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I. REPORT SYNOPSIS

A. Introduction

The objective of this program was to investigate the feasibility of

building a floating point processor (24-bit mantissa and 8-bit exponent) on a

single chip based on the Hughes Research Labs (HRL) present 28-bit fixed point

chip (multiplication oriented processor or MOP chip) I . The plan was to

generate any necessary cell logic, layout, or simulations in order to

estimate the size of the chip and predict its performance. Since division

and square root were not included in the HRL MOP chip, arithmetic algorithms

for performing these operations were to be studied.

There were to be at least eight data registers and at least eight serial

I/O ports for communication with each of the eight nearest processing element

(PE) neighbors. On-chip clocks were desirable and a pin-out arrangement that

resulted in a minimum "footprint" ratio was to be minimized. The number

representation was to be two's complement, fractional notation, throughout.

Part of our design philosophy is to have all our processor capabilities

sufficiently modular so that our chip design can be easily altered to suit the

reauirements of any desired systolic PE. For example if we added a divider

function module, it would have to be bit-slice, carry-save (so that area-time

product is O(n 2)where n is the bit length), serial/parallel, with all control

1. J.G. Nash, S.S. Narayan, and G.R. Nudd, "A VLSI Processor for Adaptive Radar
Applications," Proc. 1983 SPIE Conf., San Diego, Aug.21-24 1983.

1



hardware built-in and capable of running off the special set of high speed

clocks provided the multiplier. These considerations, as will be seen later,

will influence the choice of algorithms for doing division and square root.

All our designs are based on two sets of two phase non-overlapped clocks.

One set operates at more conventional microprocessor type speeds (e.g., 4MHz

for the MOP chip) and the other runs approximately 4 to 8 times faster. The

high speed clocks are intended for use in serial/parallel type operations such

as multiplication, division and serial I/O. In the remainder of the report the

two sets of clocks will be referred to as the fast clocks and slow clocks.

The floating point processor described in this report is a "barebones"

processor in that it does not support a large number of features that might be

desirable in a general purpose processor. For example no capability for

various rounding schemes are included, no branching capability or status flags

are provided, and the IEEE floating point standard has not been considered.

However, for the primary purpose for which this processor is intended (large

systolic arrays), these features would not be of great value. We think it more

advantageous to design with throughput considerations given the largest weight.

This report is divided into two sections, the first summarizing the

findings of the more detailed second part. In the Appendices we have included

some additional relevant material.

I-B. Processor Organization, Size and Performance

In this section we will detail our estimates of the relevant physical

information about the chip. Since the MOP chip has already been designed at

2



5.5 -m drawn feature sizes in NMOS E/D technology, we will give our baseline

estimates for this feature size and technology. These numbers should be taken

as reasonably accurate. Estimating physical information based on smaller

feature sizes depends considerably on the details of the scaling rules and the

technology being used. For example the chip area associated with a PE built

using a 5 -m polysil icon gate process is not four times the area of the same

chip design in the same technology built using a 2.5 .m polysil icon gate

process. Many design rules, e.g., registration overlaps, do not scale linearly

with gate length. In addition the effective channel length of a MOSFET does

not scale linearly with either the drawn or actual gate length.

The basic functional organization of the entire PE is illustrated in

Figure 1. There are two system buses connecting any number of "function

modules" which are independent units each having their own control sections and

in some cases their own fast clock circuitry. Data is sent to and from these

units under program control, using the slow clocks.

An approximate functional layout of one version of a floating point

processor is shown in Figure 2. The total chip area for 5.5 -m desian rules

would be 300x343 mil 2 , which would come down to approximately 130x149 mils for

2 -m drawn feature sizes and 87x100 mils 2 for 1 , m drawn feature sizes. The

total number of pads would be 19, including 8 control lines, 8 I/O lines, two

supply lines and a clock.

The instruction word would be 16 bits, with 8 bits brought in each half

clock cycle. There are 8 bits associated with control of each of the two buses

shown in Figure 1, 4 bits for a source address and 4 bits for a destination

address. Sources and destinations could be registers, adders, I/O ports, etc.

All the control associated with complex modules such as the multiplier and

3
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- - -- ADDITIONAL MODULES PLANNED

Figure 1. Illustration of processor organization. Function modules
are bit-slice and contain all the necessary control and
clocking hardware.
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divider is hardwired into a separate controller that goes with that module. In

this way only the control that is necessary is added to the processor.

Since the floating point PE is very modular, the-e is considerable

flexibility in what goes on it. As shown in Figure 2 we have included 8

registers, 4 I/O ports (capable of talking to all eight nearest neighbors), a

multiplier, a divider, an adder, and a normalization unit. (The purpose of the

normalization modules is to take an operand and scale it so that the most

significant bit is always just to the right of the decimal point.) The

approximate sizes of each of these is shown so that estimates can be made of PE

sizes for alternative configurations.

The expected relative speeds of the different operations (NMOS, E/D) are

shown in Table 1. In terms of the number of slow clock cycles a floating point

addition will take two clock cycles, one for addition and one for result

normalization. A register to register floating point addition will take three

clock cycles, one cycle to transfer from a register and add, one for

normalization, and one to transfer data back to a register. In terms of

absolute performance, present day 2-3 im feature sizes should provide

multiplication speeds of 400nsec and division speeds between 400 and 1300 nsec.

By simply putting three multipliers or dividers on a chip and running them

concurrently, the effective multiply speeds should be 250 nsec and division

speeds between 250 and 900 nsec. A VHSIC technology would provide further

improvements in speeds.

6



Table 1. Performance of proposed floating point chip as a function of nominal

and state-of-art design rules.

Absol ute Concurrent
Absolute Speed Mode

Speed (nsec) (nsec)
(nsec) 2 - 3m 2 - 3,m

Function 5.5pm features Feature Sizes Feature Sizes

Addition 250 100

Normal ization 250 100 ---

Multiplication 1250 400 250

Division 1250 - 3000 400 - 1300 250 - 900

REG-REG 250 100

SERIAL 1/0 2500 800

It is difficult to estimate powor consumption without specific design

information, in particular how much dynamic logic is used instead of power

consuming static logic. We would expect that it wouldn't be excessive because

the MOP chip with almost as many devices (15,000) used only 0.75 W. However,

for systolic arrays with several PE's per chip one would have to use a dynamic

NMOS logic or CMOS in order to keep the power levels acceptable.

The adder and normalizer have their own shifters (right shifter for adder

and left shifter for normalization) so that they can operate independently.

The choice of having two separate units for the floating point adder was made

for several reasons. First, it would support pipelining. For example if

several mul tipl iers were placed on a PE, heavy usage of the adder and

normal izer would result in order to add partial sums and carries. By

7
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simul taneously running the adder and normal izer, overall throughput could be

increased. This arrangement also allows one the choice of not normalizing

results for increased dynamic range or so that loss of significance in operands

can be followed, or finally so that throughput could be increased. There is

also an advantage in the ease of design and modularity of separate units. In

any case the amount of duplicated circuitry (shifter) does not appear to be

excessive when compared with the other circuitry.

Each function module that uses a fast clock has its own clocking and clock

control unit. In this way one adds no more clock/control circuitry than is

necessary for the function modules on the PE. In addition this minimizes the

possibility of any skewing problems associated with clock distribution to

different chips. For example if the same function modules on different chips

receive the master clock slightly out of phase with respect to each other, this

will cause no problem because the associated control circuitry will locally

count the appropriate number of cycles and then stop the function module. If

one of these function modules stops at a slightly different time compared to

the other, this small difference will appear negligible compared with the cycle

time of the slow clocks which read out the data.

In Table 2 the various cells available for use in the processor chip have

been broken down in terms of the number of devices associated with each

mantissa or exponent bit, plus a fixed number of devices. The fixed number,

which doesn't change for different word sizes, might be the number of devices

in a hardwired controller, as in the multiplier, or the number of devices

associated with various control line drivers. Since we did not have a specific

circuit implementation for the divider (only functional block diagrams), we

estimated the device count to be twice that of the multiplier. A summary of
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the device count for the PE shown in Figure 2 is as follows:

Floating Point Example

# Devices

8 Registers 2704

1 Multiplier 2585

1 Divider 5172

4 Serial I/O Ports 4412

1 Adder 2148

1 Normal ization Circuit 1674

1 Clock Generator 50

1 Decoder 250

Total 18,995

Thus, the complexity of this minimal floating point processor would be

approximately 20,000 devices.

I-C. Algorithms

In this section we briefly discuss our studies of division and square root

algorithms. Several basic algorithms for division were investigated:

Direct Methods

Multiplicative Normalization

Combined Multiplicative Normalization and Direct Methods

Iterations Based on Newton-Raphson Formula

CORDIC Algorithm

10



Our goal was to find an algorithm that would produce an area-time efficient

divider that could be easily integrated into our bus oriented, bit-slice,

serial/parallel chip framework, with speeds approaching that of our present

multiplier. Of the algorithms listed above the direct method is most suited to

such a hardware implementation; however, we estimate that it would run four

times slower than our multiplier. We feel that division speed can be increased

by the combined multiplicative normalization and direct method approach (with

the inevitable penalty of increased hardware)*. Although we have not reduced

this algorithm to a detailed hardware level implementation, we feel that it

offers the possibility of speeds comparable to that of the multiplier. A brief

discussion of each algorithm follows.

Direct Method

The direct methods operate in a manner similar to pencil and paper

division, by repeatedly subtracting the divisor from the partial remainder (the

first partial remainder is the dividend). In each position the quotient is

increased by one for each successful subtraction that does not produce a

negative result. If a negative result is obtained in some position, the

partial remainder is "restored" by adding back the divisor. The divisor is

then shifted with respect to the dividend and the subtraction process is begun

again.

The direct method is very easy in a binary radix (radix-2) because the

number of successful subtractions between shifts can be at most one. Thus,

after a shift, if a subtraction is successful , the next subtraction is

* We are indebted to Milos Ercegovac for suggesting this algorithm. His

analyses are summarized in Appendix A.
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guaranteed not to be, so one can shift immediately. If a subtraction fails,

rather than restoring the partial remainder by adding back the divisor, it is

only necessary to add one-half of the divisor (shift and add) in that position.

This division procedure is called nonrestoring division.

There are two basic ways to speed up the non-restoring direct method. The

first is to reduce the subtraction time. By representing the Quotient diaits

as redundant numbers it isn't necessary to do a full precision subtraction at

each step (no carry propagation required). Instead one can use a carry-save

approach (as was done in the multiplier) which allows two words to be

subtracted in a time corresponding to a few gate delays, independent of the

number of bits. Another speed up approach is to reduce the number of

subtraction steps by working in a higher radix. The number of steps is reduced

by k, where r=2 k is the radix.

The direct method is very well suited to a design that uses relatively

little hardware and fits well with our bit-slice, serial/parallel function

modules. The major drawback lies in its slow speed compared to the multiplier.

While carry-save partial product subtractions can be implemented easily,

proceeding to a higher radix is not easy because it becomes increasinaly

difficult to select a Quotient digit and still have a modular, area efficient

design. Another speed limiting factor is the inability to pipeline or overlap

operations. Unlike multiplication, the quotient digit is not known ahead of

time, but must be selected on the basis of the previous partial remainder and

divisor. Therefore, it is not possible to break up the selection of Quotient

digits and carry-save subtraction steps into smaller operations that can be

pipelined. A fast radix-8 divider has been successfully built by Hewlett

Packard using a direct division method, but it required 35,000 devices on a

12



large chip.
2

A radix-2 implementation of the direct method we estimate would be a

factor of approximately 4 slower than the multiplication time. One factor of

two arises because of the radix-2 operation, instead of the radix-4 operation

of the multiplier. The other factor of two is due to the inability to speed up

the quotient digit selection and carry-save operation. With a radix-4

implementation we would gain a factor of two in reducing the number of recuired

subtractions, but the selection operation would be more complex, so the net

gain would be less than a factor of two.

Multiplicative Normalization (MN)

For division this algorithm relies on successive multiplications by a

number to reduce that number to one. For the division a=y/x, if by successive

multiplications x is reduced to one, the same multiplications applied to y will

generate the desired quotient. If the multiplications are of the form

(+Sk 2 -k ), where k is an integer and sk is a radix-2 digit, then only shifts

and adds are required for this algorithm.

In structure this algorithm is very similar to the direct method described

above. It does require considerably more hardware because whatever is done to

the divisor, the same must also be done to the dividend. The main advantage of

this algorithm is that other elementary functions can be evaluated, such as

square root, exponentials, and transcendental functions. However, we mention

it primarily as in introduction to the algorithm described next.

2. Milos 0. Ercegovac, "A Survey of Floating-Point Arithmetic Implementations,"
Proc. 1983 SPIE Coof., San Diego, CA, Aug. 1983.
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Combined Multiplicative Normalization and Direct Method

The main problems associated with obtaining the desired speed from the

direct division method are the complexity of the quotient selection process and

the inability to pipeline or overlap operations. By combining MN and the

direct method in an appropriate way, the quotient selection process can be made

very simple and limited overlap of operations is possible. We feel that this

approach is the most promising of those investigated in producing and area-time

efficient divider.

With this algorithm the input operands are both scaled using MN until they

fall within certain prescribed bounds. From this point on the direct division

approach is used to generate the quotient digits. The advantage of this

approach is that the circuitry associated with selecting the quotient digits

from the partial remainder remains relatively simple, independent of the radix

chosen for the division. The quotient digits are selected by simple truncation

of the most significant radix-r digit of the partial remainder.

There is also considerable speed-up possible in the quotient selection

process because it is possible to overlap the calculations of the ouotient

digit and the partial remainder. For the direct division method described

above, the partial remainder had to be computed after the Quotient digit

selection process was completed.

Although we have not yet reduced this algorithm to a binary level

implementation, we feel that it is the most attractive of the division

alternatives that we have looked at. Neglecting the operand transformation

stage, the division recursion is relatively simple and we estimate that this

operation would take only approximately one to two multiplication times. With

14



a radix-8 version of this algorithm even faster speeds might be possible. On

the negative side it is still not clear how to efficiently implement a fast

operand transformation capability.

Iterations Based on the Newton-Raphson Formula

Iterative schemes are based on the formula

xi+1 x i- f(x i ) / f ' (x i )

which, for a well-behaved function f and a good initial value xo, can be used

to evaluate a root of f(x)=O. For example to find a reciprocal we let

f(x)=(i/x)-s, the root being the desired result. Then the formula above

becomes

Xi+l=Xi( 2-sxi)

Division is accomplished by finding the reciprocal of the divisor and

multiplying by the dividend. The most important feature of this algorithm is

that it converges quadratically. For example if a small lookup table is used

to find the first four bits of the result, then the first iteration will

produce a new result accurate to eight bits, the second iteration 16 bits, and

so on. Thus, the convergence rate is O(log n), rather than O(n) for the other

algorithms we have looked at, where n is the bit length. Other elementary

functions can be evaluated in this way using only multipliers.

The disadvantage of this approach is that it requires a considerable

amount of hardware (a look-up table ROM and very high speed multipliers) which

isn't easily integrable into our design scheme, and it isn't any faster than

15



alternative algorithms we are looking at. For example, it is our goal to do

divisions at the same rate as multiplication.

CORDIC Algorithm

The primary attraction of the CORDIC algorithm is its generality. If a

wide range of elementary function evaluation is desirable, then this is

probably the best alternative. Conventional implementations of the algorithm

require n time steps, each of which involves a full n precision addition or

subtraction and a shift. We think that speed improvements can be made to the

algorithm to eliminate all the n precision additions and possibly to eliminate

some of the shift requirements. However, in any case the hardware needs of the

algorithm are considerably greater than required for the other division

alaorithms. The basic needs are three adder/subtractors, a small ROM, and two

shifters.

Square Root

We have looked at several square root algorithms and generally found the

problem similar to that of division. For this reason we concentrated our

efforts on examining the division problem. However, we do describe later an

algorithm based on the odd series approximation as an example of a direct

approach to performing square roots that would support a hardware

implementation well suited to our design scheme.

16



II. Detailed Description of Floating Point Design

II-A. Number Representation

In this section we briefly describe the characteristics of the 32-bit

word, although it is intended that the manner in which the chip is organized

will enable it to be assembled rapidly with any word length.

For this 32-bit word the mantissa is 24 bits in length including one sign

bit. The fractional , 2's complement notation increases efficiency of

computation. The range of numbers representable is then 1-2-23 to -1+2 - 2 3

(1-1.1920929 x 10- 7 to -1+1.1920929 x 10- 7 ).

The exponent is represented as 8 bits in excess 128 notation. In other

words the exponents are biased by 128. This simplifies some of the

manipulation of exponents because it eliminates negative exponents. The

exponent range is then 2-128 to 2127 (2.94 x 10-3 9 to 1.701 x 10 38).

When exponents are subtracted as in division the effect of the exponent

bias is simply canceled. However, in multiplication the bias is added twice

and must be subtracted out. This can be done with a simple circuit that has as

inputs the most significant bits (MSB) and carry into this position. For

example the exponent addition

A1 A2  A8

B1 B2  B8

C1 C2  C8

17



uses the truth table shown in Figure 3(a) to determine the MSB C which can be

implemented by the circuitry shown in Figure 3(b).

II-B. Clock Generator and Control Circuitry

Overall array synchronization will be based on a single phase high speed

clock ( 16MHz for 5.5 im design rules or -50MHz for 2 m design rules) made

available to every PE. Each PE will derive from this a set of low speed, or

system clocks, for use in transferring information between function modules and

between chips, and a set of high speed clocks to drive arithmetic modules and

serial I/O ports. It is expected that the ratio of high to low speed clock

freouency will be between 4 and 8. (For the MOP chip it was set at 4.) In this

section we describe circuitry intended to perform these functions.

High Speed Clocks

'he primary design goal for the high speed clock circuitry is to avoid

problems associated with possible skewing in the distribution of the clock

signal. This can be accomplished by localized clock generator and control

circuitry. Each high speed function module will have a counter circuit that

can be "programmed" to perform a certain number of counts of the high speed

input clock and then to shut off the local high speed clock drivers. For

example our 28 bit fixed point MOP chip multiplier would reouire the clock

controller to count 16 clock cycles and then stop the local clock. With this

arrangement, if the high speed clocks in arithmetic modules on different chips

are out of phase, they will finish their operation at only small fractions of

IP
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the time associated with the slow clock cycle. From the point of view of the

slow clocks, which will read information out of the function modules, these

small differences in time will not be important. Thus, high speed clock

skewirny will not lead to a,, y ,hru iza ,u, , uup ems.

A possible control circuit and partial timing diagram are shown in

Figure 4(a) and 4(b) at a functional level. Operation begins with the "Load

Function Module" going high, indicating that operands are beIrK loaded into

this function module. This signal resets the counter and flip-flop 3 (FF3),

which is used later to reset FF1. When the "Load Function Module" goes low,

indicating that the operands are loaded, the output of FF1 goes high enabl ing

the high speed clock input via the AND gate. The output of the AND gate drives

FF2, whose purpose is to provide clean beginning clock waveforms to the clock

drivers and to the counter circuit. When the counter reaches its programmed

value it issues a "DONE" signal which FF3 uses to reset FFI. The output of FF1

then goes low, disabling the high speed clock input to the clock driver

circuits. The way the circuit is drawn in Figure 4(a) indicates that there

will be several gate delays associated with the circuit "shut down" operation.

This consists of a few gate delays through the counter, plus single gate delays

through FF3, FF1, and the AND gate. This long total delay can be avoided by

pipelining the control operation with the addition of a little circuitry. The

count gate will have to be set to decrease the "count" by the number of

pipelined stages.

A fast synchronous parallel counter design is shown in Figure 5. The

multi-input AND gate to each flip-flop is best built using a high speed NOR

implementation. The "count gate" is simply an AND gate with counter outputs as

inputs. When the counter reaches the desired number this gate is responsible

pn
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for stopping the clock driver operation.

One possible implementation of the J-K FF's seen in previous figures is

shown in Figure 6 based on a fast NOR gate implementation. Approximately 27

devices are used per FF.

Clock driver circuitry is shown in Figure 7. This configuration will

produce a non-overlapped two phase clock from a single phase input. This type

of circuit could possibly be used as a driver for high and low speed clocks

because current drive capabilities should be similar.

II-C. Multiplier

Conversion of our fixed point multiplier to floating point basically

reduces to the problem of adding an exponent handling unit that doesn't

introduce major topological irregularities. A block diagram of our proposed

structure is shown in Figure 8. The carry-save Booth's multiplier circuit is

described in detail in Appendix B.

The exponent handling section consists of a set of registers to store the

data, a simple ripple adder to perform the exponent addition, and an output

latch. We can use a minimum device combinatorial full adder cell shown in

Figure 9 in order to conserve area. This full adder cell is not as fast as

that in the mantissa processing section, but it only has to add two small

numbers in approximately four of the slower clock cycles (1 sec for 5.5 m

feature sizes). We have laid out a full adder cell and simulated it (including

parasitic capacitances) using SPICE to determine its speed characteristics.

For 5 m feature sizes the propagation delay through the cell is less than
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lOOnsec, or an acceptable 8OOnsec for an 8-bit exponent.

As discussed in Section II-A the full adder associated with the most

significant exponent bit will have some extra logic in it to generate the

correct results for the 128 bias.

Some experimentation will be necessary to determine an optimal layout for

the exponent section. Possibly control line drivers will fit well into the

available area as shown in Figure 8 or it might be possible to place the

exponent ripple adder vertically.

The operation of the multiplier is no different than for the fixed point

version. The operands are loaded simultaneously into the input latches and

then after four slow clock cycles (for MOP chip) a sum and a carry result will

be available in the output latches. This result must then be sent to the adder

to propagate the carry. The exponent section is purely combinatorial

reauiring no special clocks.

II-D. Adder

The fixed point adder requires considerably more added to it than the

multiplier in order to create a floating point capability. There are two basic

operations required to perform an addition. First, the mantissas are aligned

and added. Then this result is normalized in some way. Since each of these

operations is difficult to perform, we decided to split these operations into

two sets of hardware. This simplifies the control circuitry and increases

speed since both units can operate simultaneously. An added feature is that

the programmer has the option not to normalize his results. This can be of



advantage to someone who needs increased dynamic range (up to 222) or who needs

to follow closely the loss of significance in his arithmetic operations.

The entire process of addition and normalization, as described below, is

expected to take two clock cycles, or three cycles for a register to register

operation. One clock cycle is associated with transfer of the operands from

another function module followed by addition, one clock cycle for

normal ization, and one to return the result to another function module.

For subtraction operations we note that it is only necessary to take the

two's complement the appropriate operand, introduce an appropriate carry into

the least significant bit position, and then add. The complementation of the

operand is expected to be done ahead of time. This is taken care of most

easily by a feature of the adder output that allows its result or its

complement to be placed on the bus. If it is known ahead of time that a result

will be subtracted later, then the output complement is selected.

The remainder of this section is divided into two parts, that on the

addition and that on normalization of the result.

Addition

The basic problem in addition is alignment of the mantissa. This is

normally done in three steps: determination of the larger operand, shifting the

smaller operand mantissa, and adding the results. The corresponding hardware

to perform each of these functions is shown in Figure 10. The circuit consists

of two input latches to hold the operands, a subtractor to determine the larger

of the two, a shifter to align the mantissa and a conventional ripple type

adder.
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The first half of the first clock cycle is used to put the operands on the

bus (from a register or other function module) and shift the mantissa of the

smaller operand. During the second half of trie first clock cycle, the two

uperands are added. The second clock cycle could be used to return the result

to a register (or to the normalization circuit). The time associated with

driving the buses is fairly small because it is a pull-down operation. Spice

simulations we have performed (Appendix C) show that for 5 m feature sizes a

2pf bus line (approximate capacitance of that on MOP chip) can be pulled down

with a transistor having W/L = 6 in approximately 30nsec. This leaves 95nsec

(for 5.5 m, 4MHz slow clocks) to perform the subtraction of exponents and

shifting. If a Manchester type subtractor is use for the exponent section,

approximately 36nsec will be required to do the subtraction, leaving an

adequate 59nsec for shifting and error margin. (We assume that for smaller

feature sizes these times will scale proportionately.)

Since one doesn't know ahead of time which of the exponents is larger, the

output of the subtractor can be either positive or negative. Although this

information is sufficient to determine which operand is larger and can be used

to generate the control signals to the pass transistors controlling the input

to the shifter in Figure 10, it is not sufficient to control the shifter

itself, shown in Figure 11. The shifter needs at its control inputs (C. in

Figure 11) binary values corresponding to the number of bits of shifting

desired. For this reason it is necessary to build the dual subtractor unit

shown in Figure 10. This unit will produce two outputs, corresponding to the

two possible subtractions of the operands. The positive output will always be

used to control the shifter. It would be possible to use the same subtractor

to perform both subtractions, but the time lost would probably result in the

addition of an extra slow clock cycle to the overall addition time. The
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increased hardware is small compared to the total dedicated to the entire

addition operation.

The shifter network in Figure 11 consists of a set of bus lines connected

by pass transistors. The set of pass transistors controlled by CI shifts bits

by one, those controlled by C2 shifts bits by two, and so forth in a binary

progression. The maximum number of pass transistors in series will then be of

order log(n) (e.g., 4 for a 24 bit mantissa). We expect then that the shifter

will not consume much area (less than half that of the ripple adder). The

delay through four pass transistors should be equivalent to one gate, therefore

making it very fast.

Sign extension is a very important consideration for two's complement

arithmetic. As a word is shifted, the bits which are shifted over must be set

equal to the sign bit. This feature is introduced by connecting the sign bit

to the pass transistor inputs at the bottom of the shifter array as shown in

Figure ii.

After the operands pass through the shifter they are latched at the end of

the phase one half of the slow clock cycle into the ripple adder (Manchester

type adder). During the phase two of the slow clocks, the mantissas are added.

The results are available to be transferred to another function module on the

next clock cycle.

if both of the operands have the same sign, it is possible that there

could be overflow during the addition. For this reason there are 25 full adder

cells instead of 24. All 25 bits can then be passed on to the normalization

unit to perform the right shift of data by one bit. If the output of the adder

is to go to a function module other than the normal ization unit, only the most



significant 24 bits are put on the bus.

Normal ization

The problem of normalizing a word or shifting it appropriately until the

most significant bit is just to the right of the decimal point is actually more

difficult than the floating point addition described above. The basic

functional blocks, shown in Figure 12, are similar to those of the adder

section. There are two possible inputs, one directly from the adder, and the

other from one of the chip buses. As mentioned above there are 25 inputs from

the adder and only 24 from the chip buses.

The functional block labeled "Sianificant Bit Counter" counts the number

of leading "l's" or "O's" (nonsignificant bits) using a circuit such as that

shown in Figure 13. The first logic stage in Figure 13, consistino of

exclusive OR gates, is used to identify changes in data polarity from bit to

bit. The NOR chain uses this information to generate an output in which the

number of ones is equal to the number of leading "l's" or "O's". The last set

of exclusive OR gates detects the position of the 1 to 0 transition, which

marks the position of the desired decimal point.

The encoder section takes the above described output and generates the

binary equivalent of the number of shifts reouired to correctly normalize the

input. This circuit deviates slightly from the concept of identical bit-sl ice

elements in that each encoder slice must cenerate a binary number eouivalent to

its position in the word. However, as can be seen, each encoder slice is built

identically except for five very short connections which are used to set the

binary count. The binary count is either addea to or subtracted from the

exponent depending whether the shift is to the right or left, respectively.
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The shifter is identical to that in Figure 11 except that shifts are in

the opposite direction (left) for normal ization. As a result the shifter

hardware will be identical to that in Figure 11 except that it is reflected

about its shorter axis.

The operation of the circuit begins with the latching of the input word

from the bus or adder at the end of slow clock phase one. (The encoder outputs

have been precharged during slow clock phase two.) After loading the input

word, the encoder outputs are latched to the exponent adder/subtractor at the

end of phase two. As in the adder, exponent handling and shifting are done

during the phase one clock cycle.

The primary time bottleneck is in the NOR chain which counts the number of

nonsignificant bits. If this NOR chain is too slow, circuits are available

that can perform the same function using a carry-propagate approach as in the

adder section.

II-E. Serial I/0 Ports

Communication requirements between adjacent PEs are an important

consideration in systolic array design, due to the large amount of information

passed and the large number of PEs on the receiving end (as many as eight). In

order that there be a balance of communication and computational needs we

propose adding at least four bidirectional serial I/0 ports to each chip,

organized as shown in Figure 14. As can be seen, the I/0 ports are arranged in

a natural way to aid flow of data through PEs. If higher bandwidths were

required each I/0 port could be replicated the appropriate number of times.

For example, with eight I/0 ports two words could be passed simultaneously in a
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given direction between any two PEs.

A functional block diagram illustrating the major components of a serial

I/0 port is shown in Figure 15(a). In order to facilitate integration into a

bus oriented processor the I/0 port is built as a dual port register-shift

register combination (parallel/serial multiplexer). The register is capable of

reading or writing to either of two buses using the read A or B, write A or B

control lines.

In order to increase I/0 transfer rates it is natural to use the hiah

speed clocks available to each PE. The high speed clock control circuitry,

shown in Figure 15(b), is identical to that described in Section II-B. These

clocks are supplied to the I/O function module along with a control signal M,

which determines the direction of the shift and also disables the appropriate

driver circuitry as shown. A major consideration in the serial I/O design is

the loading requirements. If each PE occupies a single chip, the output load

would be at least the capacitance associated with a couple of pads. In order

to match this drive requirement with that of the shift register stages,

pipelined output driver stages need to be added. The overall transfer speed

would suffer only slightly due to the increased latency if the number of

pipelined stages were much less than the word length. These stages would be

modular and could be added as necessary. An example of one pipel ined stage is

shown in Figure 16.

The operation of the serial I/O function module would be very

straightforward. The operation as a register would require the same control

signals as any other register. An error could occur only if one tried to write

or read from a register while it was in the process of transferring

information. To send data to an adjacent PE one would have to select the
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appropriate I/O function module (i.e., the one which has a hardwired connection

to the desired adjacent PE) and load the desired word into this module, if it

wasn't there to begin with. A second set of control lines sends one of two

signals (Reg A left or Reg A right in Figure 15(b) ) to the function module

which initiates transfer of data. Of course appropriate signals would have to

be simultaneously sent to the adjacent chip so that it can receive the data

word. The high speed clock driver/control circuitry then generates the

appropriate number of clock cycles to transfer the data and then shuts itself

off. At this point the data is now in the appropriate function module on the

adjacent PE. In addition there is a new word in the register from which the

data was originally sent. All I/O ports receive words while sending them.

A logic level diagram of several bit-slices of an I/O port is shown in

Figure 17. Each bit-slice consists of a D-type FF and three gates used to

direct the flow of data either to the left or right. The corresponding circuit

level diagram for one of the bit-slice-s is shown in Figure 18. Six control

lines plus two of the high speed clocks would be used to operate each

bit-slice.

A possible problem regarding the transfer of information serially between

PE's has to do with synchronization of the oper tion. Since this transfer can

take place between two I/O units widely separated physically, skewing of the

high speed clock could prevent correct operation. One solution to this is to

use some handshaking scheme, although this would certainly degrade performance

and increase hardware overhead. Alternatively, one could slow the operation

down or transfer some of the bits in each word in parallel.
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II-F. Division

There are numerous algorithms for performing division, and for

implementing each of these there are many possible hardware schemes. In this

section we will focus on some of the schemes which we feel are the most

promising, while briefly describing some other alternatives.

Our basic goal was to identify an algorithm that would allow division to

be performed on a linear array of carry-save type cell s at a rate eaual to that

of multiplication. Since our multiplier is pipelined with a cycle time

associated with only a couple of gate delays, this was a difficult task.

Although we have identified a number of possible divider designs based on a

carry-save type cell, it is not clear yet whether the desired speed can be

obtained. This is basically due to two reasons: first, one does not know the

quotient ahead of lime, whereas for multiplication the multiplier is always

known; this prevents us from pipelining the operation. Second, a large amount

of time is generally needed in order to select a quotient digit. Although we

can do little about the first problem, we have identified a couple of

attractive schemes for simple quotient digit selection (truncation) that appear

suitable for high speed divider implementation. We estimate that the best

speeds obtainable will be between I and 3 times that of the multiplier.

The algorithms we have looked at are

Direct Methods

Multiplicative Normalization (MN)

Combined Multiplicative Normalization and Self Restoring
Techn i aues

Iterations Based on Newston-Raphson Formula

CORDIC
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.4e feel that the first three of the five are the most appealing from the point

of view of the VLSI generic type implementation we are seeking. These are

discussed more fully below.

Direct Methods

The normal pencil and paper approach to division is a trial and error

method. The advantage of the direct algorithms is that the trial and error

part of the algorithm has been replaced by a simple recursion that obtains the

result in a given number of steps.3 As in multiplication, much time can be

wasted adding and subtracting partial remainders due to the limitations of

carry propagation. It would be more desirable to use carry-save adders and

subtractors. However, direct division in its simplest form reouires

information as to the sign of the remainder to select the quotient digit.

The carry-save result would not provide this information. An alternative

scheme is to use a redundant number representation4'5, e.g., a= -1,0,1 for

radix-2. With this approach one can still use a carry-save technique for

evaluation of partial remainders. The quotient digit selection is based on

the first 3 (radix-2) or 7 (radix-4) most significant bits of the partial

remainders (a small carry propagate adder (CPA) is used for just these bits).

For the radix-2 case the recursion is

3. Edward Braun, Digital Computer Design, Academic Press, N.Y., 1963.
4. J. E. Robertson To-oNe-w ass igital Division Methods," IRE Trans. on
Elect. Computers, EC-7, pp.218-222, Sept. 1958.
T._T-YTos Ercegovac, Private Communication.
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Rj+I =2Rj-qj+IX

Rj=j t h partial remainder

x=div isor

qj=jth quotient digit (redundant number representation)

R0=dividend

and the selection rules for the quotient are

r 0 -1/4<2Ri<1/4

aj.l

sign otherwise

A(
s + if sign(R )=sign(x)

sign =

A(
if sign(R )isign(x)

where R. is the CPA output.3

A simplified functional block diagram of an implementation is shown in

Figure 19. The circuit is initialized by loading the dividend into the

carry-save subtractor. The partial remainder estimate Rj supplied to the 3-bit

CPA is used to generate the first quotient digit. This result is used to

determine whether -1, 0, or 1 times x is to be subtracted during the next

cycle. After n+1 cycles, qn has been obtained. The final quotient result must

be sent to a carry propagate adder in order to eliminate its redundant form.

The advantages of this division scheme are in its simplicity, regularity

and fit to our bit-slice approach to processor design. The primary
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disadvantage is its lack of speed. It can't be pipel ined because the

carry-save unit can't operate until the 3-bit CPA and the quotient circuit have

finished, a total of approximately 5-6 gate delays. In addition this is only a

radix-2 algorithm, whereas the multiplication is a radix-4 algorithm. A radix-4

implementation 4 would only require half the number of partial subtractions, but

the quotient digit selection would be much more difficult.

Multipl icative Normalization

For the division y/x, if one can introduce a sequence of multiplications,

M, such that Mx=1, then the same sequency applied to y will yield the desired

quotient. This procedure, called multiplicative normalization (MN), has been

mechanized in a way that requires multiplication by (1+Sk2-k-1) , which can be

done using only additions and shifts.6 This approach uses the recursions

Xk+I = xk(1 + sk2-k-1 Xk>l, O<k<n

Yk+1 = Yk( 1 + Sk2-k-1 yk->Y/x as k

x0 = x,y0 = y, 0.5 < x,y < 1.

In order to find sk it is more convenient to work with scaled remainders,

Rk = (xk - 1) 2k

Rk+ 1 =2Rk + sk + 
SkRk2

where for k>1,

6. B.G. deLugish, "A Class of Algorithms for Automatic Evaluation of Certain
Elementary Functions in a Binary Computer," Dep. Comput. Sci., Univ. of
Illinois, Urbana, IL, Rep. 399, June 1, 1970.
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1, if Rk<-3 /8

sk = -1, if Rk > 3/8,

0, otherwise.

and for k=O

r 2, if -1/2 < R0 < -1/4

s0 10, 
if -1/4 <R 0 < 0.

A functional implementation for these equations is illustrated in Figure 20.

Here, there are two separate sets of hardware, one for recursion in Rk and the

other for the quotient Yk" Only an estimate of Rk is required at each

recursion so that a small 3-bit CPA is required along with a few gates to

determine sk* This approach also requires a variable shifter network for both

of the two hardware sections.

The MN approach is very similar to the direct methods in that they both

use carry-save circuits and the selection operation for qj or sk is very

similar. If fast shifter networks can be built, then the speeds of the two

algorithms will be approximately the same. The major difference between the

two is that the MN approach uses approximately three times the hardware.

However, there is an advantage to MN in that there is far more generality in

its capabilities, which include multiplication, square root, logarithm,

exponentials, trigonometric functions and inverse trigonometric functions. 7

7. Milos D. Ercegovac, "Radix-16 Evaluation of Certain Elementary Functions,"
IEEE Trans. on Computers, C-22, pp.561-566, June 1973.
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Combined Multiplicative Normalization and Non-restorinq Division

Although the previously described algorithms are reasonably fast fit

well into our bit-slice, carry-save, serial-parallel MOP chip organization,

they still do not satisfy our basic goal of having a divider that operates at

the same speed as our MOP chip multiplier. We feel that the best approach to

achieving this goal would be to use a higher radix algorithm for division.

This effectively allows us to reduce the number of recursions by k, where r=2k

is the radix. The problem with this approach is that while the number of

recursions is reduced, the selection procedure for qj or sk becomes increasing

complex, increasing the time required at each recursion. For example a radix-4

implementation of the direct method 4 requires as input to the quotient

selection circuit the first seven bits of the partial remainder. Thus, the CPA

addition takes longer and the quotient selection circuit is more complex as

well.

A promising alternative to this problem has been suggested '
9 which

combines both MN and direct methods (see Appendix A). In this scheme MN is

used to transform both the dividend and divisor into a range which allows the

quotient digits to be selected by simple truncation of the partial remainders.

Limited CPAs can be used to form the most significant part of the partial

remainder with the quotient select circuit replaced by a simple truncation

circuit. For a radix-4 implementation of this circuit, the speed could be

increased by a factor of at least two. The basic recursions for this algorithm

(radix-4) are

8. Milos D. Ercegovac, "A Higher-Radix Division with Simple Selection of
Quotient Digits," 6th IEEE Symposium on Computer Arithmetic, Denmark, 1983.
9. Milos D. Ercegovac, 'ivis'ion Schemes with Simplified Selection Rules and
Prediction of Quotient Digits," Unpublished Report, August 3, 1983.



R j+I =4(Rj-qjx

aj+ =Trunc[4(Rj-qj+c)]

where

1/2 if Rj>qj

-1/2 otherwise

and

x = transformed divisor

The minimum time step required to execute this algorithm is the time to compute

qjx plus the time to compute Rj+ I . Unfortunately, it is not possible to

pipeline these calculations so that this radix-4 algorithm can not be executed

as fast as that for multiplication. However, a radix-8 implementation looks

promising.

CORDIC Algorithm

The CORDIC algorithm 10' 1 1 is well known for the wide variety of

elementary functions which it can evaluate. Modifications have been

suggested to speed up the algorithm and incorporate floating point

operands. 12 To implement this algorithm requires three adder/subtractor

units, a ROM to store n integers (n=bit length), plus a couple of shifters.

At each of n recursions, three "ax+b" type calculations are performed.

Finally, a scaling operation is sometimes necessary.

The drawback of this algorithm is the considerable amount of hardware

10. J.E. Volder, "The Cordic Trigonometric Computing Techniaue," IRE Trans. on
Electronic Computers, EC-8, pp.330-334, Sept. 1959.
1 T-J.S-Walther, "A Unified Algorithm for Elementary Functions," 1971 Spring
JCC, pp.379-385.
Tr H.M. Ahmed, PhD Thesis, Stanford, 1980.
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required to implement it. (It requires more than tnree times the hardware used

in the direct method.) In its basic form it is also slow; however, use of a

higher radix and introduction of redundant numbers could provide the desired

speeds.

Iterations Based on Newton-Raphson Method

The Newton-Raphson equation allows one to find progressively more accurate

solutions to the equation f(x)=O using the formula

xi+1 =x i-[f(x i )/f'(x i)] (1)

For the case of division f(x)=(1/x)-s, where s is the reciprocal of x. This

gives x i+1 =xi(2-sx).

One popular variation on this method is the Goldschmidt algorithm
1 3

which was implemented on the IBM 360 Model 91. If y/d =q and we find some

number k such that kd=l, then ky=q. The number k represents a sequence of

multiplications by (2-xk), where xk+1=Xk (2-xk) and x0=d, corresponding to the

case where s=1 in the Newton-Raphson formula above. If d is normalized (d>1/2)

and we let d=l-x, then x0 =1-x, x 1 =1-x
2 , and xn=1-x2n , so that xn converges to

unity quadratically. Then, if Yk+1=Yk(2-xk ) , yO=y, then Yk+1 will approach a

quadratically as d approaches 1. The quadratic convergence is particularly

useful for large words, because each iteration doubles the number of known

bits. No remainder is generated, however.

The principal problem with the iteration techniques is that they require

several passes through a multiplier, making them necessarily slower than

13. R. E. Goldschmidt, "Application of Division by Convergence," M.S. Thesis,

MIT, Cambridge, MA, June 1964.
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desired. (Pipelining can be used for this algorithm to speed it up, however,

with the addition of much additional hardware.) Moreover, it is not suitable

for integration into our bus oriented, bit-slice chip organization, because the

multipliers must be fast parallel implementations with the special busing

hardware to permit rapid data movement between iterations. (Parallel

multipliers are not well suited to bit-slice organizations.)

II-G. Square Root

Numerous algorithms exist for evaluating square roots 3,5 ,7 ,11 ,14 ,15

manyh commonality between the problem of div, ion and square root, we will

only briefly discuss this topic.

Techniques Based on Newton-Raphson Iterations

Iterative techniques are perhaps best known for solving the square root

problem and are reasonably fast due to their quadratic convergence. If one

uses f(x)=x 2-a in Equation (1), then the iterative equation for the square root

is

x n+1 =[x n+ (a/xn )]/2

The disadvantage of this formulation is that a division operation is required

every iteration. An alternative formulation is to find the reciprocal of the

square root. This uses the iteration

14. T. Chi Chin, "Automatic Computation of Exponentials, Logarithms, Ratios and
Square Roots," IBM J. Res. Develop., July 1972, 380-388.
15. M. D. Ercegovac, -On-Line Square Rooting Algorithm," Proc. Fourth IEEE
Symposium on Computer Arithmetic, Oct. 1978, pp. 183-189.
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Xn+=3x n-(xn ) 3/(2a)

More multiplies are required each iteration; however, division is required only

once.

Odd Series Approximation

This technique is based on the observation that the square root of the sum

of a series of odd numbers: 1, 3, 5, . . . has a value that corresponds to the

3position of the highest term in the series . For example, the sum of 1, 3, 5,

and 7 is 16 and the square root of 16, which is 4, corresponds to the position

of 7 in the series 1, 3, 5, 7.

The square root extraction procedure can be reduced to three steps:

(1) Separate the bits of the radicand into groups of two bits each,

starting from the binary point.

(2) Begin the actual extraction operation at the first group of bits from

the left that does not contain two zeroes. Al ign a "I" with the

right-hand bit of this group and subtract. The remainder will be

nonnegative and a "1" is entered in the root for this group. For each

double "0" group to the left of this group, a "0" is entered in the root.

(3) For all succeeding groups, the trial factor to be subtracted from the

remainder is the expression (4r n+1), where rn- 1 pertains to the result

obtained up to the (n-1)th iteration. The right hand digit of the trial

divisor is aligned with the right hand digit of the group for which it is

used, and subtracted. If the remainder is nonnegative, a "1" is entered

as the root for that group. If the remainder is negative, the root is "0"

and the subtraction is restored.
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An example of square root extraction is given in the example below.

. I 1 0 1
1.0 10 10 1O

1
--T 10

1 01 =(4 x 1) + 1
1 10

11 01 = (4 x 3) + 1
Restore
1 10 01
1 10 01 (4 x 6) + I

Check: .10101001 = 169/256

.1101 = 13/16

This algorithm has some important advantages over the direct division

approaches described in the previous section. Most important is that the

selection of the result for each group is very simple, just a test for a

negative result. Keeping in mind that it is not necessary to store a negative

result, the need for restoration will not cost much in terms of speed (this is

equivalent to non-performing division).
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ABSTRACT

A higher-radix division algorithm with simple selection of

quotient digits is described. The proposed scheme is a combina-

tion of the multiplicative normalization used in the continued-

product algorithms and the recursive division algorithm. The

scheme consists of two parts: in the first part, the divisor and

the dividend are transformed into the range which allows the quo-

tient digits to be selected by rounding partial remainders to the

most significant radix-r digit in the second part. Since the

selection requires only the most significant part of the partial

remainder, limited carry-propagation adders can be used to form

the partial remainders. The divisor and dividend transformations

are performed in three steps using multipliers of the form
+sr-k

1 skr as in continued product algorithms. The higher radix

of the form r = 2 k, k=2,4,8,..., can be used to reduce the
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number of steps while retaining the simple quotient seiecticn

rules.



I. INTRODUCTION

In this article a division scheme characterized by a simple

method for selecting quotient digits is described. The scheme

also has several properties important for modular implementation.

Division algorithms have been of a wide interest [ROBE58, METZ62,

ATKI68, ANDE68, TAYL81] because of the problems of fast and effi-

cient selection of quotient digits and computation of partial

remainders, and compatibility of implementation with other more

frequent arithmetic operations such as multiplication.

The scheme for division suggested here consists of two

parts. In the first part the divisor X is forced into a suitable

range and the dividend Y is adjusted. The divisor and dividend

transformations are performed using a few initial steps of the

iterative multiplicative normalization algorithm [ERCE73,

DELU70. In the second part the quotient digits are obtained by

a recursive algorithm IERCE75, ERCE77] in which the selection can

be performed by rounding. The proposed division scheme generates

an m-digit quotient in m+3 additive steps which do not require

full precision carry propagation. The scheme also provides the

remainder.

The division schemes based on the range transformation have

been considered before fSVOB63, KRIS70, ERCE751. The main con-

tributions of this article are implementation-efficient transfor-

mation and a simple quotient selection method.
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In Section II a derivation of the division scheme Is

presented. A radix-16 division algorithm is given in Section 7I.

The implementation aspects are discus ;ed in [ERCE831.

II. DERIVATION OF THE DIVISION SCHEME

Consider the division problem

Y = XQ + R (1)

where

X is the n-bit divisor, IXI 4 £1/2, 1);

Y is the 2n-bit dividend, IYl < IX(;

Q is the n-bit quotient and

R is the corresponding remainder.

A binary recursive division algorithm computes sequentially

the partial remainders and the quotient digits using the recur-

s Lon

R]+ I  = 2Rj - qj+l X ,  =0,1,2,...,n-l (2)

where

R0  Y is the initial remainder,

= f(R ,X) is the j+l-th quotient bit, and
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f is a selection function.

in order to reduce the number of steps, the binary algorithm

can be modified so that b bits of the quotient are obtained per

step. That is, the radix of implementation is defined to te

r = 2b
. However, the use of a higher radix makes the selection of

the quotient digits as well as the computation of the partial

remainders more complex [ROBE58, ATKI681.

We now describe a division algorithm in which the selection

can be performed by a simple rounding.

Recursion and Selection

The recursive algorithm for division in which the quotient

digits are obtained by rounding partial remainders to the integer

part and taking the integer part as the quotient digit requires

tne divisor to be in the range

[ 1 - X, 1 + ( 1 (3)

wrere ( is I constant between 0 and 1, to be determined later.

:t also requires the use of a redundant representation of the

&,otient digits. A symmetric redundant digit set (signed-digit

set AV:2611) is used:

D O  = {-0 - ., i,0 i,.. , }(4)

In e r e

r/2 < p K r and r is the radix.
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The recursion is

R = r(Rj_ 1 - qj_lX') 5)

and

qj = SELECT(Rj) 5)

tJsinR 'IRI + 2 if IR I < P

sign Rj [IRjJJ otherwise

where

R. is the j-th remainder;

X' is the scaled divisor such that

I - x IX'l < 1 + ,

and

qj < D9 is the j-th quotient digit.

initially,

R 0 = y,

is the scaled dividend Y such that

IR 0 1 < p + P and 1/2 < P < - 1

The validity of the recursion and the selection functi-. is esta-

blished by proving the following two claims.
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If the bound cx is

0 < c '1 l -a (r 1)](8)093
an. qj is the j-th quotient digit from a signed-digit set

D = {-p,...,-lQ,1,...,q}, r/2 < p < r, selected according to

th.e function SELECT, then the partial remainder R, satisfies

R < p + (9)

Prof 02.;

To show that the partial remainders are bounded we proceed

by induction. By definition (7): /
p1- /-\

R 0 +

Assume

R 3-i < P+

Let A = - X' so that iAI = x. Then

R,: r_ R _ - q]_11 + rlAl lq (20)

- r p + - ) + rox

= r 3 + r[irJ - - )1

-p + r

tecause, by definition of the selection functicn SELECT, -he
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choice of digit qj can always be made such that

IRj - qj()

,i m2-i

Let Q = - qir be the computed quotient. Then
i=O

L'L - r-m (12)

Also, R = r-m-lRm+l

Proof:

By substitution

Y'= X2 5 qi r -  + r-mRm+l (13)
i=O m

and

ILL Q *1 < -M 1'RI'a
- IX'i mi (14)

= r -r -O

= r - m for p = r-l

< r- m for p < r-1

From (13, 14), R = r-m-iR m+

I A
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According to the analysis of the rounding selecticn methcc

[ERCET5] the bounds o, P, p and the selection interval overlap .

are related as follows. First, in order to have efficient imple-

mentation of single-digit multipliers, required by the division

recursion, the maximum digit value should be [ATKI0]:

9 < 2 r 3 )(5
- 3

Therefore, from (7):

1/2 < P < 2/3

nte2hand, (1 + L, where A is the overlap between

the selection intervals [ERCE75]. Therefore, the upper bound on (x

can be written as:

= iI - 3 ]

r 4
For = !/r,

r 2 3(16)
4r2

This bound will be used to define the range of the transformed

divisor.

To transform the divisor into this range and ad-ust the

dividend Y, we adopt the multiplicative normalization technique

[DELU70, ERCE73].
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Range Transformations

The multiplicative normalization of a given argument

IX0 j 4 [1/2,1)

is defined as a sequence of transformations such that

p-l
1-<x I X0 i=0Mi i I 1+(X (17)

i=0

for a given constant 0 . < 1 and the number of steps p. The

multipliers are of the form Mk = 1 + Sk r k . where r is the ra-

dix-and Sk is a digit in a redundant radix r number system. The

form of the multipliers simplifies the implementation since the

full-precision multiplication is replaced by an addition, a sin-

gle radix-r digit multiplication and a k-position shift.

The multiplicative normalization is performed recursively:

Xk+ 1 = Xk(l + Skr-k), 0jk<p (18)

The digit value of Sk is chosen such that the error ek+l after

step k is

Iek+lI = Ii - Xk(l + Skr-k) i < -- r - k  (19)

The number of the transformation steps p can now be obtained from .

the following condition, implied by (16) and (19):

le I <, (20)

Assuming an overlap n = 1, it follows that, for r 2 8, p2 3 . That
r

is, three steps are sufficient to transform given divisor X and

dividend Y into the required range.
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The multiplicative normalization is conveniently performed

using a recursion on scaled differences (remainders). Let

Dk = rk-l(Xk - 1), O<k<p (22)

From (18) and (22), the scaled difference recursion follows:

D k+1 = rDk + Sk + SkDkr k+1, O<k<p (23)

For p=3, the normalization procedure requires determination of

SO, S1 and S2 . A complete derivation procedure for the selection

rules is discussed in [ERCE72]. For the sake of brevity, we only

show the radix-16 rules in the next stction.

III. RADIX-16 ALGORITHM

In this section the division scheme is illustrated for r=16.

The algorithm is as follows:

/* Part 1 - Range Transformation

/* Inputs: Divisor X0 4 [1/2,1)

Dividend Y0, 1Y0 1<1X 0
)

/* Outputs: Transformed divisor Xt

Transformed dividend Y'

1: if l/2X 0<5/8

then

1 <-- 2X0 - 1

Y I-- 2Y0

else
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D1 -X - 1 -

Y1  Y 0

2: S~ 1<- signD,116( D1 + U 1)]
3: D2 < 16D 1 + S1 + S+D1

y _ ( +S16-i 1
4 Y2 -  Y1 ig D 1 ( 2 + ) 2

5: X' <- (16D 2 + S2 + S2 D2 16 -  + 1)16-2

y' <- Y 2(I + S216 - 2)

q_l= 0

/* Part 2 - Division Recursion

/* Inputs: Divisor X'

Dividend Y'
m--

/* Outputs: Quotient Q* = - qil6'

i=0 2

/* Remainder R = 16-m-iRm+1

7: For j = 0,1,2,..., m do

7.1: R. <- 16(Rj 1 - Xlqj'l)

7.2: qj <-- SELECT(Rj)

END

The selection function SELECT, defined in (6), is performed

on an estimate Aj of the partial remainder such that

j_6 The terms U1 and U2 are six-bit rounding con-

stants defined as functions of the seven leading bits of the

truncated scaled difference D,, j=0,1,2.
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6
U k - (24)

where the switching expressions for ui s are

u1 = U2 = 0,

U3 = Kldod 2 ,

U4 = Kld 0d 4 (d2 + d3 ) ,

U5 = Kl(d 0 + d3 d4 ) + K2(d 0 + dl(d 2 + d3 ) + d6]

u6 = Kld 3 d4 + K2d 0 (dI + d2 d3 )

and K1 and K2 denote steps 1 and 2, respectively. The derivation

of these step-dependent rounding constants is based on the selec-

tion intervals given in the Appendix. More detailed discussion

can be found in [ERCE72].

An example of division is given in Figure 1.

IV. CONCLUSION

A scheme for division has been presented. It consists of a

3-step transformation of the divisor and the dividend into a

range which allows use of a recursive higher-radix division algo-

rithm with a simple quotient selection method. A detailed

derivation of the range transformation requirements and the pro-

cedure has been described and an algorithm for r=16 has been

given. The implementation details and the performance are dis-

cussed elsewhere (ERCE83].
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Appendix

The selection intervals for S1 and S2 are shown in Tables 1

and 2, respectively. The detailed procedure for the derivation is

given in [ERCE721.

S1  64D 1  64D 1

10 -26 -23
9 -24 -22
8 -23 -20
7 -21 -18
6 -19 -16
5 -17 -14
4 -14 -11
3 -12 -8
2 -9 -5
1 -6 -2
0 -2 3

-1 2 7
-2 7 12
-3 12 18

Table 1: Selection Intervals for S1

S2  6412 64D 2

10 -42 -36
9 -37 -33
8 -33 -29
7 -29 -25
6 -25 -21
5 -22 -18
4 -18 -14
3 -14 -10
2 -10 -6
1 -6 -2
0 -2 3

-1 2 6
-2 6 10
-3 10 14
-4 14 18
-5 18 23
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-6 23 27
-7 27 31
-8 31 35
-9 35 39

-10 39 42

Table 2: Selection Intervals for S2

Divisor xO = 0.8107509300,
Dividend yO = 0.5990471500,
Quotient Q = 0.7388793868

Part 1:

After Step 1: dl= -0.1892490700, yl= 0.5990471500, sl = 4
After Step 2: d2= 0.2150186000, y2 =0.7488089375, s2 = -3

Transformed divisor and dividend:

X'= 1.0015624282, Y'= 0.7400338328

Part 2:

i Remainder q Quotient Error

1 -4.1844575266 1 1.0000000000 -0.2611206132
2 -2.8513250219 -4 0.7500000000 -0.0111206132
3 2.4537962023 -3 0.7382812500 0.0005981368
4 7.2107415359 2 0.7387695313 0.0001098555
5 3.1968726195 7 0.7388763428 0.0000030440
6 3.0749653602 3 0.7388792038 0.0000001830
7 1.1244492114 3 0.7388793826 0.0000000042
8 1.9661885316 1 0.7388793863 0.0000000005

(All numbers are represented in decimal)

Figure 1: Example
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-DIVISION SCHEMES WITH SIMPLIFIED SELECTION RULES

AND PREDICTION OF QUOTIENT DIGITS

Milos D. Ercegovac

August 3, 1983

Report No.1

I. Introduction

in a previous report, a paper presented at the 6th IEEE Sym-

posium on Computer Arithmetic [ERCE83], a general division scheme

was presented, based on a divisor/dividend transformation tech-

nique such that the selection of the quotient digits can be per-

formed by simple rounding.

In tnis report we elaborate on the implementation and per-

formance aspects of a radix-4 variant. Of particular interest is

the fact that the next quotient digit can be obtained in parallel

witn the next remainder computation.

The discussion and results discussed here are preliminary

ana require further refinement.

2. Divisor and Dividend Transformation

We follow closely the results from [ERCE83] in this deriva-

ton.
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(X= > 0.01564r 2 64

so tnat tne transformed divisor X is in the interval [1-1/64,

1+1/64]

The scaled remainders for the transformation are defined as

4 k-1 ( 1)Dk - Xk-l

where X = X. We want that IXp - i <1/64 or, equivalently, that

D 4-P-'-' 1/64. Assuming that IDp 1, p=4.

The expressions for the transformation are:

2X I ifX < 0.75
D= - = IX 0 - 1 otherwise

That is, SC 0 {0,i}.

D = 4D + j- + SID

5D. 1 if S 1

D, 41D, if S 013D 4D 1 if S = 01

2 1

D- = 4D 2 4S2 + S2 D 2 /4
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D4 = 4D3 + S3 + S3 D 3 /16

The transformed divisor is

* -

X = X= D 43 + 1

The initial dividend is transformed using the following recur-

sion:

Yk+l = Yk(1 + Sk 4- ) k=0,1,2,3

Q4 Si , S2 and S3

The selection intervals are determined by evaluating

D= (Dk+l - S + Sk4-k+1
f

for Dk+ 1 = dmax/dmin and all values of Sk = -2,-1,0,1,2. Assum-

ing -0.99 < D4 < 0.99 we obtain the following intervals:

dmin = -0.99, dmax = 0.99

Selection Intervals for k= 3

s = -2, dmin = 0.2606452, dmax = 0.7716129, delta = 0.7716129

s = -1, dmin = 0.0025397, dmax = 0.5053968, delta = 0.2447517

s 0, dmin = -0.2475000, dmax = 0.2475000, delta = 0.2449603

s = 1, dmin = -0.4898462, dmax = -0.0024615, delta = 0.2450.8E

s = 2, dmin = -0.7248485, dmax = -0.2448485, delta = 0.24499-7

dmln=-0.7248484848, dmax=0.7716129032

Selection Intervals for k= 2
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s = -2, dmin = 0.3643290, dmax = 0.7918894, delta = 0.791d894

s = -1, dmin = 0.0733737, dmax = 0.4724301, delta = 0.1081011

s = 0, dmin = -0.1812121, dmax = 0.1929032, delta = 0.1195295

s = 1, dmin = -0.4058467, dmax = -0.0537381, delta = 0.12/4740

s = 2, dmin = -0.6055219, dmax = -0.2729749, delta = 0.1328718

dmin=-0.6055218855, dmax=0.7918894009

Selection Intervals for k= 1

s = -2, dmin = 0.6972391, dmax = 1.3959447, delta = 1.3959447

s = -1, dmin = 0.1314927, dmax = 0.5972965, delta = -0.0999426

s = 0, dmin = -0.1513805, drmax = 0.1979724, delta = 0.0664796

s = 1, dmin = -0.3211044, dmax = -0.0416221, delta = 0.1097584

s = 2, dmin = -0.4342536, dmax = -0.2013518, delta = 0.1197526

dmin=-0.4342536476, dmax=1.3959447005

The overlap is indicated by "delta". A set of selection rules is

given next. In these rules, d and s denote the corresponding Dk

ana Sk, respectively.

Select S1

if (d<=-0.1) s = 1;

else if ((d>-0.1)&(d<=0.165)) s = 0;

else s = -1;

Select S

if (d<=-0.33) s = 2;
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else if ((d>-0.33)&(d<=-O.l)) s = 1;

else if ((d>-0.1)&(d<=0.1)) s = 0;

else if ((d>0.1)&(d<=0.39)) s = -1;

else s = -2;

Select S3

if (d<=-0.36) s = 2;

else if ((d>-0.36)&(d<=-0.12)) s = 1;

else if ((d>-0.12)&(d<=0.12)) s = 0;

else if ((d>0.12)&(d<=0.36)) s = -1;

else s = -2;

3. Main Recursion with Quotient Digit Prediction

Once the divisor and the dividend are transformed into the

required range, we apply the following recursion on the partial

remainders.

qi =[Ri + signRi*l/21

Ri+ 1 = 4(R i - qiX)

where R0  Y

A direct implementation of this recursion would require

three substeps:

(i) Select qi,

(ii) Generate qi*x' and
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(iii) Compute Ri+ I .

However, it is possible to overlap the step (i) with steps (ii)

ana (iii). Assume that ql is known. Then, define the recursion

as

Ri~l - 4(Ri -qiX)

qi = -4 qi+c)JI

where

if Pi q
c =otherwise

Therefore, the recursion step contains only two substeps insteac

of three:

Compute Ri+l

I I

Compute qi+ I -------- I

Compute qi+lX* ..... I

I I

-- >> < ---->4

Step i-i Step i Step i+l
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The overall timi -zq of the main recursion would look like

IRI I R2 IR3 I... IRi IRi+l I...

IqI. I q2 Iq3 I ... I gilI qiil I . .

4. A Complete Radix-4 Algorithm

We give a C version of the complete radix-4 division:

#define M 16
#define X 0.5
#define Y 0 .07 40 1786 542
*detine R 4
#define K 1

maino(

double xO, yO, dl, yl, d2, y2, d3, y3,d4;
double quot, power;
float r;
double err, xprime, yprime, rem, remnext;
int i, q, qnext, sI, s2p s3, m;

xO =X; YO = Y; m =M; r = R;

/* Step 0 *

if (xO < 0.75

dl =2.0*xO - 1.0;
yl = 2.0*yO;

else

dl = xO - 1.0;
yl =yo;

/* Step 1 *

=l selone (dl) ;
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d2 = r*dl + sl + sl*dl;

y2 = yl*(l + sl/r );

/* Step 2 */

s2 = seltwo(d2);

d3 = r*d2 + s2 + s2*d2/r
y3 = y2 *(l + s2 / (r*r) );

/* Step 3 */

s3 = seltre(d3);

d4 = r*d3 + s3 + s3*d3/(r*r);
yprime = y3*(l + s3 / ((r*r)*r));
xprime = d4/((r*r)*r) + 1;
quot - 0;
power = 1.0;
rem = yprime;

if (rem > 0.0 ) q = rem + 0.5;
else q = rem - 0.5;

/* Recursion */

for (i = 1; i < m+l ; ++i
{

remnext = r*(rem - xprime*q);
qnext = select(rem, q, xprime);
quot = quot + q*power;
err = yO/xO - quot;
power = power/r;
q = qnext; rem = remnext;

}}

/* Select sl */

selone (d)
dounle d;

int s;

if (d <= -0.1 ) s 1;
else if (H d > -0.1) & (d <= 0.165 )) s = 0;
else s = -1;

return(s);

/* Select s2 */
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seitwo (d)
double d;
{

int s;

if ( d <= -0.33 ) s = 2;
else if (C d > -0.33 ) & (d <= -0.1 )) s = 1;
else if (C d > -0.1 ) & (d <= 0.1 )) s = 0;
else if (C d > 0.1 ) & (d <= 0.39 )) s = -1;
else s = -2;

return(s);

/* Select s3 */

seltre (d)
double d;{

int s;

if ( d <= -0.36) s = 2;
else if (C d > -0.36 ) & (d <= -0.12 )) s = 1;
else if (( d > -0.12 ) & (d <= 0.12 )) s = 0;
else if C( d > 0.12 ) & (d <= 0.36 )) s = -1;
else s = -2;

return(s);

/* Select */

select (d, q, div)
double d, div;
int q;{

int s, k;
double rtrunc, dtrunc;
k = K;

/* Remainder truncated to 6 bits; divisor replaced by 1 */

s = d * 64.0; rtrunc = s; rtrunc = rtrunc / 64.0;
s = div * 64.0; dtrunc = s; dtrunc = dtrunc / 64.0;
dtrunc = 1.0;

rtrunc = ( rtrunc - q * dtrunc )* 4.0;

if (rtrunc > 0) C s = rtrunc + 0.5;J
else s = rtrunc - 0.5;

return(s) ;

M.Ercegovac A-26 Aucust 3

M. rceova



5. Example

x0 = 0.5000000000, yO = 0.0740178654, Q 0.148035,308
dl = 0.0000000000, yl = 0.1480357308
sl = 0

d2 = 0.0000000000, y2 = 0.1480357308
s2 = 0

d3 = 0.0000000000, y3 = 0.1480357308
s3 = 0

d4 = 0.0000000000
xprime = 1.0000000000, yprime = 0.1480357308, ql 0

i Remainder q Quotient Error

predicted next q = 1
1 0.1480357308 0 0.0000000000 0.1480357308

predicted next q = -2
2 0.592'429234 1 0.2500000000 -0.1019642692

predicted next q = 2
3 -1.6314283066 -2- 0.1250000000 0.0230357308

predicted next q = -2
4 1.4742867738 2 0.1562500000 -0.0082142692

predicted next q = 0
5 -2.1028529050 -2 0.1484375000 -0.0004017692

predicted next q = .-2
6 -0.4114116198 0 0.1484375000 -0.0004017692

predicted next q = 1
7 -1.6456464794 -2 0.1479492188 0.0000865121

predicted next q = 2
8 1.4174140826 1 0.1480102539 0.0000254769

predicted next q = -1
9 1.6696563302 2 0.1480407715 -0.0000050406

predicted next q = -1
10 -1.3213746790 -1 0.1480369568 -0.0000012259

predicted next q = -1
11 -1.2854987162 -1 0.1480360031 -0.0000002722

predicted next q = -i
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12 -1.1419948646 -1 0.1480357647 -0.0000000339

predictea next q = 2
13 -0.5679794585 -1 0.1480357051 0.0000000258

predictea next q = -1
14 1.7280821658 2 0.1480357349 -0.0000000041

predictea next q = 0
15 -1.0876713367 -1 0.1480357312 -0.0000000003

predicted next q = -1
16 -0.3506853469 0 0.1480357312 -0.0000000003

6. Binary-level Implementation

(to be done }

7. Perrormance Analysis

(to be done}

8. Alternatives

For transformation part:

- Have a small table of reciprocals of the truncated divisor,

perhaps to 4-6 bits; use three stages of CSAs to multiply

the divisor (2 bits per stage of the reciprocal); propagate

carries to get the transformed divisor; repeat for the dividend

but do not propagate carries.

- Use radix-2 in the transformation part; possibly much si7,pler

implementation.
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- Use radix-16 in the transformation part - details

worked out on the binary level; possibly fewer steps.

For recursion part:

- Implement two steps in one clock period; double

the combinational logic ( CSAs, selection and multiple generator;

M.Ercegovac A-29 Auqust 3



ArPE'DIY B

A VLSI Design of A Radix-4 Carry Save Multiplier

M.D. Ercegovac+

UCLA Computer Science Department

University of California, Los Angeles

and

J.G. Nash

Hughes Research Laboratories,

Malibu, California

Los Angeles

April 1, 1983

Supported in part by the ONR Contract No. N00014-79-C-0866
(Research in Distributed Processing)

Authors' address: M.D. Ercegovac, 3732 Boelter Hall, UCLA, Los
Angeles, CA 90024, (213)825-2660

B- 1



A scheme and a VLSI (NMOS) implementat:on of an area-tie

efficient 2-bit-at-a-tlme (radix-4) 2's complement multo-er are

described. The scheme has a highly modular bit-slice oroaniza-

tion and :t is suitable for bus-oriented chip designs. The logic

specification and the circuit design details are discussed and

analyzed In terms of area-time complexity.
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I. INTRODUCTION

A large class of applications, such as digital signal oro-

cessing and robotics control, require extensive aritnmetic capa-

bilities. By far the most important arithmetic operation is mul-

tiplicazron as evidenced by the availability in the commercial

market of special chips such as TRW MPY-l6HJ.

There are two basic approaches to multiplication algorithms:

recursive (sequential) and parallel (combinational). Parallel

multipliers have higher speed and larger area requirements than

the recursive multipliers.

Recursive multiplication schemes are attractive with respec:

to the circuit area requirements but often unacceptably slow due

to their sequential mode of operation. The number of steps in the

recursIve algorithm is linearly proportional to the preclsion an-4

the step time depends on the partial product representation ana

the adder type. The speed can be improved by a) recoding the

multiplier into a hioher radix r=k, and b) bv reducing tne ste

time using a carry-save adder. The recursion can oe i:noemented

in an obvious manner by an iterative network of carry-save adders

in order to eliminate clockina overhead [HABI ?0. However, suchn

an iterative (comoinational' multiplication scheme requires ap-

proximately an n-fold area i:crease c:mpared to a sequencial mul-

tiplier.
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One of the primary motivations for the design discussed here

was the need for a fast, area-efficient multiplier that can fit

well within a bus-oriented chip organization. A common criticism

of the bus-oriented approach is that it is much slower than

"hardwired" versions of arithmetic processors, which offer much

higher speeds at reduced flexibility and programmability. We

have pursued an alternative approach that combines the advantages

of each. Our chip design integrates a high-speed carry-save mul-

tiplier with a conventional, slower bu- ructure. The design is

also highly modular so that its use in other custom chips is

straightforward. The bit-slice carry-save approach provides, in

addition, flexibility in increasing the word lengths wi:hout

large speed penalties and costly redesign.

II. THE SCHEME

The multiplicand X and the multiplier Y are n-bit fractions

in 2's complement system:

X = (XOxl,...,xn-l)

y ' Ny,l,...,lYn-l)

The multiplier is recoded by a triplet scanning method into

the radix-4 multiplier z=y using the modified Booth's alaorithm

(BOOT 51, ANDE 67, RUBE 751:

Z - (Z0 zlP...,zm_l) zi4{- 2 ,-i,0,1, 2}
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where

m = n/2 (n even)

Z Y2j+l + Y2j+2 - 2Y2j for j=0,1,...,m-l

and yn = 0

The corresponding switching expressions can be obtained from the

recoding table in terms of multiplier bits yn-2' Yn-l' and Yn

f0 Select 2X
142 = yn-i 9 Yn = Jl Select X

I0 Select direct
M1 = 7n-2 = Select complement

t0 No clear
M0 = Yn-2yn-lyn + Yn-2Yn-lyn I Clear

The recoder and the generator of Xzj are organized as shown in

Figure 1.

The product is obtained by the following recursion

P(k+l) = J(P(k) + XZmlk) k =

where the initial partial product is P(O)=0. The addition opera-

tion is carried out using a carry-save adder so that the partial

product P(k), for k=0 to m-i, is represented as a pair of bit-

vectors (C(k), S(k)) where C is the partial carry and S is the

partial sum bit-vector. The product P=XY requires assimilation of
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carries using a carry-propagate adder (CPA). Since the signed

operands are implicitly handled by the recoding no correction is

required in the case of a negative multiplier.

The multiplication recursion is implemented as a pipeline

consisting of three stages: stage S! performs recoding, S2 gen-

erates required multiple of the multiplicand X, and S3 performs

the carry-save addition. The timing of the pipeline is shown in

Figure 2.

When zj < 0, a negative multiple of X is formed in a stan-

dard manner by complementing the shifted/nonshifted multiplicand

X and adding one in the least significant position of the adder.

Since the carry-save addition operation is associative and it

never causes a carry into the least significant pcsiticn, the 1

required in the negation can be inserted into the LSB position

after the step in which the negation was required. This can be

conveniently implemented by inserting a delayed value of the MI

output of the recoder into the least significant bit of the par-

tial carry register.

III. THE DESIGN

The multiplier was designed under assumption of a bus-

oriented, bit-slice chip organization. As a result, custom VLSI

chips requiring multiplier can be rapidly assembled by attaching

required modules to the chip bus. The use of a carry-save, bit-
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slice multiplier scheme also provides important flexibility in

increasing the operand length.

The multiplier organization and its interface to the carry-

propagate adder (CPA) is shown in Figure 3. It consists of a

linear array of bit-slice sections, all of which are controlled

by a set of circuits (MULT CONTROL in Figure 3) outside the ar-

ray. In order to accommodate shifted multiplicand 2X it was

necessary to append an extra full adder cell to the most signifi-

cant position. In addition to the basic full adder logic, each

bit-slice contains storage registers for both X and Y operands

and partial sum S and carry C. The design produces only a single

precision product but it can be easily extended to accomodate

double precision outputs.

The interface with the CPA consists of a single set of pass

transistors that connect partial sum and carries registers with

the inputs to the adder.

The relation of the bit-slice sections to the controller

circuit is shown in Figure 4. As mentioned above, the circuit

pipeline has three stages so that three two phase clock cycles

are required to fill the pipeline. During the first clock cycle,

the low order multiplier bits are shifted into the storage cells,

Yn-2, Yn-l' and Yn" On the 61 phase of the next clock cycle,

these multiplier bits are recoded, producing MO, Ml, and M2. On

the 62 phase of the second clock cycle, these inputs are used to

generate the corresponding multiple of the multiplicand X as dis-
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cussed in Section 2. The l-of-4 decoder performs the appropri-

ate selection and also functions as a control line driver. The

MOor clear signal overrides the select operation. The output of

the select/clear function box is latched at the end of the second

clock cycle. The third clock cycle consists of addition during

the 61 phase followed by storage of the partial sum and carry

during the 62 phase. These storage registers are initialized to

zero when the multiplier is loaded with its operands.

The dual shift register, shown in Figure 5, is arranged in a

fashion that allows two multiplier bits to be examined by the

recoder each clock cycle. It consists of two identical shift re-

gisters, each of which holds n/2 bits. One shift register holds

the odd digits, and the other holds the even digits. Each shift

register is spread over two bit-slices, so that every clock cycle

the data in a shift register cel advances two positions. As a

result, two bits of the original radix-2 multiplier are scanned

each clock.

The movement of data between the partial sum and carry

storage cells and the full adder is illustrated in Figure 6. The

actual addition is done in two parts, one for the carry and one

for the sum. Since two multiplier bits are examined each clock

cycle, it is necessary for the sum outputs of each bit-slice to

be shifted to the right two bit-slices as well. It can also be

seen that the carry bit is shifted to the right one-bit slice.

The carry and sum logic blocks in Figure 6 each contain a storage
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latch at their output.

A bit-slice layout of the multiplier is shown in Figure 7

with the pipeline stages indicated. This circuit was designed

based on a NMOS depletion mode, five mask level process. All

controll and I/O lines running across the slice are in metal.

Note that two bus lines per slice, to support a two-port memory,

are available for data transfer. Circuit area, not including the

controller is approximately 12X x 2X mil 2 where X is the Mead-

Conway scaling parameter [MEAD 80]. For example, with X = 2, the

bit-slice area is 24x4 mils 2 . In Figure 8 we show an example of

a chip design that uses this multiplier [NASH 82). As can be

seen the multiplier efficiently uses available space in that it

takes up approximately the same amount of area as the CPA. The

control circuitry is not shown.

IV. DISCUSSION

In this section we estimate the area-time efficiency of this

multiplier. The maximum operating speed of the multiplier is de-

tremined by the slowest stage in the pipeline. There are six

phases of activity in the three-stage pipeline as listed in Table

I. The delays in all sections of the pipeline are determined by

approximately, two gating levels per half clock cycle. From Fig-

ure 4 it is clear that the largest drive requirements are placed

upon the l-of-4 decoder, which must charge the select/clear lines

across all bits. However, because the controller circuits are
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outside the bit-slice array, there is space enough to make them

as large as desired. As a result, the recoder section can also

be used as an intermediate driver stage for the l-of-4

decoder/driver. This arrangement provides a capability to ac-

tivate the select/clear blocks with delays comparable to the de-

lay through the full adder and the shift register. Simulations

of the multiplier stages, including layout parasitics, indicated

that for 64 gate lengths, the pipeline slowest stage of 334s was

in the full adder bit-slice section. Thus, the clock speed for

the multiplier is expected to be about 16MHz.

The area-time complexity of the multiplier ( apart from the

CPA ) can then be expressed as:

AT (r=4) = 3nAFA X (a+3)tFA

where AFA is the full adder area and tFA is the propagation time

through the full adder. Here, we have used as an estimate for

the bit-slice area, three times the full adder area in the bit-

slice. Assuming 64 gate lengths, a 32-bit fixed-point multiplier

would require about 500ns. Using a 34 technology we estimate that

about 200-250ns would be required to perform this multiplication.

The corresponding area-time for a radix-2 (no recoding)

iterative or combinational (array) multiplier, also excluding

the CPA, is approximately

AT(r 2 ) n(n-l)AFA x ntFA .

For large n, the radix-4 recursive multiplier approach provides a
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factor of n/3 improvement in the area-time product with respect

to the combinational array multiplier.
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FIGURE CAPTIONS

Figure 1: Recoder and multiple generator.

Figure 2: Timing Diagram

Figure 3: Bit-slice arrangement of multiplier and interface to carry

propagate adder (CPA).

Figure 4: Schematic of multiplier pipeline showing controller circuits

(outside array of bit-slice elements) and bit-slice functional

arrangement.

Figure 5: Diagram of dual shift register. A storage register, not

shown is used to store the multiplicand X.

Figure 5: Schematic of data flow in partial product carry-save add/shift

section of serial multiplier.

Figure 7: Layout of bit-slice section of multiplier using NMOS,

depletion load, five mask level process.

Figure 8: (a) Chip organization and (b) micorphotograph of bus oriented

arithmetic processing chip incorporating carry-save multiplier.

This chip is 28-bits, fixed point made using 6u NMOS

technology. Chip clock of 2-4 MHz is synchronized with

multiplier 16 MHz clock.
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V

TABLE I

Clock Phase Pipeline Activity

* Shift Register-One Bit Slice Shift

2 Shift Register-One Bit Slice Shift

1 Recode Multiplier Bits

2 1 of 4 Nand Decoder

1 Precharge Select/Clear Circuits

2 Drive Select/Clear Lines

1 Partial Product Addition

2 Partial Product Storage
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