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I. REPORT SYNOPSIS

A. Introduction

The objective of this program was to investigate the feasibility of
building a floating point processor (24-bit mantissa and 8-bit exponent) on a
single chip based on the Hughes Research Labs (HRL) present 28-bit fixed point
chip (multiplication oriented processor or MOP chip)l. The plan was to
generate any necessary cell logic, layout, or simulations in order to
estimate the size of the chip and predict its performance. Since division
and square root were not included in the HRL MOP chip, arithmetic algorithms

for performing these operations were to be studied.

There were to be at least eight data registers and at least eight serial
1/0 ports for communication with each of the eight nearest processing element
(PE) neighbors. On-chip clocks were desirable and a pin-out arrangement that
resulted in a minimum “"footprint" ratio was to be minimized. The number

representation was to be two's complement, fractional notation, throughout.

Part of our design philosophy is to have ali our processor capabilities
sufficiently modular so that our chip design can be easily altered to suit the
requirements of any desired systolic PE. For example if we added a divider
function module, it would have to be bit-slice, carry-save (so that area-time

product is O(nz)where n is the bit length), serial/parallel, with all control

1. J.G. Nash, S.S. Narayan, and G.R. Nudd, "A VYLSI Processor for Adaptive Radar
Applications," Proc. 1983 SPIE Conf., San Diego, Aug.21-24 1983.




hardware built-in and capable of running off the special set of high speed
clocks provided the multiplier. These considerations, as will be seen later,

will influence the choice of algorithms for doing division and square root.

A1l our designs are based on two sets of two phase non-overlapped clocks.
One set operates at more conventional microprocessor type speeds (e.g., 4MHz
for the MOP chip) and the other runs approximately 4 to 8 times faster. The
high speed clocks are intended for use in serial/parallel type operations such
as multiplication, division and serial I/0. In the remainder of the report the

two sets of clocks will be referred to as the fast clocks and slow clocks.

The floating point processor described in this report is a "barebones"
processor in that it does not support a large number of features that might be
desirable in a general purpose processor. For example no capability for
various rounding schemes are included, no branching capability or status flags
are provided, and the IEEE floating point standard has not been considered.
However, for the primary purpose for which this processor is intended (large
systolic arrays), these features would not be of great value. We think it more

advantageous to design with throughput considerations given the largest weight.

This report is divided into two sections, the first summarizing the
findings of the more detailed second part. In the Appendices we have included

some additional relevant material.

I1-B. Processor Organization, Size and Performance

In this section we will detail our estimates of the relevant physical

information about the chip. Since the MOP chip bhas already been designed at




5.5.m drawn feature sizes in NMOS E/D technology, we will give our baseline
estimates for this feature size and technology. These numbers should be taken
as reasonably accurate, Estimating physical information based on smaller
feature sizes depends considerably on the details of the scalina rules and the
technology being used. For example the chip area associated with a PE built
using a 5 .m polysilicon gate process is not four times the area of the same
chip design in the same technology built using a 2.5 .m polysilicon gate
process. Many design rules, e.g., registration overlaps, do not scale linearly
with gate length. In addition the effective channel length of a MOSFET does

not scale linearly with either the drawn or actual gate length.

The basic functional organization of the entjre PE is illustrated in
Figure 1. There are two system buses connecting any number of "function
modules" which are independent units each having their own control sections and
in some cases their own fast clock circuitry. Data is sent to and from these

units under program control, using the slow clocks.

An approximate functional Tayout of one version of a floating point
processor is shown in Figure 2. The total chip area for 5.5 .m desian rules
would be 300x343 mi]z, which would come down to approximately 130x149 mﬂs2 for
2 -m drawn feature sizes and 87x100 mﬂs2 for 1 um drawn feature sizes. The
total number of pads would be 19, including 8 control lines, 8 I/0 lines, two

supply lines and a clock.

The instruction word would be 16 bits, with 8 bits brought in each half
clock cycle. There are 8 bits associated with control of each of the two buses
shown in Figure 1, 4 bits for a source address and 4 bits for a destination
address. Sources and destinations could be registers, adders, 1/0 ports, etc.

A1l the control associated with complex modules such as the multiplier and
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divider is hardwired into a separate controller that goes with that module. In

this way only the control that is necessary is added to the processor.

Since the floating point PE is very modular, there is considerable
flexibility in what goes on it. As shown in Figure 2 we heve included 8
registers, 4 I/0 ports (capable of talking to all eight nearest neighbors), a
multiplier, a divider, an adder, and a normalization unit. (The purpose of the
normalization modules is to take an operand and scale it so that the most
significant bit is always Jjust to the right of the decimal point.) The
approximate sizes of each of these is shown so that estimates can be made of PE

sizes for alternative configurations.

The expected relative speeds of the different operations (NMOS, E/D) are
shown in Table 1. In terms of the number of slow clock cycles a floating point
addition will take two clock cycles, one for addition and one for result
normal ization. A register to register floating point addition will take three
clock cycles, one cycle to transfer from a register and add, one for
normalization, and one to transfer data back to a register. In terms of
absolute performance, present day 2-3 um feature sizes should provide
multiplication speeds of 400nsec and division speeds between 400 and 1300 nsec.
By simply putting three multipliers or dividers on a chip and running them
concurrently, the effective multiply speeds should be 250 nsec and division
speeds between 250 and 900 nsec. A VHSIC technology would provide further

improvements in speeds.




Table 1. Performance of proposed floating point chip as a function of nominal
and state-of-art design rules.

i Absolute Concurrent

‘ Absolute Speed Mode

: Speed (nsec) (nsec)

; (nsec) 2 - 3um 2 - 3um

Function 5.5um features Feature Sizes Feature Sizes

Addition 250 100 -—-
Normalization 250 100 -—
Multiplication 1250 400 250
Division 1250 - 3000 400 - 1300 250 - 900
REG-REG 250 100 -—-
SERIAL 1/0 2500 800 -—-

It is difficult to estimate power consumption without specific design
information, in particular how much dynamic logic is used instead of power
consuming static logic. We would expect that it wouldn't be excessive because
the MOP chip with almost as many devices (15,000) used only 0.75 W. However,
for systolic arrays with several PE's per chip one would have to use a dynamic

NMOS logic or CMOS in order to keep the power levels acceptable.

The adder and normalizer have their own shifters (right shifter for adder
and left shifter for normalization) so that they can operate independently.
The choice of having two separate units for the floating point adder was made
for several reasons. First, it would support pipelining. For example if
several multipliers were placed on a PE, heavy usage of the adder and

normalizer would result in order to add partial sums and carries. By
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simul taneously running the adder and normalizer, overall throughput could be
increased. This arrangement also allows one the choice of not normalizing
results for increased dynamic range or so that loss of significance in operands
can be followed, or finally so that throughput could be increased. There is
also an advantage in the ease of design and modularity of separate units. In
any case the amount of duplicated circuitry (shifter) does not appear to be

excessive when compared with the other circuitry.

Each function module that uses a fast clock has its own clocking and clock
control unit. In this way one adds no more clock/control circuitry than is
necessary for the function modules on the PE. In addition this minimizes the
possibility of any skewing problems associated with clock distribution to
different chips. For example if the same function modules on different chips
receive the master clock slightly out of phase with respect to each other, this
will cause no problem because the associated control circuitry will locally
count the appropriate number of cycles and then stop the function module. If
one of these function modules stops at a slightly different time compared to
the other, this small difference will appear negligible compared with the cycle

time of the slow clocks which read out the data.

In Table 2 the various cells available for use in the processor chip have
been broken down in terms of the number of devices associated with each
mantissa or exponent bit, plus a fixed number of devices. The fixed number,
which doesn't change for different word sizes, might be the number of devices
in a hardwired controller, as in the multiplier, or the number of devices
associated with various control line drivers. Since we did not have a specific
circuit implementation for the divider (only functional block diagrams), we

estimated the device count to be twice that of the multiplier. A summary of




the device count for the PE shown in Figure 2 is as follows:

Floating Point Example

# Devices

8 Registers 2704
1 Multiplier 2585
1 Divider 5172
4 Serial 1/0 Ports 4412
1 Adder 2148
1 Normalization Circuit 1674
1 Clock Generator 50
1 Decoder 250

Total 18,995

Thus, the complexity of this minimal floating point processor would be

approximately 20,000 devices.

1-C. Algorithms

In this section we briefly discuss our studies of division and square root

algorithms. Several basic algorithms for division were investigated:

Direct Methods

Multiplicative Normalization

Combined Multiplicative Normalization and Direct Methods
Iterations Based on Newton-Raphson Formula

CORDIC Algorithm

10




Our goal was to find an algorithm that would produce an area-time efficient
divider that could be easily integrated into our bus oriented, bit-slice,
serial/parallel chip framework, with speeds approaching that of our present
multiplier. Of the algorithms listed above the direct method is most suited to
such a hardware implementation; however, we estimate that it would run four
times slower than our multiplier. We feel that division speed can be increased
by the combined multiplicative normalization and direct method approach (with
the inevitable penalty of increased hardware}*. Although we have not reduced
this algorithm to a detailed hardware level implementation, we feel that it
offers the possibility of speeds comparable to that of the multiplier. A brief

discussion of each algorithm follows.

Direct Method

The direct methods operate in a manner similar to pencil and paper
division, by repeatedly subtracting ihe divisor from the partial remainder (the
first partial remainder is the dividend). In each position the quotient is
increased by one for each successful subtraction that does not produce a
negative result. If a negative result is obtained in some position, the
partial remainder is "restored" by adding back the divisor. The divisor is
then shifted with respect to the dividend and the subtraction process is begun

again,

The direct method is very easy in a binary radix (radix-2) because the
number of successful subtractions between shifts can be at most one. Thus,

after a shift, if a subtraction is successful, the next subtraction is

* We are indebted to Milos Ercegovac for suggesting this algorithm, His
analyses are summarized in Appendix A,

11




guaranteed not to be, so one can shift immediately. If a subtraction fails,
rather than restoring the partial remainder by adding back the divisor, it is
only necessary to add one-half of the divisor (shift and add) in that position.

This division procedure is called nonrestoring division.

There are two basic ways to speed up the non-restoring direct method. The
first is to reduce the subtraction time. By representing the quotient digits
as redundant numbers it isn't necessary to do a full precision subtraction at
each step (no carry propagation required). Instead one can use a carry-save
approach (as was done in the multiplier) which allows two words to be
subtracted in a time corresponding to a few gate delays, independent of the
number of bits. Another speed up approach is to reduce the number of
subtraction steps by working in a higher radix. The number of steps is reduced

by k, where r=2k is the radix.

The direct method is very well suited to a design that uses relatively
little hardware and fits well with our bit-slice, serial/parallel function
modules. The major drawback lies in its slow speed compared to the multiplier.
While carry-save partial product subtractions can be implemented easily,
proceeding to a higher radix is not easy because it becomes increasinaly
difficult to select a quotient digit and still have a modular, area efficient
design. Another speed limiting factor is the inability to pipeline or overlap
operations. Unlike multiplication, the quotient digit is not known ahead of
time, but must be selected on the basis of the previous partial remainder and
divisor. Therefore, it is not possible to break up the selection of quotient
digits and carry-save subtraction steps into smaller operations that can be
pipelined. A fast radix-8 divider has been successfully built by Hewlett

Packard using a direct division method, but it required 35,000 devices on a

12




large chip.2

A radix-2 implementation of the direct method we estimate would be a
factor of approximately 4 slower than the multiplication time. One factor of
two arises because of the radix-2 operation, instead of the radix-4 operation
of the multiplier. The other factor of two is due to the inability to speed up
the quotient digit selection and carry-save operation. With a radix-4
implementation we would gain a factor of two in reducing the number of reauired
subtractions, but the selection operation would be more complex, so the net

gain would be less than a factor of two.

Multiplicative Normalization (MN)

For division this algorithm relies on successive multiplications by a
number to reduce that number to one. For the division a=y/x, if by successive
multiplications x is reduced to one, the same multiplications applied to y will
generate the desired quotient. If the multiplications are of the form
(1+sk2'k), where k is an integer and Sy is a radix-2 digit, then only shifts

and adds are required for this algorithm.

In structure this algorithm is very similar to the direct method described
above. It does require considerably more hardware because whatever is done to
the divisor, the same must also be done to the dividend. The main advantage of
this algorithm is that other elementary functions can be evaluated, such as
square root, exponentials, and transcendental functions. However, we mention

it primarily as in introduction to the algorithm described next.

2. Milos D. Ercegovac, "A Survey of Floating-Point Arithmetic Implementations,"
Proc. 1983 SPIE Conf., San Diego, CA, Aug. 1983.
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Combined Multiplicative Normalization and Direct Method

The main problems associated with obtaining the desired speed from the
direct division method are the complexity of the quotient selection process and
the inability to pipeline or overlap operations. By combining MN and the
direct method in an appropriate way, the quotient selection process can be made
very simple and limited overlap of operations is possible. We feel that this
approach is the most promising of those investigated in producing and area-time

efficient divider.

With this algorithm the input operands are both scaled using MN until they
fall within certain prescribed bounds. From this point on the direct division
approach is used to generate the quotient digits. The advantage of this
approach is that the circuitry associated with selecting the cquotient digits
from the partial remainder remains relatively simple, independent of the radix
chosen for the division. The quotient digits are selected by simple truncation

of the most significant radix-r digit of the partial remainder.

There is also considerable speed-up possible in the quotient selection
process because it is possible to overlap the calculations of the auotient
digit and the partial remainder. For the direct division method described
above, the partial remainder had to be computed éfter the aquotient digit

selection process was completed.

Although we have not yet reduced this algorithm to a binary level
implementation, we feel that it is the most attractive of the division
alternatives that we have looked at. Neglecting the operand transformation
stage, the division recursion is relatively simple and we estimate that this

operation would take only approximately one to two multiplication times. With

14




a radix-8 version of this algorithm even faster speeds might be possible. On
the negative side it is still not clear how to efficiently implement a fast

operand transformation capability.

Iterations Based on the Newton-Raphson Formuia

Iterative schemes are based on the formula

xi+1=xi~f(xi)/f'(xi)

which, for a well-behaved function f and a good initial value Xp» can be used
to evaluate a root of f(x)=0. For example to find a reciprocal we let
f(x)={(1/x)-s, the root being the desired result. Then the formula above

becomes

Xiy1=%;(2-5x;)
Division is accomplished by finding the reciprocal of the divisor and
multiplying by the dividend. The most important feature of this algorithm is
that it converges quadratically. For example if a small lookup table is used
to find the first four bits of the result, then the first iteration will
produce a new result accurate to eight bits, the second iteration 16 bits, and
so on. Thus, the convergence rate is O(log n), rather than O(n) for the other
algorithms we have looked at, where n is the bit length. Other elementary

functions can be evaluated in this way using only multipliers.

The disadvantage of this approach is that it requires a considerable
amount of hardware (a look-up table ROM and very high speed multipliers) which

isn't easily integrable into our design scheme, and it isn't any faster than




alternative algorithms we are looking at. For example, it is our goal to do

divisions at the same rate as multiplication.

CORDIC Algorithm

The primary attraction of the CORDIC algorithm is its geperality. If a
wide range of elementary function evaluation is desirable, then this is
probably the best alternative. Conventional implementations of the algorithm
require n time steps, each of which involves a full n precision addition or
subtraction and a shift. We think that speed improvements can be made to the
algorithm to eliminate all the n precision additions and possibly to eliminate
some of the shift requirements. However, in any case the hardware needs of the
algorithm are considerably greater than required for the other division
algorithms. The basic needs are three adder/subtractors, a small ROM, and two

shifters.

Square Root

We have looked at several square root algorithms and generally found the
problem similar to that of division. For this reason we concentrated our
efforts on examining the division problem. However, we do describe later an
algorithm based on the odd series approximation as an example of a direct
approach to performing square roots that would support a hardware

implementation well suited to our design scheme.
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II. Detailed Description of Floating Point Design

II-A. Number Representation

In this section we briefly describe the characteristics of the 32-bit
word, although it is intended that the manner in which the chip is organized

will enable it to be assembled rapidly with any word length.

For this 32-bit word the mantissa is 24 bits in length including one sign

bit. The fractional, 2's complement notation increases efficiency of

computation. The range of numbers representable is then 1-2'23 to —1+2'23

7 7y.

(1-1.1920929 x 107" to -1+1.1920929 x 10~

The exponent is represented as 8 bits in excess 128 notation. In other
words the exponents are biased by 128, This simplifies some of the
manipulation of exponents because it eliminates negative exponents. The

-128 to 127 39 38).

exponent range is then 2 2 (2.94 x 10777 to 1.701 x 10

when exponents are subtracted as in division the effect of the exponent
bias is simply canceled. However, in multiplication the bias is added twice
and must be subtracted out. This can be done with a simple circuit that has as
inputs the most significant bits (MSB) and carry into this position. For

example the exponent addition

A1 A2 . . A8

B1 82 . . 88

C1 C2 . C8
17




uses the truth table shown in Figure 3(a) to determine the MSB C1 which can be

implemented by the circuitry shown in Figure 3(b).

11-B. Clock Generator and Control Circuitry

Overall array synchronization will be based on a single phase high speed
clock (-16MHz for 5.5 um design rules or ~50MHz for 2um design rules) made
available to every PE. Each PE will derive from this a set of low speed, or
system clocks, for use in transferring information between function modules and
between chips, and a set of high speed clocks to drive arithmetic modules and
serial I/0 ports. It is expected that the ratio of high to Tow speed clock
frequency will be between 4 and 8. (For the MOP chip it was set at 4.) In this

section we describe circuitry intended to perform these functions.

High Speed Clocks

“he primary design goal for the high speed clock circuitry is to avoid
problems associated with possible skewing in the distribution of the clock
signal. This can be accomplished by localized clock generator and control
circuitry. Each high speed function module will have a counter circuit that
can be "“programmed" to perform a certain number of counts of the high speed
input clock and then to shut off the local high speed clock drivers. Ffor
example our 28 bit fixed point MOP chip multiplier would reauire the clock
controller to count 16 clock cycles and then stop the local clock. With this
arrangement, if the high speed clocks in arithmetic modules on different chips

are out of phase, they will finish their operation at only small fractions of

1P
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the time associated with the slow clock cycle. From the point of view of the
slow clocks, which will read information out of the function modules, these
small differences in time will not be important. Thus, high speed clock
it

skewing will not lead to any synchroni

A possible control circuit and partial timing diagram are shown in
Figure 4{a) and 4(b) at a functional level. Operation begins with the "Load
Function Module" going high, indicating that operands are beilng loaded into
this function module. This signal resets the counter and flip-flop 3 (FF3),
which is used later to reset FFl. When the "Load Function Module" goes low,
indicating that the operands are loaded, the output of FF1 ooes high enabling
the high speed clock input via the AND gate. The output of the AND gate drives
FF2, whose purpose is to provide clean beginning clock waveforms to the clock
drivers and to the counter circuit. When the counter reaches its programmed
value it issues a "DONE" signal which FF3 uses to reset FF1l. The output of FF1
then goes low, disabling the high speed clock input to the clock driver
circuits. The way the circuit is drawn in Figure 4(a) indicates that there
will be several gate delays associated with the circuit "shut down" operation.
This consists of a few gate delays through the counter, plus single gate delays
through FF3, FF1, and the AND gate. This long total delay can be avoided by
pipelining the control operation with the addition of a little circuitry. The
count gate will have to be set to decrease the "count" by the number of

pipelined stages.

A fast synchronous parallel counter design is shown in Figure 5. The
multi-input AND gate to each flip-flop is best built using a high speed NOR
implementation. The "count gate" is simply an AND gate with counter outputs as

inputs. When the counter reaches the desired number this aate is responsible
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for stopping the clock driver operation.

One possible implementation of the J-K FF's seen in previous figures is
shown in Figure 6 based on a fast NOR gate implementation. Approximately 27

devices are used per FF.

Clock driver circuitry is shown in Figure 7. This configuration will
produce a non-overlapped two phase clock from a single phase input. This type
of circuit could possibly be used as a driver for high and low speed clocks

because current drive capabilities should be similar.

II-C. Multiplier

Conversion of our fixed point multiplier to floating point basically
reduces to the problem of adding an exponent handling unit that doesn't
introduce major topological irregularities. A block diagram of our proposed
structure is shown in Figure 8. The carry-save Booth's multiplier circuit is

described in detail in Appendix B,

The exponent handling section consists of a set of registers to store the
data, a simple ripple adder to perform the exponent addition, and an output
latch. We can use a minimum device combinatorial full adder cell shown in
Figure 9 in order to conserve area. This full adder cell is not as fast as
that in the mantissa processing section, but it only has to add two small
numbers in approximately four of the slower clock cycles {1 sec for 5.5 m
feature sizes). We have laid out a full adder cell and simulated it (including
parasitic capacitances) using SPICE to determine its speed characteristics.

For 5 m feature sizes the propagation delay through the cell is less than
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100nsec, or an acceptable 800nsec for an 8-bit exponent.

As discussed in Section II-A the full adder associated with the most
significant exponent bit will have some extra logic in it to generate the

correct results for the 128 bias.

Some experimentation will be necessary to determine an optimal layout for
the exponent section. Possibly control line drivers will fit well into the
available area as shown in Figqure 8 or it might be possible to place the

exponent ripple adder vertically.

The operation of the multiplier is no different than for the fixed point
version. The operands are loaded simultaneously into the input latches and
then after four slow clock cycles (for MOP chip) a sum and a carry result will
be available in the output latches. This result must then be sent to the adder
to propagate the carry. The exponent section is purely combinatorial,

requiring no special clocks.

11-D. Adder

The fixed point adder requires considerably more added to it than the
multiplier in order to create a floating point capability. There are two basic
operations required to perform an addition. First, the mantissas are alianed
and added. Then this result is normalized in some way. Since each of these
operations is difficult to perform, we decided to split these operations into
two sets of hardware. This simplifies the control circuitry and increases
speed since both units can operate simultaneously. An added feature is that

the programmer has the option not to normalize his results. This can be of




-
advantage to someone who needs increased dynamic range (up to 22“) or who needs

to follow closely the loss of significance in his arithmetic operations.

The entire process of addition and normalization, as described below, is
expected to take two clock cycles, or three cycles for a register to register
operation. One clock cycle is associated with transfer of the operands from
another function module followed by addition, one clock cycle for

normalization, and one to return the result to another function module.

For subtraction operations we note that it is only necessary to take the
two's complement the appropriate operand, introduce an appropriate carry into
the least significant bit position, and then add. The complementation of the
operand is expected to be done ahead of time. This is taken care of most
easily by a feature of the adder output that allows its result or its
complement to be placed on the bus. If it is known ahead of time that a result

will be subtracted later, then the output comp1emeqt is selected.

The remainder of this section is divided into two parts, that on the

addition and that on normalization of the result.

Addition

The basic problem in addition is alignment of the mantissa. This is
normelly done in three steps: determination of the larger operand, shifting the
smaller operand mantissa, and adding the results. The corresponding hardware
to perform each of these functions is shown in Figure 10. The circuit consists
of two input latches to hold the operands, a subtractor to determine the larger
of the two, a shifter to align the mantissa and a conventional ripple type

adder.
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The first half of the first clock cycle is used to put the operands on the
bus (from a register or other function module) and shift the mantissa of the
smaller operand. During the second half of the first clock cycle, the two
operands are added. The second clock cycie couid be used to return the result
to a register (or to the normalization circuit). The time associated with
driving the buses is fairly small because it is a pull-down operation. Spice
simulations we have performed (Appendix C) show that for 5. m feature sizes a
2pf bus line (approximate capacitance of that on MOP chip) can be pulled down
with a transistor having W/L = 6 in approximately 30nsec. This leaves 95nsec
(for 5.5 m, 4MHz slow clocks) to perform the subtraction of exponents and
shifting. If a Manchester type subtractor is use for the exponent secticn,
approximately 26nsec will be required to do the subtraction, leaving an
adequate 59nsec for shifting and error margin. (We assume that for smaller

feature sizes these times will scale proportionately.)

Since one doesn't know ahead of time which of the exponents is larger, the
output of the subtractor can be either positive or negative. Although this
information is sufficient to determine which operand is larger and can be used
to generate the control signals to the pass transistors controlling the input
to the shifter in Figure 10, it is not sufficient to control the shifter
itself, shown in Figure 11. The shifter needs at its control inputs (Ci in
Figure 11) binary values corresponding to the number of bits of shifting
desired. For this reason it is necessary to build the dual subtractor unit
shown in Figure 10. This unit will produce two outputs, corresponding to the
two possible subtractions of the operands. The positive output will always be
used to control the shifter. It would be possible to use the same subtractor
to perform both subtractions, but the time lost would probably result in the

addition of an extra slow clock cycle to the overall addition time. The
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increased hardware i3 small compared to the total dedicated to the entire

addition operation.

The shifter network in Figure 11 consists of a set of bus lines connected

by pass transistors. The set of pass transistors controlled by C., shifts bits

1
by one, those controlled by C2 shifts bits by two, and so forth in a binary
progression. The maximum number of pass transistors in series will then be of
order log{n) (e.g., 4 for a 24 bit mantissa). We expect then that the shifter
will not consume much area (less than half that of the ripple adder). The

delay through four pass transistors should be equivalent to one gate, therefore

making it very fast.

Sign extension is a very important consideration for two's complement
arithmetic. As a word is shifted, the bits which are shifted over must be set
equal to the sign bit. This feature is introduced by connecting the sian bit
to the pass transistor inputs at the bottom of the shifter array as shown in

Figure 11.

After the operands pass through the shifter they are latched at the end of
the phase one half of the slow clock cycle into the ripple adder (Manchester
type adder). During the phase two of the slow clocks, the mantissas are added.
The results are available to be transferred to another function module on the

next clock cycle.

If both of the operands have the same sign, it is possible that there
could be overflow during the addition. For this reason there are 25 full adder
cells instead of 24, A1l 25 bits can then be passed on to the normalization
unit to perform the right shift of data by one bit. If the output of the adder

is to go to a function module other than the normalization unit, only the most




significant 24 bits are put on the bus.

Normalization

The problem of normalizing a word or shifting it appropriately until the
most significant bit is just to the right of the decimal point is actually more
difficult than the floating point addition described above. The basic
functional blocks, shown in Figure 12, are similar to those of the adder
section. There are two possible inputs, one directly from the adder, and the
other from one of the chip buses. As mentioned above there are 25 inputs from

the adder and only 24 from the chip buses.

The functional block labeled “Significant Bit Counter" counts the number
of leading "1's" or "0's" (nonsignificant bits) using a circuit such as that
shown in Figure 13. The first logic stage in Figure 13, consisting of
exclusive OR gates, is used to identify changes in data polarity from bit to
bit. The NOR chain uses this information to generate an output in which the
number of ones is equal to the number of leading "1's" or "0's". The last set
of exclusive OR gates detects the position of the 1 to 0O transition, which

marks the position of the desired decimal point.

The encoder section takes the above described output end generates the
binary equivalent of the number of shifts required to correctly normalize the
input. This circuit deviates slightly from the concept of identical bit-slice
elements in that each encoder slice must generate a binary number eauivalent to
its position in the word. However, as can be seen, each encoder slice is built
identically except for five very short connections which are used to set the
binary count. The binary count is either addea to or subtracted from the

exponent depending whether the shift is to the right or left, respectively.
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The shifter is identical to that in Figure 11 except that shifts are in
the opposite direction (left) for normalization. As a result the shifter
hardware will be identical to that in Figure 11 except that it is reflected

about its shorter axis.

The operation of the circuit begins with the latchina of the input word
from the bus or adder at the end of slow clock phase one. (The encoder outputs
have been precharged during slow clock phase two.) After loading the input
word, the encoder outputs are latched to the exponent adder/subtractor at the
end of phase two. As in the adder, exponent handling and shifting are done

during the phase one clock cycle.

The primary time bottleneck is in the NOR chain which counts the number of
nonsignificant bits., If this NOR chain is too slow, circuits are available
that can perform the same function using a carry-propagate approach as in the

adder section.

II-E. Serial I/0 Ports

Communication requirements between adjacent PEs are an important
consideration in systolic array design, due to the large amount of information
passed and the large number of PEs on the receiving end (as many as eight). In
order that there be a balance of communication and computational needs we
propose adding at least four bidirectional serial I/0 ports to each chip,
organized as shown in Figure 14, As can be seen, the I/0 ports are arranged in
a natural way to aid flow of data through PEs., If higher bandwidths were
required each 1/0 port could be replicated the appropriate number of times,

For example, with eight 1/0 ports two words could be passed simultaneously in a
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given direction between any two PEs.

A functional block diagram illustrating the major components of a serial
1/0 port is shown in Figure 15(a). In order to facilitate integration into a
bus oriented processor the 1/0 port is built as a dual port register-shift
register combination (parallel/serial multiplexer). The register is capable of
reading or writing to either of two buses using the read A or B, write A or B

control lines,.

In order to increase I/0 transfer rates it is natural to use the high
speed clocks available to each PE. The high speed clock control circuitry,
shown in Figure 15(b), is identical to that described in Section II-B. These
clocks are supplied to the I/0 function module along with a control signal M,
which determines the direction of the shift and also disables the appropriate
driver circuitry as shown. A major consideration in the serial /0 desion is
the loading reguirements. If each PE occupies a single chip, the output load
would be at least the capacitance associated with a couple of pads. In order
to match this drive requirement with that of the shift register stages,
pipelined output driver stages need to be added. The overall transfer speed
would suffer only slightly due to the increased latency if the number of
pipelined stages were much less than the word length. These stages would be
modular and could be added as necessary. An example of one pipelined stage is

shown in Figure 16.

The operation of the serial 1/0 function module would be very
straightforward., The operation as a register would require the same control
signals as any other register. An error could occur only if one tried to write
or read from a register while it was in the process of transferring

information. To send data to an adjacent PE one would have to select the
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appropriate 1/0 function module {i.e., the one which has a hardwired connection
to the desired adjacent PE) and load the desired word into this module, if it
wasn't there to begin with. A second set of control lines sends one of two
signals (Reg A left or Reg A right in Figure 15(b) ) to the function module
which initiates transfer of data. Of course appropriate sigrals would have to
be simultaneously sent to the adjacent chip so that it can receive the data
word. The high speed clock driver/control circuitry then generates the
appropriate number of clock cycles to transfer the data and then shuts itself
off. At this point the data is now in the appropriate function module on the
adjacent PE. In addition there is a new word in the register from which the

data was originally sent. All I/0 ports receive words while sending them.

A logic level diagram of several bit-slices cf an 1/0 port is shown in
Figure 17. Each bit-slice consists of a D-type FF and three gates used to
direct the flow of data either to the left or right. The corresponding circuit
level diagram for one of the bit-slices is shown in Figure 18, Six control
lines plus two of the high speed clocks would be used to operate each

bit-slice.

A possible problem regarding the transfer of information serially between
PE's has to do with synchronization of the oper. tion. Since this transfer can
take place between two I/0 units widely separated physically, skewing of the
high speed clock could prevent correct operation. One solution to this is to
use some handshaking scheme, although this would certainly degrade performance
and increase hardware overhead. Alternatively, one could slow the operation

down or transfer some of the bits in each word in parallel.
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IT-F. Division

There are numerous algorithms for performing division, and for
implementing each of these there are many possible hardware schemes. In this
section we will focus on some of the schemes which we feel are the most

promising, while briefly describing some other alternatives.

Our basic goal was to identify an algorithm that would allow division to
be performed on a linear array of carry-save type cells at a rate eaual to that
of multiplication. Since our multiplier is pipelined with a cycle time
associated with only a couple of gate delays, this was a difficult task.
Although we have identified a number of possible divider designs based on a
carry-save type cé]], it is not clear yet whether the desired speed can be
obtained. This is basically due to two reasons: first, one does not know the
guotient ahead of .ime, whereas for multiplication the multiplier is always
known; this prevents us from pipelining the operation. Second, a large amount
of time is generally needed in order to select a quotient digit. Although we
can do little about the first problem, we have identified a couple of
attractive schemes for simple quotient digit selection (truncation) that appear
suitable for high speed divider implementation. We estimate that the best

speeds obtainable will be between 1 and 3 times that of the multiplier.
The algorithms we have looked at are

Direct Methods
Multiplicative Normalization (MN)

Combined Multiplicative Normalization and Self Restoring
Techniques

Iterations Based on Newston-Raphson Formula

CORDIC
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we feel that the first three of the five are the most appealing from the point
of view of the VLSI generic type implementation we are seeking. These are

discussed more fully below.

Direct Methods

The normal pencil and paper approach to division is a trial and error
method. The advantage of the direct algorithms is that the trial and error
part of the algorithm has been replaced by a simple recursion that obtains the
result in a given number of steps.3 As in multiplication, much time can be
wasted adding and subtracting partial remainders due to the limitations of
carry propagation. It would be more desirable to use carry-save adders and
subtractors. However, direct division in its simplest form reauires
information as to the sign of the remainder to select the quotient digit.
The carry-save result would not provide this information, An alternative
scheme is to use a redundant number representation4’5, e.g., ¢ -1,0,1 for
radix-2. With this approach one can still use a carry-save technique for
evaluation of partial remainders. The quotient digit selection is based on
the first 3 (radix-2) or 7 (radix-4) most significant bits of the partial
remainders (a small carry propagate adder (CPA) is used for just these bits).

For the radix-2 case the recursion is

3. Edward Braun, Digital Computer Design, Academic Press, N.Y., 1963,

4, J. E. Robertson, "A New Class of Digital Division Methods," IRE Trans. on
Elect. Computers, EC-7, pp.218-222, Sept. 1958. - -
5. Milos Trcegovac, Private Communication.




Rj+1=2Rj'qj+1x

Rj=jth partial remainder

x=divisor

qJ.=jth quotient digit {redundant number representation)
R0=dividend

and the selection rules for the quotient are

A
~1/8<2R ;<1/4

R
o

sign otherwise

Qj+1= \L
fay
J’+ if sign(R;)=sign(x)
sign L-

- if sign(aj)#sign(x)
ol
where Rj is the CPA output.

A simplified functional block diagram of an implementation is shown in
Figure 19. The circuit is initialized by loading the dividend into the
carry-save subtractor. The partial remainder estimate Rj supplied to the 3-bit
CPA is used to generate the first quotient digit. This result is used to
determine whether -1, 0, or 1 times x is to be subtracted during the next
cycle. After n+l cycles, a, has been obtained. The final quotient result must

be sent to a carry propagate adder in order to eliminate its redundant form.

The advantages of this division scheme are in its simplicity, regularity

and fit to our bit-slice approach to processor design. The primary
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disadvantage is its lack of speed. It can't be pipelined because the
carry-save unit can't operate until the 3-bit CPA and the quotient circuit have
finished, a total of approximately 5-6 gate delays. In addition this is only a
radix-2 algorithm, whereas the multiplication is a radix-4 algorithm. A radix-4
imp]ementation4 would only require half the number of partial subtractions, but

the quotient digit selection would be much more difficult.

Multiplicative Normalization

For the division y/x, if one can introduce a seauence of multiplications,
M, such that Mx=1, then the same sequency applied to y will yield the desired

quotient. This procedure, called multiplicative normalization (MN), has been

-k-1

mechanized in a way that requires multiplication by (1+sk2 ), which can be

done using only additions and shifts.6 This approach uses the recursions

= x (14 5270

K —>1, 0O<k<n

Xe+1 X

-k-1

Yeel © yk(l + sk2 ), yk——oy/x as k —>

= XYy T Y 0.5 < x,y < 1.

In order to find s, it is more convenient to work with scaled remainders,

k

x
H

(xk -1) 2

-k
K+l C 2Rk + sk + sksz

X
1

6. B.G. deLugish, "A Class of Algorithms for Automatic Evaluation of Certain
Elementary Functions in a Binary Computer," Dep. Comput. Sci., Univ. of
IMinois, Urbana, IL, Rep. 399, June 1, 1970.
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(1, if R, < -3/8

k

s, =< -1, if R, > 3/8,

k

0, otherwise.
and for k=0

(2, if -1/2 <Ry < -1/4

SO =
0, if -1/4 <Ry <O0.

A functional implementation for these equations is illustrated in Figure 20.
Here, there are two separate sets of hardware, one for recursion in Rk and the
other for the quotient Yy ! Only an estimate of Rk is required at each
recursion so that a small 3-bit CPA is required along with a few gates to
determine Sy This approach also requires a variable shifter network for both

of the two hardware sections.

The MN approach is very similar to the direct methods in that they both
use carry-save circuits and the selection operation for qj or s, is very
similar. If fast shifter networks can be built, then the speeds of the two
algorithms will be approximately the same. The major difference between the
two is that the MN approach uses approximately three times the hardware.
However, there is an advantage to MN in that there is far more generality in
its capabilities, which include multiplication, square root, logarithm,

: . . . . . . . 7
exponentials, trigonometric functions and inverse trigonometric functions.

7. Milos D. Ercegovac, "Radix-16 Evaluation of Certain Elementary Functions,"
IEEE Trans. on Computers, C-22, pp.561-566, June 1973.
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Combined Multiplicative Normalization and Non-restorina Division

Although the previously described algorithms are reasonably fast . fit
well into our bit-slice, carry-save, serial-parallel MOP chip organization,
they still do not satisfy our basic goal of having a divider that operates at
the same speed as our MOP chip multiplier. We feel that the best approach to
achieving this goal would be to use a higher radix algorithm for division.
This effectively allows us to reduce the number of recursions by k, where r=2k
is the radix. The problem with this approach is that while the number of
recursions is reduced, the selection procedure for qj or s, becomes increasing
complex, increasing the time required at each recursion. For example a radix-4
implementation of the direct method4 requires as input to the quotient
selection circuit the first seven bits of the partial remainder. Thus, the CPA
addition takes longer and the quotient selection circuit is more complex as

well,

A promising alternative to this problem has been suggesteds’9 which
combines both MN and direct methods (see Appendix A). In this scheme MN is
used to transform both the dividend and divisor into a range which allows the
guotient digits to be selected by simple truncation of the partial remainders.
Limited CPAs can be used to form the most significant part of the partial
remainder with the quotient select circuit replaced by a simple truncation
circuit. For a radix-4 implementation of this circuit, the speed could be
increased by a factor of at least two., The basic recursions for this algorithm
(radix-4) are

8. Milos D. Ercegovac, "A Higher-Radix Division with Simple Selection of
Quotient Digits," 6th IEEE Symposium on Computer Arithmetic, Denmark, 1983,

9. Milos D. Ercegovac, 'Division Schemes with Simplified Selection Rules and
Prediction of Quotient Digits,"” Unpublished Report, August 3, 1983.




*
R. ,=4(R.-q.
et Rymayx)
N -q.+
a3 Trunc[4(RJ aj c)]
where
if R.>q.
.- 1/2 i J_gJ
-1/2 otherwise
and
x* = transformed divisor

The minimum time step required to execute this algorithm is the time to compute

*
qjx plus the time to compute R Unfortunately, it is not possible to

1
pipeline these calculations so that this radix-4 algorithm can not be executed
as fast as that for multiplication. However, a radix-8 implementation looks

promising.

CORDIC Algorithm

The CORDIC algorithmiQ»11

is well known for the wide variety of
elementary functions which it can evaluate. Modifications have been
suggested to speed up the algorithm and incorporate floating point

operands.12

To implement this algorithm requires three adder/subtractor
units, a ROM to store n integers (n=bit length), plus a couple of shifters.
At each of n recursions, three "ax+b" type calculations are performed.

Finally, a scaling operation is sometimes necessary.

The drawback of this algorithm is the considerable amount of hardware

10. J.E. Volder, "The Cordic Trigonometric Computing Techniaue," IRE Trans. on

Electronic Computers, EC-8, pp.330-334, Seot. 1959.
IT. J.S. WaTther, "A Unified Algorithm for Elementary Functions," 1971 Spring
JCC, pp.379-385.

T2, H.M. Ahmed, PhD Thesis, Stanford, 1980.
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required to implement it. (It requires more than tnree times the hardware used
in the direct method.) In its basic form it is also slow; however, use of a
higher radix and introduction of redundant numbers could provide the desired

speeds.

Iterations Based on Newton-Raphson Method

The Newton-Raphson equation allows one to find progressively more accurate

solutions to the equation f{x)=0 using the formula

X1 =% LR /6 (x)] (1)

For the case of division f(x)={1/x)-s, where s is the reciprocal of x. This

gives xi+1=xi(2-sxi).

One popular variation on this method is the Goldschmidt a1gorithm13,

which was implemented on the IBM 360 Model 91. If y/d =q and we find some
number k such that kd=1, then ky=q. The number k represents a seaquence of
multiplications by (2-xk), where xk+1=xk(2-xk) and x,=d, corresponding to the
case where s=1 in the Newton-Raphson formula above. If d is normalized (d>1/2)
and we let d=1-x, then x0=1-x, x1=1-x2, and xn=1-x2n, so that Xn converges to
unity quadratically. Then, if yk+1=yk(2-xk), Yo<Y> then Yer1 will approach a
quadratically as d approaches 1. The aquadratic convergence is particularly

useful for large words, because each iteration doubles the number of known

bits. No remainder is generated, however.

The principal probiem with the iteration techniques is that they reauire

several passes through a multiplier, making them necessarily slower than

13. R. E. Goldschmidt, "Application of Division by Convergence," M.S. Thesis,
MIT, Cambridge, MA, June 1964,
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desired. (Pipelining can be used for this algorithm to speed it up, however,
with the addition of much additional hardware.) Moreover, it is not suitable
for integration into our bus oriented, bit-slice chip organization, because the
multipliers must be fast parallel implementations with the special busing
hardware to permit rapid data movement between iterations. (Parallel

multipliers are not well suited to bit-slice organizations.)

I1-G. Square Root

Numerous algorithms exist for evaluating square roots3’5’7’11’14’15,

manyh commonal ity between the problem of div.,,ion and square root, we will

only briefly discuss this topic.

Techniques Based on Newton-Raphson Iterations

Iterative techniques are perhaps best known for solving the square root
problem and are reasonably fast due to their quadratic convergence. If one
uses f(x)=x2-a in Equation (1), then the iterative equation for the square root

is
Xne1=Lxp*la/x 1172

The disadvantage of this formulation is that a division operation is required
every iteration. An alternative formulation is to find the reciprocal of the

square root. This uses the iteration

14. T. Chi Chin, "Automatic Computation of Exponentials, Logarithms, Ratios and
Square Roots," IBM J. Res. Develop., July 1972, 380-388.

15. M. D. Ercegovac, "An On-Line Square Rooting Algorithm," Proc. Fourth IEEE
Symposium on Computer Arithmetic, Oct. 1978, pp. 183-189.
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_ 3
xn+1—3xn-(xn) /(2a)

More multiplies are required each iteration; however, division is required only

once.

0dd Series Approximation

This technique is based on the observation that the square root of the sum
of a series of odd numbers: 1, 3, 5, . . . has a value that corresponds to the
position of the highest term in the series3. For example, the sum of 1, 3, 5,
and 7 is 16 and the square root of 16, which is 4, corresponds to the position

of 7 in the series 1, 3, 5, 7.
The square root extraction procedure can be reduced to three steps:

(1) Separate the bits of the radicand into groups of two bits each,
starting from the binary point.

(2) Begin the actual extraction operation at the first group of bits from
the left that does not contain two zeroes. Align a "1" with the
right-hand bit of this group and subtract. The remainder will be
nonnegative and a "1" is entered in the root for this group. For each
double "0" group to the left of this group, a "0" is entered in the root.
(3) For all succeeding groups, the trial factor to be subtracted from the

remainder is the expression (4r 1), where o1 pertains to the result

+
n-1
obtained up to the (n-1)th iteration. The right hand digit of the trial
divisor is aligned with the right hand digit of the group for which it is
used, and subtracted. If the remainder is nonnegative, a "1" is entered

as the root for that group. If the remainder is negative, the root is "0"

and the subtraction is restored.
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An example of square root extraction is given in the example below.

.1 1 0 1
v.10 10 10 0T
1
T 10
1 0l = (4 x1) +1
10
11 01 = (4 x 3) +1
Restore

1 10 01
1 10 01 = (4 x6) +1

Check: .10101001
.1101

169/256
13/16

This algorithm has some important advantages over the direct division
approaches described in the previous section. Most important is that the
selection of the result for each group is very simple, just a test for a
negative result. Keeping in mind that it is not necessary to store a negative
result, the need for restoration will not cost much in terms of speed (this is

equivalent to non-performing division).
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APPENDIX A

2. A HIGHER-RADIX DIVISION WITH SIMPLE

SELECTION OF QUOTIENT DIGITS

Milos D. Ercegovac
UCLA Computer Science Department

University of California, Los Angeles

3732-C Boelter Hall

(213)825-2660

ABSTRACT

A higher-radix division algorithm with simple selection of
qguotient digits is described. The proposed scheme 1is a combina-
tion of the multiplicative normalization used in the continued-
product algorithms and the recursive division algorithm. The
scheme consists of two parts: in the first part, the divisor and
the dividend are transformed into the range which allows the guo-
tient digits to be selected by rounding partial remainders to the
most significant radix-r digit 1in the second part. Since the
selection requires only the most significant part of the partial
remainder, limited carry-propagation adders can be used to form
the partial remainders. The divisor and dividend transformations
are performed 1in three steps wusing multipliers of the form
k

1+ sk:' as in continued product algorithms. The higher radix

of the form r = Zk, k=2,4,8,..., can be used to reduce the
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number of steps while retaining the simple quotient selecticn

rules.
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I. INTRODUCTION

In this article a division scheme characterized by a simple
method for selecting quotient digits is described. The scheme
also has several properties important for modular implementation.
Division algorithms have been of a wide interest [(ROBE58, METZ62,
ATKI68, ANDE68, TAYL8l] because of the problems of fast and effi-
cient selection of qgquotient digits and computation of partial
remainders, and compatibility of implementation with other more

frequent arithmetic operations such as multiplication.

The scheme for division suggested here consists of two
parts. In the first part the divisor X is forced into a suitable
range and the dividend Y is adjusted. The divisor and dividend
transformations are performed using a few initial steps of the
iterative multiplicative normalization algorithm [ERCET3,
DELU70]. In the second part the quotient digits are obtained by
a recursive algorithm [ERCE75, ERCE77] in which the selection can
be performed by rounding. The proposed division scheme generates
an m-digit gquotient in m+3 additive steps which do not require
full precision carry propagation. The scheme also provides the

remainder.

The division schemes based on the range transformaticn have
been considered before [SVOB63, KRIS70, ERCE7S}). The main con-
tributions of this article are implementation-efficient transfor-

mation and a simple quotient selection method.




In Section II a derivation of the division scheme 1is
presented. A radix-16 division algorithm is given in Section III.

The i1mplementation aspects are discus;ed in [ERCE83].

II. DERIVATION OF THE DIVISION SCHEME

Consider the division problem

7 = XQ + R (1)

where

X 1s the n-bit divisor, X! € [1/2, 1);

Y is the 2n-bit dividend, 1Yl < IX!;

Q is the n-bit quotient and

R 1s the corresponding remainder.

A binary recursive division algorithm computes sequentially

the partial remainders and the quotient digits using the recur-

sion
R3+l = 2Rj ~ qj+lx' j=0,1,2,...,n-1 (2)
where
Ry = ¥ is the initial remainder,
qul = f(R],X) 1s the j+l-th quotient bit, and
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f is a selection function.,.

In order to reduce the number of steps, the binary algorithm
can be modified so that b bits of the quotient are obtained per
step. That is, the radix of implementation 1s defined tc te
r = 2b. However, the use of a higher radix makes the selecticn of

the guotient digits as well as the computation of the partial

remainders more complex [ROBES8, ATKI68].

We now describe a division algorithm in which the selecticn

can be performed by a simple rounding.

e 1 sel .

The recursive algorithm for division in which the quotient
digits are obtained by rounding partial remainders to the integer
part and taking the integer part as the quotient digit requires

the divisor to be in the range

(1l - x, 1 + x ] (3)
wnere @ 1s ; constant between 0 and 1, to be determined later.
I~ also requires the use of a redundant representation of the
juot.ent digits. A symmetric redundant digit set (signed-digit

ser (AVIZ61]) 1s used:

DO = {"Qr- -r‘l,Oyl,-o-,Q} (4

t/2 < p < r and r 1s the radix.




The recursion 1s

R. = r (R 1 - q]_lX')

] J-
and
qj = SELECT(Rj)
{ l l] .
!sxgn Rj Ile + 3 if lel <P
=? R
!sign R. IR | otherwise
] ]
where
Rj is the j~th remainder;
X' is the scaled divisor such that
l ~axg IX' £1 + &,
and
qj € Dp is the j-th guotient digit.
Initially,

Ry = Y

is the scaled dividend Y such that

IRyl < o + B and 1/2 < B < 23

The validity of the recursion and the selection functi_.

blished by proving the following two claims.
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S’a\m‘\-

If the bound « 1is

o<ocg%[1-34%u] (8)
an. qj is the j-th quotient digit from a signed-digit set
Dp = {~@reee,=1,0,1,...40}, /2 < ¢ < r, selected according to

the function SELECT, then the partial remainder R. satisfies
Pl

?RJI_(_Q-O-a (9)

Tc show that the partial remainders are bounded we proceed

by :nduction. By definition (7): o
- /=X
i - £ A
Ry < o + B o 17070 -
o (T TAET T
Assume -~ \
AN B
‘R, 1 < + A /
it el d - R X
et A = . - X' so that Al = «. Then
‘R]: - [ij—l - qj_ll + rIA{lqj_lJ (10’

Zrtle + 3 - p) + rxe

= 13 + :[%(1 - 13—“'-—9'—11)}0

e+ 3

Cecause, by definition of the selection functicn SELECT,
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choice of digit qj can always be made such that

IR, = . (11)
j 793l <P
(|

Claim 2:

* m —-j .

Let @ = > q;r 1 be the computed gquotient. Then
i=0
:X: - Q*: < m (12)
_ .-m-1

Also, R =1 Rm+l‘

DProof:

By substitution

m .
Y' = X' X qir“l + Tmlp

i=0 m+1 (13)
and
P S N r-m—llfmilimja
) - 1
1X } [ X lmin (14)
- ~m-1lg + 3]
Ll - o
= ™™  for p = r~1
< ™™  for p < r-1
From (13, 14), R = r-m—lRm+l.
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According to the analvsis of the rounding selecticn metnhcc
[ERCETS] the bounds «x, B, p and the selection interval overlap &
are related as follows. First, in order to have efficient imple-
mentation of single-digit multipliers, required by the division

recursion, the maximum digit value should be [ATRITO0]:

[
wn

< M{

Therefore, from (7):

1

172 < B < 2/3
On the other hand, B = %(l + ), where A is the overlap between
the selection intervals [ERCE7S]1. Therefore, the upper bound on «

can be written as:

(16
This bound will be used to define the range of the transformed

divisor.

To transform the divisor into this range and adjust the
dividend Y, we adopt the multiplicative normalization technique

[DELU70, ERCE72].
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Range Transformations
The multiplicative normalization of a given argument

IXg1 « [1/2,1)

is defined as a sequence of transformations such that

p=l
l—x < Xp O M; | < 14 (17)

i=0
for a given constant 0 < « < 1 and the number of steps p. The
multipliers are of the form Mk =1 + Sk r-k » where r is the ra-
dix.ard S, is a digit in a redundant radix r number system. The

form of the multipliers simplifies the implementation since the
full-precision multiplication is replaced by an addition, a sin-

gle radix-r digit multiplication and a k-position shift.

The multiplicative normalization is performed recursively:

= -k
Xeep = X (1 + Spr™%),  0<k<p (18)
The digit value of Sy is chosen such that the error e,,; after
step k is
le, 71 = 11 = X, (1 + S r k)i ¢ =Bk (19)
k+l' = k kE = r-1
The number of the transformation steps p can now be obtained from

the following condition, implied by (16) and (19):

Y
le | € e 20

P ‘
Assuming an overlap A = %, it follows that, for r 2 8, p23. That
is, three steps are sufficient to transform given divisor X and

dividend Y into the required range.

A-10

~




The multiplicative normalization is conveniently performed

using a recursion on scaled differences (remainders). Let

D, = c*7hx, -1, o<kep (22)

From (18) and (22), the scaled difference recursion follows:

Dy = tDp + 5, + sknkr‘k*l, 0<k<p (23)

For p=3, the normalization procedure requires determination of

SO' Sy and S,. A complete derivation procedure for the selection

rules is discussed in [ERCE72]. For the sake of brevity, we only
e AN, /{1_}' ?
show the radix-16 rules in the next section.

III. RADIX-16 ALGORITHM

In this section the division scheme is illustrated for r=1l6.

The algorithm is as follows:

/* Part 1 - Range Transformation
/* Inputs: Divisor Xg ¢ (1/72,1)
/* Dividend YO, 1Y 1<1Xq]
/* Qutputs: Transformed divisor X'

/* Transformed dividend Y'

l: if 1/2$X0<5/8
then
Yl “— 2Y0

else
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/*
/*

/*

/*

/*®

on

Dl <~ XO -1 Yy
; -
Y, « ¥, ~ —
2: S « signDltls(Dl + UI)J RS
3: D, « 16Dy + S; + SiD; N
a0 &
4: S, & signDZIIG(D2 + Uz)j /
. ' -1 -2
5: X' & (16D2 + 82 + 52D216 + 1)16
~2
Y e Yz(l + 5,16 )
9.1 = 0
Part 2 - Division Recursicon
Inputs: Divisor X'
Dividend Y'
m o
Outputs: Quotient Q* = > q,16 1
i=0
: _ -m-1
Remainder R = 16 Rm+l

7: For j =0,1,2,..., m do

7.1: R. . - YX'q.

7.2: q.

j “« SELECT(Rj)

END

The selection function SELECT, defined in (6), is performed

an estimate Rj of the partial remainder such that

'Rj - R.! £ fg- The terms Ul and U, are six~bit rounding con-

]

stants defined as functions of the seven leading bits of the

truncated scaled difference Dj' j=0,1,2.
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b

! (24)

where the switching expressions for U,+g are

(@]
/!
Mo
[
N
{
[

k

Uy = u,; = 0,

= Kldoazp

(=
(S
|

= Kld0d4(d2 + d3)l

>
I

Ug = Kl(do + d3d4) + K2[d0 + dl(d2 + d3) + d6]

= Kldgd, + K2dg(d; + d,dy)

[+
(0,3
[

and K1 and K2 denote steps 1 and 2, respectively. The derivation
of these step-dependent rounding constants is based on the selec-
tion intervals given in the Appendix. More detailed discussicn

can be found in {ERCE72].

An example of division is given in Figure 1.

IV. CONCLUSION

A scheme for diviesion has been presented. It consists of a
3-step transformation of the divisor and the dividend into a
range which allows use of a recursive higher-radix division algo-
rithm with a élmple quotient selection method. A detailed
derivation of the range transformation requirements and the pro-
cedure has been described and an algorithm for r=16 has been
given. The implementation details and the performance are dis-

cussed elsewhere [ERCES83].
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The selection intervals for S1 and 52 are shown in Tables 1

and 2, respectively.

given in [(ERCE72].

Appendix

The detailed procedure for the derivation is

Sl 64D, 64D,
10 -26 -23
9 -24 =22
8 -23 -20
7 -21 -18
6 -19 -16
5 -17 -14
4 -14 -11
3 -12 -8
2 -9 -5
1 -6 -2
0 -2 3
-1 2 7
=2 7 12
-3 12 18

Table 1: Selection Intervals for S1

82 64D, 64D,
10 -42 -36
9 -37 -33
8 -33 -29
7 -29 -25
6 -25 -21
5 -22 ~-18
4 -18 -14
3 -14 -10
2 -10 -6
1 -6 -2
0 -2 3
-1 2 6
-2 6 10
-3 10 14
-4 14 18
-5 18 23
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Divisor x0
Dividend y0
Quotilient Q

Part 1:

After Step 1 1=
After Step 2: d2=

Table 2: Selection Intervals for 52

0.8107509300,
0.5990471500,
0.7388793868

. 00

2
2
3
3
3

Transformed divisor and dividend:

3 27
7 31
1 35
5 39
9 42

dl= -0.1892490700, yl= 0.5990471500, sl
0.2150186000, y2 =0.7488089375,

X'= 1.0015624282, Y'= 0.7400338328
Part 2:
i Remainder g Quotient
1 -4.1844575266 1 1.0000000000
2 -2.8513250219 -4 0.7500000000
3 2.4537962023 -3 0.7382812500
4 7.2107415359 2 0.7387695313
5 3.1968726195% 7 0.7388763428
6 3.0749653602 3 0.7388792038
7 1.1244492114 3 0.7388793826
8 1.9661885316 1 0.7388793863

(All numbers are represented in decimal)

Figure 1:
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Example

o
1
(V%)

s2

Error

-0.2611206132
-0.0111206132

0.0005981368
0.0001098555
0.0000030440
0.0000001830
0.0000000042
c.000000000%




v-. DIVISION SCHEMES WITH SIMPLIFIED SELECTICON RULES
AND PREDICTION OF QUOTIENT DIGITS
Milos D. Ercegovac

August 3, 1983

Report No.l

1. Introduction

In a previous report, a paper presented at the 6th IEEE Sym-
posium on Computer Arithmetic [ERCE831, a general division scheme
was presented, based on a divisor/dividend transformation tech-
nigue such that the selection of the quotient digits can be per-

formed by simple rounding.

In tnis report we elaborate on the implementation and per-
formance aspects of a radix-4 variant. Of particular interest is
tne fact that the next quotient digit can be obtained in parallel

wlth the next remainder computation.

The discussion and results discussed here are preliminary

ana reguire further refinement.

2. Divisor and Dividend Transformation

We follow closely the results from [ERCE83] in this deraiva-
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2QUCE oD Loe daudsek

x g £58 = < 5 00156
4 2 64
r
*
so tnatc tne transformed diviscr X is in the 1interval [1-1/64,

1+1/641

mLaDSIigLoatiep steps

The scaled remainders for the transformation are defined as

_ k=1, _
D, = 4°7T(x, -1

where Xy = X. We want that (Xp - 11 ¢1/64 or, equivalen:ly, that

047"l ( 1/64. Assuming that D, $ 1, p=4.
The expressions for the transformation are:

2X, = 1 1f X, < 0.75

0 0 o d
D) = %X, - 1= Xg = 1 otherwise
That 1s, SO « {0,1}.
DAy = 4D1 + O + SlDl
Eguivalently,
4
ED. + 1 1f Sl = 1
5, = {4D, 1f S; =0
o - e = -
JDz l 1z Sl l
\
) = 4D2 + 52 + 52D2/4
M.Erceqcvac A~19 Aucucst 2




D =

1 4D, + S

3 + S$,D,/16

3 373

The transformed divisor 1is

* _ _ 4_3
X =X, =D, + 1
The initial dividend is transformed using the following
sion:
v .. o= Y (1 + 547K k=0,1,2,3
“k+l K k rerer

Selecsian of Sy, S, and S,

The selection intervals are determined by evaluating

e,

N _ -k+

D, = (D, s,(‘,4 + 5.4 )

for DK+l = dmax/dmin and all values of Sk = =-2,-1,0,1,2.

ing -0.99 < Dy < 0.99 we obtain the following intervauis:

dmin = -0.99, dmax = 0.99

Selection Intervals for k= 3

s = =2, dmin = 0.2606452, dmax = 0.7716129, delta
s = =1, dmin = 0.0025397, dmax = 0.5053968, delta
3 = 0, dmin = -0.2475000, dmax = 0.2475000, delta
s = 1, dmin = -0.4898462, dmax = ~-0.0024615, delta
s = 2, dmin = -0.7248485, dmax = ~0.2448485, delta

dmin=-0.7248484848, dmax=0.7716129032

Selection Intervals for k= 2

M.Ercegovac
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s = =2, dmin = 0.3643290, dmax = 0.7918894, delta = 0.7914894
s = =1, dmin = 0.0733737, dmax = 0.4724301, delta = 0.10810Q011
s = 0, dmin = -0.1812121, dmax = 0.1929032, delta = 0.1195295
s = 1, dmin = -0.4058467, dmax = -0.0537381, delta = 0.1274740
s = 2, dmin = -0.6055219, dmax = -0,2729749, delta = 0.13287138
dmin=-0.6055218855, dmax=0.7918894009

Selection Intervals for k= 1

s = -2, dmin = 0.6972391, dmax = 1.3959447, delta = 1.3959447
s = =1, dmin = 0.1314927, dmax = 0.5972965, delta = -0.0999426
s = 0, dmin = -0.1513805, dmax = 0.1979724, delta = 0.0664796
s = 1, dmin = -0.3211044, dmax = -0.0416221, delta = 0.1097584
s = 2, dmin = ~0.4342536, dmax = -0.2013518, delta = 0.1197526

dmin=-0.4342536476, dmax=1.3959447005

The overlap is indicated by "delta". A set of selection rules 1is
given next. In these rules, d and s denote the corresponding Dk

ana Sk’ respectively.

Select Sl
if (d<=-0.1) s = 1;
else 1f ((d>-0.1)&(d<=0.165)) s = O0;
else s = ~-1;
Select 52
if (d<=-0.33) s = 23

M.Ercegovac A-21 Aucust 3
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else 1f ((d>-0.33)&(d<=-0.1}) s = 1y

else if ((d>-0.1)&(d<=0.1)) s = 0;

else 1f ((d>0.1)&(d<=0.39)) s = -1;

else s = =2;
Select S3

if (d<=-0.36) s = 2

else if ((d>-0.36)&(d<==-0.12)) s = 1;
else if ((d>-0.12)&(d<=0.12)) s = O0;
else if ((d>0.12)&(d<=0.36)) s = =1;

else S = =23

3. Main Recursion with Quotient Digit Prediction

Once the divisor and the dividend are transformed into the
required range, we apply the following recursion on the partial

remainders.

q; =lRi + signRi*l/2J

*

R = 4(Ri - ;X )

i+l

*
where RO =Y .

A direct implementation o0f this recursion would reguire
three substeps:

(1) Select g,

. %*
(11} Generate 9y’ and

M.Ercegovac A-22 Aucust 3




(iii) Compute Ri+l'

However, it is possible to overlap the step (i) with steps (1i1)

ana (i11). Assume that 9, is known. Then, define the recursion

as
*
PRA
941 = l41Ri - qi+C)J
where
4 :
> iR 2qy
c = -1 otherwise
2

Therefore, the recursion step contains only two substeps insteaa

of three:
Compute Ri+l [-=-=v=-- |
Compute gi+l |====<~-—- |

I |

Compute qi+lX*| [ ———==1

Step i-1 Step 1 .Step i+l

M.Ercegovac A-22 August 3




The overall timing of the main recursion would lcok like

4.

! R1 | ! R2 | R3 ! ... I Ri | Ri+l | ...

' ql t g2 1 g3 | ... ) gi | qi+l t ...

A Complete Radix-4 Algorithm

We give a C version of the complete radix-4 division:

$gefine
#¢gefine
tcefine
#detine
#define

main ()
{

/* Step

/* Step

M.Ercegovac

M 16

X 0.5

Y 0.07401786542
R 4

K 1

dOuble XO, YO, dly yl' dz, y2' d3, y3 'd4;

double quot, power;
float r;
double err, xprime, yprime, rem, remnext;
int i, g, gnext, sl, s2, s3, m;
x0 = X; vyO0 = ¥Y; m = M; r = R;
Q */
if (x0 < 0.75 )
{
dl = 2.0*x0 - 1.0;
vyl = 2.0*y0;
}
else
{
dl = x0 - 1.0;
yl = y0;
}
1 */
sl = selone(dl);
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d2 = r*dl + sl + sl*dl;
= yl*(1 + sl/r );

/* Step 2 */
s2 = seltwo(d2);

d3 = r*d2 + s2 + s2*d2/r ;
= y2*(1 + s2 / (c*r) );

/* Step 3 */

s3 = seltre(d3l);

d4 = r*d3 + s3 + s3*d3/(r*r);
yprime = y3*(1 + s3 / ((r*rl)*r));
xprime = d4/((r*r)*r) + 1;

guot = 0;

power = 1.0;

rem = yprime;

if (rem > 0.0 ) q = rem + 0.5;
else g = rem - 0.5;

/* Recursion */

for (i = 1; i < m+l ; ++1i )
{
remnext = r*(rem - xprime*q);
gnext = select(rem, g, xprime);
qguot = quot + g*power;
err = y0/x0 - gquot;
power = power/r;
q = gnext; rem = remnext;

}
/* Select sl */

selone (4)

double 4;

{
int s;
1f (d <= =0.1 ) s = 1;
else if (( d > -0.1) & (d <= 0.165 )) s = 0;
else s = ~1;

return(s) ;
}

/* Select s2 */
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seltwo (d)
double d;
{

int s;
if (4 <= -0.33 ) s = 2
else if (( 4 > ~0.33 ) & (d <= =-0.1 1)) s = 1;
else if ((d > -0.1 ) & (d <= 0.1 )) s = 0;
else if ((d > 0.1 ) & (d <= 0.39 )) s = ~1;
else s = ~2;
return(s);

}

/* Select s3 */

seltre (d)

double d;

{
int s;
if ( d <= -0.36 ) s = 2
else if (( 4 > -0.36 ) & (d <= =0.12 )) s = 1;
else if (( d > -0.12 ) & (4 <= 0.12 1)) s = 0;
else if (( 4 > 0.12 ) & (d <= 0.36 )) s = =1;
else s = =2;

return(s);
}

/* Select */

select (d, g, div)

double d, div;

int gq;

{
int S, k;
double rtrunc, dtrunc;
k = K;

/* Remainaer truncated to 6 bits; divisor replaced by 1 */
S d * 64.0; rtrunc = s; rtrunc = rtrunc / 64.0;

s div * 64.0; dtrunc = s; dtrunc = dtrunc / 64.0;
dtrunc = 1.0;

non

rtrunc = ( rtrunc - g * dtrunc }* 4.0;
1f (rtrunc > 0) { s = rtrunc + 0.5;}
else s = rtrunc - 0.5;
return(s);
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Example

x0 = 0.5000000000, y0 = 0.0

dl = 0.0000000000, yl = 0.148035
sl =
d2 = 0.0000000000, y2 = 0.148035
s =
d3 = 0.0000000000, y3 = 0.148035
s3 =
d4 = 0.0000000000
Xxprime = 1.0000000000, yprime =

i Remainder ¢ Quotient
predicted next gq = 1

1 0.1480357308 0 0.0000000000

predicted next q =

2 0.592 429234 1
predicted next q = 2
3 -1.6314283066 -2~
predicted next 9 = -2
4 1.4742867738 2
predicted next g = 0
S -2.1028529050 -2
predicted next @ = -2

6

-0.4114116198 0

predictea next q = 1

-

/

~1.6456464794

predicted next g =

2
1.4174140826 1

8

predicted next g = -1
9 1.6696563302 2
predicted next q@ = -1
10 ~1.3213746790 -1
predicted next g = -1
11 ~1.2854987162 -1
predicted next q = -1

M. Ercegovac

0.2500000000

0.1250000000

0.1562500000

0.1484375000

0.1484375000

0.1479492188

0.1480102539

0.1480407715

0.1480369568

0.1480360031
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740178654,
7308

Q:

7308

7308

0.1480357308, gl

Error

0.1480357308

-0.1019642692

0.0230357308

-0.0082142692

-0.0004017692

-0.0004017692

0.0000865121

0.0000254769

-0.0000050406

-0.0000012259

-0.0000002722

= Q
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12 -1.1419948646 -1 0.1480357647 -0.0000000339
predicted next q = 2

13 -0.5679794585 -1 0.1480357051 0.0000000258
predictea next q = -1

14 1.7280821658 2 0.1480357349 -0.0000000041
predicted next q = 0

15 -1.0876713367 -1 0.1480357312 -0.0000000003
predictea next q = -1

16 ~-0.3506853469 c 0.1480357312 -0.0000000003

6. Binary-level Implementation

{to be done 1}

7. Perrormance Analysis

{to be done}

8. Alternatives

For transformation part:

- Have a small table of reciprocals of the truncated divisor,

perhaps to 4-6 bits; use three stages of CSAs to multiply

the divisor (2 bits per stage of the reciprocal);
carries to get the transformed divisor; repeat for

but do not propagate carries.

propagate

the dividend .

- Use radix—-2 in the transformation part; possibly much simpler

implementation.

M.Ercegovac A-28 August 3




- Use radix-16 in the transformation part - details

worked out on the binary level; possibly fewer steps.

For recursion part:
- Implement two steps in one clock period; double

the combinational logic ( CSAs, selection and multiple generator..

A-29

M.Ercegovac August 3




APPEMDIX B

A VLSI Design of A Radix-4 Carrv’ Save Multiplier

M.D. Ercegovact

UOCLA Computer Sclence Department

University of California, Los Angeles
and
J.G. Nash

Hughes Research Laboratories,

Malibu, California

Los Angeles

April 1, 1982

Supporced in 2art by the ONR Contract No. N000l4-79-C-3866
(Research 1in Distributed Preccessing)

Authors' address: M.D. Ercegovac, 23732 Boelter Hall, UCLA, Los
Angeles, CA 90024, (213)825-2660

B-1




Abstrach

A scheme and a VLSI (NMOS) implementation of an area-+-irte

-~

efficient Z-bit-at-a-time (radix-4¢) 2's complement multiglier are
described. The scheme nas a aighly modular bit-slice organ.za-
tion and 1t i1s suitable for bus-oriented chip designs. The logic

specificat.on and the circult design details are discussed and

anal

y
-

vzed in terms of area-time complexity.




I. INTRODUCTICN

A large class of 2applications, such as digitzl signal pro-
cessing and robotics control, require extensive arithmetic capa-
bilities. By far the most ilmportant arithmetic cperation is mqul-
tiplicacicon as evidenced by the availabilitcy 1n the commercial

market oI speclal chips such as TRW MPY-16HJ.

There are two basic apprcaches toc nmultiplication a'gorizhms:
recursive (sequential) and parallel (combinaticnal). Parallel
multipliers have nigher speed and larger area reguirements than

the recursive multipliers.

Recursive multiplication schemes are attractive with respec:
to the circuit area requirements but often unacceptacly slcw due

to their sequential mode of operation. The number of steps in the

recursive algorithm is linearly propcrtional %o the precisicn and
the step time devends on the partial product representation ana
the adder type. The speed can be improved by a) recoding :the

multiplier into a higher radix r=1K  4p4 b) by reducing =n

o
wn
t
[tV
4o

time wusing a carrv-save adder. The recursion <¢an e .o men

t
9]
[9Y

e}
[
D

in an obvious manner Dy an ilterative network of carry-save adders
in order to eliminate clccking overhead [ZABI 70). However, such
an iterative f{(compinational’) xmultiplication scheme regu.lzes £-
proximately an n-fold area L.acrsase c-mpared S0 a secuential aul-

tiplier.
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One of the primary motivations for the design discussed here
was the need for a fast, area-efficient multiplier that can fit
well within a bus-oriented chip organization. A common criticism
of the Dbus-oriented approach 1is that it is much slower than
"hardwired" versions of arithmetic processors, which offer much
higher speeds at reduced flexibility and programmability. We
have pursued an alternative approach that combines the advantages
of each. Our chip design integrates a high-speed carry-save mul-
tiplier with a conventional, slower bu. ructure. The design is
also ﬁighly modular so that 1its use in other custom chips is
straightforward. The bit-slice carry-save approach provides, in
addition, £lexibility in 1increasing the word lengths without

large speed penalties and costly redesign.

II. THE SCHEME

The multiplicand X and the mulﬁiplier ¥ are n-bit fractions

in 2's complement system:

x = (XOle,-.o'xn_l)

Y= Woeyyseeerypay)

The multiplier is recoded by a triplet scanning method 1nto
the radix-4 multiplier z=y using the modified Booth's algor:ithm

(BOOT 51, ANDE 67, RUBE 75]:

z = (25,2y,.000,2;.7) z;€(-2,-1,0,1,2}
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where

m = n/2 (n even)

zj = yzj+1 + Y23+2 - 2y23 for j=0,1,...,m-1
and Yq = 0

The corresponding switching expressions can be obtained from the

recoding table in terms of multiplier bits Yn-2+ Yp-1r and yp

0 Select 2X
M2 = y,-1 ® Y5 = |1 Select X

0] Select direct
Ml = yn-Z =

1 Select complement

- - - 0 No clear
MO = yo_o¥n-1¥n + ¥p-2¥n-1¥n = |1 Clear

The recoder and the generator of ij are organized as shown in

Figure 1.

The product is obtained by the following recursion

P(k+1) = 2(P(K) + X'z _ ) k= 0,1,...,m1
where the initial partial product is P(0)=0. The addition cpera-
tion is carried out using a carry-save adder so that the partial
product P(k), for k=0 to m-l, is represented as a pair of bit-
vectors (C(k), S(k)) where C is the partial carry and S is the

partial sum bit-vector. The product P=XY requires assimilation of
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carries wusing a carry-propagate adder (CPA). Since the signed
operands are implicitly handled by the recoding no correction |is

required in the case of a negative multiplier.

The multiplication recursion is implemented as a pigeline
consisting of three stages: stage Sl performs recoding, S2 gen-
erates required multiple of the multiplicand X, and S3 performs
the carry-save addition. The timing of the pipeline is shown in

Figure 2.

When Zj < 0, a negative multiple of X is formed in a stan-
dard manner by complementing the shifted/nonshifted multiplicand
X and adding one in the least significant position of the adder.
Since the <carry-save addition operation is associative and it
never causes a carry into the least significant pecsiticn, &k 1
required in the negation can be inserted into the LSB position
after the step in which the negation was required. This can be
conveniently implemented by inserting a delayed value of the Ml
output of the recoder into the least significant bit of the par-

tial carry register.

III. THE DESIGN

The multiplier was designed under assumption of a bus-
oriented, bit-slice chip organization. As a result, custom VLSI
chips requiring multiplier can be rapidly assembled by attaching

required modules to the chip bus. The use of a carry-save, bit-
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slice multiplier scheme also provides important flexibility in

increasing the operand length.

The multiplier organization and its interface to the carry-
propagate adder (CPA) 1is shown in Figure 3. It consists of a
linear array of bit-slice sections, all of which are <controlled
by a set of circuits (MULT CONTROL in Figure 3) outside the ar-
ray. In order to accommodate shifted multiplicand 2X it was
necessary to append an extra full adder cell to the most signifi-
cant position. 1In addition to the basic full adder 1logic, each
bit-slice contains storage registers for both X and Y operands
and partial sum S and carry C. The design produces only a single
precision product but it can be easily extended to accomodate

double precision outputs.

The interface with the CPA consists of a single set of pass
transistors that connect partial sum and carries registers with

the inputs to the adder.

- The relation of the bit-slice sections ¢to the controller
circuit 1is shown in Figure 4; As mentioned above, the circuit
pipeliné has three stages so that three two phase <c¢lock cycles
are required to fill the pipeline. During the first clock cycle,
the low order multiplier bits are shifted into the storage cells,

Yp-2+ Yp-1r and yp. On the ¢&; phase of the next clock cycle,

these multiplier bits are recoded, producing M0, Ml, and M2. On

the d2 phase of the second clock cycle, these inputs are used to

generate the corresponding multiple of the multiplicand X as dis-
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cussed in Section 2. The 1l-0f-4 decoder performs the appropri-
ate selection and also functions as a control line driver. The
MO -or clear signal overrides phe select operation. The output of
the select/clear function box is latched at the end of the second

clock cycle. The third clock cycle consists of addition during

the 51 phase follcwed by storage of the partial sum and carry
during the dz phase. These storage registers are initialized to

zero when the multiplier is loaded with its operands.

The dual shift register, shown in Figure 5, is arranged in a
fashion that allows two multiplier bits to be examined by the
recoder each clock cycle. It consists of two identical shift re-
gisters, each of which holds n/2 bits. One shift register holds
the odd digits, and the other hélds the even digits. Each shift
register is spread over two bit-slices, so that every clock cycle
the datz in a shift register cel advances two positions. As a
result, two bits of the original radix-2 multiplier are scanned

each clock.

The movement of data between the partial sum and carry
storage cells and the full adder is illustrated in Figure 6. The
actual addition is done in two parts, one for the carry and one
for the sum. Since two multiplier bits are examined each clock
cycle, it is necessary for the sum outputs of each bit-slice to
be shifted to the right two bit-slices as well. It can also be
seen that the carry bit is shifted to the right one-bit slice.

The carry and sum logic blocks in Figure 6 each contain a storage
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latch at their output.

A bit-slice layout of the multiplier is shown in Figure 7
with the pipeline stages indicated. This circuit was designed
based on a NMOS depletion mode, five mask level process. All
controll and I/0 1lines running across the slice are in metal.
Note that two bus lines per slice, to support a two-port ~memory,
are available for data transfer. Circuit area, not including the
controlier is approximately 12\ x 2\ mil2 where N\ is the Mead-
Conway scaling parameter [MEAD 80]. For example, with N\ = 2, the
bit-slice area is 24x4 mils?, 1In Figure 8 we show an example of
a chip design that wuses this multiplier [NASH 82]. As can be
seen the multiplier efficiently uses available space in that it
takes up approximately the same amount of area as the CPA. The

control circuitry is not shown.

IV. DISCUSSION

In this section we estimate the area-time efficiency of this
multiplier. The maximum operating speed of the multiplier is de-
tremined by the slowest stage in the pipeline. There are six
phases of activity in the three-stage pipeline as listed in Table
I. The delays in all sections of the pipeline are determined by
approximately two gating levels per half clock cycle. From Fig-
ure 4 it is ciear that the largest drive requirements are placed
upon the l-of-4 decoder, which must charge the select/clear lines

across all bits. However, because the controller «c¢ircuits are
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outside the bit-slice array, there is space enough to make them
as large as desired. As a result, the recoder section <can also
be used as an intermediate driver stage for the 1l-o0f-4
decoder/driver. This arrangement provides a capability to ac-
tivate the select/clear blocks with delays comparable to the de-
lay through the full adder and the shift register. Simulations
of the multiplier stages, including layout parasitics, indicated
that for 6u gate lengths, the pipeline slowest stage of 33us was
in the full adder bit-slice section. Thus, the clock speed for

the multiplier is expected to be about 16MHz.

The area-time complexity of the multiplier ( apart from the

CPA ) can then be expressed as:

AT (r=4) = 3nAp, x B+Drt,
where AFA is the full adder area and tp, is the propagation time
through the - full adder. Here, we have used as an estimate for
the bit-slice area, three times the full adder area in the bit-
slice. Assuming 6u gate lengths, a 32-bit fixed-point multiplier
would require about 500ns. Using a 3u technology we estimate that

about 200-250ns would be required to perform this multiplication.

The corresponding area-time for a radix-2 (no recoding)
iterative or combinational (array) multiplier, also excluding

the CPA, is approximately

AT(:,Z) = n(n-l)AFA X ntFA.

For large n, the radix-4 recursive multiplier approach provides a
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factor of n/3 improvement in the area-time product with respect

to the combinational array multiplier.
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FIGURE CAPTIONS

Recoder and multiple generator.
Timing Diagram

Bit-slice arrangement of multiplier and interface to carry
propagate adder (CPA).

Schematic of multiplier pipeline showing controliler circuits
(outside array of bit-slice elements) and bit-slice functional
arrangement.

Diagram of dual shift register. A storage register, not
shown is used to store the multiplicand X.

Schematic of data flow in partial product carry-save add/shift
section of serial multiplier.

Layout of bit-slice section of multiplier using NMQS,
depletion load, five mask level process.

(a) Chip organization and (b) micorphotograph of bus oriented
arithmetic processing chip incorporating carry-save multiplier.
This chip is 28-bits, fixed point made using 6u NMOS
technology. Chip clock of 2-4 MHz is synchronized with
multiplier 16 MHZz clock.
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Clock Phase

TABLE I

Pipeline Activity
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Shift Register-Cne 2it Slice2 Zhife
Recode Multiplier 3its

1 of 4 Nand Decoder

Precharge Select/Clear Circuitls
Drive Select/Clear Lines

Partial Product Addition

Partial Product Storage
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