D-Ri41 949

UNCLASSIFIED

IMPROVEMENTS T0 SOFTHARE MATINTENANCE NETHODS IN REAL 1/1
TIME EMBEDDED RVIATION FLIGHT SYST EHS(U VAL
POSTGRHDUHTE SCHOOL MONTEREY CA R B UPCHURCH DEC 83

r

TN . SRR LAY PRSI UL - et |
‘... el—. W -.-.-.—.._. PR AANAAT] T IINE | S
- N .. K

R

18

=
———

l 3
S
=—
]

SEEE
ﬁm—mmum&h

=

Il
il

Ia
e
——
——
—
——

Pl
2
d

l

125

—
eem——
t———
—

&
7
53
w1
Es
- &
23
£
=
Mw
SU
,_m.u
%
> B
%3
O 2
O °
e 3
oz
H

=

I
!

I,

- - .
AN AARICREY) A' I

ek

o tecd

4 v
_ -’*:’

‘.o".:.'.:'.:.‘z‘.'t.'

&

~~~~~~~~~~~

BTIC FILE CoPy

IR KNS RO At Al S ALADMEA DA Al bt ol A B ot AL At S e o S Sace )

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

DTIC

ELECTE]

THESIS © °

IMPROVEMENTS TO SOFTWARE MAINTENANCE METHODS
IN REAL TIME EMBEDDED AVIATION FLIGHT SYSTEMS

by

Robert Burton Upchurch
December, 1983

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution unlimited

84 06 11 125

N AT

I AT N .
AT  NU  P
3y PrAT e T ,
) LA YRR NE WY S




T T o o P P WV Vv T~

REPORT DOCUMENTATION PAGE BEFORE COMPL ETTNG FORM

ARATTT G e

S. FvyPE OF !EPORT & PERIOD COVERED

e Master's Thesis
mprovements to Software Maintenance December, 1983

vethods in Real Time Embedded Aviation
Flight Systems

NOR(s) 8. CONTRACT OR GRANT NUMBER(s)

A 7.8 (and Subtitie)

6. PERFORMING ORG. REPORT NUMBER

Robert Burton Upchurch

. PERPORMING ORGANIZATION NAME AND ADORESS 0. PROGRAM W
Naval Postgraduate School Num
Monterey, California 93943

1. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
Naval Postgraduate School December, 1983
Monterey, California 93943 13. NUMBER OF PAGES

89
YT WONITORING ASENCY WAME & ADDRESS(I? different from Controlling Office) | 15. SECURITY CLASS. (of this repor)
UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

1e. E“ﬁﬁﬂa “A!ﬁiu? (ol this Repert)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetract enteced in Block 20, If different from Report)

—7 ety
18. SUPPLEMENTARY NOTRS

Pr————————
19. XEY WORDS (Continue on reverse aide if nescssary and idontify by block number)

Software maintenance, software lifecycle, aviation software
maintenance, OFP documentation, OFP testing

P ————
20. ABSTRACT (Cantinue an reverse side M ary and identify by biock number)

Software maintenance costs in Naval Aviation Operational Flight
Programs (OFP) are very high and are projected to climb higher
in the future. Maintenance costs are high due to poor initial
design, limited programmer and system resources, poor documenta-
tion, the conditions under which the OFP must operate and the
difficulty involved in performing meaningful flight software

tests. The primary factors which produce the stated problems
i ontinued)

DD ,on'>s 1473 eormon or 1 wov 6813 ossoLETR
$/N 0102- LF- 014- 6401 1 SECURITY CLASSIFICATION OF THI; PAGE (When Deta Bnterec

e _._--._ - e T T e e e

L7y L"\J Aa " ) ,.:-A_.AAA PRI P I L L S I S S

' "' ’ '-." o \_s._. 1_1_1;-..‘-'\ \ *-



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ABSTRACT (Continued)

The maintenance phase of the software lifecycle model proposed
for standard application software systems is contrasted with
that for real time, embedded, aviation software systems. A
limited set of software tools and methodologies which are cur-
rently available and would greatly aid the system engineers
tasked with OFP maintenance is proposed. These tools and
methodologies center on two areas of flight software maintenance;
documentation and testing. The thesis concludes with recommend-
ations for future aviation flight software systems.

$S/N 0102- LF- 014- 660)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

C A At mma A a .

A e muas




s A A R RACOANMAAS A S AL N L A g Y VNPT I W Ve rTr -y

Sacond Reader

Y

.I:'I
<.

o Approved for public release; distribution unlimi<ed.
:ﬁ;:
o -
P Isprovements to Software Maintenance Hethods

e in Real Time Embedded Aviation Plight Systeas

=3

- by
BN Robert Burton Upchurch

o Lisutenant, United States Navg

Nt B.A. Missouri University, 197

;':::
e Subaitted in partial fulfillment of th2
! regyuiremeéents for the dagree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

:l from the

_".:.
e NAV AL POSTGRADUATE SCHOOL
P December 1983

\..:
{
. Author: L2 7c _

- 7

7 ///

- Approved by:____ o2 X s o L I e e e
;I. // A, Thesis Advisor
APNign
~ *!/1 A/‘v ~ oy --M‘

8 o M € DB 0

T Chairman, Department of Computer Science

. Mo LN

Dean o0f Informa nd Policy Sciences

[ol NN
DAY
i R N

&
)

) " o ! '.,
&
J*I%J\)‘J‘.JSJ !.bc -8

F) "'
AR

..............
......

<M BTSN NED 0 SN IOSEIE N30 N IS A IO N R O ORI e e T e e e i




ABSTRACT

'Softvare maintenance costs in Naval Aviation Operational
Plight Programs (OPP) are very high and are projected to
cliab higher in the future. Maint2nance costs are high due
to poor initial design, 1limited programmer and systen
resources, poor documentation, th2 conditions under which
the OFP =aust operate and the 3ifficulty involved in
performing meaningful £flight software tests. The primary
factors which produce the stated problems wit aviation
software systams are discussed. Th~ maintenanc2 phase of
the software lifecycle mod21l proposed for standard applica-
tion software systems is contrasted with that for real time,
embedded, aviation software systems. A limited set of soft-
vare tools and mathodologies which are currently available
and would greatly aid the system engineers +asked with OFP
maintenance 4is proposed. These tools and uamesthodologies
center on two areas of flight software maintenance; documen-
tation and testing. The thesis concludes with recommenda-
tions for future aviation f1light software systenms.

.......... - -

Lo e e e A A L A N T SR o I
e T T R N TN L,




:;Z ..................
A

: :

~\

=3

,(_‘ ) TABLE OF CONTENTS

:

=N

e 1. INTBODUCTION o « o o o o o o o « o o o o o o o o o 10
A. THE PROBLEM .+ « ¢ o « o o o o « a o o « « o o 10
o Be THESIS OUTLINE « o « o = o « « o « o « o o o o 11
i.:S Ce THESIS ORGANIZATION . ¢ ¢ = o o o o o o o « o 12
N D. RESEARCH METHODOLOGIES . « o o ¢ o o s « o o« o 12
1. Literature « « « ¢« ¢« ¢ ¢ o o o o « ¢ « o o« 12
e 2. LabOTatory ViStS o v o « o ¢ o o o o « o « 10
:3-:

s II. BACKGROUND = « = 2 o « o o o« o o o o o o o o o o o 15
Ak A. INTRODUCTION ¢ « « o ¢ o « s « « a o« « « o = o 15
N B. A-6E PLIGHT SOPTWARE HISTORY . . - « « o . . . 15
% C. NAVY SOPTWARE ACTIVITIES « « « o o o « o = & » 17
:fi:.'j D. AVIATION SOFPTWARE MAINTEVNANCE PROBLEMS . . . . 18
. To PlatfOIM 2o o ¢ o o o o o o o o s o o o o « 18
‘?‘;’ _ 2. MAircraft Lifespan . « 2 2 o « « o« o « o o« 18
Ny 3. Independent Activitias . . . . « . o o . . 19
:4, 4. Concurrent Activitias . . ¢« o o o o o « « 20
» S5 Real Time . ¢ ¢ ¢ ¢ e ¢ o ¢« o o« ¢ @« « « « 20
:: 6. Reliability and Recoverability . . . . . . 21
23*\ 7. Program Complexity « o ¢ o o ¢ o« o o o o o 21
o 8. Documentation . . ¢ ¢ ¢ 2 o ¢ 4 o o & o o 22
9. Training ¢ ¢« ¢ « o o ¢ o o o o o s o o s o 23
_.} 10. Hardware Limitations . « « . . « « o« o . . 23
=2 11. Aircraft Populations « « « o « « « « o o « 24
G 12 Human PACLOLS =« ¢ ¢« o ¢ « o e o ¢« o o o o« 25
oy 13. Military Standards « « o « o « o ¢ o o o o« 25
Jj: 14, De2dlines . o« « o o o ¢ o« o « o« o o« o o « 26
', 15. OFP T@StiNg « o « o « o o « o « o = « o« « 26
N 16. Scope of Maintenance Changes . « « « « « o 27
7 5

3

PL

o

- -

"~ ‘..(-'\v\- a .‘- A N

O I P
o K X3 ) .'

e TS TS N NS N N I PR R P - - - a a at e
N CR AL O LR A ARG CEOI G LN R S COROLOTRSR, |



L
2 p
i III.  MAINTENANCE IN NAVAL AVIATION PLIGHT SOFTWARE . . 28 ;
b A. INTRODUCTION « o « « o o = o o o e o o s « o « 28 -
. B. WHY SOPTWARE? o o « o « o o o o« « o« o + o « o 28 ):
. C. SOPTWARE MAINTENANCE . « 2 « o o « « o o « « « 30 2
2 D. SOPTWARE LIPECYCLE o « o o o o o o « o o o « 31 2
'* E. MAINTENANCE LIFECYCLE .« « ¢ o o « « « « o o « 35 -
P. AVIATION SOPTWARE MAINTEYANCE LIPECYCLE . . . 37
- G. SOPTWARE TOOLS o « o o o « o o o« o o o o o o o U1
- 1o DefinitioN ¢ o« o ¢ o o ¢ o o o o o o o o o U1

2. Software Tool USAGE « « o o o o « o o o o U2

He PROPOSED SOLUTIONS ¢ o « o © o o o « « o o « o 45

" T OFP REWEit8 o o o o « o o o o o o o« o s o 45
2. High Order LanguagesS . « o« « « o « o o o « 48
3. Extensive ENVvironments o« « o« o o ¢ o o o o W49
4., AJQAIng HATAWATE =« ¢ o o o o o o o o o o o W49

Iv. SOPTWARE ENVIRONMENTS AND PASP ¢ o o o ¢ « o « o « 51
| A. INTRODUCTION © o « o o o o o o « o o « o s o o 51
B. ENVIRONMENT DEPINITION . o« « « o o « « s « o o« 51
Co PASP @ o o o v o o o o o o o o o o o s v o .58 -

v. IMPROVING OFP MAINTENANCE THRDOUGH
DOCUMENTATION =« o ¢ o o o © o o« ¢ o o o =
A. INTRODUCTION « o o ¢ o @ o o« @ o s o o
B. DOCUMENTATION IMPROVEMENTS « ¢ o o o+ o

. 1. Elactronic Documentation Storage .

‘e A
.

.. £

2. Software Reguirement Document . .
3. MAircraft Performance Spacificasion
DOCnn ent L] * L] L ] L ] L L ] L J L ] [ ] L ) - L ]

A

OFP TESTING IMPROVEMENTS ©. ¢ ¢« ¢ o o o o =
A. INTRODUCTION ¢« « o ¢ o o ¢ s o o o o o
B. WEAPON SYSTEM SUPPORT PFACILITY . . . .
C. STANDARD FLIGHT TEST SCENARIOS « « «
D. WSSP PRODUCTION TOOLS .. « s o ¢ o o o

nstai's Vel &

+ 2r” ar o)

3

~(‘ "‘!‘*f~1\- ~f R .". \-m$ Rt S R I TR T W .
TN 2, ‘l.:ﬂ;}‘f 2, .L} e ! & -.&.A.l’ -&.L‘FL{L-.\L"\”‘_{‘IL‘-( o '."-\:'\ -



VIiI.

Te SREM ¢ ¢ o« ¢ ¢ o o« o o o o o o o o =
2. Module Gensrator « « « o o o o o o o
3. PLECS o ¢ ¢ ¢ « o o ¢ o o s« a o o @
4. AVSIM .« o ¢ ¢ o e « « o o o o o o o
S5¢ AVDOC ¢ o ¢ o o o o o o o o o o s
6. Example .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o @
7. WSSF TOOl SURMATY o o « « o o o o o

CONCLUSIONS & o o ¢ ¢ o o = o s o o o o o o
A, CONCLUSIONS ¢ ¢« ¢ o o o« o o o o o o s o
1. Design It Right .« ¢ o ¢ o o o o « =
2. Development/Maintenance Environmeats
3¢ MODNBY ¢ e o o o o ¢ ¢ o o o o o o @
4. Bducation ¢« ¢ . ¢ 0 e ¢ o o o o o o
B. PINAL CONCLUSIONS . 2 o« o« « o o o o« o «

LIST OF REFPERENCES ¢ « ¢ o o ¢ ¢ ¢ o o © s o o o

BIBLIOGR!PH! * [ L] L J - L ] - L4 L] L] L) - L) L] - - L] L] L)

INITIAL DISTRIBUTION LIST ¢ o « ¢ ¢ « o o « o o o o

79
79
80
80
81
81
82

33
83
83
83
84
84
85

86

88

89

.............

-




SR A AR R A A il i A e s~ S i R e e e |

LIST OFP TABLES

I. Aviation Lifecycle Terms « « « « « o « o« o « « « « 39
II. FASP Language and Computer SUPPOrt « o o« « « « « « 5S4

s .-‘:- T --'_‘-" St .-’.'-‘
.n:'.} .:,,'.;“'.u P, YA ‘.-‘;



rd

RN

K|

® 8 37 )
sELLS
FIAFIE

-

4’

.
. ,
et

o
‘!

3

Ll ‘l‘l £
clln’ 2y

-
Phatd
-

|
%Y
L&

A

P
RN
.

[y
o

o )

{‘l.‘ P A
2.0,

’
.
')
o'..lll

U

radb

3.1
3.2
3.3
4.1

LIST OF FIGURES

Bocha Software Lifecycle Model . ¢« &+ « « o

Parikh and 2Zvegivtov Mainta2nance Lifecyzle
OFP Development/Maintananca Lifecycle . .
Multiplicative Software Productivity Pactors

32
36
38
53




A. THE PROBLEHN

Softvare maintenance in Naval Aviation Operational
Flight Programs (OFPP) has become va2ry difficult and cos<ly.
Costs will continue to rise as new weapon systems and
mission requirazments are integrated into the various opera-
tional aviation platforums. Changes which reflect hardware
improvements, mission changes, or improved algorithms are
time consuming and can 1l2ad to 1long delays in dJdelivery of
the updated syst en. Softwara maintenance problems
concerning the OFP are compounded by the envirornment in
vhich the OFP must operate. This operational ervironment is
a real time, 1limited hardware, 1limited support resources,
and very tightly time constrained. The origical desigrn of
tha OPP itself wvas often poor and little documentation is
available to the maintenance tean. The OFP 1is written in
either assembly language or a very 1low level prcgramming
langunage. Changes are made under a strict time table.
Before any redesign or implementation of a change *o an OFP
may begin, a large effor:t must be 2xpended to fully under-
stand the OFP and the impact the proposed change may have on
the entire program. Testing is a time critical task which
consumes a significant amount of maintenance resources.

The maintanance effort is furthar complicated by a lack
of <trained system personnel. Personnel turnover at the
softvare maintenance activities has been approximately ten
percent per yasar. Systea programm2rs take on average three
years to train before they able to be 3assigned the igplemen-
tation of a significant change t5 an OFP. During this
periocd <the system programmer may be able t5 accomplish

10

DA S N R . et R
RPN 2 A P I Cr T Rt V. G R R T D C P




LV S T AN P

little useful work for the maintenance activity. Due 4o ths
generally poor documentaticn and tne complex code of mos*t
OFPs there ar2 only a handful of pe>pl2 who fully undsrstand
a particular JFP. Lcss of these k2y personnsl would result
in a severe reduction in the capability of the sof+wars
maintenance activity +to continue at acceptable production
rates. There is no improvemen*t in the availablity of compe-
tent system personrnel predicted in the near future.

Due ¢to the unique problems prasented %5 mainterance
activities by +he characteristics of avia+tiorn sof4warse,
pmaintenance costs are very significanrt. Fiscal 1984 oper-
ating buget for maintenance o0f six aircraft JFPs at Naval
Weapons Cen+er, China Lak2, California, is ovar 16 million
dollars. This figure, while seemingly high, represents only
75 percent of the reguested budget. Resources are limited
and the situation is not 1likely to improve. Ssveral major
proposed solutions have been suggested *o improve the
productivity and the quality of th2 maint=nance =cffort.
These suggestioas range from complicated scftware
development/maintenance environments t2 complzete rewrites of
the flight software itself. Budget limitations will preven*
any of these major proposals beiig realized in the near
future.

B. THESIS OUTLINE

This +thesis focuses c¢n the two areas where rapid
improvement in the maintenance effort seems possible; docu-
mentation and testing. A sat of so>ftwar2s tcols and method-
ologies which are currently available and which would %ave a
significant impact on these problem areas are outlined. Th2
software tcols rapresent an affordable strategy for the
maintenance activities to improve th2 maintenanc2 of currsant
flight software systems.

11

R -~ - -~ .
..... Y

- . TN --_-\‘-.‘_; R RC IR o 3, RS R R T
PPV AR AT S S IR AT RO T VS R S —‘-'.'-‘.\‘-\‘J‘.\ LSRRI N, SR

O ELAT AT AT AR A AN AR A0 S A S MM MRS B S AR LR A0 e s o a2 e oo B I T

NN

“

™
1

el Bt s feedenlciiond




C. THESIS ORSANIZATION

The remaining chapters are organized in the fcllowing
manner. A scenario tracing the dz2velopment and maintenance
of an operatisnal aircraft system, the A-6 Intrulder OFP, 1is
presented in Chapter Two. A detailed Dbackground of <he
aviation software maintenance problem is given. Chap<ter
Three gives a2 brief discussion of a 1lifecycle model for-
aviation software maintenance in coaparision with a standari
application program 1lifecycle model. Software tools are
d2fined and discussed. Un feasible solutions are explorced.
Chapter Four discusses softwar2 maintenance/development

environments. A software developm2nt environment which is
in use by the Naval Air Development Cent2r, (NADC),
Warminster, Penansylvania, is discussed. A set 9f tools and

methodologies which center on two arsas of OFP maintenance
and are felt to have the greatest iapact on the productivity
and quality of OPP maintenance are outlined in the nex« two
chapters. In Chapter FPive the first of these areas, docu-
mentation, is discussed. Chaptar Six covers the second
areas, OFP testing. The thesis concludes with suggestions
for future development of D FPs.

D. RESEARCH METHODOLOGIES
1. Literature

Manual and automated searches of <+he 1literature
produced a lipmited amount of iaformation concerning
embedded, real time computer systams. Less was found on
maintenance of the scftware used in these systems. An auzo-
mated search 3f government research *topics dating back six
years using maintenance, real tim2 and embedded systems as
keywords produced an impressive work summary. Upon closer
examination, most research listed was not directly appli-
cable to the 2mphasis of this thesis.

12

N e
imblatata’a’s o o

A AR IR § GO

cﬂ.\



ERANCAMM M A DA M A SA A S M A S MR ANA MAACAAAC aLUALAL A LA L A A et ARt g b o o ot s A ARSI SR

HE
1

oo

-
E‘;: i

\:,\'__ .

&Q: Noteworthy work d2aling spacifically with a Navy
R % tactical aircraft (A-7 light attack) OFP redesign has beer

/

ongoing under the direction of the Naval Re =arch Lzboratory

N [Ref. 1]. In this study, not yet complete, *he OFP for the
ﬁﬁ% A~7 was redesigned using software 2ngineering tachniques of
Qﬁa modularity, information hiding, formal specification,
._"\

abs*ract interfaces, and cooperating sequential processes.
The study is at the pcint that testing both ip ground simu-
lators and flight tests is ready +> commence. I+ will not
be known if the recoded OFP will parform as rajuired unti

thase tests are complete. The study offers interesting
insights into the prcblems associated with flight software
systems as they are now designed.

Definitions of the critical concepts >f software
maintenance, software environments, and the software life-
cycle are readily available in th2 literature. Lientz and
Swvanson [Ref. 2] contains an excellant defimition of process
of software maintenance in 1large applicat*ion program
systeas. Fj2ldstan, Hamlen, Bristow and Van Horn provided
further definitions used for software maintenance [Ref. 3],
(Ref. 5], [Ref. 4]. Guidance in tae area of software envi-
ronments was found in articles by Howden [Ref. 6], Bristow
(Ref. 417, and Wasserman ([Ref. 7]. Also the Naval Air
Development Center provided an interesting discussion of
+heir development/maintenance environment, FPASP (Facility
for Automated Software Production) [ Ref. 8]. The model for
the software 1lifecycle was developed from Boehm [ Ref. 9].
The wmaintenance lifecycle was taken from Parikh and
2veginitov [Ref. 10]. The definition of a software tool was
taken from work conducted by the National Bureau of
Standards (NBS) (Ref. 11].

13

» -'~. PO -\. (PN -_.-‘ -7 .' '\,“‘.~ .............. T AT TN LT
A e N N e \L\-J'u‘ Y ..1';1;!' I ST A N L-«.J"'" s AR, ‘?-‘--‘?~‘.'-‘.-.‘]




L AL St Tod g s e g o  at o
ST AT AN -“'.“.-.2 A ...'} N .._?',\ PR NCAMEANE IR i ee e Ui ) R TR T W —yy
LT Lt . S N e R g A it

NS S i i i el dagtn and

-

2. Llaboratory Vists

" . i i ——

A wealth of information and ideas wis ga+thered
during <%rips by the author to the primary Navy Pligh+

Software Activities on the West Coast, Naval Weapons Center
(NHC) , China Lake, California and Pacific Missile Test
Center (PMTC), Point Mugu, CcCalifornia. The perscrnel who
must daily face the unenviable task of performing the main-
tenance on the flight softwvare for all of the Navy attack
and fighter aircraft were able “o give detailed descriptioas
of their problems and suggastions for improvaments. A tour
of the facilities at both activities helped tkhe author to
gage the extent of resources available.

A conference attended by representatives from all
three Navy Flight Software Labs anil a group of researchers
from various academic communities was held 5-7 Jctober 1983
at the RNaval Postgraduate School. Bach Software Lab was
given the opportunity to present waat they f2lt vere their
everyday problems in dealing with flight sofiware mainte-
nance and their ideas for future r2search. The conference
turned out to be both stimulating and an excellent source of
information.

14

A A VA TR A A A AL Tt et e e e , L ) _
R N e e B N e e e L o I T e, T ot e o0



II. BACKGROUND

A. INTRODUCTION

This chapter traces the developmant and current mainte-
nance of a typical mature flight software system, <+the A-6E.
The primary Navy softwvare maintenance activities are identi-
fied. The chapter concludes witk discussion 5f the unigue
probleas associated with real time, <ombedded aviation sof*-
vare systeas.

B. A-6E PLIGHT SOFTWARE HISTORY

The A-6 Inrtruder is an all weathsr, carriar based jet
povered attack aircraft built by Grusmar Aerospace
Corporation, Long Island, New York. Its prisary mission
definition is the accurate dalivery of sizeable ordinance
loads and close air support to ground units under all
weather conditions. Since its initial design, it has “taken
on other roles as a carrier based tanker, electronic wvarfare
platfors and delivery vehicle for the Harpoon antiship
cruise wmissile. fany nev weapon 2and sensor systeams have
bsen added to the aircraft since initial production. These
include laser guided munitions, H2at Seeking Antiradation
Missile (HARE), Porwvard Looking Infrared Sighting Systenm
(PLIR), and the Harpoomn Nissile. It is capable of carryving

both nuclear and conventional weapons. It is a subsonic
aircraft operated by the Nav aind the Marine Corps from both
land and aircraft carrie -ed squadrons. The attack
configuration of the aircre. 1annad by a two man crew,

pilot and bombadier/navigator ,. N). The aircraft wvas first
flown in 1959 and even though the productioa line for the
A-6 has been closed it is planned <to have an operational
lifespan well beyond the year 2000.

15




TR T I TN

The aircraft has onboard a single, CP3 computer with 32k
words of memory. The computer takes part in processing data
- that is involved in nearly every aspect of the operational
of that aircraf:. Navigation, w2apon system management,
weapon release solutions, radar inpaut processing, &and elec-
tronic warfare functions are all processed in somne manner by
the onboard flight computar. Data -is input £from several
areas of the aircraft, processed and continuously displayed
to the pilot and B/N. The computar is not necessary to fly
the aircraf+ but without it the A-5 becomss =2ssentially a
jet powered World War Two era bomber. All major changes in
veapon capabilty and uamission assignment have to be in some
manner incorparated 3into the hardwars and software carried
onboard. The Operational Flight Program (OFP) is the soft-
ware loaded into the random access memory of the onboard
aircraf+t computer that processes the various input and
display functions.

Grumpman Aerospace was responsible for the initial devel-
opment, coding, integration and testing of the OFP. After
acceptance of the aircraft for fleat operations, Grumman was
contracted to perform all software mainternarce >n the OFP.
This maintenance coansists of removing errors found in the
OFP and <+tha incorporation of enhaacements to the aircraft
system into the flight softiware. Any change in mission
definiticr for the aircraft must 21so be reflected in the
OFP. Grumman held the contract fc- maintenarce until 1978,
when Naval Weapons Center (NWC), China Lake, California was
tasked responsibility for all maintenance functions of the
OFP. Currently most actual redesign, coding acd testing of
updates to the OPP are performed by perscnnel assigned %o
NWC; some work is contracted out, primarily to Srumman.

Entire OFP updates 2re sent to operational squadrons

approximately once avery year and a half. Only safety of
bon flight or severe mission reducing softvare errors ara given
-
16

S ™
.
g
N
PR P I N
ol e

S A U TPLIR I v I I T T e L e e e e e S R T e
R RS R IR T A SN e SRR P ARG




AR

.I‘.JJH}}

. '.. _'n."l‘_\ _\ A

immediate atterntion between schedulad JFPP updates. There is
a method provided for squadrons to5 submit desired changes
and report OFP operating problems to NWC. A formal review
of desired changes +to the OFP 1is conducted by the \VNavy
yearly with squadron and software maintenance personnel in
attendance.

There are many more enhancements desired by the opera-
tional squadrons than are able to be funded for incorpora-
tion into future OFP upda tes. Some enhancements are anot
able to be adopted due to <the nature of the computer systen
itself. The system is hardware limited. The OFP itself
fills all available memory of the anboard computer. Ma jor
changes are possible only by degraling another mission area
or by increasing computer performance.

C. HAVY SOFTWARE ACTIVITIES

Outlined above is the history of one Navy tactical
aircraft and its flight software systen. All other Navy
aircraft have a similar history concerning OFP development
and current maintenance. There are three primary Navy
Flight software activities. Naval Air Development Center
(NADC), Warminister, Pennsylvania, is responsible for P®-3C,
S-34, and LANPS Antisubmarine mission aircraft software.
Pacific Missle Test Center (PMTC), Point Mugu, California
perforas maintenance on the F-14A Pighter, EA-6B Electronic
Warfare platform, and various missl2 system software. Naval
Weapons Center (NWC), China Lake, California, in addition to
the A-6E, has responsibility for the FA-18 Fighter/Attack,
A~4M, AV-8B, A-7E, and UH1-J attack aircraft OPP mainte-
nance. In all cases primary OFP development was dore by the
prime system contractor and maintenance of the software vas
picked up a¢t a later date Dby one of the software activities
listed above.

17

.

----------

Ao 8 Mo s &

PN e AT




LR A DA AN A0 B e s inene 4
. IR E S R B

Ea § A
L IR

N IR

Do AVIATION SOFTWARE MAINT ENANCE PROBLENS

)

In tke following sections thz unique problems which
render flight software in real tine, embedded systems so
difficult and costly to maintain ars outlined and dicussed.

L2 e o
‘ .

RN
PR AP AP AP 2 2

Nearly all areas covered are unique to flight software and :
are in addition to the normal difficulties encountered in
standard application program maintenance.

L g
«
‘l

1. PRlatfors

In every case the Operational Flight Programs arse
run on computer systems carried onboard high performance
tactical aircraft. Space for hariware and support systems
is limited. Primary importance is placed on aircraft weapon
load and endurance «capabilities. The fact that most Navy
tactical aircraft are operatad from aircraft carriers
further defines and shapes the physical design of the
aircraft. Operating an aircraft at sea subjects +the
airframe and internal comporents to severe stress during

catapult launches and arrested landings. Initial design of
the flight hardware system is often constrained within phys-
ical space, 3slectrical power, and air conditioning support
limitations before the hardware is selected. Once the hard-
ware has been selected, the software is designed within
hardvare and mission requirements of the aircraft.

2. Adrcraft Lifespan

When the A-6 was originally designed in the 1late
1950's the aircraft was never envisioned to have a lifespan
until the end of the century. The lifespan of the aircraf:
vill approach forty-five years. That 1is equivalent ¢to a
®orld War Two aircraft being flown today in a €front line
squadron. The flight software and the ability to change it
to reflect new aircraft capabilities and mission

18

e o P A AT L T e et TN T T T e Lt o et s R et - e v e - .
aletel A e e e e N A o N e e T T T e NN L N e s e e e !



requirements allows the aircraft to remain viable for such a
praviously unheard of length of tima, Aircraft arae very
expensive and as higher performanc:2 demands are placed on
the newly designed airframe and tactical systems the expense

vill grow. The high development and purchase cost forces

the Defense Department into a positionrn in whica the aircraf+ =
are utilized as 1long as feasible. This posture on the
utilization of these aircraft well beyond their «criginal Q;
designed lifespan has several affscts on the flight soft- g
ware. Mission requirements and wzapon systems which were :

never conteaplated in the original aircraft anmd £light
computer design are being incorporated into the aircraft
system years later. The hardware waich very well might have
been state of the art during <the design of the system can
quickly become the 1limiting factor as major charges to the
OFP are requested and implemented. Changes to the hardware
is not an easy task and is more axpensive than the high
sof t ware maintenance costs. In tha years since its initial
design and introduction to the fl22t the A-6 has undergone
one major computer hardware update, while the software is
undergoing constant review and change.

3. Independent Activities

Bigh performance aircraft have a 1large number of
very independent devices which must operate in order for the
aircraft to perform its mission proparly. These devices
include sensors measuring various €£flight parameters such as
altitude, air speed and angle of attack. Radar, infrared
sighting, electronic warfare and weapon guidance systeums,
are among the many devices that flight computer systems mus*
also react to. Input from the aircrew must be incorporated
into the flight system processing as well. Interfacing
these devices and inputs is a complicated task. This inter-
face impacts jreatly on the software engineer attempting to

D '..-'s‘ v, . o - , ’ " - et T P L T I ST R ~ \_ R N . “
£ AN N "“{‘- “-—\ = \ P Y AN J:‘J " ‘_.AJ-.. 1J;j.1’.q".; ' ";f; (&) ".‘.x-.\ .n_‘\_.:".(a\f\ A"




............

%{ modify a flight software systen. Not only must he under-
% stand the program itself, but he 2lso must understand the
‘; ) interfaces and the affect a modification will have on these
&: interfaces. This problem is prevalent enough that managers
;S of both Navy sof+ware activities that were visited expressad
2 a need for system engineers rathar than strict computer
o sof tware engineers. It vas felt that the aircraft systems
e are complicated enough that it is 2asier to train a systems
‘% engineer to program rather than train the programmer to be
- an aircraft system engineer.
\
5; 4. Concurrent Activities
Sa Not only are there large numsbers of activities oper-
4 ating independently, but these activities are also concur-
R rent in their operation. All of th2 interfaces with sensors
:; and data irput are constantly updated so the program can
Sﬁ perform as rejuired. Timing considsrations in the update of
. “ these activities in critical., Input from the £flight crew
N vhich is bursty in nature must bas processed s> that it is
.;S handled in a timely manner and does not degrade the
ﬂg remaining processing. isplay of required information for
the flight crev must be constantly updated. The display
}f must be accurate and in real time.
o 5. Real Tiae
;f High performance tactical 2ircraft operate in very
o hostile conditions. Complicating the software prcblem is
3-‘ the high speed +that the aircraft flys while in the hos:ile
i environment in order to enhance its survivability. This
Ij sandates that the processing of data in the flight computer
Sﬁ ‘ system must be done in a real time manner. The definition
:g of real time for flight systems does not equate to the defi-
Qﬁ . nition for a banking database systea. Single CPU cycles can
- become paramount. An aircraft traveling at 450 knots at two
3% 20
-
S
.E" BN TN L o L N e e o T N N N e A L N N AT A AT IR SRS COTOLOLY, RGN N e e e e e
- . & N ALY IR WY PO P AL ‘.‘-\_'.'\“\'

ORI M) Alen S & A TA AN M 24 DA At A B AL AA DL GLIL AL AL AL A L ik S A Sl Al Shi sk A Sl Jr o St She 2U8 onll Sad Seliraset s Jan gt s g g R e B8 ol angrader ou~ bl
. e N LN . . . st RO o




AACK LIS £ ALAK A OISR NN A A AR P A AR Aol St At i A== o sarmiin- Ao g A<l SaPafirfiorte Sp AR dage e o
X y ) A B .

PR 7 ATy

e

-
o N e ™
- .

hundred feet in altitude requires that updates from the
onboard computer be timely indeed. A delay of milliseconds
can cause the delivered weapon to aiss the target enticely
or loss of the aircraft itself. Bvery change incorporated
must consider every possible affect on the +iming
constraints of the progran.

6. PReliability and Becoverability

The degradation of one aspect of the flight software
system must not allow the loss of the aircraft. The 2xpense
of the aircraft, aircrew and weapons requires high reli-
ability in the flight software systzm. The syst2m mus* also i
be able to recover from loss of input data resultirng from
battle damage and continue to operat2 in a dsgraded mogde.
The software aust be protected against hardware failures as
well., Failure of the entire system must only occur when the
aircraft is damaged to the point of crew abandonment.
Purther the system cannot tolerate a requiremen* to restart
the program due to a systsm fault interzupt or program crash
caused by a s>ftware error.

7. Program Complexity

Due t> +the timing constraints placed on the OFPs,
most are coded in either assembly language or a very low
level programming language such as TMS-2 (P-3C) or Metaplan
{(P-14). The ability to perform various software engineering
programming techniques commonly used in higher 1level
languages is lost. The original 3esign of the program is
often not modular. The lack of moiularity coupled with the
ad hoc fashion in which changes have been made through the
years has left the OFP code extremely complex. A great deal
of effert is required to merely comprshend *he OFP before
changes are even designed much less implemented. The iapact
of a change to a particular piece of OFP code may have an

21




LS

RO

]
AR

»

49PN
1@ A

Xy

e
SYah s

-

“

»

Rl

.

T v

o 4

impact on an entirely different unrelated section c¢f code.

A case cited during one of *he laboratory visits concerrned a
minor change to 2 section of code which dealt with naviga-
tion of the aircraft resulting in the inability to release
any weapons. The results of changas to the cocde is poorly
understood until the code is actually changed and testing of
the revised OFP is begun. As has been well documented in
the literatur2 this a very expensive time to discover rede-
sign errors.

The design of newer systems such as the PA-18
Pighter/Attack aircraft will show improvements in the ease
of conducting software maintenance on the <flight software.
The A-6E has five identifiable 1a3odules which have been
implemented during the last five ysars of maintenance by
NWC, ¢the PA-18 OFP which was written by Hughes Corporation
of Long Beach, California shows a marked improvement in
modularity with over one handred idantifiable modules. The
situation seems to have improved much over the twenty years
between the design of the A-6 and the FA-18. The PA-18 OFP
is, however, coded in assembly langauge due to real time
requirements of the flight software systenm.

8. Documentation

All Navy software activities tasked with OFP mainte-
nance had one common complaint. That complaint centers
around the 1lack of useful documentation received from the
original designer of the flight software. While the entire
subject of documentation is subject <+o debate as to its
proper form, what is commonly turn2d over *o the Navy from
the development contractor is severaly lacking. Even in the
nevest systeas (PA-18 and AV-3B) the dscumentation
received from the contractor has not been as extensive as
the Bmaintenance acitivity desirss. Usually a progranm
listing is tha primary documentation received. Maintenance

22




o e
LN A N N

‘.l
L
P

N

SN AR PPl E NN SRS

activities find themselves not having accurate perfcrmance
requirement documents on the aircraft itself or specifica-
tion requirements for the OFPP. Documantation carried *oday
has largely been generated by the maintenance activity.

A problem related to documeatation was identified by
Neetz, (Ref. 12], of PMTC concerning the difficulty of the
maintenance programmer 3in understanding the desired change
to an OFP submitted by <fleet personnsel. The information
contained in aost deficiency reports was often found to be
limited and this sloved the problem identification process.
He also found that the managers felt that feedback from the
fleet was adequate whiles the technizal engineers felt i+t was
not adequate.

9. Iraining

As stated earlier each software activi*y facas high
personnel turanover. Many studi2s have shown that the
required numbers of computer capable system =2ngineers are
not being praduced. Competition with industry is keen.
After a systea engineer is trainad adequately he may be
offered a position with the contractor of the system he is
trained on at a hefty salary incra2ass. Training of a new
systeam anginesr is an extremely slow and difficult process.
Adding to the ©problem is that oftan while this training
period is ongoing this engineer may not be directly involved
in any productive work. Since the numbers of gualified
personnel is not expected to grow quickly and there is no
training institute for training engineers or specific
aircraft systeas, all <raining must cont¢inue to be done
internally.

10. Bardware Limitatiops

As stated earlier, the hardware design of the flight
computer systems was often considerzd state of the ar+ when

23

.........................




Pl
....................

first installed in the aircraft. As the aircraft ages and
more capabilities are added *o the aircraft, *he hardwarsz
can quickly become the limiting factor in implementing
enhancements to the OFP. The A-6 was designd with 16K of
available RANM. Reserve m2mory was quickly allocated to new
functions implemented in the OPP within the first few y=sars
of fleet operations. A major upgrade to 32K was acconm-
plished in 1968, this quickly met with the sam2 fate as the
original 16K implementation. The JPP of many Navy aircraf¢
have =zero percent memory and throughput reserve. This
factor leads to further complication of the OFP code when
changes are made. Additions of particularly large changes
to OFP ccde may requirze that certain functions of the OFP be
either degraded or dropped altogethar. Simply adding larger
amounts of reserve memory has not b2en the answer due to tha
difficulties in making hardware changes to the aircraft
itself. Also there are many more enhancements awaiting
implementa*ion that would quickly be incorporated if memory
vere made available.

11. Ajrcraft Populations

One problem facing the software mainterance activi-
ties as a whole is the limited naumber of aircraft of a
particular type being €l:cwn. At any given time there are
approximately 200 A-6 aircraft assigned to operational
squadrons. The number of computars and flight programs
represented by +that number is not large enough to warrant
large expenditures for major software redesigns and large
support environments which would lower maintenance costs.
dircraf+- are axpected to be fully supported after production
lines have closed and the number of aircraft and funding
support is droppiag. The A-7 production line has closed bat
the largest change to its OFP was r2cantly condacted by NWC
when <+he HARM system was incorporated into the aircraft
inventory.

24

............ ~ T W e U AN S

MR et I N U R A R S . . . - JAEIURN ™ . .‘-4‘._'.< “
SR VLN ! . _._L_.hz.._mmi..;\_‘;._s._.A e e e e I e e e e S N L e



12. Human Pactors

Anothar obstacle facing th: maintenancs programnmer
dealing with aviation programs is the human factors associ-
jﬁ ated with input and display of data for the flight crew.
‘ Human factors is defined as the functional <+ask area which
is concerned with the aspects of human performance tha+ :
affect or are affected by the software [Ref. 13}]. The area E

to which this definition refers <£alls primarily under the .

Ty

Qg input and display of data to the flightcrew. Changes to the
: program which affact display are 2specially critical. The
display must be presented in such a manner *ha*t it does not
require undue effort for the flight crew <*o comprehend it.
.ﬁ Little 4is understsod in this field of computer science.
- Research is currently b2ing conducted at PMTC dealing

N
-
1
1
i
i
K
K
‘i

g specifically with human factors as they relate to flight*

d programs. Programmers implementing changes to an OFP must
§7 constantly keep in mind the affect of their change on any
- display data; Guidelines for tha2 affect on the flight
‘. . computer operators is not based on scientific fact rather it

is based on operator feedback.

j; 13. Military Stapdards

- Currently all software maintenance activities
- oparate under several Military Standards (Mil-Std) which
guide the development and maintenance of the programs they

s cover. Primary in importance to th2 £light software systems
T is Military Standard 1679A (February 1983) which «covers
N Weapon System Software Development. Unfortunately this
standard while good in its intent does not address the real
world situations of OPP development and maintsnance.
T Several of the active OFPs were written ten to fifteen years
o prior to Mil-std 1679 first being issued (1978). Concepts
covered by Mil-Std 1679 were not applicable wher these oléder

L
adMe o la s Aa 4 AME

MDD
[ A

3

25

4

-
o,
‘.
i
-~
-

s

LPC SN, VO S BRI Y WU

"

LRI SR S S Y S R T
. . OIS
S L

r
%
L)
A
.
N
J
.
1 .
.
i ]
A




.................................

AL I I A S SRl ACite dvia i A A 300D e At § T eI 4 A i S N i I -l T 04
-...;" ) :

e Y

..

-...-'

P.
.

ko g
&ﬁi OFPs were designed. Mil-Std 16792 requires the use of 2
}i? high level programming language in all weapon systems. As

has been mentioned earliesr, it 1is not possible tc code
current OFPs in a high 1level language due tc +*iming
constraints., NWC personnel have expressed some concern over
the requirements outlined in Mil-Sti 1679 and the difficul-
tias in following it on an OFP as complex as the A-6's has
become. PMTC personnel have no r2al complaints about it.
But it should be remembered that they are working on some-
wvhat newer systems to which it can be more readily applied.
A review of Mil-Std 1679 is containzd in [Ref. 14].

14. Deadlines

The software activities maintaining flight software
on operational aircraft often find themselvas facing severe
deadline requirements. Safety of £light or primary mission
degrading problems with the OFP ares processed on an inmme-
diate basis requiring the possibility that all other OFP
maintenance tasks be dropped. If the razdesign of the OFP is
not properly done and the error is not discovered until late
in testing phases, nearly the =ntire process must be
repeatad and delays in OFP wupdates may be experienced. Izn
order to meet strict deadlines =zertain update features
cannot be accomplished. This constant time deadline influ-
neces the performance of the maintanance effort throughout
its cycle.

15. QOFP Testing

o

j&i Before a revised OFP can be considered safe <*o
?ﬁ; flight test extensive ground testing is completed. This
E\;é tasting requires massive support facilities in the form of
?ﬁ- flight simulators. The target aircraft computer is loaded
E;: with the revised OFP. The support facilities suurcund and
;;S interface with the target system suppling input data to
on

0
~Je
LRty
ﬁ, 26
>,
» :"'
Lo "
, ‘\'.'
N
r @2
b
.r e
\,’h
S e e et e e e N
""" A ¢ A - . - s '. - ‘-.- - --. - -. e o . . - -
= bt e e - e {MW 3 v i VEPLPS AL E N EVRRANI y m‘.’&‘:*: 4\‘..!"7:.%4 _..‘:A\'.A\;..J\:p -“ \_-. s




. AN
» TR Sl o o
e h PR R

. . . & a4 o R
e e et
PR

a . a

exercise the OFP. The support facility wmeasures <he

performance of <the OFP under the simulated fligh:t condi-
tions. Because of the complexity of the OFP code, poor
documentation, and high reliability required, testing is the
most expensive of the operations parformed on the OFP during
a maintenance change. Little is known on the exact method
to test the code to yield meaningful test r=zsults. The
nature of the OFP code itself and the mission it must
perform renders the testing of th2 code even more difficul+
than normal.

16. Scope of Maintenance Chang2

({V]

Industrial application programs normally face a five
percent per year code growth due to software maintenance.
The maintenance of OFPs produces s>mathing on the order of
twenty five percent code change per OFP update. The shear
amount of code required to make the changes during ar update
cycle contributes to the difficul+ty of the maintenance.
After the completion of tvo to thre2 OFP updates the code
may be significantly changed from the orginal progranm. If
not well documented, <the high voluae of maintenance changes
will render the program almost uafathomable. A problenm
faced by the maintenance personnel is that the code has
already gone through several updates prior to being turned
over to the Navy.

27




_"J'_‘- AD ._?'__?\F_‘- :v‘_,:?'__-“ IR N g RS

III. MAINTENANCE IN NAVA

A. INTRODUCTIOXN

The guestion of why software is the impor+ant product in
aviation flight computer systems is addressed first. A
general description of the softwars 1lifecycle and the main-

tenance lifecycle as related to aviation sys*ems is given.
Proposed solutions to the flight software mairtenance
problem are given. The following 12fini+ions are outlined:
software tool, software maintenanc2, 1lifecycle model, and
maintenance lifecycle model.

B. WHY SOFTWARE?

When first designed and built, real tize embedded
computer systems had their functional capabilities primarily
embodied in the electronics with software playing a minor
rols controliing ancillary functions. Demand on the
performance of these systams requirad that they be designed
with a greater degree of inter-system communication between
devices. This has caused the software of these systems to
shift from a mind>r role to one where the systam functiomnal
definition is in the software and the 2lectronics are only a
means of providing for execution.

Boehm {Ref. 9], defines software as the entire set of
programs, procedures and related documentation associated
with a system. The Software Technology for Reliable Systems
(STARS) Program Strategy ﬁandbook lis%ts ir addition: defini-
tions, designs, testing materials and maintenance instruc-
tions [Ref. 13]. Software is what controls the computer and
allows it to accomplish so much. The hardware in the actual
computer systems of <the tactical aircraft undergoes few

28




changes throughout the lifespan of the aircraft. Yzt <n°

flight software system is expected to be constantly upgraied
as additions and erhancemants to tha aircraft system ace
implemented. These changes are primarily r=2flscted in
softvare.

The U.S. Air Porce experienced a situation tha+t illus-
trates the case for software in embadded computer sys+tems.
F-111 tactical aircraft were operated in two bhasic models.
In one, avionic systems were implamented in araloqg devices
while in the other the same systams were implement2d in
digital devices. The Air Porce was tasked to keep the capa-
bilities of both models equal. Several <changes to the
systems were tracked and it was det2rmined that changing the
hardware implementations was roughly fifty times as costly
as the software changes [Ref. 13]. The cost and time to
design a software cbhange is roughly equal in cost and time
to design a hardvare change. Harivare howevar, requires
management of individual changes and physical copies of the
new hardware be maintained. Software is much sasier to copy
on multiple tapes and guickly 1load into <the individual
computers. The difficulties in implementing <changes with
hardware are evident when compared to implementing the same
changes in software. '

PMTC personnel point out the case of the P-14 as another
example of why isprovements to the aircraft computer system
are best carried out in software. F-14 OFP changes are
promulgated approximately savery two years at a total cost of
roughly two million dollars for each change development and
implementation. There are approximataly 400 F-14 asircraft.
Inmplementing the changed OFP in each aircraft consists of
merely loading the new OFP tape into <the aircraft computer
system memory. The cost of a new OFP is approximately 5,000
dollars per aircraft. Anyone exparienced in making equip-
ment alterations to military aircraft knows 5,000 dollars

29




T

"r{r ‘j _— (..rl .
F PPN
PN (AR
-~

Ay

r s ¥ F
‘¥ “w v
b2

-
e

e
ey 4

l‘ »
-5

L)
»
& .:
- -

AN,
rhSA

I
ERCREARNE | Y

will buy very little. When considered against the cost of
an individual P-14 (@ 330 million) implementing <£ligh+
computer system changes through software is very cheap. 1<
all of the corrections and enhancements to the system had
been made in hardware the <costs would have been in the
billions of dsllars.

C. SOFTWARE BHAINTENANCE

Fjeldstad and Hamlen define software maintenance *o be
incorporaticn of changes to existing programs, using oOr
modifying an 2xisting approach or design then unders+tanding
and modifying or expanding existing program logic [Ref. 3].
Lientz and Swanson describe the primary types of maintenance
(Ref. 2].

1. Corrective Maintenance: correction of orrors intro-
duced in the software through iamproper logic or coding

errors.

2. Adgptive Maintenance: satisfaction of changes 1in
precessing environment. Input and, outgut,requlrements
often change. This case was 2xperienced wit +he A-6E

system _when the aircraft's aavigational suite was
upgraded.

2. Perfective Maintenange: enhagcement of th2 system for

1ncreased performance and maintainabilicty,, This includes
improvements  to documentation 2and recoding to improve
program eff1c1enc¥. Again using the A-6E as an gxamgle,
the aircraft was tasked to perform low level bombing from
two hundred feet vice five hundr=d feet. This change was
1¥duced to inirea$e weapcen accuracy while alsy increasing
ailrcraft survivability against hedvily defended targets.
This, improvement n the aircraft  mission definition
required extensive OPP software modification.

Lientz and Swvanson 3in {Ref. 2] offer the following
statistics on the allocation of maintenance time. Twenty
percent of the maintemance effort involved corrective main-
tenance. Adaptive maintenance accounted for twenty five
percent. Perfective maintenance accounted for the rest of
the time at fifty five percent. Enhancements accounted for
the largest share of <+he perfective maintenance at <forty

nine percent >f the total maintenance e¢ffort. These €igures

30

N




.",“-*-.-\ LA AR A RS i MRS AN S S e " R

were taken from a survey conducted of large data processirg
organizations.

Results of an informal survey of NWC maintenance time
yislded slightly different figures. Corrective maintenancs
of errors which are present from the last OJPP update or
earlier, only comprise five percent of the main¢2nancs tine.
Adaptive maintenance is roughly the same as the Lientz find-
ings at twenty percent. The largast share of the mainte-
nance time in OPPs resides in perfective maintenance. This
involves mainly optimizing <the code and incorpcration of
enhancenents to the ajrcraft system as a whole.

Van Horn defines another form >f software maintenance,
that of restructuring, [Ref. 5]. Restructuring involves
change “o the internal structure of the program while rot
changing the overall external behavior. This is interest-
ingly a consileration for improvemesnt *o many of the older
OFPs and was implemented by the Naval Research Laboratory
(Ref. 1] for the A-7 OFP.

D. SOFTWARE LIFPECYCLE

Pigure 3.1 presents the staniard waterfall software
lifecycle as seen in Boehm [Ref. 9]. This model represents
the development of a standard 1larg2 scale application soft-
ware system. It is based on *wo assumptions:

1. Each ghase of the lifecgcle is_c¢ulminated by a verifi-
cation phase that attempt to 2liminate _errdrs in the
output of that phase. This is axpected t5 be accom-
plished prior to moving to the n2xt phase. ,

2 Iterations gf earlier phase products are performed in
thie next succeeding phase.

Each phase of the Boehm Lifacycle Model is briefly
.described below:
A. Feasibility: Defining obzective of the priyposed sof:-
e

vare product. Is it feasib to be accomplished? And
will it be superior to the systam that it iIs proposed %o

. » DR R R
DA I M A

. [ .

2 C e D N A
o a P

replace?
-‘.-
Y
R
UCN
u:\n: 31
l\‘l
-
-
s
Wt e e T A T T PPN . B} . .o o
g.‘_'._ AN AT A NN . Nt LT R e e O T T S R Y e .-
PGS SRR ES PR GRS GRSt k-.J;A.-L'.LfoLLL'-\: PRT L dLA‘&L'.l"L‘.A"L_'.L!-A“J:_i“c;‘\.- s x‘...'_..‘:’-‘:'n'\.'.')-’_:“ A P




AR ARG Rt d A A O A M4V DA e 2 S ~ T Ao -
Is System [*~Vvalfgation
Fessible
Software [*—valldation
Plans |
Product | erfftcatfon
Desfgn |
| Oetatled eriflcation
Design
Code I""“'Unft Test 1
f
Integrate
Product Vertficat!on——> . '
Impiement
System Test———*
Oqfraga
RevaHaate“"""'Ma ntain ["Phaseout

4

Pigurs 3.1 Boehs Software Lifecycle Hodel.

. % '

~
hRY
\
“

&
.

5y

Y
.

32

i, P
r

i
L

Al ¢

-

-
.2

-

........

.......................
ERC A ) L e e ... . .
T A A L ML SN



L st AR SIS A A% £a ol

B. Requirements: A validated specification of reguired
functions, interfaces and_ performance aspects of cthe
proposed system is generated.

Design: The high level hardware-software architec+tuyral
sign, control Structure and 1m2ajor data strucrures for
e System are outlined.

oM.

Detailed Degign: Complete varified specification of
e high lavel design 1is produced. Pracise algorlthms,
ta structures, intarfaces ani control structures are
signed. Several refinement steps are involved as
tall of system is realized.

Code: The software portion of the  system is imple-
nEedbln_executable code. Testing of individual compo-
nts begins.

Bm o oo
DO

ODe

n

F._ Integration: _The soitware product is made functiomnal
and is run. Individual compon2nts are integrated into
subassemblies and finally int> the fina software
groduct. ..Initial werrors are rcemoved from software as
hey are identified. Program tasting continuszs.
G. mpleaentation; The software-hardware system_ is
brouggtp%nto Engtgai ogeration. Testgﬁg %s comgletgd 0
determine if the overall product meets design objectives.
H, Maintenance: Error corrections are made to> the opera-
tional_  progranm. Perfective and adaptive changes are
accomplished as needed.
Ie. Phasegut: A replacement system is designed and
i mplemented.

The system is sequential in nature and the start of any
phase assumes the completion of th2 proceeding phase. The
varification and validation part of szach phase is defined as
follows:

Verification is the process by which the truth of corre-
spondence between the software 1itself and its specifica-
tion is assertained.

Yalidatic¢n estab}ishes ths gitness 9f tge softvare system
in carrying out 1ts intended operational mission.

Boehm further states that th2 1lifecycle as proposed
allows for a high degree of control in the configuration
management of the product. The maniger is able at any given
el time in the development/maintenanc2 process to define the

specific state of the project in coacrete terms.

b?ﬂ Once a design strategy following the lifecycle model is
};?' implemented the project baselin: can be established.
2 A

33




!

{

X According to Boehm the three major advantages gained from ‘

R this baseline are: .

,} 1. No changes are made to the system without agreemernt of !

- all interested parties. 1

2. Higher threshold for changyes will s*abilize the ]

product. j

3. The overall manager controls the configuration manage- :

B ment process. ;

'? The lifecycla model as presented by Boehm is a well }

o known and accepted model. The question remaias just how ]

- vell does the model comply with r=2al life systenms. When j
:Q comparing this model to the devzlopment and mainternancs

_5: lifecycle of 2 typical aviation software system it seems not ]

1% L

3 to compare well at all. The currsnt methecd of operation in ]

OFP maintenance has the maintenancs activity stepping into

L) .
amas.

;g the lifecycle model at the next to +the last phase. The j

s software activities have in the past had 1little input into

- the software development process conducted by the prinme

{ ' system contractor. There is littlz or no communication in

- the form of d>cumentation when the software activity assumes

§ responsibility for maintenance. The logic and design meth-

{:' odologiss used by the original designers are lost +to the ;
maintenance personnel. The continuum of the lifecycle model q

;; as proposed by Boehm is lost when the Navy begins mainte-

;2 nance of the OFP. 4

fg Boehm also gives little mention of the maintanance phase ]

@ itself in his discussion of the lifecycle modsl. Several

fﬁ studies have found that the maintenance phase of the life- ]

ff cycle the most expensive. Estimates range from fifty to )

f% eighty percent of overall system costs are involved in sof%- }

i vare maintenance of a large application software systen

;: (Ref. 2]. A U.S. Air Force study 2stimated that sofiware ]

fa costs during developemnt averagel $75 per instructionm. 4

EA During *he maintenance of an operational system the sofiware )

b

A 1

i '

N 34 ]

N

d .

|

N Yoot e e L T e L S o Co e B R T e e e e




costs increased to $u000 per ins<ruction ([Ref. 15]. This
trend is reflected in aviation flight software sys*tems as
the lifespans for the aircraf+« they secve are extendegd.

E. HAINTENANCE LIFPECYCLE

The maintenance phase can be thought of as a lifecycle
within the ovarall lifecycle. Incorporating enhancements %o
a system cr repairing errors not found during initial
testing phases will involve a redssign effort similar in
many resgpects to the initial design of a system. Parikh and
Zvegivtov (Ref. 10], review a maintenance process in *he
opening comments to a chapter 3in thair book on Software
Maintenance. FPigure 3.2 illustrates this process. This
representation is based on changes baing made to a fully
operational systes. Their simplified maintenance lifecycle
is defined as follows:

1. Understand the BRequest: A, The user of the systen
reguests a change to an oge;atlonal system be made by the
maintenance  ac 1v1t¥. his raquest is written in a
langauge familar to the user. _Th@ maintenance programmer
nust understand the request and the current program prior

to design of the change.

2. Transform Request: Using a _description of the existing
and requested sgstems, the differences between the twd
are sought. The grocess of ds2signing for the change
involves reducing he differerncszs "between the existing
and the new system. The existing system is revised to
natch the new systen.

3 Specigy Change: A Cyt Lipne and Patch are specified.
e Cut Line is the section of code to be modified. The
tch is defined as the new cods to be implemented which
flects the new system within the Cut Line. _The selec-
on of tha Cut Line 3s difficult because it is selected
to ainimize interaction between the 9115t;ng system and
the Patch. Lovering this intaraction wil reduce the
chances of dgf:ge to other sections of the p:ogram ng‘

h
a

necessarily ¢ ed to the Cut_ Line. Modularity of the
Togras 1is a kez aid in selastion of the Cu Line.
gtoqran .complexity is another issue which affects the
Lgteractlon 6f thée Patch once inserted within the Cut
ne.

4, Develog the Patch: The Patch is actually develcoped in

a programming langauge using_standard development techni-

gques. _ . The ultimate goal 2f the Patch is the

accomplishaent of <+he reguested change to the egist;ng

giogram. The Patch should be dasigned such that it wil
t within the Cu+% Line.

35

e e A T A et et e e e .
L T T SR T A AP S IO I Y I N T
S SRR AR P AL VG G R

Fl




M LTe TS - —
e T T O T T T T T R N B P P P ywr—y R A B o o o o
- -, - . R . . . . - e e ® ava Bl ‘_':u.";‘v_",‘.'rr?"f."‘v.'?‘r;
. - - - - - - . -

User Understand
Request Request

Transform
Request

Specify
hange

Develop
Change

Regression
esting

'

Update User
ang
Release

‘.
LY

K

4~

g: Pigure 3.2 Parikh and Zvegivtov Haintenance Lifecycle.

"

% 16 f
I.: pl

i 4

5"y

IR P U,
G N N P T A AT e S PRI
VRO T A W R R T A S A SR
FUIGPLIN e e e o

LY
]
)
=
l.l
.
.-
v
S
\
1
s
I'._
Ilo
s,
k]
Pd
.
[




-

LR PR
.l"QL. “‘.‘.V o

11.1{ Fo
Pd

-‘l‘. .
Tttt

— v -
S

27

-

y
X
e

A N T TN
. ... ,- ’-"‘

B 2y

. . .t L S I v -
WA PONIRLUPR IR RPN N ISP S IS A A PP P gL P ¥ "y -'L'A\i‘:\;‘“ 34

5. Test: The charge is installed and tested within the
development environment. The CZut Line is tested fo:
agproprlate switchirg between th: 2xisting furctions anil
the new colde. The impact of the new code %o code ocutside
of the Cut Line is_ identified. Regression <testing is
performed where needed.

. ,Release; 0Once tests are performed the updated syst=anm
gs installed and released: P P ¥

The model for the maintenance =>ycle presentad by Parikh
and Zvegivtov can be seen as a ra2finement of the overall
lifecycle presented by Boehn. Its major concern is in the
understanding of the request, relating that knowledge to th2
existing system and designing the change such tha+t i* will
not deqrade the updated systen. Interaction is addressad
more specifically. It is perhaps optimistic in assuming
that the Patch can always be installed within the Cut Line.
Also the selection of the Cut Line while difficult in a well
designed program would seem nearly impossible in a complex
software systen. The rather difficult and extremely large
area of testing is given a quick raeview in this model. The
cycle assumes several characteristics of the existing
program, such as proper design, adejuate 3documentation and a
well developed maintenanc2 environment. This may render
this model somewhat simplified for the embedded computer
systean. A model for +he aviation software lifecycle is
presented next.

F. AVIATION SOFTWARE MAINTENANCE LIFECYCLE

The aviation development/maintenance lifecycle as
presented in Pigure 3.3 was %taken from a slide presented by
NWC personnel. Purther discussion was held with maintenance
personnel to determine how close th2 r2al maintenance effor:
parallels <+his definition. The model presented <roughly
follows the Boehm model. The aviation model is presented in
greater detail. Each phase is well documented by required
submissions of reports and specifications. Reviews, audits

37

.............................................
............

RN i it e - A SUel At e s S S~a s o Man ohn a4 ara g o e g RS

...........
................
.........



''''''''' BN A A S S BFUR AR R D20 A0 I v 40 ke Ave e % G A0 it ek ey anit nt o |

PN
- Q.

NI N B 2 T
.r. Wt

* A

Operating System
| Needs eeds
PPS,.1DS,
CPTPL l
Software (:égstef::}d Haraware
Needs pec Needs
PDS,DBOD
. CPTS
Inftial Devl'mnt Hardware
Desfgn Specs Design

PDS
(&%) |
0

etalled
Design

)|

Code,
Debug,
Tes

Funct'al
sSpecs
gulld

Hardware

Integrate

valigate

Tech Eval

MMR
—1

SRS,SDP,
CMP , QAP

SWRR _,

POR _

COR_)

MCR_,

FVRR|

FCA_]
PCA_ﬂ,

DRC )

OpEva?

Test ‘
Report

e o

P

Figure 3.3

38

OFP Development/NMaintenance Lifecycle.




............ DA AN A N R i i St u o A

Ll s ol

and walkthroughs are scheduled at several points of <he
model. Table I defines the abbreviations used to represent

. the documentation and reviews shown in the model.

TABLE I
Aviation Lifecycle Terms

Lifecycle Documentation

Mission Blement Nsed Statement

System Requirements Specification
Program Performance Specification
Intérface Design Document L. .
Preliminary Pro ram.DeSL%n Specification
Program Design Spacification (Final)
Data Base Design Document

Program Package .

Pproqgram Description Documen<t

Software Developm=nt Plan
Conf;guratlon Managemeat Plan

Quality Assurance Plan

Computer Program [=2st Plan . .
Computer Progdram last Specification
Computer Program Iest Procedures
Computer Prodgram Iest Report

NI adte ss 80 (N}

:S’U'U'ﬁ P ROCHWOOU N oMW
BRI C.ee SN2

G U s 40 00 00
[IN--TTN ol

(glglelglelelli L Iehio ke S Tia X7 3< 4

Reviews and Walkthroughs

Mission Requirement Review

System Requirements Review
Software Kequirements Review
Preliminary Design Review

Critical Désign Raview

Module Code Review . .
Pormal Validaticn Readiness Review
Desggg Review Comaittee )
Punctional Configuration Audit
Physical Configuration Audit

oo REOYnx

el R iel=1=F :10)¢ ]

B 3w () £0 20 20 50 09 50 £
(1) (1]

RTRIN--IINTRLE--TTR]]

The model as pressnted is well structured and well
defined. Unfor“unately the reality of what actually occurs
during development of maintenance codz2 may ro* be accurately

represented by this model. There are several reasons for
this. 1In many of the older flight systems the exact process
of software maintenance was not precise and was difficult *o
define. Some of the documentations specified and reviaws
presentad in the model are currently no* being conducted in

39

......... . S . - .
N DR T P o I T I I PP e PRI S N N . “ . .
Al S AT e ey g Ty T e T e L N T e T e T e N e L R T A --’~‘~""\"\]
al - I s P LI TR S I S SR T Yo I IV D I, V% PN P L AR T I S NI N ISR DR




N o SRt )
CA

-y

L ‘-
TR
»
o a0
e S0 Te e

A
."c‘
aa

hat Al 4
BN

Lt
AR
» N ot

. \-'- e

e A @
Tl

b v ot
"5 S
l..

(G N R

'
-

'y
®

.’_1@
“ b

- -. -~ ‘1‘ ..> "‘ - - - " -
La.‘ N R o R DA L AR RN AT

.(WJ..- rr‘r'("-’""v"," L R Y T w L v —w—~

every flight software systen. Thz model presented repre-
sents a standard that several of the OFP maintenance <eaus
are attemptingy +t5 achieve. What is actually occuring is
only partially represented by this model.

Nearly all flight systems undergo few hardware changes
throughout the lifecycle. The hariware branch 2f the model
only applies to new development of an entire flight system
or a major midlife modification. The year to year sof+tware
maintenance of the OFP has the software branch 2f “he model
taking on the most impact. New ajiditions +*o the hardware
and complete changes are usually done with hardvware already
in use in <cther systenms. This also significantly reducss
the amount of *ime spent in the hardware branch of the
lifecycle.

The integration phase of the aviation model represents
primarily the integration of the old and new OFP code. The
complexity of older system code makes this much more diffi-
cult than the integration of the =2ntire OFP with the systen
hardvare. Also code may be developed by paralliel develop-
ment activities. Ccntractors are >ften utilized to perform
the generation of portions of maintsnance code. Since these
parallel redesign effcrts are usually conducted on different
systems, conversion of the code Jeveloped outside may be
required in order for it to be intagrated and tested a*+ the
Navy software facility.

One high 1level manager invclved in the maintenance
effort on one of the older OFPs told of the reluctance of
the system engineers and programmers to adopt any standard
mod21 for the maintenance process. They are used to doing
it a certain way that is comfortable to each indiviual
progranmmer. A standard is difficult for them to accept.
The stages are well documented. The reviews and walk-
throughs require the programmer %> spend a gr2at desal of
time preparing for them. One programmer coaplained of

L3

..........

Pt i atut i ol e aril 4




............ )v‘. _.._ 'A‘.‘..'.~ .

" oy . o (SRS R . O
‘.l_-"_.l'!_-"..'!'_..-'_.FAIA M a e At et gty e el

Tttt et .
A.‘_“ A 4 mtaTalamaTa N Ly B

........

spending over twenty hours preparing for a revie+ or a small
secticn of OFP code which requirsd one hour of time to
recode.

Even though it may not be exactly standardized for each
maintenance team, the model present2d in Figura 3.3 pres=nts
a good general representaion of what each OFP undergoes at
one time or another during developm2nt and maintenance.

G. SOFTWARE TOOLS

1. Definitionm

Software tools are defined by the National Bureau of
Standards [Ref. 11], as computer programs that aid in the
spacification, construction, testing, analysis, management,
documentation and maintenance of other computer programs.
Shooman divides these many functions into four ©broad
catagories, {Ref. 16].

a. Program editing and storage

b. Program processors and preprocessors

C. Program configuration and control

d. Testirg and debugging process2s
The purpose of a Software Tool is to aid the programmer in
such a manner that productivity and the product guality are
increased. They are designed t5 be used many times on
several different projects within several different
environments.

In (Ref. 7] Wasserman gives the attributes of a
useful +cecl as the fcllowing:

1. Singularity of Putgose' Th2 tool should be dgsigned
Eg one "primary use, arrying out one well d2fined finc-
2. Base of Use:_ The tool should not burden the user. he
programmer shoul want to use the t0ool to 1increase his

productivity.

41

e Bty PR S At St Al el 40 A S i 4 T v v

R S T Y

SRS YEUP S

P
-
.4
-
4
i

[V TPRAILIL FOIIIRINT" DRIV I VIO,

L URING N W AR o 5 SN )

[

ha i T X,

.
.
[



3. Self Documepting: The tool should not have large hard
op{ documantation but instead most documentaticon should
n the form of an interactive help facility.

4., Consistency: Each tool should be consistert with the
others of the environment in which thex are contained.
The product of a tool used earlier in _the 1lifecycle of
the software should be able to be used by anothér tool
used in  a later phase. . To achieve this <ools should
interact through common interfaces. Tools within each
environment conform to _a set of standards s> that fami-
larlty with one tccl will help in learning another tool.

- aptablllty. A tool_should ba able to adapted to SQEe
ucer esires, The tool should have several modes ava:
able from a basic generlc mode up through the full design
capability of the fool.

6. Local Intelligence: The tool is 3ble to capture usefyl
data _from _the “environment in_ which it 1is mployed.
Normally this is stored to a data base where 1* may be
further grocessed for documentation and configuration
management purposes.

2. Software Tool Usage

There seems to exist a genaral agreement within the
literature that well designed software tools are highly
desirable. Precise tool definition and terminologies are
not well defined. In [Ref. 11], a taxonomy of software tool
definitions and terminologies are standardized in order to
allow comparision amcng dif ferent tiols. Software tools are
large computer programs, which like any other programs, face
the same development and @maintenancz probleams. They are
expensive to develop and may not always meet the original
specifications.

Other than expense there are several other reasons
that softwvare +tools have not found wider use. Nassi
(BRef. 17], lists several general catagories which have hind-
ered the use of software tools.

a. General Nature of Many Tools

Some tools are very ganeral in their intended
ase and are not at all suitable in some spacific systems
without a large modification effort. To develop a specific
tool for a specific application may not be worth <+he

42

...................................

Py




t development costs when compared t0 <he savings it will
9 generate. This is a common case for lack of tool use in the
JH - aviaticn software field. Some aircraft computer systenm
populations are low and do nrot warrant the expensive that
o deve lopment of a tool for that particular OFP would entail.

b. Learning Curve

Programmers accustomed ¢o working in a certain
environment may £find the pain of learning a pew tool no*
worth their effort. Even if the programmer can be shown to
benefit greatly from the use of a new tool, habit may make
the adoption of +that tool difficult. A tool which is
particularly hard to use or 1learn is doomed to failure.
Usability of the tool should be such that the programmer is
not encumbered by its use. It should compliment the envi-
ronment in which it is used , not fight it.

c. PFunctionality

If a tool is not suitable for a specfic job it
may create performance burdens on the system on which it is
being used. The overhead created by its use should not be
excessive. The tool should be reliable in that it may of*en
be operating directly on user source files and the
programmer must be able to trust in its use.

d. Integrationm

The integration within aa environment should
allow for the tool in use to communicate easily with other

v d e W A A A A R AL A A Sl S Al ol el St ek ang e

tools. The programmer will
back and forth betwveen stages
of effort.

then be able to move smoothly
as needed without a great deal

43

o
Al
_4
Q
“
j



AR AT B I S R Al S AT A & A AN S g vt g o

§£i e. Tool Usage by Software Activities
o~
'§i~ Coupled with the reasons cited by Nassi for the

B!. limited use of software tools, the fligh%t softvare mainte-
L nance activities face other probleas. Punding %o purchase
the tools 1is not available. The software activities

conducting maintenance on the OFPs 3o use a varirty of soft~-
ware tools. Most seem to be generated in house for specific
purposes within the enviroment of a particular OFP. They
are often not portable to another project. The use of more
powerful off-the-shelf +to0ls has also been hindered by
several factors. The state of most OFPs currently would
Q}: require extensive reconfiguration t> allow the use of these |
: tools. The worst problem is the lack of documentation.
Many tools developed by industry require a well designed,
well documented program to work with. An example is the TRW
developed software tool SBREM (Software Requirenents
Engineering Methodology). SREM raguires that documentation
in the form of an adequate set of program requirements be
available. Most OFPs do no+t have such documentation and
- thus cannot use SREM in the production of flight software
{B coda.

, The environment of tha maintenance effort for
the various OFPs differ from project to project. None of
'€j3 them seem to be able to suppert a set of tools which would
235 cooperate and communicate during the maintenance process.
- The work required +to set up the environment and program tc
work with an off-the-shelf tool has been found in many cases

ﬁ% to be excessive. Internal development of powerful tools is
- also time consuming and may not be feasible.

i;g The Av-8/A-U4 test facilty at NWC conducted a
i:i survey of all software tools in use in their faciliry. The
;EZ results are interesting and reflect the situation throughout
lﬁz most OFP paintenance and test facilities. Forty four




QRN S Site A it TR, ull Sl £ G IR Tl St I S 2 A AL SR o Ol A A A AN P fte e o S i _Babr e Say lupe |

................................ - R R i i i A A A e . At i

T

different tools were listed as in use. Ninty five percent
of the tools were developed internally by personnel assigned
to the test facility. Twenty nine percent have the ability
to communicate with one or more tools. Pifty psccent of the
tools had no support available. It is easy to see that this
is a long way from the ideal situation many authors propose
for automated tool usage.

The maintenance activities find themselves
unable +0 buy their way out of the OFP maintenance problem
by designing or buying tnols. Once a software system is
accepted from the developer the original design and documen-
tation may limit wvhat the maintenance activity has available
to improve the maintenance effort.

H. PROPOSED SOLUTIONS

Many solutions have been proposed to ease the software
maintenance problei in common application systeas. A
smaller list of solutions have be2n proposed for embedded
systems. Solutions range from the incorporation of good
software engineering practices in the design of the software
to the use of extensive programminy eanvironments throughou*
the lifecycle of the prograum. Most of these solutions are
viable and would help if they wer2 to be applied from the
original design of +the software. Saveral of the proposed
solutions are outlined. The reasons for the nonuse of thess
solutions are also cited.

1. QFP Rewrite

Many of the flight software systems still in use
were designed before many of the software engineering prac-
tices that are today taken for granted were in common use.
A complete rewrite of an OFPP using these techniques has been

suggested as a possible solution to th2 maintenance problen.

G
L
Qe

L

l- ' I ‘.
BN NH S

us

PPy
A




&y
A O
@
3 .

YAy

This was <+the idea behind the work of the Naval Research
e laboratory [Ref. 1], in the recoding of the A-7 OFP. Th=

BN
R i WAL M

]
.

4

'3

}t_ use of the software engineering tachniques of modulariiy,
?' information hiding, formal specification, abstrac% inter-
;f; faces and cooperating sequential processes were used in the
't; updated OFP as it was rewritten. It is hcped <+hat these
;} techniques will lead to lower mainta2cance cos%ts >f the OFP.
E;f An entire rewrite of the OJOFP offers several clear
i? advantages. It is in fact considered the only method %o
Lhi assure lovering of @maint2nance costs. Many maintenance
i : personnel intarviewed about solutionas to the OFP main*tenance
%ﬁ problem mentioned OFP rewrite as th2 ba2st method to show the
ﬁ? most improvement.
o Revwriting the OFP in either assembly laaguage or a
= suitable high order 1language would allow generation of
gﬁ currently nonexisting documentation. The A-7 rewrite has
fﬁi produced a well documented progran. A significant finding
s of the A-7 rewrite wcrk was the the importanca of a Software
‘,w . Bequirements Document. Its generation for ¢the A-7 was very
{%ﬁ time consuming. It might be as important to the maintsenance
ff function as the modern software engineering principles used
{“ in the rewritten OFP. The production of documentation in a
22 usable fcrm would have significant impact on traianing of
.$} system personnel as well as the actual maintenance of the
:E program. The documentation could also be designed with *he
;:; eventual use >f more extensive and supportive softwacze tools
-:ﬁ in mind.
iff The prograa itself would be placed into a more main-
2;2 tainable state by incorporation of modern software engi-
3; neering techniques into the redesigned code. This was the
NGt ultimate goal of the NRL work om A-7. It is very easy to
i;; see conversion from the "spaghetti code" that many of tha
IEZ OFPs contain to a modularized format would have great impact
“%; on the reduction 5f maintenance «costs. The modern version
o3
1':.: 46
I
>t
Y o
AQS
¥
NI e e e e B I T I A T e e e




Lo N AT A i A At i A it AR I S 8" AT i Wl A A vut A i “ e dve ons Jves e Jnan b dren 0 e an e e A S L IEE R e

:.n' of the OFP wdiuld also be easier to test with the reduction
%ii . in the complexity of ths code. Tha given state of +the
L,, program may be every bit as difficult to det2rmine due +o

Eff the complex nature cf <+he platform and mission of the
F program itself but errors would wmuch 2asier to isolate once
detacted.

Several problems do exist in this solution. Costs

to accomplish a rewrite are very high. A complete rawrite
of the A-6 OFP is estimated by NWC parsonael %o cost upwards
of 20 million dollars and take four years to complete. The
finished product would reflect the state of the OFP when the
revrite was bagun. The ongoing enhancements occuring in <the
operational OFPP would still have to be incorporated in *=he
rewritten OFP. Meanwvhile the existing OFP would have to be
continually maintained as is currently practiced. The esti-
mated A-6 OFP rewrite cost represants more money than the
entire yearly operating budget of the software laboratory at
NWC. The cost in time and the personnel required to accom-
plish the project may in fact be the determining factor.
The perscnnel are not available t5 accomplish the rewrite
and carry on normal @maintenance activities of the opera-
tional OFP.

The lifespan of the aircraft in a particular modifi-
cation is subject to change. The days of tha A-6E systenm
may be numberad. An P-model is under «considaration which
would represent 2a ccmplete <change in many of the systems
from the E-model. The future of tha P-model is in the hands
of Congress. When <the F-model will come on 1line and work
slowed on the E-model is unknown. If the furds were avail-
able to rewrite the A-6E OPFPP it is hard to imagine them used
to actually begin recoding work with the possibility of a
major avionics and flight softwars modification arising in
the A-6F model.

47 :

"""" B e i R T T St N O S T

-.- .- --. c e ‘a '~ A P - - - - .
PR ELRAL VERERIOh C¥ Rt 4 bt T ¥ i S N Ot KRR |



Questions remain about ths final product of such a
rewrite. Naval Research Laboratory has not yet completad
its work on the A-7 OFP rewrite four years after *he orig-
inal completisn date has past. If the new OPP will fit the
available hardware in the aircraft and perform as the old

OFP, remains to be seen until after testing phases are
completed.

For the reasons outlined above, a complete rewrite
of existing OFPs is not feasible at this time.

2. High Order Languaggss

A rewrite of an OFP is uasually suggestad to be
accomplished in a standard Navy approved high order language
(HOL). Experience with OFP maintenance by the various soft-

vare activi+ties has shown that th:2 wuse of a HOL may not
really be required. NWC personnel estimate that very little
of the time spent on the maintenanca of the OFP is spent in
actual coding of the maintenance change. 1Ignoriag the soft-
ware engineering techniques that a true high order lanquage
affords, very liitle 4is gained by recoding <the OFP. The
ability to modularize an assembly language version, complete
vith documentation on each module would be as useful. The
use of a high order language also presents the problem of
execution spea2d. Tlke rumber of syst2ms in use is not high
enough to warrant spending the funds needed to» write opti-
mizing compilers to insure proper parformance 5f the OFP.
The use of a high order lanquage would be wmuch more suited
to a system designed from the start for its use.

Some interesting ideas arisz from the us2 of HOLs in
OFPs. While perhaps not suitabls for +the coding of the
actual flight system OFPs at this time, HOLs have been used
in documentation. A HOL version of the OFP is used to help
the programmer gain a grasp of what the program is actually
deing prior to attempting to understand the vary complex
assembly language version.

48

..........
S .

'."..*'.'-'.': SR SOy Lo C e e e e T e e T e e T et e - L.
E-A\-'-'A".L‘..'..'..‘Jn“"}.n)lﬂ‘h-‘?k';}."‘ih\“!"' Yt et e e LT L T e

) ° S DY - bt e « V.
alala_a'aa .t A L DI Gt



‘.5 ‘_-'F\_.\‘.\}‘_, ERACH A i s Sl i 4 A A ey RIS WAL SN ACELA  A L li a oOl s Sy e P A S S g r o e T e s |

A recant development is th2 U.S. Air Force decisiorn
to recode the P~111 OFPs in a HOL. The Air Porce plans to
use Jovial in this conversion. Total costs for the entire
project which includes conversion of all remaining aircraf:

to digital avionic systems is placed at 1.1 billion dellars.
Jovial is considered suited well =snough for embedded appli-
cations that the Air Force feels the money required for the
conversion to a HOL written OFP is worth the expense.

3. xtensive Bnvironments

Anothar method to improve the maintenance effort of
a software project is to improve +the techniques used ir its
design and implementation. An isprovement in these «car

easily be accomplished through the use of an ex%ensivs
programming development and maintsnance enviroament. The
environment would be used throughout the software lifecycle
cf the project. This is a fine solation for new systems but
hardly the answer for mature systems such as A-6 and A-7.
Cost is the primary problem. Howden [Ref. 6], outlines four
environments of increasing capablities and costs. The
highest capabilty reflected in his proposal was designed for
embedded real time systenms. He estimates the capital costs
at three million dollars. NADC experience with FASp,
outlined in the next chapter, suggasts that *this figure may
indeed be very low. Costs for the physical environment
itself do not incorporate the modifications to a program nct
orginally designed for use with that environment. The modi-
fications required may involve effort equal in cost <%0 an
entire rewrite.

4., Adding Hagdware

Personnel not familar with OFP maintenance see the
hardware as the primary cause of OPP maintenance problenms.
They feel that the maintenance problem can be solved by

49

L S S M T AT T . D I W N I R T )
N SN Ty N AT N N A e et e LT e :
AP G S AP AL PO A FCR VR TP AT \'-1':.‘ PP AT R ORI e e T . S e




FORA RN A S A 0 A A A AN AL et - e derke g e iaie AR ioae Sl i e S e talk o WA Al Al sk A A
. A R R . - R - . - N A LI S e TeT Tt em e IV}

4

A

224

3
]
N

X

y

i‘-'
>

3

LS S A AC AL S Al A At iy

addition
increased processor

of hardware capability through and
If

the program may be

added memocy

speeds. significant iacreases ir

@emory space are installed, able to be

partitioned and slightly restructured to
While

costs of hardware have dropped significantly

reduce complexity
and decrease maintenance costs. it is well known that
with improved

technology and the costs of softwarz continuz to rise, addi-

tions of 1large amounts of memory or increased processing
speed is not <the answer to the maintenance problem.
Physically placing new or additional hardware 3into the

aircraft is very difficult and requires extensive study

before approval. Due to the long process +to research and

itself,
change becomes quitz expensive,

addition of ever 2
The older
ba compatible with some of

approve chang2s to the aircraft
small hardware
aircraft support systems may not
addition of
When
many new capa-

the newer randering the
the difficult
memory additions have been made in the past,
bilities and aided
any newly available memory space. Merely throwing hardware

hardware technologies

nevw hardware even more and costly.

weapon systaas are which gJuickly €ills

at the problem is not a solution.

50

e e e et T LI
B - LR
» « . e .

TR T

e N P L . TN e e RN
N A N I N TR A, A e e e e T T e e



A. INTRODUCTION

This chapter will briefly outline the concept of soft-
wvare eavironments and review the NADC operated Facility for
Automated Software Production (FASP), the only current
attenmpt at a complete development and maintenance
environment.

B. ENVIBONMENT DEFINITION

The concept of a Software Engineering Devslopment and
Maintenance Environment is outlined in [Ref. 7]. The envi-
rorment is generaly defined as tha technical and management
methodologies, the hardware, mode »f compu*er use, automated
support facilities (tools) and the actual physical work-
space. It encompasses every aspect of the development and
support of a software systen. The ideal environment should
support a development methodology. Wasserman states that
this has no*t generally been the case in many past efforts.
It also should support the software system throughout the
entire software lifecycle. A spacfic definition of the
lifecycle should be incorporated into the design of the
environment. The STARS Program Strategy Handbook gives a
broader definition of an environment to include the
personnel assigned to use the environment.

A complete development and maintenance environmert
should possess the fcllowing characteristics:

O 1. Complate Lifec¥cle Coverage: The methodology suppccted
- by the environment should cover th2 entire lifecycle. A
. néans for software system design 1is followed by a method
A for the code design and impleméntation. The ehvironment
A a%so supports the software system through +he maintenance

AN phase.

@

o

::::'; 51

T

... ~ " ) ] Al Y
SR A N




,,,,,,, T T Y WY U TV T T T O e Wy —y——— vy - .—
g AP AAC A AAAA A ekht AgtJ) RAGACAEAEASNL IS S A S ari 20 o3 ark Shg ovg oo

sition Betweern Phases; Builiing on +he
fecycle, each phase within the l1ifecycls
be" ldentified and traversed by msthcd-
b the. envir>nment. The +ransition
ss and allovw the programmer t> movs back-
wards as nseded to correct or change earlier work.

3, PBase of Use: The,environmeng should be designed such
that the_ programmer is not burdened _Dby 1its _ucge. Th
personnel assigned to the project should be able to learn
he environment's methodologies without wundue effort.
The +training of new personnel would be wnade easier,
allowing them to become productive members of the teams
more quickly.
4. Repeatability: An ideal environment is general enough
t0o be used saveral times on functionally similar buat
different ac¢tual projects. The effort 3in ¢reating a
complete environment "tailcred 2a1ly to a specific system
is lost when that systeam 1s no long=r in use.
S. Automated Sugport: Since the ultimate goal ¢of an 2nvi-
ronment 1s the increased productivity and quality of the
product, the selection o the automated suppec-t facili-
ties is critical. The *cols s2lected are, automated to
the extert that an increase in productivity is gained
through their use.
Boehm c¢ites a study in which the COCOMO Modal for
Softwars Cost Estimation was used to demonstrate the effec-
tiveness of the use of a properly designed environment.
Figure 4.1 shows ¢the estimated improvemen*s in software
productivity versus scftware cost driver attributes. From
the graph pra2sented in Pigure 4.1 ssveral of the sof+ware
cost driver attributes can be seen to impact grsatly on the
flight software problem as defined in Chapter I'wo of this
. thesis. Most notably, schedule constraints, turnaround
. time, software tools, storage constraint, rejuired reli-
ability, program complexity and personnel capabili*y greatly
influence the maintenance effort of OFPs. Many of these
factors are out of direct <control of +the maintenance
\ personnel due to the nature of the flight programs aad the
‘ development practices used. It appears from the data

. presented by Boehm that concentration in the areas of
K}

increasing personnel capability through tools and methodolo-

. K gies will have the greatest impact >n increasing maintenance
\productivity. Interestingly, tasting problems are ©not
%ddressed directly by Boehm as 31 Software Cos*% Driver
~ttribute,

52

\’ "- <.\ SN e e e e “" &‘ * o * ™ - . e T . -
PRI N v - N - RPN
P ARG, AT S A\ R, Tl A, ‘.__'-\_‘-_ SRR




- UL SRR Bt Sl The ] """.,v{"-_r"_‘ MY e e at wk At e

G S AR LA Sl A SV S S0 Srs 2in sae et oy

Software
Cost

priver.
Attributes

1.20

‘1,23

1.23

1.32

Language Experlence

Schedule Constraint

Data Base Size

Turnaround Time

1.34 Virtual Machine Experience

1.49 Virtual Machine volatfifty
1.49 Software Tools
1.51 Modern Programming Practices
1.56 Storage Constrafnt

1,57 Appifcatfons Experience

1.66 | Timing Constralnt ﬂ
Reltabfifty] 1.87

Complexity 2.36 4.18
Personnel/Team Capacity ﬂ
1 1 V 1 T 1
1,00 1.50 2.00 2.50 3,00 3.50 4,00

SOF TWARE PRODUCTIVITY RANGE

Pigure &.1

""""""""""""
.............

Multiplicative Software Productivity Pactors.

...........

53

.............

.......




vy
1
Py s

Sl

',v,-

e
et s
I ]

LIRS

B P WPy
3 S B . [ PN T ST e T T

C. FASP

FASP (Facility for Automated So>ftware Prodaction) was
designed and implemented by NADC ia recogritior of the high
costs and complex naturs of devzloping and maintaining
weapcn system software. PFASP is currently us=d in “he main-
tenance of antisubmarine aircraft software. It was designed
to be used in the development and maintenance of ary weapon
sof tware system. Table II gives tha Navy standard computers

TABLE II
PASP Languaga and Compater Support

PR v A0 avias Sive Jate 2l

Navy Standard Computers

A YK-14
AYK-10
UKY-20
OKY-7
UKY-32

Navy Standard Programming Languagas

SPL/1 and _SPL
CMS-2M and CYS
MACRO0-20 and

U 32
FORT RAN and CO

-2Y
LTR
MPaA

Ui

S

N W A U U R R

and Navy standard prcgramming langurages supported by FASP.
The total lifscycle of the sof*ware system is intended to be

supported by FASP, I+ was design2d such that the primary
development contractors are able to use PASP throughout the
development preocess. The maintenaace activity is able to

inherit £frcm the <con*tractor a2 complete software systenm
developed on the same support facility it will be maintained
on.

Two types of facilities are provided through <the FASP
system. The first is for software integration. Integration
facilities consist of laboratory simulations of the target

Su

........

. e e
condh sl 4 A oy

L

R e PLLN

ad hea LB




aircraft computer systen. The intagration facility is used
in hardware/s>ftware integration. It serves as the hardwars

@ ) configuration baseline and is also used in the determinatior
;;_ of the human factors involved in system design and mainte-
i;; nance. Change proposals to a software system can be quickly
i{f evaluated by use of the simulated target computers.

,i{ The softwvare production facility, the second facility
,:{ provided by FASP, uses an approach to software development
;5 in which the same facilities are used for both development
- and maintenance. The software production facility was

\ designed to be shared by several software systems for their
NN entire lifecycles. Improved software tools provided by PASP
}fn increase programmer productivity and product gquality.
: Management wvisibility of <the software coafiguraticn is
) provided. Maintainability is incrszased through the support
yi of structured programming and modularity technigues.

o An integrated database which contains project and
0, management data is ultilized extensively. Maintenance and
develorment is divided within the database into distinct
processes each with a measurable ouatput. Input and output

éi- of sach phase is stored in the database where it is autcmat-
;ﬁi ically configured into management reports for each proiject.
- The project manager is able to set production figures into
_Sﬁ the database which FASP will automatically track and report
?Eg on. The configuration control providzd by FASP allows more

g accurate cost estimates on software production.
: Automation ©provided by PFASP reduces the production
S effort in the labor intensive areas of development and main-

;ij tenance. Increased programmer productivity will offset
f;} increasing programmer <¢osts by dacreasing computer time
O required in these areas. PASP performs the following auto-
Ziﬁ matic operations:

o 1. Translation of simple user zommands in%*> many oper-
Py ating system commands

o 2. Maintenance of the database.

o

'::-'_::

.....................
..........




..... e, AR A A A A S L A S S e aomad i e

o 3. Execution of regression testing on specific software
- mrodules and report cf test results.

4. Interactive program editing and testing

These automatic features free the programmer £rom many
routine tasks and allows greater us2 of program librarians.
_ FASP provides a formalized structure which contains the
‘ES' software tools necessary to increase production and quality
of the final product. A Software Emulator which simulates
the target military compu*ter on +the FASP host computer is
provided. Unit tests of software modules can be performned
at earlier stages of the development or maintenance process
in the simulated environment in whizh it will operate. The
cost of software errors are reduced by 1loca‘ing and
correcting them earlier. Testing is also able to begin well
before the implementation phase. An Automatic T2st Analyzer
determines which paths through the project program have been
traversed and instruments the source code without hindering
performance. Results are automatically s*ored in +the FASP
datatase. From there management rsports on path tests are
generated. PASP also supports Automatic Regression Testing.
A1l module test results are maintained in the FPASP database.
Each module has a completa test history available. A change

to a module will automatically retest all <*est cases
—;Ef affected by the module change and store the results to the
o database.

Facilities for implementation of FASP are ext2ansive,

HEE Th2 host system consists of two CDC 6600 and two CDC CYBER
Efﬁ 175 ccmputers. This large capacity system enables several
‘f;é projects +o be maintained by FASP concurrently. Each
7?% programmer is able to use a virtual target machine emulated

v

“,{7 by the PASP host computers. Many virtual machines are able
Eﬁﬁ to be utilized <concurrently. By combining *he support of
| many projects on one system, significant physical plant cost
;f savings are rsalized. The large computing capaci%y is also




e N T T TR ey s BRAE AR RSN ARt A e It i iRt s A e it b e s s o]
L Ut - - . - - - N - - . - ot e e T

.

Ti; available +o handle urgent maintznance deadlines wi+hout
i?ﬁ significantly reducing normal devalopment and maintenaace
,}g{ : activities.

fi{ PASP allows the use of nearly any computer to tie into
:ﬁﬂ its facilities. Contractors not physically located at the
ii; FASP sight are able to utilize PASP during the development
f)- phase of the project software. As the maintenance of <he
\igi software is turned over to NADC, 2 smooth transition frem
St the development phase +o the maintesnance phase is insured.

The maintenance activity has availabls extensive documenta-
tion from development to aid maintznance.

PASP is the first attempt at an integrated software
develcopment and maintenance environaant directed at embedded
real time computer systems. It has met with considerable
success on the three flight software systems developed and
maintained on FASP. Its success is based on the facility
being used throughout the entire software lifecycle. FASP
would not be particularly suitable for use in systems in
late maintenance phases such as A4-6 or aA-7. These older
OFPs would require extensive revwrites and documentation
before the PASP system could be utilized. FASP is best
suited to be used from the ipitial development and
throughout the remainder of the software lifecycle.

Eéiéiéié .
E?-n
E .:.‘ :: : ' .- - - . o . . - - - - -

1S PR \,"\ e "\"’-""."""
.‘f" PP \.'.q_ S L".gi; L..L"L‘ :.!.‘ S,




g
.
o

Sere e,

. a ..l “‘ {‘ d

Py

B

V. INPROVING OFPP MAINTENANCE THROUGH DOCUMENTATION

A. INTRODUCTION

Thus far this thesis has covered the background material
to understanding the unique problzms related to software
maintenance of real time, enbedded aviation software
systenms. Definiticns have been presented aand models
compared. FASP, an environment in use by one software
activity has been presented. The next two chapters of the
thasis presents t2ols and methodologies which can be used to
improve the maintenance effort with modest expenditures in
time and money. Pocus is directed in the two areas where
the most improvement in the maintenance effort seems
possible, documentation and testing. Both of these subjects
were brought up time after time in iicussions with OFP main-
tenance personnel. It is likely when improvements in these
areas are adopted, <cther areas of the problem will show
improvement also.

The suggestions presented in th2 naxt two chapters by no
means offer a quick easy solution. The problem has devel-
oped over a number of years anl is much ¢too complex.
Solutions will not come easy no matter what price is paid.
What follows is primarily based on interviews with *he pmain-~
tenance personnel conducted in an informal manner during the
three trips to the two West Coast Navy flight software
activities, during ccnferences and over the telsphone.

B. DOCUNENTATION INEBOVEMENTS

Every software activity, every psrson involved ir OFP
maintenance mentioned one aspect of the OPP software to be

severely lacking. That area 1is documentation. In nearly




ORI A I A A A A S I A A S e At o v S BT gt i ¢ A A S B i s et i A e e S —— ' Ty rvrveyrvyw
. . ; ARSI PRI SL A Sl i Ja e Lok Y rnd =
e . e T . [N el

evary case the documentation th2 maintenancz perscnnel
raceived from the prime contractor when OFPs were turned
over to Navy was poor, Many of th: OPFP contracts wvera
written befors any gquidarce from the Navy was available on
documentation. In scme flight systems the requirement for
documentation was left out in order to save ini*ial develop-
ment funds. The already extremely difficult task of main-
taining complex OFPs is made nearly impossible by +the lack
of good documentation.

Because of poor documentation many of the other problems
of maintaining the OPP software develop. Training new
personnel is made even harder as it takes a great deal of
time for someone to understand a system in which there is
poor reference material. The new personnel find themselves
learning primarily through hards on experience. They learn
the program on the f£fly as they implsment changes. This
slows the maintenance effort and affords an opportunity +*o
introduce errors intoc the revised code.

Poor documentation causes the entire update cycle of the
OFP to be longer than would be needzd with proper documenta-
tion. Experienced personnel find themselves spending a
significant amount of time merely trying to understand the
existing OFP code prior to designing a maintenance change.
Because of the effort required +to comprehend the existing
OFP, the largest portion of time spent in the maintenancse
cycle is spent in the design phase.

Lack of documentation currently inhibits most mainte-
nance *eams from using many off-the-shalf software tools and
methodologies. Several personnel interviewed named tocls
that would help their effort significantly but were unable
to use due to the difficulty involved in setting up the OPP
documentation to allow the tools use. Host tools are
designed to be used wi*h a well docam2nted product. Because
of this, mcst of the tools used are daveloped internally and

LI § DO LRI N 3 SR

o S

wadnliad Ao,

PSP PV U LN

N T N LN RCINY WY . .

}

59

e

TR N IS T AL AR IS T T ST S TR R DA A R P T T T T A e e it s e e .
SN A O AU N R P £ A NS " “ e SN 3, I I P PR TP R T T S T S




~~~~~~ e e T T N VL T Y Y Y W WYY T T T T e vy

are not able to be shared between different projects. This
has lead the support systems and me+thods used by the
different OFP projects becoming increasingly disjoint over
the years. Each has become its own seperate enitity. This
can partly be blamed on poor documentation.

Difficulty in understanding thz2 code when designing a
maintenance change lsads to difficulty in determining mean-
ingful program test requirements for the revised code. A
poorly designad <change due to a lack of understanding of
what the program is suppose to do leads tc greater testing
costs. The number of design errors would decrease if the
design engineer and programmer had quality documentation
available.

Suggestions of what to do first center on a definition
of documentation. Documentation is defirned in a broad semse
as the method of giving information about a computer progranm
or system so that a reasonably trained person is able to
understand *he system, use it and nodify it *o fullfill new
objectives. This definition is a modified version of one
presented by Edmund Berkely (Ref. 18]. The point +aken from
this definition is documentation allows the person
utilizing it to understand the systam.

There are many arguments as to the most effective format
of documentation. It is an area of computer science *hat is
still under extensive study and interfaces directly with
study of the human learning process. This thesis will cffer
no profound iasights into the proper format »o5f documenza-
tion. It will accept only the premise that workable docu-
mentation is critical to the maintanance of OFPs.

Again citing an active OFP maintenance effort, the A-6E,
OFP documentation received from Grumman was felt +to be
totally inadequate for the task. It has several major prob-
lems which limit its use. First, it consists only of the
OFP program listing and a set of math flow diagrams. The

60

.

------ S Lt ittt
A TR T L

P, PP P T '.':' .

T T P W P S P g o ey gy
RRART A AR RS A Bl A A A i g sa

o math flow diagrams consist roughly in the format o¢f crude

- flowcharts containing mathematical representations of whaz
is occuring in the program code. Thzy are very difficult to
read for somsore not intimately familar with ~chen. Tach
flow symkcl contains a large array of cryptic symbols which
are difficult to follow. The math flows exist on paper and
have been copied so many times that individual symbols zare
faded and extremely difficult to ijer+ify. Changes *o0 a
program involves converting the representation of the change
into the math flow format, redrawing by hand +the pages
affected and inserting the change into the hard paper copy.
This 1leaves significant opportuntiess for ecror. As <the
documentation stands it is totally inadequate for +training
an engineer or programmer. It also does no*t allow use of a
set of capable software tools in a2 meaningful maintanance
environment.

Two very important forms of documentation are missing
from the A-6 OFP inventory. Currant Software Requirements
and Aircraft Performance Specification Documeanats are not
available. The maintenance programmer cannot determine
exactly what <the program is suppose to do prior *o
attempting to glean how the OFP actually does it. A soft-
ware redesign is significantly slowzd by *the effort required
to understand <the current program. Erxrors are introduced
only because the redesigned code is not what the mainternance
change called for. Aircraft performance requirements are

equally important to determine the parameters involved in a
redesign effort. They are also impor*ant in unders+anding
the OFP code itself. Accurate information on what +the
aircraft is doing during certain phases of operation helps
tell the engineer what is happening inside of *he OFP. For
example, what the program expects to see from a certain
sansor at a certain +time is determined from the aircraft
performance specifications document.

61

L]
.\"-. . .
FOIASRS AN et . NI T R - y T R
‘-_.‘-_A\i‘\.) _:_'A\‘-LA.'*_._' N e -'!-...‘_‘ SOSE - e s e " N N T R '..'_‘. C A \\\ -.‘ » L. .1

""" AR AR AS A A A E AL EA ST g RIS R ln dea A Jh g ‘S o Jhs Shot Bar e gur aour 00 ane |

The suggestions for improving the documentation do no-=
involve a complete OFP rewrite, The documentation improve-
ments will center around the OFP as it curren+tly stands.
These suggestions are aimed at improving the maintenance
effort without very large expenditures of resources.

1. lectronic Documentation Starage

The first effort at improvement of the documentation
would be to change +the format on which it is kep*.
Automating the storage, retrieval and reducing the <time
involved to record a change would hslp greatly. The chance
of not incorporating a change to one of the the many copies
of the paper documentation is reduced. Electronic storage
also allcws the programmer to quickly retrieve the documen-
tation he requires.

The A-6 software personn2l are taking steps in
exactly this direction. A Documentation Librarian has been
hired to deal with the paper documsntation and 2anter it into
an electronic storage facility. One person or group of
persons assigned only to the maintanance of the documenta-
tion will allow closer control of the accuracy of that docu-
mentation. The programmer will not need to burden hiamself
with the requirement +to enter chanjes to the documenta+ion
of code he has revised.

Many tools abound which would allow +the dccumenta-
tion to be stored electronically. A database could be
implemented o5n existing facilitiss or maintained on an
expanded small network of microcomputers. The exact %ools
usad are not as important as the concept of maintaining the

.

documentation electronically to allow easy access, modifica-
tion and storage of large amounts of data.

L)
'Y

» - ‘v . a > .
AR
a A T

K
N

Characteristics of a syst2a chosen should reflec:

the following:

SRR
[4

1 Q)

h)
30

62 \

Rh. JARICN

5
.d“

S

»

s A AL IO NN A AT AL R S R S L e S S N e R - T
. ALY -"‘-A--...< SO T VAT UL M LSRN T e e Ty T, j

.....
......

L SASELL SEL SN P, A AL AR A S S e AR A A A C A A A A I AN I A SIS S P R i s e e e g e B o 2o o AR

>

h-‘\‘-'l
s
P

i

1. Ease of Use. The system should be easy to usz s9 as
not to discourage the user. Idsally the system would be
1ncorforated online within the systed that the_ programmer
normally wirks, as FASP does.” Realistically 3 s*and
alone machine which does not rsjuize excessive =2ffort <c
use is adequate.

2. Speed of Access. The syst2m need not be such _that
instanteous access is achieved. Most microcomputer data-
base szstems with ~adequate m2mory allow the user to
access text and print it out witholt a 1long wait. The
number of personnel using the syst=am is not 'lac-ge erg¢ugh
that concurrent multiple users are a significant problem.

. Adequate Backup. his may s=22m incredibly obvious bu+
? g b ged ! go i 34

it mus e addres if the cumantation is to be stored
in an electronic form. A system employed on a mainframe
may utilize _the operating systenm ackup rocedures
normally auased. Smaller micZosystems woul raquirs

multiple copies be maintained on_ tape and a procedurle to
insure timely backups implementzai.

4. Consistencg., Related to th2 backyp question, _consis-
tency 1nvolve lnsurln% that _all copies'of <+the_data are
consistent with each other., This must be accomgllshed_lf
the electronic documentation is to be meaningful. Again
the_exact systen emgloyed t0o _hol]l the documentation would

ield the m2thod used to maintain consistency. As the

atabase to_ contain the current documentation would no+
be _extrem2ly large the system to maintain consistency
need not be automated.

S. Graphical Representation Cagabilit - Conversion of
*he current documentation woul iavolye worklng with
paper copy which contains many graphical representations
and symbols. The documentation should not fequire major
redefinition or restructuring if the cost of maintalning
it in an elegtronic form is %5 be held to_ reasonablé
level, The difficulty to use certain symbols contained
in the math flow diagrams has slowed the effort at
entering the A-6 documenitation into the Xerox Star systenm
that théy are using. Switching from graphical *o text
modes is constantly required to _properly position the
symbols required by the math flow documentation.

The graphical representataion problem may be the key
to selecting the documentation storage system. A careful
survey should be conducted of the data to be entered into
the new system ©prior to selecting the storage system %o be
used. The system selected should be able %0 easily repre-
sent any symbol raquired in the documentation. Some symbols
contained in the current documentation may be able to be
changed to allow the use of a particular s%*orage system.
This problem may limit the ability to use some of the micro-
computer databases available. It calls for careful study to
insure the stored data is accurate and that new data can be

entered without excessive effort.

63

h.'" :J\ p. ~ - o)
'R EAOASAr R T ST ST P S TP - - CLe ’ :
- YN Y *-;1':&':‘-_.‘- .‘-_.'-A\':'-;- PR SRR R LN g T SRR PRI W j

o - . . ~
o L LI N SRV A S
LY I . RIPRR TP Y

fatatata ataTa'a T atat L Lot e

Fv_‘—“.—w__v_ T W o W T ¥ o~~~y 5=y

Cos*s to implement the elactronic storage of <h=2
documentation vary with the volumz ¢to be stored and its
current hard copy fornmat. Rough 2stimates of +the cost to
purchase a capable microcomputer system with adequate hard
disk storage, three to four terminals, adequate graphical

representation capabilities, backup facilities, software
(purchased if possible) and printers range frem 20,000 up to
50,000 dcllars. This figure repressnts a very small invest-
ment. Once implemented it could provide significant savings
in the years to cone. Cost for more extensive database
systems to be used on larger conputer facilities range
higher. The cost of implementing the Xerox Star system for
storage of A-6 documentation will run apprecximately 100,000
dollars. The personnel assigned to use the documentation
feel that this money is well spent. While input of the
current documentation is painful, the payoff in the long run
will be well worth the initial investment.

After the system to store and manipulate <the docu-
mentation has been implemented, the next step is tc enter
the documentation required by th2 1lifecycle <chart that
figure 3.3 outlined. This would of course involve adapting
the lifecycle methodology illustrated in figure 3.3 as a
standard throughout the maintenance process. The documenta-
tion required at each step is then formated to be entered in
the storage system after the complation of each phase. A
documentation history is maintained for each maintenance
change. The format is fixed and once the maintenance
personnel become familar with it, lifecycle phase documenta-
tion generation 2and use will bhecone easier. The systenm
should have enough capacity so that change documsntation can
be stored online between OPP updates to allow easy access if
required after completion of an update. When the next OFP
update cycle is started, the documantation is also available
to help compr2hend the current statz of the OFP. Once a rew

"
=~
.
.
:

.
.
. ’.-

.".
S
- -~
"4-

2y
"7‘:-'/

l‘i.
AR

64

D)
« 8 ®

kA

]
A

. 4

: R o e e
LW N VY n’-.':.) ."‘.' -'\f_-_&'_v N 'L.‘AL'-L".A e e - e . DRGSR N AN .~.‘.*.-_..‘_ T T I TS “.'.11

-
PP

o
;

o M
l/l'

AT R YV
N Vi

]

v v -
D R
. .

Y o

)
¥

Y
. Y
I o4

<

fl

LN Pt 3
. « Cx .
e s

. P

update cycle is completed the previous update documentation

is stored in an archival storage system for program history
purposes. This would enable all change documentation *o be
maintained in order to be able to trace the OFP change
history.

2. Software Reguiremsnt Docum2at

The next step in improving tEe documentation of OFPs
would be the genaration of a Sofiware Requirements Document
(SRD). Work done by the Naval Research Laboratory [Ref. 1],
yielded a workable Software Requirements Documant £for <the
A-7 OFP. This document was generated in preparation for
recoding of the OFP. The generation of such a document for
other existing flight systems need not entail <recoding the
OFP. The following outline of ths format of the Software
Requirements Document was modeled from the A-7 work done for
the Naval Research Laboratory.

The primary purpose of the Software Requirements
Document is to describe the externally visible behavior of
tha2 OPP without desribing the implementation. The SRD
assumes the hardware to be static; this is a valid assump-
tion for embedded aircraft systems. Interface characteris-
tics are seperated from software requirements. Interface
characteristics will change only if the hardware changes,
vhile software requirements will change only if the mission
requirement of the OFP changes. The documen+* is maintained
as the refarence for what tha aircraft OFP does.
Implementation is not addressed. As an 2xample of what
might be contained in the document, it might explain that
during final approach to an aircraf+t carrier landing,
certain symbols are displayed on the pilot's heads up
display (HUD), as opposed to the symbols that are displayed
during a boambing run. How the computations occur -ha+
determire where to place the symbols on the HOD is no=
addressed.

65

:
-
5
i
d

D A A I A S an Siug St aris ool Soh sng o) Sead e |

Bafl Rafi) - 4 . TR v
L St e T T T R R A S R TRTATETR T RCSAR A il g

53' As was done by the NRL work, tha format is set up to
jt enhance readability and is easily referenced. Tables ars
it ' used extensively to make look up of specific it2ms easy and
R enable the reader to easily spot aissing data. To allow
%¥~ table usage, a standard set of dafinitions which represent
- long phrases or complex conditions are given symbols. They
) are referenced in a data dictionary contained within the
document.

S The format of the Software Requirements Document is
N discussed next, it was based on +the design of *he a-7
| Software Requirements document.

P

a. Aircraft Computer

The A-7 Software Requirements Document begins

N

with a short discussion of the aircraft's computer. This
Ei; would be included in any other Software Requirements
jﬁf Document generated internally. The distingushing character-
Lﬁ. istics of the aircraft processor are highlighted. This
- section should be written with ths newly arrived personnal

in mind as a primary introduction into the aircraft computer
o system. Detailed descriptions of the computer are currently
available and do not need to be included here.

PR R AR

b. 1Input and Output Data Itenms

The purpose of this saction is to dJdescribe the

o e
) ele
S '

eatets Wt

b interface between the aircraft processor and the devices
vhich input and receive data from the processor. Input and
output data are decribed as Data Iteas. This is the only
section of the document which contains any information ahou+

v,
Lty

S A
q......_
. ¢ .J .) ‘J ._l .,' b

)
1

the physical representation of thaz data. In follow on
sections of the document, the Data Items and the values

LA

which they transmit are represented by symbolic names. Each

Data Item is described in the following manner:

ot ?
» ") '{—"-. ";.".v ‘.

»
&

R

)

cTe alal
s 2% %
2 .

66

S e s

k]

A e e ..(_'.‘: \-‘ AT ._.."-.:.-.:‘. e ..‘ Ot N T TN N T T __.._._-_“_:‘_..._._\.._‘,;_._-_'n,1
. - - . L\.

.........

g

NND
S R
- Catatadka .

e T e T e R T e T T T T e e TN TR S TNTN VS, EAME A 0 ST A N e L M Al DML S S Bt mes and a0e A

1. Each_Data Item is given a symbolic name which is stan-
dardized throughout the document.
2

. A prose descripticp of its meaning and its relation
o the device which utilizes it is giver.

3. Nymeric Data Items are typed as to accuracy anpd rang
requirements. Nonnumeric® Data I*+ems are’ g:ven t!
mnhnémomi¢ names ¢f all possibla values whic may b
assigned to it.

WD

4. The format of the data repressntation is given.

5. The processor instruc¢tion sa2quence which is required
to manipluate the Data Item (Read, Transmit, Write, etc)
is described.
Cc. Operation Mod=
P>ssible states of the program are defined in
accordance with aircraft operating sc=2narios. A precise

frozen scenario for a particular fligh+ profile is
described. I+ is very difficult to describe the state of
the OFP at any given moment without a precise definition of
what the aircraft is doing at the momsnt. This concept will
be shown to critical in describing meaningful OFP tests.
When possibla, modes described by available
documentation should be used., If uaavailable, the modes ar=
described to match frequently encountered aircraft operating
conditions. NRL chose five modes to describe: alignmen*,
navigation, navigation update, weapon delivery and testing.
The OFP is able to exist in more than one mode + a time.
Exclusionary sets are defined to prevent combination of
modes which are nonsense. The defintion of the operatioﬂal
modes should be done in cooperatioan of the OFP maintenance
personnel, program simulator personnel, system design
contractor and a group of experienced £fleet users. Once a
mode is defined and aggrzed on, it is set and canmnct be
changed without agreement of the group described abova. The
definition on the mode would then have to be a careful

process.

67

L . e e oL . .
*'\.ﬂ!\- - .-,,~ SR E T L T R I P .-_._..'.... - '.". - ‘- ..“.. \..“.._~. R

PV A, DRI P Bl o B

A

o e

o

. aRE A o

- o'
.
e
d . .

e i AN G A s el o e e o

. . N LT,
S . e e
. . PR] .
. P P

?

Events in aircraft operation which would cause
the system to switch modes are also described in <this
section. An example would be an event which occurs in
flight causing the mode to switch from navigation to a navi-
gational update. This data is represented in table fornm.
Conditions about the state of the program which are defined
as true for a particular mode ar2 also given in +tabular
form. These conditions are key to> understanding the state
of the program during a given mode.

d. Functions

The computation of OJutput Data TItenms is
described as one of the many functions thit +the OFP
performs. There are many functions involvad during an
executing OFP. Relations between the state of 1Inpu% Data
Items and the aircraft >psrating modes are proviided. These
relations allow the user to determine what coditions of the
operating mod2 caused an Dutput Data Item to be produced.
The operational modes selected in the above section are
used., No r2ference is made to clock time.

e. Timing

The timirg requirements for each function is
stated in this secticn. An example would be the timing
requirements >f the updates for each display %o the aircrew.
The maximum delay between a request for an Input Data Item
and the cowmpletion of processing yielding the OQutput Data
Item 1is given. If understood, the system reaction +to
exceeding this value should be described. This section will
be very difficul*t to complete. In some OFPs, such as A-6,
the timing requirements between cycles is not static.
Bounds would have to computed instead of finite values. The
accurate completion of this section, while difficul:, woula

be very valuable for future maintenance. Titing

68

o v1 ?--,Av-\ ':'~"_-'*_.v‘.b' T .""_V\v" A AR t i it hs et Aef B Ik 2t a0 i e e Dol

T T R T T T T T e T T T P T r rr rv—v—r>r

considerations are pcorly defined and difficult to deal
with. They are critically important “o the accura*te opera-
*ion of the OFP. An ability to reference the timing consid-~
erations for each OFP function could in fact be the most
important aspect of the Software Reguirements Document.

f. Accuracy

The accuracy requirzments for the compu*ation of
all Output Data Items are given. This is another difficult
and important part of the document. The first versien of
the A-7 Software Requirements Docum2nt did not have all of
the data required to complete this section. It is a common
complaint of maintenance personnel that they do not know the
accuracy requirements of the data produced during computa-
tion by the OPP. Grcund and air testing of the OFP may find
that due to the lack of accuracy information that a function
delivers incorrect Output Data Itams causing <the OFP to
perform incorrectly. An example could as drastic as a
veapon missing a target or the system crashing on uncompu-
table Input Data Itens.

g. Undesired Events

Undesired events, such as processing an incor-
rect Input Data Item, elicit certain behavior from the OFP.
This behavior is described. The entrance into an urnd-<sired
situation should be from a standard aircraft operational
moda as described earlier. Input of aircrevws should be
sought to determine the best response, or at least most
commonly observed response to degraded OFP operation. This
section could quickly grow in size and complexity if every
combination of device and system failure is considered. A
bound is set on this section by coansidering failure of <the
most important functions of the OFP, determined from user
inpu+ and the predefined modes of JPP operation.

69

oWt

.-
et e <, . . C v et - - \ ~ .-

IR IR A S w e e T L TN AT L TN e
2 T I MRS W T WSS GO T Y R T T RO, § PR T VR SRR R A

RO ST S Al it A e PCAPRCI s S S S A IR AR TR et b Aol SN M . adih St et drun A e gl st T TN Y T YT Y Y Y e vy

h. Partitioning

The allowable partitions of ths OFP are
described. Services which are computed by +<he OFP but are
not mandatory for aircraft operatioan or execution of the OQFP
are described. PFunctions which may be canidates for removal
at a future time are identified. This is an important
aspect of +the document in that the memory of the £flight
system is mors often than not, liaitad. Incorporation of
significant system enhancements may raquire the drcpping of
nonrequired functions. This would jyive the systam engineers
an easy reference to functicns not needed.

i. Glossary

The glossary defines symbol names 2and acronyms

of technical terms used throughout the document.
j. References

References usad to gathsr the data contained in

the SRD and Aircraft Technical Manuals are listed.
k. Data Dictionary

The standard terms used in functioson and Data

Item description are listed and defined.

1. 1Index

The document is indexed in thas following manner:
By Data Item description, Mode dascription and usage and
function Output Data Item.

The Software Requirem2nts Document is no* an

easy quick fix +to a documentation problem that has existed
in some OFPs for years. It would not be cheap to implement.

L A
PN

Perhaps it can be said that it does not fall within the

To. l. rd lh‘. "4“.“:-

.

scope of this thesis and offer a s>lution <for the relative

n
[
P

ot
A

o
1-.
» .
.'-'.'-
(e
o
AR 70
o
[N
@
CaRES
1.“-‘.
".fl
P
A e T e e A e e e e . 7
- - w e e R AT At . T e * - . PR PR S 4 R T T e S et oot . - ST e
WL, SN R PR N LT B, T S R S I S P R S S T S S S T S S TSP N TR e 1

- i . L st gl i ad Aali g -
._._‘§~1"_"_-v__..'_ AR/ Al Gt il Sag Sl sl fng i Aol g Ll Al Jad Ml u a0 s B
......... RO . F A A o e e w WTE TN

- N L T L 2

short term. Consideration of the expected lifespan of the
aircraft and the OPFP itself must first be weighed prior *o
expending funis for development of such a document. If
considered against the 1long expected lifespan of nearly
every OFP, development of a workible Software Requirements

Document is feasible. Before recoding of the OFP could be
considered, a SRD would have to b2 written. Generating a
SRD yields a document which is us2ful for current mainte-
nance work and would be required for possible <future OFP
revwrites. The finished A-7 Software Requirements Document
while extensive, is a workable document and appears easy to
fellow for someone familar with the terminology of the soft-
ware it covers. Its format has baen expressed by mainte-
nance parsonn2l as suitable for any OFP.

Generaticn of a good iocument f£or OFPs which
currently lack one would be costly in time and morey. In
the cases where only a few personnel are familar with %he
entire OFP, their input into the document would be critical.
It is also obvious that *hese personnel could not be
expected to be utilized full time on the generation of the
SRD without imparing ongoing OFP maintenance. The effort to
write the dccament would have to be extended over a period
of two to three years. The author feels this is not an
execessive period of time. It covers approximately <the
production of two OFP updates. A training program could
also be implemented around the SRD production in which all
system mainteasance personnel are involved. Pamilarity with
the function of the OFP would be iacreased as the document
was produced. Ultimately the document should be entered,
stored and maintained on the electronic docum2nt storage
system selected in the first step of doscumentation
improvement.

71

'-- “e - v - T Co. e T . - - - . - - - - -
T B P P N SV I R T T P P Pt o I I Ly o

—p——- Yv‘_v-\“ AT A Sl Gk S W & A At) FUE T VT w e W TV ey
_____ o O S TR T RT RN B BRI P T 4

PRI AT A i A At S Sk aaad Sl ud -y pae e g -

3. Aircraft Performance Specification Documarnt

The A~-6 perscnnel complained about the 1lack of 1
document which outlined ¢the performance of the aircraft
itself. A document similar in function to the Software
Requirements Document for the airzraft is nesded in many
projects. The generation of such a2 document would not have
to involve maintenance personrel. It should be contracted
out to the manufacturer and produc2i in a format suitable to
the maintenance persconnel. It also would be very useful as
a training aid to help the new eagineer unders*and the
system which he will soon work. If maintained properly it
would supply the maintenance personnel with an accurate
definition of the performance profiles of the aircraft which
directly affect the execution of thz OFP. A general €format
is proposed.

a. Gsneral Description

4 general description of the aircraft and
detailed description cf the mission definition are contained
in the first section. This section merely provides an
introduction to the platform and a starting point for under-
standing the rest of the systen.

b. MNission Profiles

Mission profiles are defined next. They should,
as close as possible, match the mole scenarios presented in
the SRD. Normal values for the various devices which inter-
face with the flight computer system are contained in
tabular form. Tables are generated for each flight profile.
The flight profiles again will impact greatly on the later
testing phases of revised 0FPs. To insure the generation of
meaningful test data, the flight profiles are standardized.
Extreme conditions which are faced under combat situations
are also represented.

72

xxxxxxxxx

T

...............................

ST R Pl it el Ak 2 Bk Sl 4 e oo 4
- . . Cot . - .

LA i 4.‘" A‘\",“i_',w_r\ ._";

e
o c. Degraded Operaticn
ﬂﬂ) Expected degradations to the aircraft perform-

ance are outlined in this section. Battle damage to the
aircraft which does not render tha aircraft unflyable are

given. The flight software personael are able to determine
the expected reduction in device demand and input tc the OFP
This section should be modeled closely after the Urndesired
Events chapter of the SRD.

d. Operating Ranges

Actual specification of the aircraft cperating
parameters ara listed. Ranges of possible input and output
values for the avionics which intsrfaces with the OFP are
given. The devices are divided into aircraft subsystems
such as navigation, HARPOON missilsa fire control and the
like. This section serves as a quick reference o *he
actual values of the Input and Output Data Items used in the
Software Requirements Document.

The Aircraft Performancz2 Specification Document
is not nearly as important to the programmer as it is to the

system engineer. It may in fact allow the programmer to
cross the boundry between programmsr and engineer. It is
usually available in some form from +“~ - i1facturer without
a great deal of expense being invo? ey should not be
spent on its development over «.fe Requirements
Document. It is a supplement - to be developed in

parallel or after completion of

73

DL s A a
o
ate e .
st

LS

A A A YA E Ak g w

A. INTRODUCTION

The very large subject of OFP tasting is addressed next.
Testing of software is not an exact science by any meams.
Debate persists on methods of performing tests to vyield
meaningful and accurate results. Complex software, such as
the OPFPs, present even more difficult questions as to the
best testing method. The complexity of the OFP presents the
engineer with a software product that is basically in an
untestable fora. The state of ¢the OFP is difficult to
track. Because of this, it 1is vary difficult to identify
what conditions +*riggered a particular test result. Sipce
the older OFPs are not modularized, code that resquires modi-
fication is very difficult to isolate. How then can testing
be structured to assure that meaningful results are
attained? This 1is an extremely important gquestior ix
consideration of the OFPs use in high performance aircraft.
The engineer who certifies an OPP r2ady for live flight test
must feel confident in his product. The complexity of the
code must have been addrassed during ground tests in order
that operating conditions in the fleet will not trigger the
OFP into a failure. The high reliability =rcequired of the
OPP must be obtained during the test phase.

The testing porticn of the aviation lifecycle has been
identified as regquiring the most resources +to accomplish.
Massive support facilities are raquired in the form of
flight simulators. A great dJeal of support software is
required to run simulations of the JPP. After ground tests,
tha OFP 1is tested in live flight tests. The 1live flight
tests consume a large portion of money due to maintenance of
the flight range facilities and aircraft fuel requirement:s.

F"‘ Ty
s
B

LY
i

L.

Current test practices in most OPP maintenance facili- “

T O

S

ties consist of running 2all or parts of the OFP on the -
target computar within the confines of a flight simulator. ..
The simulator is usually written ia a moderately bigh level j
programming lanuage such as Portran. It is instrumented to »
attempt to track the state of *he OPFP during a test run.
Th2 simulator support facility is manned by different .
personnel than the actual OFP naintesnance team. The simu- '
lator personn2l write the support software that is used by
the maintenance perscnnel to test ths OFP.

B. WEAPON SYSTEM SUPPORT PACILITY

The simulators fall under th2 Weapon System Support
Pacility (WSSF) for each OFP. The WSSP is a total system by
wvhich OFPP maintenance is supported to do testing. The WSSP

serves three primary functions:
1. OFP_validation and verification. Does the program woTk
properly and did changes affect the remainderf of +he K
unchanged code? 'ﬂ
9

New weapon integration. Design of new weapon inter-
ghe entgge flight softwgre system. P)

Weapon system analysis., Measurement of simulated
esults of £light tests and weapon delivery scenarios.

The WSSF should be structured in an avolving state to be

2.
faces with
3.

"‘L‘.‘WA P deind s te ot

constantly improving <the support of the OFP. The author
reviewed the doctrines for the production of support soft-
vare for *+the A-7, A~-4, AV-8 and F-13 OFP projects. All vere
found to be well structured methodslogies which conform to
modern software engineering principles and techniques.

The subject of OFP testing can be seen to be viewed from g

twvo persectives. First the viewpoint of +the maintenance i
personnel who nead to test the intagration of revised code ﬁ
,) 7
into the entire OFP. The other belongs to the personnel ;
assigned to develop and maintain the support facilities.]
The concept of what constitutes a saccessful test may not be :
¥

h

75 2

.

]

1.4

E,

4

e e e e e e .
OV R T R T G Ry S A A A LAY ST -9

AP T Bl N T A B T T g Tt) e Sl i A A Jhit B e g St Doty She Bne Jhon fne —v T N Y Y e N YW TN LW IW YWY § v i v g
. Fa EE A A gt i Al - - W ETE LRl T

the same for =ach group. One manager of a support facility
complained the maintenance personnel assigned to the OFP
which he supported vieved simulator flight testing as 2
“stick and rudder affair." Meaniag +that the maintenance
parsonnel wer2 happy to load the OPP into the test facility
and execute the OFP in accordance to a poorly defined model
of the OFP during flight. The test lacked a specific s+ruc-
ture. He felt this was a misquiled approach to obtain a
meaningful test of the OFP software.

The WSSF can be thought of as razsiding between <the test
requirements and the target flight computer systen. The
role of the WSSF centers around the data supplied to the
target flight computer system during a test. 1

Since the focus of the WSSF is the supply of data to the
target flight computer, OPP tests nmust be designed so that
specific data is supplied to achisve a specific test result
which is repeatable. The specific input data can be seen to
bound the test process. The user and the WSSF should aggree
on the bounds of the simulation and freeze it from frequent
changes. The WSSF personnel are able to break the process
of +test procedure software genaration into manageable
modules based on the concrete 3definition of the test

[B)

TR WU S

cald b

PPN ¥ T TN

L VR

requirements.

The test data design is approached in the following
manner. The component to be tasted is identified and
isolated. What needs to be tested to validate this compo-
nent is identified. Once detarmined, specific test
scenarios are designed by the maintenance and WSSF

: YV U SRS LS

- personnel.

ol The improvement of OFP testing will be centered on the
[? tools and methodologies of the WSSPF. Development of the
B WSSPF 4is an ongoing process which attempts to constantly
increase its capability to support the OFP test 2ffort.

()
»
Y VPR SRR

76

[T SRR 5 I SUF U P

C. STANDARD FLIGHT TEST SCENARIOS

The mcst important aspect of ¢th2 generation of WSSY
softvare which will support OFP testing in a meaningful
manner, hinges on standardized flight scenarios. The stan-
dardization of the scenarios attempts to let the maintanarce
personnel identify a flight profile which will axercise the
OFP in such a way that realistic meaningful test results are
obtained. A successful completion of the *est flight scen-
ario would yield flight data whizh is recorded into an
output file. The data recorded is compared to the output
data expected from this standard scanario. The output file
and instrumentation data are stored for historical purposes.

The author witnessed the execution of two test flight
scenarios run on the A-4 flight simulator. Jdne scenario
called for the aircraft to take off and execute a climb to
5,000 feet. From there it flew over a ground target. A
dive was initiated and several turns were made around the

. target. All of +this was represented by simalation of the
HOD symbols on a CRT screen. The target was represented by
a triangle which rotated on th2 screen in accordance to the
movement of the aircraft. The symbols viewed 5n the screen
were generatad from the actual signals that the targe*
computer generated as it axecuted the OFP. The WSSF input
+the data which 1lead the target computer to execute the QFP
as if +he aircraft were actually in flight performing the
scenario described. The WSSP als> provided the interface
between the target computer and <he CRT which allowed ths
HUD simulation. Instrumentation of <the input <+to the
aircraf+ avionics from the target computer is recorded by

the WSSF into an output 1ata file. Timing references are
B recorded to be able to compare the input data with the
kig; outpu+t data. The state of the OPP can hopefully be obtained
ANk and reasons vwvhy specific output data was generated
E(Z determined.
e
o
%
N 77
5
@

L
DR
P A
£ l
» 8 s

TN AT T
) “ .t .
t(“ PRGNS

s

The methodology of freezing the test scenarios is crit-
ical to the WSSP support software d2sign process. The WSSF

personnel and the maintenance personnel together decide on
the scenarios which exercise various functions of <the OFP.
The freezing of the scenario definitions =allow the WSSF
personnel to implement a design process which is modular and
can be automated to increase productivity. Scenarios are
continually built which eventually enable +he OFP to be
exercised in such a way that +the tested OFP can leave the
software facility with a very high level of confidence.

D. WSSF PRODUCTION TOOLS

The increasing capability of th2 WSSPF is critical tc the
reduction of the maintenance effort of the OFP. The produc-
tion of WSSP software should be automated 2s wmuch as
feasible to help provide this increasing capability. The
WSSP software does not face the storage, bhardware support
and ~.ming constraints that amust be considered of the OFP
itself. The code generated can comply with up to date soft-
ware engineering principles and use automation when
possible.

Automation of the generation of WSSF code also has
further advantages. The code produced initially is more
likely to be considered correcrt. Routine repetitive tasks
are eliminatel, thus increasing productivity. The verifica-
tion of the simulatcr code integrity is made simplier.
Documentation of the simulator cod2 can be made automatic.
Analysis tools can be built for the test results,
Portability can be ocbtained by using standard automation
techniques.

The following software tools, based on the A-4/AV-8 WSSF
development strategy, are designed around auromating the
produc+ion of WSSF software and automating the execution of

78

- - L T N " ~ N -~ : :
Sa e TGN N o DU CE K N ._‘. Y _*. ‘\ ~. o
A\Ah-_L catatata 2t Al o

S N BN st ety SN At e g N MBI S~ Al A A At g

LARAEACASAG AL A et ot S MBI S FEAS BN T ——————
2R : : : : —

Pame

" ‘4."!
Y.t
I‘. -

o —
J"
-

4

g?? test scenarios. There are five tools menticned which are
A explained below. The process starts with SREM and continues
vith the Module Generator and PLECS to actually produce
module code. All three tools work in conjunc%+ion to produce
the module code for software used in the flight simula<“or.

The module wvas defined from <the standardized <£flight
scenarios covered earlier. AVSIM uses the input data for a
particular test scenario to execute the modules, required %o
run that test scenario. AVDOC uses data from AVSIM and the
Module Generator to produce standari forms for documentation
of a test execution. Tha first three toocls mentioned deal
with WSSF software mcdule production. The final two “ools
deal with helping +to automate the test executiosn using the
modules written by the first threes tools.

1. SREN

SREM, Software Requirements Engineering Methodology,
designed by TRW, is a tool which ties requirements to appli-
cations. A Requirement Statement Language (RSL) is used by
SREM to generate input into the Module Generator (MOG). A
module is first defined by sta+ting the raquirements of the
module in the SREM RSL. The module definition in the RSL is
processed and the results are input directly intd> the Module
Generator. SREM is written in Pascal and utilizes a rela-
tional database. The database has the advantage of being
able to be used with other applications other than SREM.
SREM is the first tool in automatiag the production of WSSP
software.

2. Module Generator

The Module Gemerator takes the output >f SREM and
acts as a PLECS-preprocessor producing FLECS code. FLECS,
as will be seen, actually produces the module sourca code.
MOG structures the application o5f modular ccde. MOG

79

Ly e e St e e PR .
A P UL SUP N S

LR SN M St S A S /ARl T Bea I an b e 2]

addresses only the module input and output. A central
dicticnary is used to define moduls input and sutput. MOG
also automatically inserts code into the waodule whkich is
used by another tool to trace, debug and time the mcdule.

3. FLECS

Fortran Language with Extanded Control Structures
(FLECS) 1is a tool which acts as a Portran pre-processor
generating For*tran 66 code. It has the capability +*o be
extended to generate Fortran 77 control statements. I+
takes PLECS code frcm the MOG as its input and conver*s i*
into valid Fortran sourcs code. It is a stand alone tool
not tying directly to the MOG. This is the tool which
yields the portability of the WSSF code. Carrently =all
support facilities but one at NWC utilize Portran 66. Code
generated by FLECS is tranportabls between the facili+ies.
FPLECS is the last major tool wused in the generation of WSSF
soft ware. The next two tools deal with the execution of a
test scenario using the software produced by the first +hree
tools.

4. AVSIM

AVSIM, Avionics Simulation, provides an interface
betwveen the avicnics hardware and the WSSF computer soft-
ware. It controls the debug, trace and tiaming options of
tha WSSF code generated by the MOG. The tool is able to
configqure itself in accordance with the data zcontained in
the input data file for the test. 1I% is able to turn on the
WSSF modules required to run a test of the OFP by analysis
of the test input data file. AVSIM runs the simulation.
This is an important automatic feature of the :est facility.
Tests are much easier to set up and run. Once input data
for a particular test is standardized, the ocutput data
expected by running of the modules AVSIM <turns on can be

standardized also.

[l o

PP ey

denlond ol b

£ .l mae o

5. A¥DOC

AVDOC, AVSIM Documentation, dgenerates predefined
forms from the module generator source files. These forms
include: status reports, symbol dictionary listings, cross
reference guides and keyword searches of the modules turmned
on by AVSIM in the execution of a ta2st scenario. It is able
to tie directly with the AVSIM and %0G tools. AVDOC can be
thought of as a book keeping program that expards AVSIM
information to produce predefined documentation forms.

6. Exanmple

After a standardized flight scenario is defined by
the OFP maintanance and WSSF personnel, it is broken into
modules. The WSSP personnel take 2ach module and define i+
in terms cf its requirsments in the SREM Requirements
Statement Language. After +his 1is processed, the Module
Generator structures the input ani output of <*he module in
FLECS code. MNOG alsc adds code which is used by the simula-
tion tool, AVSIM, to trace, debuqg and time the module. The
tool FLECS takes the output of th2 MOG and produces valid
Fortran source code for that module. The generation of the
mcdule is completed. AVSIM is used +to execute *he required
modules for a particular flight test scenario automatically.
Which modules are activated are based on the inpu+t data file
for the simulated flight tesst. Once the first three tocls
generate the module code, *the mojule may be stored until
activated by AVSIN. AVSIM also exacutes the timing, debug-
ging and trace code during the test execution. AVDOC is
activated wvhen a test is run to produce staniard fornms,
documenting the test execution.

81

R ihen :rv.v, LA B B i R A 2 A b ae a e pen 2o oo |
. SO T T L s T R e

A S A A N A A S AN A A A MM AN AR A MG A O A A A AT A AR Bt i A e A e At A o S R

7. WNSSF Iool Summary

These are the primary tools used to automate soft-
ware production and use 2t one WSSF at NWC. This me+hed-
ology =o establish an increasing capabilit in WSSF
development impressed the author =nough that it was fel*
that a similar approcach should ba taken on all OFP test
facilities. Exact tools used will depend on <the computier
resources available. Th2 notion of fixed flight scenarios
worked out between the simulator and maintenance personnel
should be adopted. Until the OFPs are structured properly,
the biggest payoff in increasing thes ability to meaningfully
test the OFP resides in the WSSP developmsernt.

82

e S PR S S . T LI PRI B A AP e T
WO B WY R U ST P AP S VAL

RN PR

J "GN T S W R VU

Y S AR O O

e s -I"- 3

1

P

WPOPN Py

L APus ol o

NI ONGI I
; <
: L@
X @

—
.

| -
A D) L AR LA f
- P R L ' AR

. 4 v, " « . .

..........

VII. CONCLUSIONS

A. CONCLUSIONS

The thesis concludes with sesveral observations and
recommendations concerning the devzlopment and maintenance
of future flight softwvare systems.

1. Desian It Right

Future OFPs must learn from the mistakes made during
the development 5f nearly every current operational OFP.
While it is not always necessary to design the flight soft-
ware in a high level 1language, structuring the code into
modules is crtical to keeping maintenance costs down. The
hardware system employed should be designed with enough
memory and processor capability to handle the first versions
of the OFP and expected updates without savere loss of code
structure during optimization. Documentation should be
produced in accordance with currzent guidelines. The produc-
tion of a well Jdesigned Software Requiremerts Document is
the minimal acceptable documentation. Methods for defining
interfaces for code developed by diffsrent sources need to
be defined. As aircraft computer systems become more
complex, single contractor develop2d OFPs will become rare.
The interfaces will prevent integration nigh+tmares when the
final product is brought together.

2. Development/Maint2nance Environments

Work should continue on environments such as FASP.
New environments need to be definel to support sof*warza for
future flight systems. Navy £flight software activities
should bLe allocated funds now to begin development of 1a

83

o

- " 1"
IR Y

E A

........

".‘ " - - - .. LI
At N AN T T T T T AT N " T e " .

S Tmo e
PR

Ty T . - it 2 2 ad .
o T R W T W W =~ w—w—v—v ~—x—

common development/maintenance environmen:t to be used on all

w4

. flight software. These general purpose environments would
te defined within guidelines that contractors must follow
during OFP development. When the Navy flight software
activities assume maintenance responsibility, the change

will be smooth and maintenance easier. This recocmmendation

URPLIDUPT W G L S WL

will not be cheap to implement, but if the quality cf future
flight software systems 1is +to remain high the mcney should

be spent now.

- Y
SPED WP Y Q)

3. Money

More funds should be allocata2d now +*o improve the

maintenance of operaticnal flight ssftware. As this thesis

hoped to propose, great sxpenditures on the current fligh+
software need not be made. When considered agaiust the cost
of a single aircraft it seems incrzdible that flight soft-
ware ac+ivities must spend operating funds to develop a very

. badly needed Software Requirements Document. The generation
of a SRD is not expensive when th2 savings it will generate
over the remainer of the OPP lifecycle are recognized.

4. ducation

——————— N -

Two reconmmendations concerning education are made.
The first centers around the personnel who make decisions on
flight software contracts and fund allocaticn. From the
observations made by the author Juring researzh for this
thesis, it was felt that past high lavel adminisirators of

flight scftware funds and contracts knaw nothing about soft-
ware at all. One manager of an OFP maintenance team relayed
the stcry of a high level administrator 1located well above
the trenches asking him hcw much did the flight software for
a particular aircraft weigh. He neaded to know this in
or.ar to allocate funds —concerning that software. When this

type of knowledge level is faced from those who control

84

A

v .
:
o
v
"-
i @
!

u."

e |

PN R T SN "s Ty

. . S Tt . .
[Vr S PR S RIS G ST R LT RS T Y PL N h'-l-l‘l““ ‘Af A-A.“U-‘u ..!A.A '.A .Ah' \.3. _-' 0 DA
R P

-~

SRS A0 JE ORI AP VPSS N

LY

|
q R Y T §

'. i .
ORI

WY

oY
l.‘(Pl i

X onom o
R T
x

e

A

»
#

s .
L L LA

¥

NASINN
LY W

-

B T AT PR S . '.
L et PR IPIRY S PRNPR 4 P, v V)

funds for software development and maintenance it is easy *o
se2 why some 5f the errors made in th2 past were ccmmi<ted.

Personnel who understand the natur2 of real time embedded

software and *he general principles of software engineering
should be placed in mcre responsibls positions.
The of

training new emplcyment in +he flight software

second aspect edacation revolves around

engineers for

laboratory. No facilities exist for training an engineer on
a system such as A-6 or F-14. The Navy should begin a
program vhere engineers are identified in the acadenic
institutions, sponsored and +trained in engireering and

conputer courses which would most help in working cn flight

computer systeas. This person would <+hen obligate to work

for the Navy for a minimum length of time.

B FIHAL CONCLUSIONS

in this thesis present
of funds

There are those who

All cf recommendations madz
difficult
aviation flight software maintenancs.
of these2
remains that if the

t hese

the

decisions concerning expenditures for
not needed.
Naval flight

difficult decisions must be

feel that th2 expenditure funds are
The fact

software is to continue,

high quality of

made and t+he money spent.

85

. . - .
......

e et LT e '-f‘. P L I St Wy -t "_\"‘. T T e e e L .
PR PPN WA 'y LT TR DA T IR S T A

PR AR A NS A T A S A St B

o

.....................................

LIST OF REFBRENCES

1. Heninger, K.L. and Kallander, J.W. and Shore, J.E. and
e Parnas D.L. Sof‘ware Regu;;gmen;s Documert for the
e -7E Al:craf g N3val Reseatch _LaboTratory

H‘moranaum Hepor 3876 Naval Research Labora+tory,

Washington, D. C., November 1978

2. Lientz, B.P. and Swanson E.B., Software Maintsnance
O Manageman Ep 67-79, Addlson-WesIey ~Publisking
VA Company, F980

3. Hamlen, W.T. and Fjeldstad E.F., %2_1ca tion Prcgran
Halntenance Stud Tutorial on Softvware faintanance,
Pp 13-3T, IEEE omputer Soci2ty Press, 1983

4. Bristow, G.,
of Flight SO
Science, _0Un
January 1980

Tco
Fwar
v

o 5. Van Horn, ©E.C., S9 st Evolve,
N ?gggware Maintenance, TYEEE Computer Society Precs,

- 6. Howden, We,
YA Env1ronnents, Co
Ao Nam gg 3
A Mach nery, 19

7. Wasserman,
Automated Deve
VOoIUGE TF NOED

o
=]
ot
1]
2
.
gy
[}
1]
-
{ gl
p
1|'<

»
n -0
al '—-'55"1 25“'
¥aTh

10. Parikh, G. and Zvegintov, N.,

e >d Jurorial on Sofiwar
" Maintenapce 1-11, IEEE Comput2r Society Prass, 1983

LAMCRR SR Sl s d el Ank il |

Software Systems Division, Pacific Missile Test
Center, Point Mugu, California, November 1981
13. Departaent of Defanse, Saftwarea Technoloqy for
Adaptable Reliable Systems PE33rim stra¥egy, pp 2-T%,
DepaT¥ment oI Defensz, Harch T9B2Z
|
1. Scheidewind, N.F. Software Maintenance: Improvement |
Through .. Betfet’ Z°PevalSpasnt . - Standaids - . 283
Documentatidn, pp.28-30 “NIval Postgraduate Schodl,
Monterey, California, Feﬁrua:y 1982
15. De Roze, B.C. and Nyman, T.H., _The _Scfiware
Lifgcycle- A Management and L2chaglogical ChRallsends it
he DeparTtment of Defense. TBEE Transacfions ©of
Sottwarte Engin€ering, volume 4, No. 4, July 1978
16. Shooman M.Ll., Software Engineering, Design,
Reliabiliit Management, P 15436” Computer 5cience
Ffes, HEéraw=H§I§7‘1983 PP ’ P
17. Nassi, I.R., A Critical Look at the Process of Tool
Beselopment: ~ Rp- lodustrial perspoctive, "pp B175T.
DigiZal Equipment Corporation, Maynard Mass, 83
18. Berkeley, E., Compu*er Assisted Documsn+tation of
Working ~ Binary Za_g._m uter Fg.t_g_o fams with™ Unknown
Documsntatidn Proceedings of € Third~Symposium_on
Computer 3ind Informatiodnal Software ngineering
Sciences, COINS III, Volume 2, Academic Press, 1971
87
‘_«;.;«3;;:.;};.:;. ey e , J

BIBLIOGRAPHY

Aregonne I1l1iAols, TUB3I™

T e
California, October 1983

Proko o Computers in the Nav Naval
Annapgiis, ﬁar?IEgat‘197 =42 2ail,

Sohar Inc compu* Science ar
of Software Too1E, -N3ETONST BU
- .'

Warnier, J.D.,
ytorial So
ress, Los Kngle
A
I

Wasserman,

tori%;: Softwa
ggg;;ggmentg, Compu¥sr~50TTety PYreEssE,
ol

...................
R T T e O R N T
........

'''''''''''''
.............

Brooks R., Using Behavior Theory of Progqram Comprehension
in Softwars Eagigesring. Tutorial™ of Sofiware ¥aint¥enance,
IEEE"Computer S5o0ciety Press, LOs AnzI=s, 1983

Corwell,, W.R., and Osterweil, L.J., .The goo%gag%éIST
Prgg;ggg;ngl Environment, Aragonna2 Natidnal “LAEboTaTOTY,

Gray . and Londcn, K.R., Documentation Standards,
Bran&on/Systems Press Inc. New YorK, 1959
Lientz B.P. and Swanson, E.B. and Tonmkins, Ge Eay
Ch1£Q§i§r1§£&E§ e Application Softwarsa Maintenance,
Communications of ¥he ACN, Volume 21, _Number 6, ASsociation
for Computing MachInery, few York, 1978
Lientz, B.P, and Swanson, E.B., Problems in Agoligg;iog
oftware Maintenance, Communications Of the. ACH, clame 24,
‘gg1er Y1, Association IST Computing Machinery, New York,
Naval Weapon enter, AV-8B Weapons System Suppoct Facilit
Aol FAV=8 acflgtg B AnCH NaVal WespShe CenPeroorEniRa-TaRs,
California, Ssptémber 1983
Naval Weapons Center, Sof tware Qegg;gggg_t Plan angd
Do;umeg;atgg% Standard,. A-7 FaciIity Branch, Naval Weapons
Canter, Ch Laxa, Cailfornla, 1982

’ Naval Weapons Center, _¥§EGE Development Plan for the F/A-18
Weapons stem Suppor Eag;l;iﬁ, Naval™ weipons UTenter
iiTcTratt eapons Enf gration epartment, -hina Lake,

e 1o RRESHSBIHS

................

| SRR

b

y -

M o P
' 7 «
RPN ST RN O

.......

INITIAL DISTRIBUTION LIST

No. Copies

1. Deferse Technical Information Caenter 2
Camden Station | |
Alexandria, Virqginia 22314

2. LibrargasCode 0142 2

Naval tgraduate School
Monterey, California 93943
3. Department C%airman Code 52 1 |
Department of Computer Science
Monterey, California 93943

4, LT. Robert B, Upchuarch 2
230 East Parkway Drive
Columbia, Missouri 65201

5. Dr. Gordon Bradley Code 52BZ 4
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Capt Bradford D. Mercer, USAF, Code 52BI 1
Department of Computer Sc¢
Naval Postgraduate, K School
Monterey, Califcrnia 93943

7. Steve Underwdod, Code 3192 1
A~-6 Software Development Branch Head
Naval Weapons Center,
China Lake, California 93555

.
[
2

89

I3 3D I. a
a7

O
el

.l " a
AR

=

-

i-'f (._{._....‘.._.~._.”).';‘-. T T o T SRR

- . ., . - - ST .'_c“ q'_~'.-“-'_ R - P T .t L, .. EN - . . N

NV R e T R I R, Y R T S A O S SR S e ;i
T P R TR G N W NN I SR S N 4R V- N i AT U R L T R T

L]

PP

