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IMPROVED MULTI-TARGET TIME DELAY ESTIMATION:
MATCHED FILTER APPROACH

INTRODUCT ION

The conventional approach to estimate the time delay between two sensors
is to crosscorrelate two signals and search for the peak of the resultant
crosscorrelation function [1,2]. However, in the presence of interference,
these time delay estimates are biased.

Two potential solutions exist for removing this bias: (1) an optimum
multitarget processor [3], which requires a basic reformulation of the
estimator and (2) a matched filter estimator, which provides additional
multitarget processing capability either at the full-beam or split-beam
level. This report addresses the methodology and the performance predictions
of the latter approach [4] applied at the generalized crosscorrelator (GCC)
output.

CONVENTIONAL EST IMATOR

The GCC is shown in the left portion of figure 1. Assuming that the
input to the two channels is

x1(t) = s(t) 1 I(t) + n1(t),
and (I) I

x2(t) = s(t+Dl) + I(t+D 2) + n2(t),

where

s(t) = primary target signal,
I(t) = interfering signal,
n1(t) = channel 1 input noise,
n2(t) = channel 2 input noise,
D1 = desired target time delay, and
D2 = desired interfering time delay.

Assuming that the signal, interference, and noise are joint Gaussian,
zero-mean, uncorrelated processes, it is shown in appendix A that the GCC
output C(tj for large averaging time T may be represented as

2
C(+) = R12(+) + n(t) = E aj Pj(+-Dj) + n(+), (2)

j=1

where R12(+) is the noise-free crosscorrelation function between the two
channels ana n(+) is the noise component whose transform has zero-mean and 7

covariance

1£

TN ( 2 [Gl(fl) G22 (fl) 5(f2 +fl) + G12(fl) (f2 fl)], 2

1
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where al and a2 are the respective target and interference power; pI and
P2 are the respective normalized target and interference autocorrelation
functions; GII, G22, and G12 are the respective auto- and cross-spectral
densities of channels 1 and 2; and s(f) is the familiar impulse function.

The conventional estimator simply searches for the global peak of C(t).
Denoting ^t and +o as those values of t wnere C(+) and R1 2(+) peak,
respectively, it is shown in appendix 8 that the mean and variance of to is
given by

Ao = o

var(+o) =2w f_____--2_-_G_12_e (4)

fw w2 G eiwIfM G12 0

where to is the solution to

i d i2, w
2 w w G1 2 e 0=0, (5)

and

w = 2nf,

G11(f) = Gl(f) + G2(f) + Gn Inl (f),

G2 2(f) = Gj(f) + G2 (f) + Gn2n2 (f),

and
-i2irfD 1  -i2irfD 2

G12 (f) = G1 (f) e + G2(f) e

where

GI = auto-spectral density of the primary target,
G2  auto-spectral density of the interference,

Gnini = auto-spectral density of the channel 1 input noise, and
Gn2n2 = auto-spectral density of the channel 2 input noise.

When interference is absent (G2 = 0), the estimator is unbiased, eg.,
;o =t o = DI and

2

1 4
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2 2
271 (G1 1G22  (6)

var(D1) single target w 2

This represents the Cramer Rao lower bound for estimating the time delay of a
single target in uncorrelated noise and will be used later for normalization
purposes.

Figure 2 illustrates the typical bias characteristics of the conventional
estimator in the presence of interference. The bias error, +oBw, is
expressea as a function of the reciprocal signal bandwidth, Bw, and is a
function of the time-delay separation, (DI-D 2 )Bw, between the two
interfering targets fcr the case of flat spectra having unequal bandwidths.
Notice the large bias error when the sepa.'ation is small. Conventional bias
reduction schemes tend to suppress the effects of the interfering source by
beam shading. We, on the other hand, treat the time-delay estimator in the
presence of interference as a two-parameter estimation problem and estimate
rather than suppress the interference.

MATCHED PARAMETER ESTIMATOR

A technique for removing the bias error is to match the assumed
noise-free GCC output, R12(t), to the received noisy GCC output, C(+), under
a least-mean-square (LMS) error criterion. Accordingly, we wish to minimize
the cost function

J(A1 A2, Y1 Y2 ) = d E AT 2  j(L-y - 9 (7)
TI12 jI

where T, is the selected observation window and " j = 1, 2 are our
assumed normalized autocorrelation functions of Re interfering sources. The
matched parameter estimator (MPE) is considered to be matched when j =Oj
and mismatched when 6 P pj, j = 1, 2. The values of A, yj, = 1, 2
at the minimum value of J represent our LMS estimates oi aj, Dj, j = 1, 2,
respectively.

Because Al and A2 may be determined explicitly, the apparent
four-dimensional minimization problem suggested above may be reduced to a
two-dimensional maximization scheme. It is shown in appendix C that J is
minimized by maximizing

Z(y2,y2) = 2 P 2  
- 2QHIH)IF, (8)

z~l~2)=(P 1H2  2 21 1 2

and that the estimates of al and a2 are given by

1 (P2 HI - QH2)/F ' (9)1yj = Dj

3
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and
a2  (P1 H2 - QHI)/F , (10)

where

T
-1/2

H dt i - y) 2() - Y2) , (12)

-TI' 2

T1 1 2

+H (t yj) CIt), j = 1, 2, (12)

Ti/2 .

and F = P1 P2 - Q2. 
(14)

Data are usually received at only discrete values of t rather than continuous
values. This modification is easily incorporated in the above expressions by
replacing the integral over t in (7), and (11) through (13) by a summation
over the discrete values of .

Expressions (8) through (14) represent the working equations of the MPE
processor. The implicit solution of (8) for the estimates of D1 and 02
requires a two-dimensional peak-searching algorithm which may be facilitated
by precomputing and storing the functions P1 , P2, and Q. Futhermore, the
process of locating the global peak of z may be accomplished in either a
tracking or acquisition mode. Without apriori knowledge about DI and D2,
one needs to search the entire (Y1, Y2) space (acquisition mode).
However, as a history of DI and 02 is established, the search region may
be reduced and (8) may be solved in a tracking mode. Once the global peak has
been found, expressions (9) and (10) yield estimates of the primary and
interfering target powers, respectively. Finally, the residual
Jmin = J(j, a2, 0I, 02) can serve as a goodness-of-fit indicator.
In particular, when the estimator is unbiased, the mean value of Jmin is
simply the total noise power in the observation window, i.e.,

T 112

Jmin dt n2 () . (15)

4
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PERFORMANCE PREDICTION

It is shown in appendix D that the MPE estimates of DI, D2, al, and
a2 are unbiased provided the GCC averaging time T is large and the MPE is
matched, eg., p.i - p- This statement applies regaroless of whether the
data are discrete or continuous and without restriction on the observation
window TI .

When the estimator is mismatched ( j * 0j), the above estimates will
be biased. When the mismatch is small and when TI - , it is shown (appendix
0) that the mean bias errors of DI and 02 are given approximately by

1 1 0
- - i f -. f Weg S1

(16)

1 __df Weg S

where

S 1 r 20(iwFo - Qo Q20) - r220 QI P 10]/Fo

+ 0 I[r 1 20 Q20 P20 -r 220(iwF0 - Q0 Qj IF, (17

S2 2 eiw [r 120 Q10 '110 - r 110 (iwF0  QO Q20)]/F0

+ 01 [1 2 ,( iwF0 - Q0 Q10) -r 1 10 Q20  210

Weg= a E + a2 E2 e-  18)

2

0r 1I r22 - r20

11O = K IO - PIO QO /F0

r -K 2
2 20 - 20 - P20 20 /Fo F

120 = Q20 + QO QIO Q2 0 /Fo

5
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f 2 -2
Kjo f dt w j , 1, 2,

F0  P P0 -2Q0

P 10 f 6

(19)

P20 =fdf 2

Q0L 0

Q1 0 = = dfw6 1 02 e-' Q2 0

Q20 = df w2  1 i2 e-iWa

w = 2rf ,

and where 6j! j and 6j, Pi are Fourier transform pairs;
Ej = Oj - , j 1 1, 2 is he spectral mismatch between the interfering
targets; and a = DI - D2 is the time delay separation between the two
targets.

It is instructive to find an upper bound on the bias error (16). Using
(17) and (18), one may show in a straightforward manner that

f f S112 = £220 0 andf df 1S212 = r 11 0 x0_ Then applying the Schwartz

inequality to (16) and using the above result, one obtains

"1 2 I(r20 
df [E + (a)2E2]

(20)
2 jjif f a2
b <-F df - E + E .2 - -- [(7-1

The variances of the estimates are derived (in appendix D) under the
condition that the MPE is matched and that TI = ,. The results are

6
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var Sbl) df [G G 1
2 + (G * SI elwDi)J (21)va (1) =a -,- 11 G22 S . 12 1

var ( 2 = a2- 0  _ ii G 2 2 G G, (22)

var (i) =1f df [G G2  V12 + (G I v1 e (23)

and

1=1 + (G2 v2 e i , (24)
var (a2) =T df Gl G22  v2  ( 12  2 J(

where

Vl = (P20  1 - QO 02 eiWA)/Fo

(25)

V2 = (P10 02 eiw& - Q0 01)/Fo '

G = Gi + G2 + Gnln I '

G22 =GI + G2 + Gn2n2,

and
. iwo1  -iW,)

G12 =e (G1 
+ G2 e

A worst case condition occurs when DI  D2 (A =0) for which only the
spectral characteristics can be used to distinguish between the two interfering
targets. Generally this results in the largest variance in the estimates.
Under this condition, QIO = Q20 = 0, S and S2 are purely imaginary and
vI and v2 are real. Expressions (21) through (24) reduce to

var ( - d w2 (- 120 - )i )2 G , (26)1 = a2 x2 T (0 10 2

1 0

var (D2) = 2f w2 (df 1 120 - 2 110 )2 G , (27)

a2  0 -

7
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var (ai) TF l ('20 61 - 2 G. ,28)

a=O0

and

var (a2)  f _df (Po 02 Q0 01) G+ , 9

0

where

G_ = (GI  + G ) (Gn nl + Gn2n 2 + Gnl nI Gn 2 n2 '

an u

G+ = 2(GI + G2) 2 G_

If in addition to a=O the interfering spectra are identical (0I 02);
then F0 and ko approach zero and the variances (26) through 29) approach
infinity. This is simply an indication that the MPE is unable to distinguish
between the two interfering targets under this condition.

RESULTS/DISCUSSION

A convenient figure-of-merit for comparing the performance of the
conventional ano matched estimators is the normalized degradation ratio (NDR),
which is defined as the total rms error in the presence of interference
divideo by the root-mean-square (rms) error of the conventional estimator in
the absence of interference. The latter normalizing term is simply the square
root of expression (6). Note that NOR > 1 and that large values suggest that
the accuracy of the primary target time-delay estimates is seriously degraded
in the presence of an interfering target.

Comparisons of the NOR for conventional and matched estimators as well as
the corresponding simulation results are shown in figures 3 through 6 for the
case of flat spectra and various noise powers. In each case the MPE is assumed
to be matched and the signal and noise bands extend from 0 to B (Hz/sec) while
the interference occupies the full band -iures 3 and 4) and the upper half
band (figures 5 and 6). Additionally, ;qnal-to-interference ratio (SIR)
is I dB in all cases. In these figure id curves represent predicted
results for the MPE as obtained from (2 while the triangles represent
corresponding simulation results. Simi he dashed curves represent
predicted results for the conventional t ,na~or as obtained from (4), (5),
and (6) while the circles represent simuL ion results. As in figure 2, the
time-delay separation is expressed in terms of the reciprocal primary signal
bandwidth; eg. we plot NOR as a function of (DI - D2)B. Note the
excellent agreement between the predicted and simulated results.

When the spectra are identical (figures 3 and 4), the standard deviation
of the MPE estimates approaches infinity at zero separation because the target
and interference are indistinguishable under this condition. As the
separation increases, the matched NOR decays rapidly to a fraction of the

8
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conventional NOR. Note the separation regions where the conventional NDR is
smaller than the matched NOR. This is a familiar characteristic that often
occurs when comparing biased (conventional) with unbiased (MPE) estimators.
At a low signal-to-noise ratio (SNR) the performance improvement is not as
dramatic because the random error is much larger than the bias error and
swamps its effect (figure 4).

Figures 5 and 6 show an even greater performance improvement because the
matched estimator is able to resolve the target and interference at small
separations when their spectra are unequal. As before, the improvement
degrades at low SNR.

All of the performance improvements in figures 3 through 6 are due to the
fact that the MPE estimator is unbiased. This situation occurs only when the
assumed interfering spectra are equal to the actual interfering spectra. The
sensitivity of the MPE bias error due to a spectral mismatch is illustrated in
figure 7 for the case where the primary target spectrum is known (O-B), where
the actual interfering target spectrum (02) extends from B/2 to B Hz/sec,
and the assumed interfering target spectrum (02) has the same bandwidth but
a 13 1I/3.' center frequency mismatch. This figure may be directly compared to
figure 2, which shows the bias error of the conventional estimator for the
same spectra and SIR.

Examination of figure 7 reveals that the bias error can be quite large,
but is smaller when the center frequency of 62 is up-shifted rather than
aown-shifted. Comparison of figures 2 and 7 shows that the MPE peak bias
errors are 2 to 3 times smaller than those of the conventional estimator and
that they occur at a smaller time-delay separation. These, as well as other
unpublished results, tend to suggest that peak MPE bias errors are usually
less than conventional bias errors (even for complete spectral mismatch) and
that the smallest peak bias errors are obtained when the higher spectral
frequency components are well matched.

CONCLUSION

The MPE technique yields unbiased time-delay estimates in the presence of
interference provided the functional form of the interfering spectra are
known. In comparison to conventional estimators, rms errors can be reduced
several orders of magnitude particularly at high SNR and INR. When the
assumed interfering spectra are unequal to the true interfering spectra, the
MPE estimates are also biased.

In practice, apriori information about the primary target spectrum must
be known for both conventional and MPE estimators. Thus, the decision to use
the MPE rests on what ipriori or measured information exists about the
secondary interfering target spectrum. Simulation results tend to suggest
that peak WPE bias errors are usually less than corresponding conventional
bias errors particularly when the higher spectral frequency components are
well matched.

9
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ESTIMATOR
GCC PROCESSORESIAO

!S(t) + I(t) + nlt)ESTIMATOR

S(1 - D11 + Iltl- D2) + n2(t) JACET ESTIMATOR al' a2, O.' 02LT f

Figure 1. Conventional and Matched Time-Delay Estimators
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Figure 2. GCC Bias Versus Time-Delay Separation
(SNR = 0 dB, INR -1 dB; S:O -* B, I:B/2 8, N:O -. 8)
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o I
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Figure 3. Degration Ratio Versus Time-Delay Separation
(SNR = 0 dB, INR = -1 dB; S:O B 8, 1:8/2 8 8, N:O - B)
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TARGET SPECTRUM INTERFERENCE SPECTRUM
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0 1 2 3 4 5
TIME DELAY SEPARATION (1 1 5w) 021 044A

Figure 4. Oegration Ratio Versus Time-Delay Separation
(SNR -10 dB, INR = -11 dB; S:O 4 B, 1:0 - B, N'O - B)
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Figure 6. Degration Ratio Versus Time-Delay Separation
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TIME DELAY SEPARATION (1/Bw)

Figure 7. NPE Bias Versus Time-Delay Separation
(SNR 0 dB, INR -1 dB; S:0 - B, I:B/2 -8 B, N:O -* B)
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APPENDIX A

REPRESENTATION OF THE GENERALIZED CROSSCORRELATOR (GCC) OUTPUT

Referring to the GCC illustrated in figure I and the channel inputs (1)
described in the text, the GCC output V(+) is

T/2

V() f dt xl(t) x2(t-[) I) x (t) x2 (t-t) dt, (A-1)

-T/2

wher 11~- It t< T12
where II(_f) 0otherwise

Its mean value is

vr5)"T Jdt II(-) xI(t) x2 (t--± = R12(), (A-?)

where R2 ( t) is the crosscorrelation function between the two channels.

The covariance of v(+) is defined as

Cov( ( t2 ) V( v - Cv- . (A-3)

Substituting (A-i) and (A-2) into (A-3) and using the familiar chain rule for
joint Gaussian rv's, one obtains

i d~ ~t \ II-t 2 ) -t 2 ,\
Cov( , +2 id t d t 11T) 'I [Rl(t t R22 (t - +

P 2  J 1  2 11 2 2 2 1

+ R12 (t1 - t2 + 2 R1 2 (-I + t 2 - t1 )], (A-4)

the respective auto and crosscorrelation functions of the two channels, i.e.,

2

RI1 ( t) = xl(t ) x1(t-) = I a (.) R n
j=1

2

R2 2(+) = x2(t) x2(t-') = I a ..() + Rn2n2(t ), (A-5)

j=1

A-I

- ,~ ~ ~ -~ -
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and
2

R12"= x1 (t) x2 (t-) : I a j - Dj

j=1

where
aj )j(,) =R() = autocorrelation function of the jth target (j = 1, 2),
aj = Rjt0) = power of the jth target (j = 1, 2), and
pj(#)= normalized autocorrelation function of the jth target (j = 1, 2).

Letting v tI - t2 in the integration over tI and noting that

Sdt I1 11T_ = T (,(A-6)

- :T lul < T
where (u) = , (A-4) becomes

0 otherwise

COvW 1  j= du .'(u) [R11(u) R22(u + I ) "R 1 ( R1 ( -

(A-7)

and if T >> 1 + 1'21, then

COv( 1, 2)  4 ,fdu [Rll(u) R22 (#1 - t2 - u) + R 2 (u) R12( 1 t - u)]. (A-8)

Now we wish to represent the random GCC output v(*) with C(t) =C- + n(-).

In order that these two be equivalent, it follows that CT7 = R12 ('), 'FT 0,

and n( 1 ) n('2 ) = CoV(fl, t2).

Finally, letting N(f), n( ); Gll(f), R11(l); G22(f), R22 ();
G12kf), R12(t); Gl(f), RI(-); G2(f), R2('); Gnjnl(f), Rn ni(+);

and Gn2 n2 (f), Rn2 n (') be Fourier transform pairs; it fo lows that
N(f) =0 and the cbvariance

S -i2yr(fl ! + f2 t2

N(fl) N(f2) = tI d'2 e 1 2 + n(1) nF 2 . (A-9)

Substituting (A-8) into (A-9) and performing the indicated integrations, it
follows that

N(fl) N(f2) 1 T [GI1 (fl) G22 (f1) d(f2 + f1 ) + G12 (f1 ) 6(f2 - fl)]  (A-10)

A-2

'\ ' II I I, I

~ N



TR 7149

where G11 , G22 , G12 are the respective auto- and cross-spectral
densities of the two channels and 6(f) is the familiar impulse function, i.e.,

G1 1(f) = G1(f) + G2 (f) + Gnn (fI n

G22 (f) = G1 (f) + G2 (f) + Gn2n 2(f) , (A-lI)

-i21rfD 1  -i2 rfD2
G12 (f) = GI(f) e 

+ G2 (f) e

c f = 0, (unit strength)
6(f)

60 otherwise

A- 3/A-
Reverse Blank
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APPENDIX B

CONVENTIONAL ESTIMATOR STATISTICS

The conventional ti; _ delay estimator locates the global peak of
C(t) = R1 2(N) + n(t) or the zero crossing of its derivative. Denoting 1o
as the location of the global peak of R12(t ) and expanding C'( ) about to
by means of a Taylor series expansion, one obtains

C '( t) a!-C '(t o0 ) + (t - t 0 )  C" ( 0) + .. .(B- 1)

where the primes denote differentiations with respect to t.

Now the estimator finds the value of for which C'(t) = 0. Denoting
this value as our estimate 'o, we obtain from (B-i)

C'(t ) C'(t )

t - C S (B-2)0 o C " ( t o  ) 0 7 ( to )

where the latter approximation is valid for high signal-to-noise ratio.
Expressing R12 and n in terms of their respective Fourier transforms G12
and N, we obtain (with w 2nf)

C'( o = n'(t) jdf (iw) N ei , (B-3)

and

Cd(t w G2  
iW o

= R"(t) = -df G12 e (8-4)

since R'(+o) = 0 (by definition) and N = 0. It follows that the mean of the
estimate 0 = to where to is the solution to

__o iw+°0

R( o  i df w G e 0 O. (B-5)o f 12

Using (8-2) and (B-3), the variance of to is given by

var(t O) = [C (to )]2 [C"( )] 2 (B-6)

where

C'(t it(w + w2 ) (8-7)

2 o fffI df N(f) N(f2 )

B-I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Substituting expression (3) of the Lext into (B-7, and performing 'he
integration with respect to f2 yields

11 1 2w-
0 T G G2 f G1 e I I-8;

Finally, substituting (8-8) and (8-4) into (B-6) and changing the integration
variable to w yielos expression (4) shown in the text.

B-2

B-2
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APPENDIX C

MINIMIZATION OF THE MATCHED PARAMETER ESTIMATOR (MPE) COST FUNCTION

We wish to minimize the cost function

T1/2

J(A 1  A2, y1 ' Y2 ) T d [A1 Pl( - yl) + A2 p2 (t - y2 ) - C(H) 2  (C-i)

11/2

by first minimizing J with respect to Al and A2 for the purpose of
deriving explicit expressions for A1 and A2. Expanding the right side of
(C-i), one obtains

S2 A H 2 A2 H + A1 P1 + 2 A1 A2 Q + A2 P, (C-2)

where

TI/2

o= 0 /- 2 dt C
2() = constant, (C-3)

-T
H.(y.) = i 2d± j(+ - y.) C(V) , j = 1, 2, (C-4)

T

PJ(YJ) : f d+ 6j2( ( y.) , j 1, 2, (C-5)

and

Q(Y1 ' Y2) = f dt ( Y1 ) 2( - y2 ). (C-6)

T

Now differentiating J with respect to Al, one sees that aJ/aA I = 0 when
A1 satisfies

A P1 A2 Q (C-7)
c-1

_-_----_" - _ _.1. ,

,9 - a , , ! a -i- t t -- I -
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Substituting (C-7) into (C-2) and collecting terms yields

j = J + [A2 (PI P2 - 2) - 2A2(H2 PI - HIQ) - H2]/PI" (C-8)

Next, differentiating J with respect to A2, one obtains aJ/aA 2 = 0 when
A2 satisfies

P-H 21 (C-9)A2 = 1 _ Q 2 "(cg

Substituting (C-9) into (C-8) and collecting terms results in

J = - z(y1 ' Y2 )
'  (C-i0)

where

1 [(H2 PI - H1Q)
2  2]

1 L(P 1 P2 Q)

(C-12)

(PI P2 - Q2)

Since Q2 < P1 P2, it follows that Z > 0; and since Jo > 0, we deduce
that J is a minimum when Z is a maximum. Hence, the apparent four-dimensional
minimization of J(A1 , A2, YI, Y2) can be achieved by maximizing the I
two-dimensional function, z(yl, Y2); and A2, Al can be obtained
explicitly from (C-9) and (C-7), respectively.

The function Z has an interesting geometrical interpretation. Dividing
both the numerator and denominator of (C-12) by P1 P2 yields

Z (n2 + n2 -2n, n2 cos e)/sin 2 0, (C-13)

1 2 
2 nn 2 ,

where

ni = , j =1,2,

and

C = cos

C-2
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2 2
In this expression, n1 = H /PI is the term that should be maximized if the ref-

erence model assumed only the presence of the primary target. This is evident

from (C-8) when A2 = 0. Similarly, n should be maximized if one assumes

only the presence of the interfering source. Considering the triangle formed
by the intersection of nj and n2 with acute angle e; note that, from
(C-13),7_ sin e is the length of the third side. It follows from plane
trigonometry thatf-is the diameter of the circle that circumscribes this
triangle. Hence, z is directly proportional to the area of the circumscribed
circle.

i

I

C-3/C-4
Reverse Blank
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APPENDIX D

STATISTICS OF THE MATCHED PARAMETER ESTIMATOR (MPE) ESTIMATES

In this appendix, we derive the statistics of the MPE estimates DI,
b2, al, and a2. In particular, it is demonstrated that, without any
restriction on the observation window TI, the mean estimates are unbiased
provided the WPE is matched, eg., pj = aj. Expressions for the
approximate bias errors of 61 and D2 are then obtained for large TI when
the MPE is slightly mismatched. Finally, expressions for the variance of the
estimates are derived for both large TI and matched conditions.

The bias error associated with estimating the coordinates of the global
peak of z(y1, Y2) may be obtained by expanding the partial derivatives of
z about the point (Dj, D2) via a two-dimensional Taylor series. Using the
last subscript 0 to denote that the expression be evaluated at (D1, 02)
one obtains

zl(Y 1, Y2 ) zlO + (y1 - DI) z1 10 + (Y2 - D2) z120 ' (D-1)

and
z2 (yl' Y2 ) z20 + (Yl - DI) z120 

+ (Y2 - D2) z2 20 ' (D-2)

where

z a azlayj , j = 1, 2,
and

2jk a yz ayk , j, k = 1, 2

Now the search algorithm finds those values of Yl and Y2 for which the
above derivations are zero. Denoting these values as our estimates of Di
and D2, respectively, and solving for the resultant bias error, we obtain

bl = D1 - D1 = (z120 z20 - z2 20 z1O)/(zll0 z220 - z120) (D

and

b2 = D2 - 1 = (z120 z10 - z110 z20 )/(zllo z220 - z120)

At this point, let us separate the deterministic and random parts of Hj
and z by defining

T1/2

hj(y.) = F d± p.(+ - y.) RI2(), (0-5)

and

0-1

\,LN
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T
1/2j dt %j( - yj) n( ) , (D-6)

such that Hj = h- + c for j = 1, 2. Substituting these expressions
into equation (81 of the text, we obtain

z(yl' Y2 ) = B(Y1, Y2 ) + Y(Y1, Y2 ), (D-7)

where

B (P1 h2 + P h1 - 2 Q h1 h2 )/F (0-8)

=hL + h2M = (FM2 + h 2)P = (FL2 + h2)2 ,  (D-9)1 2 h1)/ 1  (F h 2)1 %

y + Mc2) ( 2 2+ C P- 2Q el E2 )IF (D-10)

2(LE + ME2) for large T, (D-11)

L(yI, Y2) = (P2 h, - Qh2)IF = (hl - QM)/PI, (D-12)

M(Y1, Y2) = (P1 h2 - Qhl)/F = (h2 - QL)/P 21 (D-13)

and

F(yl, y2 ) P1 P2 - Q2 ,(-14

and where the approximation leading from (D-10) to (0-11) is valid if the GCC
averaging time, T, is large. Note that hj and o are the deterministic parts
of Hj and z, respectively; and that y -0 since cj - 0.

Now, if both signal-to-noise ratio (SNR) and interference-to-noise ratio
(INR) are large, we may replace Zjk in (D-3) and (0-4) by Bjk; j, k = 1, 2.
Substituting zj = Oj + yj, j = 1, 2, the bias errors reduce to

+ 1,0 [a - 0 2
S [120('20 ' 20) - '220 ('10 + YIO)]/('110 8220 -120) I

(0-15)

2  [120('10 + Y10) - 8110 (820 + Y20 )]/(' 110 '220 '12O

D-2
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where

y: ay3 ,

and

a jk a 2 8/ay i ayk , j, k = 1, 2

Finally, since 0 0, the mean values of these bias errors are

2

b- ('120 820 - '220 BIO) (BIIO 8220 - B120),

and (D-16)

b2 ; (8120 810 - B110 B20)/(B110 8220 - a120)

We must now determine the various derivations of s(yl, Y2) evaluated

at Yi = 01 and Y2 = 02, In order to simplify the notation, we shall
use the prime (S) to denote differentiation when the expression is a function
of only a single variable such as Pi, hj, and cj, and shall continue the

subscript notation to denote differentiation when the expression is a function

of both Yl and Y2, such as z, B, y, Q, L, M, and F.

Using (2), (11), (13), (14), and (0-5) we may show that when pj=

(matched MPE),

h = a1 P10 + a2 QO h20 = a1 Q0 + a2 P20

h10 = a, P 16/2 + a2 Q10 h26= a1 Q20 + a2 P26 /2

h10 = al(Plo12 - KI) + a2 QIO h2" = a1 Q2 20 + a2 (P20/2 - K20) (-17)

F10 = P1 6 P20 - 2 Q0 Q1 0  F 20 =P 1 0 P2 2 QO Q20

F110 = PI P - 2 Q0 Q110 - 2Q1P F220 P 20 2Qo Q220  2Q 20

F120 = P I6 P26 - 2Qo Q120 - 2 QIo Q20'

where

TI
112
/22

K. = d [( yj)] , j = 1, 2, (D-18)

I0-31

oil
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and a1 ano a2 are the signal powers of the primary and interfering
targets, respectively.

Using (D-12), (D-13), and (0-17), it may be shown that for the matched MPE

L= a1  M = a 2

-a1 F10  a1
L M - 7- (eQ P16 - 2Q10 P1,) (D-19)

L a 2 , -a2 F 20
t20 =-o0(Qo P26 - 2Q20 P20 ) M2  -Z F

0 0

Now the first order derivatives of B may be obtained from (D-9) and are

given by

81 = L(2F 1 + LFI)IP2,

(D-20)

81 = L(2hj - 2Q1M - LPi),

82 = M(2FM2 + MF2 )/P i ,

(D-21)

82 = M(2h, - 2Q2L - MP )

Substituting (D-19) into the above expressions at yl = DI, Y2 D 02, we
obtain that 10 = 820 = 0. It follows from (D-16) that -I =15 =20,
eg., the means of estimates bI and D2 are unbiased when the MPE is
matched. Also, from equations (9) and (10) of the text, it follows that
al = LO = al and a2 = MO = a2; hence, the mean power estimates are
also unbiased. Notice that no restriction has been imposed on the observation
window, Ti, and that the MPE remains unbiased for discrete data, since the
integrals are then simply replaced by summations.

The second order derivatives of s are more easily obtained from (D-8).
Although tedious, the derivation is straightforward and, when 0j = j
yields

8110 1-2a 11 10 , 8220 :-2a r220' 8120 =-2a 1 a 2 r20' (0-22)

where

'h0 = K10 *0 (P16 Q0 Q10 - P1O Q12 - P20 PIO2 /4),

1 2r720 K2 0  0 (P26 QO Q20  P20 Q20 - P / (D-23)20 0 '20-3

0
D-4
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and

(Q Q+ 10 I 26 QO P20 Pi6 Q20 PIO '26 QIo
4120 = Q1-20 'T0 0 10 20 4 . 2 )"

When the MPE is mismatched (j pj), all the above estimates will be
biased. For a large mismatch, the mean estimates of D1 and D2 will be
given by the simultaneous solution to = 0. However; when the
mismatch is small we may use (0-20) and (0-2 1) to derive expressions for the
approximate bias errors. For this purpose we shall assume T1 - and shift
our analysis to the frequency domain. Using Parseval's theorem and (D-5),
(D-6), (11), and (13), we may express hj, cj, Pj, and Q as

i . -iwyj

h. = (df - G e , j = 1, 2
3 J 12

-i•y -i)-iw(yj - 02)

h = aI  fdf 0 € e-iW(yj -DI) + a2  jdf 602 e , (D-24)

* -iwyj
.f 6 N e , j 1 1, 2, (0-25)

Pj Jdf Oj = constant , j = 1, 2, (D-26)

and

Q = jdf 0 12 e ,w( Y 2) (0-27)

where wee-iwD 1  -iwD2

G1 2(f) = G1(f) e + G2(f) e

(0-28)

-iwD1  -i202
= a 1 01 e + a2 02 e ,

and
w = 2-f,

and where Pj, 6j; Pj, bg and n, N are Fourier transform pairs; and all
integrations, unless ot erwise indicated, are integrated from -- to +_.
Defining Ej = Oj - Oj as the spectral mismatch between the actual and
assumed normalized auto-spectral densities, we may then show that at yj =
0*J

0,

D-5
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h 10 = a1 P 10 + a 2 Q 0 + fdf j weg

h1 6 = a2 QIO - i fdf w 61 weg

h20 - al Q + a2 P20 + fdf 2 ewa weg (D-29)

h2 ' = a1 Q20 -i fdf w 2 e iwA weg

where

weg =a 1 E1 
+ a 2 E2 e- i,

and
a = D1 - D = time delay separation,

and where

Q = fdf 1 2 e - i wa  P10= jdf 0 2

I WA -2
Q10 -i df w 51 2 e - - Q 2 0  P 20  fd f  

2  (0-30)

Q120 = Jdfw2 01 62 e-iWa FIO : -2QoO = -F 20 .

Using (D-12), (D-13), and (D-29), it follows that, for small mismatch,

L0 =a + Jdf weg v 1 a I

(D-31)

M= a 2 + jdf weg v -a 2 ,

where

V I (P20  1 - QO 02 eiWA)/FO '

and (0-32)

v2= (PIo 62 e i w A  Q0 0 1 )/F 0

Substituting (D-29) and (D-31) into (D-20) and (D-21), one obtains

D-6
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11O -2a, fdf weg(iwo1 + Q10 v2 ),

(D-33)

B20  -2a2 fdf weg(iw62 e
iwA 

+ Q20 v)

Because the mismatch is assumed to be small, the second order derivatives of a
may be replaced by their matched values given in (D-22), where 'rjk in (D-23)
reduces to

2

1>0 = K10 - P10 QIo/Fo,

r220 = K20 - P20 Q2 (D-34

120 = Q120 + QO Q10 Q20 1Fo

since T,-...; and K, = fdf w2 -2 1, 2

Finally, substituting (0-22), (0-33), and (D-34) into (D-16), the mean bias
errors for a mismatched MPE are given by

b- e f weg s, b2 -aI fdf weg s2  , (D-35)

1 0 2o0

where

2A0 h r 20 - 1201

S -=2 e w  [ 1 20 (iwFo - QO Q20 ) - r220 Q1O P1 o]/Fo

(D-36)

+ 0 I 1r120 Q20 P20 - r220 (iwFo - Q 1O)]/F

- iwA
2 02 e [r1 20 QIO PIO - I110 (iwFo - QO Q20 )]/Fo

(D-37)

+ 0 l[r 1 2 0(wFo - QO QIO) - Q'0 2 0 ]/Fo

weg = aI E1 + a2 E2 e
iw a

D-7
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The variance of the estimates shall be derived under matched conaitions
and for large TI . Since the estimator is unbiased it follows from (D-15)
that

B120 120 8 B220y
0var(D1 ) var(b 1 ) 11 2 22

/'i (D-38l

('120 YI'O - 810Y 20 2
var(02) = var(b 2 ) = 81, 20 - l /

( a110 8220 '120

and from (9) and (10), that

var(a I  ( F0 ) )

(D-39)

va(2  PIo E20 -0 QOlO)
var(a2 P 1 0 C.2 Q I

where, from (D-11) and (D-25),

S 2(L I  +- M E2 ),

F * -iw~ l-iwY 2

y 2 Jdf N (L 01 e + M 62 e ) (D-40)

Differentiating the above expression and using (D-19), the derivitives of y at
Yj - Dj become

'(O -2a, Jdf N e (iwb1 + Q10 v 2 ),

(0-41)20 -2a2  I w

dfN* e (iw6 2 + Q2 0 vI )

Substituting (D-41) and (D-22) into (D-15), the bias errors are given by

D-8%
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fdf N* e-iWD1

S ax 0

(D-42)

fdf N * -iwDI
b2 : a2 

0

where Vi and Sj have been defined previously. It follows that

var() = bi,

(D-43)

f df Nf * . -i2 0l(f I + f 2 ) S( 1  1 f)

var(D1 ) = aX fdf2 N (fl) N (f 2 ) e SI(f I  (f2).

Substituting expression (3) of the text into (D-43) and integrating once, we
obtain

var(D1 ) a f Gl G22 S1 + (5 e D-44)

The variance of D2 is obtained in a similar manner from (D-42) and is

var( 2 ) = fd G 2  S2 eDj (0-45)
2) O f IG22 S 2 +  12 2

Substituting (D-25) into (0-39), one obtains

var(d I ) = (fdf N* e- -I )

/ (D-46)

var (a2 ) = (Jdf N* eiwD v2

where vi and v2 have been defined previously.

D-9
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From the above discussion, it directly follows that

var( + e v2 e v

1~ -2iwDID

It shoula be noted in the above expressions, that weg, G,2 e , Sj. and Vj

are functions of a so that all the statistics are functions of a. Indeed, a
detailed inspection of the bias and variance expressions will show that the
mean bias errors for the mismatched MPE are odd functions of A and the
variance expressions are even functions of a.

D

I
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