2 .4 .6 .8

AXIaL SHIFT OF MINIMUM (CM)

Graph 6.23

The coefficients W22 from Graph 6.23 seems to go as the square of the

axial shift. However, the linear plots have an attractive feature.

The ratio of the radii for the two apertures used is .7. The ratio of

slopes of the best fit lines in the graphs is .723. The data does not

fit a formula like that found for defocus and spherical aberration:

n z
22 C z' (VI-12)

where n is the order of the minimum and c is a constant cresumab!-,

dependent upon

The complex astigmatic patterns produced wit:. high angles of

countertilt make measurements of on-axis shifts very difficult. A

more conclusive test of the effect of astigmatism on the positions of S

axial extrema should limit itself to small amounts of the aberration.

il '



245

For now it is sufficient to note negative astigmatism causes a shift

on axis in the negative z direction.

There are two reasons not to use the shift of extre!a to measure

astigmatism. The first reason is that the change in the overall

diffraction pattern is an accurate and sufficient gauge of aberratio:.

present. The second is that both defocus and spherical aberration,

which have little effect on the pattern, cause axial shifting. Me a-

suring the shift alone could lead to an erroneous measure for W if

W2C and W are not accounted for.

A

I I

4

Ii

IL

. • ° . , ,. , .
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Notes

Warren J. Sm~ith, !-odern Optical Eng ineering (New York: McGraw-
Hill, 1966), p. 82.

R
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Chapter 7

CONCLUSIONS

The most important result of the theoretical and experimental

treatment in this thesis is almost trivial. The ultimate diffraction

pattern behind a circular obstacle or an annular aperture depends

entirely on the physical state of the incident wave at the edges.

* This is seen repeatedly in the formulas from chapters 3 and 4. The

disturbance function at points in image space contains phase terms,

Gaussian terms, aberration terms and zero-order Bessel functions which

all have arguments dependent upon the radii of the edges. By under-

standing the physics at these boundaries one gains insight into the

diffraction process and its results.

Summary

The diffraction patterns predicted by the theory of chapters 3

and 4 agreed very closely to the experimental findings, typically with

* less than 5% deviation. The intensity distribution in the near field

region close to the optical axis can be described with excellent

accuracy by the formulas reviewed at the end of Chapter 4. These

* formulas depend only on the zero order Bessel function so the computa-

tion of the intensity at a given point is sabstantially reduced from

..



248

that requiring the use of unwieldy Lommel functions. The periodicity

of the Bessel function provides an explanation of the modulated ring

structure observed in annular aperture diffraction patterns in terms

of beat envelopes.

The theory of Chapter 4 was very successful in predicting the

shift of on-axis extrema behind an annular aperture with the introduc-

tion of defocus in the incident beam. Measuring this shift is a very S

effective method of determining defocus. This method should work for

spherical aberration also, but the maximum amount of spherical aberra-

tion created from the apparatus produced expected shifts less than th3 S

experimental error. It was found that astigmatism will shift the

positions of the axial maxima and minima as well. In all the above

cases, if the aberration coefficient is negative the shift will be in 6

the minus z direction.

Astigmatism produces very distinct changes in the diffraction

patterns of a circular obstacle. The effect of the aberration is

seen in the first ring of diffraction pattern at values of W, as low22

as -.1X. This is when the first ring starts to concentrate its

intensity at four compass points -- the vertices of a diamond. As

the aberration is increased, the first ring breaks up into four

separate spots when W is approximately -.4,. In general the nth
22

ring from the center will break up into 4n points forming a diamond

with n+1 points on a side. This region of broken rings constitutes

an area where aberration effects are manifest. From the radius of

thi:3 region, the amount of astigmatism can be calculated. The radius

aad W are related linearly. The same amount of astigmatism at the
22
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edge of any sized circular obstacle will produce the same aberrated

image.

An annular aperture with a high obscuration ratio ( > .6) sub-

jected to an astigmatic beam will give a diffraction pattern similar

to that for the circular obstacle. In this case it is the amount of

astigmatism at the outer edge that determines the pattern. Apertures

of nearly equal obscuration ratios produce similar diffractions with

similar amounts of astigmatism at the outer edges. W22 can be calcu-

lated by comparing the annular aperture diffraction pattern to those

for the circular obstacle. When the obscuration ratio is low, the

diffraction pattern is very complex. In this case one can measure

the extent of the aberrated region and, in an analogous manner to

that for the circular obstacle, find the amount of aberration present.

The astigmatism produced by tilting plane parallel plates drowned

out any effects which might have come from coma. A numerical study of

coma is necessary. Coma should produce a diffraction image with one

plane of symmetry.

The circular obstacle seems best suited to detect the presence of

4 astigmatism and, likely, coma. An annular aperture is required to

detect the rotationally symmetric aberrations, defocus and spherical

aberration.

Many of the theoretical and experimental results found in this

thesis suggest embarkation points for future study.

I

I ]
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Suggestions for Further Research

The experimental apparatus did not include any method of mea-

suring the intensity of Arago's spot and the surrounding ring struc- .

ture. Many theoretical predictions from chapters 3 and 4 involve the

intensity of the spot. For example, measuring the intensities of two

on-axis maxima will allow one to separate defocus and spherical aber-

ration. A detector to measure this region near the optical axis must

be very small. Its dimensions will be guided by the dimensions of the

aperture. The smaller the aperture, the larger the detector can be.

The detector can be made by masking all but a small area (diameter on

the order of 10 to 50 microns) on the detector surface. The detector

should allow translation along the z-axis. The detector should be I

allowed to move in a radial direction to find the intensity peak.

This will allow study of the ring structure as well.

The experimental apparatus contained some background astigmatism. S

The measure of the tilt angles had a half-degree uncertainty. A

definitive study of the astigmatic case where the tilt angles can be

measured to high accuracy should be made. A catalog of diffraction

patterns can be compiled and used in aberration detection.

Another failing in the experimental equipment was the size of the

aperture stop at the collimating lens (13/16 inch). If the parallel

plates were tilted in the same direction the transmitted beam began to

hit the collimating lens off center. If the tilt angle was much

greater than 200 the beam began to miss tie lens. A larger collima-

ting lens and holder should be used in future set-ups.

. .-.
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Greater tilt in the same direction will allow a larger amount of

coma to be introduced. However, since astigmatism goes as the square

of the tilt angle while coma is proportional to the angle one expects

astigmatism to overshadow coma. Coma should be studied through a

numerical study of the Rayleigh-Sommerfeld integral for the circular

obscuration.

Once the patterns for coma are determined, a study of combina-

tions of aberrations can be made. The next step should be a study of

higher order aberrations.

0 Eventually a detection system based on these studies can be

constructed. The system should include the intensity detector men-

tioned earlier as well as an optical apparatus to view the overall

diffraction pattern. If the optical system to be tested contains

deformable elements, a feedback loop is possible to minimize aberra-

tions.

beam

deformalle beam

com ponents > slitterU

0/

feedback Araeo wavefront
control aLerration

detector

Figure 7.1

Use of an Arago Detection System in a Feedback Loop• I
0
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The Spot of Arago has a long and interesting history, but so far

its practical applications have been few. The use of the spot to

detect and measure aberrations will renew its importance.

0S
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Appendix 1

THE LIFE AND WORKS OF ARAGO |

The great men and women of science are known typically only by

their theorems, equations or experiments. Textbooks rarely have the ]

space to provide biographical information beyond an occasional foot-

note containing dates of bir:h and death or an amusing anecdote. A

sense of history, the personal side of science, is missed in the p

process. Many scientists led colorful and controversial lives. It

would be a particular shame to overlook the life of Dominique Francois

Jean Arago.

Arago was born on February 26, 1786 at Estagel, a small village

in the eastern Pyrenees near the Mediterranean coast. The village was

a halting station for French troops enroute to the army of the Pyre- j

nees. Young Arago was fascinated by the soldiers and once asked an

officer what he needed to do to be able to wear such a fine uniform.

4 The reply was to become a student at the Polytechnic School.1  To

prepare for the entrance examination Arago taught himself mathematics

from the works of Euler, Legendre, Lagrange and Laplace. He so im-

pressed his examiner, Louis Monge, that he was entered into the school I

in 1803 with highest commendation.2

In 1804 he was appointed as secretary to the Observatory of

Paris. Here he met and worked with Laplace and Biot. Arago and Biot

..
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were commissioned in 1806 to complete the measurement of the mFri-

dional arc. (The National Convention earlier had adopted the r.3asure

of the one ten-millionth part of the quadrant of the meridian passing

through Paris as the length of the meter. The complete quadran: could

not be measured but it was felt by measuring the arc from Dunki:k

through Barcelona to the Balearic Islands and knowing the relative

latitudes the total quadrant length could be deduced.)3 The two

Frenchmen, with the aid of two Spanish scientists Chaix and Ro riguez,

first measured the distance from the coast of Spain to the island of

Ibize. Here Biot and Arago spent months on high mountaintops sending

signals by fire to their Spanish counterparts on peaks over a hundred

miles distant. They braved severe windstorms, bandits, fatigue and

scarce supplies. Biot returned to Paris in 1807 with the preliminary

measurements. Arago continued measurements, moving to the summit of

Mount Galatzo.
4

In 1808 Napoleon put his brother Joseph on the throne of Spain

which precipitated a war.5 The natives of the Spanish owned islands

where Arago was positioned became convinced the strange fire signals

4 on their mountain peaks at night were messages meant for an invading

army. A mob of islanders was dispatched to capture the hapless

Frenchman. An assistant got warning to Arago who was able to disguise

4 himself as a peasant. He escaped by joining the ranks of the crowd in

pursuit of him. He entrusted his equipment and papers to his still-

faithful servants. He made his way to Palma, the island's port.

Although he had a ship waiting to take him to safety he stayed until

his precious recordings and equipment were returned. By this time the

• -*. " - " . ' - " . '- -. " -" ' " .
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mob had discovered his charade and to avoid their wrath Arago was 0.

obliged to turn himself in to the local authorities. He spent the

next two months in prison and used the time to complete calculations .1:
on his measurements.6

In July of 1808, Rodriguez interceded on Arago's behalf and ob-

tained permission for his passage to Algiers. In Algiers he befriend-

ed the Dey, the governor of the city. Soon the young Frenchman set

sail for Marseilles. The ship's cargo included two lions meant as

presents to the emperor Napoleon. Within sight of the French coast, a

Spanish privateer captured the vessel. A casualty of the seizure was

one of the lions. Arago was returned to Spain and imprisoned for

three months. The Dey learned of the capture and the lion's demise

and was outraged. He threatened war if the crew and ship were not set

free. Spain had its hands full with France and was not anxious to

enter into any other entanglements. The ship departed once more for

Marseilles.7

Before the vessel made port, a violent storm forced it back out

to sea and onto the craggy coast of Sardinia. Sardinia was at war

with Algiers and refused to let the ship land to make repairs. The

fractured craft found its way to Bougia, a port in northern Africa.

The winds were unfavorable for passage to Algiers so Arago decided to

travel by land. To make the perilous journey he donned the disguise

of a Bedouin. Before Arago arrived in Algiers the Dey was overthrown.

The new governor was not friendly to the French and the young scien-

tist avoided incarceration only by the intercession of the Danish

consul. Still he suffered through a series of maddening delays.

+ . . . • • . • + . o + . • . • • . + . o .• .• % , • • . • % •. + . + • o
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Finally in July of 180), three years after he and Biot departed, Arago

returned to his native land.
8

As a reward for his diligence and adventures in the name of

science Arago was nominated for entry into the Academi6 des Sciences

when a vacancy arose. His competition was Simeon Denis Poisson who

was being sponsored by Pierre Simon Laplace. Joseph Louis Lagrange

led the support for Arago and eventually convinced Laplace to change

his endorsement. Arago won and at age 23 became the youngest member

ever to be elected to the prestigious body. 9

The scientific career of Arago was quite varied, involving

theoretical works, experimentation, teaching and administration. He

taught at the Ecole Polytechnic. As an astronomer at the Royal Obser-

vatory he delivered public lectures from 1812 to 1845. In 1816 Arago

and Joseph Louis Gay-Lussac founded and co-edited the publication

Annalen de Chimie et de Physique. He also helped establish Compte

Rendus. When Jean Baptiste Joseph Fourier died in 1830 Arago took

over as permanent secretary of the Academie des Sciences.1 0  Part of

his duties involved writing eloges on members of the Academie. Much

of what is known of the lives of Augustin Fresnel, Thomas Young,

Alessandro Volta, Andre Marie Ampere, Fourier, Nicolas Leonard Sadi

11Carnot and others stem from these writings.

Arago was very active politically. From 1830 to 1844 he served

in the Chamber of Deputies. During his term he supported the develop-

ment of steam engines, railroads and lighthouses. He suggested a

patent law, boring the Artesian wells at Grenelle and the construction

of the museum at Cluny. To promote science he sponsored Louis Jacques

• -.- " .-i .. • .... . ..- •. ... .---..... ,...--, - ... ... . - -.,. --. .-. " - .-1 -. -
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Mande Dageurre and the new field of photography and arranged for the

publication of the works of Pierre de Fermat and Laplace. In 1848

France became a republic. Arago was appointed the Minister of War and

Marine (a unique combination of two offices). As Minister he put an

end to the practice of flogging, improved naval rations and abolished

slavery in French colonies. A staunch republican, Arago refused to

sign an obligatory oath of allegiance to the new emperor Napoleon III

in 1852. The emperor made an exception in Arago's case and the scien-

tist maintained his offices until his death on October 2, 1853.12

* The collected writings and scientific papers of Arago occupy ten

volumes. Below is a short account of some of his scientific achieve-

ments. In 1810 he discovered polarization of light when passed

through sheets of mica. He and Fresnel showed polarized rays can

interfere only when polarized in transverse planes.13 He demonstrated

that refraction of light is independent of the motion of the refract-

ing body. This prompted Fresnel to suggest the Earth drags ether with

it.14 In 1838 Arago proposed the comparison of velocities of light in

different media. The corpuscular theory predicted light should travel

* more rapidly in a medium such as water than in air. The wave theory

suggested the opposite. Light would be sent through two tubes, one

filled with air, the other with water and onto a rapidly rotating

* mirror. The difference in transit times through the tubes would

result in different incident angles upon the rotating mirror. Jean

Bernard Leon Foucault conducted the experiment and found light moved 71
more slowly in water. This was powerful evidence in favor of the wave - i

theory.15  He studied the bands of Saturn and Jupiter as well as the

-. 1



264

polar ice caps of Mars. He made photometric measurements of numerous

astronomical bodies. Arago showed a correlation between the changes

in the earth's magnetic field and the appearance of the aurora bore-

alis. He was the first to demonstrate that steel could be permanently

magnetized by using an electric current and iron filings temporarily

so. The Royal Society of London awarded Aragc the Colley Medal in

1825 for his exhibition of magnetism in non-ferrous materials. (Other

recipients of the award include Humphrey Davy. Hans ("ristian Oersted,

Benjamin Franklin, Joseph Priestley and Poisson.)
16

In the course of his scientific work Arago had many collabora-

tors. Mention has been made about his work with Young, Poisson,

Fresnel, Dageurre, Foucault and Biot. His relation with Biot soured

when, while Arago was on a trip away from Paris, Biot attempted to

publish results of a joint effort under only his name with but a

cursory reference to Arago's help.17 From 1824 to 1830 Arago and

Pierre Louis Dulong performed a series of dangerous experiments on the

elastic force of steam. The tests involved heating boilers to the

18point of bursting. He was the mentor for many scientists in the

early nineteenth century. In addition to Foucault and Daguerre, Arago

sponsored Urban Jean Joseph Leverrier (who discovered Neptune by

studying pertubation on the planet Uranus) and Armand Fizeau.

One intriguing collaboration never transpired. After Napoleon

Bonaparte suffered his defeat at Waterloo, he decided to leave Europe

and travel to America to devote the remainder of his life to science.

He wanted a companion well versed in the sciences to travel with him.

His choice was Arago. Arago, though, bordered on chauvinism in the

',7 _,s-;
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traditional sense of the word. He refused Napoleon's offer because he

wanted France to remain in the forefront of science. The presence of

Napoleon in America would sanction the growing field of science there
which could only diminish the French scientific authority.20

Arago's deeply felt sense of patriotism is his most telling

characteristic. It was the impetus for his entry into the Ecole

Polytechnic, the launching point for his scientific career. It ren-

dered inevitable his political service to his country. His extraordi-

nary life and works are extensions of that spirit.

F!!
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Appendix 2

THE SPOT OF ARAO IN THE SHADOW DURING A SOLAR ECLIPSE

During a solar eclipse the moon acts as an obstacle to the essen-

tially plane waves coU.:g from the sun. The configuration is similar

to the circular obstacle case described in Chapter 3. Does this mean

the Spot of Arago should be present in the lunar shadow during a solar

0 eclipse? Certai-nly theory predicts its existence, but this phenomenon

has never been recorded. Some possible explanations for this include

the spectral distribution of light from the sun, the difference in

spot intensity between a spherical and circular obstacle, atmospheric

effects, and spot size.

The light from the sun is not monochromatic. It produces a dim

multi-colored spot (see Potter's description of the spot in Chapter 2)

which for small obstacles must be viewed through a magnifying system.

Because the spot produced by sunlight is so insubstantial no one had

cause to look for it until Arago. If this carries over into the case

of a very large obstacle illuminated by sunlight and observed at very

large distance then the situation may be similar to that in 1818.

Because the spot is unnoticible to the naked eye no one has looked for

it.

The intensity of the spot is also dependent on whether the obsta-

cle was circular or spherical see the section on Raman and Krishnan's

work in Chapter 2). For example, at 50cm behind a 1/4 inch diameter

"--.
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obstacle the spot intensity for a spherical obstacle is half that for

a circular obstacle. At 10cm the spherical obstacle intensity is nine

times less that for a circular obstacle.I To compare ne above re-

sults to the case of the moon introduce the quantity = where d isz

the diameter of the obstacle and z is the obse-vatior distance. The

moon's average diameter is 1738.3km and its average di.stance from the

earth is 3.844 x 10km. 2

X 1738.3m= 4.522 x 10
- 3

3.844 x 105km (A2-1)

Compare the above to the case of the 1/4 inch obstacle observed at

50cm.

.625cm .0125 (A2-2)

As x decreases the difference in intensities becomes less. Since x

for the moon is almost three times less than the result in A2-2 the
S

intensity of the spot produced by the moon should be between one and

one half the intensity produced by an equal sized circular obstacle.

(This assumes the results by Raman and Krishnan apply to any sized

obstacle.) The girth of the moon should have little effect on the

observed spot intensity.

Before reaching the surface of the earth the rays diffracted by

the lunar edges must pass through the earth's atmosphere. Variations

in atmospheric density will introduce phase differences. The cumula-

tive effect of differences may result in destructive interference

which diminishes spot intensity. A model to test atmospheric effects

* i
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is depicted below. The flame introduces air currents which cause

variations in air density with resultant phase differences.

IIconvect 41ve
~currents7

incident obstacle flame observation
lig7ht -lane

Figure A2.1

Model to Test Atmospheric Effects in Spot

The size of the spot will be affected by ie diameter of the

obstacle and the observation distance. Taking the rad-us of the spot

as the radial distance to the first intensity minimum in the ring

structure, then for the lunar case.

kr d
2

= 2.4048
2z

4 .8096z
r2 kd (A2-3)

If one takes 5000A as an average optical wavelength then

-5
r= 8.46 x 10 m

The ratio of the spot size to the shadow size is on the order of 5 x

10- 1 1. This makes the spot impossibly small to see unless the

I
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observation is made where the center of the shadow hits the earth's

surface with some sort of magnifying device.

The spot should exist at the center of the moon's shadow but the

effect will be significant only for points in space a much greater

distance behind the moon than the earth.

IL
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Appendix 3

ON AXIS INTENSITY IMMKEDIATELY BEHIND AN ANNULAR APERTURE

The maximum intensity on axis behind an annular aperture is found

from equation 111-37. The argument of the cosine factor for maxima is

of the form (2n + I)W where n is an integer. Then the intensity is:

2

1 (0,0, z A2 +
max max = 6A2[ 1 +2/4z

1+ /4z (A3-1)

with the restriction that Z satisfies:

D 2-d
2

= n = 0, 1,2 . . .Zma 4X (2n+l) 0 . (A3-2)

Expression A3-1 forms an upper limit to the oscillations of the inten-

sity on axis.

Likewise the minimum intensities on axis satisfy the relation:

D2

44z (A3-3)

with the restriction for Z:

D2-d
2

z m - m = 1, 2 , 3, . .in 8m\

'-2
In the region where << 1 and - << 1 then the upper and

•.. .
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lower bounds to the oscillatory envelope are 41 and 0.

0 d
2

Consider the region immediately behind the aperture. Here -
r,2 

4z2

and - are not negligible. For very small z these factors Lecome
4z

2

very large -- becoming the dominant terms in the square roos in the

denominators of A3-1 and A3-3. The upper and lower limits cf the

intensity oscillation envelope both go to zero as Z gets infinitesi-

mally small.

If the obscuration ratio of the aperture is very small 'D >> d)

then there is a region along the optical axis where the effect from

the outer edge is negligible compared to that from the inner edge.
D2  d2

Here ->> 1 but is not. Then A3-1 and A3-3 become
zz2 4z2

Imax,min A2  d2

4z2  (A3-4)

which is the result for the circular obscuration alone.

Physically this result is easily explained. As depicted below

the cosine obliquity factor for outer edge diffracted rays is much

smaller than that for inner edge diffracted rays. The amplitudes of

outer edge diffracted rays are diminished into insignificance.

arerture

optical axis

Figure A3.1

Ray Diffracted to :;ear On-axis Point

.I. . ° . .. . . . . . . .. . . . .. . . . , . . - - . . . . . , . . - . . . :



ii, - ., 1 - W W t YOU

* 274

Ic The following two graphs show the on axis intensities for the

region immediately behind annular apertures with obscuration ratios of

1/100 and 1/1000.

ON AXIS INTENSITY
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The graphs demonstrate that on axis immediately behind an annular

aperture (of sufficiently small c) the intensity pattern is character-

istic of a circular obstacle alone. As z increases, the intensity

oscillation envelope unfolds and the pattern becomes characteristic of

the annular (or circular) aperture.

The off-axis intensity plots for an annular aperture of obszura-

tion ratio 1/1000 are given before for optical axis distances of .5m

and 20m. This dramatically shows the circular obscuration behavior

for small z and the circular aperture behavior for large z.

40

4
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N I0 N
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M E
A N 2L S
I I
z T

RADIAL DISTANCE (.eft N)
OBST. DIAN.= .819 M. APEP.. DIAM. = 19.9M N. 2 DIST. = 0.50 N.

Graph A3.3

Intensity Distribution for Small z
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Graph A3.4

Annular Aperture Pattern for Small z
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*LEGEND: I I (1 .1 IoI .85 1Ia I 1< 1 Jo 1< .5 I1 Io .5 I0

Graph A3.6

Annular Aperture Pattern for Large z
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Appendix 4

MDf4ICING OF U1,ABERRATED BEHAVIOR BY WAVES CONTAINING

DEFOCUS OR SP.iERICAL ABERRATION

One of the important results from Chapter 4 was that the spacing

between maxima and minima on axis behind an annular apertue was inde-

pendent of any aberration present. It was also shown that defocus and

* spherical aberration shift the positions of extrema. Consider the

case where the aberration shifts a maximum (call it the mth order

maximum) onto the position of the nth order maximum for the unaber-

rated case. Can the amount of aberration present be determined?

Assume the aberration present is defocus with aberration coeffi-

cient W2. Then if the position of the mth order maximum for aber-
20 

trated case (z') is the same as the position of the unaberrated nth

order maximum (z), one can equate equations 111-40 and IV-16:

Z D2 (1-,2 ) D2(1-E2) ]
4X(2n+1) 4A(2m+) - 8W (1-E2)

20 (A4-1)

4X(2m + 1) - 8W2 0 (1 - C2) 4X(2n + 1)

(m-n)
20 (l-c2) (A4-2)

* Both m and n are integers so let p = m - n where p must be an integer.

Then if defocus is of the form:

0
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W 20 = E

(1-E2) (A4-3)

the extrema for the aberrated case are exactly superimposed on the

extrema for the unaberrated case. (Equation A4-3 is also the expres-

sion obtained by considering the mth order aberrated minimum and the

nth order unaberrated minimum. m and n are strictly arbitrary.)

Thus if one takes measurements of axial positions of extrema and

compares them to the unaberrated positions and finds them identical,

then the proper conclusion drawn is that any defocus present has the

form given by equation A4-3. (Clearly the unaberrated case corre-

sponds to p 0.) In this case the amount of defocus can be deter-

mined best by intensity considerations.

The corresponding condition for the superposition of extrema for

spherical aberration is:

_ PW40=

(1-E:4 ) (A4-4)

I- " I
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Appendix 5

ON-AXIS INTENSITY AT Z = - H BEI-:D A CIRCULAR

OBSCURATION AND ANNULAR APERTURE

On axis the Rayleigh-Sommerfeld integral giien by equation IV-3

is reduced to:

0 Ak ikz ik4I W20 r2
13(O, z) - e 0 2z d 2 r dr'jd 1 1

d/2 (A5-1)

d
2

At z - for W < 0, the above is:
tz 8W2 0  20

d- 8AkW u -ikd 2 /8W2  + 2U (0-8- 0 e 20 f e 2

2 u id2  /d d2!.
d/2..

x r1dr1

8AkW -ikd 2/8W
= - 020 

rdr1id
2

d/2

24AkW0 -ikd /8W 2  
2

-- e ur

id2  d/2 (A5-2)

a For the circular obscuration case the disturbance function (and there-

fore the intensity) takes on an infinite value at this particular z.

6

r.
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If the upper limit is not infinite then (A5-2) becomes:

D20 - ) - 20 -ikd2I8W T, 2 d2)

U 0e 201~--
20 iD2  (

-- A kW~ (I - 2) e- ikd2!8W2 0
1 20 (A5-3)

The intensity is:

1(0, D .2 I U(0, D2 )12
8W20 8W20

=A
2k2W 2(l C 2) (A5-4)

20

Thus the intensity has a finite value.

An alternate, but related, question is can an on axis maximum

occur at z =-< (thus implying infinite intensity)? For this to

happen one must satisfy:

___ __ __ ___ __ __ __ D
2

4X(2n+1) -8W (1-5 8 2 0

8W D2(1 E 2) =-4XD 2 (2n + 1) + 8W D2(1 E £2) (A5-5)
20 20

or

4XD2(2n + 1) =0 (A5-6)

4 which is impossible. Thus the intensity should remain finite in the

annular aperture case, in agreement with A5-4-
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Appendix 6

SEPARATION OF DEFOCUS AND SiHERICAL A3ERRATIOI BY AXIAL

SHIFTING OF MAXIKA WITH DIFFERENT OBSCURATION RATIOS

From equation IV-66 the axial shift from the unaberrated case for

the nth maximum behind an annular aperture when both defocus and

spherical aberration are present is:

5

AZ 
= D 2(1-E2)2 20 + W (+ 2)

2 X(2n+l) [A(2n+1) - 2W ( I- 2) - 2W (I-s4)1
L 20 40 J

(Iv-66)

1(2n + 1) - 2W2 0 (I - 2) - 2W4 0 (1 C D (I-E2) 2

2402 (2n+1)

~ + w (1+ E2)]
x [W20 + W40 ( I 1 )

W + W4( I + e2) = 2Az\2 (2n+1)2  LAz4(2n+,) W
20 40 D 2 (i-£2 )2  D2 (i_£2) 2U

Lz4A'(2n+l) W (1 + E2)

D 2 ( I _ 2 ) 2 2 0 +-I!

D2(I 2 )  + z4 ( n )]
(20 + W 40( 1 + £2)) ( +

D2(l-2)



2 b

2AzX
2 (2n+1)

2

D2 (l-C 2 )

W + W (1 + e2 ) - 2Az!^(2n+1)2W20 ~(D2 ,I-_. 2 )  z4X (2n+l)) (1-c 2 )  (61

If the axial shifts from two different obscuration ratios are

measured, there will be two equations with which to find the two

unknowns (W and W ). Subtracting the two resulting equations and

solving for W yields:
40

2 Lz X
2 (2n+1)

2

W (E 2 -
2 ) =

40 2 (D 2 (-c 2) + Lz 4X(2n+))(I-e 1
2 )

21z2 X2 (2n+1)
2

(D2 (1-C2
2 ) + Az 2 4X(2n+l))(1-c2 2)

2X2 (2n+1)
2

W =
40 (E12-6 2 )(1-C 2 )(I-s 2)

1 2 1 2

S D2(I-c22)2 + Az LZ 4X(2n+l)(1-E 2) -
1 2 1 2 2

Az 2 D
2 (1-C 2)2 - Z Az 24X(2n+l)(1-]2)

L D 2) + Az 4X(2n+l))(D 2 (l- 22) + Az24X(2n+l))]

2A 2 (2n+1)
2

(EI2-E22)(1-E12)(1_2-E .

2 1 2
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xD2  ~z1 (1-E:2
2 ) 2 - Z, (1-E 2)2 + 4X(2n+l)Az IAz 2(c 2-E 2)

(D2(1-E 2) + 6z 4X (2n+1))(D 2 (1-.e 2) + 6z24X(2n+1))

(A6-2)

The above unwieldy expression has no readily apparent simplification.

Substituting back into equation A6-1 yields:

=2X
2 (2n+1)2  A z1(1-C2

2)(c1 -E 2 2 )

(C 2 -E 22 )(1-E: 2)(1-E 2) (D2 (1-Ec 2) + Az 4X(2n+1))

2,2 (2n+1) 2

( 2-C 2) (,-E: 2) (1- 2)

X (+C 2)D2Az (-C22 Az 2(1-C1 2)2) + 4X(2n+1)

1 2 1

x A2 c1 2 A 21-22)]A

(D(1c1 2)+ z4X(2n+))(D(lc 2) + z 2 4X(2n+l))

= 2X2(2n+1)2

20 (c 2 -C 2)(1-E 2)(1-E 2)

1 2 1 2

D2 'Az (1-C 2)2 (1-E 2) - z (1-F 2)2 (1-E: 2)-
1 21 2 1 2

4X(2n+1)Lz tz (C 4C4
1 21 24

4(D 2 (1-E 2) + z 4X(2n+1))(D 2 (1-Ec 2) + Az,4X(2n+l))

(A6-3)
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Appendix 7

COMPARISON OF CALCULATIONS USING SINGLE PRECISION

AND DOUBLE PRECISION NUMBERS

Most of the graphs in this thesis were calculated and plotted

using an IBM Personal Computer. The IBM can store numbers with either

single or double precision. Using single precision, only six digits

Le are accurate. With double precision, 17 digits are accurate. 1 The

drawback to using double precision numbers is the longer program

execution time required. For example, a typical run to produce an off

axis intensity contour plot took approximately ten minutes with single

precision. Double precision required alnaost twenty minutes for the

same run. Because of the large time differences, it is important to

ask whether the loss of accuracy using single precision numbers is

significant.

To test this, four runs were made. The program calculating the

r off-axis intensity distribution takes the most time and has the high-

est number of calculations of the programas used. The maximum and

minimum values for the intensity distributions produced using double

and single precision were compared. The first two runs used the case

of a one centimeter circular obscuration viewed at a distance of one

meter. The last two runs used the case of an annular aperture of outer

0 diameter one centimeter and inner diameter .3333 centimeters viewed at

the position of an on-axis minimum at .5017 meters.



K For the circular obscuration case, 22 points corresponding to the

radial distances for maxima and minima up to .7 millimeters from

center were compared. The radial distances were calculated to the

nearest one and one half microns and the corresponding normalized

intensities to the nearest .0001. Of the 22 radial distances only two

differed. Likewise only two intensities differed in value. These

differences are listed below.

Table A7.1

Comparison of Single Precision Versus Double
Precision for Circular Obscuration Run

Single Precision Double Precision
Extremum Calculated Calculated Difference

TyePosition (mm) Position (mm) (mm)

Minimum #4 .237 .236 .001

Minimum #5 .302 .300 -. 002

Single Precision Double Precision L
Extremum Calculated Calculated

Intensity Intensity Difference

4Maximum #f5 .4076 .0477 .00011

Maximum #5 .0000 .0001 .0001

V. •
I.

The plots for each case reveal no apparent difference.

7'

radial *< v ditncsfr aia n mnm u.o.7mllmtrsfo
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For the annular aperture case, the first 46 extrema out to a

radial distance of 1.1 millimeters were compared. Of the 46 positions

10 differed each by only .001 millimeters. Only two intensities

varied. The differences are listed below.

Table A7.2

Comparison of Single Precision '>rsus Double
Precision for Annular Aperture Run

Single Precision Double Precision
Extremum Calculated Calculated Difference

Type Position (mm) Position (mm) (mm)

Minimum #2 .062 .063 .001

Maximum #3 .132 .133 .001

Maximum #6 .267 .268 .001

Maximum #8 .362 .363 .001

Maximum #9 .417 .418 .001

Minimum #12 .537 .538 .001

Maximum #12 .552 .553 .001

Maximum #13 .607 .608 .001

Minimum #16 .727 .728 .001

Single Precision Double Precision
Extremum Calculated Calculated
Type Intensity Intensity Difference

Maximum #3 .3158 .3154 .0004

Maximum #9 .0996 .0994 .0002

| ' ' ' " | "i " •
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For this run all position differences were .001mm lower in the single

precision case. Still, there is very little change between the two

runs.

I

1.5

0 N
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D E

i ItRADIALt DISTA P!CE <,1'1 N)
OBS!. D!Z.:,- .993 M, APEP.. DIA . 9. M.~ 24 DISI. :9 .5917 M..

Graph A7.3
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t Graph A7.3
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These four runs suggest for the degree of accuracy required to

produce the plots and graphs, single precision is sufficient. J
S

Si

~1

* . Cv..
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Notes

1BASIC -IBM Personal Computer Hardware Reference Library, 1st

ed., Pp. 311.
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Appendix 8

COMPUTER PROGRAM LISTINGS

The programs listed below were used to study on and off axis

intensity patterns behind circular obscurations and annular apertures.

The programs are written in advanced BASIC using DOS 1.1 for the IBM.

Personal Computer. The advanced features of BASIC allowed for graph-

ics with a screen resolution of 200 x 640 pixels. p

The first program listed is KACIN. This program lists the

positions for the maxima and minima on axis behind an annular aper-

ture. The computer prompts (inputs) are self-explanatory. Allowance

is made for the presence of defocus, spherical aberration and a dis-

placed obstacle and aperture. The distance along the optical axis is

measured from the aperture. If lz is the separation between the

aperture and obstacle, the nth order maximum satisfies:

I[4x D2 - d2

z z A- +

4max 2 (1-Ec2) -8W (1-e4)

41(2n~i) - 8W2 (1-c2) - 8W (-)

4X(2n+) -W 20 40

AzD 2  1

4X(2n+l) - 8W2(I-c2) 8W (I-c4)2 (A8-)

. -,- ...- '
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The nth order minimum has the same form with (2n + 1) replaced by 2n.

The second program is AXIS.OBS. This program plots the on axis

intensity function behind a circular obscurration, using equations IV-

43 and 111-34.

The third program is AXIS.ANN. This program is the analog of

AXIS.OBS for the annular aperture. It employs equation IV-72 for r =

0.

The fourth program is ARAGO.OBS. This provides an intensity

contour plot and a radial intensity function plot for the diffraction

pattern at a given distance behind a circular obstacle. This program

uses equations IV-43 and 111-34.

The last program is ARAGO.ANN which yields the plots mentioned

above for an annular aperture. Equation IV-72 is used. This program,

as well as ARAGO.OBS, includes a subroutine to find Bessel functions

of the first kind. The subroutine comes from BASIC Programs for

Si

Scietiss an Eniners b Miler
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- 1 ::'INT EXT
I .s " !.Gl GN(I(--INTEN(1)
-37, FOR I I TO 4.9

j3.: IF SGN(INTEN(I+1)-INTEN(I)) SIGN GOTO 1930
19)c? IF SIGN 0 THEN EXT$ = "MAXIMUM" ELSE EXT$ "MINIMUM"

I';'o SIGN ;= S3GN(INTEN(I+I)-INTEN(I))
* , I''10 LFRI NT USING " #.### #.###"; I-*R*1000, INTEN(1) I '.

*I I 2, LFRINr "... "E
1930 '""'



REPRODUCED Al'GOVERAtIANT EXPENSE

1! 1 f7UT "DO YOU WISH TO MAK:*E ANOTHER R-UNi (Y,'N)";D$
IQ70 F r$ "N" THEN END ELSE GOTO 130

I1 L" " L ....T" R PLOT2,-. C LA2-L p -

., 'RINJT "LEGEND: ;CHR$(22I) .01 Io ";CHR$(178);" I <.05 I0 ";CHR$(I

" " , o ( . I I 5 C Hf ]

Fit 3 HADING FOR CONTOUR PLOT FcINTS

F N (R-  > . C102 GOTO 2)60

2 -- "'E TF-JT *.1 N 2-) O O 2 9

T I i F.

.... T  "NT ",~2 .05 GOO2090}

I ITEN(R) .1 GOTO 2120

F INi \ TI ( R2) .5 GOTO 215C

14'" ; E'I''4'-.

1 U2.'JUTINE TO FIND BESSEL FUNCTIONS- OF THE FIRST K.IND

9. 999;-999E-06
" , 1 .159

X' * X

A AND (D9=1) THEN 8240
X "15) THEN 8260

,: 7 !-D? 0) THEN 8090

3 ( <. OC}T 3140:
Y''9 "7 := X

1 ) X = D9 + 1
•2! I0 G~OSU-: 8290

1: 6 (X/2)'D9/G5
lil T 96

i F AlE (T3} < ABS(S6*T1) THEN 8220
1 7',T 1% + 1

4 l6. Tl = T3
t T7 = T--T4 X2 * .25/(1% * (D9 + I%))

-7W.) 556 = $6 + T3

"



FILMED

* 2-85

* DTIC


