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ABSTRACT 

In tills work, we analyze the effects of hardware faults on the per- 

formance of computer-implemented signal detectors, as measured by the 

probability of detection and the probability of false alarm.  We derive 

performance bounds for three implementations: (i) no redundancy, (ii) 

error masking through strict redundancy, and (iii) error detection and 

masking through strict redundancy. 
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I. INTRODUCTION 

Given a data sample of fixed size, a non-sequential detector gen- 

erates a decision variable d^.  If d, = 1, we decide that the signal is 

present, and if d^ = 0 we decide that the signal is absent.  Let S be 

the event that the signal is present and let S'' be the event that the 

signal is absent.  The performance of the detector is generally measured 

by the probability of detection P  and the probability of false alarm 

PD* = P(d,=l|S) 

^FA* =P(d,=lls'). 

Existing treatments (see, for example, [1]) of such detection prob- 

lems implicitly assume that the detector is implemented on hardware that 

is never faulty.  In reality, the computational hardware used to compute 

the the decision variable is liable to failures.  It is therefore rea- 

sonable to analyze the effect of possible hardware failures on the 

detector performance criteria and to ascertain if the possibility of 

failures can or cannot be neglected. 

II. HARDWARE FAULT EFFECTS 

Suppose that the detector is implemented on a computing device 

which calculates a decision variable d .  The performance measures for 
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the implemented detector are 

Pjj = P(d^=l|S) 

Pp^= P(d^=l|S^). 

One would like the implemented detector to have the same performance as 

the theoretical detector.  This will obviously be the case if one 

assumes that the computed decision variable d  is always equal to the 

theoretical decision variable d^.  All existing treatments of the signal 

detection problem tacitly make this assumption.  We will now determine 

the maximum performance degradation that can occur when such an assump- 

tion is not made.  Instead, we shall assume that the presence of the 

signal and the value of the theoretical decision variable d^^ are each 

independent of the correctness of the computations.  Precisely, we shall 

assume the following: 

Hypothesis 1: The events S and (d^=l) are each independent of the event 

(d^=d,). 

We can now establish the following theorem.  All proofs appear in 

the appendix. 

Theorem 1:   If Hypothesis 1 is satisfied, then 
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Now if the computing device is non-faulty, the computed decision 

variable will equal the theoretical decision variable.  Therefore, if q 

is the probability that the computing device is non-faulty, then 

P(d^=d^) 2 q 

and the following corollary is immediately obtained. 

Corollary 1.: If Hypothesis 1 is satisfied, then 

Pp 1  qPu* (1) 

PpA^ 1 - ^<1 - PFA*>- <2^ 

Equations (1) and (2) show that the actual performance of the 

hardware-implemented detector may be quite different from the theoreti- 

cal performance. For example, assume that a theoretical detector has 

P_.^ = 10  .  Even if this detector is implemented on a computing device 

-4 
with q = 0.9999, P . may be as high as 10  , two orders of magnitude 

larger than Pp.*. 

III. PERFORMANCE USING ERROR MASKING 

One way to possibly minimize detector performance degradation in 

the presence of hardware faults is to use an error masking scheme based 

on hardware redundancy.  To implement such a scheme we replicate the 

original computing device a-1 times, send the original data sample to 

each device, and then send all the device outputs d^, d^,..., d  to an 
12      a 
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error masker which chooses an index i(m) in the set {1, 2,..., a}.  The 

masker makes its choice by first partitioning the set of device outputs 

into two blocks such that all the outputs in a given block are identi- 

cal, and then by choosing the index i(m) at random from among the 

indices of the outputs in the block(s) of maximal cardinality.  The out- 

put of the error masker is then d., ..  The decision concerning the 

presence or absence of the signal is made using the variable d., ,. 

When this error masking scheme is used, the performance measures of 

the implemented signal detector are the probability of detection P ^(a) 

and the probability of false alarm P  -,(a), which are now defined as 

follows: 

Po^j(a) =P(d,(^)=l| S) 

FA,I        i(m) 

The classical approach [2] to the analysis of such an error masking 

scheme is based on assumptions which ensure that d., , is alwavs eaual 
i(m)        ■'       ^ 

to d , in which case P_ ..(a) = P_^ and P„. _(«) = PT-A*.  For example, * D,l      D*     FA, I      FA* 

one might put an upper bound on the niunber of computing devices that can 

produce incorrect results.  Since we feel that such assumptions are phy- 

sically unreasonable, we shall instead assume that the presence of the 

signal and the value of the theoretical decision variable d are each 

independent of the correctness of the masker output.  Thus, we are 

assuming the following: 
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Hypothesis 2: TTie events S and (d^=l) are each independent of the event 

i(m)  * 

The following theorem gives bounds on the performance measures of 

the detector when implemented with an error masker. 

Theorem 2.: If Hypothesis 2 is satisfied, then 

Pp^^j(a) ll-P(d.(^j=d,)(l-Pp^,). 

The bounds given above are not very useful unless we can evaluate 

P(d.- v=d^).  As a first step, we shall make the following assumption 

concerning the error masker. 

Hypothesis 3.: The error masker is never faulty. 

Let G(a,Y) be the probability that at most y device outputs are not 

equal to d^. It is clear that under Hypothesis 3, if a is odd, the out- 

put d., « of the masker is equal to d  if and only if at most ~~~ device 
ivm; * 2 

outputs are not equal to d.; and if a is even, d., . is equal to d^ if 
' 1 \ja) * 

at most ""r~. and only if at most —, device outputs are not equal to d^. 

Thus, the following lemma has been proved. 

Lemma 1.: If Hypothesis 3 is satisfied, then 

P('i.(^)=d^) = G(a,^), a odd 
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G(a,f) 2 P(d., v=d^) 2 G(a,^), a even. 

In order to explicitly relate the performance bounds to hardware 

reliability, we shall make the following assumption. . 

Hypothesis 4: 

(i)  Each computing device has the same probability q of being non- 

faulty 

(ii) The computing devices fail independently. 

Let H(a,Y) be the probability that at most y devices are faulty. 

Hypothesis 4 implies 

H(a,Y) = S  ., °'.,,(l-q)^q^°"J\ (3) 
j=0 J'(a-j)! 

It is clear that if at most y devices are faulty, then at most y 

device outputs will not equal d^, and thus 

G(a,y) 2 H(a,y). (4) 

In view of the preceding discussion, the following corollary is 

immediately obtained. 

Corollary 2: If Hypotheses 2, 3 and 4 are satisfied, then 

Pjj j(a) 2 Ri(a)PD* (5) 

PpA,i(") < 1 -Ri(a)(l - Pp^,) (6) 
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where 

Rj(a) = H(a,^), a odd (7) 

Rj(a) = H(a,^), a even (8) 

and where H(.,.) is given by (3). 

IV. PERFORMANCE USING ERROR DETECTION AND MASKING . 

Another way to possibly minimize detector performance degradation 

is to use both error detection and error masking.  To implement such a 

scheme we replicate the original computing device a-1 times, send the 

original data sample to each device, and then send all the device out- 

puts d  d_,..., d to both an error masker and an error detector. The 1  z      a 

error masker operates as described in Section III in choosing an index 

i(m) and producing an output d.- ,.  The error detector compares the 

d.'s and produces a boolean variable b that equals zero if at least § 

d.'s are identical, and that equals one otherwise.  If b = 0, we make a 

decision concerning the presence or absence of the signal using the 

decision variable d., ..  If b = 1, we make no decision concerning the ivm; 

signal. 

In this case, the performance measures of the signal detector are 

the probability of detection P^^ jj(a,^) and the probability of false 

alarm P . j-pCoj^), given that we in fact make a decision concerning the 

signal, and the probability P^^^ jj(a,5) that we do not make a decision 
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concerning the signal even though the output of the masker is equal to 

d^ (probability of false rejection). These quantities are defined as 

follows: 

PQ jj(a,U = P(<ii(ni)=llS ^^"^ ^=0) 

PpA.II^"'^^ =P(^i(m)=l's' andb=0) 

PpR^IlCa,?) =P(b=ll d.(^)=d,). 

In order to obtain bounds on these performance measures, we shall 

assume, in addition to Hypothesis 2, that the presence of the signal and 

the value of the theoretical decision variable are each independent of 

the number of identical device outputs.  Thus, we are assuming: 

Hvpothesis 5.: The events S and (d^=l) are each independent of the event 

(b=0). 

The following theorem gives bounds on the probabilities of detec- 

tion and false alarm for a signal detector implemented with an error 

detector and masker. 

Theorem 3.: If Hypotheses 2 and 5 are satisfied, then 

Po,Il(a,?) ^P(d.(^)=dJ b=0)Pp, 
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As a first step toward evaluating the quantity P(d., »=d*| b=0), we 

shall make the following assumption concerning the error detector. 

Hypothesis 6: The error detector is never faulty. 

Note that under Hypothesis 6, if § < \——1 the error detector 

always produces b = 0 and thus the error detection and masking scheme 

reduces to just the error masking scheme of the previous section. 

Therefore, we shall always take ^ 2 f^^1 •  ^e can now express 

P(d., \=d*| b=0) as a function of G(.,.). Hm;  * 

Lemma 2: If Hypotheses 3 and 6 are satisfied, then for ^ ^ j—r—I 

P(d., ,=d^| b=0) =  ,   ^  r(    ^^ M°"^rr TTT- i(m)  *        1 + G{a,a-4) - G(a,4-1) 

The next step in evaluating P(<i-(jj)=d, I b=0) consists in replacing 

G(.,.) withH(.,.).  Note that Equation (4) implies 

 G(a.a-£)    H(a,a-£)  
1 + G(a,a-§) - G(a,£-1) - 1 + H(a,a-£) - H(a,§-1) 

which immediately leads to the following corollary. 

Corollary 3.: If Hypotheses 2, 3, 4, 5 and 6 are satisfied, then for ^ > 

Plj^Il(a,U > Rjj(a,UPD* (9) 

PpA Tl(°'5> ^ 1 - RTT(a.?)(l - PpA«) (10) 

where 
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R i„  f\ H(a.a-£)  ,^^. 
Kjjto,^; ~ 1 + H(a,a-5) - H(a,?-1) ^-^-^^ 

and where H(.,.) is given by (3). 

The quantity P _ j^{.a,%)   is a measure of the price that must be 

paid when using the error detection and masking scheme.  We can obtain a 

preliminary evaluation of this quantity as follows: 

Lemma 3.: If Hypotheses 3 and 6 are satisfied, then for i,  ^ |~7~ 

PFR.II<«'^> = 1 - G(a!?;-l)/2) ' ° '^^ 

n     /  ii\ y 1   G(a,a-£) 

In order to relate the results given above to the hardware relia- 

bility, we need the following hypothesis. 

Hypothesis 1_: 

(i) P(d^=d^) =5, i = 1, 2,..., a 

(ii) The events (d.=d^,) , i = 1, 2,..., a, are mutually independent. 

Hypothesis 7 implies 

G( a.r) = 2 .,/'.,,(i-q)^g^°"J^ (12) 
j=0 •> '(°"J)' 

The next lemma provides a relation between G(.,.) and H(.,.) 

Lemma 4: If Hypotheses 4 and 7 are satisfied, then for § 2 T ^1 

G(a.a-£) . G(a,(a-l)/2)  ^  ,. 
H(a,a-?) ^ H(a.(a-l)/2)' ° "'^'^ 
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G(a,a-U . G(a,a/2) 
H(a.a-4) -^ H(a,a/2)' ° ®''^''' 

The following corollary completes our task by providing a comput- 

able upper bound on Pp^^ ^^(a,^) . 

Corollary 4: If Hypotheses 3, 4, 6 and 7 are satisfied, then for ^ > 

m 
PpR,Il(a,U < 1 - H(a!u-l)/2)' « °^^ (13) 

PpR,Il(a,5) 1 1 - |[J^, a even (14) 

where H(.,.) is given by (3). 

V. CONCLUSION 

We have analyzed three types of detector implementations.  The 

first does not use any redundancy; the second uses strict redundancy for 

error masking; and the third uses strict redundancy for both error 

detection and masking.  In the first two cases, we always make a deci- 

sion concerning the presence of the signal, but in the third case, we 

sometimes make no decision concerning the signal.  Thus, in addition to 

the probabilities of detection and false alarm, which characterize the 

first two cases, the third case is also characterized by the probability 

of false rejection.  In this part of our work, we derived the appropri- 

ate bounds on these figures of merit using only physically reasonable 

assumptions.  The task of exploiting those bounds for the design of 
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efficient detector implementations will be carried out in a subsequent 

paper. 
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APPENDIX 

Proof of Theorem 1: 

Let B be the event (d^=d^) and let B^ be its complement.  The defini- 

tion of Pjj implies 

P(d,=l and S)  ^_^ 

D      P(S)       P(S) 

where 

X = P(d^=l and S and B^) 

Y = P(d^=l and S and Bp . 

The worst case for the probability of detection occurs when 

P(d^=l| S and BJ) = 0 

which implies that Y = 0.  Since the event (d =1 and B-) is the same as 

the event (d^=l and B^), 

X = P(d^=l and S and B^). 

Then, using Hypothesis 1, 

X = P(d^=l and S)P(B^) 

= P(d^=l| S)P(S)P(B^) 

and the first part of the theorem follows. 
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The definition of F„. implies 
FA 

p  _ P(d,=l and S^)  _^^^ 

where 

X = P(d^=l and S*' and B^) 

Y = P(d^=l and S° and BJ). 

The worst case for the probability of false alarm occurs when 

P(d^=l| S° and B°) = 1 

and therefore, using Hypothesis 1, 

Y i PCS*' and BJ) = PCS^'Xl - P(B^)). 

The fact that the events (d =1 and B ) and (d^=l and B ) are identical 

implies 

X = P(d^=l and S° and B ) 

and then, using Hypothesis 1, 

X = P(d^=l and S'^)P(B^) 

= P(d^=l| S'')P(S°)P(B^) 

and the second part of the theorem follows. 
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Proof of Theorem 2: 

Let B - . be the event (d./ \=d») and let B., v be its complement.  The Hm; i(m)  * i(m) 

definition of P  (a) implies 

P d., .=1 and S)  ^ ^ „ 
P  (a) =  ^^^  = ^ -^ ^ D.I^"^        P(S)        P(S) 

where 

X = P(d., .=1 and S and B., .) i(m) i(m) 

Y = P(d.- ,=1 and S and B^, ,). 
i(m) i(m) 

The worst case for the probability of detection occurs when 

P(d.(^)=l| S andBj(^)) =0 

and therefore Y = 0.  Since the events (d., .=1 and B.,   v) and 
i(m)       i(m) 

(dj^=l and B., «) are identical, 
*       i(m) 

X = P(d^=l and S and B., v). 
* 1 (m) 

Then, using Hypothesis 2, 

X = P(d.=l and S)P(B., J 
* i(m)' 

= P(d^=l| S)P(S)P(B., ,) 
* i(m) 

and the first part of the theorem follows. 

The definition of P^. ^(a) implies FA, I     ^ 

P(d.- .=1 and S")   ^ ^ ^ 

^^'^ P(S°)        PCS'^) 
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where 

^ = P(^w™'>=l and S° and B.. .) i(m) i(m) 

Y = P(d., ,=1 and S*^ and B^, ,). i(m) i(in) 

The worst case for the probability of false alarm occurs when 

P(d., .=l| s'^ and B°, ,) =1 i(m) i(m)' 

and therefore, using Hypothesis 2, 

Y i  PCs'' and B^ .) = P(S°)(1 - P(B.. .)). 

Since the events (d , .=1 and B., .)   and (.d^=l  and B., .)   are identical, 

X = P(d^=l and s'^ and B. . J 
* i(m)' 

and then, using Hypothesis 2, 

X = P(d.=l and S )P(B.- ,) 
* i(m) 

= P(d^=l| S*')P(S'')P(B., ,) 
* i(m) 

and the second part of the theorem follows. 

Proof of Theorem 3: 

The definition of Pj^ jj(a,5) implies 

P(d., x=l and S and b=0)      v ^ v 

j) jjva,^;        P(S and b=0)        P(S and b=0) 

where 
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X = P(d., .=1 and S and b=0 and B., ,) 
i(ni) i(in) 

Y = P(d.. .=1 and S and b=0 and B?, J 
i(m; i(m) 

The worst case for the probability of detection occurs when 

P(d.. .=l| S and b=0 and B?, J = 0 
i(m) i(m) 

and therefore Y = 0.  Since the events (d., .=1  and B., .)   and 
i(m)       i(m) 

(d^=l and B., ^) are identical, 
*       i(m) 

X = P(d^=l and S and b=0 and B., ,) 
* i(in) 

Then, using Hypotheses 2 and 5, 

X = P(d^=l and S)P(b=0 and B., J 
* i(m) 

= P(d^=l| S)P(S)P(b=0 and B., J 
* i(m) 

and the first part of the theorem follows. 

The definition of P^ jj^"'^^ implies 

P(d., v=l and S° and b=0)      ^  ^ ^ 
P    (a,U =  ^^^       
^^'"""^ P(S^ and b=0)        P(S'' and b=0) 

where 

X = P(d., .=1 and s'' and b=0 and B. - J 
i(m} i(m) 

Y = P(d., ,=1 and S*^ and b=0 and B*?, ,) 
i(m) i(m) 
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The worst case for the probability of false alarm occurs when 

P(d., .=l| S*^ and b=0 and B?, J = 1 
ilm} i(m) 

and therefore, using Hypotheses 2 and 5, 

Y i  PCS*^ and b=0 and B?- .) = P(S°)P(b=0 and B?, J 

Since the events (d.- .=1 and B., .) and (d.=l and B., .) are identical, i(n) i(m;       *       i(m) 

X = P(d^=l and S°  and b=0 and B., ,) 

and then, using Hypotheses 2 and 5, 

X = P(d^=l and S*')P(b=0 and B.- J 
* i(m)' 

= P(d^=l| s'^)P(S°)P(b=0 and B., ,) 
* i(m) 

and the second part of the theorem follows. 

Proof of Lemma 2: 

If ? 2 I ""I""!. the events (d., v=d. and b=0) , (at least I  device 

outputs equal d^) and (at most a-^ device outputs do not equal d^) are 

equivalent.  Also, the event (b=0) is equal to the union of the two dis- 

joint events (at least ^ device outputs equal d^) and (at least ^ device 

outputs do not equal d^),  It follows that 

P(d.(^)=d,| b=0) = 
P(d./ x=d^ and b=0) 1 v.m;  *  

P(b=0) 

 G(a,a-0  
1 + G(a,a-5) - G(a,?-1) 
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and the lemma is proved, 

Proof of Lemma 3; 

The definition of P^.^^ jj(a,U implies 

PpR,Il(a,?) =1 -P(b=Ol d.(^)=d,) 

_ P(b=0 a^d d.(^)=d^) 

^ P(d., ,=d.) 
i(m)  * 

As in the proof of Lemma 2, if ^ ^ [^o~~I» then 

P(d^^^j=d^ and b=0) = G(a.a-4) 

The proof is completed using Lemma 1. 

Proof of Lemma 4: 

Let a be odd and ^ ^ ^^.  Then, letting w = (l-q)/q and w 

(l-q)/q. Equations (3) and (12) imply 

„(a-l)/2    , 
G(a,(a-l)/2) = G(a.a-§) + q°  2   .,,"' .,, Vf^ 

j=a-?+lJ'^°-J^' 

(a-l)/2 
H(a,(a-l)/2) = H(a,a-^) + q°  Z g     j -— — - - vr** 

j=a-?+lJ'<"-J)' 
w 

The desired result will be true if and only if 

(a-l)/2   , (a-l)/2   , 
G(a,a-^)q°  J  ., °'.,. w" > H(a.a-^)q[°  2  ., °'.,, g^ 

or, equivalently, if and only if 
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a-? (a-l)/2 

i=0 j=a-?+i^'^°"^^'J'^°~J^' 
^ ^ (wV-^Jw^) 1 0, 

Now, Equation (4) implies that v ^ yf,   and since j > i, the above ine- 

quality holds and the first part of the lemma follows.  The proof of the 

second part of the lemma is similar to the above. 


