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IMPROVED MULTI-TARGET TIME DELAY ESTIMATION:
MATCHED FILTER APPROACH i

INTRGDUCT ION ;

The conventional approach to estimate the time delay between two sensors
is to crosscorrelate two signals and search for the peak of the resultant
crosscorrelation function [1,2]. However, in the presence of interference,
these time delay estimates are biased.

Two potential solutions exist for removing this bias: (1) an optimum
multitarget processor [3], which requires a basic reformulation of the
estimator and (2) a matched filter estimator, which provides additional
multitarget processing capability either at the full-beam or split-beam
level. This report addresses the methodology and the performance predictions
of the latter approach [4] applied at the generalized crosscorrelator (GCC)
output.

CONVENTIONAL ESTIMATOR

The GCC is shown n the left portion of figure 1. Assuming that the
input to the two channels is

x3(t) = s{t) + I(t) + ny(t),
and (1)
x2(t) = s(t+D1) + I(t+D2) + np(t),

|}

where

. ———— - - v ——

s(t) = primary target signal,

I(t) = interfering signal, j
n(t) = channel 1 input noise,

n2(t) = channel 2 input noise,

01 = desired target time delay, and l
07 = desired interfering time delay.

Assuming that the signal, interference, and noise are joint Gaussian,
zero-mean, uncorrelated processes, it is shown in appendix A that the GCC
output C(+) for large averaging time T may be represented as

2
Clt) = Ryp(4) * nl4) = 30 aj o5(4-Dy) + n(4), (2)
i=1

where Ri(+) is the noise-free crosscorrelation function between the two
channels and n(+) is the noise component whose transform has zero-mean and
covariance
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where a1 and ap are the respective target and interference power; p} and
pp are the respective normalized target and interference autocorrelation
functinns; Gj1, Gp2, and G12 are the respective auto- and cross-spectral
densities of channels 1 and 2; and &(f) is the familiar impulse function.

The conventicnal estimator simply searches for the global peak of C(4).
Denoting %y and +; as those values of * wnere C(*) and Rp(*) peak,
respective?y
given by

a

» it 1s shown in appendix B that the mean and variance of %, is

>

o~ %o

o 2wt
2 2 1eWh,
’ [_f’” W (GnGzz -Gpe )

Var(;o) = T— ’ (a)

o 2 iw+o 2
L:iww Glze

where *, is the solution to

. o i24 W
;—n[fwwGlze °=0, {5)
and
w = 2nf,
Gy 1(F) = Gl(f) * 6y(F) + 6, , (f),
11
Baa(f) = G1() * 6p(F) 6, (F),
and
-iZﬂfDl -iZﬂfDZ
Glz(f) = Gl(f) e + Gz(f) e ,
where
G1 = auto-spectral density of the primary target,
G> = auto-spectral density of the interference,

Gnlnl auto-spectral) density of the channel 1 input noise, and
Gn2n2 = auto-spectral density of the channel 2 input noise.

When interference is absent (G2 = 0), the estimator is unbiased, eg.,
"0 a*o = Dl and

e, e

- —— —
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T2 2
fd“ W (61,65, - 6)

2n -
. =T T re ?
Isingle target [[ W Gl]

var(ﬁl) (6)

This represents the Cramer Rao lower bound for estimating the time delay of a
single target in uncorrelated noise and will be used later for normalization
purposes.

Figure 2 illustrates the typical bias characteristics of the conventional
estimator in the presence of interference. The bias error, *,Bw, is
expressed as a tunction of the reciprocal signal bandwidth, Bw, and is a
function of the time-delay separation, (Dj-D2)Bw, between the two
interfering targets fcr the case of flat spectra having unequal bandwidths.
Notice the large bias error when the sepa-ation is small. Conventional bias
reduction schemes tend to suppress the effects of the interfering source by
beam shading. We, on the other hand, treat the time-delay estimator in the
presence of interference as a two-parameter estimation problem and estimate
rather than suppress the interference.

MATCHED PARAMETER ESTIMATOR

A technique for removing the bias error is to match the assumed
noise-free GCC output, R12(t), to the received noisy GCC output, C(*), under
a least-mean-square (LMS% error criterion. Accordingly, we wish to minimize
the cost function

T2 , 2
J(Al, Az: .yla .YZ) = f at ZAJ Bj(*‘.yj) = C(*) ’ (7)

-T1/2 j=1

where T; is the selected observation window and 5i, j = 1, 2 are our

assumed normalized autocorrelation functions of tﬂe interfering sources. The
matched parameter estimator (MPE) is considered to be matched when 6]
and mismatched when 5; # pj» 3 =1, 2. The values of Aj, yj, j = 1,2
at the minimum value of J represent our LMS estimates o% aj, Dj, j =1, 2,
respectively.

=QJ'

Because A} and A2 may be determined explicitly, the apparent
four-dimensional minimization problem suggested above may be reduced to a
two-dimensional maximization scheme. It is shown in appendix C that J is
minimized by maximizing

2(y12¥p) = (PHS + PHE - 2QH,H,) [F, (8)

and that the estimates of aj and ap are given by

d) = (P, H| - QHy)/F , (9)

Y5 =9
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and .
3, = (P Hy - QHj)/F s (10)
Yi =Y
where
"2
Q=f d+ 51(1 —yl) 52(*-)/2): (11)
T2
T2
Hj =I d+ DJ(*-yj) Cl+), j =1, 2, (12)
T2
T1/2
2 .
PJ =j d+ DJ- (*‘.YJ) 9J‘1v 2’ (13)
Ti/2
and
F=P1P2—02. (14)

Data are usually received at only discrete values of + rather than continuous
values. This modification is easily incorporated in the above expressions by
replacing the integral over + in (7), and (11) through (13) by a summation
over the discrete values of *.

Expressions (8) through (14) represent the working equations of the MPE
processor. The implicit solution of (8) for the estimates of D} and D7
requires a two-dimensional peak-searching algorithm which may be facilitated
by precomputing and storing the functions Pj, Py, and Q. Futhermore, the
process of locating the globa) peak of z may be accomplished in either a
tracking or acquisition mode. Without apriori knowledge about Di and Do,
one needs to search the entire (y1, y2) space (acquisition mode).

However, as a history of D] and Dy is established, the search region may

be reduced and (8) may be solved in a tracking mode. Once the global peak has
been found, expressions (9) and (10) yield estimates of the primary and
interfering target powers, respectively. Finally, the residual

Jmin = Jlay, ap, 01, Dp) can serve as a goodness-of-fit indicator.

In particular, when the estimator is unbiased, the mean value of dmin is
simply the total noise power in the observation window, i.e.,

T2

——

= d+ nz{f) . (15)

Jmin

T2
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PERFORMANCE PREDICT ION

It is shown in appendix D that the MPE estimates of Dy, D2, a1, and
a7 are unbiased provided the GCC averaging time T is large and the MPE is
matched, eg., o; = 0j- This statement applies regaraless of whether the
data are discre%e or continuous and without restriction on the observation
window Tl-

When the estimator is mismatched (Sj # 0j), _the above estimates will
be biased. When the mismatch is small and whén T} >, it is shown (appendix
D) that the mean bias errors of D} and D2 are given approximately by

1 0= L
(16)
— 1
— . - df Weg S
DZ(A) = DZ - D2 = azxo ,’: 2
wnhere
T _iwa .
Sy = 8 €™ [Ti0(iWFg - Gy Q) - Tpgp Oy °10] Fo
* 91[T120 %20 P20 - To20! W - G 010)] For
(17)
S, = 6, e " T 0 0y Pig - Ty pglinFy - Qg Qug) | /F
2= % 120 %10 P10 - Tr10tiwFg - Qo Q0| /Fp
* 81 [ThaglivFg - 9 Qyg) - Tygq Qpg on]/Fo
Weq = 3 E1 + a, E2 e'iWA, (18)

2
0= T10 D20 - B0 o

2

Do =K ~ Py Qg g >

L. =K. -P. QL
220 = K20 = P20 Qo Fg >
520 = Q20 * Qo Qo p/Fp -

g s ST
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T2 32 _
Kj0=f-£fw ¢ Li=12
2
Fo=P1o P20~ Q>
Y
"10=]_,§jf o -
(19)
Y
Pog =Lydf 05
P -iwa
Qo =f df by 6, e,
- - —iwa
O = ".[mdf Wwopbye ==y
q -]wdf w26 ; e—\'wA
120 ~ ) 172 i
W= 2nf s
and where £j, oj and BJ, oi are Fourier transform pairs;
EJ =85 -85, =1, 21s %he spectral mismatch between the interfering
targets; and a = D; - Dy is the time delay separation between the two
targets.
It is instructive to find an upper bound on the bias error (16). Using

(17) and (18), one may show in a straightforward manner that
Jﬁ;f ‘S {2 =T, A and.[mdf (S ‘2 = I A Then applying the Schwartz
. 1Pl T 220 fo MO T IR2[ 7 thi0 Yo ying

inequality to (16) and using the above result, one obtains

2
-
e+ (2)¢
1 O 2 ’
- Z
Iy ® a
110 1
daf {({—JE, +E .
XO I_m b<32> 1 2}

The variances of the estimates are derived
condition that the MPE is matched and that Tj

r oo
< _gZ_OI df
- XO "

s

2

5

in appendix D) under the
The results are

@ o

- TR e~ cmmy—
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r 2]
w -iwD
- 1 2 * T Q
var (D) = “?"?‘".[ daf {61y 622[51! * (612 5 e ] (21) |
. vl
R 1 ) r ?2 . ( * -lwol)
var (02) —-;7-7—1.]; df Gll GZZ)SZ GIZ 52 e J, (22) [
20 * n
. 7]
T 2 ( * “Wol)
var (i;) = T.[mdf 61, Gyp \vl» + 6, vy e b (23)
and
. 7]
. l o |2 . ( * —1W01)
var (ay) = T.[ df 1617 6y lvzl Glp vy ® i (24)
where
vy = (Pyg By - Qg 82 €™ )/Fg
(25)
p iwa )
vz = (Prg 8 €7 - Qo 61)/Fg l
G =Gy + G, + G ,
11 =% % 6" Ban !
G,,=0G, +G, * G ,
22 1 2 n,ny '
and }
x  why —iwa
G12 =e (Gl + G2 e )
A worst case condition occurs when Dj = Dp (4 = 0) for which only the ‘

spectral characteristics can be used to distinguish between the two interfering
targets. Generally this results in the largest variance in the estimates.
Under this condition, Qg = Q0 = 0, S1 and S2 are purely imaginary and

vi and vy are real. Expressions (21) through (24) reduce to

: L (Tye 2 (3 - 2 S
var (Dl) = a2 Az Tj:mdf w (¢2 rlzo - 61 220) G__ . (26) '

a0 170 }

(0,)] = —tb f”dfwz(ar ~¢, 0. 126 (27) l

vartely = T T4, 17120 ~ %2 "1107 °- i

a0 270
7
]
4,W“""‘""" T - - ”__“’— __ oo ‘t
o—
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Ao 1 * - YA . t
var (d))] -T—FE‘[pdf (Pog 6, - Qg 8,)° 6, (28)
' 0
a=0
and .
var (a,) 1 f df (P, 6., - Q. ¢ }2 G (29
2’ T F? - 10 V¢ 0"l +
4=0 0
where
G = (G, + G, (6 + 6 )+ G G .
- 1 ¢ nm non, nymy n2n2
and
G - 2
+ ° ‘(Gl * GZ) * G-

If in addition to 4=0 the interfering spectra are identical (¢] = ¢;):
then Fy and 1 approach zero and the variances (26) through {29) approach
infinity. This 1s simply an indication that the MPE 15 unable to distinguish
between the two interfering targets under this condition.

RESULTS/DISCUSSION

A convenient figure-of-merit for comparing the performance of the ‘
conventional ang matched estimators is the normalized degradation ratioc {NDR), i
which is defined as the total rms error in the presence of interference
dividea by the root-mean-square (rms) error of the conventional estimator in
the absence of interference. The latter normalizing term is simply the square '
root of expression (6). Note that NDR > 1 and that large values suggest that
the accuracy of the primary target time-delay estimates is seriously degraded !
1n the presence of an interfering target.

Comparisons of the NDR for conventional and matched estimators as well as
the corresponding simulation results are shown in figures 3 through 6 for the
case of flat spectra and various noise powers. In each case the MPE is assumed
to be matched and the signal and noise bands extend from O to B (Hz/sec) while

the interference occupies the full band - wres 3 and 4) and the upper half
band (figures 5 and 6). Additionally, ‘gnal-to-interference ratio (SIR)
is 1 dB in all cases. In these figure: id curves represent predicted
resuits for the MPE as obtained from (2. , while the triangles represent
corresponding simulation results. Simi he dashed curves represent

predicted results for the conventional ¢ ' .na.or as obtained from (4), (5),

and (6) while the circles represent simui.:ion results. As in figure 2, the

time-delay separation is expressed in terms of the reciprocal primary signal

bandwidth; eg. we plot NOR as a function of (D} - Dp)B. Note the

excellent agreement between the predicted and simulated results. 4

When the spectra are identical (figures 3 and 4), the standard deviation
of the MPE estimates approaches infinity at zero separation because the target
and interference are indistinguishable under this condition. As the
separation increases, the matched NDR decays rapidly to a fraction of the

8

\ , ’ e ————————tted—— ' - '
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conventional NOR. Note the separation regions where the conventional NDR is
smaller than the matched NOR. This is a familiar characteristic that often
occurs when comparing biased (conventional) with unbiased (MPE) estimators.
At a low signal-to-noise ratio (SNR} the performance improvement is not as
dramatic because the random error is much larger than the bias error and
swamps its effect (figure 4).

Figures 5 and 6 show an even greater performance improvement because the
matched estimator is able to resolve the target and interference at small
separations when their spectra are unequal. As before, the improvement
degrades at low SNR.

A1l of the performance improvements in figures 3 through 6 are due to the
fact that the MPE estimator is unbiased. This situation occurs only when the
assumed interfering spectra are equal to the actual interfering spectra. The
sensitivity of the MPE bias error due to a spectral mismatch is illustrated in
figure 7 for the case where the primary target spectrum is known {0-B), where
the actual interfering target spectrum (42) extends from B/2 to B Hz/sec,
and the assumed interfering target spectrum (@) has the same bandwidth but
a #13 1/3” center frequency mismatch. This figure may be directly compared to
figure 2, which shows the bias error of the conventional estimator for the
same spectra and SIR.

Examination of figure 7 reveals that the bias error can be quite large,
but is smaller when the center frequency of é, is up-shifted rather than
gown-shifted. Comparison of figures 2 and 7 shows that the MPE peak bias
errors are 2 to 3 times smaller than those of the conventional estimator and
that they occur at a smaller time-delay separation. These, as well as other
unpublished results, tend to suggest that peak MPE bias errors are usually
less than conventional bias errors (even for complete spectral mismatch) and
that the smallest peak bias errors are obtained when the higher spectral
frequency components are well matched.

CONCLUSION

The MPE technique yields unbiased time-delay estimates in the presence of
interference provided the functional form of the interfering spectra are
known. In comparison to conventional estimators, rms errors can be reduced
several orders of magnitude particularly at high SNR and INR. When the
assumed interfering spectra are unequal to the true interfering spectra, the
MPE estimates are also biased.

In practice, apriori information about the primary target spectrum must
be known for both conventional and MPE estimators. Thus, the decision to use
the MPE rests on what apriori or measured information exists about the
secondary interfering target spectrum. Simulation results tend to suggest
that peak MPE bias errors are usually less than corresponding conventional
bias errors particularly when the higher spectral frequency components are
well matched.

Y
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Figure 1. Conventional and Matched Time-Delay Estimators
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APPENDIX A
REPRESENTATION OF THE GENERALIZED CROSSCORRELATOR (GCC) QUTPUT

Referring to the GCC illustrated in figure 1 and the channel inputs (1)
described in the text, the GCC output V(+) is

T2 «
1
V(+) = T dt xl(t) x2(t—r) =-%- ﬁl(%) Xl(t) xz(t—¢) dt, (A-1)
-T/2 -
. 1t <T/2
where II(T) =
0 otherwise
Its mean value is
o -4 d:n(i) TTETROTESTT = Ry, (1) (A-2)
=T T/ %1 2 S FAREE

-0

where Ryp( %) is the crosscorrelation function between the two channels.

The covariance of v{+) is defined as

Cov(‘l, '2) B v(flj v(+2) - v(rl) .V 25. (A=3)

Substituting (A-1) and (A-2) into (A-3) and using the familiar chain rule for
joint Gaussian rv's, one obtains

L e o o) (@

Cov(*,, *

-0

*R(t -t ’2) Rl?(f1 tty - tl)], {A-4)

12!

the respective auto and crosscorrelation functions of the two channels, i.e.,

=1 11
2
Rzz(f) = xzfti let-‘i = }E aJ 7)(-) + R"Z"Z(')’ (A-5)
j=1
A-]

i
i
|

\—-

oS TN SR
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and

2
Y) = X7(t) x,(t=1) = cpi{t - D)
Ry (1) = x (8] %, (t=1 ji 3 oJ( DJ),
J=1

where
aj OJ( ) = Rj(+) = autocorrelation function of the ith target (3 =1, 2),
aj ="Rj(0) = power of the jth target (j = 1, 2), and
»jlt) = normalized autocorrelation function of the jth target (j = 1, 2).

Letting v = t] - t2 in the integration over ti and noting that

0

u * t2 t2 u
~/-dtz H\—~—=] 1l{+5) = T a(3), (A-6)

-7 i <7

where A(%) = , (A-4) becomes
0 otherwise

e

%r jdu ‘(‘lrj') [Rll(u) R22(U + *2 - k1) + RlZ(U + ‘2) Rlz(A] - u)];
) o (A-7)

COV(fl’ Ad)

and if T >> 1<) + {*2], then

Cov( 1’ 2) =T “Iau [Rll(u) R22(.l - t2 u) + RlZ(U) R12( 1t t2 u)l. (A-8)
Now we wish to represent the random GCC output v{*) with C(* CZ ) +

In order that these two be equivalent, it follows that C(+) = , n(*) =

and n{* l) nt* 2) = Cov (¢t 1 *2).

Finally, letting N(f), n(t); G11(f), R11(*); Gg2(f), R22(*);
Giaif), R12( )5 Gl(f), Ri(+); Ga(f), R2(+ )5 Gnyny(f)s Rypngt)s
and Gn2 2( ) Rn n be Fourier transform pa1rs, it fo%lows that
N(f) = O and the cavar1ance

b —12n(f1 "1 + f2 ¢2)
Nifli Nifzi = .IZfl dez e n(»1 n{+,). (A-9)

Substituting (A-8) into (A-9) and performing the indicated integrations, it
follows that

NTFLTNTE,T = 4 (6, (F1) 6,,(F1) 6(F, * £,) + G5(F)) s(F, - £])], (A-10)

A-2
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where G11, Gzp, 612 are the respective auto- and cross-spectral

densities of the two channels and

Glz(f) = Gl(f)
B f
§(f) =
0

jﬂj‘w AL R TIRAIIs ¥ w o ml

s(f) is the familiar impulse function, i.e.,

" Glf) * Gy (F)

+ G, (f) *+ G (f) , (A-11)
2 n2n2
-ianD1 -ianDZ
e + Gz(f) e ’
= 0, (unit strength)
otherwise
A-3/A

Reverse Blank
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APPENDIX B

CONVENT IONAL ESTIMATOR STATISTICS

The conventional ti: > delay estimator locates the global peak of

CC*) = Ryp(+) + n(4) or the zero crossing of its derivative. Denoting *q
as the location of the giobal peak of Ryp(*) and expanding C'(*) about ‘o
by means of a Taylor series expansion, one obtains

(1) = C(4g) + (+ = 1) C"(1) * ..., (B-1)

where the primes denote differentiations with respect to +.

Now the estimator finds the value of * for which C'(*) = 0. Denoting
this value as our estimate *,, we obtain from (B-1)

C'(fo) C'(fo)

> (B‘Z)

where the latter approximation is valid for high signal-to-noise ratio.

Expressing Ryp and n in terms of their respective Fourier transforms G
and N, we obtain {with w = 2xf)

-2}

iw&o
C'(fo) = n'(fo) = Jdf (iw) N e . (B-3)
and o
© 2 iw&o
C"(¢O$ = R“(fo) = —-/;f W G12 e s (B-4)

since R'(t5) = 0 (by definition) and N = 0. It follows that the mean of the
estimate o = t5 where t45 is the solution to

@

1W¢‘o
R'(+5) =1 ./zf w6, e = 0. (8-5)

Using (B-2) and (B-3), the variance of ;o is given by

var(ig) = [C'(+,)1° [ 12, (8-6)
where
m[ﬁ: ity w0 ey (8-7)
0 - 1 77271 72 1 2
B-1

- -k m———

~y— PUPS—— g
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Substituting expression (3] of the text 1nto (B-7:

andg performing ‘he
integration with respect to fy yrelds

11 7z2

- 1 [, 2 2 1w
e 1¢ = r - ¢ 3 ‘R_RA"
LC\O)J =T af w¢ 1G,, G 6129 ) (B-8!

Finally, substituting (B-8) and (B-4) into (B-6) and changing the integration
variable to w ylelds expression (4) shown 1n the text.

“—— e oAa——— s | - ani——

—

B-2
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APPENDIX C
MINIMIZATION OF THE MATCHED PARAMETER ESTIMATOR (MPE) COST FUNCTION

We wish to minimize the cost function

12
J(Al’ Az, Yi» .Y2) = d* [Al 51(* - .Yl) + A2 52(* - .Y2) - C(+)]

112

2 (c-1)

by first minimizing J with respect to A} and Ay for the purpose of
deriving explicit expressions for A} and A2. Expanding the right side of
(C-1), one obtains

2 2
J=JO-2A1H1-2A2H2+A1P1+2A1A20+A2P2, (C-2)
where
112
3 - dr C%(+) = constant, (C-3)
T2
"2
. L) = + ot ~ vy, t i = —
HJ(yJ) d oJ( yJ) Y ,i=1,2, (C-4)
“T1/2
T2
.2 .
(y,) = + 5.5 -y, ,i=1,2, -
PJ(yJ) d oJ( yJ) j=1,2 (C-5)
12
and
12
Q(‘yl’ ‘y2) = f d+ 51(* - .Yl) 62(* - .Yz)- (C-6)
T2

Now differentiating J with respect to A, one sees that aJ/sA] = O when
A1 satisfies

Hy - A0
A = —p—— . (C-7)

TR . e+ —

e
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Substituting (C-7) into (C-2) and collecting terms yields

. a2 2 2
3= 3y * [A5(P] Py = Q) = 2A,(H, Py - HQ) - HID/P,. (C-8)

Next, differentiating J with respect to A2, one obtains 3J/3A2 = 0 when
Ry satisfies

Hp Py - HQ
A2 = . (C-9)
PP, -Q
1°2
Substituting (C-9) into (C-8) and collecting terms results in
d =5 - 2lyps ¥p)s (C-10)
where
, [op e -wf
Z{¥1s ¥o) = 5~ +H (C-11)
S TR
2 2
P, HS + P, HS - 2Q H, H
- 1 2 2 12 172 (C-12)
(Pl P2 -Q)

Since Q2 < Py Pp, it follows that Z > 0; and since Jg > 0, we deduce

that J is a minimum when Z is a maximum. Hence, the apparent four-dimensional
minimization of J(A1, A2, yl. y2) can be achieved by maximizing the
two-dimensional function, z(yi, y2); and A2, A] can be obtained

explicitly from (C-9) and (C-7), respectively.

The function Z has an interesting geometrical interpretation. Dividing
both the numerator and denominator of (C-12) by Py P2 yields

Z = ("§ + “g - 2n1 n, €OS e)/sin2 o, (C-13)

where

and

c-2
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In this expression, n? = Hf/P1 is the term that should be maximized if the ref-

erence model assumed only the presence of the primary target. This is evident ,
from (C-8) when A2 = 0. Similarly, "S should be maximized if one assumes !

only the presence of the interfering source. Considering the triangle formed i
by the intersection of n] and n2 with acute angle e; note that, from

(C—13),\ﬁ?sin @ is_the length of the third side. [t follows from plane

trigonometry that\f;—is the diameter of the circie that circumscribes this

triangle. Hence, z is directly proportional to the area of the circumscribed
circle.

’
e

Cc-3/C-4
Reverse Blank
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APPENDIX D

STATISTICS OF THE MATCHED PARAMETER ESTIMATOR (MPE) ESTIMATES

. In this appendix, we derive the statistics of the MPE estimates D,

Dy, a1, and ap. In particular, it is demonstrated that, without any
restriction on the observation window T], the mean estimates are unbiased
provided the MPE is matched, eg., 9j = 8j. Expressions for the

approximate bias errors of D] and D2 are”then obtained for large T] when

the MPE is slightly mismatched. Finally, expressions for the variance of the
estimates are derived for both large T} and matched conditions.

The bias error associated with estimating the coordinates of the global
peak of z(y], y?) may be obtained by expanding the partial derivatives of
z about the point (D, Dp) via a two-dimensional Taylor series. Using the
Tast subscript O to denote that the expression be evaluated at (01, D7)
one obtains

21 {ys ¥p) = 299 * {yy = Dp) 2199 * (¥ = D) 235 (D-1)
and
o0y ¥p) = 250 * (yy - Dp) 250 * (¥, = Dy) 250, (D-2)
where
zj = azlayj y Ji=1, 2,
and

2
3 2 .
ij = /YJ 3yk s Jok=1,2

Now the search algorithm finds those values of y; and yo for which the
above derivations are zero. Oenoting these values as our estimates of 0;

and Dy, respectively, and solving for the resultant bias error, we obtain
by

D; - Dy (D-3)

2
(2120 220 = 2220 2107 /(2110 Z220 = 2120)°
and

A~

D, - D

]

(0-4)

[

2
by = 0y - Dy = (2159 219 = 2719 220/ (2110 2220 = Z120) -

At this point, let us separate the deterministic and random parts of Hj
and z by defining

T2
hylys) = f gt o5t - y5) Rpp(4), (0-5)

N2
and
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BYE
ej(yj) = .lf dt 5j(f - yj) n(+) ,
“T1/2
such that Hj - for j = 2. Substituting these expressions
into equat10n (8’ %he text, we obtain

2(y1s ¥p) = 8(y1s ¥o) * (¥, ¥p)y

where
B= (P  hS+ P, nS-2Qh h)SF
. 12 21 172
2 2 2 2
= hlL ¥ hZM = (FM~ + hl)/Pl = (FL® + h2)/P2,
= 2le; * Me,) + (€29, + 2. - 2Q ) IF
Y= 1 €2 €12 " f2 "1 €] €2
= 2(Le; + Me,)  for large T,
L()'l, ,YZ) = (PZ hl - th)/F = (hl - QM)/Pla
M(yll yz) = (pl h2 - th)/F = (h2 - QL)/PZs
and

Flys ¥p) = Py P, = @

(0-6)

(D-7)

(D-8)

(D-9)

{D-10)

{D-11)

(D-12)

(D-13)

(0-14)

and where the approximation leading from (D-10) to (D-11) is valid if the GCC
averaging time, T, is large. Note that hj and 8 are the deterministic parts

of Hj and z, respectively; and that y - 0 since ¢j = 0.

Now, if both signal-to-noise ratio (SNR) and interference-to-noise ratio

(INR) are large, we may replace Zjx in (D-3) and (0-4) by Bjks J» k
Substituting Zj =8j * vj» J =1, 2, the bias errors reduce to

2
by = [Byo0(Bop * vpp) = B2p0 (B1g * v10)1/(By10 Bop0 ~ B120)

2
b2 = [8120(B10 * 10} ~ P110 (Bzp * v20)1/{B11g €520 - 810

1, 2.

{D-15)

——capcnra o
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where
sj = as/ayj,
Yj = aYlayJ’ )
and |
- a2 : -
ejk =3 a/ayj 3y, » Js k= 1, 2.
Finally, since ¥ = 0, the mean values of these bias errors are
by = (8 Bon - B Bin) /(B 8 - B 2)
1 = ‘Pl20 F20 220 10 110 220 1207’
and (D-16)
—_— 2
b, = (8150 810 = B110 B207/ (8110 B220 ~ P20

We must now determine the various derivations of 8{y], yp) evaluated
at y; = D] and yp = Dp. In order to simplify the notation, we shall
use the prime ('% to denote differentiation when the expression is a function
of only a single variable such as pj, hj, and ¢j, and shall continue the
subscript notation to denote differentiation whén the expression is a function
of both y1 and yp, such as z, 8, v» Q, L, M, and F. ’

Using (2), (11), (13), (14), and (D-5) we may show that when pj = 5
(matched MPE),

———ap

th = 4 P10 *a, Q0 h20 = Q0 + a, on
"o = 21 P1o/2* 22 Qo hao = 21 Q20 * 32 P2p/? |
t
hig = 21(P1p/2 - Kqg) * 3, Qg hag = 21 Qozo * 22(P2p/2 = Kao) § (D-17) ‘
F1o0 = P10 P20 - 2 9 Qo Fap = P10 P20 - 2 Q Qg
Frig = Pt Por = 2 Qn Qr1n - 2042 Foon = Pro Pt = 200 Q,,0 = 20,2
110 = P16 P20 o Q110 - 200 220 = P10 P2 o %20 = %0
! | . - - t
Fl20 = P10 P20 = 2 Qz0 ~ 290 Q0 Y {
where ) )
'
T2 , ‘
Kj = dt [0:}(‘r - yi)] » =1, 2, (0—18)

-T2
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and a; ana ap are the signal powers of the primary and interfering
targets, respectively.

Using (D-12), (D-13), and (D-17), it may be shown that for the matched MPE

Lo = 91 My = 2,
Flo 3
Yo = E, 10 = 7, (% P1g - Do P10 (D-19)
a -a, F
9 . "3 Fa
Ly = 'ZFE(QO Poo = 2050 Pyq! o m

Now the first order derivatives of 8 may be obtained from (D-9) and are
given by

By = L(2F, + LF})/P,, 1
(D-20)
By = L(2n] - 2q,M - LP:),
)
8y = M(ZFM2 + MFZ)/PI’
(D-21)
B, = M(Zhé - 202L - MPé)

Substituting (D-19) into the above expressions at y; = D1, yp = Dg, we
obtain that 819 = 820 = 0. It follows from (D-16) that éi

eg., the means of estimates D} and Dy are unbiased when the MPE 1s

matched. Also, from equations (9) and (10) of the text, it follows that

a] = Lo = a1 and a2 = Mg = a2; hence, the mean power estimates are

also unbiased. Notice that no restriction has been imposed on the observation

window, T], and that the MPE remains unbiased for discrete data, since the
integrals are then simply replaced by summations.

The second order derivatives of g are more easily obtained from (D-8).
Although tedious, the derivation is straightforward and, when Pj = B3>
yields

2
2

2
8110 = 723 MN1o»  B220 = “29; Gpor  PB1p0 = 2% 2 oo (D-22)

where

1 ' 2 ,2
Tiio = %10 " 75 (P16 % Q0 = Pio Qo - Pao Prg /%)

1, 2 2
Bao = %20 * 7, (P2 % Q20 = P20 Q20 - P10 P2g /%)
D-4

A m—tam—
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and
Pt Pt Qn P Pt Qon Pin Pt Q
] 10720 % P20 P10 %0 P10 P20 Q10
Lo =gt 5 (Qg Qg Qo * ) - 3 - = ). ;

When the MPE is mismatched (oj # 0j), all the above estimates will be
biased. For a large mismatch, the mean estimates of D; and Dy will be i
given by the simultaneous solution to 8] = g2 = 0. However; when the
mismatch is small we may use (D0-20) and (D-Z%) to derive expressions for the
approximate bias errors. For this purpose we shall assume T} += and shift
our analysis to the frequency domain, Using Parseval's theorem and (D-5),
(D~6), (11), and (13), we may express hj, ej» Pj, and Q as

- x —iWYy.
- J D
h = ‘[df 6,6, ¢ ,i=1,2
~iw(y, ~ D;) ~iw(y, - D,)
_ y J 1 p J 2 _
hj =9 jhf b o e + a, jbf b 0, € . (D-24)
. * -iwy.
J -
. = f . N ' = 'Y Py D—ds
eJ ja 03 e J 1, 2 ( ) !
- ‘
Pj = jbf oj = constant , J=1, 2, {D-26) ‘
and :
L =—iwlyy - ys) ‘
Q- for b b, e 12 (0=27) ’
where '
—ile —iwD2 }
Glz(f) = Gl(f) e + Gz(f) e
(D~28) ‘
~iwD -i2D
1 2
= al bl e + a2 02 e s
and
w = 2af,
and where Sj, 61; oi, Hi and n, N are Fourier transform pairs; and all ’ f
integrations, unlesS otherwise indicated, are integrated from - to +e, !
Defining Ej = ¢j - #; as the spectral mismatch between the actuai and .
assumed normalized auto-spectral densities, we may then show that at ¥j = ,
0; ‘
‘]’

D-5 ] !
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h10 = 3 PlO ta, QO + th 01 weg
hg = ay Qg - jhf w B, weg

5 iwa
h20 = QO *a, on * -[df 9, e weg

hog = a7 Qpg -1 jhf Wb, ™8 weq ,

-iwa
E. e

B v b ,

z
1]
Ya]
"

4
and
A= D1 - 02 = time delay separation,

and where
~ - —iwA =2
Q - jbf b, 8, e Plo = j&f 6
. ~ -iwa ~Z
Qp = -1 JAf woyp,e = -0y Py = ,fdf 6,

2 5 -iwa
Q00 = ,[df” by 0, € Fio

20y Q30 = -F20-

Using (D-12), (D-13), and (D-29), it follows that, for small mismatch,

LO = + Jﬁf weg v, =

!
[+%)

1

MO =3, + jhf weg v, = a, s
where

v = (Pyg by = Qg by ™) /F g,
and

vy = (Prg 85 €™ - Qg 04)/Fg -

Substituting (D-29) and (D-31) into (D-20) and (D-21), one obtains

D-6

—_—

(0-29)

(D-30)

{D~31)

(D-32)

e o e ——————_— o
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-2a1 jdf weg(lwb1 + 010 vz),

810
(D-33)

i

820 -262 jdf Weg(iW62 e“WA + QZO Vl) .

Because the mismatch is assumed to be small, the second order derivatives of 8
may be replaced by their matched values given in (D-22), where T}k in (D-23)
reduces to

K

2
Oo = X0 = Pro Qo’For

2 .
Boo = %0 = Pao Qo/fo (D-34)
H20 = Q20 * Q Q9 U/Fp »
j 30 = 2 ~2 1 =
since T1 ; and KJ = .[df W ﬁj ,Jd=1, 2.

Finally, substituting (D-22), (D-33), and (D-34) into (D-16), the mean bias
errors for a mismatched MPE are given by

— 1 ‘f - 1
by = df weg s N b, = df weg s, , (D-35)
1 alxo 1 2 LY .f 2
' where
ra= ID L - LG 2
0 110 7220 120°
; iwa .
Sy =8y e [IyppliwFy ~ Qg Qpg) - oo Qyg Prglify

(D-36)
* 810055 Qo Pog = Tpp Wy - Qg Qi) J/Fys

_ 2 iwb .
S, =8, €7 (I Qg Pio - TaolivFg - Gy Q) J/Fg
e » (0-37)
' * 01 T iwFg - Qg Q1) - Tgg Qo0 P2ol/Fg >

4

D-7
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The variance of the
and for large T1. Since

that

var(ﬁl) = var(bl) =

var(DZ) = var(bz) =

estimates shall be derived under matched conditions
the estimator is unbiased it follows from (D-15)

\

B120 Y20 ~ %220 Y10

2

110 8220 ~ %120

Z

7
8120 Y10 ~ 8110 Y20

2

B110 8220 ~ B120

and from (9) and (10}, that

var(al) =

var(éz)

P20 €10 = Qo €20

Z

U

where, from (D-11) and {D-¢5),

-
it

<
]

2(L31 + Mez),

\

S

(D-38)

(D-39)

(D-40)

Differentiating the above expression and using (D-19), the derivitives of vy at
¥j = Dj become

Y10

Y20

Substituting (D-41; and (D-22) into (D-15), the bias errors are given by

N-8

o e ot L W

—2a1 jﬁf N* e

2 *
- 32 jﬁf N e

~iwD

~iwD

(1Wb1 * Q10 Vz)s

(iwby * Qo vy) -

{0-41)
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« WDy
]ﬂf N e S1
by = , ,
1 a2 /
) {D-42)
!
% -ile i
]hf N e S2
b = N Y
2 3% |
where V; and Sj have been defined previously. It follows that
Y
var(Dl) = bl’
(D-43)
R 1 - —12n01(f1 + f2)
var(Dl) == dfl df2 N (fl) N (fZ) e Sl(fl) Sl(f2)'

Substituting expression (3) of the text into (D-43) and integrating once, we
obtain

WD 2
N p— otlor, 6., 152 [ s o (D-44)
vartyl = =77 11 22{1} 12 °1 ¢ -
a; r. T
170 L
The variance of 02 is obtained in a similar manner from (D-42) and is
- -
: 2
. 1 . 2, * —1wD1
var(D,) = 77 £16); 65, 152] G, S, e (D-45)
20
! ]
Substituting (D-25) into (D-39), one obtains
A x —1wD, 2
var(al) = jaf N e vi |
(D-40)
. * -—ile 2
var(az) = ]af N e vy s
where v] and v2 have been defined previously.
D-9

< -z
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var(al)

var(éz)

are functions of & so that all the statistics are functions of a.

-1
3

1
3

Ja
Jos

G

t

|
11 %22 |1

12
i

+

12
G1p Gp Vol ¥

G

]

* -ile
12 €

« —1wD
12 ©

1

1

V2

From the above discussion, it directly follows that

2

=

*

It shoula be noted in the above expressions, that weg, 612 e

(D-47)

—‘IWD
» S~, a“d V-
J J

Indeed, a

detailed inspection of the bias and variance expressions will show that the
mean bias errors for the mismatched MPE are odd functions of & and the
variance expressions are even functions of a.
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