
D-A14i 949 IMPROVEMENTS TO SOFTWARE MAINTENANCE METHODS IN REAL ii
TIME EMBEDDED AVIATION FLIGHT SYSTEMS(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CR R B UPCHURCH DEC 83

UNCLASSIFIED F/G 9/2 NL

mEEEEElhEEEEEE
EEEEEEEEEEEIIE
IIIIEIIEEEEII*
EEEEIIEEEEEIIE
IIIEEEIIIEEEEEEEEEEEEllll

W.*- W.* V.. . 77 ...

/*

1

.4v

.4,

.'~

. -1

112 111112.2

V . 1112.0-L1111II a-

-AIMNAL BUREAU C STANOARDS 1063 -A114

...

b_ .. .,- -. . ,, - .- ,-,,- . 1-.5 .)1 .4 ,-~ j 1.6 ,, .,, . ., . -. ., , -. . . . -.

,4.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

4,.<

DTIC
EECTE

J UN 1 1 84

THESIS
IMPROVEMENTS TO SOFTWARE MAINTENANCE METHODS
IN REAL TIME EMBEDDED AVIATION FLIGHT SYSTEMS

by

CD
Robert Burton Upchurch

LU December, 1983
._J

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution unlimited,
.'. 84

-... 8 06 11 125
4" . '.. * ..-.

"~~~~.%,.-" ' ",. ,],.... . .. • . .-..-.,' v , , ,.' " ..- , ; , • ,. ,., ' ., .. -... " - " - - , ., , - . - ., ." -,..,- ,,,,,. . ,, , .. - .. ,4..

ff;LASUVICATIZW 0F THInS PAGE (35mm, Data ontwed)0
PAGE READ INSTRUCTIONSREPORT DOCMENTATION PAEBEFORE COMPLETING FORM

mumGRV2. Go0 0. CIPIENT'S CATALOG NUMBER

S. VPZ OF REPORT Sk PERIOD COVERED -

y~ethods in Real Time Embedded Aviation Deebr,18
* Fliht Sytems . PERFORMING ORO. REPORT NUMBER

Ag wome~11. CONTRACT OR GRANT NUMBER(@)

Robert Burton Upchurch

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Naval Postgraduate School AE OKUI UUR

Monterey, California 93943

I I-. CONITROLLING OFFICE NAUR AND ADDRESS 12. REPORT DATE S
Naval Postgraduate School December, 1983
Monterey, California 93943 13. NUMBEROFParis

AppMOITRv E C for E pulcOCSo relee disCtriton unlimite IS. SEUIYCAS.(fCoeot

1. SUPPLEMENTARY NOTES

Is. KEY WORDS (Coeri o .. ere side Si asoeatian d Sdentifir by limoc nimbe)

Software maintenance, software lifecycle, aviation software
maintenance, OFP documentation, OFP testing

ft. ADITRACT (C&oMWhn at roe. aid, I netety -e $deip by black nmbr)

Software maintenance costs in Naval Aviation Operational Flight
Programs (OFP) are very high and are projected to climb higher
in the future. Maintenance costs are high due to poor initial -

design, limited programmer and system resources, poor documenta- ,.
tion, the conditions under which the OFP must operate and the
difficulty involved in performing meaningful flight software
tests. The primary factors which produce the stated problems

L~ih ~ ~ ~discussed, (Continued)

0W r0=871 w3 cIn Oat 0 I si OSSOLETE

S/N 0102. I.P. 014. 6601 1 SECURITY CLASSIFICATION ot TwinS PAGE (When, Data Entorea

L -'

89CUITY CLASSFICATION OF THIS PAGS[(WhM DAIM Emee.0

ABSTRACT (Cont inued)

The maintenance phase of the software lifecycle model proposed
for standard application software systems is contrasted with
that for real time, embedded, aviation software systems. A
limited set of software tools and methodologies which are cur-
rently available and would greatly aid the system engineers
tasked with OFP maintenance is proposed. These tools and
methodologies center on two areas of flight software maintenance
documentation and-testing. The thesis concludes with recommend-
ations for future aviation flight software systems.

5"

_2/2

El

S , N 0 10 2 - U "- 0 14 - 6 6 0 12

SErCURITY CLASIFPICATION OF TWIS PACK[(lMI 401 l ie

Approved for public release; distribution unlimited.

Improvements to Software HaIntenance methods
- in Real Time Eibedded Aviatian Flight Systems

by

Robert Burton Upchurch
Lis ut e;ant United States Nav~

Submitted in partial fulfillment of the
reguirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL P0SI!GRADUATE SCHOOL
December 1983

Author:

Approved by:__

thesis Advisor

Second Reader

Chairman, Department of Computer Science

1* Dean of Informa ' d Policy Sciences

3

ABSTRACT

Software maintenance costs in Naval Aviation Operational

Flight Programs (OFP) are very high and are projected to

climb higher in the future. Maintenance costs are high due

to poor initial design, limited programmer and system

- resources, poor documentation, the conditions under which

the OFP must operate and the difficulty involved in

* performing meaningful flight software tests. The primary

factors which produce the stated problems with aviation
* software systems are discussed. rh. maintenance phase of

the software lifecycle model proposed for standard applica-

tion software systems is contrasted with that for real time,

embedded, aviation software systems. A limited set of soft-
ware tools and methodologies which are currently available
and would greatly aid the system engineers tasked with OFP

maintenance is proposed. These tools and methodologies

center on two areas of flight software maintenance; documen-
tation and testing. The thesis concludes with recommenda-
tions for future aviation flight software systems.

V.

4'.,'

.%42

TABLE OF CONTEITS

-. INTRODUCTION 10

A. THE PROBLEM 10

B. THESIS OUTLINE 11

C. THESIS ORGANIZATION 12

D. RESEARCH METHODOLOGIES 12

1. Literature 12

2. Laboratory Vists.14

II. BACKGROUND 15

A. INTRODUCTION 15

B. A-6E FLIGHT SOFTWARE HISrORY 15

C. NAVY SOFTWARE ACTIVITIES 17

D. AVIATION SOFTWARE MAINTE.IANCE PROBLEMS 18
I. Platfourm 18

"I 2. Aircraft Lif espan 18

3. Independent Activitias 19

4. Concurrent Activities 20

5. Real Time 20

6. Reliability and Recoverability 21

7. Program Complexity 21

8. Documentation 22

9. Training 23

10. Hardware Limitations 23

.-. 11. Aircraft Populations 24

A_ 12. Human Factors 25

13. military Standards 25

45$ 14. Deadlines 26

15. OFP Testing26

16. Scope of Maintenance Changes 27

5

:;.:_:

,,0, ,

III. MAINTENAINCE IN'NAVAL AVIATION FLIGHT SOFTWARE . . 28

A. INTRODUCTION 28

B. WHY SOFTWARE? 28

C. SOFTWARE MAINTENANCE 30

D. SOFTWARE LIFECYCLE 31

E. MAINTENANCE LIFECYCLE 35

F. AVIATION SOFTWARE MAINTENANCE LIFECYCLE . . . 37

G. SOFTWARE TOOLS 41

1. Definition 41

2. Software Tool Usage 42

H. PROPOSED SOLUTIONS 45

1. OPP Rewrite 45

2. High Order Languages 48

3. Extensive Environments .. 9.... . * 9

4. Adding Hardware49

IV. SOFTWARE ENVIRONMENTS AND FASP 51

A. INTRODUCTION 51

B. ENVIRONMENT DEFINITION 51
C° PAS P a. 54.

V. IMPROVING OFP MAINTENANCE TH3U.3H

DOCUMENTATION 59

A. INTRODUCTION 58

B. DOCUMENTATION ISPROVEMENrS 58

1. Electronic Documentation Storage 62

2. Software Requirement Document o . 65

3. Aircraft Performance Specificali a

Document . o . o 72

VI. OFP TESTING IMPROVEMENTS 74

A. INTRODUCTION 74

B. WEAPON SYSTEM SUPPORT FAZILITY o 75

C. STANDARD FLIGHT TEST SCENARIOS 77

D. WSSF PRODUCTION TOOLS 78

61

- ' ";t"'' ' Lr %J,'") * '', : '-% ;"; ');."";';"."-" -.--'" "-""-'',-.W-'--'-'-"/--'-"..-..::'...".-;..

... %., i- ! / t i . .%-4 l !qJ.l l % l l t l i l . r i i -- * .

1 SREM 79

2. Module Genr ato 7
3. FLECS s. *.. e %. . . o. 80

5. AVDOC 81

6. Example 81

7. VSSF Tool Summary 82

VII. CONCLUSIONS 83

A. CONCLUSIONS 83

1. Design It Right 83

2. Development/Maintenaace Environmeats . . . 83

3. Money 84

4. Edacation 84

B. FINAL CONCLUSIONS 85

LIST OF REFERENCES 86

BIBLIOGRAPHY 88

INITIAL DISTRIBUTION LIST 89

17
*. w

-- 4W

.,-

.4

,%

7

- ' % * **) ~** * -= * : * ~ *

- ~ *1 p ~U ~I -*E ~ i-*~- -. W-i---. 77 -77- -. -a- * * - --

,..

LIST OP T&BLES

,I. viation Lifscycle Terms 39

II. PASP Language and Computer Support 54

-8

.

I 1, J " 2 2,2.2 2.2 "_ 2; , '' ''':' .:. ,'. '. "i,...'''''''''''.'....¢2. .. zg'o . ""'-'i""--2":"

.5'

LIST OF FIGURES

3.1 Boehm Software Lifecycle odel 32

3.2 Parikh and Zvegivtov Maintanance Lifecyzie . . . 36

3.3 OFP Development/Maintenanca Lifecycle 38

4.1 multiplicative software Pr~ductivity Factors . . 53

-S..

N

.'*- 9

2-5'2

F', . , . . . o.

A. THE PROBLEM

L"

Software maintenance in Navil Aviation Operational

Flight Programs (OFP) has become very difficult and costly.

Costs will continue to rise as new weapon 3ystems and

mission requicrments are integrated into the various opera-

tional aviation platforms. Changes which reflect hardware

improvements, mission changes, or improved algorithms are

time consuming and can lead to ioa; delays in delivery of

the updated syst em. Software maintenance problems

concerning the OFP are compounded by the environment in

which the OPP must operate. This operational environment is

a real time, limited hardware, limited support resources,

and very tightly time constrained. rhe original design of

the OFP itself was often poor and little documentation is

available to the maintenance team. The OFP is written in

either assembly language or a very low level programming

language. Changes are made under a strict time table.

Before any redesign or implementation of a change to an OFP
nay begin, a large effort must be expended to fully under-

stand the OFP and the impact the proposed change may have on

the entire program. Testing is a time critical task which

consumes a significant amount of maintenance resources. F

The maintenance effort is further complicated by a lack

of trained system personnel. Personnel turnover at the

software maintenance activities has been approximately ten

percent per year. System programmers take on average three

years to train before they able to be assigned the implemen-
tation of a significant change to an OPP. During this
period the system programmer may be able to accomplish

10

e W.

A L ~ ~ .4 "-- °' "'LPJ" "
" '

' P . * . '.*. '.*.,.. .. - , - .'.'. *. . ".-. " " ". ".""*' ,

little useful work for the maintenance activity. Due to tha

generally poor documentation and tne complex code of most

OFPs there ars only a handful of people who fully und=rstand

a particular 3FP. Lcss of these key personnel would result

in a severe reduction in the capability of the software

maintenance activity to continue at acceptable production

rates. There is no improvement in the availablity of compe-

tent system personnel predicted in the near future.

Due to the unique problems presented to maintenrance

activities by the characteristics of aviation software,

maintenance costs are very signifiz-ant. Fiscal 1984 oper-

ating buget for maintenance of six aircraft OFPs at Naval

Weapons Center, China Lake, California, is over 16 million

dollars. This figure, while seemingly high, represents only

75 percent of the requested budget. Resources are limited

and the situation is not likely to improve. Several major

proposed solutions have been suggested to improve the

productivity and the quality of the maintenance effort.

These suggestions range from complicated software

development/maintenance environments to complete rewrites of

the flight software itself. Budget limitations will prevent

any of these major proposals being realized in the near

future.

B. THESIS OUrLINE

This thesis focuses cn the two areas where rapid

improvement in the maintenance effort seems possible; docu-

mentation and testing. A set of software tools and method-

ologies which are currently available and which would '-ave a

significant impact on these problem areas are outlined. The

software tcols represent an affordable strategy for the

maintenance activities to improve the maintenance of current

flight software systems.

11

.., 'i ~~~~~. - :....,...-. ."". . .- '... :----- -- ,'--*.- - :.. . . • . ,o'_; ,,: . ,,. , ,v.'}, ::.,,,

R 'R

3 .-

a C. THESIS ORGANIZATION

The remaining chapters are organized in the following

manner. A scenario tracing the development and maintenance
of an operational aircraft system, the A-6 Intruder OFP, is

presented in Chapter Two. A detailed background of the

aviation software maintenance problem is given. Chapter

Three gives a brief discussion of a lifecycle model for
aviation software maintenance in cozparision with a standard

application program lifecycle model. Software tools are
defined and discussed. Unfeasible solutions are explored.

Chapter Four discusses software maintenance/development
environments. A software development environment which is

in use by the Naval Air Development Center, (NADC),
Warminster, Pennsylvania, is discussed. A set -f tools and

methodologies which center on two areas of OFP maintenance

and are felt to have the greatest iapact on the productivity

and quality of OFP maintenance are outlined in the next two
chapters. In Chapter Five the first of these areas, docu-

mentation, is discussed. Chapter Six covers the second

areas, OFP testing. The thesis concludes with suggestions
for future development of DFPs.

D. RESEARCH METHODOLOGIES

-' . Litera tu re ,

Manual and automated searches of the literature

produced a limited amount of information concerning
embedded, real time computer systams. Less was found on

maintenance of the software used in these systems. An auto-
q mated search of government research topics dating back six

years using maintenance, real time and embedded systems as

keywords produced an impressive work summary. Upon closer
examination, most research listed was not directly appli-
cable to the emphasis of this thesis.

12

!%I
-. . a - C . a

* . . .

Noteworthy work dealing specifically with a Navy
-"tactical aircraft (A-7 light attack OFP redesign has beer.

ongoing under the direction of the Naval Re -arch Laboratory

[Ref. 1]. In this study, not yet :-omplete, the OPP for the

k-7 was redesigned using software engineering techniques of

3 modularity, information hiding, formal specification,

abstract interfaces, and cooperating sequential processes.

The study is at the pcint that testing both in ground simu-

lators and flight tests is ready to commence. It will not

be known if the recoded OPP will perform as rejuired until

these tests are complete. The study offers interesting

insights into the prcblems associated with flight software

systems as they are now designed.

Definitions of the critial concepts of software

maintenance, software environments, and the software life-

cycle are readily available in the literature. Lientz and

Swanson [Ref. 2] contains an excell.nt definition of process

of software maintenance in large application program

systems. Fjeldstan, Hamlen, Bristow and Van Horn provided

further definitions used for software maintenance [Ref. 3],

(Ref. 5], [Ref. 4]. Guidance in t2e area of software envi-

ronments was found in articles by Howden [Ref. 6], Bristow

(Ref. 4], and Wasserman (Ref. 7]. Also the Naval Air

Development Center provided an interesting discussion of

their development/ma intenance environment, FASP (Facility

for Automated Software Production) 'Ref. 8]. The model for

the software lifecycle was developed from Boehm [Ref. 9].

The maintenance lifecycle was taken from Parikh and

Zveginitov [Ref. 10]. The definition of a software tool was

taken from work conducted by the National Bureau of

Standards (NBS) (1ef. 11].

13

I..,1-

2- i:

A wealth of information and ideas was gathered

during trips by the author to the primary Navy Flight

*Software Activities on the West Coast, Naval Weapons Center

(NC), China Lake, California and Pacific Missile Test

Center (PMTC), Point Mugu, California. The personnel who

must daily face the unenviable task of performing the main-

tenance on the flight software for all of the Navy attack

and fighter aircraft were able to give detailed descriptions

of their problems and suggestions for improvements. A tour

of the facilities at both activities helped the author to

gage the extent of resources available.

A conference attended by representatives from all

three Navy Flight Software Labs ani a group of researchers

from various academic communities was held 5-7 3ctober 1983

at the Naval Postgraduate School. Each Software Lab was

given the opportunity to present what they felt were their

everyday problems in dealing with flight software mainte-

nance and their ideas for future r9search. The conference

turned out to be both stimulating and an excellent source of

- inf ormation.

%!%

41"

., .*%

.

F:

... i. '- -. ;. _,.
.

.; l . ,. ' ,. . -. .; .. 1 , t , . r r rjr - o. .: . - r-

II. BCGBQgffD

1. IITRODUCTION

This chapter traces the developmant and current mainte-

nance of a typical mature flight software system, the A-6E.

The primary Navy software maintenance activities are identi-

fied. The chapter concludes with discussion of the unique

problems associated with real time, embedded aviation soft-

ware systems.

B. 1-69 FLI1GHT SOPTU&UE HISTORY

The k-6 Intruder is in all weather, carrier based jet

powered attack aircraft built by Grumman Aerospace

Corporation, Long Island, New York. Its prizary mission

definition is the accurate delivery of sizeable ordinance

loads and close air support to ground units under all

weather conditions. Since its initial design, it has taken

on other roles as a carrier based tanker, electronic warfare

platform and delivery vehicle for the Harpoon antiship

cruise missile. Many new weapon and sensor systems have

been added to the aircraft since initial production. These

include laser guided munitions, Heat Seeking kntiradation

missile (H&RM), Forward Looking Infrared Sighting System

(FLIR), and the Harpoon Missile. It is capable of carrying

both nuclear and conventional weapons. It is a subsonic

aircraft operated by the Na" And the Marine Corps from both

land and aircraft carrie -ed squadrons. The attack

configuration of the aircrc iannad by a two man crew,

pilot and bobadier/navigato_ N). The aircraft was first

flown in 1959 and even though the production line for the

1-6 has been closed it is planned to have an operational

lifespan well beyond the year 2000.

v.: 15

- •

*l1

km. '" ' "*"; * ',' '.. .- . " "" ": ' ."" ' " . -. ' - - '" "- ,' ,-",'-'.'-- _. . ",..- ,'." ..

The aircraft has onboard a single, CP3 computer with 32k
words of memory. The computer takes part in processing Iata

that is involved in nearly every aspect of the operational

of that aircraft. Navigation, weapon system management,

weapon release solutions, radar input processing, and elec-

tronic warfare functions are all processed in sone manner by
the onboard flight computer. Data -is input from several

areas of the aircraft, processed and continuously displayed

to the pilot and B/N. The computer is not necessary to fly
*the aircraft but without it the A-S becomes essentially a

jet powered W3rld War Two era bomber. All major changes in

V weapon capabilty and mission assignment have to be in some
manner incorporated into the hardware and software carried
onboard. The Operational Flight Program (OFP) is the soft-

ware loaded into the random access memory of the onboard
a ircraft computer that processes the various input and

display functions.

Grumman Aerospace was responsible for the initial devel-

opment, coding, integration and testing of the OFP. After

acceptance of the aircraft for fleet operations, Grumman was

contracted to perform all software maintenance on the OFP.

This maintenance consists of removing errors found in the
. OFP and the incorporation of enhancements to the aircraft

system into the flight software. Any change in mission

. definiticn for the aircraft must also be reflected in the

OPP. G rumman held the contract for maintenance until 1978,

when Naval Weapons Center (NWC|, China Lake, California was

tasked responsibility for all maintenance functions of the

OFP. Currently most actual redesign, coding and testing of

updates to the OFP are performed by perscnnel assigned to

NC; some work is contracted out, primarily to -rumman.

Entire OFP updates are sent to operational squadrons

approximately once every year and a half. Only safety of

flight or severe mission reducing software errors are given

16

*."-'" *" " '. -. " . . .- ' ?.. '. : - " .. '*.-. : .- "." -. -.' . -.- . -... - -. . ..- - -- - -, - - -

-. 1.77 7. 1.7 7

immediate attention between scheduled 3FP updates. There is

a method provided for squadrons to submit desired changes
and report OPP operating problems to NWC. A formal review

of desired changes to the OPP is conducted by the Navy

yearly with squadron and software maintenance personnel in

attendance.

There are many more enhancements desired by the opera-

tional squadrons than are able to be funded for incorpora-

tion into future OFP updates. Some enhancements are not

able to be adopted due to the nature of the computer system

itself. The system is hardware limited. The OPP itself

fills all available memory of the anboard computer. Major

changes are possible only by degraling another mission area

or by increasing computer performan:-e.

C. NAVY SOFTWARE ACTIVITIES

Outlined above is the history of one Navy tactical

aircraft and its flight software system. All other Navy

aircraft have a similar history concerning OPP development

and current maintenance. There are three primary Navy

Plight Software activities. Naval Air Development Center

(NADC), Warminister, Pennsylvania, is responsible for P-3C,

S-3A, and LAMPS Antisubmarine mission aircraft software.

Pacific Hissle Test Center (PHTC), Point Mugu, California

performs maintenance on the F-14A Fighter, EA-6B Electronic
Warfare platform, and various missle system software. Naval

Weapons Center (NWC) , China Lake, California, in addition to

the A-6E, has responsibility for the FA-18 Fighter/Attack,

A-48, AV-8B, A-7E, and UH1-J attack aircraft OFP mainte-

nance. In all cases primary OFP development was done by the
prime system contractor and maintenance of the software was

picked up at a later date by one of the software activities

listed above.

17

V. V. V -TV.

L

D. AVIATION SOFTWARE MAINTENANCE PROBLEMS

In the following sections the unique problems which

render flight software in real tize, embedded systems so

difficult and costly to maintain are outlined and dicussed.

Nearly all areas covered are unique to flight software and

are in addition to the normal difficulties encountered in

standard application program maintenance.

1. Platform

In every case the Operational Flight Programs are

run on computer systems carried 3nboard high performance

tactical aircraft. Space for hardware and support systems

is limited. Primary importance is placed on aircraft weapon

load and endurance capabilities. The fact that most Navy

tactical aircraft are operated from aircraft carriers

further defines and shapes the physical design of the

aircraft. Operating an aircraft at sea subjects the

airframe and internal components to severe stress during

catapult launches and arrested landings. Initial design of

the flight hardware system is often constrained within phys-

ical space, electrical power, and air conditioning support

limitations before the hardware is selected. Once the hard-

ware has been selected, the software is designed within

hardware and mission requirements of the aircraft.

2. =Mf hLespan

When the k-6 was originally designed in the late

1950's the aircraft was never envisioned to have a lifespan

until the end of the century. The lifespan of the aircraft

will approach forty-five years. rhat is equivalent to a

world War Two aircraft being flown today in a front line

squadron. The flight software and the ability to change it

to reflect new aircraft cap3Lbilities and mission

18

---- 4 , -. a -.-.

• . .1.' '',-'-:2 ¢ ' " , .. ,. , -

7,

Lo

requirements allows the aircraft to remain viable for such a

previously unheard of length of time. Aircraft are very

expensive and as higher performance demands are placed on

the newly designed airframe and tactical systems the expense

will grow. The high development ind purchase cost forces

the Defense Department into a position in whic, the aircraft

are utilized as long as feasible. This posture on the

utilization of these aircraft well beyond their criginal

*designed lifespan has several affects on the flight soft-

ware. Bission requirements and weapon systems which were

never contemplated in the original aircraft and flight
computer design are being incorporated into the aircraft P

system years later. The hardware wich very well might have

been state of the art during the design of the system can

quickly become the limiting factor as major changes to the

OPP are requested and implemented. Changes to the hardware

is not an easy task and is more expensive than the high

software maintenance costs. In the years since its initial

design and introduction to the fleet the L-6 his undergone

one major computer hardware update, while the software is

undergoing constant review and change.

3. Inej4l~ Activiies

High performance aircraft have a large number of

very independent devices which must operate in order for the

aircraft to perform its mission properly. These devices

include sensors measuring various flight parameters such as
- altitude, air speed and angle of attack. Radar, infrared

sighting, electronic warfare and weapon guidance systems,

are among the many devices that flight computer systems must

also react to. Input from the air-rew must be incorporated

into the flight system processing as well. Interfacing

those devices and inputs is a complicated task. This inter-
face impacts greatly on the software engineer attempting to

Ok 19

-.

- *, .• - -- - .. . , . -. -

modify a flight software system. Not only must he under-

stand the program itself, but he also must understand the

interfaces and the affect a modification will have on these

interfaces. This problem is prevalent enough that managers

of both Navy software activities that were visited expressed

a need for system engineers rather than strict computer

software engineers. It was felt that the aircraft systems

are complicated enough that it is sasier to train a systems
engineer to program rather than train the programmer to be

*an aircraft system engineer.

4. Concur~ _ &ctivitils

Not only are there large nuabers of activities oper-

ating independently, but these activities are also concur-

rent in their operation. All of the interfaces with sensors

. and data input are constantly updated so the program can

perform as required. Timing considerations in the update of

these activities in critical. Input from the flight crew
which is bursty in nature must be processed so that it is
handled in a timely manner ani does not degrade the
remaining processing. Display of required information for
the flight crew must be constantly updated. The display

must be accurate and in real time.

5. Ml ina

High performance tactical aircraft operate in very

hostile conditions. Complicating the software prcblem is
the high speed that the aircraft flys while in the hostile

environment in order to enhance its survivability. This

mandates that the processing of data in the flight computer

system must be done in a real time manner. The definition

.5' of real time for flight systems does not equate to the defi-
nition for a banking database systex. Single CPU cycles can

S become paramount. An aircraft traveling at 450 knots at two
4.2

" 20

I.%,i

'S -S.'S'm"* ","%'"* "". %)""l "%." " ')"" " % ""e
.

. . I %% % % ' "'I L ,. . ,, . .. I . ..' " k i % ." ") [" % "." "". .[2",

hundred feet in altitude requires that updates from the

onboard computer be timely indeed. A delay of milliseconds

can cause the delivered weapon to miss the target entirely

or loss of the aircraft itself. Every change incorporated

must consider every possible affect on the timing

constraints of the program.

*6. Reliability and Recoverabiit

The degradation of one aspect of :he flight software

system must not allow the loss of the aircraft. The expense

of the aircraft, aircrew and weapons requires high reli-

ability in the flight software system. The system must also

be able to recover from loss of input data resulting from

battle damage and continue to operate in a degraded mode.

The software must be protected against hardware failures as

well. Failure of the entire system must only occur when the

aircraft is damaged to the point of crew abandonment.

Further the system cannot tolerate a requirement to restart

the program due to a system fault interrupt or program crash

caused by a software error.

7. Po _ gollexity

Due to the timing constraints placed on the OFPs,

most are coded in either assembly language or a very low

* level programming language such as :HS-2 (P-3C) or Metaplan

* 4 (F-14). The ability to perform various software engineering

programming techniques commonly used in higher level

languages is lost. The original lesign of the program is

.--. often not modular. The lack of molularity coupled with the

ad hoc fashion in which changes have been made through the
7: years has left the OFP code extremely complex. & great deal

of effort is required to merely comprehend the OFP before

changes are even designed much less implemented. The iapact

of a change to a particular piece of OFP code Bay have an

21

- °..- .•

oon

impact on an entirely different unrelated section cf code.

A case cited during one of the laboratory visits concerned a

minor change to a section of code which dealt with naviga-

tion of the aircraft resulting in the inability to release

any weapons. The results of changes to the code is poorly

understood until the code is actually changed and testing of

the revised OFP is begun. As has been well documented in

V the literature this a very expensive time to discover rede-

sign errors.

The design of newer systems such as the FA-18

Fighter/Attack aircraft will show improvements in the ease

of conducting software maintenance on the flight software.

The A-6E has five identifiable zodules which have been

implemented during the last five years of maintenance by

NWC, the FA-18 OFP which was written by Hughes Corporation

of Long Beach, California shows a marked improvement in

modularity with over one hundred identifiable modules. The

situation seems to have improved much over the twenty years

between the design of the A-6 and the FA-18. The PA-18 OPP

is, however, coded in assembly langauge due to real time

requirements of the flight software system.

All Navy software activities tasked with OFP mainte-

nance had one common complaint. That complaint centers

around the lack of useful documentation received from the

original designer of the flight software. while the entire

subject of documentation is subject to debate as to its

proper form, what is commonly turned over to the Navy from
the development contractor is severely lacking. Even in the

newest systems (FA-18 and &V-3B) the documentation

received from the contractor has not been as extensive as

the maintenance acitivity desires. Usually a program
It listing is the primary documentation received. Maintenance

-2
"2 2

I.l

0 - -. , , ,. " -,: -...- , , .,. . ,, --- . ..- .

activities find themselves not having accurate perfcrmance

requirement documents on the aircraft itself or specifica-

tion requirements for the OFP. Documentation carried today

has largely been generated by the maintenance activity.

A problem related to documentation was identified by

Veetz, (Ref. 12], of PHTC concerning the difficulty of the

maintenance programmer in understanding the desired change

to an OFP submitted by fleet personnel. The information

contained in most deficiency reports was often found to be

limited and this slowed the problem identification process.

He also found that the managers felt that feedback from the

fleet was adequate while the technical engineers felt it was

not adequate.
9.n

As stated earlier each software activity faces high

personnel turnover. Hany studies have shown that the

required numbers of computer capable system engineers are
not being produced. Competition with industry is keen.

After a system engineer is trained adequately he may be

offered a position with the contractor of the system he is

trained on at a hefty salary increase. Training of a new
system engineer is an extremely slow and difficult process.

adding to the problem is that often while this training

period is ongoing this engineer may not be directly involved

in any productive work. Since the numbers of qualified
personnel is not expected to grow quickly and there is no

training institute for training engineers on specific

aircraft systems, all training must continue to be done

internally.

-. 1. .,tza Lmiatkos

As stated earlier, the hardware design of the flight

computer systems was often considered state of the art when

23

94

first installed in the aircraft. As the aircraft ages and

more capabilities are added to the aircraft, the hardware

can quickly become the limiting factor iJn implement ing

enhancements to the OFP. The A-6 was designd with 16K of

available RAN. aeserve memory was quickly allocatsd to new

functions implemented in the OFP within the first few years

of fleet operations. A major upgrade to 32K was accom-

plished in 1968, this quickly met with the same fate as the
original 16K implementation. The)FP of many Navy aircraft

* have zero percent memory and throughput reserve. This

factor leads to further complication of the OFP code when

changes are made. Additions of particularly large changes

to OFP code may require that certaia functions of the OFP be

either degraded or dropped altogether. Simply adding larger

amounts of reserve memory has not been the answer due to the

difficulties in making hardware changes to the aircraft

itself. Also there are many more enhancements awaiting

implementation that would quickly be incorporated if memory

were made available.

.,-.. 1 'I. =Er-1I~f_ 92aula n-_s

One problem facing the software maintenance activi-

ties as a whole is the limited number of aircraft of a

particular type being flzwn. At any given time there are

approximately 200 A-6 aircraft assigned to operational

squadrons. The number of computers and flight programs

' . represented by that number is not large enough to warrant

large expenditures for major software redesigns and large

- support environments which would lower maintenance costs.

Aircraft are axpected to be fully supported after production

lines have closed and the number of aircraft and funding

support is dropping. The A-7 production line has closed but

the largest change to its OFP was recently conducted by NWC

when the HARM system was incorporated into the aircraft

inventory.

24

12. Human Factors

Another obstacle facing the maintenance programmer

dealing with aviation programs is the human factors associ-

ated with input and display of data for the flight crew.

Human factors is defined as the functional task area which

is concerned with the aspects of human performance that

affect or are affected by the software [Ref. 13). The area

to which this definition refers falls primarily under the

input and display of data to the flightcrew. Changes to the

program which affect display are especially critical. The
display must be presented in such a manner that it does not

require undue effort for the flight crew to comprehend it.
Little is understood in this field of computer science.

Research is currently being conducted at PITC dealing

specifically with human factors as they relate to flight

programs. Programmers implementing changes to an OFP must

constantly keep in mind the affect of their change on any

display data. Guidelines for the affect on the flight

computer operators is not based on scientific fat rather it

is based on operator feedback.

13. Militarv Standards

Currently all software maintenance activities

operate under several Military Standards (Mil-Std) which

guide the development and maintenance of the programs they
cover. Primary in importance to the flight software systems

is Military Standard 1679k (February 1983) which covers
Weapon System Software Development. Unfortunately this

standard while good in its intent does not address the real

world situations of OFP development and maintenance.

Several of the active OFPs were written ten to fifteen years

prior to Mil-Std 1679 first being issued (1978) . Concepts

covered by Mil-Std 1679 were not applicable when these older

25

OFPs were designed. mil-Std 1679A requires the use of a
high level programming language in all weapon systems. As

has been mentioned earlisr, it is not possible to code

current OFPs in a high level Language due tc timing

constraints. NWC personnel have expressed some concern over

the requirements outlined in Mil-Sti 1679 and the difficul-

ties in following it on an OFP as complex as the A-6's has

become. PMTC personnel have no real complaints about it.

But it should be remembered that they are working on some-

what newer systems to which it can be more readily applied.

A review of Mil-Std 1679 is contained in [Ref. 14].

14. Deadlines

The software activities maintaining flight software

on operational aircraft often find themselves facing severe

deadline requirements. Safety of flight or primary mission

degrading problems with the OFP are processed on an imme-

diate basis requiring the possibility that all other OFP
maintenance tasks be dropped. If the redesign of the OPP is

-: not properly dons and the error is not discovered until late

in testing phases, nearly the entire process must be

repeated and delays in OFP updates may be experienced. In
order to meet strict deadlines ertain update features

cannot be accomplished. This constant time deadline influ-

neces the performance of the maintenance effort throughout

its cycle.

15. OFP Tetn

Before a revised OPP can be considered safe to

flight test extensive ground testing is completed. This

testing requires massive support facilities in the form of

flight simulators. The target aircraft computer is loaded
with the revised OFP. The support facilities suuround and

interface with the target system suppling input data to

26

..,...-..-. ,-....-.......- .?-. ...-... ~~~~..............-....-...... -.............-.... ,...-,..-

El -.- o- - - - • D . .7. C. -~

exercise the OFP. The support facility measures -:h.

" performance of the OFP under the simulated fligh- condi-

tions. Because of the complexity of the OFP code, poor

* documentation, and high reliability required, testing is the

most expensive of the operations performed on the OFP during

a maintenance change. Little is known on the exact method

to test the code to yield meaningful test results. The

nature of the OFP code itself and the mission it must

perform renders the testing of the code even more difficult

than normal.

16. Scope of [aintenance Chang.es

Industrial application programs normally face a five

percent per year code growth due to software maintenance.

The maintenance of OFPs produces somathing on the order of

twenty five percent code change per OFP update. The shear

amount of code required to make the changes during an update

cycle contributes to the difficulty of the maintenance.
After the completion of two to three OPP updates the code

may be significantly changed from the orginal program. If
not well documented, the high volume of maintenance changes

will render the program almost uafathomable. A problem

faced by the maintenance personnel is that the code has

already gone through several updates prior to being turned

over to the Navy.

27

NN

III. !IifI Z.NCE IN NkV&L u& ?Ov FLIGHT SOFTWARE

1. INTRODUCTION

The guestion of why software is the important product in

aviation flight computer systems is addressed first. A

general description of the software lifecycle and the main-
tenance lifecycle as related to aviation systems is given.

Proposed solutions to the flight software maintenance

problem are given. The following lefinitions are outlined:

software tool, software maintenanc-, lifecycle model, and

maintenance lifecycle model.

B. WHY SOFTWARE?

When first designed and built, real tize embedded

computer systems had their functional capabilities primarily

embodied in the electronics with software playing a minor

role controlling ancillary functions. Demand on the

". performance of these systems required that they be designed

with a greater degree of inter-system communication between

devices. This has caused the software of these systems to

*' shift from a minor role to one where the system functional

definition is in the software and the electronics are only a

means of providing for execution.

Boehm [Ref. 9]e defines software as the entire set of

programs, procedures and related documentation associated

with a system. The Software Technology for Reliable Systems

(STARS) Program Strategy Handbook lists in addition: defini-

tions, designs, testing materials and maintenance instruc-

tions [Ref. 131. Software is what controls the computer and

allows it to accomplish so much. The hardware in the actual

computer systems of the tactical aircraft undergoes few

28

1. ..,. .; , v .-" . -.,, ..v -' - --. .-'.' . . -,.. ., -,- -. , -. -- - - . ,- - -. , , -, ,, . ,,

o, .L

L
'9;

-. > changes throughout the lifespan of the aircraft. Y t -n o

flight software system is expected to be constantly upgraied

as additions and enhancements to the aircraft system a-o
implemented. These changes are primarily rs flected in

S software.

The U.S. Air Force experienced a situation that illus-
trates the case for software in embedded computer systems.

F-111 tactical aircraft were operated in two basic models.

In one, avionic systems were implemented in analog devices

while in the other the same systems were implemented in

digital devices. The Air Force was tasked to keep the capa-
bilities of both models equal. Several changes to the

systems were tracked and it was determined that changing the

hardware implementations was roughly fifty times as costly

as the software changes (Ref. 13]. The cost and time to
% design a software change is roughly equal in cost and time

" to design a hardware change. Hardware however, requires
, management of individual changes and physical copies of the

new hardware be maintained. Software is much easier to copy

on multiple tapes and quickly load into the individual

computers. The difficulties in implementing changes with

hardware are evident when compared to implementing the same

changes in software.

PHTC personnel point out the case of the F-14 as another

example of why improvements to the aircraft computer system

are best carried out in software. F-1 OFP changes are

promulgated approximately every two years at a total cost of

roughly two million dollars for each change development and

implementation. There are approximately 400 F-i aircraft.

Implementing the changed OFP in each aircraft consists of

merely loading the new OFP tape into the aircraft computer
system memory. The cost of a new OFP is approximately 5,000

dollars per aircraft. Anyone experienced in making equip-

ment alterations to military aircraft knows 5,000 dollars

29

I*"2- -- : ' ",'. . '. - .-.-.,.. • -..- -i~ - * *LL .., --. . ,' - .--- *

will buy very little. When considered against the cost of

an individual F-14 (i $30 million) implementing fliqht

: computer system changes through software is very cheap. If

AK all of the corrections and enhancements to the system had

been made in hardware the costs would have been in the

billions of dollars.

C. SOFTW&RE MAINTENANCE

Fjeldstad and Hamlen define software maintenance to be

incorporation of changes to existing programs, using or

modifying an existing approach or design then %inderstanding

and modifying or expanding existing program logic [Ref. 3].
Lientz and Swanson describe the primary types of maintenance

(Ref. 2].

1. Corrective Maintenance: correction of errors intro-
duced in the software through improper logic or coding

-'.>,. errors.
2. Adaptive Maintenance: satisfaction of chaiges in
processing environment. Input and, outputrequirements
often change. This case was erperienced with the A-6E
system when the aircraft's navigational suite wasupgraded.

S. Perfective Haintenance: jnhiqcement of the system for
increased performance and maintainability. This includes
improvements to documentation ind recoding to improve
program efficiency. Again using the A-6E as an examRle,

. the aircraft was tasked to perform low level bombing from
two hundred feet vice five hundred feet. This change was
induced to increase weapon accuracy while also increasing
aiTcraft survivabl-ty against heavily defended targets.
This improvement in the air-rift mission definition
required extensive OFP software modification.

Lientz and Swanson in (Ref. 2] offer the following

statistics on the allocation of maintenance time. Twenty

percent of the maintenance effort involved corrective main-

tenance. Adaptive maintenance accounted for twenty five

percent. Perfective maintenance a:counted for the rest of

-. the time at fifty five percent. Enhancements accounted for

the largest share of the perfective maintenance at forty

nine percent of the total maintenance effort. These figures

30
'Z,', -

were taken from a survey conducted of large data processing

organizations.

Results of an informal survey of NWC maintenance time

yielded slightly different figures. Corrective maintenance

of errors which are present from the last JFP update or

earlier, only comprise five percent of the maintenance time.
Adaptive maintenance is roughly the same as the Lientz find-

ings at twenty percent. The larg-st share of the mainte-

nance time in OFPs resides in perfeztive maintenance. This

involves mainly optimizing the code and incorporation of

enhancements to the aircraft system as a whole.

Van Horn defines another form of software maintenance,

that of restructuring, [Ref. 5]. Restructuring involves

change to the internal structure of the program while not

changing the overall external behavior. This is interest-

ingly a consileration for improvement to many of the older

OFPs and was implemented by the Naval Research Laboratory

(Ref. 1] for the A-7 OFP.

. D. SOFTWARE LIFECYCLE

Figure 3.1 presents the stanlard waterfall software

lifecycle as seen in Boehm [Ref. 9]. This model represents

the developmeat of a standard large scale application soft-

ware system. It is based on two assumptions:

1. achl phase of the lifecycle is 9ulminated by a verifi-
caton phase that attempt9 to aliminate errors in the
output of that phase. This is axpected to be accom-
plished prior to moving to the next phase.

2 Iterations af eariier phase products are performed in
tie next succeeding phase.

Each phase of the Boehm Lif-cycle Model is briefly

described below:

A. Feasibility: Defining objective of the proposed soft-
ware product. Is it feasible to be accomplished? And
will it be superior to the system that it is proposed to

*m replace?

31

F **1*** Y*. **.. ... N .*.-

*d. *. I

I Is System " ltdation
"I %qI

I Software altdatton

IProduct lertf tcatton

Detailed ertftcatton

'De-ign

~Cocde nit. Test

Product Veriflcatlon

II

Reva I f aat e - Maintaivn haseout

ft

*p t,- -- I

""." Fiqurvz' 3.1 Boehm Softwar~e Lif ecy cle Model.9."

• ev., 32

.*,,,t#

___ _ _ .,___.__..___,._____._____-__.-._.-._-. .'..._.__,______.. .

-f.-,

B. Requirements: A validated specification of required
functions, interfaces and performance aspects or the
proposed system is generated.

C. pesign: The high level hardware-software architectural
design, control structure and iajor data structures for
the system are outlined.

D. Dqtailed Desig4: Cqmplete verified specification of
"V" the hilh level design is produced. Preclse algorithms,

data structures, interfaces and control structures are
designed. Several refinement steps are involved as
detail of system is realized.

E. Codg: The software portion of the system is imple-
mented in executable code. Testing of in i.idual compo-
nents begins.

F. Integration: The software product is meade functi(nal
and is run. individua components are inte rated into
subassemblies and finally into the fina software
product. Initial errors are removed from software as
they are identified. Program testing continues.

G. omptleentatign The softwar9e-hardw§re system is
b rought into inita operation. Testing ;s completed to
determine if the overall product meets design objectives.

H. Maintenance: Error corrections are made to the opera-
tional pro ram. Perfective and adaptive changes are
accomplishel as needed.

1. Phaseout: A replacement system is designed and
implemented.

The system is sequential in nature and the start of any

7 phase assumes the completion of the proceeding phase. The
verification and validation part of each phase is defined as

follows:

Verification is the process by which the truth of corre-
spondence between the software itself and its specifica-
tion is assertained.

yalidatijn establishls the fitness f the software system
in carrying out its inteneioperational mission.

Boehm further states that thq lifecycle as proposed

allows for a high degree of control in the configuration

management of the product. The manager is able at any given

time in the development/maintenance process to define the

specific state of the project in concrete terms.

Once a design strategy following the lifecvcle model is

implemented the project baseline can be established.

33

•. %*

According to Boehm the three major advantages gained from

this baseline are:

1. No changes are made to the system without agreement of
all interested parties.

2. Higher threshold for changes will stabilize the
product.

3. The overall manager controls the configuration manage-
ment process.

The lifecycle model as presented by Boehm is a well

known and accepted model. The question remains just how
well does the model comply with real life systems. When

comparing this model to the development and maintenance

lifecycle of a typical aviation software system it seems not

to compare well at all. The current method of operation in

OFP maintenance has the maintenance activity stepping into

the lifecycle model at the next to the last phase. The

software activities have in the past had little input into

the software development process conducted by the prime

system contractor. There is little or no communication in

the form of documentation when the software activity assumes

responsibility for maintenance. The logic and design meth-

odologies usel by the original designers are lost to the

maintenance personnel. The continuum of the lifecycle model

as proposed by Boehm is lost when the Navy begins mainte-

nance of the OFP.

Boehm also gives little mention of the maintenance phase

itself in his discussion of the lifecycle model. Several

studies have found that the maintenance phase of the life-
cycle the most expensive. Estimates range from fifty to

eighty percent of overall system costs are involved in soft-

ware maintenance of a large application software system

(Ref. 2]. A U.S. Air Force study estimated that software

costs during developemnt averaged $75 per instruction.

During the maintenance of an operational system the software

34

. -. *-***o-.* * **.-*.-C . ..-'.- .*-*-.* * *.•

. I .

costs increased to $4000 per instraction (Ref. 151. This

trend is reflected in aviation flight software systems as

the lifespans for the aircraft they serve are extended.

". HAIZNTENICE LIFECYCLE

The maintenance phase can be thought of as a lifecycle

within the overall lifecycle. Incorporating enhancements to

a system cr repairing errors not found during initial
testing phases will involve a redesign effort similar in

many respects to the initial design of a system. Parikh and

Zvegivtov (Ref. 10], review a maintenance process in the

opening comments to a chapter in their book on Software
maintenance. Figure 3.2 illustrates this process. This

representation is based on changes being made to a fully

operational system. Their simplified maintenance lifecycle

is defined as follows:
1. Understand the Request: rhe user of the system
reguests a change to an ope;ational system be made by the
maintenance activity. This request is written in a
lan auge familar to the user. The maintenance programmer
must understand the request and the current program prior
to design of the change.

2. Transform Request: Using a description of the existing
and requested systems, tne d&fferences between the two
are sought. The process of designing for the change
involves reducing the differencas between the existing
and the new system. The existing system is revised to
match the new system.

3. Specify Change: A CVt Line and Patch are specified.
The Cut Line is the section of :ode to be modified. The
Patch is defined as the new coda to be implemented which
reflects the new *yst~m within the Cut Line. The selec-
tion of ha uut Line s difficult because it is selected
to minimize interact-on between the existing system and
the Patch. Lowering this interaction will reduce the
chances of dama e to other secttons of the p;o gram not
necessarily related to the Cut Line. !odul rit of the
program is a key aid in selaction of the Cut Line.
rogram complexity is another issue which affects theinteraction of the Patch once inserted within the CutLine.

4. Develop the Patch: Thq Patch is actually developed in
a programming langauge using standard development techni-
gues. The ultimate goal of the Patch is the
accomplisent of the reuested change to the existinq
plcgram. The Patch should be designed such that 1t wilyt within the Cut Line.

35

V. .

I- 777a- .7W.--7
I'I

(I

Request ,'
Spec fy

changeI I

ChageI
Develop

1 ...
I n

I I
I I
I I

I

Figure 3.2 Parikh and Zvegivtov Haintenance Lifecycle.

36

-..-....

5. Test: The charge is installed and tested within the
development environment. The Zut Line is tested for
agpropriate switching between th. existing functions and
t e new code. The impact of the new code .o code outside
of the Cut Line is identified. Regression testing is
performed where needed.
,s iRele sn Oceetests are performed the updated system

i.s instale& an~ released.

The model for the maintenance -ycle presented by Parikh

and Zvegivtov can be seen as a refinement of the overall

lifecycle presented by Boehm. Its major concern is in the

understanding of the request, relating that knowledge to the

existing system and designing the =hange such that it will

not degrade the updated system. Interaction is addressed

more specifically. It is perhaps optimistic in assuming

that the Patch can always be installed within the Cut Line.

Also the selection of the Cut Line while difficult in a well

designed program would seem nearly impossible in a complex

software system. The rather difficult and extremely large

area of testing is given a quick review in this model. The

cycle assumes several characteristics of the existing

program, such as proper design, adequate documentation and a

well developed maintenanca environment. This may render

this model somewhat simplified for the embedded computer

system. A model for the aviation software lifecycle is

presented next.

P. AVIATION SOFTV&RE HAINTENAICE LIFECYCLE

The aviation development/maintenance lifecycle as

presented in Figure 3.3 was taken from a slide presented by
NWC personnel. Further discussion was held with maintenance

personnel to determine how close the real maintenance effort

parallels this definition. The model presented roughly

follows the Boehm model. The aviation model is presented in

greater detail. Each phase is well documented by required

submissions of reports and specificitions. Reviews, audits

37

• -..-. ,;.. . '.,..- . . .-.... . -.-.-... -. -o - . .-....-... .e ,

PPS.IDS.

Software Sctem HardwareS" I

SWRR I

Piqure. a Devllomnt/ardwsare Lifcyle

3s
1'.n

and walkthroughs are scheduled at several points of -the

model. Table I defines the abbreviations used to represen:

the documentation and reviews shown in the model.

TABLE I

Aviation Lifecycle Terms

Lifecycle Documentation

MENS: Mission Element Need Statement
SRS: System Requirements Specification
PPS: Program Performance Specification

I IDS: Interface Design Document
PDS1: Preliminary Program Desiqn Specification
PDS2: Program Design Specifica ion (Final)

I DBDD: Data Base Design Document
PP: Program Package

, PDD: Program Descrlption Document
SDP: Software Development Plan _
CMP: Confi uration Mani ement Plan
QAP: Quality Assurance Plan
CPTPL: Computer Program rest Plan
CPTS: Computer Program rest SpecificationI CPTPR: Computer Program rest Procedures
CPTR: Computer Program rest Report

Reviews and Walkthroughs

MMR: Mission Requirement Review
SER: System Requirements Review
SWIRR: Software Requirements Review
PDR: Prpliminary pesign Review
CDR: Critical Design Review
MCR: Module Code Review
FVRR: Formal Validatica Readiness Review
DRC: Des in Review Comaittee
FCA: Funcional Configuration Audit
PCA: Physical Configuration Audit

The model as presented is well structured and well

defined. Unfortunately the reality of what actaally occurs

during development of maintenance code may not be accurately

represented by this model. There are several reasons for

this. In many of the older flight systems the exact process

of software maintenance was not precise and was difficult to
define. Some of the documentations specified and reviews

presented in the model are currently not being conducted in

39

•

Ae.c

-

[. < .. , . , , .. , . ., ., . • ,. .. ,,.

-. .W.*-.r 4 . - -7. T r- -

every flight software system. Th model presented reore-

sents a standard that several of the OFP maintenance teams

are attempting to achieve. What is actually occurinQ is

only partially represented by this aodel.

Nearly all flight systems undergo few hardware changes

throughout the lifecycle. The hardware branch of the model

only applies to new development of an entire flight system

or a major midlife modification. The year to year software

maintenance of the OFP has the software branch of the model

taking on the most impact. New addi-ions to the hardware

and complete changes are usually done with hardware already

in use in cther systems. This also significantly reduces

the amount of time spent in the hardware branch of the

lifecycle.

The integration phase of the aviation model represents

primarily the integration of the old and new OFP code. The

complexity of older system code makes this much more diffi-

cult than the integration of the entire OFP with the system

hardware. Also code may be developed by parallel develop-

ment activities. Ccntractors are often utilized to perform

the generation of portions of maintenance code. Since these

parallel redesign efforts are- usually conducted on different
systems, conversion of the code developed outside may be

- required in order for it to be intagrated and tested at the

Navy software facility.

One high level manager involved in the maintenance

effort on one of the older OFPs told of the reluctance of

the system engineers and programmers to adopt any standard

modal for the maintenance process. They are used to doing

it a certain way that is comfortable to each indiviual

programmer. A standard is difficult for them to accept.

The stages are well documented. The reviews and walk-

throughs require the programmer to spend a great deal of

time preparing for them. One programmer complained of

• °

['4

spending over twenty hours preparing for a review on a small

section of OPP code which required one hour of time to

recode.

Even though it may not be exactly standardized for each
maintenance team, the model presented in Figura 3.3 presents

a good general representaion of what each OFP undergoes at

one time or another during development and maintenance.

G. SOFTWARE TOOLS

1. Definition

Software tools are defined by the National Bureau of

Standards [Ref. 11], as computer programs that aid in the

specification, construction, testing, analysis, management,

documentation and maintenance of other computer programs.

Shooman divides these many functions into four broad

catagories, (Ref. 16].

a. Program editing and storage

b. Program processors and preprocessors

c. Program configuration and control

d. Testing and debugging processes

The purpose of a Software Tool is to aid the programmer in

such a manner that productivity and the product quality are

increased. They are designed to be used many times on

several different projects within several different

environments.

In (Ref. 7] Wasserman gives the attributes of a

useful tccl as the following:

1. Singularity of Put ose: The tool should be designed
for one primary use, garrying out one well defined func-
tion.
2. Ease of Use: Tbe tool should not burden thq user. ie
pro rammer shoul want to use the tool to increase
proluctivity.

41

17-

3. Self Documenting: The tool should not have large hard
copy documentation but instead most documentation should
be in the form of an interactive help facility.

4. Consistency: Each tool should be consistert with the
others of the environment in which they are contained.
The product of a tool used earlier in the lifecycle of
the software should be able to be used by another tool
used in a later phase. To achieve this tools should
interact through common interfazes. Tools within each
environment conform to a set of standards so that lami-
larity with one tccl will help in learning another tool.
5. Adptqbility: A tool should be able to adapted to sg e
user desires. The tool should have several modes avail-
able from a basic generic mode up through the full design
capability of the tool.

N" .6. Local Intelligence: The tool is able to capture useful
data from the environment in which it is employed.
Normally this is stored to a data base where it may be
further processed for documentation and configuration
management purposes.

2. Software Zool Usaqe

There seems to exist a gen.ral agreement within the

literature that well designed software tools are highly
desirable. Precise tool definition and terminologies are

not well defined. In [Ref. 11], a taxonomy of software tool
definitions and terminologies are standardized in order to

allow comparision amcng different tools. Software tools are

large computer programs, which like any other programs, face
the same development and maintenance problems. They are

expensive to develop and may not always meet the original
specifications.

Other than expense there are several other reasons
that software tools have not found wider use. Nassi
(Ref. 17], lists several general catagories which have hind-

ered the use of software tools.

a. General Nature of Many rools

Some tools are very general in their inlLnded

use and are not at all suitable in some specific systems

without a large modification effort. To develop a specific

tool for a specific application may not be worth the

42

_ " ',, . : , " "': , -., , *, ., " , , .. , , * * . ..- *, . , : ., - ..

development costs when compared to the savings 4t will

generate. This is a common case for lack of tool use in the

aviation software field. Some aircraft computer system

populations are low and do not warrant the expensive that
development of a tool for that particular OFP would entail.

b. Learning Curve

Programmers accustomed to working in a certain

environment may find the pain of learning a new tool not

worth their effort. Even if the programmer can be shown to
benefit greatly from the use of a new tool, habit may make

the adoption of that tool difficult. A tool which is

particularly hard to use or learn is doomed to failure.

Usability of the tool should be such that the programmer is

not encumbered by its use. It should compliment the envi-
ronment in which it is used , not fight it.

c. Functionality

If a tool is not suitable for a specfic job it

may create performance burdens on the system on which it is
being used. The overhead created by its use should not be

excessive. The tool should be reliable in that it may often
be operating directly on user source files and the

programmer must be able to trust in its use.
S

d. Integration

The integration within an environment should

allow for the tool in use to communicate easily with other
tools. The programmer will then be able to move smoothly

back and forth between stages as needed without a great deal

of effort.

43

Of" * 4 -. .

'0

e. Tool Usage by Software Activities

Coupled with the reasons cited by Nassi for the

limited use of software tools, the flight software mainte-

nance activities face other probleas. Funding to purchase

the tools is not available. the software activities

* conducting maintenance on the OFPs Jo use a varirty of soft-

ware tools. most seem to be generated in house for specific

, purposes within the enviroment of 3 particular OFP. They

are often not portable to another project. The use of more

powerful off-the-shelf tools has also been hindered by

several factors. The state of most OFPs currently would

require extensive reconfiguration to allow the use of these

tools. The worst problem is the lack of documentation.

Many tools developed by industry require a well designed,
well documented program to work with. An example is the TRW

developed software tool SEEM (Software Requirements

Engineering Methodology). SREM reguires that documentation

in the form of an adequate set of program requirements be

available. Most OPs do not have such documentation and

thus cannot use SREM in the production of flight software

- -code.

The environment of the maintenance effort for
* -. the various OPPs differ from project to project. None of

them seem to be able to suppcrt a set of tools which would
cooperate and communicate during the maintenance process.

The work required to set up the environment and program tc
work with an off-the-shelf tool has been found in many cases

to be excessive. Internal development of powerful tools is
also time consuming and may not be feasible.

The Av-8/A-4 test facilty at NWC conducted a

survey of all software tools in use in their facility. The

results are interesting and reflect the situation throughout
most OFP maintenance and test facilities. Forty four

414

9P2

-', . ,, * .j*-*,*. ... * > .. -* .--- * *. * <*

. -, o *o - -*. * -'. . . * . ~ * . - * * - ~ *-.* * .- *.***

different tools were listed as in ase. Ninty five percent

of the tools were developed internally by personnel assigned

to the test facility. Twenty nine percent have the ability

to communicate with one or more tools. Fifty percent of the

tools had no support available. It is easy to see that this

is a long way from the ideal situation many authors propose

for automated tool usage.

The maintenance activities find themselves

unable to buy their way out of the OFP maintenance problem

by designing or buying tools. Once a software system is

accepted from the developer the original design and documen-

tation may limit what the maintenance activity has available

to improve the maintenance effort.

H. PROPOSED SOLUTIONS

Many solutions have been proposed to ease the software

maintenance problem in common application systems. A

smaller list of solutions have been proposed for embedded

systems. Solutions range from the incorporation of good

software engineering practices in the design of the software

to the use of extensive programming environments throughout

the lifecycle of the program. Most of these solutions are

viable and would help if they were to be applied from the

original design of the software. Several of the proposed

solutions are outlined. The reasons for the nonuse of these

solutions are also cited.

Many of the flight software systems still in use

were designed before many of the software engineering prac-

tices that are today taken for granted were in common use.

& complete rewrite of an OFP using these techniques has been

suggested as a possible solution to the maintenance problem.

45

This was the idea behind the work of the Naval Research

Laboratory [Ref. 1], in the recoding of the A- OFP. The

use of the software engineering techniques of modularity,

information hiding, formal specification, abstract inter-

" .faces and cooperating sequential processes were used in the

updated OPP as it was rewritten. It is hoped that these

techniques will lead to lower maint-amance costs Df the OFP.

An entire rewrite of the DFP offers several clear
advantages. It is in fact considered the only method to

assure lowering of maintenance costs. Many maintenance

personnel interviewed about solutions to the OFP maintenance

problem mentioned OPP rewrite as the best method to show the

most improvement.

VRewriting the OPP in either assembly language or a

suitable high order language would allow generation of

currently nonexisting documentation. The A-7 rewrite has
produced a well documented program. A significant finding

of the A-7 rewrite wcrk was the the importance of a Software

Requirements Document. Its generation for the A-7 was very

time consuming. It might be as important to the maintenance

function as the modern software engineering principles used

"-"'in the rewritten OPP. The production of documentation in a

usable form would have significant impact on training of

system personnel as well as the actual maintenance of the

program. The documentation could also be designed with the

eventual use of more extensive and supportive software tools

in mind.

The program itself would be placed into a more main-

tainable state by incorporation of modern software engi-

neering techniques into the redesigned code. This was the

ultimate goal of the NRL work on A-7. It is very easy to

see conversion from the "spaghetti code" that many of the

OFPs contain to a modularized format would have great impact

on the reduction of maintenance costs. The modern version

'46

* . . -* . * .. .**. *~..*' *- * *. . - -

of the OFP would also be easier to test with the reduction

in the complexity of the code. rhe given state of the

program may be every bit as difficult to determine due to

the complex nature cf the platform and mission of the

program itself but errors would much easier to isolate once

* detected.

Several problems do exist in this solution. Costs

to accomplish a rewrite are very high. A complete rewrite

of the A-6 OFP is estimated by NWC personnel to cost upwards

of 20 million dollars and take four years to complete. The

finished product would reflect the state of the OFP when the

rewrite was begun. The ongoing enhancements occuring in the

operational OFP would still have to be incorporated in the

rewritten OFP. Meanwhile the existing OFP would have to be

- continually maintained as is currently practiced. The esti-

mated A-6 OFP rewrite cost represents more money than the

entire yearly operating budget of the software laboratory at

VVC. The cost in time and the personnel required to accom-

plish the project may in fact be the determining factor.

The personnel are not available to accomplish the rewrite

and carry on normal maintenance activities of the opera-

tional OFP.
A The lifespan of the aircraft in a particular modifi-

cation is subject to change. The days of the A-6E system
"may be numbered. An -model is under consideration which

would represent a ccmplete change in many of the systems

from the E-model. The future of the F-model is in the hands
of Congress. When the F-model will come on line and work

slowed on the E-model is unknown. If the funds were avail-

able to rewrite the A-6E OFP it is hard to imagine them used

to actually begin recoding work with the possibility of a

major avionics and flight software modification arising in
o'- the A-6F model.

47

,9t-

- .- * -f.:.. - .~ f.X

Questions remain about the final product of such a

rewrite. Naval Research Laboratory has not yet completed

its work on the A-7 OFP rewrite four years after the orig-

inal completion date has past. If the new OFP will fit the

available hardware in the aircraft and perform as the old

OPP, remains to be seen until after testing phases are

completed.

For the reasons outlined above, a complete rewrite
of existing OFPs is not feasible at this time.

2- Ajg.h 2I hanqua gs

A rewrite of an OFP is asually suggested to be

accomplished in a standard Navy approved high order language

(ROL). Experience with OFP maintenance by the various soft-

ware activities has shown that the use of a HOL may not

really be required. NWC personnel estimate that very little

of the time spent on the maintenance of the OFP is spent in

actual coding of the maintenance change. Ignoring the soft-

ware engineering techniques that a true high order language

affords, very liitle is gained by recoding the OPP. The

ability to modularize an assembly language version, complete

with documentation on each module would be as useful. The

use of a high order language also presents the problem of

execution speed. The number of systems in use is not high

enough to warrant spending the funds needed to write opti-

mizing compilers to insure proper performance of the OFP.

The use of a high order language would be much more suited

to a system designed from the start for its use.

Some interesting ideas arise from the use of HOLs in

0400 OFPs. While perhaps not suitable for the coding of the

actual flight system OPPs at this time, HOLs have been used

in documentation. A HOL version of the OFP is used to help

the programmer gain a grasp of what the program is actually

doing prior to attempting to understand the very complex

assembly language version.

48

SI*

;-"'".:' '"'" " "J ,; " ',''.--"" """"" " 2.T ?.;,""." .- " ,.. ".',,, .. "... . - - • .-..-. . .

A recant development is the U.S. Air Force decision

to recode the F-111 OFPs .n a HOL. The Air Force plans to
use Jovial in this conversion. 13tal costs for the entire

project which includes conversion of all remaining aircraft

to digital avionic systems is placed at 1.1 billion dollars.

Jovial is considered suited well enough for embedded appli-

cations that the Air Force feels the money required for the

conversion to a HOL written OFP is worth the expense.

3. Extensive Environments

Another method to improve the maintenance effort of

a software project is to improve the techniques used in its

design and implementation. An izprovement in these can

easily be accomplished through the use of an extensive

programming development and maintenance environment. The
environment would be used throughout the software lifecycle

cf the project. This is a fine solation for new systems but

hardly the answer for mature systems such as A-6 and A-7.

Cost is the primary problem. Howden (Ref. 6], outlines four

environments of increasing capablities and costs. The

highest capabilty reflected in his proposal was designed for

embedded real time systems. He estimates the capital costs

at three million dollars. NADC experience with FASP,

outlined in the next chapter, suggests that this figure may

indeed be very low. Costs for the physical environment

itself do not incorporate the modifications to a program not
orginally designed for use with that environment. The modi-

fications required may involve eff3rt equal in cost to an

entire rewrite.

4. Addu e

Personnel not familar with OFP maintenance see the

hardware as the primary cause of OPP maintenance problems.
They feel that the maintenance problem can be solved by

49

addition of hardware capability through added memory and

increased processor speeds. If significant increases in

memory space are installed, the program may be able to be

partitioned and slightly restructured to reduce complexity

and decrease maintenance costs. while it is well known that

costs of hardware have dropped significantly with improved

technology and the costs of software continue to rise, addi-

tions of large amounts of memory or increased processing

speed is rot the answer to the maintenanze problem.

Physically placing new or additional hardware into the

aircraft is very difficult and requires extensive study

- before approval. Due to the long process to research and
approve changes to the aircraft itself, addition of even a

:.. small hardware change becomes quite expensive. The older

aircraft support systems may not be compatible with some of

the newer hardware technologies rendering the addition of

the new hardware even more diffi-ult and costly. When

memory additions have been made in the past, many new capa-

bilities and weapon systems are aided which quickly fills

any newly available memory space. Merely throwing hardware

at the problem is not a solution.

50

-. % .. . 5. . . . - * - . . .

- - --- r'- - .
•

-

o

Iv. 2OFTDARE iN nIONMENTS AIND FA P

- A. INTRODUCTION

This chapter will briefly outline the concept of soft-

ware environments and review the NADC operated Facility for
-. Automated Software Production (FASP), the only current

attempt at a complete development and maintenance

environment.

B. EBVIBONMENT DEFINITION

The concept of a Software Engineering Development and

maintenance Environment is outlined in (Ref. 7]. The envi-

ronment is generaly defined as the technical and management

methodologies, the hardware, mode of computer use, automated

support facilities (tools) and the actual physical work-

space. It eacompasses every aspect of the development and

support of a software system. The ideal environment should/.4 support a development methodology. Wasserman states that

- this has not generally been the casq in many past efforts.

It also should support the software system throughout the

entire software lifecycle. A spacfic definition of the

lifecycle should be incorporated into the design of the

environment. The STARS Program Strategy Handbook gives a

broader definition of an environment to include the

personnel assigned to use the environment.

A complete development and maintenance environment
should possess the fcllowing characteristics:

1. Complete Lifecycle Coverage: Ihe methodology suppcted
by the environment should cover the entire 1ifecycle. A
means for software system design is followed by a method
for the code design and implementation. The environment
also supports the software system through the maintenance
phase.

51

4 - 4 -. - * ' * .! , m ' " ' " , ' ; " ',. '''.., ... ,./ '' . . - _"

2. Ease of Transition Between Phases: Builiinq on thc
support of the lifecycle, each phase within the ±.fecycle.
should be able to be identified and traversed by mnth od-
ologies employed by the envir:nment. The transition
should be painless and allow the programmer to move back-
wards as needed to correct or change earlier work.

3. Ease of Use: The.environment should be designed such
that the programmer is not burdened by its use. The
personnel assigned to the project should be able to learn

*the env-ronmet's methodologies without undue effort.
The training of new personnel would be made easier,
allowing them to become productive members of the teams
more quickly.

4. Repeatability: An ideal environment is general enough
to be used several times on functionally similar but
different actual projects. The effort in creating a
complete environment tailcred oaly to. a specific system
.s lost when that system is no longsr in use.

5. Automated Support: Since the ultimate oal of an envi-
ronment is the increased productivity and quality of the
piroduct, the selection of the automated suppczt facili-
ties is critical. The tools selected are automated to
the extent that an increase in productivity is gained
through their use.

Boehm cites a study in which the COCOMO Model for

Software Cost Estimation was used to demonstrate the effec-

tiveness of the use of a properly designed environment.

Figure 4.1 shows the estimated improvements in software

productivity versus software cost driver attributes. From

the graph presented in Figure 4.1 several of the software

cost driver attributes can be seen to impact greatly on the

flight software problem as defined in Chapter Two of this
thesis. Most notably, schedule constraints, turnaround

time, software tools, storage constraint, required reli-

ability, program complexity and personnel capability greatly

influence the maintenance effort of OFPs. Many of these

factors are out of direct control of the maintenance

personnel due to the nature of the flight programs and the

development practices used. It appears from the data

presented by Boehm that concentration in the areas of

* 'increasing personnel capability through tools and methodolo-

" gies will have the greatest impact on increasing maintenance

i productivity. Interestingly, testing problems are not

I %ddressed directly by Boehm as a Software Cost Driver

ttribute.

52

.2. ± . C C.2-

1.20 Lnuag Experience
1.3 chedule Constraint

1.3 Data Base Size

1.32 Turnaround Time

1.34 Virtual Machine Experience
ISoftware

Cost 1.49 Virtual Machine Volatility

Driver. 1.49 Software Tools
Attributes

1.51 Modern Programming Practices

1.56 Storage Constraint

1.57 APlications Experience

1.66 Timing Constraint

Reltablit) 1.87

Personnel/Team Capacity L

1.00 1.50 2.00 2.50 3.00 3.50 4.00

SOFTWARE PRODUCTIVITY RANGE

Figure 4.i1 Multiplicative Software Productivity Factors.

53

C. FASP

FASP (Facility for Automated Software Production) was

designed and implemented by NADC ia recognition of the high

costs and complex nature of dev.loping and maintaining

weapon system software. FASP is currently used in the main-

tenance of antisubmarine aircraft software. It was designed

to be used in the development and maintenance of any weapon

software system. Table II gives the Navy standard computers

TABLE II

FASP Language and Compmter Support

Navy Standard Computers

A YK-14
AYK-10
UKY-20
UKY-7UKY-32

Navy Standard Programming Languages

SPL/1 and SPL
CMS-2M and CIS-2Y
MACRO-20 and ULTRA-32
FORTRAN and COMPASS

and Navy standard programming lang.iages supported by FASP.

The total lifecycle of the software system is intended to be
supported by FASP. It was designed such that the primary

development contractors are able to use FASP throughout the

development process. The maintenance activity is able to

inherit frcm the contractor a complete software system

developed on the same support facility it will be maintained

on.

, Two types of facilities are provided through the FASP

system. The first is for software integration. Integration k
facilities consist of laboratory simulations of the target

!4

5"

• - .'*... °'.'. . .° J > .

aircraft computer system. The integration facility is used

in hardware/software integration. It serves as the hardware
configuration baseline and is also used in the determination

of the human factors involved in system design and mainte-

nance. Change proposals to a software system can be quickly

evaluated by use of the simulated target computers.

The software production facility, the second facility

provided by F&SP, uses an approach to software development

in which the same facilities are used for both development
and maintenance. The software production facility was

designed to be shared by several software systems for their

entire lifecycles. Improved software tools provided by FASP

increase programmer productivity and product quality.

Management visibility of the software configuration is
provided. Maintainability is incr.ased through the support

of structured programming and modularity techniques.

An integrated database which contains project and

management data is ultilized extensively. Maintenance and

development is divided within the database into distinct

processes each with a measurable output. Input and output
. of each phase is stored in the database where it is automat-

ically configured into management reports for each project.

The project manager is able to set production figures into

the database which FASP will automatically track and report

on. The configuration control provided by FASP allows more

accurate cost estimates on software production.

Automation provided by FASP reduces the product ion

effort in the labor intensive areas of development and main-

tenance. Increased programmer productivity will offset

increasing programmer costs by decreasing computer time

required in these areas. FASP performs the following auto-

matic operations:

1. Translation of simple user :-ommands into many oper-
W, ating system commands

2. Maintenance of the database.

55

'. .-

3. Execution of regression tEsting on specific software
modules and report cf test results.

4. Interactive program editing and testing

-. These automatic features free the programmer from many

rouzine tasks and allows greater use of program librarians.

FASP provides a formalized structure which contains the

software tools necessary to increase production and quality

of the final product. A Software Emulator which simulates

the target military computer on the FASP host computer is

provided. Unit tests of software modules can be performed

at earlier stages of the development or maintenance process

in the simulated environment in which it will operate. The

cost of software errors are reduced by locating and

correcting them earlier. Testing is also able to begin well

before the implementation phase. An Automatic rest Analyzer

determines which paths through the project program have been

traversed and instruments the sourze code without hindering

performance. Results are automatically stored in the FASP
database. From there management reports on path tests are

generated. FASP also supports Automatic Regression Testing.

All module test results are maintained in the FASP database.

Each module has a complete test history available. A change

to a module vil7 automatically retest all test cases

affected by the module change and store the results to the

database.

Facilities for implementation of FASP are extensive.

The host system consists of two CDC 6600 and two CDC CYBER
175 ccmputers. This large capacity system enables several

projects to be maintained by FASP concurrently. Each

programmer is able to use a virtual target machine emulated

" by the FASP host computers. Many virtual machines are able

to be utilized concurrently. By combining the support of

many projects on one system, significant physical plant cost
savings are realized. The large computing capacity is also

56

.-[1.[

S*?. -' -° z:c::x-7c~.&,. -C

available to handle urgent maintenance deadlines without

significantly reducing normal development and maintenance

activities.

PASP allows the use of nearly any computer to tie into
its facilities. Contractors not physically located at the

- FASP sight are able to utilize FASP during the development
phase of the project software. As the maintenance of the

software is turned over to NADC, a smooth transition from

the development phase to the maintenance phase is insured.

The maintenance activity has available extensive documenta-

tion from development to aid maintenance.

F&SP is the first attempt at an integrated software

development and maintenance environment directed at embedded

real time computer systems. It has met with considerable

success on the three flight software systems developed and

maintained on FASP. Its success is based on the facility

being used throughout the entire software lifecycle. FASP

would not be particularly suitable for use in systems in

late maintenance phases such as A-6 or A-7. These older
OFPs would require extensive rewrites and documentation

before the FASP system could be atilized. FASP is best

suited to be used from the initial development and

throughout the remainder of the software lifecycle.

--.o5

.9...

'.

k.-:: 5 7

0"_2V

V. J~11G Off MAIN jI~ THRUGHQ1 DOCUMENTATION

A. INTRODUCTION

Thus far this thesis has covered the background material

to understanding the unique problems related to software

maintenance of real time, embedded aviation software

systems. Definitions have been presented and models

compared. FASP, an environment in use by one software

activity has been presented. The next two chapters of the

thesis presents tools and methodologies which can be used to

improve the maintenance effort witi modest expenditures in

time and money. Focus is directed in the two areas where

S-"

the most improvement in the maintenance effort seems
possible,, docuimentation and testing. Both of these subjects

were brought up time after time in Ticussions with OFP main-

tenance personnel. It is likely when improvements in these

areas are adopted, other areas of the problem will show

improvement also.

The suggestions presented in the next two chapters by no

means offer a quick easy solution. The problem has devel-

oped over a number of years aal is much too complex.

Solutions will not come easy no matter what price is paid.

What follows is primarily based on interviews with the main-

tenance personnel conducted in an informal manner during the

three trips to the two West Coast Navy flight software

activities, during ccnferences and over the telephone.

B. DOCURNTITIOI INPROTEMEIS

Every software activity, every person involved in OPP

% maintenance mentioned one aspect of the OPP software to be

severely lacking. That area is documentation. In nearly

58

.%

every case the documentation the maintenance perscnnel

received from the prime contractor when OFPs were turned

over to Navy was poor. Many of the OFP contracts were

written before any guidance from the Navy was available on

documentation. In scme flight systems the requirement for
documentation was left out in order to save initial develop-

ment funds. The already extremely difficult task of main-

taining complex OFPs is made nearly impossible by the lack
of good documentation.

Because of poor documentation many of the other problems
of maintaining the OPP software develop. Training new

personnel is made even harder as it takes a great deal of
time for someone to understand a system in which there is

poor reference material. The new personnel find themselves

learning primarily through hands on experience. They learn

the program on the fly as they implement changes. This

slows the maintenance effort and affords an opportunity to

introduce errors into the revised code.

Poor documentation causes the entire update cycle of the

OFP to be longer than would be needed with proper documenta-

tion. Experienced personnel find themselves spending a

significant amount of time merely trying to understand the

existing OPP code prior to designing a maintenance change.

Because of the effort required to comprehend the existing

OFP, the largest portion of time spent in the maintenance
cycle is spent in the design phase.

Lack of documentation currently inhibits most mainte-
nance teams from using many off-the-shelf software tools and
methodologies. Several personnel interviewed named tocls

that would help their effort significantly but were unable
to use due to the difficulty involved in setting up the OFP

documentation to allow the tools use. Most tools are
designed to be used with a well docamented product. Because
of this, mcst of the tools used are developed internally and

59

. >% * l . (-:: v j Q * . * . -

0-7-

are not able to be shared between different projects. This

has lead the support systems and methods used by the

different OFP projects becoming in:reasingly disjoint over

the years. Each has become its own seperate enitity. This

can partly be blamed on poor documentation.

Difficulty in understanding the code when designing a

maintenance change leads to difficulty in determining mean-

ingful program test requirements for the revised code. A
poorly designed change due to a lack of understanding of

*what the program is suppose to do leads to greater testing

costs. The number of design errors would decrease if the

design engineer and programmer had quality documentation

available.

Suggestions of what to do first center on a definition

-. %of documentation. Documentation is defined in a broad sense

as the method of giving information about a computer program

or system so that a reasonably trained person is able to

understand the system, use it and iodify it to fullfill new

objectives. This definition is a modified version of one

presented by Edmund Berkely (Ref. 18]. The point taken from

this definition is documentation allows the person

utilizing it to understand the system.

There are many arguments as to the most effective format

of documentation. It is an area of computer science that is

still under extensive study and interfaces directly with

study of the human learning process. This thesis will offer

no profound insights into the proper format of documenta-

tion. It will accept only the premise that workable docu-

mentation is critical to the maintenance of OFPs.

O Again citing an active OFP maintenance effort, the A-6E,

,.. OFP documentation received from Grumman was felt to be

--" totally inadequate for the task. It has several major prob-

' lems which limit its use. First, it consists only of the

, OFP program listing and a set of math flow diagrams. The

60

C ' . C.* * - . .. - - C -.~- .r•. . . .

hJ-.

math flow diagrams consist roughly in the format of crude

flowcharts containing mathematical representations of what

is occuring in the program code. They are very difficult to

read for someone not intimately familar with them. Each

flow symbcl contains a large array of cryptic symbols which

are difficult to follow. The math flows exist on paper and

have been copied so many times that individual symbols are

faded and extremely difficult to ier-ify. Changes to a

program involves converting the representation of the change

into the math flow format, redrawing by hand the pages

affected and inserting the change into the hard paper copy.

This leaves significant opportunties for error. As the

documentation stands it is totally inadequate for training

an engineer or programmer. It also does not allow use of a

set of capable software tools in i meaningful maintenance

environment.

Two very important forms of documentation are missing

from the A-6 OFP inventory. Current Software Requirements
and Aircraft Performance Specification Documents are not

available. The maintenance programmer cannot determine

exactly what the program is suppose to do prior to

attempting to glean how the OFP actually does it. A soft-

ware redesign is significantly slow.l by the effort required

to understand the current program. Errors are introduced

only because the redesigned code is not what the maintenance

change called for. Aircraft performance requirements are

equally important to determine the parameters involved in a

redesign effort. They are also important in understanding

the OFP code itself. Accurate information on what the

aircraft is doing during certain phases of operation helps

tell the engineer what is happening inside of the OFP. For

example, what the program expects to see from a certain

sensor at a certain time is determined from the aircraft

performance specifications document.

61

-,". o . . .

The suggestions for improving the documentation do no-.
involve a complete OFP rewrite. The documentation improve-

meats will center around the OFP as it currently stands.

These suggestions are aimed at improving the maintenance

effort without very large expenditures of resources.

1. Electronic Documentation S t2rae

The first effort at improvement of the documentation
- would be to change the format on which it is kept.

Automating the storage, retrieval and reducing the time

involved to record a change would help greatly. The chance

of not incorporating a change to one of the the many copies

of the paper documentation is reduced. Electronic storage

also allows the programmer to quickly retrieve the documen-
tation he requires.

The A-6 software personnel are taking steps in

exactly this direction. A Documentation Librarian has been

hired to deal with the paper documentation and enter it into

an electronic storage facility. One person or group of

persons assigned only to the maintenance of the documenta-

tion will allow closer control of the accuracy of that docu-

mentation. The programmer will not need to burden himself
with the requirement to enter changes to the documentation

of code he has revised.
Many tools abound which would allow the documenta-

tion to be stored electronically. A database could be
implemented on existing facilities or maintained on an
expanded small network of microcomputers. The exact tools

used are not as important as the concept of maintaining the

documentation electronically to allow easy access, modifica-

tion and storage of large amounts of data.
Characteristics of a systes chosen should reflect

the following:

62

o.

1. Ease of Use. The system should be easy to use so asnot to discourage the user. Ideally the system would be
incorporated online within the system that the programmer
normally works, as FASP does. Realistically a stand
alone machine which does not require excessive =ffort tc
use is adequate.

2. Speed of Access. The system need not be such that
instanteous access is achieved. most microcomputer data-
base systems with .adequate meaory allow the user to
access text and print it out without a long wait. The
number of personnel using the system i.s not large enough
that concurrent multiple users are a significant problem.

~Adequate Backup. This May seem inc;edibly obvious but
it must be addresbed if the documentation is to be stored
in an electronic form. A system employed on a mainframe
may utilize the operating system 5ackup procedures
normally used. Smaller microsystems would require
multiple copies be maintained on tape and a procedure toInsure timely backups implemented.

4. Consistency. Related to the backup question, consis-
tency involves insuring that all copies of the data are
consistent with each other. This must be accomplished if
the electronic documentation is to be meaningful. Again
thie exact system employed to hold the documentation woula
yield the method u ed to maintain consistency. As the
database to contain the current documentation would not
be extremely large the system to maintain consistency
need not be automated.

5. Graphical Representation Capability. Zonversion ofthe current documentation woul involve workin with
paper copy which contains many graphical representations
and symbols. The documentation should not require major
redefinition or restructuring if the cost of maintaining
it in an electronic form is to be held to reasonable
level. The difficulty to use certain symbols contained
in the math flow diagrams has slowed the effort at
entering the A-6 documentation into the Xerox Star system
that they are using. Switching from graphical to text
modes is constantly required to properly position the
symbols required by the math flow documentation.

The graphical representataion problem may be the key

to selecting the documentation storage system. A careful

survey should be conducted of the data to be entered into

the new system prior to selecting the storage system to be

used. The system selected should be able to easily repre-

sent any symbol required in the documentation. Some symbols
contained in the current documentation may be able to be
changed to allow the use of a particular storage system.

This problem may limit the ability to use some of the micro-

computer databases available. It calls for careful study to

insure the stored data is accurate and that new data can be
. - entered without excessive effort.

63

• .v..

........................

Costs t o Implement the electronic storage of th e

documentation vary with the volume to be stored and its

current hard copy format. Rough estimates of the cost to

purchase a capable microcomputer system with adequate hard

disk storage, three to four terminals, adequate graphical

representation capabilities, backup facilities, software

(purchased if possible) and printers range from 20,000 up to

50,000 dcllars. This figure represents a very small invest-

ment. Once implemented it could provide significant savings

in the years to come. Cost for more extensive database

systems to be used on larger computer facilities range

higher. The cost of implementing the Xerox Star system for

storage of A-6 documentation will run approximately 100,000
dollars. The personnel assigned to use the documentation

feel that this money is well spent. While input of the

,-°. current documentation is painful, the payoff in the long run
will be well worth the initial investment.

After the system to store and manipulate the docu-

meatation has been implemented, the next step is to enter

the documentation required by th. lifecycle chart that

figure 3.3 outlined. This would of course involve adapting

the lifecycle methodology illustrated in figure 3.3 as a

standard throughout the maintenance process. The documenta-

-'j tion required at each step is then formated to be entered in

the storage system after the completion of each phase. A

documentation history is maintained for each maintenance

change. The format is fixed and once the maintenance

personnel become familar with it, lifecycle phase documenta-

tion generation and use will become easier. The system

should have enough capacity so that change documentation can

be stored online between OFP updates to allow easy access if

required after completion of an update. When the next OPP
update cycle is started, the documentation is also available

to help comprehend the current state of the OPP. Once a new

614

94.

r.. 7 7 77

update cycle is completed the previous update documentation

is stored in an archival storage system for program history

purposes. This would enable all change documentation to be

maintained ia order to be able to trace the OFP change

history.

2. Software Requirement Document

The next step in improving -he documentation of OFPs

would be the generation of a Software Requirements Document

(SRD). Work done by the Naval Research Laboratory [Ref. 1],

yielded a workable Software Requirements Document for the

A-7 OFP. This document was generated in preparation for

recoding of the OFP. The generation of such a document for

other existing flight systems need not entail recoding the

OFP. The following outline of the format of the Software

Requirements Document was modeled from the A-7 work done for

the Naval Research Laboratory.

The primary purpose of the Software Requirements

Document is to describe the externally visible behavior of

the OFP without desribing the implementation. The SRD

assumes the hardware to be static; this is a valid assump-

tion for embedded aircraft systems. Interface characteris-

tics are seperated from software requirements. Interface

characteristics will change only if the hardware changes,

while software requirements will change only if the mission

requirement of the OFP changes. The document is maintained

as the reference for what the aircraft OFP does.

Implementation is not addressed. As an example of what

might be contained in the document, it might explain that

during final approach to an aiccraft carrier landing,

vie certain symbols are displayed on the pilot's heads up

display (HUD), as opposed to the symbols that are displayed

during a bombing run. How the computations occur -hat

determine where to place the symbols on the HUD is not

addressed.

65

,, - , . ,''. ,, .- . .- . .. - . '.C - -C.- _. . .

As was done by the NRL work, the f ormat i s set up to

enhance readability and is easily referenced. Tables arz

used extensively to make look up of specific itesms easy and

enable the reader to easily spot zJissing data. To allow

* *table usage, a standard set of definitions which represent

long phrases or complex conditions ire given symbols. They

are referenced in a data dictionary contained within the

documaent.

The format of the Software Requi6rements Document is

discussed next, it was based on the design of the A-7

Software Requirements document.

a. Aircraft Computer

The A-7 Software Requirements Document begins

with a short discussion of the air-craft's computer. This

would be included in -any other Software Requirements

Document generated internally. The distingushing character-

istics of the aircraft processor are highlightged. This
section should be written with the newly arrived personnel

in mind as a primary introduction into the aircraft computer

system. Detailed descriptions of the compute: are currently
available and do not Leed to be included here.

b . Input and Output Data Items

The purpose of this section is to describe the

interface between the aircraft processor and the devices
which input and receive data from the processor. Inout and

output data are decribed as Data I1e. Thisisteol
section of the document which contains any information ab~out

the physical representation of the data. In follow on

sections of the document, the Data Items and the values
* .which they transmit are represented by symbolic names. Each

Data Item is described in the following manner:

66

..

I. Each Data Item is given a symbolic name which is szan-
dardized throughout t e document.

2. A prose descripticn of its leaning and its relation
to the device which utilizes it is given.

3. Ngimeric Data Items are.typed -as to accuracy aidd ran e
requirements. Nonnumeric Data Items are ven t
mnemomic names cf all possibla values which may be
assigned to it.

4. The format of the data representation is given.

5. Thq processor instruction sequence which is required
to manipluate the Data Item (Read, Transmit, Eite, etc)
is described.

c. Operation Mode

Possible states of the program are defined in

accordance with aircraft operating scenarios. A precise

frozen scenario for a particular flight profile is

described. It is very difficult to describe the state of

the OFP at any given moment without a precise definition of

what the aircraft is doing at the moment. This concept will

be shown to critical in describing meaningful OFP tests.

When possibl-e, modes described by available

documentation should be used. If unavailable, the modes are

described to match frequently encountered aircraft operating

conditions. NRL chose five modes to describe: alignment,

navigation, navigation update, weapon delivery and testing.

The OFP is able to exist in more than one mode at a time.

Exclusionary sets are defined to prevent combination of

modes which are nonsense. The defintion of the operational

modes should be done in cooperation of the OFP maintenance

personnel, program simulator personnel, system design
contractor and a group of experienced fleet users. Once a

mode is defined and aggreed on, it is set and cannot be

changed without agreement of the group described above. The

definition on the mode would then have to be a careful

process.

67

; '- ~ *

4:, . , -.. 4.

Events in aircraft operation which would cause

. . the system to switch modes are also described in this

section. An example would be an event which occurs in

flight causing the mode to switch from navigation to a navi-

gational update. This data is represented in table form.

Conditions about the state of the program which are defined

as true for a particular mode ar also given in tabular

form. These conditions are key to understanding the state

of the program during a given mode.

d. Functions

The computation of output Data Items is

described as one of the many functions that the OFP

performs. There are many functions involved during an

executing OFP. Relations between the state of Input Data

Items and the aircraft 3perating modes are provided. These

relations allow the user to determine what coditions of the

operating mode caused an Output Data Item to be produced.

The operational modes selected ia the above section are

used. No 7,zference is made to clock time.

e. Timing

The timing requirements for each function is

stated in this secticn. An example would be the timing
requirements of the updates for each display to the aircrew.

The maximum delay between a request for an Input Data Item

and the completion of processing yielding the Output Data

Item is givem. If understood, the system reaction to

exceeding this value should be described. This section will

be very difficult to complete. In some OFPs, such as A-6,

the timing requirements between cycles is not static.

Bounds would have to computed instead of finite values. The
accurate completion of this section, while difficult, would

be very valuable for future maintenance. Ti: ing

68

0 o

considerations are poorly defined and difficult to deal

with. They are critically important to the accurate opera-

tion of the OFP. An ability to reference the timing consid-

erations for each OFP function could in fact be the most

important aspect of the Software Reguirements Document.

f. Accuracy

The accuracy requirements for the computation of

all Output Data Items are given. rhis is another difficult

and important part of the document. The first version of

the A-7 Software Requirements Documant did not have all of

- .the data required to complete this section. It is a common

complaint of maintenance personnel that they do not know the

accuracy requirements of the data produced during computa-

tion by the OFP. Grcund and air testing of the OFP may find

that due to the lack of accuracy information that a function

delivers incorrect Output Data Itams causing the OFP to

perform incorrectly. An example could as drastic as a

weapon missing a target or the system crashing on uncompu-

. table Input Data Items.

- g. Undesired Events

Undesired events, such as processing an incor-

rect Input Data Item, elicit certain behavior from the OFP.

This behavior is described. The entrance into an uLn-sired

situation should be from a standard aircraft operational

9 mode as described earlier. Input of aircrews should be

* sought to determine the best response, or at least most

commonly observed response to degraded OFP operation. This

section could quickly grow in size and complexity if every

- combination of device and system failure is considered. A

bound is set on this section by considering failure of the

most important functions of the OPP, determined from user

input and the predefined modes of JFP operation.

69

*°.

*h. Partitioning

The allowable partitions of the OFP are

described. Services which are computed by the OPP but are

not mandatory for aircraft operation or execution of the OFP

are described. Functions which may be canidates for removal

at a future time are identified. This is an important

aspect of the document in that the memory of the flight

system is more often than not, limited. Incorporation of

significant system enhancements may require the dropping of

nonrequired functions. This would give the system engineers

an easy reference to functions not needed.

i. Glossary

The glossary defines symbol names and acronyms

of technical terms used throughout the document.

-j. References

References used to gather the data contained in

the SRD and Aircraft Technical Manuals are listed.

k. Data Dictionary

The standard terms used in function and Data

Item description are listed and defined.

1. Index

The document is indexed in the following manner:

By Data Item description, Mode description and usage and

function Output Data Item.

" The Software Requirements Document is not an

" easy quick fix to a documentation problem that has existed
in some OFPs for years. It would not be cheap to irplement.

Perhaps it can be said that it does not fall within the

scope of this thesis and offer a solution for the relative

70

", " .- '- ". :,+',,;, , , . - ..- .,. -. -- +.. .-,- .- ' .+- .. " ' -. ..- '. " -. " +'-*-.- * .. -...- . - *.', .

short term. Consideration of the expected lifespan of the
- aircraft and the OFP itself must first be weighed prior to

expending funis for development of such a document. If

considered against the long expected lifespan of nearly

every OFP, development of a workable Software Requirements

Document is feasible. Before recoding of the OFP could be

considered, a SRD would have to ba written. Generating a

SRD yields a document which is useful for current mainte-

nance work and would be required for possible future OFP
rewrites. The finished A-7 Software Requirements Document

while extensive, is a workable document and appears easy to

follow for someone familar with the terminology of the soft-

ware it covers. Its format has been expressed by mainte-

nance personnel as suitable for any OFP.

Generaticn of a good aocument for OFPs which

currently lack one would be costly in time and money. In

the cases where only a few personnel are familar with the

entire OFP, their input into the document would be critical.

It is also obvious that these personnel could not be

expected to be utilized full time on the generation of the

SRD without imparing ongoing OFP maintenance. The effort to

write the document would have to be extended over a period

of two to three years. The author feels this is not an

execessive period of time. It -overs approximately the

production of two OFP updates. P training program could

also be implemented around the SRD production in which all

Ssystem maintenance personnel are involved. Familarity with
* the function of the OFP would be iacreased as the document

was produced. Ultimately the docament should be entered,

stored and maintained on the electronic document storage

system selected in the first step of documentation

improvement.

71

. . - - - - - -

3. Aircraft Performance Specification Document

The A-6 personnel complained about the lack of a

document which outlined the performance of the aircraft

itself. A document similar in function to the Software

Requirements Document for the air-raft is needed in many

projects. The generation of such a document would not have

to involve maintenance personnel. It should be contracted

out to the manufacturer and producei in a format suitable to
the maintenance personnel. It also would be very useful as

a training aid to help the new engineer understand the

system which he will soon work. If maintained properly it

-. would supply the maintenance personnel with an accurate
definition of the performance profiles of the aircraft which

directly affect the executi.on of tha OPP. A general format

is proposed.

a. General Description

A general description of the aircraft and

detailed description of the mission definition are contained

in the first section. This section merely provides an

introduction to the platform and a starting point for under-

standing the rest of the system.

b. Mission Profiles

mission profiles are defined next. They should,

* as close as possible, match the mole scenarios presented in

the SRD. Normal values for the various devices which inter-

face with the flight computer system are contained in

tabular form. Tables are generated for each flight profile.

The flight profiles again will impact greatly on the later
- V

testing phases of revised OFPs. To insure the generation of
meaningful test data, the flight profiles are standardized.

Extreme conditions which are faced under combat situations

are also represented.

72

A:.1 A- Z....

c. Degraded Operation

Expected degradations to the aircraft perform-

ance are outlined in this section. Battle damage to the

aircraft which does not render the aircraft unflyable are

given. The flight software personnel are able to determine

the expected reduction in device demand and input tc the OFP

This section should be modeled closely after the Undesired

Events chapter of the SRD.

d. Operating Ranges

Actual specification of the aircraft operating

parameters are listed. Ranges of possible input and output

values for the avionics which interfaces with the OFP are

given. The devices are divided into aircraft subsystems

such as navigation, HARPOON missile fire control and the

like. This section serves as a quick reference to the

actual values of the Input and Output Data Items used in the

Software Requirements Document.

The Aircraft Performance Specification Document

is not nearly as important to the programmer as it is to the

system engineer. It may in fact allow the programmer to

cross the boundry between programmer and engineer. It is

usually available in some form from - facturer without

a great deal of expense being invo' ey should not be

spent on its development over Lre Requirements

Document. It is a supplement to be developed in

parallel or after completion of

IV'

73

VI. OPP TESTING IMPROVEMENTS

L. INTRODUCTION

The very large subject of OPP testing is addressed next.

Testing of software is not an exact science by any means.

Debate persists on methods of performing tests to yield

meaningful and accurate results. Complex software, such as

the OFPs, present even more difficult questions as to the

best testing method. The complexity of the OFP presents the

engineer with a software product that is basically in an

untestable form. The state of the OFP is difficult to

track. Because of this, it is very difficult to identify

what conditions triggered a particular test result. Since

the older OFPs are not modularized, code that requires modi-

fication is very difficult to isolate. How then can testing

be structured to assure that meaningful results are

attained? This is an extremely important question in

consideration of the OFPs use in high performance aircraft.

The engineer who certifies an OFP ready for live flight test

must feel confident in his product. The complexity of the

code must have been addressed during ground tests in order

that operating conditions in the fleet will not trigger the

OPP into a failure. The high reliability required of the

OPP must be obtained during the test phase.

The testing porticn of the aviation lifecycle has been

identified as requiring the most resources to accomplish.

Massive support facilities are required in the form of

flight simulators. A great deal of support software is

required to run simulations of the 3FP. After ground tests,
the OPP is tested in live flight tests. The live flight

tests consume a large portion of money due to maintenance of

the flight range facilities and aircraft fuel requirements.

74

Current test practices in most OF? maintenance facili-

ties consist of running all or parts of the OFP on the

target computer within the confines of a flight simulator.

The simulator is usually written ia a moderately high level

programming lanuage such as Fortran. It is instrumented to

attempt to track the state of the OFP during a test run.

The simulator support facility is manned by different

personnel than the actual OFP maintenance team. The simu-

lator personnel write the support software that is used by

the maintenance personnel to test rta OFP.

B. WEAPON SYSTEM SUPPORT FACILITY

The simulators fall under the Weapon System support

Facility (WSSF) for each OFP. The WSSF is a total system by

which OFP maintenance is supported to do testing. The WSSF

serves three primary functions:

1. OFP validation and verification. Does the program work
properly and did changes affect the remainder of the
unchanged code?

2. New weapon tinegration. Design of new weapon inter-
faces with the entire flight software system.
3. weapon system analysis. leasurement of simulated
results of flight tests and weapon delivery scenarios.

The WSSF should be structured in an evolving state to be

constantly improving the support of the OFP. The author

reviewed the loctrines for the production of support soft-

ware for the A-7, A-4, AV-8 and F-13 OFP projects. All were

found to be well structured methodologies which conform to

modern software engineering principles and techniques.

The subject of OFP testing can be seen to be viewed from

two persectives. First the viewpoint of the maintenance

personnel who need to test the integration of revised code

into the entire OFP. The other belongs to the personnel

assigned to develop and maintain the support facilities.

" The concept of what constitutes a saccessful test may not be

75
4.

..

...

the same for each group. One manager of a support facility

complained the maintenance personnel assigned to the OFP

which he supported viewed simulator flight testing as a

"stick and rudder affair." Meaniag that the maintenance

* personnel were happy to load the 3PP into the test facility

and execute the OFP in accordance to a poorly defined model

of the OFP during flight. The test lacked a specific struc-

ture. He felt this was a misguided approach to obtain a

meaningful test of the OPP software.

The ISSF can be thought of as residing between the test

requirements and the target flight computer system. The

role of the WSSF centers around the data supplied to the

target flight computer system durin a test.

Since the focus of the WSSF is the supply of data to the

target flight computer, OFP tests must be designed so that

specific data is supplied to achieve a specific test result

which is repeatable. The specific input data can be seen to

bound the test process. The user and the WSSF should aggree

on the bounds of the simulation and freeze it from frequent

changes. The WSSF personnel are able to break the process
of test procedure software generation into manageable

modules based on the concrete definition of the test

requirements.

The test data design is approached in the following

manner. The component to be tasted is identified and

isolated. What needs to be tested to validate this compo-

nent is identified. Once determined, specific test

scenarios are designed by the maintenance and WSSF

personnel.

The improvement of OFP testing will be centered on the_

tools and methodologies of the WSSF. Development of the

WSSF is an ongoing process which attempts to constantly

increase its capability to support the OFP test effort.

76

,. V K"-7P 7 - 7.r

C. STANDARD FLIGHT TEST SCENARIOS

The mcst important aspect of the generation of WSS?

- software which will support OFP testing in a meaningful

Smanner, hinges on standardized flight scenarios. The stan-
dardization of the scenarios attempts to let the maintenance

personnel identify a flight profile which will exercise the

OFP in such a way that realistic meaningful test results are

obtained. A successful completion of the test flight scen-

ario would yield flight data whi:h is recorded into an

output file. The data recorded is compared to the output

data expected from this standard scanario. The output file

and instrumentation data are stored for historical purposes.

The author witnessed the execution of two test flight

scenarios run on the A-4 flight simulator. 3ne scenario

called for the aircraft to take ofE and execute a climb to

- 5,000 feet. From there it flew over a ground target. A
" dive was initiated and several turns were made around the

target. All of this was represented by simulation of the

HUD symbols on a CRT screen. The target was represented by

a triangle which rotated on th- screen in accordance to the

movement of the aircraft. The symbols viewed on the screen
were generated from the actual signals that the target

computer generated as it axecuted the OFP. The WSSF input

S-+ the data which lead the target computer to execute the OFP

as if the aircraft were actually in flight performing the

scenario described. The WSSF also provided the interface

between the target computer and rhe CRT which allowed the

HUD simulation. Instrumentation of the input to the

aircraft avionics from the target computer is recorded by

the WSSF into an output lata file. Timing references are

" recorded to be able to compare the input data with the

output data. The state of the OFP c-n hopefully be obtained

and reasons why specific output data was generated

determined.

77

," ,- ,- .- •- - , , , . - - ° .- o,", - ,° ," -- .*- -- - . -.- . -. - . . .** - . * - - " " . -

The methodology of freezing the test scenarios is crit-

ical to the WSSF support software design process. The WSSF

personnel and the maintenance personnel together decide on

the scenarios which exercise various functions of the OFP.

The freezing of the scenario definitions allow the WSSF

personnel to implement a design process which is modular and

can be automated to increase productivity. Scenarios are

continually built which eventually enable the OFP to be

exercised in such a way that the tested OFP can leave the

software facility with a very high level of confidence.

D. WSSF PRODUCTION TOOLS

The increasing capability of the WSSF is critical to the

reduction of the maintenance effort of the OFP. The produc-

tion of WSSF software should be automated as much as

feasible to help provide this increasing capability. The

WSSF software does not face the storage, hardware support

and -l..ming constraints that must be considered of the OFP

itself. The code generated can comply with up to date soft-

ware engineering principles and use automation when

possible.

Automation of the generation of WSSF code also has

further advantages. The code produced initially is more

likely to be considered correct. Routine repetitive tasks

are eliminatel, thus increasing productivity. The verifica-

tion of the simulatcr code integrity is made simplier.

Documentation of the simulator coda can be made automatic.

Analysis tools can be built for the test results.

Portability can be obtained by using standard automation

techniques.

The following software tools, based on the A-4/AV-8 WSSF

development strategy, are designed around automating the

production of WSSF software and automating the execution of

78

test scenarios. There are five tools mentioned which are

explained below. The process starts with SREM and continues

with the Module Generator and FLECS to actually produce

module code. All three tools work in conjunction to produce

-. the module code for software used in the flight simulator.

The module was defined from the standardized flight

scenarios covered earlier. AVSIM uses the input data for a

particular test scenario to execute the modules, required to

run that test scenario. &VDOC uses data from AVSIM and the

Module Generator to produce standard forms for documentation
of a test execution. The first three tools mentioned deal

with WSSF software mcdule production. The final two tools

deal with helping to automate the test execution using the

modules written by the first three tools.

1. SEEM

SREM, Software Requirements Engineering Methodology,

designed by TRW, is a tool which ties requirements to appli-

* cations. A Requirement Statement Language (RSL) is used by

SREM to generate input into the Module Generator (MOG) . A

module is first defined by stating the requirements of the

module in the SREM RSL. The module definition in the HSL is

processed and the results are input directly into the Module

Generator. SREM is written in Pascal and utilizes a rela-
tional database. The database has the advantage of being

able to be used with other applications other than SREM.

SREM is the first tool in automatiig the production of WSSF

sof t ware.

2. Module Generator

The Module Generator takes the output of SREM and

acts as a FLECS-preprocessor producing FLECS code. FLECS,

as will be seen, actually produces the module source code.

h:r ROG structures the application 3f modular code. MOG

.. 79

" .'e '. ..'"", ,.' '' : .~ c ." '. .. .-. . -". ".-.-.9

2 - . - | - - . -. -. _, ." -. . . ", .. ._. . - .

addresses only the module input and output. A certral

dictionary is used to define module input and output. MOG

also automatically inserts code into the module which is
used by another tool to trace, debug and time the module.

3. FLECS

Fortran Language with Extended Control Structures

(FLECS) is a tool which acts as a Fortran pre-processor

generating Fortran 66 code. It ias the capability to be

extended to generate Fortran 77 control statements. It
takes FLECS code frcm the MOG as its input and converts it

into valid Fortran source code. It is a stand alone tool

not tying directly to the MOG. This is the tool which

yields the portability of the WSSF code. Currently all
support facilities but one at NWC utilize Fortran 66. Code

generated by FLECS is tranportable between the facilities.

FLECS is the last major tool used in the generation of WSSF

software. The next two tools deal with the execution of a

test scenario using the software produced by the first three

tool s.

4. AVSIM

AVSIM, Avionics Simulation, provides an interface

between the avionics hardware and the WSSF computer soft-
ware. It controls the debug, trace and timing options of

tha WSSF code generated by the MOG. The tool is able to

configure itself in accordance with the data zontained in
the input data file for the test. It is able to turn on the
WSSF modules required to run a test of the OFP by analysis

of the test input data file. AVSIM runs the simulation.

This is an important automatic feature of the test facility.

Tests are much easier to set up and run. Once input data

for a particular test is standardized, the output data

expected by running of the modules AVSIM turns on can be

standardized also.

80

q

5. AVDOC

*AVDOC, AVSIM Documentation, generates predefined

- forms from the module generator source files. These forms

include: status reports, symbol diztionary listings, cross

reference guides and keyword searches of the modules turned
on by AVSIM in the execution of a test scenario. It is able

to tie directly with the AVSIM and IOG tools. &VDOC can be

thought of as a book keeping program that expands AVSIM

information to produce predefined do-cumentation forms.

6. Exa mple

After a standardized flight scenario is defined by

the OFP maintenance and WSSF personnel, it is broken into

modules. The WSSF personnel take each module and define it
in terms cf its requirements in the SREM Requirements

Statement Language. After this is processed, the Module

Generator structures the input and output of the module in
FLECS code. MOG also adds code which is used by the simula-
tion tool, AVSIM, to trace, debug and time the module. The

tool FLECS takes the output of the NOG and produces valid

Fortran source code for that module. The generation of the
module is completed. AVSIM is used to execute the required
modules for a particular flight test scenario automatically.

Which modules are activated are based on the input data file
for the simulated flight test. Once the first three tools
gemerate the module code, the module may be stored until

activated by &VSIM. AVSIM also executes the timing, drbug-
ging and trace code during the test execution. AVDOC is
activated when a test is run to produce stanlard forms,
documenting the test execution.

81

".?. -.. - -

7. WSSF r0oi Summary

These are the primary tools used to automate soft-

ware production and use at one WSSF at NWC. rhis method-

ology to establish an increasing capability in WSSF

development impressed the author .nough that it was felt

that a similar approach should be taken on all OFP test

facilities. Exact tools used will depend on the computer

resources available. The notion :f fixed flight scenarios

worked out between the simulator and maintenance personnel

should be adopted. Until the OFPs are structured properly,

the biggest payoff in increasing the ability to meaningfully

test the OFP resides in the WSSF development.

n

82"

. . ..

M .V

VII. CONCLUSIONS

A. CONCLUSIONS

The thesis concludes with several observations and

recommendations concerning the development and maintenance

of future flight software systems.

1. Desin It Right

Future OFPs must learn from the mistakes made during

the development of nearly every current operational OFP.

While it is not always necessary to design the flight soft-

ware in a high level language, structuring the code into

modules is crtical to keeping maintenance costs down. The

hardware system employed should be designed with enough

memory and processor capability to handle the first versions

U oof the OFP and expected updates without severe loss of code

structure during optimization. Documentation should be

produced in accordance with current guidelines. The produc-

- tion of a well designed Software Requirements Document is

the minimal acceptable documentation. Methods for defining

. interfaces for code developed by different sources need to

be defined. As aircraft computer systems become more

complex, single contractor developed OFPs will become rare.

The interfaces will prevent integration nightmares when the

final product is brought together.

2. Develpmet/Maint-3nance Environments

Work should continue on environments such as FASP.
New environments need to be definel to support software for

future flight systems. Navy flight software activities

should be allocated funds now to begin development of a

83

%".

common development/maintenance environment to be used on all

flight software. These general parpose environments would

be defined within guidelines that contractors must follow

during OFP development. When the Navy flight software

activities assume maintenance responsibility, the change

will be smooth and maintenance easier. This recommendation

will not be cheap to implement, but if the quality of future

flight software systems is to remain high the money should

be spent now.

3. Mon

More funds should be allocated now to improve the

maintenance of operational flight software. As this thesis

hoped to propose, great expenditures on the current flight

software need not be made. When considered agairist the cost

of a single aircraft it seems incredible that flight soft-

ware activities must spend operating funds to develop a very

badly needed Software Requirements Document. The generation

of a SRD is not expensive when the savings it will generate

over the remainer of the OFP lifecyzle are recognized.

4. Education

Two recommendations concerning education are made.
The first centers around the personnel who make decisions on

flight software contracts and fund allocaticn. From the

observations made by the author during reseazrh for this

thesis, it was felt that past high level administrators of

flight scftware funds and contracts new nothing about soft-

ware at all. One manager of an OFP maintenance team relayed

the story of a high level administrator located well above

the trenches asking him how much did the flight software for

P particular aircraft weigh. He needed to know this in

or.-r to allocate funds concerning that software. When this

type of knowledge level is faced from those who control

84

'00

funds for software development and maintenance it is easy to

see why some of the errors made in the past were ccmmitted.

Personnel who understand the nature of real time embedded

software and the general principles of software engineering

should be placed in more responsible positions.

The second aspect of edacation revolves around

training new engineers for emplcyment in the flight software

laboratory. No facilities exist for training an engineer on

a system such as A-6 or F-14. The Navy should begin a

program where engineers are identified in the academic

institutions, sponsored and trained in engineering and

computer courses which would most help in working on flight

computer systems. This person would then obligate to work

for the Navy for a minimum length of time.

B. FINAL COCLUSIONS

All cf the recommendations made in this thesis present

difficult derisions concerning expenditures of funds for

aviation flight software maintenance. There are those who

feel that the expenditure of these funds are not needed.

The fact remains that if the high quality of Naval flight

software is to continue, these difficult decisions must be

made and the noney spent.

85

LIST OF REFERENCES

1. Heninger, K. L. and Kallander, J.W. and Shore, J.E. and
Parnas, D.L. Software Requirements Document for the
A-7E Air Cr aftp T--' , -, - ei --tbrtcr
3 1ra-n- -1eport 3876, Naval Research Laboratory,
Washington, D. C., November 1978

2. Lientz, B.P. and Swanson E.B., Software Maintenance
Manasment p 67-79, Addso n-esT -l sNIng

3. Hamlen, W.T. and Fjeldstad E.F., Application Prcqram

*. Maintenance Study, rutorial on Sor ware-rfftnane,
N-'3--n-7IEItE-omputer Society Press, 1983

4. Bristow, G., Tools to Aid the Specification and Design
.-. of Fligqt Sof.ae- pp 2-"1"• -""e-rEo-o u"'

3clence, U-Tversity of Colorado, Boulder Colorado,
January 1980

5. Van Horn, ?;C.- §oftware Must Evolve, Tutorial on
Software Maintenance7 E EM tlg-r Society Press,
1983

6. Howden, w. Cente2morary Software Devslopment
Environments, CommufficaET.s of~hIM Ee oIme 23;
U-~-7---5";-- 318-329, Association for Computing
Machinery, 1952

7. Wasserman, A.I., Guest Editor's Introduction:A_-- utomated Development 'E.V-1onmjent-,-pp 7-TT,-ompute,
VMprT• 5T

8. Naval Air Development Center, F a cilit for Automated
" Softwae Production Software P-rodt aM a-n enn ce5oo.q p 1- 25 ---- V-a 11-

"Mev mgen Cener-,Wfrmlnstz_, Pennsylvania, 1979

9. Boehm, BW. Software Engjineerina Ecotomics pp 35-55,
641-60 enie r,

10. Parikh, G. and Zveg intov, 4., Tutorial on Software
Maint"! 1-11, IEEE Computer soce s

11. National Bureau of Standards Compute= Science and
Technoloy. Features of softwae en-C
NBS~ 0- TT NBriV

*;; :i . hingt5-U. C., Fe ruary 1981

12. Neetz, R.A., Huma11 Factors in Software Desi_n: A"Z- blem Indel~tifi-caT3.on p'T-46 -WZTpons' CeonTre± anZI

86

,....-- -. -
@.....................................

Software Systems Division, Pacific Missile T est
Center, Point Mugu, California, November 1981

13. De atment of Defeanse, Software Tehola for
Adapable Reliable Systems Procira 1t pa 2-TPP
V-epaFTIFt OfDerenge-,' cT9 l

14. Scheidevind, N.F., Software Maintenancne: Improvement
Throucth Better ~ T o~f~ d n
Documef;nt at i3n PP. 2 8 3-~U 1717-a PoFg!aTt" SchoU17

* W-nTIgEie7 a-Iif(o-rnia, Fe~ruazy 1982

15. De Roze, B.C. and Nyiman, T.H., The Software
L ge .nae me nt adrachaoloaqicalEahnei

ZU nlui 4, No. 4, July 1978

16. Shooman M.L., Softwae E neig Desigj
R lab iaw .- P 1Th-plW2 '53iputer '5ce nce

17. Nassi, I.R., A Critical Look atl the Process of Tool

18. Berkeley, E. * Comp2uter Assisted Documentation of
Workinq Bina~ Z72r~m v, -n
Document at!i3ff Proce n ogihire
C5o1Pu!er af Informational Software niering
g*1 nes COIN S 111, Volume 2, Academic Press, 1971

87

BIBLIOGRAPS!

Brooks R. Using Behavior Theory of Proga C omprrhensionin wa;"Enjq --- tri 51-1T on S-oware TIFTZHFPce,
~~ ~ociet r2res, 1.tXn s'

Corwell,. W.R.,. and Osterwei., L.J.a, The rool ack/IST
Pralmmin q Environment, Aregonne Nat M~ -10MM

Gray M. and Londcn, K.R, Documentation Standards.
Bran Aon/Systems Press Inc. New Yor7-M9 9
Lientz B.P. and Swanson, E.B. and Tomkins, G. E.,
Ch~ractristics of APlcatAI on Software Maintenance,
Momn-- --- f The ACKV-Iontg2 1 -15Vf6 -X9Th-'15-n
=o-ofu---- -h:f~--kw York, 1 §78

Lintz, B4' and Swanson, E.B.,s Problems -i Applicationwar Mintenance, Communicatin 3. V5~i Mg
Xti er'r12 n Yo-!i~y New York,

Naval Weaon* (;enter, AV-8B Wea ons SystemSp t Facilit,
A-i/A V-8 ;Facilit v Bran a FV p5 In~u,2Chtt=&H,
California, Sc pt rbe r 19§3

Naval Weapons Center, Software Developmrent Plan and
Doaumentat~i Standard A-7- 1cilrty-Tr~ncW 1,-avaIWVapons

CNET -MERrM7t!Jfifornia, 1982

Naval Weapons Center, System Development Plan for the F/A-1 8
W_ons system a u2or- WX Cen-e

V--rrit weapons Tb Tg~ioP Dp a rtm en t, .. hina La ke,
* California, October 1983

Prokop , CQ!u.ters in th IAI, Naval Institute Press,
Aninapolis, Har!I, 717W

Sohar Inc, Corn ut&. Sdnc a nd _Technoloq Th- Introduction

Warnier J D Reliabiltj and maintenance of La r~q Systems,

Ress, t~osXnl,71983

Wasserman, A.I., Tutorial Software Deve.opme nt
Enviroment, IEEE Compu~r-BIety Pf~~ffff tI91MZ

88

- - - - --e- .

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Camden Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. Department Cairman Code .52
Department o Compu er Science
Monterey, California 93943

4. LT. Robert B. Upchua;ch 2
230 East Parkway Drive
Columbia, Missouri 65201

5. Dr. Gordon Bradley Code 52BZ 4
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Capt Bradford D. Merc er PSAF, Code 52B1
Department of Computer 9cience
Naval Post raduate School
Monterey, Califcrnia 93943

7. Steve Underwood, Code 3192
A-6 Software Development Branch Head
Naval Weapons Center
China Lake, California 93555

.. .oo89

-- 9-

, ., .- 2 .- ", 2. ... ;. .- .. ,. . . - 1

)*1

J, ~ ~ ~ Jr A .

.,Wj,

-~ ~ , r' Ap ? .

