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SUMMARY

The main objective of the present investigation is to evaluate

strain-softening formulations for contained fracture in cementitious

materials such as concrete and geomaterials. This report includes two

principal developments: (i) a rational approach to identify softening

properties due to tensile cracking and frictional slip from displacement

controlled material testing, and (ii) a systematic verification of

contained fracture computations from small-scale structural testing. To

this end a composite damage model is proposed to describe the

degradation of strength and stiffness in the post-peak regime with the

aid of a volume fraction formulation of localized damage within a finite

element.

The identification of softening properties requires the solution of

inverse boundary value problems since the contained fracture process in-

troduces stress redistribution and strain localization, even though the

test specimen may be initially homogeneous. As a result displacement

controlled post-peak testing does not directly provide material proper-

ties but rather structural properties of a fractured discontinuum, which

'S can be used for the idealization of an "equivalent" continuum. To this

end two localization parameters are introduced for tensile cracking and

frictional slip which define, the extent of material damage as compared

to the intact elastic volume, and which provide a characteristic length

measure into the strain-softening material formulation. The principal

issue with regard to these localization parameters concerns the concept

of a fracture process zone which has been introduced in nonlinear

,.d
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fracture mechanics as an intrinsic fracture property independent of the

particular boundary value problem. Therefore, the immediate question

* arises whether these localization parameters provide a "proper" fracture p

property or if they are merely mesh size dependent softening parameters

which control the overall degradation of strength.

* The results of the current investigation demonstrate that these D.

localization parameters are not really a fracture property when distri-

buted cracking and shear slip in unnotched specimens is considered. In

* this case one cannot assign the entire fracture energy of the specimen p

to a single element without introducing severe mesh size effects if

fracture is not confined to a single predominant fracture band like in

* Dnotched specimens.

* p•

4.0
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1. INTRODUCTION

1.1 Objective

The finite element method is often used in a rather indiscrimi-

nate manner to predict the ultimate load capacity and the associated

failure mechanism of structures and solids. Traditionally the concepts

of nonlinear elasticity and hardening plasticity have been adopted and

extended to model the local material behavior in the pre-and and post-

peak regime. Brittle and ductile fracture was simulated in the form of 4

degrading stress-strain relations within the "smeared" approach, in

which the localized discontinuities of the field variables were

distributed, or rather homogenized, over tributary areas within each 1%

finite element. In this way, progressive damage accumulation and the

localization of the failure zone were modeled within the framework of

hardening/softening constitutive mechanics and were thus readily

amenable to standard computational strategies. The inherent instability

of local material softening was restrained by the redistribution

capacity of the structural configuration during contained fracture

propagation. Clearly the strong path- and history-dependence of these

confined material instabilities required sophisticated computational

methods In order to ensure numerical solutions which would be on one

hand sufficiently robust to trace contained fracture propagation and on

the other hand sufficiently sensitive to discover imminent structural

failure.

Along this line the question was usually raised whether the soften-

Ing branch of the global load-deformation relationship was a true

-3-
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material property or simply the result of the experimental configuration

and boundary conditions. Recognizing that the post-peak regime was a

structural rather than a material phenomenon it was natural to question

the extrapolation of these softening properties to other structural con-

fi gu rations.

0 On the other hand these fundamental questions of structure-

independent strain-softening properties appeared again in the discrete

fracture approach in the form of decohesive interface properties. In

this case the progressive fracture process involved a continuous 1

updating of the structural toplogy, whereby the inherent instability

of the strain-softening material formulation was replaced by latent

a* instability of crack growth on the structural level. Although some of

the inconsistencies of the softening continuum approach were circum-

vented in this way, new complications arose with the definition of

appropriate contact and interface conditions, which played the same role

as the softening branch in the smeared continuum model.

In view of these pressing questions of the smeared and the discrete

fracture approaches a comprehensive research program was initiated 0

August 1, 1982 at the University of Colorado, Boulder. The main ob-

jective was to scrutinize the computation of progressive damage in

structural components up to and beyond collapse. To this end the

shortcomings and limitations of the smeared fracture approach were to

be explored and compared with pertinent experimental evidence. The main

goal was to examine the arguments of the continuum fracture strategy and

to delineate guidelines on the range of applications. It was felt that

-4-
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these basic questions were sufficiently fundamental to all engineering

materials exhibiting brittle or ductile fracture in addition to concrete

and geotechnical materials which were of immediate concern.

1.2 Scope

The report summarizes the results of the experimental and computa-

tional study of contained fracture. Based - K,'chanov's concept of con-

tinuous damage, a strain-softening formulat ., will be developed which

describes the degradation of strength in ti ,- "f the ratio of damaged ,

to undamaged volume. The triaxial strength is described by the Mohr-

Coulomb criterion of frictional slip and the tension cut-off condition

of tensile cracking. Particular attention will be devoted to the e.'

systematic identification of the shear and tension softening properties

from triaxial compression tests at different confining pressures and

I-uniaxial tension tests. An inverse identification procedure will be

utilized for the characterization of the composite damage model parame-

ters using displacement controlled test data in the post-peak regime. "i

Because of the structural aspects of stress redistribution and fracture

localization a series of nonlinear boundary value problems have to be

solved in order to quantify the localization of damage within the test I
specimen. The element localization parameter, or rather the damage

volume fraction, determines the rate of overall strength degradation of

the specimen in relation to a particular mesh-layout. Moreover, this

scalar measure of damage is a function of confining pressure in order to

accommodate different softening rates ranging from brittle cracking in

tension to ductile slip in shear. The results of several parameter .!i

-5-
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studies wi;I i I, Strd t- ,, m ~ itivity of this softening

formulati - .,,u wi 1l answer ,artial ly the question if this localization

parameter is a proper fracture property which could be physically

attributed to the size of the fracture process zone.

Subsequently the resulting strain-softening damage model will be

applied to contained fracture predictions. To this end servo-controlled

test data obtained in our high capacity direct shear test apparatus will

be used for comparison. For different ratios of normal to tangential

0 load level tensile cracking as well as frictional slip take place within 0

the specimen and lead to an overall degradation of shear strength within

the specimen down to the residual strength level. Due to the high

confinement of the shear box the fracture process is fully contained

similar to overstressed regions in a highly indeterminate structure. In

this context the direct shear test specimen constitutes a miniature

structure and thus furnishes important experimental information for the _

verification of computational fracture predictions.

1.3 Related Work

Recent progress in the area of servo-controlled testing and the

increasing demand of computational mechanics for more realistic material

descriptions has led to extensive research efforts in the field of con- ."

stitutive mechanics. However, in spite of massive activities the relia-

ble prediction of brittle and ductile fracture has been elusive to a

large extent and has generated considerable controversies among leading

researchers. On the continuum level two approaches have been pursued in

the past along the lines of (i) strain-softening continuum models and

keS
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(ii) discrete fracture formulations. These two opposing concepts have

been partly reconciled in the recent past by bifurcation models in which

the localization of the fracture band results from progressing material

instabilities in the structure. Another rapidly growing area which has

S.. contributed to the development of a more rational approach to fracture

is the field of damage mechanics and the underlying state variable

formulations. An extensive literature review of the on-going experi-

mental, computational and constitutive modeling work should clearly fill

a publication of its own. In the following we will restrict our

attention to those contributions which are of immediate concern to the

subsequent investigation of localized fracture in concrete and

geotechnical materials.

(i) Experimental Studies:

On the experimental side we refer to the early strain-

softening studies by Sture and Ko [1] who examined the post-peak

behavior and shear band development in rocks with the structurally

stiff triaxial Hoek cell device developed at C.U. Boulder. We also

make use of our large capacity direct shear apparatus which was

originally designed by Sture [2] for studying interface behavior

-. , e.g. of rock joints. In the context of the present investigation

this servo-controlled test device will be employed to verify our

computational fracture predictions of confined cracking and

frictional slip. In the field of tension testing some of the early

test results by Heilmann [3] on unnotched specimens are utilized as

well as the recent fracture energy studies by Petersson [4]. Along

-7-
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4this line a forthcoming paper by Gopalaratnam and Shah [5] summa-

rizes the current findings in tension testing of concrete consi-

dering primarily notched test specimens. This experimental work

will be complemented by our own developments in displacement con-

trolled tension testing of cylindrical mortar specimens that are

16 further described in Section 3.

(ii) Computational Studies:

On the computational front we refer to the softening methodo-

* logy forwarded earlier by Argyris, Faust and Willam [6] in which

the effect of different strain-softening models for tension and

shear was examined in conjunction with structural failure predic-

" tions. This engineering approach to fracture was used in our pre-

vious study of confined fracture in concrete and mortar samples

which were tested in the direct shear test [7]. In our attempt to

incorporate localization into the smeared strain-softening approach

we make use of the elastic-plastic Mohr-Columb model of Pietrusz-

czak and Mroz [8] on several occasions. In this context we repeat-

edly refer to the blunt crack band approach of Bazant and co-wor-

kers [9] who interpreted the fictitious crack model of Hillerborg

et al [10] within a crack band of finite rather than infinitesimal

width. With reference to the discrete fracture models we intend to

resort to the work of Saouma and Ingraffea who described in Ref.

[11] the current state-of-the-art of modeling slow fracture propa-

gation and interactive remeshing. Although we will not directly

pursue material bifurcation in this report we wish to acknowledge

-8-
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the fundamental stability studies of Rudnicki and Rice [12] who

showed that the localization of shear bands originates in a

constitutive instability. In fact, several bifurcation studies

have been recently put forward in the geotechnical area, e.g. by

Vardoulakis [13] and Vermeer [14] which followed essentially the

early development of Hill [15) on the stability and uniqueness of

materials. In the context of necking of metals the concept of void

nucleation and the resulting structural instability studies

advocated by Needleman and Tvergaard [16] are particularly

noteworthy since they suggest an alternative approach for tracing

fracture localization into the post-peak regime.

(iii) Constitutive Studies

On the constitutive front we wish to acknowledge the contin-

uous strain-softening plasticity formulations proposed earlier by

Dougill [17] for elastic fracturing continua and by Naghdi and

Trapp [18] within the strain space formulation of plasticity. For

our subsequent development of a composite damage model for 1P

softening we make use of the original work by Kachanov [19] and

refer to the recent developments of continuous damage formulations

by Lemaitre and Chaboche [20] as well as by Krajinovic and Fonseka

[21].

-9-
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2. BASIC OBSERVATIONS

2.1 Servo-Controlled Testing

0 Modern servo-controlled testing e.g. with MTS material testing sys-

tems provides additional information on the mechanical response behavior

and new insight into the apparent ductility of engineering materials.

In particular the nature of fracture appears in another light if dis-

placement controlled experiments are carried out in sufficiently stiff

test set-ups. In fact, brittle materials or rather materials which

exhibit brittle fracture under load-controlled testing can show consi-

derable ductility under displacement control. But even ductile mater-

ials such as mild steel exhibit distinct differences in the response

behavior particularly if local material instabilities are considered at

initial yield or in the post-peak regime. Figs. 2-1 and 2-2 clearly

demonstrate the remarkable differences of load and displacement

0 ~ controlled tests on mortar and steel specimens under uniaxial tension.

In both cases the overall load-deformation response data are plotted

directly from the output signals. The subsequent extraction of actual

material properties raises immediately questions with regard to the

appropriate stress-strain measures, the localization of strains within

the test specimen and the interpretation of discontinuous fracture bands

within a continuum formulation when the post-peak regime is considered.

From the dimensions in both Figs. 2-1 and 2-2 we observe that the

overall displacements differ by two orders of magnitude for comparable

specimen lengths. As a result the ductile fracture of metals involves

large changes of the test geometry and therefore requires a large strain

-10-
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Fig. 2-2 Load-elongation diagram of SAE 1020 steel specimens tested S
under load and displacement (stroke) control). Note the
absence of the yield point and of the post-peak regime under
load control. The two specimens have identical geometry [401.

to

I,-12-

'p,

-.,t ._ , ' .-..' ., -' ..' .-' .-' -' " .' .., ......-.-., .-.-% -..-..-., -y .-., ., . ..-. , . . . .. . .... ..-.. .. ..
-.--':rzt .. 14 *-,,2 *% -. -._. .. , 0 ,,-, - '.. .. X ".".'- . ... '. -* .'. . .- '.-.- '- - - ".'-" . .



formulation for the proper interpretation of slip bands during necking.

In contrast, the brittle fracture of cementitous materials such as con-

crete and mortar does not involve any noticeable change of the specimen

geometry up to the localization of a discrete crack band. In fact, a

discrete hairline crack becomes visible only in the very final stage of

decohesion in the post-peak regime when the force level approaches

zero. As a result, the softening behavior of the specimen can not be

explained by large deformations or geometric effects such as necking but

rather by decohesion within a stable material fabric due to debonding

and progressive microcracking. Consequently, we restrict the develop-

ment of a composite damage theory of fracture to the theory of small

displacement gradients.

-* Because of the basic differences between load- and displacement-
-w"

I controlled testing we have to ask ourselves if the apparent ductility of

servo-controlled experiments can be mobilized in an actual structure and

if the computational predictions should include these effects. The an-

swer is clearly in favor of material data from displacement-controlled

testing in view of the predominant role of the displacement formulation

for the numerical solution of initial boundary value problems in the I
mechanics of solids and structures. The underlying approximations of

the displacement field and the ensuing computational strategies result

in displacement-controlled algorithms for nonlinear analysis. There- .1

fore, the finite element displacement method of discretization requires

a consistent strain-based formulation of the material behavior and a 7
contiguous displacement control for material testing. Moreover, if we

-13-
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material models from displacement-controlled testing, the solution of

kinematically unconfined boundary value problems will reproduce load-

*0 controlled test data if no stress redistribution can take place on the

structural level. As a result, displacement control, both experimental

as well as computational, simply extends the scope of our numerical

I* predictions into the regime of ductile fracture which is not accessible

under load control.

2.2 Strain-Softening and Localization of Fracture
* The principal issue of displacement controlled testing is the

interpretation and extraction of proper material properties from the

overall softening data. We recall that the direct tension test of the

mortar specimen in Fig. 2.1 showed no noticeable change of geometry

in the post-peak regime. In fact, a hairline crack of the order of 10- 3

-- cm developed only at the final test stage when che load bearing capacity
had practically diminished to zero. From that particular test it is

apparent that decohesion takes place within the material microstructure

far before a discrete tension crack develops across the specimen.

In the absence of noticeable changes of the geometric configuration

both large deformations and discrete crack mechanics do not provide an

*obvious explanation. This suggests that strain-softening of the mate-

rial itself should be considered in order to interpret the degradation

of overall strength of the intact specimen in the post-peak regime. In

-* fact, this simple concept has been used in the past within the so-called

smeared crack approach to monitor the apparent ductility of solids as

described, for example in the recent textbook by Chen and Saleeb [22].

-14-
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Traditionally, several criticisms have been voiced in the past

.against strain-softening constitutive models. The negative tangent

material modulus ET<O obviously violates the basic Drucker requirement

for stable materials, ET>O. The lack of positive definiteness intro-

duces complex wave speeds and leads to the loss of uniqueness. In fact,

the principle of local action in continuum mechanics of simple materials

is in direct conflict with the entire notion of strain-softening and the

inherent generation of energy. In this context some of the classical

results of Hadamard (23] are often put forward where it was demonstrated

that non-positive definite material behavior leads to unbounded error

propagation in the context of wave mechanics.

These observations usually originate from basic principles of lin-

ear and nonlinear elasticity and are thus not in conflict with a more

appropriate interpretation of strain-softening within the framework of

non-equilibrium thermodynamic processes. Clearly, strain-softening is

the global aspect of changes of the internal material structure which

take place in cementitious materials in the form of microcracking, void

nucleation and decohesion of the heterogeneous microstructure. There-

fore, it is necessary to interpret strain-softening as a non-equilibrium

process rather than an equilibrium state. Therefore it is mandatory to

describe softening in terms of evolutionary constitutive equations in

the form of either plasticity, viscoplasticity or internal

variable-based damage formulations with real time or intrinsic time

being the independent process variable.

p.. The generation of energy during softening clearly solicits a syn-

ergetic approach in which other forms of energy are considered such as
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acoustic emissions and heat production quite aside from the kinetic

energy of the dynamic fracture process. But even if only an isolated

* quasistatic mechanical system is considered, there are two possibilities

for interpreting the energy release during strain-softening in terms of

(i) fracture mechanics, where a specific amount of fracture

energy is required to open a discrete crack surface,

(ii) continuous damage mechanics, where a specific amount of

energy is required for the rearrangement of the internal

0 mi crostructure.

These two concepts lead to fundamentally different formulations as

far as constitutive modeling is concerned. The fracture mechanics

approach leads to an explicit dependence on a characteristic size, i.e.,

the localization of the fracture process zone which arises from the

conversion of volume energy into surface energy in the constitutive

operator. In contrast, the continuous damage approach and the related

softening plasticity and viscoplastic models do not introduce a size

effect in the constitutive relations, since the damage zones are distri-

buted according to the evolution of the governing process variables. In S

this case the localization of damage is an implicit result rather than

an explicit statement, e.g. of the fracture band models [9] where the

.0
material damage is a priori confined to the width of the fracture

process zone.

The main subject of the present investigation is this charac-

teristic length and how it affects the computational fracture

predictions with regard to mesh size.

-16-
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2.3 Stable Control of Post-Peak Strength Behavior

In the past it was repeatedly suggested that strain-softening is

really a structural instability problem, as asserted by Dougill [24] and

Maier et al [25]. Recently, softening has been attributed to strain

localization within a narrow fracture band. This choice of instability

mode was originally proposed by Rudnicki and Rice [12] for the formation

of shear bands. This feature was later adopted by several investigators

for the purpose of examining the orientation of shear bands within

linear bifurcation studies [13], [14]. In fact, Bazant offered some

elementary strain-softening interpretation of concrete in compression

[26] along similar lines. Although the study was limited to uniaxial
0

conditions and yielded quite unrealistic modes of strain localization,

the simple one-dimensional spring model offered an important insight

into the fundamental aspects of strain-softening behavior. He concluded

that although "strain-softening is impossible in a continuum" it can

exist in a "heterogeneous material if strain localization is consi-

dered." Moreover, the size of the localization band should be of the

same order as the maximum aggregate since a uniform deformation is

assumed to prevail in the fracture band. As a result of the inhomo-

geneity of concrete, the equivalent continuum considerations are re-

stricted to geometries that are considerably larger than the maximum

aggregate. This size limitation is in obvious conflict with the

principle of local action of simple materials where the behavior is

governed by point measures of stresses and strains obtained from a

limiting process of decreasing neighborhoods.

-17-
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A similar interpretation for the formation of shear bands in rocks

was offered by Sture and Ko [1] in the context of the triaxial compres-

sion test. In this case the stiffness of the test set-up was considered

in the form of parallel as well as series springs in conjunction with

the test specimen. This basic strain-softening study of brittle mate-

* rials clearly demonstrated that stable control of the post-peak regime O

can not be assured by displacement control alone but it also requires a

test device which is sufficiently stiff compared to the test specimen.

Again, simple stability considerations showed that strain-softening O

can only exist if strain localization is introduced in a shear band of

finite width.

In view of the importance of these stability arguments with regard

to the forthcoming damage formulation, let us briefly review the princi-

pal reasoning. To this end we will pursue the stable localization of a

crack band in the direct tension test.

Let us consider the elementary axial stiffness model of the direct

tension test illustrated in Fig. 2-3. The parallel and series springs

kp and ks represent the stiffness of the loading frame. The

specimen, which is subjected to the prescribed extension dup>O of the

loading platen, remains intact up to the point of incipient instability

due to the localization of a crack band of the width Ld. At this

stage progressive damage takes place uniformly within the crack band at

the softening rate kd while the remaining portion of the tension

specimen unloads elastically along ke.

If we neglect for the time being geometric stiffness effects which

tend to stabilize rather than destabilize the tensile system, we can

-18-
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Fig. 2-3 Uniaxial model of direct tension test setup.

Decomposition of equivalent smeared element
into composite element of intact elastic and up

weakening damage behavior.
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examine the stability of the strain-localization mode simply from the

loss of positive definite stiffness of the entire test system. Assuming

* •that a stable equilibrium configuration has been reached which corre-

sponds to point 0 of the stress-strain diagram, a small perturbation

leads to incipient instability if the tangential stiffness matrix KT

to becomes singular, i.e., if det [KT] = 0.

kp+ks+ke -ke du

KT dr = 0 where KT = and dr (2.1)
0 rk e  k e+kd du2 Iu

with k = spring stiffness of parallel test frame

ks = spring stiffness of in series test frame

AEe elastic unloading stiffness
k - of undamaged specimen region
e L

e
AEd softening stiffness of

k = - localized damage region
d Ld

Expansion of the characteristic equation det K = 0 leads to the

T
following restriction of the ratio between the tangential softening

modulus Ed and the elastic unloading modulus Ee

Ed Ld

E -
AE

e Le + e
Sk 5+ks p

Although similar results have been obtained before for uniaxial and

triaxial compression tests by Bazant [26] and Sture and Ko [1], it
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is worthwhile recalling some of the implications of the stability re-

quirement above. From the inequality Eq. (2.2) we conclude:

(i) When Ld+O the damage region diminishes within the speci-

men. This infers that the tangent softening modulus must

remain positive semi-definite, Ed.0 corresponding to the

traditional postulate of elastic material stability.

(ii) when Le O the damage region occupies the entire speci-

men, i.e., Ld=Lt. This implies that fully stable con-

trol can be maintained during softening as long as the

damage stiffness remains smaller than the stiffness of the

experimental apparatus.

AE AE
-k < k + k where k - d = k (2.3)
d- s p d Ld L t

d t

For perfectly brittle material behavior with kd= -w stable displace-

ment control of the post-peak regime is therefore only possible with

infinitely stiff test set-ups, ks+kp+.

(iii) when the stiffness of the test apparatus increases,

(ks+kp ), stable softening is controlled entirely by

theratio of damage to intact elastic volume or their

respective stiffnesses k and k
d e

AEd AE Ed Ld (
- e+ > 0 or - < d (2.4)

d e e e

-- 21-
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This simple result implies that for stable post-peak behavior the

elastic unloading stiffness ke must remain larger in absolute value

O than the softening stiffness of the damaged region kd. In view of

the experimental strain-softening evidence in ref. [5] it is apparent

that the softening stiffness decreases in the post-peak regime with

* decreasing strength. There are two obvious possibilities: either the

damage volume Vd=ALd increases during fracture localization, which

leads to an increase of the elastic stiffness since Ld=Lt-Le, or

*0 the damage volume fraction remains fixed, Ld/Le=constant. In this

case the decrease of damage modulus Ed must be accompanied by an

equivalent decrease of the elastic unloading modulus Ee. In fact the

* cyclic unloading tension test results published by Shah et al. [51 seem

to confirm the latter proposition of keeping Ld/Le=constant.

These simple observations lead directly to the fundamental issue

0  that strain-softening is not a local material property but rather a

structural property. In fact, we have seen from the elementary consi-

deration above that the softening stiffness involves a finite damage

*1 volume Vd= A Ld and introduces a non-local aspect into the constitu-

tive formulation. In contrast to the continuum theories of hardening

materials it is therefore mandatory to accommodate size effects in a

continuous softening formulation since Ld>O for stable post-peak be-

havior. For computational fracture predictions the basic issue then

revolves around the question: Is the size of the damage zone Ld a

fundamental fracture property which could be interpreted as the width

-" of the fracture process zone, or is the damage volume fraction Ld/Le

*, a fracture parameter which is independent of the mesh size and the

-22-

bV

'V. I

-* (
*" * - * * q * .*g* * - - - - ---



-ro °- ... * . -- -.

particular boundary value problem considered?

* The elementary analysis of the uniaxial tension test above was

based on the assumption that geometric effects remain negligible and

that instability occurs only due strain localization of the axial defor-

mations. In fact, it was observed earlier that the geometric stiffness

introduces a stabilizing rather than destabilizing effect in the tension

'- specimen. The usual bifurcation analysis along the line of a linearized

* "eigenvalue solution of the tangential stiffness in a stressed configu-

ration states:

E + X KG) du = 0 (2.5)

Eq. 2.5 does not lead to destabilization if the critical buckling load

remains positive, i.e., tensile. However, it has been suggested on

several occasions that the geometric nonlinearities will have a signifi-

cant influence on the peak strength behavior and t'us also the post-peak

" "response if the elastic stiffness KE diminishes and becomes singular,

e.g., when Es+O. For this reason let us consider the full scope of

Eq. 2.5 and the relative order of magnitudes of KE and KG of the

simple uniaxial idealization of the direct tension test above.

To this end we restrict again our attention to the uniaxial insta-

bility mode because the experimental evidence in Fig. 2-1 does not sup-

port any transverse motion in the entire response regime. In this case

@1 the usual contribution of the finite rotation 6=1/2 (dv/dx)2 O to the

. geometric stiffness KG can not be mobilized. The only term of the

strain-displacement relation arises from the quadratic strain term sm
ML

-.4
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1/2(du/dx)2. As a result the following geometric stiffness matrix

- arises for the axial force member

F i1 -1

KG= Aa° (2.6)
L -1 1

The basic stability condition in Eq. 2.1 then simply expands into

S+k +k -k kg 1

det { k+ X 0 (2.7)
-ke  ke+kd -k k

where kg A and X= 0-L

.For the case of an infinitely stiff experimental apparatus-specimen

system under displacement control we can restrict our argument to

KT(2 ,2 ) = 0

* ke + kd + X kg =0 (2.8)

As a result the effect of initial stress X=ao leads to the

following requirement for stable control of the post-peak regime

* AEd AEe XA
- < + where X = oo  (2.8)

Ld - Le Lt

In comparison to Eq. 2.4 this condition verifies that the tensile stress

state X=ao0 >O helps to stabilize or maintain control in the strain-

softening regime. In fact if A is of the same order of magnitude as the

= -24-
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softening modulus, i.e., a0=O(Ed), then softening control can be main-

Ntained irrespective of the elastic unloading modulus Ee as long as

Ld>O.

EdE 00
+ (2.9)"-"Ld - Lt.Ld Lt

In the compression test, however, the geometric stiffness term

introduces an additional destabilizing effect which has been omitted in

the previous stability studies of the uniaxial and triaxial compression

tests [1,26].

2.4 Fracture Energy Concepts

The origin of fracture mechanics dates back to the early work of

Griffith who investigated the brittle fracture of glass. The basic

concept of the Griffith theory is related to the notion of an inter-

facial stress layer in solids similar to surface tension in liquids.

Crack propagation in elastic solids is thus governed by the exchange of

external work W and internal energy U with the surface energy r neces-

sary for advancing the crack. The energy balance during slow crack

advance may be expressed as

d (W-U) =dr (2.10)

where the kinetic energy contribution is assumed to remain negligible.

If A denotes the surface area of the crack, then the energy balance due 6

to an increase in the crack surface area is simply

-25-
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3W aU + dr (2.11)
A A dA

* 0

Since the fracture resistance of structural materials is several

orders of magnitude larger than the specific surface tension energy

y-dr/dA, this theory was revived and extended only much later by Irwin

and Orowan who included a dissipative energy component in the form of

plastic work at the crack front. However, in the case of small-scale

* yielding when the energy dissipation around the crack front is very

small compared to the crack length then the energy W-U "pumped" into the

fracture zone can still be calculated from a purely elastic fracture

0 mechanics solution, using stress intensity factors, the J-integral [27]

or equivalent energy (compliance) methods.

The stability of quasi-static fracture propagation may be

determined from the variation of Eq. 2.10

> 0 unstable fracture
d a (WU) A =0 neutral equilibrium (2.12)

< 0 stable fracture

We can rewrite this stabil-ity condition if we define the internal

mechanical energy available for a small crack extension dA as

G = - (W-U) (2.13)
A

and the specific energy necessary to advance the crack as

-26-
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--

dr

which designates the fracture toughness of the particular material and

is known under the name of specific fracture energy or the critical

strain energy release rate. In this case the fracture stability

condition Eq. 2.12 reduces to the analysis of the scalar function

f = G (P,A) - G (2.15)

with regard to the energy released and the energy required for stable or

unstable crack growth. Therefore for stable crack growth df=O and in

the event Gc=const the crack propagation under variable loading dP

must satisfy the consistency condition

dG = dA +--G dP= 0 (2.16)
A P

Stable crack propagation is thus only possible if the loading is

adjusted according to the crack growth dA by

3G

dP - A dA (2.17)aG

aP

This control requirement includes hardening as well as softening of the

overall load-crack propagation response.

In the case of quasistatic cracking the strain energy release can

be readily visualized if we consider the split beam experiment illustra-

-27-
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*ted in Fig. 2-4 with an initial crack length A, which advances under

displacement control to A2=A+AA. The underlying structural response

follows the path OAB where k, and k2 define the stiffnesses of the two

cantilever beams of lengths A, and A2 .The hatched area defines the ener-

gy which is released for advancing the crack A, by MA. Depending on the

geometry and boundary condition, crack propagation takes place under

increasing loading in stable or sometimes entirely unstable fashion.

Fig. 2-5 illustrates some typical examples of stable and unstable crack

0 growth with plots of their respective load-displacement diagrams. S

Clearly a soft testing apparatus captures only stable crack growth for

AP>O and Au>O, while a sufficiently stiff test device can maintain

stable control for P<O and Au>O. However, cracking in the classical

Griffith test is fundamentally unstable and can not be controlled since

Au<O as well as AP<O. This means that there is so much strain energy

stored in the specimen that some energy must be removed from the speci-

men in the form of work corresponding to the area "mcbn" in Fig. 2-5 in

addition to the fracture energy during crack propagation.

For concrete-type materials Petersson [4] proposed a simple

approach for evaluating Gc directly from the global load-deformation

data by equating the energy of crack formation to the work done by the

external forces. In the case of the direct tension test, this concept

infers that Gc is simply the area under the nominal stress-elongation

diagram as seen in Fig. 2-6. Since all softening deformation takes

place in the localized fracture zone extending through the entire cross-

-sectional area,
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S.0

G f rUr (u)du (2.18)
c z S

0 0

If Gc is to be a true material property, then the energy con-

sumption outside the crack band must remain negligible and the fracture

energy must be independent of the specimen dimension. In other words,

stable crack growth is localized entirely in a single fracture band and

energy dissipation due to plastic work remains negligible. According to

Petersson [4] interpretation of different tensile test results gives

rise to typical values of the fracture energy for concrete and mortar in

the order of

Gc 55 to 80 N/m (2.19)

The fracture energy concept was originally utilized by Hillerborg

et al. [10] in their "Fictitious Crack Model". This formulation is

essentially a discrete fracture approach in which the progressive deco-

hesion at the crack front is monitored according to the Barenblatt model

in the form of a gradual decrease of tensile strength with increasing

crack opening. Again, the underlying assumption is that the entire

fracture process is confined to a single localized crack. Therefore,

numerical fracture computations require a discrete crack idealization in

which the decohesive interface behavior within the fictitious crack zone

is controlled by the gradual release of the fracture energy Gc.

The basic concept of the fictitious crack model was extended by

Bazant and Cedolin [28] in their development of the so-called "Crack

-32-
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Band Model for the fracture of concrete and geomaterials. In this

case, the notion of discrete cracking was replaced by a fracture model

within a localized crack band of finite width, in order to accommodate

the fracture computations within a stationary finite element idealiza-

tion which does not require remeshing. This concept goes back to the

fundamental derivation of the J-integral by Rice [27] who studied the

energy exchange for crack propagation in elastic solids.

An explicit form of the energy balance in Eq. 2.1 leads to the

following statement of weak equilibrium

Idut p dv + f dut p5 ds = f dgt o dv + Gc dA (2.20)
V S V

The change of strains depends on both the change of displacements as

well as the change of geometry at the crack front

de = L6 du + 'a dA (2.21)

au aA

For a small change of the crack configuration the equilibrium condition

Eq. 2.20 reduces to

r rt
a• -T + G c 0 (2.22)

v UdA c U

A comparison with the fracture stability condition Eq. 2.12 yields

the following expression for the release of internal fracture energy

G f - &t  a dv (2.23)
v aA

@1 %
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,o Finite element expansion of the displacement field u yields the follow-

ing change of strains c = Br according to Eq. 2.21

* 0
d= B dr + - r dA (2.24)

As a result the fracture energy within the structure is simply the sum

of all element contributions 0

f
G frt A a dv (2.25)

For linear elastic material behavior

a = E v = E B r (2.26)

The fracture energy expression in Eq. 2.23 can now be interpreted as the

elastic strain energy release rate

GE 8 t  t d (2.27)

G f E Bdv r Irt~i
V

whereby dKE designates in our notation the symmetric part of the

change of the elastic stiffness due to the change uf crack surface area

dA. We recall that the elastic strain energy release rate in Eq. 2.27

corresponds to the change of potential energy due to a small crack

extension if the external loading P=const. and is not affected by O

fracture propagation. Therefore, evaluating the total potential energy

of the structure before,

II(u,A) = rt KE r r R (2.28)

-34-

* ,4



and after crack extension by dA, the difference between the two

potential energy expressions recovers Eq. 2.27 if we use KEr=R and

neglect higher order terms such as dKdr

1 t
dll = I(u,A+dA) - f(u,A) = r dKEr = -GE (2.29)

This result of Parks [30] corresponds to that of first order

perturbation analysis of the structural stiffness with regard to the

nodal coordinates, i.e. l Kl+dK, which was established before in the

context of structural modifications. Clearly, in the case of slow crack

propagation these modifications are highly localized, i.e. only the

elements in the immediate vicinity of the crack front contribute to the

non-zero portion of dlCE.

If we return to the original definition of the fracture energy

release expression in Eq. 2.23, then the finite element discretization

leads to the following format of the internal fracture release forces

Pf due to change of the crack geometry.

. .. aBt  tp
dPf = atdv where G rtdP (2.30)

It was noted only recently by Doltsinis [31] that the integral in Eq.

2.30 gives rise to a geometric stiffness which reflects the effect of

internal stress due to a change of the nodal geometry dx+dx/dA

x x t AB 21
dPf= K dx where K = Jo d vl3. ".-d f g Kg , v( .1

-35-
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The same effect is encountered if the mesh remains invariant during

crack propagation and if only the finite element nodal connectivity is

* updated in a discontinuous fashion. In this case the geometric

stiffness originates from the change of topology

g f at dv (2.32)

V

where a denotes the nodal incidence map. In both cases the internal

* -ifracture release force dPf and consequently the internal fracture

energy release rate G are independent of a particular material

formulation. Thus they are more general than the first order elastic

46 approximation in Eq. 2.27 since they apply to elastic as well as

inelastic material behavior. Moreover, the fracture release forces

provide a simple analogy between the discrete and the smeared fracture

° approaches which is of particular interest to this investigation.

We recall that in the smeared fracture approach the topology of the

structural idealization remains intact during crack propagation. The

0 fracture energy release rate is in this case expressed in terms of a

strain-softening stress-strain relation. Therefore, the internal frac-

ture release force vector dPs result from the decrease of internal

stresses

Wt dP -_ (2.33

dPs  f t do dv with Gs  r dPs  (2.33)
v

rather than from the change of crack geometry in Eq. 2.30. Clearly, if
4.

we could calibrate the strain-softening formulation in such a way that
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'a-.' Bt Bt
Vf 0 t = v do dv (2.34)

the two fracture approaches would be completely equivalent. This is not

a simple task since we usually resort to a strain-softening stress-

strain relation along the line of

do E de=E B dr (2.35)
5 5

which gives rise to the softening stiffness

Ks =Bt Es B dr (2.36)

The fracture energy release rate is then for the smeared fracture

approach

ta
Gs  rt I(s dr (2.37)

-. 4

which should be compared with GE in Eq. 2.27 for the case of elastic

fracture.

The discrete and the smeared fracture concepts are again equivalent

if the internal fracture release forces coincide, i.e., if

- dKE r = Ks dr (2.38)

Previously, we observed that the discrete fracture approach leads to

highly localized changes of the elastic stiffness KE because of the

changes at the crack front. In contrast the softening stiffness Ks in

the smeared approach is not confined at all to any particular region

S-37-



except for the loading condition on the constitutive level which

introduces an implicit localization according to the total strain space

control. It is exactly for this reason that Bazant and Cedolin

introduced the blunt crack band model [28] within their smeared fracture

formulation in order to confine the fracture energy release Gs within

a fracture band of predefined width. This restriction of the smeared

fracture approach is entirely consistent with the usual Gc

interpretation of fracture mechanics test data from notched specimens

when fracture is assumed to take place in a single crack or shear band.

However, it also infers that the computational fracture predictions in a

structure are confined to a single predominant crack very much along the

line of the discrete crack approach.

In our view this geometric restriction is against the spirit of the

smeared fracture approach where cracking and shearing can take place in

a distributed manner according to the implicit strain-softening control

of the constitutive model. It is exactly this point of distributed

fracture which will be addressed in Sections 4 and 5 where a consistent

- approach will be developed for the interpretation of displacement

controlled fracture data of unnotched specimens with the aid of inverse

identification of a composite damage formulation. In this context we

will resort to the so-called initial load approach where the elastic

stiffness is not updated at all and the fracture energy release due to

strain-softening is accommodated entirely by the internal fracture

release forces dPs in Eq. 2.33.
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r. 3. EXPERIMENTAL PROGRAM

3.1 Introductory Remarks

The following sections describe the laboratory experiments that

were performed to identify material parameters for the computational

model. These tests also include a miniature structure which served as a

benchmark for the verification of computational predictions.

The basic concrete behavior was investigated in a series of tri-

axial and uniaxial compression and tension experiments conducted on 9

cylindrical and prismatic specimens. Material properties such as uncon-

fined compressive and tensile strength, peak and residual strength fric-

tion angles, cohesion, and elastic moduli were derived from these tests. 9

Direct shear experiments on prismatic specimens of plain concrete

were conducted in a large capacity servo-controlled and structurally

stiff test apparatus in order to assess the predictive capabilities of

the nonlinear computational analysis techniques. The objective in these

experiments was not to obtain material properties but rather to inves-

tigate load-deformation response behavior and strength characteristics

of a mini-structure subjected to the complex states of non-proportional

loading imposed by the direct shear test. The specimens were loaded to

failure under displacement control and constant normal load. The com-

plete spectrum of structure as well as material responses were observed

.' including pre-peak elastic-plastic hardening, post-peak strength

e• softening, localization and deformation into a shear band, and continued
.

- shear gliding at a residual strength level.

6. -39-
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"" 3.2 Triaxial Hoek Cell Experiments

Conventional axisymmetric triaxial compression experiments were

O S conducted at different confining stress levels in a University of Colo-

rado Hoek cell, which receives a 5.40 cm (2.125 in.) diameter and

approximately 11.43 cm (4.5 in.) long cylindrical specimen. The Hoek

" cell, which is illustrated in Fig. 3-1, has a confining pressure capa-

city of 69 MPa (10,000 psi) and has instrumentation for measuring

lateral nominal strain. The pressure is provided by hydraulic fluid

generated by a manually operated and stable pressure supply. The

pressure is transmitted to the specimen by flexible adiprene or

polyurethane membranes. These membranes are neither mechanically

clamped to the specimen nor the moving loading ram but are firmly

located in the end caps of the cell by means of self-sealing flanges, as

illustrated in Fig. 3-1. This membrane configuration avoids warping of

the membrane's cylindrical shell portion during loading, and it also

allows for extension modes of deformation without rupturing the pressure

seals. The confining stress has no component in the axial direction of

the cylindrical specimen as shown in Fig. 3-1. The axial load was

measured in this test program by an internal load cell located within

1the MTS loading system consisting of a Standard 490 kN (110 kip) MTS

load frame with servo controller and function generator units. The

experiments were carried out in order to obtain confined as well as

" unconfined compression strength properties, elastic moduli and their

respective ratios.

The test results were also used to investigate brittle-ductile

behavior of the concrete as well as the strain-softening response and

-40-
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residual strength characteristics as a function of confining stress

levels. The experiments were carried out at constant confining stress

states of 0, 345 kPa (50 psi), 690 kPa (100 psi), 1725 kPa (250 psi),

and 3450 kPa (500 psi), while the axial displacement was increased

monotonically at a constant rate of 0.106 mm/sec. Unloading and reload-

ing sequences were in some instances carried out in order to precisely

assess modulus values. All triaxial specimens were obtained by NX-size

(2-1/8 in. dia.) coring of the large prismatic concrete specimens used

for the direct shear experiments (described subsequently), and all

specimens were from the same concrete batch mixture. The concrete was

intentionally made weak and soft so that the model structures could be

brought to failure in our available laboratory apparatus.

Great care was exercised to ensure that the end surfaces of the

specimens were parallel and smooth. No lubrication was provided between
.9

the polished steel loading platens and the specimen ends. The lateral

or radial displacements were recorded in some of the tests in order to

evaluate Poisson's ratio. The radial measurements were made at the
49

mid-height of the specimens with strain-gaged cantilevers. The results

from 6 such cantilevers, spaced at 600 intervals about the circumference

of the specimen, provided an average lateral displacement, which in turn

was converted into radial strain (Fig. 3-2). The axial displacement was

measured by an LVDT. Continuous real-time load-displacement diagrams

were produced by an x-y-y' recorder.

3.2.1 Experimental Results

Typical nominal stress-nominal strain response curves are shown in

Figs. 3-3 and 3-4. Figure 3-3 contains three sets of test results that 9
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.,

were obtained at an early stage of the test program. The concrete was

approximately 4 weeks old. Lateral as well as axial nominal strains are

shown vs. axial nominal stress. Young's modulus was found to vary

between 6.76 and 8.28 GPa (980 and 1,200 ksi) and Poisson's ratio was

determined to be 0.2. An equal isotropic confining stress state was

applied to the specimens prior to application of the axial deviator

stress, and the initial isotropic compressive volumetric strain response

is shown in nearly all the stress-strain traces except for the uniaxial

test. Excessive rebound upon unloading in the axial direction below the

confining cell pressure level for the 1.73 MPa test can be attributed to

membrane penetration between specimen and axial loading ram. The

pronounced difference in elastic behavior was attributed to

heterogeneity in the weak and soft concrete mixture. Although the

specimens were sufficiently large in relation to the maximum aggregate

size, it is believed that the wet and high slump concrete resulted in

nonuniform properties not observed in normal strength concrete. Figure

3-4 shows five sets of test results that were obtained at the end of the

test program, and the concrete was at that stage approximately 6 months

old. Young's modulus was in this instance found to vary between 6.00

and 8.28 GPa (870 and 1,200 ksi). The lateral nominal strain traces

shown in Fig. 3-3 reveal highly dilatant behavior at the onset of

fracture in the concrete, and the expansion that took place as a result

of the rubblization and bulking exceeded volumetric strain values that

are normally observed during shearing of dense cohesionless soils and

many rocks. Post-experiment analyses of the specimens showed
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pronounced shear fracture with a wide shear band, where cement matrix

and aggregate clasts were as large as 0.25 cm (0.1 in.). Tendencies

toward a tensile splitting fracture mode of failure were often observed

near the specimen ends, and the irregularities in the nominal

stress-strain responses near peak strength can be attributed to these

occurrences. Shear fracture and subsequent shear gliding motion 9

dominated the behavior at the post-peak strength stage, and

strain-softening seemed to be entirely controlled by shear. The

transition between pre-peak and post-peak behavior was relatively smooth

in all cases. The nominal stress-strain traces for the low confining

stress levels exhibit the steepest decending slopes and the transition

to the residual strength level was also easy to observe for these

tests. Ductility increased in the strain-softening regime as the

confining stress inreased and the transition to the residual strength

level was also less abrupt. The nature of the fractured material in the

shear band often gave an indication of the mean normal stress level

during the shearing motion. Relatively large amounts of fines made up

the clastic mass at higher confining stress levels whereas several

irregularly shaped aggregate-cement matrix pieces having average sizes

similar to that of the largest aggregate, were found in the shear zone

of the low confining test specimens.

3.3 Direct Shear Experiments

The direct shear translation test has been used in the past often

rather indiscriminately to evaluate basic strength properties as well as

shear stress-shear displacement response behavior of concrete and geo-

* ,0
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materials. It has generally been assumed that t;'e rormal and shear

stresses were uniformly distributed on the imposed shear plane. How-

40 ever, it is well established that both strain and stress distributions

within initially homogeneous solid test samples were highly nonuniform

during the experiment. The magnitude of the principal stress varies

0 nonproportionally in the specimen, and the principal stress directions

rotate with respect to the material fabric to unknown extents during the

shearing process, resulting in pronounced stress or deformation induced

anisotropy. The overall sample response behavior therefore constitutes '1

a combined response of a material that undergoes brittle and ductile

fracture in tension and shear gliding. Proper material characterization

for the purpose of obtaining basic engineering properties require '.0

homogeneous strain and stress states in the test specimen, and these do

not exist in the direct shear tests. This test is also highly sensitive

to boundary conditions and the manner with which a centric or

non-centric tangential shear load is applied with respect to the shear

plane. Several authors have discussed the merits of the direct shear

test, such as Morgenstern and Tchalenko, [32]; Kutter, [33]; Mandl, De

Jong, and Maltha, [34]; Vallejo, [35]; Walters and Thomas [36]. The

shear test has been found to be a valuable tool for investigating resi-

dual strength characteristics of materials where shear bands or fracture

zones already exist. It has also seen successful use for studying

interface behavior between soils and structural materials such as steel

and concrete. This aspect has been reviewed by Desai and Zaman [37]. '

In view of these considerations it was decided to adopt the direct

-48-
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shear test, not as a test for engineering properties, but as a miniature

structure test where the boundary conditions can be carefully controlled

and where complex states of tensile cracking and shear fracture can be

* studied. The direct shear structure test constitutes a controlled envi-

ronment where the entire spectrum of the structure's and its material's

responses can be followed through the elastic, hardening plastic, frac-

ture, post-peak, strain-softening, and residual strength states. In-

vestigations of brittle and ductile fracture transitions, progressive

damage accumulation and localization of deformation in narrow shear

bands in conjunction with degrading stress-strain or load-displacement

relationships require a very stable test system.

The general objective in this facet of the research effort was to

compare the measured response behavior to the computational predictions

and to evaluate the capability of the so-called smeared fracture ap-

proach for describing progressive damage and frictional sliding along

narrow shear bands. If this could be achieved in the complex environ-

ment of the direct shear test, it was asserted that the computational

analysis algorithm could model almost any three-dimensional boundary

value problem involving brittle and ductile materials. The following

sectiuLs cover apparatus description and the experimental technique

used.

3.3.1 Experimental Apparatus

The experiments were conducted in the high precision direct shear

device shown in Fig. 3-5. The apparatus consists of loading actuators,

normal and shear load reaction frames, normal and lateral loading

-49-
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fixtures also shown in Fig. 3-6. The top and bottom shear box compart-

ments shown in Fig. 3-7 receive 20.3 x 20.3 x 11.4 cm (8 x 8 x 4.5 in.)

samples of prismatic shape. In some instances the specimen width was as

small as 10.2 cm rather than 20.3 cm. The notched and un-notched speci-

S. mens were fused to the shear box compartments by means of structural

epoxy and conventional sulphur capping compound. In order to minimize a

reactive moment about the average shear plane the shear box was posi-

tioned in the holding fixtures and apparatus support system so that the

applied lateral shear load and restraining action laid in the plane of

induced shear failure. The top shear box compartment and holding fix-

ture were restrained in the horizontal direction during shearing, while

they were free to translate vertically. This feature facilities

observation of dilatancy. The restraining action in the horizontal

direction was provided by means of a very stiff horizontal load support.U,
frame, which in turn was connected to an extremely stiff structural

floor by means by heavy bolts. The top holding fixture together with

the top shear box compartment could also undergo small roll and pitch

movements in addition to the vertical translation. Only one average

vertical displacement was monitored by means of a Linear Variable Dif-

ferential Transformer (LVDT). It is planned to use three LVDTs at a

later stage in order to define the rotational movements of the top por-

tion of the specimen during and after fracture. It is also possible to

lock the top entirely against rotations as well as vertical transla-

tion. The latter can be achieved through displacement control of the

vertical actuator and by fixing the swivel head. Servo-controlled

-51-
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"* hydraulic MTS-actuators having 735 kN (165 kip) capacity in the normal

direction and 156 kN (35 kip) in the tangential direction were used.

* The bottom shear box compartment and holding fixture had shapes and 4

-* stiffness properties that were similar to the top components. The

bottom shear holding fixture was supported by two rows of heavy roller

* bearings which allowed translatory motion of several centimeters. The

bottom holding fixture was connected to the tangential load actuator by

means of a large and stiff load transfer block (Fig. 3-6). The MTS

control system can operate the apparatus under very slow or high dis- S

* placement rates. Figure 3-8 shows a schematic illustration of the MTS

and apparatus control system. The two MTS hydraulic actuators were

operated independently in separate closed-loop control systems. The W

Series 204 MTS actuators were equipped with Series 252 servo-valves;

Series 661 fatigue-resistent load cells; internal LVDT's; and swivel

heads and bases. The control console was equipped with the following

components: 430 digital indicator, 436 control unit, 410 digital func-

tion generator, and two 406 controllers, which were operated indepen-

dently. Prior to testing a selection of force or displacement control

for each 406 controller were made. Once the mode for operation has been

decided, the proper feed-back signal provided by the internal LVDT or

load cell was compared with the input signal. If the signals were not

equivalent, action was taken by the servo-value to equilibrate the two

signals. This is the basic feature of a closed-loop system.

toI
A Hewlett-Packard 3054 A Automatic Data Acquisition/Control System

controlled by a HP 9825 T desk top computer was used as the primary
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'4

control and data acquisition system. The 3054 A system contains a HP

3437 A System high speed voltmeter and a HP 3497 A Data unit scanner.

*0 The data collected by the HP 3054 A system were transmitted to the HP

9825 T computer and stored on tape. Real-time observations of load-

deformaion and strength behavior was recorded by means of an Esterline

"* Angus x-y' 540 plotter. The relative shear displacement was measured by

means of two 500HR-DC Schaevitz LVDTs whose feeler rods were inserted

into the sample as depicted in Fig. 3-9. The LVDTs were connected in

series.

3.3.2 Experimental Technique and Results

Notched and un-notched plain concrete prismatic specimens having

unconfined compressive strengths (fc) ranging from 21 MPa to 28 MPa

and unconfined tensile strengths (f.) ranging from 0.8 MPa to 1.1 MPa

were initially subjected to nominal normal stress states that varied

between 0.69 MPa and 6.9 MPa (100-1000 psi) prior to shearing. The

lateral load was increased in displacement control at a constant rate of

" 0.05 mm/s. The notched and un-notched specimens' widths varied between

10.2 cm and 20.4 cm (4-8 in.), while lengths and heights were maintained

constant at 20.4 cm and 11.4 cm in all tests. All specimens were sawcut

to final size from over-size castings. The exterior side faces of the

specimens were exposed for visual and photographic observation.Shear

displacement measurements were obtained by LVDTs mounted on control rods

which were initially embedded in the specimen through ports in the top

and bottom shear box compartments but later were attached to the

exterior top and bottom base platens of the specimen shear box
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Fig. 3-9a Configuration of shear box compartments for wide specimens,
(i, iii) and location of relative displacement LVDT feeler
rods in early experiments (ii).
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Fig. 3-9b Configuration of shear box compartments for narrow specimens,
(iv, vi) and location of relative displacement LVDT feeler
rods in later experiments (v)..-
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compartments, illustrated in Fig. 3.9. The spacing between the parallel

rods thus varied between 3.8 cm and 13.5 cm in the tests. On one

occasion the rods penetrated into the tensile fracture zone. Figure 3.9

also shows the notched and un-notched specimens within the shear box

compartments. Notched shear specimens were considered during the

initial phase of the investigation, and the specimens were notched at

two opposite faces with 900 and 1.27 cm (0.5 in.) deep grooves in order

to induce high stress concentrations near the ends.

Specimen failure initiated due to tensile cracking rather than

shear slip in both the notched and un-notched tests. This happened

before any shear band formation. Crack openings were visible before

shear failure took place in the center regime. It is of interest to

note that cracking took place outside the notches for these particular

tests, and fracture propagation from the notch surfaces only took place

after significant crack development. Pronounced inclined cleavage

cracks later developed across the notched section. These crack develop-

ment stages were also observed in the regularly shaped prismatic speci-

mens. In both specimen categories the tensile stress state was respon-

sible for ultimate failure, although the nominal compressive stress on

the shear surface was much higher in the un-notched case. Tensile

cracking occurred under very small relative displacements, while

shear fracture and subsequent gliding took place under relatively large

displacements. The shear fracture propagation was rather slow in

comparison with the tensile cracking events.

No debonding was observed between specimens and shear box compart-
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ments after the tests. All experiments exhibited nearly linear elastic

behavior before reaching peak strength. The nonlinear shear stress-

displacement response was most pronounced in the un-notched specimen.

Upon continued shearing the lateral force decreased in the specimens

until a residual strength level was reached. The rate of softening and

the residual strength levels were quite different due to the large range

in nominal normal stress levels applied to the specimens (690 kPa to 6.9

MPa). Figure 3-10 shows three nominal shear-relative displacement

response curves that were conducted at the same 690 kPa nominal normal S

stress level. The comparison is quite good in both the pre-and post-

peak strength regimes, and they all appear to converge to a similar

residual strength level. One of the tests shows progressive fracture -

events involving one small brittle instability near peak strength and

two major steeply inclined brittle softening traces that depart from the

overall softening response. These events can possibly be attributed to S

aggregate and fracture zone interlock features in conjunction with

stress redistributions. Otherwise, the experiments were quite reprodu-

cible. Figure 3-11 shows nominal shear stress-relative displacement 6

response curves that were obtained for specimens subjected to various

nominal normal stress levels ranging from 0.69 MPa to 6.9 MPa. It is

apparent that the normal confining stress level in the shear specimen -

has a pronounced influence on response behavior. The ductility

increases and the relative displacement required to reach the residual

strength level increases. The residual strength level is raised with 0

increasing normal pressure.

-6
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*Fig. 3-10 Nominal shear stress-relative displacement response
curves for concrete specimens in the direct shear
apparatus.
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curves for concrete specimens in the direct shear
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During the 6.9 MPa experiment it was observed that the shear speci-

men's failure mode took on definite three-dimensional characteristics.

Instead of forming a planar shear fracture surface through the thickness

of the specimen, as occurred in the low normal stress level tests,

the final failure surface was vee shaped as depicted in Fig. 3-12. The

apparent implication is that high nominal normal stress levels relative

to the material strength are not compatible with the plane strain

assumption utilized in the associated computational modeling effort.

The residual friction angle (0) in all cases was fo, d to be 35°

with little or no residual cohesion.

Figure 3-13 shows typical nominal shear stress-relative displace-

ment as well as vertical displacement response curves fcr a specimen

which was subjected to a nominal normal stress of 1.38 MPa. The speci-

men initially compressed during the shearing motion and it subsequently

dilated as shear fracture processes became dominant. Upon large rela-

tive displacement the specimen again appeared to compress as the clasts

comprising fractured concrete mortar and aggregate pieces, underwent

intense crushing and densification.

One specimen was sheared at a much higher displacement rate (8.5 x

10-4 m/sec.), and the nominal shear stress vs. relative displacement

response curve is shown in Fig. 3-14. The behavior was quite similar to

that observed in the earlier experiments, and thus negligible rate ef-

-E fects were encountered in this test.

The apparatus and test secimen configuration was essentially

-I

.4I
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Fig. 3-12 Failure modes in the transverse direction in
the direct shear experiments at high and low
nominal normal stress levels.
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stable throughout the shearing process, although spontaneous energy

releases in the post-peak strain-softening branch of the nominal shear

stress-displacement response diagrams indicate small rate increases.

Real-time xyy' plots of the events also gave this impression. Neverthe-

less, it is maintained that the strain-softening branches in Figs. 3-10,

3-11, and 3-13 represent the behavior of the concrete miniature struc-

ture subjected to well-defined boundary conditions.

3.4 Direct Tension Tests

Direct tension experiments on NX-size and prismatic 10 cm x 4.5 cm x

5.4 cm specimens were conducted to establish the unconfined tensile

strength and the strain-softening parameters of the concrete in ten-

sion. The prismatic specimens were attached to aluminum brush platen

loading devices by means of a high strength structural epoxy (Sikadur

Hi-Mod GeL and Lv). The brushes served to reduce the lateral restraint

- . normally imposed by solid loading platens on the specimen. No post-peak

strength or strain-softening information was provided by the load-con-

trolled experiments. The tensile failures were quite violent and S

unstable. Two successfully completed direct tension tests in the

strain-softening regime were conducted on the NX-size specimens under

displacement control. These specimens were glued "in place" with the S

same epoxy to specially prepared solid loading platens, which in turn

were rigidly connected to the MTS loading frame. Axial load and dis-

placement of the specimen were recorded by MTS internal load cell and

LVDT, and the load-displacement responses were also in these cases con-

tinously recorded by an x-y plotter. Figure 3-15 shows nominal axial
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Fig. 3-15 Uniaxial tensile stress-nominal axial tensile strain response
curves for concrete.
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tensile stress vs. nominal axial strain response curves for one of the

two NX-size specimens. The displacement rates were maintained constant

at 1.4 x 10-8 in/sec. No visible tensile crack bands were observed at

peak strength or during strain-softening descent in any of the speci-

mens. A very narrow, nearly planar and jagged hairline crack band was

observed almost simultaneously around the periphery of the sample at

near mid-height, when the load-displacement response trace reached the

residual strength near zero load level. When it was first observed the

* tension crack was not larger than 2.5 x 10- 5 m (0.001 in.) wide, and it

subsequently increased in width in proportion with the constant dis-

placement rate. It is believed that tensile cracking started to form

within the specimen and that it propagated from the interior to the

exterior surface.

The momentary hesitations that are observed in the strain-softening

branches can possibly be attributed to aggregate interlock mechanisms in

conjunction with a nonuniform axial stress distribution. Significant

- flexural stresses may arise due to the fracture process, which in turn

may produce minor compressive stress states in certain regions that in

turn may provide momentarily stabilizing responses.

Post-experiment inspection of the specimen revealed that the ten-

sile fracture intersected the large aggregates (0.6 cm size) that were

present in the fracture zone. A fine dust layer originating from the

cement matrix in the fracture zone was uniformly distributed and the

amount was less than 0.05 g. No fissures or delaminations were un-

- covered near or at the epoxided contact regions, and no other visible
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fractures were discovered within the specimen. The intact specimen

parts were quite competent and did not crumble during manipulation. It

*O is therefore asserted that the entire strain-softening response was

attributed to the very narrow tensile fracture zone.

The specimen exhibiting lower strength was preloaded in compression to

9 • an unknown extent during the specimen preparation phase, and the nominal

stress at failure is therefore not a precise assessment of strength.

The other experiment was started at a nearly zero initial stress level,

0 and it is therefore believed that this tensile strength is

representative of the concrete.
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4. COMPUTATIONAL ASPECTS OF SOFTENING MODEL

Computational finite element predictions of the softening behavior

using the "smeared" approach imply an "equivalent" continuum discription

of the properties of fractured solids. It has been demonstrated in

sections 1 and 2, that softening behavior is only possible if a damage

zone of finite dimensions exists. Therefore the constitutive model for

strain-softening computations should include this geometric effect.

The distinction is made between the two possible fracture mechan-

isms - tensile cracking and shear slip on the corresponding planes of

incipient fracture. At this stage, shear and tensile softening

mechanisms are treated separately, in order to control the overall rate

of shear and tensile strength degradation of the "equivalent" continuum

which is developed using energy balance arguments during the fracturing

process.

4.1 Composite Damage Model for Localized Strain Softening Behavior

The computational investigation is based on a composite damage

model for elastic-fracturing behavior, where fracture is confined to the

localized damage zone. In order to be able to model localized fracture

bands within the "smeared crack" approach it is assumed that the finite

element volume Vt is composed of two parts, the intact elastic volume

Ve and the volume of localized damage Vd, see Fig. 4-1.

Vt = Ve Vd (4.1)

The behavior within the volume of localized damage Vd follows the

damage zone material law, whereas the material within the intact volume

St 9
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a

7I

V =abt

Vd = d a t Localized damage 9
volume

Ve= V -Vd

a b Equivalent square element side
for unit thickness 0

: Vd I V Damage volume fraction

Ud

Fig 4-1 Composite damage element
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is assumed to remain linear elastic. The orientation of the localiza-

tion will be neglected in this scalar representation of damage.

Two distinct localized damage mechanisms, tensile cracking and

shear slip, will be examined separately. In both cases the fracture

energy absorption capacity of the equivalent continuum element is

assumed to equal the fracture energy absorption capacity of the damage

zone in the composite element.

4.1.1 Tensile Cracking

Let us assume for simplicity that the material in the tensile

damage zone Vd, t follows a linear elastic/linear softening law. The

slope of the softening branch in the fracture strain description of the

damage zone law is denoted by E d  ontE see Fig. 4-2. At rupture the

total strain in the damage zone c equals the fracture strain in the

-D
damage zone, cr"

The axial displacement of the comoposite element at rupture is

therefore

uCE = Ldt CD (4.2)

As a result of the material law of the equivalent continuum element

follows the linear elastic/linear softening law, whereby Es denotes

the softening slope normally used in the smeared approach. If the

deformations of the composite and the continuum element are to be
2..

CE
compatible, the axial displacement must be the same, i.e., UC E .,

uEQ. This, in turn, implies that the total strain at rupture of the

equivalent element must be

L.) -,, 3 9
Cr t r 4.3)

1
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where

Vd,t L d,t A

V =LA

V L A

dt V d,t Ld,t
t -V L

* .0

From this relation we can extract the softening slope of the equivalent

continuum element as

Es  f f =(4.4)
€r Cf D

at r' f

D -D_ 'f ' f-. '

Recalling that at rupture er =  .

We can write

Es = f E( a _ (4.5)

t n E E,.i,tt
t ~ -D

Note that this expression defines Es in terms of the material law ED

in the damage zone and the size effect Ld,t of the damage zone. It is

interesting to note that the same expression arises from the fracture

energy equivalence in the damage volume of the composite element Vd, t

and the total volume V of the equivalent continuum element, see Fig.

4-2.

Udis 2 (-r_.+_) af Vd (4.6) 0

CE 1
Udis 2-- - of Vd,t (4.7)

2 Ed
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DAMAGE ZONE MATERIAL LAW

U ~E dt ED

EDd
ED (ireversible fracture strain)

r

COMPOSITE DAMAGE ELEIENT

U

-_-EEED

EE

L ED

• ., d, t  D-- I- - D

,r"Ef E"-5 r r

strain stress/strain law
distribution in tensile
at rupture damage zone

EQUIVALENT CONTINUUM ELEMENT

U

L.Er Es

6f r

strain stress/strain law
distribution in equivalent
at rupture continuum element

Fig 4-2 Fracture energy equivalence for the composite
damage model in tension
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from EQ U it follows that

UdoUdis dis'

nt
Es =E( ) (4.8)at -n t

't Tt

D

It should be noted that both the material law Ed and the size of the

damage zone Vd,t influence the softening slope in the equivalent •

continuum element.

In fact, this formulation provides the missing link between the

usual softening approach for continuous distribution of microdefects

[24], and the crack band approach of localized fracture [28].

In the usual continuous softening approach the softening modulus E
s

is assumed to be a material property, in the same way as the elastic

modulus E. This approach is recovered in the composite damage model for

at = 1.0, i.e. Ld,t = L, hence the equivalent element behaves

according to the damage zone law, Ed = n E. If we change from one

finite element idealization to another then at : 1.0 will keep the

fracture energy density constant but not the total fracture energy

release because of the different volume.

On the other hand, if the size and the law of the damage zone are

assumed to be constant, the crack band model is recovered in our

composite damage model. Varying the mesh size, L L. the equivalent
d t  d t

softening modulus E changes, since a =- is different from =-'t i  Li tj Lj

As a result, the variable softening modulus Es for different meshes

implies that the fracture energy content is kept constant independently

of the mesh size.

.4

-76-



a

It is expected that the former fomulation will perform better in

the case of distributed fracture, whereas the latter will lead to less

mesh sensitivity in the cases of highly localized fracture.

The identification of both the material law and the size of the

damage zone from only one direct tension test presents an

underdetermined problem. We have to predefine the material law in the

damage zone to be able to identify the damage zone size, or vice versa -

we can predefine the damage zone size, and identify the material law

within the damage zone. One way of reducing the number of free damage

parameters would be to define the material law as a function of the

damage zone size, i.e.

° . A
nt  f( t ) (4.9)

The softening slope of the equivalent element will then be controlled

only by the size of the damage zone. Figure 4-3 illustrates several

possibilities for the equivalent softening moduli, Es, depending on

the choice of nt = f(OLt).

4.1.2 Shear Slip

In analogy with the development of the composite damage model in

tension, let us assume that the material in the shear damage volume

Vd, s follows the linear elastic linear softening law, including the

residual shear strength, see Fig. 4-4.

At the state of straining corresponding to the residual shear

strength level, the shear slip strain equals

- 7
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Fig 4-3 Equivalent softening moduli for three
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DAMAGE ZONE MATERIAL LAW

D '

11>2. , 11s GGd

Tf

(ireversible shear strain)

r

COMPOSITE DAMAGE ELEMENT

, ... ...

Yee T r
G Tr

r Y D y'
shear strain r

distribution shear stress/strain
at residual law in the
level damage zone

EQUIVALENT CONTINUUM ELEMENT
T

L Yr Tr

G

shear strain Y Yr
distribution shear stress/strain
at residual law in the equivalent
level element

Fig 4-4 Fracture energy equivalence for the composite
damage element in shear
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T~ T "t T -T
ult res ult res

r n G (4.10)
Gd G

The shear displacement of the composite element at that stage is

therefore
CE resLe =L (4.11)

A L d,s Yr + e G

As a result, the linear elastic/linear softening law of the equivalent

continuum element with the softening slope Gs, derives from

the equivalence of shear displacement, i.e. ACE = AEQ leads, in -..

analogy to Eq. 4.3, to

Dy r a s Yr (4.12) - .

Therefore we can recast the softening slope G of the equivalent

continuum element in terms of the elastic shear modulus, the damage

volume fraction a and the ratio of composite moduli ns .

ns
Gs =G( ) (4.13)

s -n

D
Gd

where Gd
G

V L_ d,s _ d,s

and
s V L

Note that this expression is equivalent to the Eq. 4.4 and involves I
again the material law as well as the size of the damage zone.

Again the model allows the transition from the usual continuum

description (a = 1.0, n const) to the constant shear band

model (ds = Vd s const, ns const). For various meshes, -I

-80- 7]
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* .the first formulation keeps the shear fracture energy density constant,

while the second keeps the total shear fracture energy constant

" independently of the element mesh.

The identification of both damage volume material and damage volume

size from experiment presents again an underdetermined problem. If we

want to control the softening slope of the equivalent continuum element

only by the size of the damage zone an additional assumption has to be

made for the material law in the damage volume. Fig. 4-5 illustrates

several possibilities for the equivalent softening shear moduli, Gs,

* ,.,depending on the choice of

94

n"= f(a ) (4.14)

4.2 Nonlinear Finite Element Solution Procedure

The composite damage model for softening behavior, described

earlier, both for shear slip as well as tensile cracking represents an

alternative description to the traditional strain softening

stress/strain relation used in the smeared cracking approaches. In our

case the smearing of localized damage is accomplished by the damage

volume fractions at and as within the equivalent element.

The finite element displacement formulation is adopted, for the in-

cremental solution of the nonlinear boundary value problem which satis-

fies the constitutive constraints in the small, and equilibrium in the

large

Kr A r = AR (4.15)

eI
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Fig 4-5 Equivalent shear softening moduli for
three different 17 f (a )
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For simplicity of implementation, Kr : I(o has been adopted, whicni

requires an iterative improvement within each loading step,

Ar. = Ko- AR. (4.16)
1 0 i

until convergence corresponding to the criterion of stable fracture

propagation is satisfied.

The triaxial concrete strength is represented using the Mohr-Cou-

lomb fracture surface augmented with a tension cut-off condition, which

provides a simple and realistic model of triaxial material strength in

the range of interest. The geometric interpretation of the fracture

surface is shown in principal stress space in Fig. 4-6. Since, in the

planar case, these criteria do not take into account the intermediate

principal stress, the surface can be easily represented in the biaxial

stress space, or in Mohr's diagram. The main reasons for choosing the

Mohr-Coulomb failure surface with tension cut off over some of the other

possible surfaces are as follows:

1. The Mohr-Coulomb model has been widely used in geo-

technical applications for over 200 years and has -
.-9

been shown to provide realistic shear slip condi- -A

tions for geomaterials. The extension to concrete -I

fix 14
is quite reasonable when the tension cut-off condi- *1

tion is included.

2. These two traditional strength criteria provide a

basis for a simple engineering fracture theory

capable of separate predictions of tensile cracking

-.8
-83-
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and shear slip. In this light, the discontinuous

surface is also able to determine the direction of

the associated failure planes of tensile cracking 0

and frictional slip.

3. The identification of the fracture surface requires

only three parameters, which can be found from stan-

dard laboratory tests.

4. The straight line approximation of the Mohr-Coulomb

surface is easily incorporated into existing finite -'0

element computer codes. To utilize the Mohr-Coulomb

failure criterion for concrete, only three material

parameters - the angle of internal friction, the eAP

internal cohesion and tension cut-off-are required.

In the view of the linear softening model, two sets of parameters
0

have to be provided; one set corresponding to the initial fracture S

criterion, and the other corresponding to the residual fracture strength

e.g. due to internal friction. In the post-peak regime the linear rate0?0
of degradation of the fracture surface from the initial to the residual V

level is controlled by the tangential softening moduli Es and Gs see

Fig. 4-7.

The analysis is carried out by taking suitable load steps for

piecewise linearization of the structural response curve. For each load -

step the algorithm involves initial load iterations until equilibrium as

well as fracture conditions are satisfied. During each iteration loop

element nodal stresses are compared to the initial fracture criteria, to

-84-
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tension cut-off

Triaxial stress space

31 Mohr-Coulomb

6 '3 Biaxial stress space

--

Mohr's diagram

C i

Fig 4-6 Different representations of Mohr-Coulomb with tension
cut-off fracture surface
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Initial fracture

p t

Fig 4-7 Parameters defining the initial and residual fractureI
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establish possible formation of either tensile cracks or shear slip

planes.

If the state of stress at a point violates the momentary fracture

criteria, the excess stress is redistributed to other parts of the

finite element mesh, i.e. nodal forces equivalent to the excess stress

are used to enforce a solution where the fracture criteria will be

satisfied. The stresses which have to be distributed depend on the

fracture mode (tensile cracking or shear slip), and will be discussed

later in detail. Once defined, the redistributed stresses, or stress

increments, are used to compute initial loads for the iteration

using the initial stiffness Ko . The iterations for each load step are

performed in the following sequence.

1. The redistribution stress increments are rotated from their

principal directions into Cartesian directions:

AG T- =' (4.17)C p

2. The incremental Cartesian stresses are converted into .9

incremental initial strains via the material matrix:

AE c (4.18)0 C

3. The incremental strains are used to compute the initial

incremental element nodal loads:

APo = Vef BtEAe0dV (4.19)

-87-
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4. The incremental element nodal loads are added to the current

nodal loads Ri, and assembled into the global load vector,

R R + a AP (4.20)
e 0

5. The global load vector and the initial structural stiffness

matrix are used to solve for the new incremental displacements

ri +1:

r K-1 R (4.21)
i+1 0 oi+1

This iteration procedure is repeated during each load step, until the

convergence is achieved, or the maximum number of iterations is

exceeded. The convergence norm is defined as relative error norm of the

displacment increment

NO P
ujIi+1  _ uj < - (4.22)

j3=1 1..*OUmax 

,

When the calculated error norm is less than or equal to the convergence -

threshold 6, the iteration is terminated. Incremental displacements -Al,

ri+1 are added to the existing displacements to form new total

displacements. The stresses and strains are updated during the looping,

so no further correction is required. 0

-88-
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4.3 Stress Redistribution Strategies

The dual Mohr-Coulomb with tension cut-off criterion clearly

distinguishes between shear and tensile failure. Depending on the

nature of failure, different stress redistribution strategies have to be

employed.

4.3.1 Tension Cut-Off Criterion and Stress Transfer

Tensile cracking is initiated when the principal tensile stress

exceeds the initial tension cut-off value, ft'. I

> ft' (4.23)

When this criterion is satisfied, the stress in excess of the post-peak 9

tension cut-off is redistributed according to the normality rule so that

the momentary post-peak strength criterion fs is met. The amount of

st .s (Fig. 4-8) to be redistributed is

Ac a 1  " fs (4.24)

SA

For the tensile softening model, the controlling parameter is a

function of the principal strain quantities 1, E2 and 2 where = 0

for plane strain conditions.

Starting with the material law the stress-strain relation for plane

strain case can be written as

a1 Ell E12 E
iF

02 F 1 2 E2 2 j '2
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Then:

l= E11 c1 + E12 C2 (4.25a)

It should be noted that for axisymmetric conditions £3 * 0 and

- appropriate modification of a, leads to

l Ell c1 + E1 2 (C2 + C3) (4.25b)

V ,"

With reference to Fig. 4-8, the tensile strength is reduced according to!a
the linear softening model when

and residual tensile strength is equal to zero when e > r
r

For the linear softening, the post-peak strength, fsg can be

determined in terms of a fictitions strength value amax, such that:

fs =0.0

if

El l e1 + E + + > (4.25c)

Using the relation between the softening modulus Es  and the initial

elasticity modulus E, Eq. 4.4, the fictitious stress Omax can be

written as

.0 °ax ft' (1 +E' 1-''
m Et= +t ( +( t (4.26)

s t
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The instantaneous post-peak strength fs, corresponding to current

state of cartesian strain cc can then be written as

of
f. (El1l 

l + E12 £2 + E12 c3 x) (4.27)
f "maxma

which is used for the computation of tensile stress redistribution A01 .

4.3.2 Shear Slip and Excess Shear Stress Redistribution Strategies

Shear slip is initiated when the standard Mohr-Coulomb criterion

I 1 (01+03)

Te = Co 2 tan 0o (4.28)

is violated. Fracture according to this criterion results in the
*

formation of two slip planes, the orientation of these slip planes being

.O ?= + 0--=T *-

These crack orientations are kept constant during subsequent

computations so that the post-peak strength criteria can be enforced at

the initial slip planes. When the shear criterion is exceeded, the

excess shear stress has to be redistributed so that the post-peak

criteria are met. Unlike the case of the tensile cracking in which the

stress redistribution is uniquely defined, several possibilities exist

in the case of excess shear redistribution. The Mohr-Coulomb criterion

implies that the intermediate principal stress does not play any role.

Thus the stress increments required to transfer the stress point onto

the instantaneous fracture surface involve the increments of the major

and the minor principal stresses Ao1 and Ao3 .

-92-



Different redistribution strategies similar to the non-associated

flow rules of plasticity can be employed (Fig. 4-9), each of them

leading to different development of resulting fracture strains. Four

different sets of stress increments Aul and Ao3 associated with the four

possible redistribution strategies are illustrated in Fig. 4-9. Two of

the redistribution strategies involve the increments of only one of the

principal stresses &o or A 3 , whereas the other two involve increments

of both Aal and Ao3 to comply to the current Mohr-Coulomb fracture

surface. It has been suggested in Ref. [6] that the strategies or

"fracture rules" SlC and SNC do not seem to reproduce the actual

fracture mechanism, since they involve significantly longer stress

redistribution paths than strategies SMC and S3C. It should be noted

that the strategy SMC corresponds to no volume change due to the

underlying fracture rule.
A'

The constant volume approach, SMC, which holds the mean pressure

constant during the redistribution, is used mainly within this study,

although the effects of other strategies will be discussed in Section

5.1. The SMC transfer strategy corresponds to the non-associated Tresca

flow rule in plasticity with no plastic volume change during the plastic

flow process. The amount of stress to be redistributed after a shear

type failure is then given by

Ao 01 f + 03); A 3 =-A0 (4.29)21

-93
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77.7.

where

fy sinp (Cpcosp -1 + 03

The shear stress-strain relation used for the linear softening model is

described

for ye Ycr

Te  Gye (4.30)

for r < y < y
Ycr<e <res:

Te = Gs (Y " Ycr + Tult (4.31)

for ye >- res

Te T (4.32) 2
where the softening slope Gs, is given by

G Tult " res (433) --

cr res

*. The ultimate shear strength level is calculated from the initial

fracture parameters, W

S-95
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01 +03
:ut= c o (CoS*o - 2 sino (4.34)

The shear strain at the moment of incipient shear slip can now be

written as

.°

Yult -Tult/G (4.35)

* The residual shear strength is determined from the residual strength

parameters

I0 + 0 3

=res z cosres(CresCOS~res 2 sinres) (4.36)

The crucial step for the shear softening formulation is the calculation

of Yres and Gs , respectively. The composite damage model resorts

to fracture energy considerations for shear slip which furnishes the

required relationship in terms of damage volume ratio as, see Section

4.4.

.. o

G 1 - 2a s  (437
Gs " s 

(.7

*O Once the values of Tult, Yult, Tres and Yres have been

4., calculated for the given stress state, the post-peak value of To can

be determined depending on the current value of ye. Before the onset

of shear fracture, the shear strength depends only on initial values of

the internal cohesion, Co, and the internal friction angle, 0o.
1q
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After shear fracture has been initiated, but before the residual strain

level is reached, the current shear stress, Te, also determines the

cohesion and friction angle during softening, Cp and op. Implying

linear relation between 0 and C during softening (Fig. 4-7) leads to

Te C1 + 03
Cp coS2 tan$ (4.38) -

where

p 40 .res)(Cp " Co) + 00 (4.39)

P(0  Cres)

To avoid direct solution for Cp and op from these two equations, an

iterative trial and error procedure is employed until both equations are

satisfied.

When Ye exceeds the residual strain level, To is set equal to

Tres corresponding to the residual strength criteria.

Cp = Cres (4.40) S

Op =Ores

4.4 Localization Parameters dt and d

It has been stated in Section 4.1 that for the particular choice of

the softening law in the damage zone, the softening slope of the

equivalent continuum element is controlled only by the size of the

-97-
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damage zone. In the remaining part of this report we shall adopt the

following relation for the damage zone law in tension

nt = at  1 (4.41) -

This assumption leads to an expression for the softening modulus of the

* equivalent continuum element in terms of a single fracture parameter,

the damage volume fraction at.

1-.-
1 -2a

0 E( ) (4.42)
::::t

A similar approach for frictional slip expresses the shear damage zone

law 4

= 2a 1 (4.43)

which leads to the softening shear modulus of the equivalent continuum

element

1 - 2a
Gs  G =G -( (4.44)

Examination of Eq. 4.42 indicates that tensile softening is possible

only for at> 0.5, i.e., Vd,t > 0.5 Vt.

Therefore, the damage volume Vd,t will be decomposed into a hardening ARN

and a softening volume

Vd H + S (4.45)
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As the main interest of this investigation is related to modelling of

softening as localized phenomenon. Thus, it will be assumed that

*O H
Vd,t = 0.50 Vt within this formulation, and that the tensile

damage volume for softening is described in terms of the localization

parameter dt, which can be interpreted as width of the tensile crack

process zone

Vdt- dt V ab t (4.46)

|• Therefore, for unit thickness, t=1, the damage volume in tension

Vd t  0.5 ab+dt , ab (4.47)

and the damage volume fraction in tension

dt (0.5 + (4.48)

For generality, it will be assumed that dt depends on the confinement

level described in terms of the mean stress am through the

localization function *t (am)

dt(m) = dtmax t(om) (4.49)

This pressure sensitivity of the localization parameter allows for

increasingly ductile behavior under increasing confining pressure. A

third order parabola between two limiting mean stress levels am, and

Om2 is adopted for describing the localization function shown in Fig.

4-10. It should be noted that the damage volume fraction at in Eq.

-100-
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4.42 controls the softening slope Es of the equivalent continuum.

Since Vt is a measure of the actual mesh size, only Vd,t or the

crack width dt determines the softening slope of the equivalent

element Es and thus the release of fracture energy during crack

propagation.

For shear slip, the damage volume Vds is decomposed into a

hardening and softening contributions j
H .S

Vd, V ds Vds (4.5C

The damage volume for hardening is again VdH,s = 0.50 Vt

because of our focus on shear softening. The damage volume for

softening, Vds, is expressed in terms of the shear localization

parameter ds, which defines the width of the shear slip band

V s = d abt (4.51)

In analogy to tensile cracking, we can rewrite for the damage volume in

shear for the unit thickness t = 1

Vds = 0.50 ab + ds fi , (4.52)

The damage volume fraction in shear is then

=L- (0.50 + s (4.53)

viE
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Fig 4-11 Localization function for the shear slip band

vs mean stress
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The rate of shear softening clearly depends on the hydrostatic

confinement. Therefore pressure sensitivity of ds is included in the

form of

d"(o) =d s(m) (4.54)s m Smax O m

- where Os(am) is the shear localization function allowing for

increasingly ductile behavior for increasing confinement. The third

order parabola, shown in Figure 4-11, is adopted for *s(om) between

two limiting mean stress levels similar to the functional variation for

tensile cracking.

Again, the presence of as in Eq. 4.44 controls the shear softening

- . slope Gs, whereby the width ds of the shear slip band is defined by

ds  (0.50 + a s /ab) (4.55)

-

..-

-103-

1.7.4

;'. ) , '.,', .-; '; > ." "._...-". ",;.-'. "..." .---:; ".--- .-". "- - . . . * - "-.- . "- - . . • . ,- .- . . -.. . . .• • . .-. . . .



jo. ~~~ 1.611 1

5. CALIBRATION OF LOCALIZATION PARAMETERS FOR TENSILE CRACKING AND
FRICTIONAL SLIP

To identify the localization parameters dt and ds within the 01

proposed softening model, a series of triaxial compression and direct

tension tests have been performed. The experimental setup and results

were described in detail in Chapter 3 of this report; here, the .

calibration of structural softening will be attempted. The procedure

involves the computational solution of several inverse problems. First,

different localization parameters are assumed and numerical predictions, A.
using these assumptions, are compared with experimental results.

The model parameters for the linear elastic behavior and the ]
Mohr-Coulomb f'actur,. surface (including tension cut-off) are kept

constant throughout the calibration procedure for the localization

parameters. Based on the experimental results from the first series of

tests, the following values were adopted 0

CO  = 3.28 GPa - 0.476 ksi

0o = 41.30

E -- 6.9 GPa =1000 ksi .

v =0.2

ft' 1.59 GPa = 0.230 ksi

It was also assumed that softening only leads to a degradation of

cohesion and tensile strength, through the choice of residual fracture

parameters

CP = 0.0

Op = 41.3-

fp = 0.0

The calibration procedure involved only the variation of the localiza-
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tion parameters ds and dt to match experimental results and

numerical predictions.

5.1 The Effects of Shear Stress Transfer Strategy

Before attempting the calibration study, the shear stress transfer

strategy had to be decided upon. As it has been indicated earlier in

Chapter 4, the choice of particular "fracture rule" is not unique, and

the effects of different strategies may be different for various

applications. To investigate those effects, several numerical

predictions of the triaxial Hoek cell test for the confining pressure

a= 0.69 MPa (100 psi) were conducted using four different shear

stress transfer strategies:

(a) major principal stress (a,) remains constant (strategy SiC)

(b) minor principal stress (a3) remains constant (strategy S3C)

(c) mean stress a1+03 remains constant (strategy SMC)
2

- (d) normal stress on fracture plane (on) remains constant

(strategy SNC)

In all four cases a 4 * 4 elements mesh of nine noded biquadratic

axisymmetric elements has been employed, for the idealization of the

quater of the cylindrical specimen. The softening parameters were

adjusted to give the rates of softening

=Gs -G in shear

Es = -E in tension

for all states of stresses. In this case the localization function *

was kept constant for all am. Figs. 5-1a,b,c - 5-4a,b,c illustrate

the overall force/displacement response curves, the deformed specimen

geometries, and the principal stress distributions in the softening

-105-
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range as predicted by the four different strategies respectively.

As expected, strategies S3C and SMC led to the largest total volume

.0 changes, as they involve relatively large increments of major principal

stress during fracture. Plots of the principal stresses indicate

different resulting load transfer mechanisms. It should be noted,

* Ohowever, that the plots of principal stresses correspond to the point on

the softening branch in overall load/displacement diagram with unstable

fracture propagation still present. (Not all material points comply to

*g the instantaneous fracture surface, as convergence within the load step

was not reached in the adopted number of maximum iterations.)

The convergence properties of different shear stress transfer

strategies are illustrated on Fig. 5-5-a,b,c,d where the change of error

norm during iteration cycles within various load steps is shown. The

numerical procedure within each load step allowed for a maximum of

twenty iterations within this study and if convergence criterion was not

reached, the remaining "defect" was included in the next load step.

The apparent divergence in terms of the global convergence

criterion within successive iterations stems from the fact that the

violation of the fracture surface on one material point leads to the

stress redistribution increments, which may in turn induce the violation

of the fracture surface on some other point. Gradual convergence is

always present, if no new violations of fracture surface are initiated

due to the stress redistribution increments.

As a conclusion of this preliminary investigation, the SMC strategy

was chosen for transfering excess shear stress for the subsequent

calibration studies and prediction analyses. This strategy corresponds

to no volume change during shear slip and shows the least "noisy"

-118-
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oscillations of the convergence norm during iterations within the

softening range.

5.2 Calibration of the Shear Localization Parameter ds

The finite element 4 * 4 mesh was adopted for the calibration study

of ds . First, limiting cases of Vd 0.5 Vt corresponding to 0

ductile response and Vd = Vt corresponding to brittle response

behavior have been analyzed for three different confining pressures, 0,

0.69 and 3.45 MPa (0, 100 and 500 psi.). This "bracketing" results,

when compared with the experimental results, indicated that Vd should

be a function of confining pressure in order to capture the ductile

response for highly confined situations and brittle behavior under low

or no confinement. Fig 5-6 illustrates the limiting bracketing

responses for the three different confining pressures, where Vd was

kept constant throughout the analysis.

Starting point for the calibration of the damage localization

function *s(am) (variation of the damage localization volume as a

function of mean stress) is the choice of mean stress level

corresponding to ductile post peak behavior am2. The value of

am2 = 1.50 ksi

was chosen, because of the continuous hardening behavior of all triaxial

test specimens with confining pressure larger than ac > 250 psi.

Four different damage localization functions, illustrated in Fig.

5-7, were used for the response predictions shown in Fig. 5-8a,b,c,d.

In these four cases, the mean stress level corresponding to brittle

post-peak behavior aml has been set to 0.0, 6.90, 13.80 and 20.70 MPa
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Fig 5-6 Finite element predictions for limiting responses
(ductile and brittle) at different confining pressures
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(0.0, 1.0, 2.0 and 3.0 ksi), and predictions were compared to the

experimental results for 0, 100 and 500 psi confining pressures.

* The response curves using the damage localization function 4

(am, 3.0, am = -1.5) showed the best agreement with experimental

results. Thus 04 was thereafter used to analyze, the triaxial Hoek cell

specimens for other confining pressures (50 and 250 psi).

5.2.1 Mesh Size Effects

To investigate the mesh size effect within this softening

formulation, the 4 * 4 finite element mesh predictions for the

compression Hoek cell test with confinement 100 psi was adopted as

*i control test problem. The main objective of the investigation was to

find out whether the damage volume Vd or damage volume fraction

*} Vd/Vt could be regarded as material property. Table 5.1 summarizes

the computational predictions using a coarse 2*2 element mesh and fine 0

6*6 element mesh. For each case, two different damage volumes were

* employed, corresponding to constant Vd and constant Vd/Vt

fraction.

Fig. 5-9-a illustrates the response curves for all five

predictions. The mesh size effect should be studied with reference to

the control prediction, 4C. For both coarser and finer mesh

subdivisions, the predictions with constant damage volume fraction

(i.e. predictions 2CR and 6CR) show considerably better agreement with

N LOthe control prediction response curve. Only the detailed portions of 0

the response curves are depicted in Fig. 5-9-b to illustrate the nature

of softening slope in the overall force/displacement response curve.
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TABLE 5.1 COMPRESSION TEST PREDICTION ANALYSES TO STUDY
MESH SIZE EFFECTS

Localization Function 0
Parameter

Mesh Size Localization Prediction
Smax Model Label

5 0

4*4 3.0 -1.5 0.1875 Control test 4C

Predi ction

2*2 3.0 -1.5 0.1875 Same Vd as control 2CV S

test prediction

2*2 3.0 -1.5 0.1875 Same Vd/Vt as control 2CR

test prediction

6*6 3.0 -1.5 0.1875 Same Vd as control 6CV

test prediction

* 6*6 3.0 -1.5 0.1875 Same Vd/Vt as control 6CR ,

test prediction

Keeping Vd = constant in computational predictions leads to far

too brittle response in the case of a fine mesh, and far too ductile

response in the case of a coarse mesh.

As a result of this study, a constant damage volume fraction

formulation will be adopted for the numerical predictions of direct

shear test.

5.3 Calibration of the Tensile Localization Parameter dt

The procedure used to calibrate the tensile localization parameter

dt follows similar reasoning as the procedure adopted in the calibra-
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tion of shear localization parameter ds . The medium 4*4 element mesh

was again used for the control prediction.

0 In results similar to the shear localization study, the two brack-

ting predictions for perfectly ductile and brittle behavior indicated

that considerable ductility is present in the tensile post peak res-

* ponse. To start the calibration, the localization function for shear

slip was adopted (see Fig. 5-10), but the obtained response was too

brittle when compared to the experimental results. After several trials

, trials the damage localization function t(a ) with amI = 3.0, Om2 =

-* -1.5 and, d = 0.09375" led to a reasonable reproduction of thetmax

post-peak response. Hence this response prediction was further used as

. softening control curve for the subsequent mesh sensitivity study.

5.3.1 Mesh Size Effects

In completely analogous fashion (Table 5.2) to the triaxial

compression tests, predictive analyses were performed using the coarse

2*2 and fine 6*6 mesh, again keeping either Vd or the Vd/Vt

fraction equal to the control test prediction for the 4*4 mesh.

Response curves for all five predictions are shown in Fig. 5-11 and

support the same conclusion reached for the triaxial compression test

study. For both the coarse and the fine mesh, predictions that keep the

damage volume fraction a = Vd/Vt constant show better agreement with

control response curve labelled 4T.

Again, the predictions using the same Vd as the control test 01

*. prediction led to the too ductile response curve for the coarse 2*2 mesh

and to the too brittle response curve for the fine 6*6 mesh.
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TABLE 5.2 TENSION TEST PREDICTION ANALYSES TO STUDY
MESH SIZE EFFECTS

Localization Function Predi c-
Parameters tion

Mesh Size dtmax Localization

_"___mmModel fication

4*4 3.0 -1.5 0.09375 Control test 4T

Prediction

2*2 3.0 -1.5 0.09375 Same Vd as control 2TV

test prediction

2*2 3.0 -1.5 0.09375 Same Vd/Vt as control 2TR

test prediction

4*4 3.0 -1.5 0.09375 Same Vd as control 6TV

test prediction

4*4 3.0 -1.5 0.09375 Same Vd/Vt as control 6TR

test prediction

As a result of this study the constant damage volume fraction

formulation will again be adopted for the numerical predictions of the

direct shear tests.

5.3.2 Fracture Strain Localization

The overall force displacement response curves do not allow the

inspection of possible fracture strain localization, which is exactly

the intent of the localized fracture model using the smeared approach.

For that reason, additional information about the fracture strain

localization is illustrated in Fig. 5-12 for the tensile control test

specimens (4T). Along each of the vertical lines connecting nodes with
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the same r-coordinate the distribution of the total axial strain cz is

displayed. This strain distribution corresponds to the deformation

l state when the overall specimen elongation is At = 1.6 10- 3o'9 with a

nominal strain Zz = 0.376"10-4.

The predicted £z distribution reveals that the material in

* localization zone exhibits large tensile straining following the

softening material law, whereas the material outside the tensile failure

zone exhibits elastic unloading. It is interesting to note that local

* fracture strains are two orders of magnitude larger than the average

strain.

To accentuate further the difference in material behavior within

- and outside the fracture localization zone, two stress/strain histories

are plotted on Fig. 5-13. The material point located within the

localized damage zone follows the softening branch, while the material

point outside the damage zone exhibits elastic unloading. The

discontinuities correspond to elastic loading with the initial stiffness

Ka which is followed by a stress decrease due to progressive cracking

enforced by residual load iterations.

5.3.3 Tensile Notched Specimen Predictions

In both compression and tension test predictions the initial state

of stress was fairly uniform, and only the slight variation in the

stress field due to the lateral restraint at the loading platen led to

crack or shear slip initiation. In order to examine localization at a

predetermined crack, the response behavior of a hypothetical tensile

, notched specimen was studied, again using all three meshes, coarse 2*2,

medium 4*4, and fine, 6*6 idealizations. The damage volume fraction was

-140-
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kept constant (irrespective of the mean stress), for the analogous mesh

. sensitivity study. Medium mesh response was regarded as the control

solution. Again the computational predictions using the same damage

volume fraction Vd/Vt yielded better agreement with the target

response curve than the predictions with same damage volume Vd, Fig.

5-14.

It should be noted that this conclusion is based only on the

results from the 4N, 6NV and 6NR predictions. Both results for the 2*2

mesh are distorted by gross discretization errors. This mesh is far too

coarse to capture the severe stress concentrations around the notch.

TABLE 5.3 HYPOTHETICAL NOTCHED SPECIMEN PREDICTION ANALYSES

Localization Function Predi c-
Mesh Parameters Localization tion
Size am, m2  amax Model Label

4*4 +m -- 0.057 Control test 4N
Prediction

2*2 +- -m 0.057 Same Vd as control 2NV*

test

2*2 +- -- 0.057 Same Vd/Vt as control 2NR*

test

6*6 +- -- 0.057 Same Vd as control 6NV

test

6*6 +m -- 0.057 Same Vd/Vt as control 6NR

test

* discretization error too big - mesh too coarse

-141-

.°.

a- -. ---° - o ° . . . . . ...- o- . - - - . . o . , . ..-. . .



AXIAL LOAD

(kips)

0. 30 ,r'2*4*

0.28 j. . . .
.,,...2NV*

0.26 -. ..-
rI  6*6

0.24 NOTCH ."

rl=0.50 r .4.....

0.22

4* 0.20 "

0.18

0.16

0.14

0.12

0.10

0.08

0.0 06

0.04 I

,0.02

'0
0.00

tv 0.0 0.0001" 0.0002" 0. 0003" 0. 0004" 0.0005" 0. 0006"

AXIAL DISPLACEMENT (inches)

Fig 5-14 Prediction analyses and mesh sensitivity study for
the hypothetical notched tension specimen
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Inspection in elastic stress field distribution revealed very poor

agreement between the local stresses and the overall reactions which is

entirely due to discretization error.

However, this notched specimen study indicated again less mesh size

sensitivity if softening is formulated assuming that the damage volume

fraction remains constant during cracking.

It should be noted that this conclusion is somewhat misleading and

can be attributed to the particular functional relationship for the

damage zone material law.

Namely, the damage zone law

nt = 2 at -1

does not keep the fracture energy content of an element constant if the

mesh size is changed, while keeping dt constant.

Several additional computational investigations have been conducted

using the constant damage zone behavior, i.e.

nt  = C2

which correspond to the constant fracture energy content for elements of

different sizes.

The conclusions of these investigations indicate that the

formulation keeping the damage volume fraction constant leads to less

mesh sensitivity for all compression test computations and even for the

direct tension test prediction. However, in the case of the notched

specimen, the formulation keeping the size of the damage zone constant

leads, as expected, to less mesh sensitivity.
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°4 6. DIRECT SHEAR TEST STUDY

As it has been indicated earlier, the direct shear box test

represents a confined fracture test within a miniature structure rather

than a material test. Both tensile and shear slip failures take place -

tensile cracking being dominant at low confining pressure, whereas the

*shear slip failure dominates the response at high confining pressures.

The complexity of the direct shear test apparatus requires the partial

inclusion of the loading frames and shear box compartments into the

finite element model, see Ref. [7]. The details of the adopted element

idealization developed by Christensen [38] are discussed in Section

6.1. The influence of different concrete ductility (brittle, perfectly

plastic and linearly softening behavior) and mesh size effects are

addressed in Section 6.2, where hypothetical low strength concrete

material parameters are employed. Finally, Section 6.3 discusses the

numerical predictions of the direct shear test, using the composite

damage model for both tensile and shear softening, developed in Chapters

4 and 5.

6.1 Finite Element Idealization

The direct shear test apparatus was described earlier. Figure 6-1

gives more detailed information about the particular components of the

test apparatus that are discretized using the finite elements for the

16 numerical study. The specimen supporting apparatus is designed to test

samples with dimensions up to 8" x 8" x 4 5/8", however, samples

measuring 8" x 4" x 4 5/8" were actually tested. The upper and lower

1'
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shear box compartments are made from 14" x 14" x 3/8" steel plate with

2" x 3/4" stiffening end walls welded into place.

A
It is assumed that the specimen and the test apparatus can be

modeled in a plane strain state. Under this assumption, the nine node

quadrilateral and six node trangular plane strain elements of the three

U dimensional finite element program SMAk[ [39] are used in the analysis.

The behavior of the test specimen cannot be predicted by

discretizing only the test sample, since the load transfer from the

apparatus to the test specimen is not accurately represented if only the

specimen is idealized. This load transfer is captured by including the

upper and lower shear box compartments in the discretization. A typical

example of the shear box mesh is shown in Figure 6-2. Upper and lower

loading frames are included in the finite element model so that the

horizontal load and the horizontal reactions are collinear with the

prevailing shearing plane of the test specimen. These loading frames

are accentuated by the bold lines in Figure 6-3. The upper portion of

the loading frames represents a lumping of the top reaction frame and

the top support frame. The lower portion of the loading frame in Figure

6-3 represents a lumping of the shear load transmitting block and the

bottom support plate. The loading frames represent considerable

stiffness and are assigned the appropriate properties in the finite

element model; i.e., steel material properties and a thickness of 14

inches. Figure 6-4 shows the complete idealization of the test specimen

supporting apparatus. The shaded elements represent the epoxy capping

compound that is used to bond the test specimen into the shear box.

The uniform geometry of the test specimen is discretized with
* *0

quadrilaterial elements as shown in Figure 6-5. Figure 6-6 illustrates

-146-I
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how the finite element mesh for a sample fits into the remainder of the

" finite element model.

The boundary and loading conditions are illustrated in Figure 6-7.

That part of the test apparatus which is not discretized is assumed to

be rigid and is modeled by appropriate boundary conditions. The

confining pressure due to the normal load actuator, is applied in the

form of consistent nodal loads along the top edge of the upper shear box

compartment. A prescribed displacement is imposed on the lower loading

frame to represent the lateral motion due to the horizontal actuator.

6.2 Parametric Studies

Parametric studies involve two different numerical investigations.

The first one is related to the post-failure softening strategy and how

it influences the overall response of the model. The second

investigates the mesh sensitivity of the finite element model in terms

of a convergence study involving three different meshes. These two

parameter studies are performed in order to gain a better understanding

of the techniques involved, see also Ref. [38].

The material properties adopted for these parameter studies are

representative of a typical low strength concrete and are not related to

the concrete material used for the actual specimens.

The properties of all materials used in the finite element model

(concrete, steel, epoxy) are listed in Tables 6-1 and 6-2. The uniaxial

compressive strength of concrete is assumed to be f' = 2.0 ksi. Using
C

this value and the ACI recommendations, the modulus of elasticity is

Ec = 33 w1.  f'c
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A Poisson's ratio of v = 0.2 is adopted for the parametric study below.

The epoxy properties were determined from laboratory tests.

TABLE 6.1 Material Properties

MATERIAL YOUNG'S MODULUS POISSON'S RATIO
(ksi)

Steel 29,000 .32

Epoxy 400 .35

Concrete 2,500 .20

TABLE 6.2 Finite Element Model Properties

COMPONENT MATERIAL THICKNESS

(inches)
Specimen

Shear box Steel 14

Compartment

Upper and

Lower loading Steel 14

W Frame

Specimen Concrete 4

Capping

Compound Epoxy 4
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6.2.1 Influence of Post-Peak Model

One of the principal interests is the influence of the post-peak

softening strategy reflecting material ductility on the predicted

response of a structure that has experienced shear failure. In the

direct shear test specimen under lateral loading and low normal pressure

tensile cracking dominates the failure mechanism; therefore, a high

normal pressure of 6.90 MPa (1000 psi) was used in the parameter study

in order to mobilize the frictional slip mode of failure. The high

normal pressure increases the compressive stresses in the specimen,

thereby increasing the amount of shear slip and reducing the amount of

tensile cracking.

The initial fracture criterion was constructed using a friction

angle of 41.0 degrees, a cohesion value of 0.45 ksi, and a tension

cutoff of 0.18 ksi. The initial fracture surface is shown in Figure

6-8. Three different post-failure softening strategies were

investigated: brittle, perfectly plastic, and linear softening

behavior.

The brittle post-peak model is illustrated in Figures 6-9 and 6-10

and gives a lower bound solution to the ultimate strength. This abrupt

softening concept was imposed on the fractured elements by establishing

a post-peak surface which had no cohesive or tensile strength. After

brittle failure takes place only residual shear strength can be

mobilized, which is controlled by the residual friction angle. 4

The perfectly plastic post-failure behavior is illustrated in

Figures 6-11 and 6-12 and gives an upper bound solution to the ultimate

strength. This perfectly plastic concept was imposed on the fractured •

-15
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-- elements by leaving the initial surface unchanged after fracture.

The linearly degrading post-peak softening is illustrated in

Figures 6-13 and 6-14. This softening was imposed on the fractured

* elements by degrading the post-failure strength criteria with increas-

"*- ing strains, along the line of composite damage model described in

Chapter 4.

In the parameter study the damage volume fractions at and as

were kept constant, and were adjusted to give Es= -E and Gs= -G

softening behavior. A shear stress transfer strategy, which keeps the

mean stress on a shear slip plane constant, was adopted.

The load versus displacement response of the finite element model

for the three softening strategies is shown in Figure 6-15. The

analysis was carried out in the following sequence:

a. The 1.00 ksi normal load was applied first. ..

b. An increment of displacement was prescribed to the lower

loading frame to raise the specimen's stress state to the

elastic limit when cracking initiates.

c. The lower loading frame was given an additional small increment

of displacement to initiate the fracture process.

d. Results were recorded, and additional increments of

displacement were prescribed until the residual strength level

was reached.

-E The distribution of principal stresses for the limiting cases of -

brittle behavior and perfectly plastic behavior is shown in Figures 6-16

through 6-18. The state of stress at the elastic limit i, shown in

Figure 6-16, and is the same for both cases. The str .ses at the peak --

response are shown in Figure 6-17. This figure illustrates the dramatic
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effect that the softening strategy has on the mag itude of the principal

stress and therefore on the level of the peak response of the model.

-Figure 6-18 shows the pricipal stresses that exist at the residual load

level. The principal stresses along the horizontal center line are

reduced compared to the stresses that form the diagonal compression

struts. These low stresses correspond to the formation of a continuous

horizontal slip plane along the center line of the specimen. The

formation of the continuous slip plane is caused by the high shear

strain caused by the confinement exerted on the specimen by the upper

and lower shear box compartments. The deformed meshes shown in Figure

6-19 illustrate this confinement.

It can also be seen in the stress distribution for the brittle sof-

tening assumption of Figure 6-18 that integration of the vertical stress

component along the horizontal centerline of the specimen does not sa-

tisfy static equilibrium of the vertical forces. We should, however,

keep in mind that the brittle post-peak model imposes dramatically redu-

ced shear strength values in the areas of the potential slip planes.

The analysis attempts to enforce this low shear strength locally in the

form of iterative stress transfer. However, since the average stress

remains unchanged in the adopted shear stress redistribution strategy

and because the vertical stress component, ay, should remain equal to

0.10 ksi for local equilibrium the stress transfer is severely cons-

O* trained. The finite amount of iterative effort coupled with the global

convergence criteria enforces only global equilibrium to be satisfied at

the nodes thereby allowing local equilibrium of stresses to be violated.

40, One significant conclusion that can be drawn from the softening

study is that a wide spectrum of responses can be obtained depending on
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the type of softening formulation that is selected. This indicates

again a definite need for a rational approach to the determination of

O the post-peak behavior of the fractured material model.

6.2.2 Mesh Size Effects

It has been noted by many investigators, such as Bazant and Cedolin

[28], and Pietruszczak and Mroz [8], that the predicted nonlinear

behavior of brittle materials is very sensitive with regard to the mesh

size. For this reason, a convergence study was carried out to gain

additional insight into the mesh sensitivity of the finite element

damage predictions.

The loading and support conditions, as well as the material
4P

properties used in the parametric mesh size study are the same as those

given in Section 6.2.1. A linearly degrading post-peak strength

criterion is used throughout this mesh sensitivity study.
0

The convergence study is carried out by examining three different

mesh configurations. The number of elements used to idealize the

* specimen ranges from 18 elements to 84 elements. The intermediate mesh

contains 45 elements. The three specimen idealizations are shown in

* Figure 6-20.

The rate of convergence for this analysis can not be determined

*from the three meshes chosen for the convergence study; however, some

qualitative observations about the mesh sensitivity of the analysis can

OP certainly be made.

Figure 6-21 shows the load-displacement response of the three

meshes. The figure indicates that there is very little mesh sensitivity

4in the pre-peak range of response, but that in the post-peak range the
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response tends to vary more with the mesh size. The mesh sensitivity is

not extreme - the peak response varies by only 15% between the coarse

and the fine mesh. This lack of mesh sensitivity may be a result of the

fact that the reponse for a shear slip mode of failure, which is

predominant under the 1.00 ksi normal load, is less sensitive to size

effects than the tensile mode of fracture.

6.3 Experimental and Computational Results

lC

The convergence study, presented in Section 6.2, showed that the

calculated response of the model is not particularly sensitive with

regard to the selection of the finite element mesh. Therefore, the

finite element model employing 45 elements for specimen idealization and

the linear softening formulation was used to predict the direct shear

test results. This medium mesh is quite efficient from a computational

- -standpoint, since the adopted number of degrees of freedom do require

considerable computer resources.

The parameters used in the finite element model are those given in

Tables 6.1 and 6.2. The damage localization functions for ds and dt

are adopted from the calibration procedures illustrated in Chapter 5.

The finite element idealization was described in Section 6.1.

Only the case of normal pressure Pn = 0.20 ksi is considered

here. The normal pressure test Pn 1.0 ksi was not analyzed because

- of its pronounced out of plane behavior, which tends to invalidate the

underlying plane strain assumption of the computational model.

Figures 6-22a,b illustrate the deformed shapes of the specimen

finite element idealization for different stages, while figures 0
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6-23a,b illustrate the nodal displacement vectors at the same stages.

Significant tendency of vertical displacement is noted. Recall that

similar experimented evidence is reported earlier in Chapter 3 (see

Fig. 3-13)

Figures 6-24a,b show the distribution of the principal stresses

during different response regimes. The figures illustrate the

significant rotation of the principal stress directions as contained

tensile cracking leads to the formation of compression struts,

particularly at the lower normal load levels.

The load versus displacement response of the finite element model

is shown in Fig. 6-25 compared with the experimental response curve.

The prediction shows good agreement with the experimental response in

the pre-peak regime. Response in this regime is controlled primarily by

the modulus of elasticity and the initial fracture surface. In the

post-peak regime the predicted response curves demonstrate surprisingly

good agreement with the experimental response curve in view of the

calibration of tensile and shear fracture parameters from a totally

different set of test data and mesh layouts.

The accuracy of the numerical prediction is expected to be further

improved with increasing normal pressure. Low values of normal pressure
4)

lead to the formation of large zones of tensile cracking, and the

calibration of dt was based only on very limited number of direct

tension tests. High values of normal pressure reduce these zones of

tensile cracking and enforce predominantly shear slip to occur. Since

*- * ds was determined from triaxial compression tests under different

confining pressures the prediction for the higher normal pressure tests

where shear failure dominates the structural response is expected to be

1"" improved.
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7. CONCLUDING REMARKS

The research report focused on brittle and ductile fracture

phenomena and the computational failure prediction of structural S

components made of cementitious materials. The main thrust of the study

was concerned with the basic issues of strain localization during

fracture and stable finite element modeling of strain-softening "

materials. A composite damage model was developed to incorporate

localized material damage into an equivalent smeared finite element

approach for tensile cracking and frictional slip. Two localization

parameters were introduced which define the extent of the damage zones

in which strain-softening behavior takes place independently of the mesh

size. The correspondence to fracture energy concepts was finally

established whereby the computational complications of the discrete

fracture analysis model could be circumvented.

Since the post-peak behavior is really a structural rather than a

material property an inverse identification procedure was developed in

order to calibrate the governing fracture parameters of localized
0

damage. To this end displacement controlled uniaxial tension and

triaxial compression tests were carried out in-house independently from

the direct shear tests for verification of the smeared fracture

computations. The effect of confining pressure on ductility was

incorporated in the composite damage model in order to allow for a

continuous transition from perfectly brittle fracture to perfectly

plastic flow.

The computational fracture predictions were verified with

experimental results from our large capacity direct shear test
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apparatus. Depending on the ratio of normal to tangential loading

contained fracture took place within the structurally stiff shear box

device either in the form of predominantly tensile cracking or

frictional slip. Consequently, the direct shear test experiment was

considered representative for the actual fracture conditions within

highly confined structures.

The numerical mesh sensitivity studies clearly indicated that the

size of the damage zone Vd is not a mesh-independent fracture

property. In fact, the computational results demonstrated instead that

the damage volume fraction a = Vd/Vt should be kept constant for

dist.ibuted fracture process. This observation is synonymous to saying

that no explicit size effect has to be introduced in the softening

formulation of the equivalent continuum element, quite in contrast to

recent proposals of prominent researchers who suggest that the

characteristic size of the fracture band must be considered. This leads

to the conclusion that the composite damage models within the framework

of softening plasticity, viscoplasticity or internal variable based

damage theories provide an appropriate constitutive format for the

progressive development of microdefects in structures . In fact there

is little evidence for the explicit inclusion of size effects except for

tensile cracking in highly localized fracture problems in which the

fracture energy release should be kept constant rather than the damage

volume fraction.

-181-



1

ACKNOWLEDGEMENTS

This research was sponsored by the U.S. Air Force Office of

m  Scientific Research under contract AFOSR 82-0273 with the University of

Colorado, Boulder. The authors would like to acknowledge the liason

efforts of Lt. Col. John Allen and Lt. Col. Lawrence Hokanson and their

support of this work. They would also like to thank Mrs. Shari Day for

her help in preparing this report.

-1 2

"7 182-
4,.,.



0"

8. REFERENCES

[1] Sture, S. and H.Y. Ko, "Strain Softening of Brittle Geological
Materials", Int. J. Num. Anal. Meth. Geomech. 2 (1978), pp.
237-254.

[2] Sture, S., "Experimental Modeling of Strength and Deformation
Behavior of Concrete in Direct Shear", Proceed. Symp. on
Interaction of Non-Nuclear Munitions with Structures, USAF Academy,

.. Colorado Springs, May 10-13 (1983), pp. 95-100.

[3] Heilmann, H.G., "Zugspannung and Dehnung in unbewehrten
Beton-querschnitten bei exzentrischer Belastung", Deutscher
Ausschuss fur Stahlbeton, Issue 269, Berlin (1976), pp. 1-61.

[4] Petersson, P.T., "Fracture Energy of Concrete: Model of
Determination Cement and Concrete Research, Vol. 10, (1980), pp.
78-89.

[5] Gopalaratnam, V.S. and S.P. Shah, "Softening Response of Concrete
in Direct Tension", submitted for publication to ASCE, STD, Dec.
1983.

[6] Argyris, J.H., Faust, G. and K.J. Willam, "Limit Load Analysis of
Thick-Walled Uniaxial Structures a Finite Element Approach to
Fracture", Comp. Meth. Appl. Mech. Eng. Vol. 8, (1976) pp. 215-243.

[7] Christensen, J., Ickert, K., Stankowski, T., Sture, S. and K.
Willam, "Numerical Modeling of Strength and Deformation Behavior
for Engineering Materials", C. S. Desai and R. H. Gallagher eds.

-i .** Tucson, Arizona, Jan. 10-14, 1983, pp. 537-544.

[8] Pietruszczak, St. and Z. Mroz, "Finite Element Analysis of
Deformation of Strain-Softening Material", Int. J. Num. Meth. Eng.,
Vol. 17 (1981), pp. 327-334.

[9] Bazant, Z.P. and B.H. Oh, "Crack Band Theory for Fracture of
Concrete", Rilem-Materiaux et Constructions, Vol. 16, No. 93
(1983), pp. 155-177.

[10] Hillerborg, A., Modeer, M. and P.E. Petersson, "Analysis of Crack
Formulation and Crack Growth in Concrete by Means of Frac Mechanics
and Finite Elements", Cement and Concrete Research, Vol. 6, '!976),

0 pp. 773-782.

[11] Saouma, V.E. and A.R. Ingraffea, "Fracture Mechanics Analysis of
• .Discrete Cracking", Proc. IABSE Conf. on Advanced Mechanics of

Reinforced Concrete, Delft, June 2-4, 1981, pp. 393 - 416.

-183-

:............ 
.



[12] Rudnicki, J.W. and J.R. Rice, "Conditions for the Localization of
Deformation in Pressure-Sensitive Dilatant Materials", J. Mech.
Phys. Solids, Vol. 23, (1975), pp. 371-394.

* [13] Vardoulakis, I., "Bifurcation Analysis of the Triaxial Test on
Samples", Acta Mechanica, 32, (1979), pp. 35-54.

[14] Vermeer, P.A., "A Simple Shear Bank Analysis Using Compliances",
Proc. IUTAM Symp. on Deformation and Failure of Granular Materials,
P.A. Vermeer and H.J. Luger, Eds., Delft, Aug. 31-Sept. 3, 1982,
pp. 493-499.

[15] Hill, R., "A General Theory of Uniqueness and Stability in
Elastic-Plastic Solids", J. Mech. Phys. Solids, Vol. 6, (1958),
pp. 236-249.

0 [16] Needleman, A. and V. Tvergaard, "Finite Element Analysis of
Localization in Plasticity", Chapter 3 in Finite Elements, Special
Problems in Solid Mechanics Vol. 5, J.T. Oden and G.F. Carey Eds.,
Prentice-Hall, Englwood-Cliffs (1984), pp. 94-157.

[17] Dougill, J.W., "Constitutive Relations for Concrete and Rock:
Applications and Extensions of Elasticity and Plasticity Theory",
Preprints W. Prager Symp. on Mechanics of Geomaterials, Rocks
Concrete Soils, Z. Bazant, Ed. Northwestern University, Evanston,
Sept. 11-15, 1983, pp. 18-54.

[18] Naghdi, P.M., and J.A. Trapp, "The Significance of Formulating
Plasticity Theory with Reference to Loading Surfaces in Strain
Space", Int. J. Eng. Sci., Vol. 13 (1975), pp. 785-787.

[19] Kachanov, L.M., "On the Creep Fracture Time", ANSSSR, Otn, Tekhn.
Nauk, Vol. 8, (1958), pp. 26-31.

[20] Lemaitre, J. and J.L. Chaboche, "Aspet Phenomenologique de la
Rupture par Encmmagement", J. de Mec. Appl., Vol. 2, (1978), pp.
317-365.

[21] Krajcinovic, D. and G.U. Fonseka, "A continuous Damage Theory of
46 Brittle Materials", J. Appl. Mech., Vol. 48 (1981), pp. 809-815.

[22] Chen, W.F. and A.F. Saleeb, "Constitutive Equations for Engineering
Materials, Vol. 1: Elasticity and Modeling", J. Wiley & Sons, New
York, 1982.

40 [23] Hadamard, J.S., "Lecons sur la Propagation des Ondes", Chelsea
Publ. Co., New York, 1949, Chapter 6.

[24] Dougill, T.H., "A Mathematical Model for Progressive Failure of
Cement Paste and Mortar", Magazine of Concrete Research, Vol. 19
(1967), pp. 135-142.

-184-

*' , , . 6 1"- . . - .' . - - -. .. i i L i



7 .71. 7

[25] Maier, G., Zavelani, A. and J.C. Dotreppe, "Equilibrium Branching
due to Flexural Softening", J. ASCE, Vol. 99, EM4 (1973), pp.
897-901.

[26] Bazant, F.P., "Instability, Ductility and Size-Effect in
Strain-Softening Concrete", J. ASCE, Vol. 102, EM2 (1976), pp.
331-344.

[27] "Fracture Mechanics of Concrete", ed. F.H. Wittmann, Elsevier,
Amsterdam, 1983.

[28] Bazant, Z.P. and L. Cedolin, "Fracture Mechanics of Reinforced
Concrete", J. ASCE Vol. 106, EM6 (1980), pp. 1287-1306.

[29] Rice, J.R., "A Path-Independent Integral and the Approximate
Analysis of Strain Concentration by Notches and Cracks", J. Appl.
Mech, Vol. 6 (1968), pp. 379-386.

" [30] Parks, D.M., "A Stiffness Derivative Finite Element Procedure for
Determination of Crack Tip Stress Intensity Factors", Int. J.
Fract. Vol. 10 (1974), pp. 487-502.

[31] Doltsinis, J. St., Zur Berechnung des Rissfortschmitts in
Inelastischen Tragwerken," ZAMP, Vol. 30 (1979), pp. 58-63.

[32] Morgenstern, N.R. and J.S. Tchalenko, "Microscopic Structures in
Kaolin Subjected to Direct Shear," Geotechnique, Vol. 17 (1967),
pp. 309-328.

[33] Kutter, H.K., "Stress Distribution in Direct Shear Test Samples,"
Proc. Int. Symp. Rock M zh., Nancy, France, 4-6 Oct., 1971, paper
11-6.

[34] Mandl, G., L.N.J. deJong and A. Maltha, "Shear Zones in Granular
Material," Rock Mechanics, Vol. 9 (1977), pp. 95-144.

[35] Vallejo, L.E., "Development of a Shear Zone Structure in Stiff
Clays," Proc. 4th Intl. Conf. Num. Meth. Geomech., Vol. 1,
Edmonton, Canada, May 31-June 4, 1982, pp. 255-262.

[36] Walters, J.V. and J. N. Thomas, "Shear Zone Development in Granular
Materials," Proc. 4th Intl. Conf. Num. Meth. Geomech., Vol. 1,
Edmonton, Canada, May 31-June 4, 1982, pp. 263-279.

[37] Desai, C.S. and M.M. Zaman, "Models for Sliding and Separation at
Interfaces under Static and Cyclic Loading," Proc. Int. Conf. on
Constitutive Laws of Engineering Materials, C.S. Desai and R. H.
Gallagher, eds., Tucson, Arizona, Jan. 10-14, 1983, pp. 383-392.

-185- 0 p4

i1



[38] Christensen, J.D., "Computational and Experimental Investigation of
Concrete Failure in Shear", M. Sc. Thesis, Department of Civil,
Environmental and Architectural Engineering, University of
Colorado, Boulder, 1983.

[39] SMART I, Users Reference Manual, ISO Report, University of
Stuttgart, 1976.

[40] Krempl, E., "Viscoplasticity Based on Overstress Experiment and
Theory", Chapter 19 in Mechanics of Engineering Materials, C.S.
Desai and R.A. Gallagher, Eds., J. Wiley and Sons, to appear 1984,
pp. 369-384.

^ S

e0

*

-

." S

4? d)"% 5


