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SECTION I 

INTRODUCTION 

The skin friction and heat transfer can be significantly larger for 

turbulent flow over a rough surface as compared with an equivalent tur- 

bulent flow over a smooth sui^ace. Many surfaces of engineering 

interest are rough in the aerodynamic or hydraulic sense (to be defined 

in the following sections).  Examples of systems for which surface 

roughness is an important concern are re-entry vehicles, missiles, 

stores carried externally on high performance aircraft, ships' hulls, 

turbines, heat exchangers, piping networks, and atmospheric flows.  In 

light of this broad interest and applicability, there is a significant 

interest in accurate predictive models for turbulent flow over a rough 

surface. 

1.   PREDICTION APPROACHES 

Some possible schemes for predicting the momentum and ent'alpy 

fields (and by consequence the skin friction and heat transfer) for 

turbulent flow over a rough surface are: 

1. Solve the complete unsteady Navler-Stokes equations in a 

micro-grid. 

2. Solve the time-averaged Navler-Stokes equations in a 

micro-grid. 

3. Solve the time-averaged Navler-Stokes equations in a 

macro-grid. 

4. Solve the time-averaged boundary layer equations in a 

macro-grid. 

The first scheme is a one-hundred percent first principles approach. 

The complete set of descriptive equations is solved numerically in a 

grid system that is fine enough to resolve the details of both the tur- 

bulence and the geometry of the rough surface. Such an effort would be 

well beyond the state of the art. The computer storage and computation- 

al time required for such an effort would be astronomical. 

The second scheme does not attempt to temporally resolve the turbu- 

lent fluctuations but does use a grid network that is fine enough to 

resolve the geometry of the rough surface.  The grid for such a scheme 



would still be beyond the present computer storage capabilities.  For 

this scheme a turbulent closure model would be required since .he time 

averaging process introduces new variables (the so-called Reyno'ds 

stresses) but, unfortunately, no new equatrons.  Therefore, empirical 

inputs are required to ^lose the system of equations. 

The third scheme dees not attempt to resolve either the temporal 

details of the turbulent fluctuations or the minute details of the rough 

surface geometry.  That is, the numerical finite difference grid is 

coarse compared with the scales of the turbulence and of the roughness. 

This relatively course grid allows the problem to be placed on current 

large computers.  Here, as in the second scheme, a turbulent closure 

model is required. Also, since the details of the roughness geometry are 

not resoJved, some form of roughness model must be introduced to account 

for the effect of the roughness on the flow field. 

The fourth set is actually a subset of the third and is mentioned 

here for completeness.  The well-known boundary layer approximations lead 

to a simplified version of the Navier-Stokes equations, the so-called 

boundary layer equations.  These equations are parabolic as opposed to 

the elliptic Navier-Stokes equations and are readily solved by many com- 

puter codes. Here, as with the third scheme, both a turbulence closure 

model and a roughness model are required.  Because of the simplificatio < 

mentioned above, the boundary layer equations offer comparative computa- 

tional efficiency. Also, many flows of engineering interest meet the 

boundary layer assumptions.  Furthermore, it should be pointed out that 

as turbulence closure models that were developed for boundary layers are 

readily extended to turbulent Navier-Stokes calculations, so too would be 

roughness models that are developed for boundary layers. 

From the above discussion it is apparent that, if the flow over a 

rough surface is to be computed, some efficient, accurate roughness model 

must be supplied.  There are two main schools of thought on the modeling 

of rough surfaces that are discussed in detail in Section II. 

They are: (1) a wholly empirical method known as the equivalent sand-grain 

approach, and (2) a semi-empirical method known as the discrete element 

approach.  While both methods require experimental inputs, the equivalent 

sand-grain approach may require experimental data on the particular 

surface under consideration.  On the other hand, the discrete element 



approach incorporates more basic physics of the process and uses a more 

generalized empirical input.  It is therefore applicable to a broader 

spectrum of rough surfaces without requiring specific experimental data. 

2. OBJECTIVE 

The objective of the present work was to develop and verify a pre- 

dictive model for turbulent flow over rough surfaces consisting of dis- 

tributed (or three-dimensional) roughness elements.  The desired model 

should: 

1. Accurately predict both skin friction and heat transfer. 

2. Not require a data base for each particular surface under 

consideration. 

3. CONTENTS 

The general organization of the work presented in this report is 

described below.  Section II is a discussion of the background of predic- 

tive methods for turbulent flow over rough surfaces.  The present 

predictive model is derived and discussed in Section III.  In Section IV 

the method of solution Is presented and discussed.  The calibration of 

the present model is given in Section V. In Section VI the results of 

the present model are compared with experimental data for fully developed 

flow?.  In Section VII the results of the model are compared with 

experimental data for developing boundary layers.  The conclusions of the 

work and recommendations are contained in Section VIII. 

Ancillary Information is contained in the appendices. 



SECTION II 

BACKGROUND 

The rigorous study of the effects of surface roughness on fluid flow 

and heat transfer had its origin with the classic work of Nikurajse [1] 

in 1933.  He took pressure drop and velocity profile measurements in 

pipes roughened with tightly sized grains yf "Goettingen" sand.  He made 

an extensive number of experimental runs covering 6 sand grain sizei 

(r/k - 15, 30.6, 60, 126, 252, 507; where r is the pipe radius and k^ 

is the sand gr^ln size) and pipe Reynolds uumbers ranging from 500 to 

1,000,000.  Inspection of Figure 1,  which shows a plot of Nikuradse's 

friction factor versus Reynolds number, reveal? the magnitude of this 

data base.  In this paper Nikuradse introduced the roughness Reynolds 

number as a measure of the state of the flow over the rough surface 

Rek - u*kg/v (1) 
s 

where u* is the friction velocity (/t /p) and k is the size of the sand 
w S 

grains.  He also documented the three regimes of rough surface flow: 

hydraulically smooth        Re,  < 5 
s 

transitionally rough        5 < Re,  < 55 - 70 
s 

fully rough Re  > 55 - 70 
s 

Hydraulically (or aerodynamically) smooth flow is flow over a rough 

surface that has the same resistance as flow over a smooth surface at the 

same Reynolds number. That is, the surface appears smooth to the fluid. 

It is characterized by the skin friction coefficient depending on the 

Reynolds number of the gross flow but not depending on the roughness size, 

shape, density, etc.  Fully rough flow is flow where the skin friction 

coefficient does not depend on the Reynolds number of the gross flow and 

does depend solely on the character of the roughness. Transitionally 

ough flow (net to be confused with the transition between laminar and 

turbulent flow) is, as its name suggests, between hydraulically smooth 

and fully rough.  It is characterized by dependence of the skin friction 

coefficient on both flow Reynolds number and roughness character. 
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These three regimes are usually explained in terms of thp relation- 

ship between the roughness height and the so-called viscous sublayer.  It 

is said that in the hydraulically smooth regime the roughness elements 

are all within the sublayer; therefore, viscous effects dominate and the 

surface appears smooth to the flow.  In the transitionally rough regime 

the roughness elements begin to protrude through the sublayer and both 

viscous and roughness effects are significant.  Finally, in the fully 

rough regime the sublayer is said to be fully descroyed and viscous 

effects become Insignificant; hence, the Reynolds number is no longer a 

factor. 

The sublayer explanation, while enlightening, depends almost com- 

pletely on the height of the roughness and ignores the important factors 

of shape and spacing density of the roughness elements. An otherwise 

smooth surface with very sparsely spaced large (relative to the sublayer) 

elements may appear smooth to the flow. Morris [2] took a different view 

that was based more on the spacing of the elements than the height.  He 

classed flow over a rough surface into four regimes:  smooth, semismuoth, 

hyperturbulent (wake interference), and quasismooth.  The smootn regime 

is equivalent to the hydraulically smooth regime discussed above.  The 

semismooth regime consists of a mostly smooth surface with very sparsely" 

spaced roughness elements. The flow resistance is viewed as a sum of 

the viscous resistance on the smooth parts of the surface and the pres- 

sure drag on the roughness elements.  Hyperturbulent flow consists of a 

surface where the elements are more closely spaced and the wakes behind 

the elements reach the adjacent elements. Quasismooth flow consists of 

elements so closely packed that the crests of the elements and the 

nearly stagnant fluid in the intermediate pockets form an almost smooth 

surface. 

Following Nikuradse's work, the next major step in the development 

of the theory of flow over rough surfaces was the definitive paper by 

Schlichting [3] in 1936  Schlichting conducted experiments in a rectan- 

gular channel with the upper surface roughened and the remaining sides 

smooth.  His purpose was to study the effects of roughness shape and 

density on the flow resistance.  He investigated seven different sh.ipes: 

large spheres, small spheres, spherical segments, cones, short angles, 

long angles, and a "Hamburg" sand.  Each shape was studied over a range 



of spaclngs and a limited range of Reynolds numbers.  Schlichting's 

paper is definitive for two reasons: (1) it remains the most comprehen- 

sive set of controlled experiments for flow over a well-defined rough 

surface, and <2) two methods of viewing the roughness problem were put 

forward.  In this paper Schlichting developed in detail the well-known 

equivalent sand-grain roughness approach and briefly discussed an alter- 

native approach that has come to be known as the discrete element 

approach. 

1.   EQUIVALENT SAND-GRAIN ROUGHNESS 

To adequately describe a rough surface at 1"üJC three measures are 

required:  height, spacing density, and shape.  In general, a multiplicity 

of length scales are required (k. , k„, ... k , where the number n will 

vary from surface to surface) .  Simplicity has been a powerful incentive 

in past attempts to use a single length scale to describe the nature of 

rough surfaces.  The parameter that is most commonly used is the well- 

known equivalent sand-grain roughness, k . 
s 

In his paper Schlichting [3] proposed the equivalent sand-grain 

roughness as a measure of the flow resistance character of a rough 

surface.  This measure was a length scale, k , which was the sand-grain 
s 

size in Nikuradse's experiment that gave the same flow resistance at the 

same Reynolds number based on hydraulic radius.  It was Schlichting's 

stated purpose to use this measure only as a means of extrapolating a 

restricted set of experimental resistance data to other Reynolds numbers 

based on Nikuradse's extensive data set.  To quote the NACA translation 

[31 s 

"It is the object of our test to be able to specify for 
each type of roughness investigated a characteristic number 
by whose aid it becomes possible to predict the resistance 
for the same type of roughness at other Reynolds numbers... 
than those directly measured." 

"...it appeared advantageous to us to evaluate our results 
in such a manner that they could easily be expressible in terms 
of results obtained by Nikuradse for sand roughness without, 
however, necessarily taking the latter as a standard type of 
roughness.  One objection to using sand roughness as a standard 
is that this type is not satisfactorily reproducible...." 

Schlichting's admonition about the reproducibillty of sand-type 

rouphness was most likely prompted by his experience with the "Hamburg" 



sand.    One of  Schlichting's roughness media was a sand  that he designated 

"Hamburg" as compared  to   the  "Gcettingen"  sand  that was  used by 

Nikuradse.     The  "Hamburg"  sand was  sired  in  the  same manner that 

Nikuradse used  and was bonded to the surface  in  the same manner as 

Nikuradse.     For  the "Hamburg" sand Schlichting determined an equivalent 

sand grain roughness k /k » 1.64  (where here k is  the  size of  the 

"Hamburg"  sand).     That is,   the "Hamburg"  sand was 64%  rou,ner than the 

same size "Goettlngen" sand.     Schlichting also   tested a   'Goettingen" 

sand and  found   that  the  friction factor differed only  1  to 27, from those 

found by Nikuradse;   therefore,  the difference cannot be attributed to 

differences in the experimental methods.     This is a graphic counterexample 

to the widely held belief  that surfaces  that are densely roughened with 

sand or that appear sand-grain-like  (e.g.,  grit blasted)  scale on a 

one-to-one basis with Nikuradse's sand roughness. 

The equivalent sand-grain roughness,   k  ,   is usually determined by 

measuring the skin friction and velocity profiles for a particular sur- 

face and then comparing these results with the results of Nikuradse  [1]. 

For example,  Schlichting  [3]  determined his values for k    in the follow- 

ing manner.    He started with the logarithmic velocity profile given by 

Nikuradse for fully rough flow 

J-f - 5.75 log {- + 8.48 (2) 
s 

where y is the distance from the surface.  Then he assumed that his 

velocity profile over a surface of elements with uniform height, k, could 

be fit by the formula 

^f - 5.75 log J+ A (3) 

Schlichting de•...rained the friction velocity independently,  basically by 

using pressur . drop measurements.    The intercept A was determined by 

graphically fitting equation (3)  to the measured velocity profile. 

Then by setting  the right-hand sides of equations   (2)  and  (3) equal 

to each other he obtained 

k 
5.75 log    r^    -  8.48 - A (^a) 

or 



^ , 10(8.48 - A)/5.75 (4b) 

This method is not as straightforward as it appears.  The reader no 

doubt recognizes the similarity between equations (2) and (3) and 

the well-known law of the wall for turbulent flow over smooth surfaces 

5*- 5.75 log *£+ 5.5 (5) 

This similarity is not coincidental.  In their formulations of equations 

(2) and (3) Nikuradse and Schlichting both assumed that the effects 

of roughness are confined to a region very near the wall; therefore, the 

slope of the logarithmic region of the velocity profile Is the same for 

both rough and smooth surfaces (the only difference being in the inter- 

cept).  This argument is based on skin friction and mean velocity mea- 

surements along with a somewhat nebulous definition of the origin for 

the y-axis.  Recent extensive measurements (Pimenta [4], Coleman [5] and 

Llgranl [6]) have shown that roughness affects both the magnitude and 

spectral distribution of turbulent kinetic energy across the entire 

boundary layer, suggesting that the slope of the logarithmic region 

could be different for smooth and rough surfaces. Furthermore, Uram [7] 

has determined logarithmic region slopes ranging from 4 to 9 for differ- 

ent rough surfaces. 

The appropriate origin for the distance from the wall, y, must be 

selected if the velocity profile is to have a logarithmic region of the 

form of equation (3).  Schlichting used the melt down location as 

the origin for the . ixis in his work.  That is, he used the surface that 

would result if all the elements were melted and the melt was allowed to 

distribute itself evenly. This method yields a hypothetical surface that 

maintains the same fluid volume. This location, while it appears logi- 

cal, has no physical basis from a fluid dynamics viewpoint. Figure 2 

shows the resulting velocity profile plots with different y-axis origins 

for a surface that consists of densely packed spheres [5].  Inspection 

of the figure reveals th-t different (but apparently valid from visual 

inspection) logarithmic profiles exist for each of the y-axis origins. 

Therefore, the mere fact that a logarithmic region seems to exist does 
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not always  suggest  that  the proper origin has  been selected.    A 

further complication  is  the fact  that Nikuradse did not  state  the origin 

for y in his  report   [1].     Use of equation  (4)   requires  that  the origins 

for y in equations  (2)   and  (3)   be  the same. 

Determination of  the correct origin for y is one of  the more diffi- 

cult tasks  in  this  type of analysis.     Perry and Joubert   [8]   have proposed 

a graphical trethod  for determining this origin.     Also,  Monln and Yaglom 

[9]  have proposed a method based on the mathematical nature of  the 

logarithm function.     It  is generally believed  that  this  origin should  lie 

somewhere between the valleys and crests of  the elements.    However, 

Perry, et al     [10] have found effective wall locations 1.5  to 2.0 element 

heights below the crest for transverse bar roughness. 

If the equivalent sand-grain roughness approach is  to be a useful 

predictive tool, some method must exist to specify k    for surfaces for 

which no skin friction data exist.    Dvorak  [11],  Simpson  [12],  and 

Dir ling  [13]  have presented correlations for k /k (or the shift in the 
1 s 

mean velocity profile, Au ) with some parameters  that attempt to account 

for the dependence on roughness height, spacing, and shape.    The correla- 

tion of Dlrllng   [13]   Is representative of these efforts and is shown in 

Figure 3.    Dlrllng plotted k /k versus a roughness density X ■  (Ä, /k) 
1.25 s r 

(A /A )   "      where k Is  the mean roughness height,  £    Is  the average 

center to center spacing, A    is the windward surface area of the element, 
9 

and A is the projected windward surface area of the element. 

Dlrllng's correlation seems to collapse the available data better 

than the others.  However, several points warrant discussion. Inspection 

of Figure 3 reveals that the data for k /k spread significantly for a 
9 

given value of X.  For X - 25 it is seen that the data vary from 

k /k z  0.2 to k /k = 0.6 and for X = 11 from k /k ~ 0.8 to k /k * 2.4, 
s s s s 

while the correlation gives, respectively, k /k « 0.3 and k /k «« 1.2. 
s s 

Therefore,   the reliability of  this better correlation is approximately 

The  law of  the wall  for rough surfaces  is often expressed alternatively 
as 

SJ ■ 5.75 log ^+ 5.5 -Au(^) 

U 
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±100%.    Berg   [14]   found that the correlation gave a value of k /k three 

times larger  than his  experimentally determined values.     Secondly,   they 

do not distinguish between  two-dimensional and  three-dimensional rough- 

ness.    The nature of the flow around these  two different  types of rough- 

ness is very different.     The flow over two-dimensional elements is more 

strongly dependent on the spacing  (distance between strips)   than the 

height while for three-dimensional elements both height and spacing seem 

to be about equally important.     For example.   Perry,   et al     [10]   found 

that for certain ranges of k/£    the skin friction coefficient,  Cf, does 

not scale with the roughness height, k,  for  transverse bar roughness. 

Also,  for general roughness  (i.e.,  randomly sized and distributed 

elements)  there is no set correct method for characterizing the roughness 

(i.e.,  specifying k,   £  ,  A    ana A ).    King,   et al    [15]   have discussed 

this problem without giving a resolution. 

All of  the above correlations rely heavily on Schlichting's  [3] 

original determinations of  k /k.    As discussed in the following sections 

and in Appendix A,  Schlichting's data reduction method was flawed 

(mainly by neglecting the effects of the side walls of his 4:1 aspect 

ratio channel).    As shown in Appendix A, corrected or modified values of 

k /k differ from those originally repo-ted by 26% to 555Z. 
s 

The equivalent sand-grain roughness, k , is used in predictive 
s 

modeling through algebraic correlations,  integral methods, and differen- 

tial (finite difference)  methods.    Many correlations  for  skin friction 

coefficient,  Cf,   and Stanton number,  St, have been presented.    Examples 

are Schlichting  [3], Dlpprey and Sabersky [16], Nestler  [17], and Seidman 

[18].    Dvorak  [11]  has presented an integral method to predict skin 

friction and heat transfer. 

In the present state of boundary layer computation,   the differential 

methods are by far the most important.    These methods solve the partial 

differential equations of   the boundary layer with finite difference 

techniques.    Cebeci and Chang  [19]  present a method that  relies heavily 

on the equivalent  sand-grain roughness.     They solve  the usual incompress- 

ible boundary layer continuity and momentum equations  for  the flow field. 

They account for  the roughness via a virtual origin Ay for the Prandtl 

mixing length,  where Ay is  defined as a function of k  .     One of  the 

major problems with differential methods  that use the  equivalent 
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sand-grain roughness is the ill-defined wall boundary condition.  Cebeci 

and Chang [19] attempt to overcome this by defining wall conditions at 

some distance y above the crest of the roughness.  They determine the 

velocity boundary conditions (u ,v ) at this point from empirical velocity 

profile correlations. 

Lin and Bywater [20] and Adams and Hodge [21] present differential 

methods that are basically discrete element approaches (discussed below) 

but which, however, rely on eoui"Talent sand-grain roughness to some 

degree in their turbulence models. 

The reader has probably noticed that the above discussion of 

equivalent sand-grain roughness is almost totally concerned with momen- 

tum transport.  In fact,the equivalent sand-grain roughness, k , is 

defined only on the basis of skin friction and velocity profile data. 

In general, attempts to use equivalent sand-grain roughness to correlate 

heat transfer data have not been successful. This is most likely because 

the mechanisms for momentum and energy transport to a roughness element 

are different. The apparent shear stress at the wall (total tangential 

force on the wall divided by wall area) is composed of viscous forces 

plus form drag on the elements.  For heat transfer there is no transport 

mechanism which is analogous to the form drag on the element.  In fact, 

there is no physical reason for two surfaces with the same skin friction 

coefficient to have the same Stanton number. 

In summary, the outstanding problems with the equivalent sand-grain 

approach are as follows: 

1. To accurately predict skin friction, experimental data for 

the particular rough surface or a similar surface are 

usually required. 

2. In general, sand-like surfaces do not have a value of 

k /k - 1. 
s 

3. The effective wall location is not readily apparent. 

4. Many roughness geometries do not correlate with a single 

length scale.     The present correlations between k /k 

and some density parameter are,   in general,  unreliable. 

5. Attempts to  interface equivalent sand-grain models with 

finite difference boundary layer computations  results 

in an ill-defined boundary condition at  the wall. 
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6.  There is no physical reason for heat transfer data 

to correlate with k . 
s 

In spite of appearances, it is not our intention here to say that 

the equivalent sand-grain approach is a complete failure.  Its dominance 

of the subject of flow over rough surfaces for the past half century is 

testimony to its value in filling some of the gaps in the science of 

fluid mechanics.  However, many gaps remain.  In recent years the 

alternate approach has gained momentum. 

2.  THE DISCRETE ELEMENT APPROACH 

In the same paper [3] in which Schlichting proposed the equivalent 

sand-grain roughness approach, he proposed (as a means of better under- 

standing the dependence of flow resistance on the roughness density) 

that the flow resistance of the rough surface be divided into two com- 

ponents: (1) that due to the form drag on the element and (2) that due to 

the viscous shear on the smooth surface area between the roughness 

elements. Schlichting defined W as the total resistance, W as that 

part of W due to the drag on the elements, and W as that part due to the 
s 

viscous shear on the smooth parts of the surface, where W » W - W . 
r   2  s 

Then he defined an element resistance coefficient C, - 2W /(pu , F ), 
d    r    k r 

where u, is the velocity at the crest of the elements and F is the 

projected frental area of the roughness element.  Schlichting went on to 

calculate C, for all of his surfaces; however, this information was not 

put to any practical use at that time. Following these same Ideas, a 

body of literature hac arisen that here is referred to as the discrete 

element approach. 

The discrete element approach considers the momentum and energy 

transport processes on the collection of individual roughness elements 

and the. smooth surface between the elements.  The basic idea of the 

discrete element approach is to formulate a system of partial differen- 

tial equations that describe the mass, momentum, and energy transport for 

the flow over, around, and between the roughnesf '■'; .-Tt*  T7v this method 

the roughness effects are taken as an integral part of the flow problem 

and not (as with the equivalent sand approach)  as some ill-defined 

boundary condition. 
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."igure 4 shows the major physical phenomena that distingu ^h flow 

over a rough surface.  They are blockage of the flow, form drag on the 

Blockooe 

FRONT VIEW 

Heot Transfer 

Prog 

SIDE   VIEW 

Figure 4.   Schematic of a Rough Surface 

roughness elements, and local heat transfer between the elements and the 

fluid.  The roughness elements occupy a finite fraction of the space 

available to fluid flow and thus block the flow. As the fluid flows 

over and around an element, zones of different pressure develop resulting 

in form or pressure drag on the elements.  Therefore, because of these 

forces, momentum is extracted volumetrlcally from the flow.  If the fluid 

and the element are at different temperatures, there will be local heat 

transfer between the element and the fluid.  Therefore, the elements act 

also as volumetric heat sources or sinks (depending, of course, on the 

relationship between the fluid and element temperatures). 

The above mentioned partial differential equations are formulated 

in such a way that they account for the roughness geometry and the 

roughness phenomena (blockage, distributed momentum sink, and distributed 
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heat sink/source). These equations are then solved (usually by finite 

difference methods) with the appropriate boundary conditions.  The wall 

boundary conditions are now well defined.  The velocities must go to 

zero at the base smooth wall and the temperature of the fluid at the 

wall must be equal to the base smooth wall temperature. 

The other common wall boundary condition for the energy equation is 

the adiabatic wall. Care must be taken when specifying an adiabatic 

rough wall. Merely requiring that the derivative of the temperature be 

zero at the base wall is not adequate, since the elements would remain 

as a major route for energy transport. 

The discrete element approach fills many of the gaps left by the 

equivalent sand-grain approach.  A brief list is provided below: 

1. The roughness geometry is accounted for in the formulation 

of the equations.  All measures are included, namely height, 

shape, and density or distribution. A single length scale 

is not relied upon. Also, no nebulous standard roughness 

is required. 

2. The problem of the effective wall location and Che ill- 

defined boundary conditions are not encountered.  The 

discrete element partial differential equations are 

integrated out from the base smooth wall while the rough- 

ness effects are included in the equations. 

3. The effect of roughness on energy transport is included 

in the equations in a physically meaningful manner. 

As stated above, many of the basic ideas of the discrete element 

method were first proposed by Schlichting [3] in 1936. Later, Llepmann 

and Goddard [22] took this view as did Lewis [23].  In recent years 

several serious attempts to use the discrete element model as a basis 

for calculation methods have been presented. Calculation methods for 

skin friction and/or heat transfer on rough surfaces using the discrete 

element approach have been reported by Adams and Hodge [21], Lin and 

Bywater [20], Finson and co-workers [24,25,26], Christoph and co-workers 

[27,28], and Roberson and co-workers [29,30,31]. 

The model of Adams and Hodge [21] includes only one aspect of the 

discrete element approach, namely the form drag of the roughness elements. 
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They do not address the problem of flow blockage caused by the elements. 

Also, they do not model the heat transfer between the elements and the 

fluid.  However, they do calculate heat fluxes and by consequence 

Stanton numbers with apparent success for some cases.  In addition, they 

only use the discrete element approach to calculate the flow field over 

fully rough surfaces.  They calculate the flow field over transitionally 

rough surfaces by using an equivalent sand-grain approach from Healzer 

[32]. 

Lin and Bywater [20] address all three roughness phenomena (blockage, 

distributed momentum sink, and distributed heat sink/source). However, 

they do not distinguish between flow blockage in planes that are parallel 

and those that are perpendicular to the flow direction.  In addition, 

they use turbulence models which are based on the equivalent sand-grain 

method. 

Finson and his co-workers [24,25,26] have presented a discrete 

element calculation method that does not rely on any sand-grain concepts. 

The earlier work, Finson and Wu [24], does not include the blockage 

phenomenon. Their later works, Finson and Clark [25] and Finson [26], 

Include both blockage factors and a distributed momentum sink term. 

However, they do not account for the distributed heat source/sink term. 

Their flow blockage factors are applied Inconsistently in the equations. 

Also, their definition for blockage in planes that are erpendicular to 

the flow direction is Incorrect.  (This will be discussed in Section III.) 

In addition, they do not state exactly how values for skin friction 

coefficient and Stanton number are calculated. 

The work of Christoph and his co-workers [27,28] follows the work 

of Finson very closely. They present two methods—an integral method, 

Christoph [27], and a finite difference method, Christoph and Fletcher 

[28].  In both papers they use a mixing-length model for the turbulent 

shear stress that has been modified to include roughness factors.  In 

the Integral method a Stanton numbir is calculated from the integrated 

boundary layer equation. Also, in the finite difference method they 

calculate the enthalpy field over the surface.  However, in both papers 

the Stanton number that is compared with the experimental data is 

calculated from a correlation with the skin friction coefficient.  They 
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set Che heat transfer augmentation due to roughness equal to the square 

root of the skin friction augmentation due to roughness. 

Roberson and his co-workers [29,30,31] have worked continuously for 

more than twenty years with a model for fully developed flow in 

rough conduits that is closely related to the discrete element approach. 

Their model divides the skin friction into viscous and element drag 

components and calculates a velocity profile below the crest of the 

roughness elements based on an assumed shear stress distribution. 

However, their model differs from the discrete element model as defined 

here in that they do not formulate a differential equation that describes 

the entire flow field.  Therefore, their insightful model is not easily 

extended to developing flows where boundary layer or Navier-Stokes based 

calculations are riquired. 

The discrete element models discussed above, while they are usually 

insightful, seem to varying degrees to be patchwork affairs.  Terms are 

added to the equations and multipliers supplied in an ad hoc manner to 

satisfy physical reasoning. No attempt appears to have been made to 

systematically derive the equations from first principles.  In the 

present work a discrete element model is derived for two-dimensional 

boundary layer flow from first principles. This model accounts for all 

three of the major roughness phenomena (blockage, form drag, and distrib- 

uted heat sink/source).  The model is calibrated using baseline experi- 

mental data and is compared to a wide range of additional experimental 

data. 
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SECTION   III 

DERIVATION OF THE  DISCRETE  ELEMENT MODEL 

In  the discrete  element approach  the  rough surface is assumed  to be 

composed of  discrete or distinct roughness elements.     Such a surface 

could be one composed of some uniform array of cones,  spheres, hemi- 

spheres,  etc.   that are glued or welded to a smooth base surface.    A 

uniform array of elements with circular cross sections is used in  this 

section  for all derivations because it is easily visualized.     However, 

the discrete element model that is derived is also applicable to non- 

uniform arrays  so  long as some adequate system exists  to define the 

various parameters used to quantify the roughness geometry.    For non- 

uniform,  but descriptive,  arrays the geometry  is easily quantified.     For 

example,  consider an array composed of rows of  cones where the distance 

between cones  in each row and the distance between rows is halved with 

each additional row until the most dense packing is obtained.    For 

general roughness  (i.e., where the elements are random in size,  shape, 

and spacing), accounting for each individual element  is no longer practi- 

cal and some averaging or satistical process must be used.    This is not 

a severe limitation on  the model.    Considerable spatial averaging is 

already necessarily Introduced by means of  the  finite difference process. 

In a later section that discusses the quantification of  the roughness 

geometry,  a  system is presented for general roughness. 

In this work only  three-dimensional or distributed  (k-type)  rough- 

ness is considered.    Graphic examples are  the above mentioned arrays of 

cones,  spheres,  etc.     In addition, most naturally occurring rough sur- 

faces are of  this  type.    A rusty pipe,  a corroded  turbine blade, an 

ablated heatshleld,  barnacles on a ship's hull,  a dull spray painted 

surface,   and forests are examples of distributed roughness geometries. 

Two-dimensional or strip  (d-type)  roughness  is not considered.    This 

important type of roughness is generally man-made.     Examples are threads 

in a pipe,  fiber-resin composites,  and rows of corn.     The  flow over and 

among strip-type elements is physically quite different from that over 

distributed  roughness  elements and requires a  separate  treatise. 
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In this section the two-dimensional time-averaged boundary layer 

equations for turbulent flcv ever a rough surface are derived.  To obtain 

the desired equations, a differential control volume is imagined which 

contains the pertinent roughness effects determined from averaging over 

several typical elements. Mass, momentum, and energy balances are made 

for this control volume to derive a system of partial differential 

equations that describe the flow over a rough surface. 

As discussed in Section i, empirical information must be provided 

on the nature of the turbulence and the roughness if practical solution 

techniques are to be used  The turbulence model and the roughness model 

are described, and the calibration of the roughness model is discussed 

in detail in Section V. 

1.   DERIVATION OF THE BOUNDARY LAYER EQUATIONS 

To derive the boundary layer equations for thi conservation of mass, 

momentum, and energy, a differential control volume is imagined as shown 

in Figure 5.  The control volume is shown with an exaggerated length 

in the x-direction for easier visualization of the roughness effects. 

Using this control volume, the appropriate balances are made to derive 

the partial differential equations that describe the boundary-layer flow 

of a fluid over a rough surface. 

Figure 6 shows the control volume with the rate of mass flow terms. 

Performing a steady-state mass balance 

puAx +-9^ 6x - PuAx J 

!3pvA \ 
pvAy + "97^ 6y ' pvAy ( (6) 

Before proceeding, expressions for the area open for fluid flow in the 

x-direction, A , and for the area open for fluid flow in the y-direction, 

A , must be developed.  Inspection of the control volume reveals that, on 

the average, not all of either surface is open for fluid flow; some 

fraction of the surface is blocked by the roughness elements.  This 

phenomenon is most conveniently expressed in terms of blockage factors. 

Let a (a ) be the fraction of the surface that is perpendicular to the 
x  y 

x-coordinate (y-coordinate) that is closed or blocked to flow.  These 

a's are hereafter referred to as the blockage factors.  Now A and A x     y 
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can be expressed as 

Ax « (1 - ax)6y • 1 (7a) 

Ay - (1 - ay)6x • 1 (7b) 

where unit depth in Che z-direction Is assumed. 

Substituting equations (7) into equation (6) and simplified 

yields the desired continuity equation 

0 'h lpa ' ax)u]   '' l^ IP(1 " ay)v] (8) 

Figure 7 shows the control volume with the rate of momentum flow 

terms.    Performing ? steady-state momentum balance 

0 " ■ |TAy + -1^ 6y " TAy| 
I      3puuAx \ 

" |pUuAx +—37" 6x - puuAxJ 
t 3puv;       j 

- <PuvAy + —£~-J-  6y - puvA \ 

3pA 

-{pAx + -är6x-pAx>-^ (9) 

Again the blockage is contained in the terms A and A as above. The most 

important difference between this balance and one for flow over a smooth 

surface is the additional term F . Physically F is the force exerted 

by the roughness elements on the fluid in the control volume.  This force 

is a result of the shear and pressure distribution around the roughness 

elements and, vectotally, it is the negative of the drag force on the 

elements. Also, it is convenient to think of F as a distributed momen- 

tum sink. That is, below the crest of the elements momentum is extracted 

volumetrlcally from the flow. 

The term F is most conveniently cast in terms of a nondimensional 

drag coefficient, C . 

FD - i PCDu
2(6Ap) (10) 

where  (6A )  is the projected frontal area of the elements in the control 

volume.    For elements of circular cross section 
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«V'eM^ir1) (11) 

where  (6x  •  1/(L£)) is  the nuirber of elements in  the control volume and 

d(y) is the local cross sectional diameter. 

Substituting equations   (7),   (10),  and  (11)  into equation (9) 

and simplifying gives the x-momentum equation 

O-l^ [d " «y)Tl  +-^ [Pd -ax)uu] 

+ |^ [p(l -ay)uv] +|j [(1 -ax)p] 

+ 1 PC u2 ^^- + 2 PCDU      LSL (12a) 

Equation  (12a)     can be simplified by expanding  the  convective  terms and 

recalling equation  (8)   to give  the more usual form 

p(l - a )u I11 + p(l - a )v |^ x      3x y      3y 

9y 

-*pS"2i^ (12b) 

Figure 8 shows the control volume with the rate ^f energy flow 

terms. Performing a steady-state energy balance with ."he normal boundary 

layer assumptions, i.e., for shear work on the x-surface 3W  /dx s 0 and 

for energy conducted through the x-surface 3E   /3x « 0 

ai 
ZiZ  6x - E 

cv,x 
0 - <E 

cv,x 

+1. 
dx 

3E 
+ _£^ 6y . E 

cv,y    3y   '   cv.y 

+ E 
cd,y 

1    cd»y 

I    aw 
+ Iw  + 

/ s.y  9y 

,   6y - E . 
3y   '   cd.yj 

^1 6y - W  j 
y       s.yj 

- W.   - Q 
drag 

(13) 

where 
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cv,x 2 

DUA x 

E ■ rate of energy convected across x-surface ■ 

E ■ rate of energy convected across y-surface • cv,y 2
S7 ' 

pvAy(h + r) 
E ,  ■ rate of energy conducted across y-surface = q A cd.y OJ ^y  y 

W   ■ rate of shear work on y-surface » TA u s,y 7 y 

W,   ■ rate of work due to drag force ■ 0 

Q ■ local heat transfer rate between element and fluid ■ 

f NudAe(tR " ^ 

The two additional terms (over the smooth case) merit some discussion. 

The work caused by the drag forces on the elements is zero since the 

velocity goes to zero at the surfacr of an element. The term Q is a dis- 

tributed heat sink (source) term nat accounts for the volumetric deple- 

tion (addition) of energy from (to) the flow because of the presence of a 

cold (hot) roughness element. Here Q is expressed in terms of the local 

Nusselt number, Nu,, and the roughness element temperature, tR.  The term 

A is the area of the roughness elements in contact wit-) the fluid in the 

control volume. For elements of circular cross section 

Ae - iTd(y)6y ( ^-LJ: ^ (U) 

Substituting the above along with the expressions for A and A x y 
(equations (7a) and (7b)) into the energy balance yields the energy 

equation 

I; [Ml - V (h .ii)]^ [pv(l - V (h + *!)] 
- - |- 1(1 - a )q ] - |- [(1 - a )TU] dy l y   y      3y y 

KNu. 

^—^R-^ (15a) 

Equation (15a) can be expressed in the more familiar form of static 

enthalpies, h, by combination with the equations for continuity (8) 

momentum (12) 
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p(l - a )u |^ + p(l - a )v |^ - - |- [(1 - a )q ] 
x  3x       y  9y   9y     y y 

- (1 - a )T ^ + u~ [(1 - a )p] y  3y    9x       x r 

+ 1 DC u3 dM       d + 2 PSU  L£ + LZ (tR - t) (15b) 

The equations derived so far (continuity, (8); x-mbmentum, (12); 

and energy, (15)) model steady laminar boundary layer flow over rough 

surfaces. Before we can practically apply these equations to turbulent 

boundary layers we will have to use the Reynolds averaging process to 

obtain the equations for time mean turbulent flow.  First the velocities, 

enthalpies, etc. are expressed as a mean term plus a fluctuating term 

u « U + u' (16a) 

v « V + v' (16b) 

h - H + h' (Ibc) 

p - P + p' (16d) 

t - T + t' (16e) 

Secondly the shear stress, T,  and heat flux, q , are expressed by the* 

usual phenomenological rate eq iations 

qy 

3y 

3T K__3h 
' " ^ ay " " C    3y 

P 

(17) 

(18) 

Substituting equations (16), (17), and (18) into -he conservation 

equations (8), (12), and (15) and taking the time average we 

obtain 

Continuity: 

^tPd-cyu]  + ^ [p(l - ay)V] (19) 

x-Momentum: 

(1 - o )p0 I? + (l - a )pv I? 
x/K   9x y      3y 
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-  pu 

i ^^ 5 i + 

^)] 
(20) 

Energy: 

(1 - ax)Pü f + (1 - Vp» |S 

■^[»-vlf-f---) 
+ U -f- [(1 - a )P] + (1 - a )4> 

+ iPc liZiu- 
2 PLD LA U 

,2 
1 + 3 

U 
KNu 

+ n U (TR - T) (21) 

where as usual the terms 3^' )/3x and 3(u'h')/3x are neglected.  For a 

boundary layer the mean dissipation term, $, is approximated by 

-r  3ü / ,, 3U  /,-r-r\ 
^ 3?( U 37" pu v j 

Inspection of equations (20) and (21) reveals an interesting 
2 2 

dependence on the turbulent Intensity, u' /U , in the terms containing the 

drag coefficient, C .  In general, the turbulent intensity is not 

neglegible.  However, this dependence is secondary and can be (to a good 

approximation) incorporated into the model for the drag coefficient, thus 

avoiding a need for another empirical closure for u* /U . 

In the above we have derived partial differential equations that 

describe two-dimensional turbulent boundary-layer flow over a rough 

surface.  At this point some remarks are in order.  The equations were 

derived assuming distributed or three-dimensional elements.  By the very 

nature of this type of surface the flow will be three-dimensional. 

However, in this model z-direction variations are not considered.  In 

other words, all z-direction variations are averaged out.  This averaging 

out is not a severe limitation as long as the control volume OJ which the 

various balances were made contains the appropriate amount of roughness 

effects determined by averaging over several roughness elements.  The 
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generally good agreement with experimental data shown in later sections 

reinforces this idea. 

The fact that the control volume contains roughness effects deter- 

mined by averaging over several roughness elements is also important in 

the flow direction. This averaging dimension, in general, must span 

several elements if the present model is to make sense.  This averaging 

of the flow parameters over some small but finite x-step, Ax, is only of 

small consequence, since the most (and probably only) practical way to 

solve the partial differential equations is in finite difference form. 

Before the above equations can be used to predict flow over a rough 

surface some system must be developed to quantify the roughness geometry. 

2.   QUANTIFICATION OF THE ROUGHNESS GEOMETRY 

Inspection of equations (19), (20), and (21) reveals that the 

roughness geometry is described by the parameters a , a , and  d(y). The 
x  y 

parameters C and Nu, contain empirical information about the drag and 

heat transfer of the elements but are considered here (as discussed in a 

later section) to be functions of d(y), or more precisely, the local 

Reynolds number. Re, ■ U(y)d(y)/v. First, we will consider the case of a 

uniform array and then we will consider a system for general roughness. 

Here all roughness elements are assumed to have cross-sections that are 

approximately circular. 

a.  Uniform Arrays 

For uniform arrays lie cross-sectional diameter, d(y), is the 

same for all of the elements at a given y-locatlon. Determination of 

d(y) Is simply a matter of considering the geometry of a single element. 

Figure 9 shows functional relationships for several common roughness 

shapes.  Referring to Figure 5 we see by inspection that a is 

ay= m <22) 

At first glance x    appears to be a ■ d/l.    In fact, this is the 

conclusion of most other workers [26,28]. However, this is the maximum 

blockage. At most x-locations the blockage is less, and at some loca- 

tions the blockage may be zero.  Here the solution is to take an average 

x-directlon blockage.  This averaging should be natural in light of the 
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Cones 
d(y)   =   do(k - y)/k 

y ♦ 
Spheres    (d0=k) 
d(y)   =»  2/(d0/2)2 -   (y -  d0/:)2 

i 
/^>N-17k 

Spherical Segments 
d(y) - 2/R2 - (R - k + y)2 

R '  r(do/2)
2 + k21/2k 

Figure 9.    Local Element Diameters for Cones, 
Spheres and Spherical Segments 

averaging already Involved in the finite difference nature of the equa- 

tions discussed above. For a uniform array this averaging removes all 

x-dependence of a , and the averaging length is unimportant as long as 

this length spans several elements.  For a nonuniform array some x- 

dependence must be preserved. Therefore, some averaging length must be 

chosen.  This length should contain several elements. The natural choice 

is a length approximately equal to the x-step length. Ax, used in the 

finite difference form of the equations. 

The averaging process for a uniform array of elements of circular 

cross-section follows. Since a always appears as (1 - a ), the averaging 

process will be carried out on (1 - a ).  Referring to Figure 10 

1  L 

^Vave-l' U-V« (23) 

where 

a • 0; all X not encountering an element 
x      

2 

a ■  j  ; all X encountering an element 

Substituting into equation (23) 
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1    x     ! 

1 

IK» 

i 
i 
i 
i 

a« 

Figure 10.  Layout for Averaging a 

(1 - a )   ■ f 
x ave  L 

Completing the Integration 

(24) 

(1.a)   -l/t.g!).  L 
x ave  L \    4Ä. / (25) 

It Is seen that (1 - a ) 
x ave 

(1 - a ) for any uniform array of elements 

of ircular cross-sections.  This relationship also holds for any array 

of circular cross-section so long as £ and d(y) are not functions of x 

over the averaging distance, Ax. 

The reader may wonder why so much time Is spent discussing the 

simplest geometry. There are two strong reasons for considering uniform 

arrays: (1) insights can be developed oy considering the simpler case 

that would be difficult to .. .certain from more complicated treatments, 

and (2) most of the controlled, well-defined experiments for flow over 

rough surfaces use uniform array surfaces. 
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b.  General Roughness 

Before we can quantify the geometry of a general rough surface, 

we must have some way of collecting data on that roughness.  The usual 

way that roughness is measured is by taking a profilometer trace.  Since 

the general roughness varies in both the x and z directions, at least two 

traces are required (one in the x and one in the z) .  Figure 11 shows 

typical traces and the nomenclature used below. Again we assume that the 

elements have circular cross-sections. 

In order to develop expressions for the blockage factors, we must 

determine the area blocked by the elements and the associated plane areas. 

For the xz plane the blockage factor is a .  Here and in the following 

developments we will use the z-trace to establish the element diameters, 

d(y), while the x-trace is used to establish element density.  Therefore, 

y 

z-Trace 

Ljz^sfeS 

x-Trace 

, h i-,  H 
Figure 11.  Typical Profilometer Traces 
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the total xz area occupied by the elements in the neighborhood of the 

z-trace is 
Nz(y) 

Atot^   I      di2^ (26) 
1=1 

where N (y) is the number of elements in the z-trace at a y-level. 

To obtain a we need the plane area associated with this z-trace.  The 
y 

z-dlmension of this plane area is obviously L . The x-dimension for this 

plane area is the average x spacing of the elements, L /N (0), where 

N (0) is the number of elements at the level y ■ 0. The xz blockage is 

then 

a 
^(0) V^  2 

^?7  ili I     d1'(y) (27) 

For the yz plane the area occupied by an element is d  6y where 
ave 

d   is the average diameter over some x dimension, i .    With a develop- 

ment similar to that which produced equation (25) d   is 

d .  'j—0  (28) 
ave,i  4 Z 

x 

Here I    * L /N (0) and the associated plane area is L 6y giving the yz 

blockage 

n <o) V*' , 
\ ■ irr- i dtO" <29) 

x z i-1 

The form drag term for general roughness is evaluated in a manner 

similar to that for uniform arrays with L replaced by L /N (0) and i 

replaced by L to give 

2, 
N (y) 

pu\(0)      I    C1)1d1(y) 
F
D STT1 öx6y * 1 (30) 

x,z 

Likewise, for the local heat transfer between the element and the fluid 

is 
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N2(y) 

^KNx(0) (TR - T)   I      Nud 
Q -  — —  6x6y • 1 

x z 
(31) 

For the general roughness case, the boundary l?.yer equations become 

Continuity: 

I: [p(l - ax)U] + -^ [p(l - tty)V] 3x 

x-Momentum: 

(19) 

(l-ax)püf+(i-ay)pvf 

k^-V^F^-V^F-^ 
2„ ,„   N (y) 

PU N (0)  z 
x 

2L L 
x z Ji C^di(y) (32) 

Energy: 

(1 - c^pu f ♦ a - ay)pv |S 

+ Ü |- [(1 - a )P] + (1 - a )* 
3x l     x y 

PÜ3N (0) Nz<y) 

•-ST- IWi^ X  z    1-1 

TTKN (0) (Tn - T) 
Nz(y) 

+ ^—X . .  8   - l    Nu 
L L x z 1-1 

di 
(33) 

Some remarks are appropriate here. The z trace Is used to estab- 

lish roughness size, shape, and z spacing.  The x trace is used to estab- 

the x spacing In the neighborhood of the z trace.  If significant x 

variation of the roughness exists, several z traces and associated x 

traces would be necessary.  Furthermore, equations (32) and (33) 

reduce to equations (20) and (21) for uniform arrays of identical 

elements since L - L /N (0), £ - L /N (0) and N (y) » N (0) for such arrays. xx        z z       z      z 
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It should be noted  that no effort has been made to correct for  the 

bias  in profilometer  traces.    This bias  arises because  the trace has a 

vanishing probability of passing through  the peaks of  the roughness 

elements.     Thus,   Che indicated heights and diameters are always on  the 

low side of  the  true values.    No satisfactory analysis of  this problem 

is known to  the authors. 

3.       EMPIRICAL CLOSURE 

As discussed previously, empirical information must be provided to 

model the terms,   u'v'  and v'h',  that occur in the Reynolds averaged 

equations for mean turbulent flow.    Also,   empirical information on the 

nature of  the roughness  effects must be provided for a rough surface. 

a.       Turbulence Model 

In this work a simple mixing length model with VanDriest 

damping  is  cuosen  to model  the Reynolds  stress  term,   u'v'.    That  is, 

- u'v'   ' I1 

m 
3U 
3y 

3U 3U 1 

where 

I    - 0.4y[l - exp(-y+/A+)];  I    < 0.096 m m 

I    - 0.096;   £    > 0.096 m m 

A+ - 26 

This is exactly  the   same model that is so often used  for smooth surfaces. 

Many workers   [19,21,32]   attempt to model rough surfaces by adopting a 

roughness turbulence model.    Usually some correlation for the damping 

factor,  A .   as a function of equivalent sand-grain roughness is presented. 

Often some other augmentation of I    is adopted,  for example, Christoph 
m 

[27]. The smooth wall turbulence model is adopted here for two reasons: 

(1) roughness effects are already accounted for in the rough wall boundary 

layer equations ((19) - (21)) and (2) as shown by Pimenta [4] and 

Coleman [5] the u'v' and v't' terms are the same nondlmensionally for 

smooth and rough surfaces. 

To model the term v'h' a constant turbulent Prandtl number, Pr ■ 

0.9, is assumed.  Then v'h' is given by 
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MT   M i . i il - v'h'   - r^ -^ - " 7^- %Z (35) PrT ay P       PCp   dy 

b.      Roughness Model 

The necessary empirical  information for  rough    surfaces  is 

contained in the models  for  the drag coefficient,   C  ,   and  the Nusselt 

number,  Nu..    In this work the correlations of Zukauskas   [33]   for banks 

of  staggered cylinders are used as a starting point,  since at a given 

y-locatlon a slice  through an array of elements with circular cross- 

sections appears similar to a thin slice through a bank of cylinders. 

Therefore,  the behavior of  the elements at a given y-location could be 

expected to exhibit the same general trends as a bank of  tubes.     These 

correlations were Chen modified by calibration with C    and St data on 

rough surfaces.     This procedure is discussed in detail in 

Section V of this report. 

The drag coefficient model developed is given by 

log Cp - - 0.125 log(Red) + 0.375  ,  Red < 60,000 

Cp - 0.6 ,  Re,  > 60,000 (36) 

and the Nusselt number model by 

Nu. - 2.475 Re.0'4Pr0,36     ,    Re. < 100 da d 

Nu. - 1.0A3 Re.0*5Pr0,37     ,     100 < Re.  <  1000 da a 

Nu. - 0.963 Re.0'6Pr0'36     ,    1000 < Re.  <  200,000 a a a 

Nu. - 0.060 Re.0'84Pr0,36  ,    Re. > 200,000 (37) 
d d d 

It should be noted that both C- and Nu. are functions of y  through 

their dependence on the local Reynolds number.  Re, - Ud(y)/v,  where both 

U and d(y)  are functions of  y.     Furthermore,   they contain information on 

the element shape by means of  the local diameter,   d(y). 

4.       REMARKS ON THE DISCRETE ELEMENT MODEL 

At  this point some remarks are in order.    The reader will recall 

that in the preceding  seer ions the  three regimes of  flow over a rough 

surface were discussed.     Nc  mention of  these regimes has been made in the 

development of this model.     All models  that use  the sand-grain roughness 
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approach must take care to distinguish between these regimes since 

different models are required for transltlonally rough and fully rough 

flow.  This brings forth the added burden of predetermination of the 

state of the flow. 

The present model does not need to make these distinctions, since 

by Its nature such Information Is Implicitly included. Therefore, the 

one mcdel applies to both transltlonally rough and fully rough flows. 

In Sections VI and VII, the present model Is compared with experimental 

data for both transltlonally rough and fully rough flows with good 

results. 

The delimitation of these three regimes is usually made using the 

magnitude of the roughness Reynolds number. Rev .  In the present model 
s 

the concept of sand-grain roughness, k , has been abandoned.  Even 

though the concepts of fully rough and transltlonally rough flow may be 

artificial to some degree (witness Morris' [2] discussion of an alternate 

classification), they are a part of our fluid mechanics tradition that 

(unlike k ) we do not yet wish to abandon.  Therefore, some new delimiter 

is required. One candidate for this Job is the ratio of apoari ^ shear 

stress due to the elements to total apparent shear stress, T /i-. At 

present, no limits are offered using the new delimiter due to a lack of 

data in the transltlonally rough regime. 

The present discrete element model development is for boundary 

layer flow. This form was chosen for two reasons: (1) almost all of the 

experimental data with which the model Is compared are for boundary layer 

flows, and (2) the relatively efficient solution of the boundary layer 

flow saved much effort in the numerical experimentation that war neces- 

sary for the calibtacor of the model. However, the present discrete 

element model snould be readily (albeit tediously) extendable to the 

full Navler-Stokes equations. 

5.   DEFINITION OF SKIN FRICTION, STANTON NUMBER, INTEGRAL LENGTH SCALES, 
AND THE ELEMENT TEMPERATURE 

At this point formulae for the skin friction coefficient and Stanton 

number are given in terms of the discrete element model nomenclature. 

They are 
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Skin Friction Coefficient: 

c . (1-VwTw-4n/>Ddu2w (38) 

' 1 Cüe2 

Stanton Number: 

KTTNU  (H    -  H) 

(1 - a ) a    + }    7r-nr  (dy) x y w^w      ■'o        CnLZ J/ 

St p Ü  (H    - H    )  (39) 

e e    w        oe 

The subscript w indicates values evaluated at the wall, and e indicates 

boundary layer edge conditions.    The smooth wall shear stress  r    is given w 
by Tw - - ViOu/ay)|     - and th». heat flux \ ^ - k(3T/9y) ]     -. 

These definitions can b<3 formulated from physical reasoning;  howeve *, 

they also arise naturally  in the formulation of  the Integral boundary 

layer equations for  the discrete element model.     These integral equations 

are der-'ve'4 in detail in Appendix B by integrating equations   (19)  - 

(21)  across  ^he boundary layer.    During this process,  definitions for 

the usual 1 itegral length scales (e.g., momentum thickness,  enthalpy 

thickness, etc.)  evolve.    The formulae for these are given In 

Appendix B. 

In the development of the energy equation, an element  temperature 

was introduced.    This temperature in the most general case will have a 

different value than the base wall temperature,  I .    The specification 

of this element temperature is rather involved and is discussed In detail 

In Appendix C.    In the present werk, all of the elements considered are 

firmly bonded and are constructed of highly conductive material.    Therefore, 

here the element temperature is  taken to be identical to  the wall 

temperature. 
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SECTION IV 

METHOD OF SOLUTION 

The discrete element equations derived In Section III are 

first transformed using a modified Illlngsworth transformation and then 

the transformed equations are solved using an Iterative, marching, 

implicit finite difference  technique. 

1.       THE EQUATIONS AND BOUNDARY CONDITIONS 

ihe discrete element boundary layer  equations  and boundary condi- 

tions as solved are: 

Continuity: 

h (pßxu) + i (pßyv) = 0 (40) 

Momentum: 

pB u |^ + pß v |-u- - p ß u   -r-^ x    9x y    9y        e x e dx 

+ l7[6y(" + Vlf] 
1 »S fiu2 (U) 

Energy: 

pßu|Upßv|^.|- 
x    3x y    3y      3y 

r« K+K
T9H1 

ffl: 

dU 
+ ^ + ^T> (f j    " PeßxUUe dT 

+ 2pCDlIU    + UTr  (42) 

The associated boundary conditions are 

y»0:U«V=-0,H»H (A3) 
w 

y-*oo:u-^U ,H-^H (A4) 
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Here the nomenclature has been abbreviated for compactness. The 

parametei 8 is the fraction of the control volume surfaces open to flow, 

that is, ß - (1 - a ) and ß = (1 - a ). Though not explicitly indi- 

cated, the parameters ß, CL, Nu„ and d are all function of y.  In 

addition, 3 is assumed not to be a function of x. For a uniform array ß 

is indeed only a function of y, and for most nonuniform arrays ß is to a 

good approximation only a quasi-function of x, i.e., 3ß/9x = 0. This 

assumption is not necessary; however, it considerably simplifies the 

following coordinate transformation. Also, all of the data sets with 

which we compare in subsequent sections satisfy this assumption. 

In addition to the y-boundary conditions stated above the velocity, 

U, and the enthalpy, H, profiles must be stated at some initial x 

position. This Is discussed in detail in Section IV. 

2.   THE MODIFIFD ILLINGSWORTH TRANSFORMATION 

Similar velocity and enthalpy profiles exist for turbulent flows 

only in isolated cases. However, considerable computational advantages 

occur if the solution variables and coordinate system are chosen such 

Chat similarity Is approached. Here the Illingsworth variables that 

result In similarity for the classical smooth wall laminar cases are 

chosen (for a discussion of these cases, sa.e White [34]). 

The following coordinate transformation is used: 

C - C(x) - I*  P Ji U dx (45) ' o e e e 

U /y pdy 
n - n(x,y) - -5—2  (46) 

/2£ 

A stream function, ^, is defined such that 

I* - Pß/ (47a) 

and 

where 

f - -pßyV (47b) 

i|( - /£ f (C.n) (48) 
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Furthermore,  let 

g - H/He (A9) 

From the definition of  the stream function,  ^,  continuity,   (40),  is 

satisfied exactly and the equations for conservation of momentum and 

energy become (in the new variables) after considerable manipulation 

Momentum: 

f"  + ynf" + Y12f'  + Y^ + Y14 1^- - 0 (50) 

Energy: 

where 

and 

g" +Y21g'  +Y22g+Y23+Y24|f -0 (51) 

a   ' 2a  '       2£ — 
rll       £* ß £*       ß 0 ß  ü* 

y y x y 

3üe 2 
v   . 2h x y + * + _x_ 
Yl2        V.1' Wy ßx

2 e« 

i*Q ß ß Ä* ß ß )l* 
x x y x y 

CcDdf 

ß ß p y Jl*UU x y e e e 

ß 2        ,f  3U 
f13      ß £*      U    3C y e    ^ 

Y14      ß l* 
-2jf' 

y 

2£^ a ' 
Y    ._i__ + _Ji_     y   , (^*/Pr)' 
r21      ß  (£**/Pr)       ß  (Jl**/Pr)      ß (il**/Pr) 

3U 8H 

-2^^Nud) f,ue2^9r     f,2^är 
Y22 = PU 2p p ß  (^/Pr):;Pr " 3y(^/Pr)He " ß (f/Pr)^ 

e    e e y } y 
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r23      (£**/Pr)  H      l   ß a 2 
e    \    x        ß 

3 x 

+ —Vs  H ß ß    p y  (.i**/Pr)LZ e y x    e e 

2CiUi(Nud)HR 

ß H pp p  (i**/?r)LSi?T y e    ee 

Y 
-2Cf' 

24 ' ß (£**/Pr) 

and 

pe^e \ K    /      peye   ^ PrT U 

Pe 
9 • ——    (■ g for ideal gases;  ■ 1 for Incompressible flow) 

The boundary conditions become in the new variables 

n-Oif -0,f-0,g-gw (52) 

n-^-rf -l,g-l (53) 

The velocity components are obtained from the expressions 

U--S— (54) 

V-4-/pMÜ    — +PMU    /^If + ^^f) (55) p$    I   Ke^e e  ^F e  e e 3^       3x / 

In the above the prime (') indicates the partial derivative with 

respect to n, 3( )/3n. 

At first glance equations (50), (51), and their modifiers appear 

to be much more intractable than their parents (equations (40) - (42)). 

However, we have gained computational advantages. We have eliminated one 

variable, V, and we have reduced the system of partial differential 
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equations to a system of quasi-ordinary differential equations with 

quasi-similar solutions, f' and g.  In other words, we have sacrificed 

algebraic compactness for computational considerations. 

3.  THE IMPLICIT FINITE DIFFERENCE METHOD 

The development below follows closely that for smooth surfaces 

referenced by Adams and Martindale [35]. Equations (50) and (51) 

are written in the general form 

3w 
w" + YjW1 + Y2w + Y3 + Y4 "^ = 0 (56) 

where w " f' for the momentum equtation and w ■ g for the energy equation 

with a one to one correspondence for the Y's.  That is, Y-, ■ Y,, for the 

momentum equation and Y, ■ Yj-. for the energy equation. Again the prime 

indicates differentiation with respect to 0. 

The derivatives in equation (56) are approximated by finite 

difference formulas in the grid network shown in Figure 12.  The grid 

m 

(h 

th 

A| 

mmm 

m+ I 

4>n+ I 

on 

on-l 

n« N 

o Unknown Points 

a Known Points 

(AU, 

Figure 12.  Layout of the Expanding Finite 
Difference Grid 
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spacing in the ^-direction is a constant AC.    A geometrically expanding 

grid  is used in the l-directlon.     This  is given by  the recursion formula 

An|n - R^n)^ (57) 

where R is a constant (taken here as R * 1.063).  The first n-step, AnL, 

must be specified and is taken here as AnL ■ 0.005. The expanding 

n-grid is chosen because it concentrates the points near the surface 

where the gradients are the steepest.  With R - 1.063, Ar)|  ■ 0.005 and 

N - 120, 43 n values are obtained with values less than 1 while the 

largest n value is 114. With this scheme on a typical run about half of 

the n-points are in the lower 5-10X  of the boundary layer. 

The derivatives with respect to the marching coordinate, C» are 

approximated by a two-point backward difference 

-.        w .,  - w 
dw 

ac . mfl»n   "»" (58) 

mfl.n      « 

where all values at {[-station m are known. 

The derivatives with respect to the normal coordinate, n, are approxi- 

mated by using a three-point Lagrangian interpolation formula• The 

dependent variable w is approximated in the range n _, £ H £ H .. by a 

Lagrangian polynomial 

n+1 
w(n) -  I      L.w    + E (59) 

i-n-1 1 ■f1»1 

where 
n+1 

j-il-i (n " V 
L. -^ 
'i   n+1 

n  (n.-n.) 
j-n-l     J 

Taking the first and second derivatives of equation (59) and evaluating 

at n ■ H yields the finite difference formulae 
n 

2 2[w _., + Rw , - (1 + R)w 1 .. 
n+l    ""I      DJSÜ: + E..        (60) 9 w 

2 
3n mfl,n     (A^n + R(Ari)n-l 
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5w 
3n 

m+l.n 

[w .. - R2w  , - (1 + R)w J .. 
n-H n-1 n mfl 

(An) + R2(An)  . 
n        n-i 

+ E* (61) 

where 

An Vl " nn- 

The errors can be shown to be [35] E' « -(l/6)w,"(An) (An)  , and E" - 
n   n—i 

-(l/12)w""(An) (An) .,.  From this we see the usefulness of the expanding 
n   n+i 

grid.  Near the wall where the derivatives are large we need small values 

of An to give small errors.  Far from the wall the derivatives are small 

and larger An's are acceptable. 

Substituting equations (58), (öO^, and (61) into jquation (56) 

and rearranging yields a system of N-2 algabraic equations 

where 

n nH-l,n-l   n nH-l,n   n nH-l,n+l   n 

n-2, N-1 

(62) 

The coefficients A, B, C and D are given by 

2R  ^1 
n " S1 " S2 

(63a) 

2(1 + R)  Yl(1 ~ R ) 

S,   " "   S0 
+ Y2+K (63b) 

2   '1 
C » — + — 
n Sl      S2 

Y3   AC 

(63c) 

(63d) 

where 

S. - (An)2 + R(An)2 , and S, - (An)n + R
2(An)  .. 

i     n      n-x     z      n       n-i 

The N-2 equations are linear if the terms A , B , C , D are taken n     n      n      n 
to be  constants at a station n.     Inspection of equations  (50)   -  (63) 

reveals   thac  these parameters are not constant.     To overcome  this 

problem, the iollowing linearization procedure is adopted.     Initial 
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guesses for the velocity and enthalpy profiles (f and g) are assumed 

(usually the known values from the previous C-station, m, are taken). 

The Y's of equations (50) and (51) are evaluated on the basis of 

these profiles, and the now linear algebraic equations (62) are solved 

for the second approximation of the profiles.  These approximations are 

used to obtain new approximations in an iterative manner until the 

difference between two successive approximations is less than a preset 

percentage. 

This solution yields values for f, not f.  Inspection of equations 

(50) and (51) reveals that values for f must be obtained during the 

iterative process.  These values are obtained by means of numerical 

integration of the f profile.  In addition, values for a ', a ', £*', 
x   y 

£**', etc. are obtained by way of the three-point Lagrangian finite 

difference formulae discussed above. 

One advantage of this formulation from a computational standpoint 

is the special tridiagonal nature of the linearized equations (62). 

These equations are shown in matrix form in Figure 13(a). The matrix of 

coefficients is readily transformed into the Jordan canonical form, 

Figure 13(b), by the relations 

B2 
X, - 7» (64a) 
2  c2 

D2 " A2W1 E, - 2 - Z 1 (64b) z    c2 

'u'f-cirZ    .n-3. .-3 (64c) 
n   n n-1 

D   E .A 

n   n n-1 

Vx ■ h-i - fe ■ <Me) 

w-i ■ %.i - c»-iV - T^T <64f) 
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where w and w are known from the boundary conditions, equations (52) 

and (53).  The canonical form is easily solved for the w 's by starting 

at station N-l 

Vi - WVi (65> 

and back substituting 

„    -    n _    n*1 

n      A          X 
n          n 

n - N-2,  N-3,...2 (66) 

Here the ^-station subscript, nrfl, has been omitted for compactness. 

As stated previously, the velocity and enthalpy profiles must be 

specified at some initial ^-station. One method is to use experimentally 

determined profiles at some location on the particular body under con- 

sideration and to then calculate the flow field downstream of this 

station. This s heme has the obvious disadvantage of requiring experi- 

mental data on every surface that is to be considered. Here the 

following scheme is followed to obtain initial profiles. 

For bodies with sharp leading edges, such as plates, wedges, cones, 

etc., the boundary layer aquations are singular at the leading edge and 

meaningful velocity and enthalpy profiles cannot be obtained. Hovever, 

starting profiles of the transformed variables, f' and g, can be obtained. 

The scheme is to set the coefficients, Y's, in equations (50) and (51) 

so that the well-known Blasius equations are obtained.  These equations 

are solved using the implicit method discussed above with some arbitrary 

initial profile guess. For the case of Incompressible, constant property, 

laminar flow without pressure gradients, this scheme yields the correct 

profiles at every ^.-station.  For other cases this scheme may introduce 

slight errors in the solutions at the first few ^-stations; however, 

these errors wash out  after only a few C-steps. 

For bodies with stagnation points, 

dUi 
x (67) e  dx 

x-0 

near x ■ 0.  Equations (50) and (51) reduce to the classical 

Faulkner-Skan stagnation flow equations at x = 0 (hence ^ » 0). These 

equations are then solved using the implicit method with arbitrary initial 
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profile guesses.     The initial guesses used here are f (n) ■ 1 - exp(-ri) 

and g(n)  = g    -  (1 - g.^f (H). w w 

4.   FULLY DEVELOPED FLOWS 

The above discussion is concerned with the more interesting case of 

the developing boundary layer. However, irsny important applications and 

much of the experimental data that is used for verification of the 

present model are fully developed flows. The discrete element u.-lei is 

readily applied to such flows. For lully developed flow V = 0, and U 

and H are functions of y only (i.e., J ■ U(y) and H ■ H(y)); therefore, 

the boundary layer equations (41) and (42) (and, also, the full 

Navier-Stokes equations) become the ordinary differential equations 

o = -a„ x: + -• ! pjy + uT) |2 ] 
(68) 

+ 0y(u + yT) m 
Tni(Nud)(HR - H) 

+ ElPr 
(69) 

In this form the modified Illingsworth transformations (equations 

(45)- (49))  are awkward,  since there is no previously known reference 

velocity and enthalpy (such as U    and H ).    However, no computational 

advantage is gained by transforming the above equations, since they are 

already ordinary differential equations.    These equations are readily 

solved using the implicit finite difference method discussed above with 

w ■ U and/or H,  H " y» and the appropriate boundary conditions. 

5.       COMPUTER PROGRAM 

The implicit finite difference method described above has been 

programed for incompressible,  constant property boundary layer flow in 

the Fortran IV Plus  language on  the Digital Equipment Corporation 

PDP-11/34 minicomputer.     Typical runs  take  5-10 seconds per ^-step. 
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The assumption of incompressible, constant property flow was used 

here because all of the experimental data with which the model is compared 

in this work meets this assumption.  It should be pointed out that the 

model is by no means limited to incompressible, constant property flows. 

In fact, the discrete element model has been coded and run in the com- 

pressible variable property form in a code similar to the one described 

by Hodge and Adams [21]. 

52 



SECTION V 

CALIBRATION OF THE MODEL 

As with any procedure that requires some empirical input, the 

discrete element model must be calibrated.  The calibration procedure 

here has three parts: (1) comparison of the model/computer program with 

smooth wall results, (2) calibration of the momentum transport model, and 

(3) calibration of the energy transport model. 

1.   SMOOTH SURFACE RUNS 

The discrete element roughness model and computer program must 

correctly predict the flow over a smooth surface in the limit of vanishing 

roughness if the model/program is to be considered correct. The roughness 

program was run for conditions corresponding to Kearney's [36] zero pres- 

sure gradient smooth wall data for U = 7 m/s. To model the smooth 

surface, the roughness model was simply turned o'f.i.e., the a's, d, 

etc. were set to zero. 

Figure 14 shows the comparison between the predictions and data for 

Stanton number, St, and skin friction coefficient, C-.  The symbols are 

the data points, and the curves are the predictions.  The bars shown on 

selected data points show the reported experimental uncertainty (±10% for 

Cf and ±0.0001 for St).  Inspection of the figure reveals that the 

agreement is excellent.  The predictions are everywhere within the data 

uncertainty. 

From the above it can then be concluded that the model/program 

(exclusive of those parts dealing with the roughness) is correct. The 

reader should note that the present turbulence model has been tested by 

others for other boundary conditions, e.g., dP/dx ^ 0. 

2.   MOMENTUM TRANSPORT MODEL 

The discrete element model contains a term to account for drag on 

the roughness elements.  This drag is cast in terms of a nondimensional 

drag coefficient parameter, C...  It is this drag coefficient that con- 

tains the necessary empirical information on the relationship between 

the roughness elements and surrounding flow.  Our calibration of the 

roughness model for momentum transport consists of the specification of 

such a relationship. 
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Figure 1^.       Comparison of Calculations with  the Smooth Wall 
Data of Kearney   [36];  U    -  7 m/s 

e 
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Some previous workers, namely Finson [26] and Christoph and Fletcher 

[28], have used a cousf^nt value of C .  They selected that value which 

seemed to give the best overall agreement with their base data sets (i.e., 

Schlichting [3]).  This scheme has a disadvantage in that C must be 

selected for each roughness shape.  Finson and Clark [25] had good agree- 

nent for surfaces roughened with spheres and spherical segments using a 

constant CD - 0.6, but they had poorer results for the surface roughened 

with cones when the same value of C was used. 

Lin and Bywatet [20] used the correlations for banks of cylinders 

given by Zuk.ausk.as [33]. These correlations take C_ to be a function of 

the local element Reynolds number that is calculated based on the local 

velocity, U, and the local element diameter, d(y).  However, they 

evidently failed tc realize that Zukauskas' curves were expressed in 

terms of a pressure drop parameter and not a drag coefficient, i.e., they 

took the vertical coordinate of Zukauskas' Figure 64 on page 155 of 

reference [33] to be C , not the correct [(d(y)/il)C ]. 

Here, also, the curves from Zukauskas [33] are used, but only as a 

starting point in the specification of a formula for C_ (Re,).  It was 
u        a 

decided that to simplify the model, the explicit spacing (i/d)  dependence 

of C- should be dropped.  The basis for this decision was the fret that 

a constant valua of C gives good agreement for a particular roughness 

shape, e.g., spheres, over a wide range of roughness spacings.  Further- 

more, spacing effects are already included as an integral part of the 

present discrete element model.  Here and in the section on calibration 

of the energy transport model that follows the tube bank correlations 

are used as a starting point because in a differential control volume, 

e.g.. Figure 5, the element slices appear to be similar to a slice 

through a bank of cylinders when the elements have circular (or almost 

circular) cross-sections. 

To calibrate the model, various functions, Cn(Re.), were tested and D  a 
the results of the calculations were then compared with a base data set. 

The function that seemed to give the best overall agreement with the 

base data set was then selected.  Here the data set of Schlichting [3] 

was chosen as the base.  This data set was chosen because it is the most 

comprehensive data set for flow over rough surfaces where the roughness 

geometry is well defined. 
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As discussed previously, Schlichtlng investigated seven roughness 

shapes over a wide range of spacings and over a range of Reynolds 

numbers for a to'.al of 124 runs.  In fact, this data set has been the 

base for almost all rough wall flow analyses, including both computational 

ones and empirical ones.  Since in this work we concern ourselves only 

with three-dimensional roughness elements, only the data for spheres, 

spherical segments, and cones are used in the present calibration. 

In the course of this procedure a careful study of Schlichting's 

report [3] revealed that his data reduction method was flawed. His data 

reduction method and the necessary corrections are discussed in detail 

in Appendix A. In the present calibration of the CLCRe.) model, the 
D  d 

corrected skin friction coefficient values given in Appendix A are used 

as the data base. 

Starting with functions (CL vs. Re.) that had the general shape of 

the curves given by Zukauskas [33], several different formulae were 

tested. After some numerical experimentation the following function was 

adopted: 

log CD - -0.125 log (Red) + 0.375, Red < 60,000 

C - 0.6, Red > 'IO.OOO      (70) 

Figure 15 shows a plot of this function. 

While equation (70) and Figure 15 indicate a relationship for 

Reynolds numbers as large as 10 , the present model has been verified 

only for roughness element Reynolds numbers up to Re, a 25,000. The 

selection of equation (70) was subjective.  That is, a rigorous optimiza- 

tlon procedure was not used.  The function that seemed to give the most 

satisfactory overall results for all of Schlichting's cases was selected. 

3.   WALL LOCATION FOR MOST DENSELY PACKED SPHERES 

Recalling the discussion in Section m, it is seen that the discrete 

element model divides the net tangential force on the surface into two 

components: (1) the viscous shear on the smooth base wall and (2) the 

drag on the roughness element. Most rough surfaces have fairly well- 

defined base walls. However, for spheres packed in the most dense array 

a well-defined base wall does not exist.  Schlichting [3] recognized this 

problem in his original article*  * arbitrarily took the base wall to be 
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at the plane of the equators.  The more recent workers [25,26] have 

adopted the same approach.  The general wisdom is that the region below 

the equators offers such a high flow resistance that the flow rate below 

this plane is negligible.  However, it is more likely that for densely 

packed spheres there is a region of recirculating flow below the plane 

of the equators as shown in Figure 16.  Close examination of the geometry 

of the most densely packed spheres shown in the figure nveals that there 

are most likely two regions of recirculating flow (one above the equators 

and one below). 

Effective 
Wall 

Plane of the 
Equators 

Recirculatino Reaion 

Figure 16.  Schematic of Most Densely Packed Spheres 

In the absence of data on this phenomenon, the following procedure 

was adopted to find the correct (or at least a good approximation thereof) 

effective wall location for spheres packed in the most dense array. 

Using the model as calibrated for the preponderance of Schlichting's data, 

several locations for the effective wall location were tested and the one 

that g.ave the best overall results for Schlichting's [3] skin friction 

data for most densely packed spheres was chosen. The value chosen was 

k ,, " d /5.  It is coincidental (but interesting nonetheless) that this 
err   o 

effective wall location is almost identical to Schlichting's "melt down" 

effective wall location discussed in Section II. 
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4.   ENERGY TRANSPORT MODEL 

The discrete element energy transport model requires empirical 

input in the form of a Nusselt number, Nu,.  As with the momentum trans- 
d 

port model, the starting point was the correlation reported by Zukauskas 

[33] for banks of tubes.  Lin and Bywater [20] used the same correlations 

in thui.r work; however, they used the correlations directly rather than 

as a starting point in a calibration procedure. 

Here a model was formulated using the correlations of Zukauskas [33] 

as a starting point, conducting numerical experiments using modified 

correlations, and then comparing the results of these experiments with 

a base data set.  The data set chosen as the base was the 27 m/sec 

experimental run by Pimenta [AJ at Stanford University.  This data set 

was chosen because it is representative of the very comprehensive rough 

surface heat transfer work carried out at Stanford [4,5,6,32]. 

The Stanford data were all taken on a rough surface consisting of 

spheres packed in the densest array. Therefore, the effective wall 

location determined for Schlichting's most densely packed spheres was 

used. 

After the numerical experiments, the following Nusselt number model 

was chosen: 

Nu. - 2.475 Re.0,4Pr0'36  , Re. < 100 (71a) 
a a a 

Nuj - 1.043 Red
0,5Pr0-37  , 100 < Re, < 1000 (71b) 

Nu. - 0.963 Re,0,6Pr0,36  . 1000 < Re. < 200,000      (71c) 
da a 

Nud - 0.060 Red
0,84Pr0'36 , Red > 200,000 (71d) 

Figure 17 shows a plot of equations (71).  It should be pointed 

out that the model presented in equations (71) and the figure have only 

been verified for Reynolds numbers up to Re, * 1000.  Extrapolations of 

the verified model using the trends of Zukauskas' data are presented 

here for completeness. 
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SECTION VI 

FULLY DEVELOPED FLOW RESULTS 

The discrete element model developed and calibrated in the preceding 

sections has been applied to two fully developed flow experiments, and 

the results of the calculations are compared below to the results of the 

experiments. 

1.   SCHLICHTING'S EXPERIMENT 

As discussed previously, Schlichting investigated several different 

roughness shapes over a range of spacings and Reynolds numbers.  In this 

section the results of the present model are compared with the results of 

his experiments.  Since this work is concerned with three-dimensional 

roughness elements, only the spheres, spherical segments, and cones are 

considered here. 

As discussed in Section V and in Appendix A, Schlichting's 

[3] data reduction method for skin friction coefficient was flawed, and 

it was necessary to correct this data.  In the following» all comparisons 

are made with the corrected dcta.  It should be noted that these data 

sets were used to calibrate the roughness model.  The calculated results 

cannot, therefore, be considered as predictions. 

Table 1 shows a comparison of the calculated skin friction coeffi- 

cients, Cf, with measured (corrected) values. Figures 18 - 20 present 

these results in graphical form.  The uncertainty bands shown in the 

figures represent ±102 about the (corrected) measured data.  While 

Schlichting did not report data uncertainties. It is felt that ±10% is 

the smallest uncertainty which can be claimed for these data considering 

the corrections which were necessary to the originally reported values. 

For the calculations, the discrete element model was solved in the 

proper channel coordinates.  The calculated values of T were normalized 

using the measured value of the maximum velocity, U  , (i.e., Cf = ry ID3X X 

2T /pU   ) .  The maximum velocity was chosen here because Schlichting 
w  max 

did not report average velocities.  Inspection of the table (and figures) 

reveals good overall agreement.  The calculations are, for the most part, 

within 10% of the measured results for 11 of the 14 plates.  However, 

substantial disagreement is observed for three of the plates:  plates XIII 
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TABLE  1.     COMPARISON WITH  SCHLICHTING'S  RESULTS 

PLATE 
NO. 
U/k) 

Re 

x 10"3 
U 
max 

(cm/sec) 

MEASURED 

Cc x 103 
fc 

CALCULATED 

Cf x 10
3 

% DIFF 

SPHERES 

XII 100 321 6.29 6.61 5.1 
(9.75) 124 385 6.24 6.33 1.4 

162 476 6.46 6.09 -5.7 
190 547 6.29 6.00 -4.2 
224 650 3.69 5.90 3.7 

III 107 316 8.66 9.61 10.9 
(4.88) 138 391 9.18 9.20 0.2 

174 500 8.70 9.22 6.0 
204 568 9.01 9.19 2.0 
251 704 8.95 9.09 1.6 
290 816 8.99 8.94 -0.4 

I 107 310 18.13 16.22 -10.5 
(2.44) 132 384 17.87 15.75 -11.8 

166 508 16.42 15.54 -5.5 
195 566 16.11 15.43 -4.2 
224 658 16.42 15.34 -6.8 
263 778 16.37 15.32 -6.4 

II 104 313 15.46 15.17 -1.9 
(1.46) 129 384 16.73 15.60 -6.7 

166 500 17.23 15.94 -7.4 
186 586 17.17 16.17 -5.8 
224 646 17.57 16.37 -6.8 
257 746 18.00 16.49 -8.4 

V 98 311 8.08 8.93 10.5 
(0.87) 123 385 8.44 9.02 6.8 

162 498 8.37 9.07 8.4 
190 585 8.52 9.06 6.3 
214 662 8.56 9.13 6.7 
263 809 8.86 9.10 2.7 

VI 110 316 7.12 7.85 10.2 
(4.86) 135 390 6.82 7.80 14.4 

170 491 7.55 7.71 2.1 
200 566 7.61 7.65 0.5 
234 664 7.21 7.62 5.7 
275 806 7.32 7.63 4.1 

IV 107 325 13.50 12.55 -7.0 
(2.43) 129 391 12.02 12.21 1.6 

186 572 12.90 11.97 -7.2 
204 646 12.59 11.84 -6.0 
245 751 12.53 11.85 -5.4 
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TABLE  1.     COMPARISON WITH  SCHLICHTING'S   RESULTS   (CONCLUDED) 

PLATE Re U MEASURED CALCULATED % DIFF 
NO. 
(A/k) x 10"3 

max 

(cm/sec) 
C- x 103 
fc Cf x 10

3 

SPHERICAL SEGMENTS 

XXII 115 314 4.32 5.64 30.5 
(15.4) 141 389 3.72 5.23 40.6 

178 495 4.37 5.08 16.2 
204 574 4.40 4.99 13.4 
229 658 3.70 4.92 33.0 
302 830 3.33 4.86 46.0 

XIV 135 380 4.12 5.89 43.0 
(11.5) 174 497 4.57 5.68 24.3 

195 572 4.87 5.61 15.2 
245 700 3.68 5.49 49.2 
295 834 3.50 5.43 55.1 

XV 135 382 7.16 7.70 7.5 
(7.69) 170 502 7.42 7.56 1.9 

190 564 7.04 7.46 6.0 
234 687 6.51 7.43 14.1 
288 817 6.79 • 7.40 9.0 

XIX 107 316 9.93 10.59 6.6 
(2.65) 132 386 • 9.75 10.60 8.7 

158 480 10.27 10.51 2.3 
186 563 9.08 10.51 15.7 
224 671 10.21 10.56 3.4 
282 818 10.25 

CONES 

10.60 3.4 

XXIII 117 321 4.67 5.80 24.0 
(10.7) 141 386 4.89 5.70 16.3 

178 488 4.69 5.66 26.7 
214 574 4.84 5.58 15.2 
251 668 5.12 5.54 8.2 

XXIV 112 307 7.81 7.53 3.0 
(8.00) 141 384 6.88 7.18 4.4 

186 495 6.77 6.87 1.5 
209 567 6.39 6.77 5.9 
251 662 6.19 6.65 7.4 
324 890 6.38 6.54 2.5 

XXV 115 310 10.32 9.42 -8.7 
(5.33) 145 388 8.93 9.16 2.6 

178 476 8.91 9.18 3.0 
209 564 9.38 9.18 -2.8 
251 668 9.34 9.20 -1.5 
295 787 9.42 9.18 -2.5 
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and XIV with spherical segments and plate XXIII with cones.  For these 

three plates the calculated values of C, are from 8% to 55% larger than 

the corrected data.  No satisfactory explanation for this disagreement 

has been found. As discussed in the appendix, these three plates are 

probably in the transitlonally rough regime and not the fully rough regime, 

as originally reported by Schlichting. However, as shown below in this 

section and in Section VII, the present discrete element model 

successfully predicts other transitlonally rough flows.  This disagree- 

ment is not viewed with undue concern, since the model (as will be shown) 

extrapolr.res well to other experimental data which were not used in the 

calibration of the model. 

Figure ^1 shows a comparison of the calculations and data as a 

function of roughness density for the spherical roughness elements. 

Inspection of the figure reveals that the discrete element model correctly 

predicts the relative maximum in the C-—roughness density relationship, 

the maximum value of C, occurlng at a density which is somewhat less than 

the maximum density. 

20 H 

Cf x 10» 

10-1 

6 10 

Figure 21.  The Effect of Roughness Element Spacing on Skin 
Friction for Schlichtlng's Snheres; Re s 200,000 
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The generally good agreement with Schlichtlng's data is not sur- 

prising since   this very same data set was used  to  calibrate the discrete 

element momentum  transport model.     The model   (with only changes that 

account for geometric differen-.es,  e.g.,  from channel  to pipe flow) has 

been compared   to  independent data sets.     The pipe flow data of Chen  [37] 

are discussed below,  and the extensive boundary layer data of  the 

Stanford experiments are discussed in Section VII. 

2.       CHEN'S EXPERIMENT 

Chen  [37]   reported detailed turbulence and skin friction measurements 

for air flow through a 0.19-meter-diameter pipe roughened with hemi- 

spheres.    He investigated  three roughness densities—£/k »  18.5, 10.7,  and 

6.4.    Chen stated  that the first two cases  (£/k - 18.5 and 10.7) were in 

the transitionally rough regime, and the  third  (Ä/k - 6.4)  was nearly 

in the fully rough regime.     The most interesting part of Chen's work 

(from the point of view of  the present work)   is  the segregation of  the 

two components of the apparent wall shear stress:   (1)  that due to the 

viscous shear on the smooth surface between the roughnesj elements and 

(2)  that due to  the form drag on the roughness elements.    Chen obtained 

the form drag term by measuring the force on a single element using a 

force balance.     The portion due to the smooth surface was determined by 

subtracting the roughness element drag component from the total vail 

shear stress which was determined from pressure drop measurements. 

The discrete element model was solved In the appropriate internal 

circular coordinates,  and the resulting predictions were compared with 

Chen's data.     Figures 22 - 24 show the comparisons  for  the skin 

friction coefficient and the ratio of the smooth wall component to the 

total shear stress.       Here the average velocity was used to normalize 
2 

the' skin friction coefficient  (C, - 2T /PU ).     The average velocity 

was chosen since Chen reported the maximum velocity only for a limited 

number of cases while the average velocity was reported  for all cases. 

Inspection of  the  figures reveals very good agreement  for C, for the 

first two cases  (il/k «  18.5 and 10.7).     From Figures 22 and 23  it is 

seen that the maximum disagreement is 9%.     From Figure 24,   it is seen 

that fair agreement  is obtained for the  third case (Ä/k ■ 6.4);   the 

maximum disagreement is 15%.     The greatest part of  this  15% disagreement 
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comes from a disagreement in average velocity and not from the calculated 

shear stress, T .  In Figure 24, it is seen that the greatest disagreement 

occurs at the first two points.  Chen did report the maximum velocity for 

the first point (Re ■ 60,000).  If the maximum velocity is used to nor- 

malize both the calculated and measured T , the predicted value is Cf ■ 
-3 W    -3 

7.31 x 10  and the measured value is 7.28 x 10 

The comparisons of the relative contribution of viscous shear forces 

between the elements and the drag on the elements are of particular 

interest. One of the major advantages of the discrete element model is 

that these two forces and their interactions are accounted for in the 

model.  Inspection of Figures 22 - 24 reveals good agreement between 

the predictions and data for T /T , The maximum disagreement is about 

12% and the preponderance of the points agree within 5%.  This agreement 

indicates that the present discrete element model correctly incorporates 

much of the physics of the interaction between the roughness elements 

and the flow. 

Chen reported uncertainty values of approximately ±1% for the data 

presented in Figures 22 - 24.  This small reported uncertainty is 

approximately represented by the size of the data point symbols in the 

figures. 
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SECTION VII 

BOUNDARY-LAYER FLOW RESULTS 

The discrete element model has been applied to three of the boundary 

layer experiments performed at Stanford University.  Two of the experi- 

ments (Healzer [32] and Plmenta [4]) reported skin friction coefficients 

and Stanton numbers for both transitlonally and fully rough zero pres- 

sure gradient flow over a constant temperature rough surface.  The third 

(CoJeman [5]) included free stream pressure gradients and variable wall 

:emperature. 

DESCRIPTION OF THE STANFORD EXPERIMENTS 

The Stanford "Roughness Rig" consists of a closed loop wind tunnel 

with air at ambient conditions as the working fluid. Free stream veloc- 

ities from 9.8 m/sec to 73.8 m/sec were obtained.  This experimental set 

up is discussed in detail by Healzer [32].  The test surface consists of 

24 0.10-meter (in the flow direction) plates constructed with 1.27-mm- 

diameter spheres. The surface was built up of eleven tiers of spheres 

packed In the most dense array.  Each plate was maintained at a constant 

temperature by Individually controlled heating elements. 

Stanton numbers were obtained from an energy balance on each of the 

plates.  The uncertainty of the Stanton number measurements was stated 

to be ±0.1 x 10  Stanton number units by all three workers.  One worker, 

Healzer [32], determined the skin friction coefficient, C , by differen- 

tiating the measured momentum thickness distribution; he did not report 

uncertainty values. The ether workers, Plmenta [4] and Coleman [5], 

determined Cf from measured Reynolds stresses and mean velocity profiles 

with a reported uncertainty of ±10Z. 

One of the concerns of the Stanford series of experiments was the 

study of the effects of surface transpiration; therefore, both blown ana 

unblown runs were reported.  Since transpiration is not considered in the 

present work, only the unblown cases are considered here. 

2.   APPLICATION OF THE DISCRETE ELEMENT MODEL 

The present calculations were made using an incompressible, constant 

property, discrete element boundary layer code. This more economical 

code was selected over the compressible, variable property code because 
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the relatively low velocity and small temperature difference conditions 

of the Stanford experiments satisfy the incompressible and constant 

property assumptions.  Furthermore, the Stanford data reduction was made 

based on these assumptions. 

The roughness element drag coefficient model and Nusselt number 

model used are those as calibrated in Section V.  It should be noted in 

review that the C model was calibrated based on Schlichting's [3] 

channel flow data and the Nusselt number model was calibrated based on 

one of the Stanford runs (Pimenta [4], U ■ 27 m/sec).  Therefore, the 

skin friction calculations presented here are true predictions. While 

the Nusselt number model was calibrated based on one run on the Stanford 

surface, its extrapolation to independent measurements under widely 

varying conditions is considered to be a significant test. 

The turbulence model used is the mixing length and constant turbu- 

lent Prandtl number model discussed in Section III.  Some of the Stanford 

runs were allowed to transition naturally from laminar to turbulent flow. 

For these cases the transition point was specified in the code, with 

that point selected based on inspection of the Stanton number data.  For 

these cases a transition zone with a length equal to the laminar zone 

was assumed and an intermittency factor was employed in the eddy viscosity 

calculation. Some of the Stanford runs were tripped turbulent by use of 

a boundary layer trip.  In these cases turbulent flow was assumed from 

the leading edge. Virtual origins were not employed. 

As stated previous]y, the Stanford surface consisted of spheres 

arranged in the most densely packed array. Therefore, the effective base 

wall location, as determined in Section V using Schlichting's data for 

most densely packed spheres, was used. 

In the present calculations, the roughness elements and the surround- 

ing smooth regions were taken to be at the same temperature, i.e., TR ■ Tw. 

3.   COMPARISONS WITH THE DATA OF HEALZER AND PIMENTA 

From the point of view of the present work, Healzer's [32] and 

Pimenta's [4] experiments are very similar. Both workers had a constant 

free stream velocity and a constant wall temperature.  Therefore, they 

are considered together.  The discrete element model has been applied to 

these experiments, and the skin friction, Cf, and Stanton number, St, 
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comparisons are discussed below.  Also, mean velocity, mean temperature, 

turbulent shear stress, and turbulent heat flux profile comparisons are 

made for one case (Pimenta's 27 m/sec). 

Figures 25 and 26 show comparisons between the calculated and mea- 

sured values of Cf and St for the two transitionally rough cases 

(Healzer's U - 9.9 m/sec and Pimenta's U ■ 15.8 m/sec).  The bars on the 
e e 

data points show a ±10% span for Cf and the stated uncertainty range for 

the Stantcn numbers (±0.001 St units).  Inspection of the figures reveals 

that the agreement is very good; the predictions are almost everywhere 

within the data uncertainty. 

Figures 27 - 30 show comparisons for the fully rough case- 

(Pimenta's U - 27 m/sec and 39.6 m/sec and Healzer's U ■ 57.9 m/sec 
e e 

and 73.8 m/sec).  Inspection of the figures reveals that the agreement 

Is excellent. Again the predictions are almost everywhere within the 

experimental uncertainty. 

Figures 31 and 32 show comparisons between predicted and measured 

velocity and temperature profiles. Inspection of the figures reveals 

that the agreement is very good. This agreement is not unexpected since 

such good agreement has been demonstrated for the surface measurables, 

C, and St.  However, it should be pointed out that erroneously calibrated 

discrete element models can yield apparently good surface measurable 

agreement while at the same time giving poor boundary layer profile 

agreement. 

Figures 33 and 34 show comparisons of measured and predicted 

nondlmensional Reynolds shear stress and turbulent heat flux for Pimenta's 

U - 27 m/sec run.  Inspection of the figures reveals that the agreement 

is excellent.  Such agreement bolsters confidence in the modeling used 

in making the predictions. 

4.  COMPARISONS WITH THE DATA OF COLEMAN 

Coleman [5] ran experiments or the same apparatus as Pimenta and 

Healzer with an accelerated free stream (favorable pressure gradient) 

and/or variable wall temperatures. His accelerated flows consisted of 

three equilibrium runs (characterized by constant values of C^ within 

the equilibrium zone) and one nonequilibrium run.  His variable wall 

temperature cases consisted of step functions, linear variations, •■ nd one 
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Figure 25.  Comparison of Calculations with the Dati 
of Healzer; Ue = 9.75 m/s 
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Figure    26.     Comparison of  Calculations with the Data of 
Pimenta;  U    =   15.8 m/s e 
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Figure 27.       Comparison of  Calculations with the Data of 
Pimenta;  U    = 27 m/s 
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Figure 28.   Comparison of Calculations with the Data of 
Pimenta; U = 39.6 m/s 

e 
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Figure 29.   Comparison of Calculations with the Data of 
Healzer; U - 58 m/s 
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Figure 30.   Comparison of Calculations with the Data of 
Healzer; U = 74 m/s 

e 
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Figure 32.   Typical Comparison of Calculated and Measured 
Temperature Profiles; Pimenta U  = 27 m/s 
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bi-linear variation.  Comparisons with these data are presented below. 

Figure 35 shows the edge velocity variation for the three equi- 

librium runs. To obtain the pressure variation, dU /dx, term required 
e 

to solve the boundary layer equations, these data were fit with piecewise 

linear functions using the least squares method.  Figures 36 - 38 

show the comparisons of the skin friction and Stanton number predictions 

for these flows with the data for the constant wall temperature cases. 

Inspection of the figures reveals excellent agreement.  The predictions 

are almost everywhere within the data uncertainty.  Figure 39 shows 

the Stanton number comparison for the same case as Figure 35(a) and 36 

with step change in wall temperature where the first six plates (0.61 m) 

were unheated.  Inspection of the figure reveals very good agreement. 

Figure 40 shows the edge velocity variation for the nonequilib- 

rium run.  Again a least-snuare cur^e fit was used to determine dU /dx 

in the accelerated region.  Figure 41 shows the  comparison of predic- 

tions and data for this case with a constant wall temperature.  Inspection 

of the figure reveals that the agreement is again excellent.  Figure 42 

shows the Stanton number comparison for tnis case with the first six 

places unheated. From this figure it is seen that the agreement is good. 

The last two cases used for comparison are the one with a linear 

wall temperature variation and the one with a bi-linear wall temperature 

variation.  Figures 43(a) and 43(b) show the x-variation of the wall 

temperature for these two cases.  Both of these cases had a constant 

free stream velocity (zero pressure gradient). Figures 44 and 45, 

respectively, show the Stanton number comparisons for these two cases. 

Inspection of the figures reveals that the agreement is excellent. 

Figure 46 shows a comparison of the nondimen?ional shear stress. 

  -3 
-u'v', for one of Coleman's equilibrium runs (K = 0.29 x 10 ). 

Inspection of the figuve reveals that the agreement is reasonable, with 

the trend predicted co rectly but with the predicted magnitudes being 

slightly high. 
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Figure  35. Edge Velocity Distributions  for Coleman's 
Equilibrium Pressure Gradient   Runs 
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Figure 36. Comparison of  Calculations with  the  Data of 
Coleman;   Kr  =  0.15  x  10~3;   Constant Wall 
Temperature 
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Figure 37.   Comparison of Calculations with the Data of 
Coleman; Kr = 0.29 x lO"

3; Constant Wall 
Temperature 
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Figure 38.   Comparison of Calculations with the Data of 
Coleman; Kr * 0.5 x lO-3; Constant Wall 
Temperature 
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Figure  39. Comparison of Calculations with  the Data of 
Coleman;  kr - P.15 x 10"3;  First Six Plates 
Unheated 
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Edge Velocity Distribution for Coleman's Non- 
equilibrium Pressure Gradient Run; K - 0.28 x 10"6 
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Figure 41.    Comparison of Calculations with the Data of 
Coleman; Nonequilibrium Run; Constant Wall 
Tempeiature 
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Figure 42.   Comparison of Calculations with the Data of 
Coleman; Nonequilibrium Run; First Six Plates 
Unheated 
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Figure 43.   Wall Temperature Distribution for the Data of 
Coleman; Both Cases with Zero Pressure Gradient 
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Figure 44. Comparison of Calculations with  the Data of 
Coleman;   Linear Wall Temperature Distribution 
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Figure ^5.   Comparison of Calculations with the Data of 
Coleman; Bl-llnear Wall Temperature 
Distribution 
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Figure  46.        Typical Comparison of Calculated and Measured 
Reynolds Stress  for Coleman's Equilibrium 
Pressure Gradient Run;  K    - 0.29 x lO-3 
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SECTION VIII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The present work is summarized below.  Also, particular conclusions 

and recommendations are enumerated. 

1.   SUMMARY 

The background of predictive modeling of turbulent flow over rough 

surfaces has been discussed. Of the four broad predictive approaches— 

solution of the full, time-dependent, Navier-Stokes equations in a 

micro-grid; solution 01 the time-averaged Navier-Stokes equations in a 

micro-grid; solution of the time-averaged Navier-Stokes equations in a 

macro-grid; and solution of the time-averaged boundary layer equations 

in a macro-grid—only the last two are practical with present computer 

speed and storage capabilities.  Since the macro-grid is not fine enough 

to resolve the details of the roughness geometry, some form of empirical 

input by means of a roughness model is required. 

Of the two roughness sodel schemes discussed, the equivalent sand- 

grain approach has several .'.nadequacies.  It is based totally on momentum 

transport data; therefore, there is no physical reason for' the equivalent 

sand-grain size to correlate heat transfer data.  This approach attempts 

to reduce a multi-length scale problem to a single length scale problem. 

In addition, there is no adequate means to determine the sand-grain 

equivalent for a given rough surface without taking data on that parti- 

cular surface or on a similar surface. 

The discrete element approach overcomes many of the inadequacies of 

the equivalent sand-grain approach.  It accounts for the momentum and 

energy transport between the roughness elements and the fluid in a 

physically meaningful manner.  It accounts for the major roughness geome- 

try parameters (height, spacing, and shape) and does not rely on a single 

length scale.  It includes more basic physics of the interactions between 

the roughness and the flow and uses a more general form of empirical 

Input. 

In the present work a discrete element model for turbulent boundary 

layer flow over a rough surface was rigorously derived. The necessary 

empirical information for the roughness model was provided by calibrating 
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the model using base data sets.  This calibrated model was then compared 

with several independent data sets covering both the tnnsitionally 

rough and fully rough regimes.  The results of these comparisons were, in 

general, very good. 

In the course of the present work it was discovered that the very 

important data set of Schlichting [3] was flawed and that his data 

reduction method required correction. A discussion ot the reanalysis of 

this data set and the corrected data are presented in Appendix A.  This 

is a very important consideration since Schlichting's data is the basis 

for almost all of the previous models for flow jver rough surfaces. 

2.   CONCLUSIONS 

a. The traditional equivalent sand-grain approach is restricted 

as a predictive model for flow over rough surfaces, especially for heat 

transfer predictions.  It may require specific empirical input for a 

given rough surface. 

b. The discrete element model which is derived in the present work 

for distributed three-dimensional roughness is based on the fundamental 

physical nature of the interactions between the flow and a rough surface. 

The resulting partial differential equations account for the mechanisms 

of momentum and energy transport in a physically meaningful manner. 

c. In the present mod'.-i the necessary empirical information for 

the roughness model is of a more general nature (than previous uiodels) 

and the model can be calibrated for broad classes of roughness geometry. 

For example, the calibration given in the present work should apply to 

nearly all three-dimensional distributed roughnesses whose cross-sectional 

areas can be reasonably approximated by circles. 

d. Calculations using the present discrete element model have bt>en 

compared with 118 separate experimental runs on 18 separate rough sur- 

faces.  The results of these comparisons show that the present discrete 

element model is a predictive model of acceptable accuracy for both heat 

transfer and skin friction. 

e. The important data set of Schlichting [3] is flawed.  The 

corrected values given in Appendix A should be used for any comparisons 

with this data set. Any previous work that is based on the original 

Schlichting data set should be used cautiously. 
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3.   RECOMMENDED FUTURE RESEARCH 

a. The experimental data base from well-controlled experiments 

with well-defined rough surfaces is very limited.  For example, all of 

the well-defined heat transfer data are based on experiments that were 

-onducted on a single rough surface.  It is recommended that an experi- 

uental program be undertaken to establish a definitive, high-quality 

data base for both uniformly rough and randomly rough surfaces. 

b. The presence of a rough surface affects not only the value of 

the skin friction but also the entire momentum field within the boundary 

layer.  Therefore, surface roughness could have a strong effect on flow 

separation.  It is recommended that an investigation of the effect of 

surface roughness on flow separation be undertaken. 

c. The present discrete element model is derived for three- 

dimensiona1 distributed roughness.  The important class of two-dimensional 

or strip-type roughness is characterized by different physical phenome- 

na and requires a separate treatise.  It is recommended that the discrete 

element method be extended to the two-dimensional roughness case. 

d. Because of the lack of well-defined data for higher speed 

flows, the present model has been verified only for low speed flows. 

However, it should be applicable to higher speed flows so long as the 

flow in the immediate vicinity of the elements is subsonic.  It is 

recommended that calculations using the present model be compared with 

data from experiments with high speed flows over well-defined rough 

surfaces as soon as such data become available. 

e. Usually, compressible flow heat transfer data are nondimen- 

sionalized using the recovery or adiabatic wall temperature.  The shear 

rates in a turbulent boundary layer over a rough surface can be signifi- 

cantly different than those for an otherwise similar flow over e  smooth 

surface.  Therefore, the adiabatic «all temperature may be significantly 

different.  It is recommended that the effects of surface roughness on 

the adiabatic wall temperature be investigated. 

f. Any profllometer trace that is used to quantify a randomly 

rough surface will have a built-in bias, since there is no way to insure 

that the profllometer stylus will encounter the crests of the elements. 

Therefore, it is recommended that the statistics of random roughness be 

investigated. 
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APPENDIX A 

REEVALUATION OF SCHLICHTING'S SURFACE ROUGHNESS EXPERIMENT 

In the course of working with the Schlichting [3] data we were led 

to question several of the assumptions used by Schlichting in his data 

reduction.  This is not to say that Schlichting made errors in his analy- 

sis in 1936. That this work has been so widely used by so many researchers 

in the past forty-plus years argues for the basic soundness and importance 

of the work.  Rather, addit .onal data and analytical results published 

since 1936 now allow the use of more precise assumptions and enable a 

reevaluation of the original data.  The present availability of the digi- 

tal computer also facilitates the analysis of large data sets and allows 

more options to be considered than was reasonable with hand calculations. 

In this appendix, results of the reevaluation of Schlichting's 

original data for the surfaces roughened with spheres, spherical segments, 

and cones are presented. It is shown that the original skin friction 

coefficients ate higher than the corrected values by amounts ranging 

from 0.5% to 73Z.  Also, the equivalent sand roughness values were 

reevaluated for the same set of surfaces.  These values are also pre- 

sented, and it Is shown that the original values are higher than the 

corrected values by amounts ranging from 26Z to SS3Z. 

1.   SCHLICHTING'S EXPERIMENT 

The experiment utilized a water tunnel with a test section of 40 mm 

height and 170 mm width. A 3.2-m-long section with four smooth walls 

preceded the 3.2-m-long section in which the upper wall was rough and 

the side and lower walls were smooth.  Fully developed channel flow thus 

existed in the section containing the rough wall.  The 14 rough walls 

with spherical, spherical segment, and conical roughness elements were 

those of interest in this analysis.  The geometry and nomenclature for 

the channel and roughness elements are shown in Figure A-l, and the 

values of the parameters for the rough surfaces are given in Table A-l. 

The effective wall location for a rough wall was defined by 

Schlichting as the location of a "smooth wall that replaces the rough 

wall in such a manner as to keep the fluid volume the same." Thus, if V 

is the volume of all the roughness elements on a surface of dimensions L 
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Figure A-l.     Nomenclature for  Schllchtlng's  Experiment 
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Figure A-2.  Rough Wall Coordinate System Definitions 
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TABLE A-l.     DESCRIPTION OF SCHLICHTING'S  SURFACE  ROUGHNESS 
AND CORRECTED EQUIVALENT  SAND-GRAIN ROUGHNESS 

Hate d D i k k' b SCHL. CORR. 
No. (cm) (cm) (cm) (cm) (cm) (cm) k /k 

s 
k /k 

s 

SPHERES 

XII 0.41 4 4 J.41 
a 

3.99 0.277 0.120 
III 0.41 2 2 0.41 — 3.99 0.838 0.410 
I 0.41 1 ■» 0.41 — 3.96 3.07 2.43 
II 0.41 0.6 Ü.6 0.41 — 3.88 3.81 2.59 
V 0.41 0.41 0.36 0.41 — 3.68 0.626 0.378 

VI 0.21 1 1 0.21 — 3.99 0.819 0.430 
IV 0.21 0.5 0.5 0.21 — 3.97 3.61 2.47 

SPHERICAL SEGMENTS 

XIII 0.8 4 4 0.26 — 3.99 0.118 0.018 
XIV 0.8 3 3 0.26 — 3.99 0.186 0.034 
XV 0.8 5 2 0.26 — 3.98 0.571 0.278 
XIX 0.8 0.8 0.69 0.26 

CONES 

3.85 1.40 0.953 

XXIII 0.8 4 4 0.375 0.425 3.99 0.159 0.046 
XXIV 0.8 3 3 0.375 0.425 3.98 0.437 0.122 
XXV 0.8 2 2 0.375 0.425 3.95 0.996 0.471 

— not applicable 
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by W,   then Ay - V/LW is  the distance of  the effective wall location from 

the  smooth wall on which  the  roughness elements occur.     This  is  illus- 

trated  in Figure A-2.     The mean channel height,   b,  was  then taken  to be 

the  original distance between smooth upper and  lower walls   (40 mm)  minus 

Ay. 

For each of the rough surfaces used, either 5 or 6 different 

Reynolds number runs were made. Data taken were the pressure drop in the 

rough wall test section and the velocity profile at the outlet plane of 

the rough wall test section. A pitot probe was used for the velocity 

measurements. The flow rate was not reported, so the reported maximum 

velocity, u  , is used as the reference velocity in the Reynolds number 

and skin friction coefficient definitions: 

Re • u  b/v (A-l) 
max 

C. - 2T/pu2   - 2u*2/u2 (A-2) 
f       max        max 

where T is the wall shear stress and u* is the friction velocity. 

Actually, for the rough wall x is considered to be the force on the 

wall In the mean flow direction divided by the plan area of the wall, 

since the force on the wall consists of shear and form drag components. 

In the following, the words "wall shear stress" are used in this sense 

when referring to values for the rough walls. 

2.  SCHLICHTING'S EVALUATION OF Cf 

Schlichting determined the akin friction on the rough walls by two 

different methods, and then reported the average of these values, Cf 

the value of skin friction.  The first method he used (subscript 1) was 

based on the pressure drop measurements, while the second method (sub- 

script 2) was based on the measured velocity profiles and a rough surface 

law of the wall. 

For the first method, an application of the basic momentum theorem 

to the fully developed flow in the channel yields the equation 

Schlichting used 

T , + T - b|dP/dx| (A-3) 
rl   s   ' 

if one assumes the shear stresses on the smooth side walls are negligible. 

, as 
av 
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Here, the subscripts r and s refer to the rough and smooth walls, 

respectively.  This can be recast, using the definition of friction 

velocity, as 

*2 *2       b  ldPl IK     ^ u*   + u*  - - h- (A-4) 
rl     s  p 'dx' 

The smooth wall friction velocity was determined by plotting the measured 

velocity profile on the smooth wall in u vs. log y coordinates, deter- 

mining the slope n graphically, and by comparison with the smooth wall 

log law 

u/u* - 3.5 + 5.75 log (yu* /v) (A-5) 

finding 

u* - n /5.75 (A-6) 
s   s 

This determination, together with the measured pressure drop data, 

allowed calculation of u* , using equation (A-4).  These values are pre- 

sented in Table A-2 in the dimensionless form £f 1 for the seventy-nine 

runs made with the rough surfaces of interest in this study. 

For the second method. Schlich ting used a rough wall log law 

u/u*r2 - 5.75 log (y/k) + A (A-7) 

where y is measured from the effective wall location as described pre- 

viously and k is roughness height. For Nikuradse's fully rough sand 

roughness cases, A = 8.48 and k - k , the sand grain size.  From the 
s 

velocity profile measurements on each rough wall. Schlichting knew u vs. 

y' (see Figure A-2).  By plotting u vs. log (y* - Ay), determining the 

slope n graphically, and comparing with equation (A-7), he was able to 

calculate 

u*r2 - nr/5.75 (A-8) 

These values are presented in Table A-2  in the dimensionless form Cf9. 

Also shown in Table A-2  are the averages of Cf1 and Cf_, labeled 

Cf  , which were the values reported by Schlich ing. 
r y civ 

3.       REEVALUATION OF Cf 

As described  in  the  previous section,   Schlirhting determined his 
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TABLE A-2.      COMPARISON  OF  ORIGINAL AND  CORRECTED 
SKIN FRICTION  COEFFICIENTS 

SCHLICHTINC CORRECTED 
Platt _ C-, C.. C, C, _ 

M Rt u fl £2 f,«v fc „ ,   a No. . max , , ' ,      Re iz 
Wk) (xlO    )    (cm/«ec) (xlCT)     (xlO-1)     (xlOJ)        (xlO ) s     (cm) 

SPHERES 

XII 110 321 
(9.75) 124 385 

162 476 
190 547 
224 650 

III 107 316 
(4.88) 138 391 

174 500 
204 568 
251 704 
290 816 

I 107 310 
(2.44) 132 384 

166 508 
195 566 
224 658 
263 778 

II 104 313 
(1.46) 129 384 

166 500 
186 586 
224 646 
257 746 

V 98 311 
(0.87) 123 385 

162 498 
190 585 
214 662 
263 809 

VI 110 316 
(4.86) 135 390 

170 491 
200 566 
234 664 
275 806 

IV 107 325 
(2.43) 129 396 

186 572 
204 646 
245 751 

— not determined. 

7.60 7.01 7.31 6.29 75 0.12 
7.44 7.21 7.33 6.24 91 0,12 
7.52 7.13 7.32 6,46 114 0,12 
7.33 7.31 7.32 6,26 130 0.12 
6.86 7.85 7.35 5,69 148 0.12 

10.22 11.94 11.06 8.66 299 0,12 
1C.48 11.70 11.08 9.18 394 0.12 
10.06 12.13 11.07 8,70 486 0.21 
10.28 11.83 11.04 9,01 572 0,21 
10.17 11.94 11.04 8,95 700 0.21 
10.19 11.76 10.96 8,99 806 0.21 

19.34 17.16 18.23 18,13 2556 — 

18.95 17.40 18.17 17,87 3118 0.08 
17.77 18.70 18.23 16,42 3819 — 
17.48 18.94 18,20 16,11 4360 0.16 
17.69 18.75 18.22 16.42 5127 0.16 
17.60 18.79 18.19 16.37 5944 0.16 

16.76 23.80 20.13 15.46 2562 0.41 
17.86 22.92 20.31 16,73 3243 — 
18.34 22.07 20.16 17.23 4248 — 
18.36 22.01 20.14 17.17 4774 0.37 
18.70 21.86 20.25 17.57 5691 0.41 
19.04 21 'O 20.22 1^,00 6708 ~ 

9.62 10.77 10,19 8,08 264 — 
9.87 10.54 10.20 8,44 337 — 
9.81 10.64 10,22 8,37 438 — 
9.95 10.48 10.21 8,52 525 — 
9.94 10.49 10.21 8,56 589 0.41 

10.17 10.25 10.21 8,86 739 0.37 

8.44 8.90 8.^7 7.12 147 0.13 
8.20 9.18 3,68 6.82 177 — 
8.70 8.72 8,71 7.55 234 — 
3.71 8.66 8,69 7,61 276 — 
8.39 9.02 3,70 7,21 315 0.11 
8.47 8.96 8,71 7,32 373 — 

14.69 14.37 14.53 13.50 1154 — 
13.44 15.74 14.57 12.02 1316 — 
13.96 15.16 14,56 12,90 1953 — 
13.68 15.45 14.55 12,59 2126 — 
13.62 15.55 14,57 12.53 2548 0.13 
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TABLE A-2.     COMPARISON OF ORIGINAL AND CORRECTED 
SKIN  FRICTION COEFFICIENTS   (CONCLUDED) 

Plat« 
No. Re 

(xlO-3) 
max 

(ca/»ec) 

SCHLICHTINC 

fl 

(xlO3) 

v£2 

(xlO3) 

f.av 

(xlO3) 

CORRECTED 

3      Rek (xKT) i (ca) 

SPHERICAL SEGMENTS 

XIII 115 314 5.77 5.15 5.46 4.32 6 — 
(15.4) 141 389 5.15 5.76 5.45 3.72 7 0.16 

178 495 5.56 5.40 5.48 4,37 10 — 
204 574 5.54 5.39 5.46 4.40 11 — 
229 648 4.99 5.91 5.44 3.70 12 0.16 
302 830 4.69 6.25 5.44 3.33 14 0.16 

XIV 135 380 5.61 6.50 6.05 4.12 14 — 
(11.5) 174 497 5.85 6..,.2 6.03 4.57 18 0.23 

195 572 6.05 6.08 6.07 4.87 22 — 
245 700 5.10 7.Ü8 6.05 3.68 23 — 
295 834 4.94 7.29 6.06 3.50 27 0.23 

XV 135 382 8.43 8.70 8.57 7.16 146 — 
(7.69) 170 502 8.54 8.53 8.54 7.42 187 0.18 

190 564 8.25 8.88 8.56 7.04 205 — 
234 687 7.83 9.37 8.58 6.51 242 — 
288 817 8.02 9.08 8.54 6.79 302 0.13 

XIX 107 316 11.29 11.40 11.35 9.93 484 — 
(2.65) 132 386 11.13 11.76 11.45 9.75 590 — 

158 480 11.49 11.26 11.38 10.27 734 — 
186 563 10.60 12.23 11.40 9.08 803 — 
224 671 11.44 11.31 11.37 10.21 1033 0.26 
282 818 11.46 

1 

11.37 

CONES 

11.42 10.25 1296 

XXIII 117 321 6.04 6.83 6.43 4.67 24 — 
(10.7) 141 386 6.16 6.72 6.44 4.89 30 — 

178 488 5.98 6.93 6.44 4.69 37 0.30 
214 574 6.09 6.83 6.45 4.84 45 — 
251 668 6.28 6.67 6.47 5.1'. 55 0.30 

XXIV 112 307 8.60 8.54 8.57 7.31 79 -- 
(8.00) 141 384 8.12 9.12 «.61 6.88 95 -,. 

186 495 7.94 9.33 8.62 6.77 123 — 
209 567 7.61 9.67 8.61 6.39 136 — 
251 662 7.41 9.87 8.60 6.19 159 0.38 
324 890 7.50 9.79 8.61 6.38 211 0.38 

XXV 115 310 11.37 11.42 11.40 10.32 375   
(5.33) 145 388 10.22 12.50 11.33 8.93 428 — 

178 476 10.20 12.62 11.38 8.91 530 — 
209 564 10.54 12.20 11.39 9.38 638 — 

/ 251 668 10.51 12.29 11.39 9.34 761 0.30 
295 787 10.55 12.19 11.36 9.42 909 0.34 

— twt determined. 
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Cf. values by neglecting the shear on the two smooth side walls.  If the 

side wall shear is included, application of the basic momentum theorem 

yields 

T   b |£| . / w+Jb \ T 
r    'dx'   I   W    < s,av 

where T is the average shear stress on the three smooth walls.     The s,av 0 

value of  smooth wall shear was determined as described previously from a 

smooth bottom wall velocity profile measured in a plane parallel  to and 

midway between the side walls. 

Examination of the data of Leutheusser  [38]  for the shear distribu- 

tion around the walls of a smooth channel of aspect ratio 3:1 for  tur- 

bulent fully developed flow shows  that  the shear stress  in this center 

plane Is  larger than the average shear stress over the channel perimeter 

by 10  to  20%,  depending on Reynolds number.    The present authors have 

used the  following relationship between the average shear stress and 

T .   the smooth wall value of  the centerplane determined by s.meas' r ' 
Schllchtlng: 

T - 1.10 T (A-10) s,meas s,av 

This was chosen with the realization that, for the larger aspect ratio 

used by Schllchtlng, the Influence of the corner flows on the average 

shear stress should be slightly less than in Leutheusser's case.  In 

addition, of course, Leutheusser had no influence of a rough upper wall 

on his flows. 

Recasting (A-9) and (A-xO) in terms of friction ve.'.ocities, 

*2    b dp   / W -t- 2b \  .2 /A IIN U*     ■ —  T-  - I  1  ,n tT    U* (A-ll) 
rc  p dx   I 1.10 W J   s,meas 

where the rc subscript indicates a corrected rough wall value.  All 

values on the right hand side of (A-ll) were reported by Schllchtlng, 

allowing calculation of u*  for each run.  These values are reported in 

Table A-2  in the dlmenslonless form Ce  .    Comparison of Cc   and C, fc f,av rc 
shows the originally reported values are larger than the corrected ones 

by 0.5%  to  73%,  depending on Reynolds number and surface  roughness. 

Now consider the velocity profile slope method of determining wall 

shear.     Using the z-coordinate shown  in Figure A-2 to avoid confusion 
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with Schlichting's Ay, (A-7) can be written as 

u » 5.75 u*r2 logiz'  - Az) - 5.75 u*r2 log k + Au*r2   (A-12) 

For a given velocity profile on a given surface, the final two terms in 

(A-12) are constants, so u* ? can be calculated from a slope determina- 

tion using the measured data pairs (u^') if Az is known a priori. 

In using this approach, Schllchting assumed that his Ay (as defined 

previously) was equal to the Az in (A-12), which is the wall shift 

required to give a velocity profile slope of 5.75 in u vs. log z 

coordinates. Although the definition of Schlichting's Ay is a very 

logical one when considered on physical grounds, it is unrelated to any 

characteristics (assumed or proven) of the velocity profile. 

Unfortunately, for the cases investigated by Schlichting, the skin 

friction determined using this technique is highly sensitive to the 

value of Az. This is illustrated in Figure A-3, which shows the results 

obtained for the value of C, using this technique and considering a 

range of Az values from zero to the roughness element height. The 

velocity profile data used are for plate III, Re - 107,000.  The slope 

determinations were made using a linear least-squares regression in u 

vs. log(z' - Az) coordinates.  Plotted for comparison with the curve are 

two points. One is Schlichting's Cf2 (graphical slope determination) 

plotted using his value of Ay.  The other is the corrected value deter- 

mined from the pressure drop measurements (C, ) plotted at the optimum 

value of Az (discussed in the following subsection). 

When u* is not known from an independent measurement, the question 

o.*: which Az choice gives the best linear regression is generally one 

which cannot be answered unambiguously when actual velocity profiles are 

being evaluated.  This is illustrated in Figure A-4, which shows the 

standard error of estimates (Schenck, [39]) vs. Az/k for the results 

which are presented in Figure A-3.  For this particular case, there is 

essentially no difference in the standard error over the range Az/k from 

0.0 to 0.2, and the difference for Az/k from 0.0 to 0.5 is only ±5% about 

the average value of standard error in that range. 

After considering the sensitivity of the velocity profile slope 

method to the assumptions required to obtain a value of u*, it was 
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concluded that for the conditions of the Schlichting experiment this 

approach produces estimates of u* for which the uncertainties are much 

larger than for those estimates based on pressure drop measurements. 

Therefore, the corrected (C- ) values based on the pressure drop measure- 

ments are recommended as the best estimates of the true values of Cf in 

Schlichting's experiment. 

4.   REEVALUATION OF EQUIVALENT SAND ROUGHNESS 

For each of the surfaces he tested, Schlichting determined an 

equivalent sand roughness, k . He did this by comparing the rough wall 
s 

log law in the form 

u/u* av  - 5.75 log(y/k) + A (A-13) 

to the form Nlkuradse reported for his velocity profile data in the 

fully rough regime 

u/u* - 5.75 log(y/k ) + 8.48 (A-14) 
s 

it  should be noted that In (A-13), 

y - y' - Ay (A-15) 

while Nlkuradse [1] did not explicitly define the origin of his y coordi- 

nate used in (A-14).  Schlichting set (A-13) and (A-14) equal, assumed 

all of his data were In the fully rough regime, and obtained 

5.75 log(k /k) - 8.48 - A (A-16) 
s 

By computing an average value of A for each velocity profile using 

(A-13) and then calculating a mean value of A from all the profiles on 

each plate, he was then able to use (A-16) to solve for a k /k value for 
s 

each of the rough surfaces he tested.  These values are listed in Table 

A-l for the surfaces of interest in the present study. 

In view of the discussion in the preceding sections, the use of 

u*    and Ay In (A-13) are open to serious question.  It is more appro- 

priate to use the corrected friction velocity and the wall shift Az such 

that 

u/u*  - 5.75 logUz' - A2)/k] +A (A-17) 
re 
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If (A-17) Is used in determining an equivalent sand roughness, then Az 

values must be determined before the computation can proceed. 

Monin and Yaglom [9] show that, within the logarithmic layer, the 

quantity 

z - (z* - Az) exp(-<u/u*) (A-18) 
o 

is independent of distance from the wall.  Thus, if the friction velocity 

and the data pairs (u,z') in a velocity profile are known, z can be 

determined as a function of (z* - Az) for various Az values.  The opti- 

mum Az value is then the one which gives values of z which are the 

closest to being constant with (z* - Az).  The optimum Az values were 

determined in this study using the above approach and a criterion of 

minimum standard error of estimates from a linea- least squares regres- 

sion of z on (z* - Az) with zero slope.  The Karman constant, <, was 

taken as 0.40 for consistency with the slope in (A-17). 

In using this procedure, the velocity profile points must be read 

from Schlichting's [3] figures. The symbols for the different profiles 

are not distinguishable in most cases in the NACA English translation, 

so the original German version was used. Shown in Table A-2 are the 

calculated "optimum" Az values for each of the velocity profiles which 

could be read from the figures. 

For each of the profiles for which Az was calculated, a linear 

least squares regression of the form of (A-17) was used to determine a 

value of A.  Then (A-16) was used to calculate the corresponding k /k 
s 

value.  The mean values of k /k (shown in Table A-2) were then deter- 
s 

mined for each surface. Comparisons show that Schlichting's original 

k /k values are higher than the corrected values by 26Z to 555%. 
s 

In using (A-16) to determine k /k, it is assumed that (z' - Az) for 

Schlichting's data and Nikuradse's y are equivalent.  In other words, the 

origins for the coordinate systems must be those which give a slope of 

5.75 in the log regions for both sets of data.  It has been shown pre- 

viously that Az meets this requirement by its definition. However, since 

Nikuradse did not explicitly define his origin for y, the sensitivity of 

his results to a wall shift must be considered. 

Fortunately, Nikuradse's results are much less sensitive to assumed 

wall position than are those of Schlichting.  Nikuradse tested 
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configurations over a range of r/k from 15 to 507, where r Is pipe radius 

and k is the average sand size.  The analogous parameter In Schlichting's 

configurations, b^/k, ranged from 6.1 to 13.8 for the surfaces considered 

in this study.  Schlichting defined b? as the distance from the rough 

wall to the maximum in the velocity profile across the channel.  If it 

is assumed that the virtual or effective wall location lies between the 

bottom and the top of the roughness elements, then the points in 

Nikuradse's velocity profiles are much less effected than are Schlichting's, 

since as ■' becomes much greater than Az, logCz' - Az) approaches log(z'). 

Using the corrected k values for each surface and the corrected 

friction velocities u*  , a roughness Reynolds number 

Rek - u*rcks/v (A-19) 
s 

was calculated for each of Schlichting's runs which were considered. 

These values are recorded In Table A-2.   It should be noted that for all 

runs using plates XIII, XIV, and XXIII, the calculated roughness Reynolds 

numbers are In the transitlonally rough regime, not In the fully rough 

regime a» assumed by Schlichting. Of course, the method by which the k 

values were determined assumes fully rough flow, so the meaning of the 

k values for these three plates is not the same as for those plates 

on which fully rough flow existed. 
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APPENDIX B 

INTEGRAL BOUNDARY LAYER EQUATIONS 

FOR FLOW OVER A ROUGH WALL 

The Integral forms of the boundary layer equations are often very 

useful when approximate boundary layer analyses are desired.  Also, their 

development provides natural definitions for skin friction coefficient, 

Stanton number, and the usual integral length scales such as momentum 

thickness, displacement thickness, enthalpy thickness, etc. 

For boundary layer flow over a rough surface, the following equations 

have been derived In the text.  Furthermore, we recall that for most 

surfaces of Interest (1 - a )   - (1 - a )■ (1 - a). x ave       x y'       N 

Continuity: 

|j  [p(l - a)u] + |p- [p(l - a)v]  - 0 (B-l) 

Momentum: 

p(l - a)u |J + p(l - 00v -r* - - |- [(1 - a)T] 

dU<.      1 7 A 
+  (1 - a)PeUe S» - $ PCDu2 fj (B-2) 

Energy: 

p(l - o)u -^ + Pd - «)▼ H - - |^ Id - oi)q] 

3 du 
-  (1 - a)T -^ - up (1 - a)U   -r-Z 3y ev '  e dx 

3 d     .   ^Nud(hR - h) 

1    LI + Upi 

First, we will consider the Integral momentum equation.    Multiplying 

Lm 

yields 

+
 2

PC
D

U
 ü 

+
 —im— (B-3) 

continuity by (u - U ), adding It to the momentum equation and rearranging 

3 dU 
|j [p(l - a)u(Ue - u)] - -^ (1 - oXp^ - pu) 

, 9  r /■>    ^  i „  9p(l - a)v + ^ [p(l - a)uv] - Ue  ^t- 
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— h[a - *)T] -1 pci>»2 Tz (B-4) 

Integrating equation (B-4) across the boundary layer with respect to y 

and recalling that U-V-0,T«-T   _ and T « 0 yields 
w   o"      w    y«0     • 

-^[».'^^-»^(i-^W 
dU 

-a^p.'.ro-«   i-Jg-U 
e e 

+ U (1 - a) o v e      w w w 

- (1-a)wTw-inOcD(d>udy (B-5) 

If we make the following definitions 

momentum (B-6) thickness * 0 - f* (1 - a)  -^- / 1 - ^- \ dy 
o        e e \ e / 

displacement thickness * 6* * f* (1 - a) ( 1 ^- j dy   (B- 
o \ Pe e / 

skin friction coefficient " y " 

equation (B-5) takes the familiar form 

Cf  (1-a)wTw + I IT C PCD(d)u dy (B-8) 

P U e e 

Cf   Aft 1  dU0   A  
dP- 

f . ii + (20 + 6*) i- ^ + i- ^ 
2   dx  v      ' U dx   p dx e      re 

p (1 - a )v w     w w 
P 0 e e 

(B-9) 

In the last term of equation (B-9), the factor (1 - a )v is the 

average transpiration velocity based on the total plan area. 

Next we will consider the energy equation.  We multiply momentum, 
2 

(B-2), by u; define stagnation enthalpy, h ■ h + u /2; multiply continuity 

by h ; and combine these two equations with energy to obtain 
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|j [p(l-0)uho] +1^ [P(l -a)vho] 

- -^ «I- a)q] -|p: [(1 - a)uT] 

TTyNu.(h_ - h) 
+ UPr <B-10> 

Integrating equation  (B-10) across the boundary layer with respect to y 

and recalling u    ■ v^ ■ x^ - q^ ■ 0 we get 

niNu (h   - h) 
^-^w^^—^  dy 

o 

" r h [p(1 - a)u(ho - hoe) 

- p(l - a) v (h    - h    ) (B-ll) w wo        oe w 

where we have, without any loss In generality, made the stagnation 

enthalpy at the boundary layer edge,  h    ,  the datum for stagnation 

enthalpy.    Normalizing equation (B-ll) with p U (h    - h ) and expanding 

the Integral we get 

TryNud(hR - h) 

(1 - a^S, ♦ r —JJJ dy p (l-ct) v (h -h    ) 
 o  w w w    o    oe w 

peüe(hw.he) "'   ww 

! d    - p(l-a)u(h-he) 
+  p U  (h    - h ) d^ '     peUe(hw " he)  p U (h -h )      dy 

^e ewe o e eN w    e 

p(l-a)u(U 2-u2) 

e e    w    e " " n 

If we make the following definitions 

e e w e     o p U e e 

uyNu,^ - h) 

K   ^  (1-a«)qw + /Q   Prll    dy (. ,.s Stanton number - St •   „ ^.— . v   (B-13) 
e e w ~ e 

t» ou h " he 
enthalpy thickness m \ m )     (i-01) 0'»' r— f dy    (B-14) 

o      e e w   e 
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dissipation thickness - 6d - J
00 (1-a) -e^- f 1 - ^-J ) dy  (B-15) 

e e 

Eckert number ■ E c      2(h    - h ) w        e 
(B-16) 

equation  (6-12)  takes  the familiar form 

dU 

h      p    dx        U L   e e 
-e- + 

,        d(h    - h ) 1 we 
dx        h    - h 

w        e dx ] 
d<S. d6. 

dx c dx d LPe 

dp        3E    dU   1 

dx        U      dx   J 

p v p 
- (1 - a)    -TT + (1 - a) v   — E 

w p U w w p      c e e e 
(B-17) 

As an alternate formulation,  we can normalize equation (B-ll) with 

respect  to the stagnation enthalpy defect,  p U (h      - h    ) ,  and define a 

stagnation Stanton number and enthalpy thickness 

St. ^-a)wS, + C—Sär—^ 
p U (h      - h    ) e e    ow        oe 

(B-18) 

\o ■ r a -«) ^ 

to get  the other familiar form 

d6L 

o        dx + 6. 

pu h • 
o 

- h 
oe 

j.. 

P u Ke e 
how - h  ^ oe 

orm 

1 

pe 

dpe 

dx e 

dU 
e 

dx 

h      - h ow        oe 

d(h      - h    ) ow        oe 
dx (1 - ct) 

P v w w 
w p U e  e 

(B-19) 

(B-20) 
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APPENDIX C 

ON THE PROBLEM OF ROUGHNESS ELEMENT TEMPERATURE 

In the derivation of the energy equation for the rough surface bound- 

ary layer it was assumed that the temperature of the roughness element was 

known.    The problem of defining  this temperature is addressed below. 

The temperature distribution within the element will,  in general,  be 

three-dimensional.     This temperature distribution could be found by 

solving the three-dimensional conduction equation with appropriate boundary 

conditions.    This would be a significant undertaking on the order of 

solving the two-dimensional boundary layer equations.    Also,   since the 

temperature profile must be determined at each iteration of the boundary 

layer equations,   the required computations would be increased by an order 

of magnitude. 

Fortunately,   the exact  temperature distribution in the element is of 

little concern, since the major concern is the total heat transfer rate 

between the fluid and the substrate.    This heat transfer Is affected by 

the roughness elements in two ways: 

(1) The elements influence the nature of the turbulence and the 

momentum field, thereby influencing the energy field in the 

boundary layer. 

(2) The elements influence the path for conduction for the fluid 

to the substrate in such a way as to: 

(a) Increase the effective surface area  (fin 

effect);  or 

(b) Insulate the surface. 

Effecr  (1) must be accounted for  in the models of  the turbulence and the 

momentum field.    Effect  (2)  is included in the model of  the energy field 

by way of  the blockage  terms and  the distributed heat source  (sink)  terms. 

It is the heat source  (sink)   term that requires a definition of roughness 

element temperatures. 

The lumped mass approach described below gives a simple method to 

define an element  temperature  that accounts for  the  important  effects of 

conduction through  the element and contact resistance at  the boundary 

between the element and  the surface. 
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Figure C-l shows a schematic diagram of the element and the nomencla- 

ture used in this appendix.  It is assumed that the mass of the element 

is lumped at the centroid.  For steady state 

T - T 
q - /k ^dH(T - T(y))dy - / . / (C-l) 

o    R Rl + R2 

Solving for T yields 
K 

Tw + ^i + R2) /Q <d)HT(y)dy 
T    - = ^r  (C-2) 

1 + TTC^ + R2)  /K (d)Hdy 
o 

where 

and 

Ri -1 / 'r^i (c-3) 

4 

ft (d2)ydy 
y= ■ FAT 

o 

The reader should note that in the limit, as R, + R- -► 0, T,^ T ; 
1   2      R   w 

so, for highly conductive, firmly bound elements the element temperature 

approaches the wall temperature. On the other hand, as Ri + R2 "*■ 0o' i-6-» 

weakly conductive and/or loosely bound elements, the element temperature 

approaches a weighted average of the surrounding fluid temperature 

/]J (d)HT(y)dy 
as R, + R2 ^ oo. TR . __^    . (c-5) 

/ (d)Hdy 
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q * rate of heat transfer between element and fluid 

R, • conductive resistance between centrold and surface 

R. = contact resistance at boundary 

k = element height 

T- *  "temperature" of the element 

T ■ temperature of the substrate 

T(y) - temperature of the fluid 

y m  location of the centrold yc 
H • convective heat transfer coefficient 

d ■ local element diameter 

Figure C-l.  Roughness Element Heat Transfer Schematic and Nomenclature 
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