RESEARCH IN COMPUTER SIMULATION OF INTEGRATED CIRCUITS
U) CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB
A R NEWTON ET AL. 31 JUL 83 AFOSR-TR-84-0447

UNCLASSIFIED AFOSR-82-0021 F/G 9/5

-A141 855




N -4
P uus |

s =~

22 it e

MICROLOPY RESOLUTION TEST CHART
NATIONA BUREAU OF STANDARDS e o8




KiJSR-TR- 84.0447

FINAL REPORT

T wlee

Yy \J\G(k Q .\\- Q\\‘%— S.\ y*'\L\\“'-& O

\\7 J~ (Al"‘) o Q/ VYO *
MLSR—B&:(I)Zl

Research in Computer Simulation of
Integrated Circuits

Electronics Research Laboratory
University of California, Berkeley

AD-A141 855

by

A Richard Newton and Donald O. Pedersca

>
Q.
O
(b
| |
-
| I
===
e
[ |

July 31, 1983

.

84 05 29 050

T 1‘~ -
Moy w7




‘ i

SECURITY CLASSIFICA en Deta Entered) Unclassified
- T READ INSTRUCTIONS
. REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
n REORT NUMBER 2. GADCCESS N N I_R 1P ‘ ATALOG NUMBER
AFOSR-TR- 84-0447 Al
4. TITLE (end Subtitle) 5. TYPE OF PORT & PERIOD COVERED
Final Report
Integrated Circuit Simulation for Very 1l Oct 81 - 31 Jul 83
Large Circuits 6. PERFORMING OG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

A. Richard Newton

Donald O. Pederson AFOSR-82-0021

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
. AREA & WORK UNIT NUMBERS
Electronics Research Laboratory 61102F
University of California, Berkeley 2305/B1
Berkeley, California 94720
11, CONTROLLING OFFICE NAME AND ADDRESS t2. REPORT DATE
Air Force Office of Scientific Research/NE 31 July 1983
Bolling AFB, Bldg. 410 3. NUMBER OF PAGES
Washington, D.C. 20332 23 T Y -
14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Otfice) 15. SECURITY CL ASS. (of this report) -~
Unclassified
158, DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release;
distributionunlimitede. .~

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different trom Report) |

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

30 ABSTRACT (Continue on reverse side if necessary and identily by l_)lock number)
Perrormance Limits of the CLASSIE Circuit Simulation Program"

The performance of the new LSI simulator CLASSIE is evaluated on
everal circuits with a few hundred to over one thousand semiconduc
or devices. A more accurate run time prediction formula has been

(] ound to be appropriate for circuit simulators. The design decisions

or optimal performance under the constraints of the hardware (CRAY -

) are presented.

'Circuit Simulation on Vector Processors" Vector computers have an

DD , 53" 1473  E€oimion oF 1 NOV 63 15 oBSOLETE

Unclassifieg

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

!
.




SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) R

increased potential for fast, accurate simulation at the transistor
1evél of Large-Scale-Integrated Circuits. Design considerations
for a new circuit simulator are developed based on the specifics of
the vectour ccemputer architecture and of LSI circuits. The perfor-
mance of the new LSI simulator, CLASSIE, is evaluated on a CRAY-1
vector-computer for several circuits with a few hundred to over a
thousand semiconductor devices. Comments are given concerning the
performance limits and relative hardware dependence.

"LSI Circuit Simulation on Attached Array Processors" The simula-
tion of Large-Scale-Integrated (LSI) circuits requires very long
run time on conventional circuit analysis programs such as SPICEZ
and supermini computers. A new simulator for LSI circuits, CLASSIE
which takes advantage of circuit hierarchy and repetitiveness, and
array processors capable of high-speed floating-point computation
are a promising combination. The program development software
environment of the Floating Point Systems 164 is evaluated based on
the experience gained with the conversion of both SPICZ and CLASSIE
to the machine. The FPS-164 has been used as an attached processor
to a VAX 11/780 with the UNIX operating system. The performance of
the two simulation programs on the host computer, the VAX, and the
attached processor is compared. The FPS-164 architecture and Fortr
compiler are evaluated by means of the speedup of CLASSIE compared T
to SPICEZ on the same processor.

"Data-Flow Based Behavioral-Level Simulation and Synthesis"
While a large number of powerful design verification tools have beeg
developed for IC design at the transistor and logic gate levels,
there are very few silicon-oriented tools for architectural design
and evaluation. As the number of gates which can be implemented on
a8 single chip grows, these tools are becoming increasingly importan*
The FTL2 system described in this paper is an interactive system
for specifying concurrent digital systems and analyzing their be-
havior. FTL2 differs from other behavior-level simulation systems
in that the input specification for a circuit is a concurrent pro-
gram. Specifications are incrementally compiled into augmented
data-flow graphs which are then interpreted by a software data-flow
machine. FTL2 includes special control structures for describing
concurrent behavior in a structured fashion, a number of user-orient
input features, and an extensive macro facility. The concept of
non-sharable resources is used to determine timing-dependent module
access conflicts in a value independent manner. Incomplete specifi{
cations can be emulated and can be modified interactively. FTL2
has been implemented in LISP and is currently operational. A com-
panion FLT2-based synthesis system is currently under development.
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Grant AFOSR-81-0021 became eflective October 1, 1981 for research studies
in [Project Title]. Although originally intended to support research activities

over a 12 month period, because of the availability of complimentary support

from industnial sources, it was possible to extend the research activities through
July 31, 1983. In the following, the major activities associated with this research
grant are summarized with particular attention to the research publications

which have resulted.

For this research effort, it is a pleasure to acknowledge the cooperation

received frormm Professor Donald Calahan of the University of Michigan, Ann

Arbor. Professor Calahan was instrumental in establishing initial contacts with
AFOSR for our grant. Over the years, Calahan’s research group at Michigan and
ours have worked closely together in the area of the effective use of parallelism

and vector computation. Calahan's research, supported by AFOSR 80-0152, has

o ——r o ——— - =i

been particularly helpful to us and is described in the two publications cited

below.®

RESEARCH PERSONNEL

The research personnel associated with this grant include Professors New-
ton and Pederson together with Dr. Andrei Vladimirescu. During the initial
period of the grant, Dr. Vladimirescu was completing his pre-doctoral studies, i
which were jointly supported by Bell Laboratories. In addition, he received i
extensive computer availability on a CRAY computer from United Information ¥

Services. His pre-doctoral work included the development of the circuit simula- 1

¢ D.A. Calahan, "Hultilevel Vectorized Sparse Solution of LS! Circuits”, Proc. ICCC '80.

”°7 D.A. Calahan, "Decoupled Solution of Circuit Matrices on Pipelined Processes”, Proc. ICCC '82,
PP. 887-
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tor program CLASSIE.**

During the second year of the grant period, Dr. Vladimirescu continued as a
post-doctoral scholar concentrating on the extension of his earlier research
work to the use of array processors. Also in the second year of the grant, Pro-
fessor Newton gave attention to the additional topic of behavioral simulation and

synthesis based on data-flow machines.

*9 A Viadimirescu and D.0. Pederson, "Circuit Simulation on Vector Processors”, Proc. ICCC '82.
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RESEARCH PUBLICATIONS

Four publications have resulted from this research grant. Three of these
publications concern circuit simulation using vecior computers or array proces-
sors while the fourth concerns behavioral simulation on advanced computers. In

the following, abstracts of these papers are included.

“Performance Limits of the CLASSIE Circuit Simulation Program”
A Vladimirescu and D.O. Pederson
Proc. ISCAS '82

Abstract:

The performance of the new LSI simulator CLASSIE is evaluated on several
circuits with a'few hundred to over one thousand semiconductor devices. A
more accurate run time prediction formula has been found to be appropriate for
circuit simulators. The design decisions for optimal performance under the con-

straints of the hardware (CRAY-1) are presented.

tCircuit Simulation on Vector Processors”
A Vladimirescu and D.O. Pederson
Proec. ICCC '82

Abstract:

Vector .computers have an increased potential for fast, accurate simulation
at the transistor level of Large-Scale-Integrated Circuits. Design considerations
for a new circuit simulator are developed based on the specifics of the vector
computer architecture and of LSI circuits. The performance of the new LSI
simulator, CLASSIE, is evaluated on a CRAY-1 vector-computer for several cir-

cuits with a' fewthundred to over a thousand semiconductor devices. Comments




are given concerning the performance limits and relative hardware dependence.

"LSI Circuit Simulation on Attached Array Processors"
Andrei Vladimirescu

Abstract:

The simulation of Large-Scale-Integrated (LSI) circuits requires very long
run time on conventional circuit analysis programs such as SPICE2 and super-
mini computers. A new simulator for LSI circuits, CLASSIE, which takes advan-
tage of circuit hierarchy and repetitiveness, and array processors capable of

high-speed floating-point computation are a promising combination.

The program development software environment of the Floating Point Sys-
tems 184 is evaluated based on the experience gained with the conversion of
both SPICE2 and CLASSIE to the machine. The FPS-164 has been used as an

attached processor to a VAX 11/780 with the UNIX operating system.

The performance of the two simulation programs on the host computer, the
VAX, and the attached processor is compared. The FPS-184 architecture and
Fortran compiler are evaluated by means of the speedup of CLASSIE compared

to SPICE?2 on the same processor.

“Data-Flow Based Behavioral-Level Simulation and Synthesis”
J.T. Deutsch and A R. Newton
Proc. ICCAD '83

Abstract:

While a large number of powerful design verification tools have been
developed for IC design at the transistor and logic gate levels, there are very few
silicon-oriented tools for architectural design and evaluation. As the number of

gates which can be implemented on a single chip grows, theseTools are becom-
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ing increasingly important.

The FTLZ2 system described in this paper is an interactive system for speci-
fying concurrent digital systems and analyzing their behavior. FTL2 differs from
other behavior-level simulation systems in that the input specification for a cir-
cuit is a concurrent program. Specifications are incrementally compiled into
augmented data-flow graphs which are then interpreted by a software data-flow

machine.

FTL2 includes special control structures for describing concurrent behavior
in a structured fashion, a number of user-oriented input features, and an exten-
sive macro facility. The concept of non-sharable resources is used to determine
timing-dependent module access conflicts in a value independent manner.

Incomplete specifications can be emulated and can be modified interactively.

FT12 has been implemented in LISP and is currently operational. A com-

panion FLT2-based synthesis system is currently under development.




PIRFORMANCE LIMITS OF THE CLASSIE
CIRCUIT SIMULATION PROGRAM

Aadrel Visdimirescy ad Doaald O. Pedsrsoo

Departmest of Blactrical Enginesring sad Computsr Sciences,
Rlectroaics Ressarch Laboratory,
Usivensity of California, Berkaley, Californis 94720.

ABSTRACT:
The purformanse of the asv LSl smmlater CLASSIR B
evaluated en seversl circuits with & fow beadred ® over one
theasand srmicesducter dovices. A mere securse rem Hae
prediction rmala has baea fouad & be apprepriom for cirenit
simalsters. The draign decisions for sptimal performance under
the construiats of the hardware (CRAY-1) are pressated.

1. Tetreduction

CLASSIE {1}, o simulation program for largs-scale-integrated
circuits, hes Sesn developed 10 sarrow down the speed perfor-
mancs gap butwees o Circuit simulator aad @ timing simulstor
gven aa SIMD (ingle instruction, wmultipie data) architecture of
e host computer, 6.5.. CRAY-1. la wpits an inherest incresse in
e sxacution speed of SPICE] whea rus ca the CRAY-1, s
edditional order of magnitude increase is needed for the eficieat
asalysis of LSI circuits (greater thas one thousand davices).

By using vecior capabdility the speed improvemest ia CLAS-
SIE is dus 10 ordering operations which can b performed ia paral
ol [2). Thas, subcircuits with identical topology end semiconduc-
¢ devicas descrided by he same mods! are gvaluated in the wvec-
w mode. ls addition the use of penerated maching cods for the
matriz solution prectically reduces the coatidutioa of this pant of
e simulatios 10 ises thas ocse b of the tal analynis time,
evea for very large circuits. Finally the dats structure has beco
wecifically wilored 10 accomodais vecior operstions with misimal
other/mnier overbeed

The Gevelopment of CLASSIE hes gous through mvernl
mgss A mont important progrm b ¢ vectorised wversion of
SPICE (SPICEV) which costaios veciorised device sodel routines
md o scales machine cods soiver fer the sparss kseer egquaticas
This isermediste version doss st have the dats sructure sad
border-biock diagoeal metrin soiver of CLASSIE. l spesd perfer-
mnece b epprozimensly balf of thet of CLASSTE and » fovw s
fuster hen SPICE2 dopeading ea circult sise.

2 Spend-Purformanse Evaluntiss

8 0 pasrelly sccopted Bt e sumber of samicoaducter
davices and nodee (squetions) of o circuit ars spprozimenly equel
& o loast have o soustant ratie aad that the snalysis tes ae be
dareciorined Wy o geaeric sumber "N of dovicss or aodn. k b
aiee gonsrally asvepied that aselysis tims iacreasss with the power

1.2 - 1.4 of he circuit complexity 'N'. Circuits analyzed snth
CLASSIE on s CRAY-] contradict both of the above generalize-
tons

A more ycunie time model is necessary in order to predict
the performance of s circuit simulator. Semiconductor devices are
represented in most circuit simulators, such as SPICE2 [3), [4],
(5], ADVICE [6], ASPEC [7), SLIC (8] and CLASSIE, by a vari-
able oumber of equstions depending oo whether parasitic terminal
resistances are specified or oot For this reason there is ao artr-
trary relation betwess the aumber of devices and that of nodes as
brought out in the large circuit examples listad delow.

Two parameters have been found 10 provide a rather accurate
characterization of the simulstion time. The parameters refer to
the two major parts of the analysis: semiconductor-device-model
evaluation (Jacobian terms) and linear-equation solutioa. Parame-
tor tg i the time for ooe model evaluation is ooe iteration The
sscond parameter is t, the time for solving one equatiop in one
Ueration. The analysis time cap then be estimated as:

T = o ngxtg ¢ a,xt) ¢ overbead m

where o represcats the sumbes of sntities dengnatod by the sud-
xript, 8., By, 8 tbe iteration aumber, aq the sumber of devices
and g, the number of equations From above it is obvious that
the speodup ons can get in circuit simulstios depends on how
much the two charscteristic times cap be reduced The parucular
dscuit deiermines the relative weight of the two werms in
paraptheses.  The analysis time for 8 subcircuit oriented program
tike CLASSIE can bs expressed 2.

T = apaligrtg ¢ agxty + 0% (ngx1y + agxty)) (2)

4 overbhesd

where ag, I8 the sumber of subcircuits and e second subecript ‘i
staods for isterconnection whils ‘s’ stands for subcircuit As
shown previoualy |, can ¥s reduced grestly by cods penerstion {1).
In order 0 reduce iy g wad ty, in the vector procemsor eaviron-
meat & i obvious that the devices heve @9 b grouped sither by
subcircuit and/or by mods! aad evalusied in paralisl. The model
evalustios cag be brokss down iste actual computation, ¢§..
oquivalent conductances and charges, sad parameter pethering and
individual edmittance scattering into the circult matrin. ¥ whe dev-
{sm0 are grouped by models, ealy the computation part cas be vec-
torized wherens If grouped by muicircuita, both computational and

CH1681-6/82/0000-1229 $00.73 © 1982 IEEE
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oother/scatier can b9 vecwrized Based om this chssrvation the
dsvice svalstion times tg, Lo ad g, ore @fcremt for the mms
LR creuit.

Ths tims mvings la model svahation s, bowever, mot
impremive because of ssveral remsccs.  First, model reutine vec-
terization I» the CRAY-] context iacresses the overbead ia addi-
don t» the speedup. Device evalustion relies ca differest analyt)-
CRAY-] Portaa compiler prohidits branching whea weciorizing
eode snd thus ol the differsat aliernative results must bs com-
o 1ad for all devicas sad caly in the ¢nd the spproprists dats are
@ rpad la the solution vecwr depending oa each device.

Second, memory tnffc cam sccount for ¢ mmjor part of &y
T ¢ indefinite admittance metrix of each device must bs scattered
i» 3> the circuit repressouion, i SPICEV this represcaation s
@ overall circuit metriz while in CLASSIE i is ths lsterconnsc-
o o matriz and the diagooa! submatrices. The scatter into he
o endl sad inerconnectios matrices cannot b wectorized and it
2.4 besn measured with ¢ CRAY-1 gimulator that the scatier can
(ks T9% of the total time of the dipoler transistor evaluation
whon (ull 63 element vecwors ars used {9). The maiter inw the
diagoual submatrices corresponding 10 differemt instances of the
sams call definition is the caly ons thet caa be veciorizad. In this
case ths computatioa dominaies Over memory scoess.

Third, the spesd in the computational part depends upoa the
vecior length.  Orouping devices by subcircuits, ¢.g., ol transistors
MX of the different instances of subcircuit SUBI, cuts down the
satier tisme since the results are stored in parallel in the diagonal
submetricss. Howsver, ths vecior length is shortr Secauss the
sumber of oorursnces of & subcircuit is less than the sumber of
davicas deucribed by the mme model Experiments show that ia
MOSFET evalustion caly rwv thirds of the compuistional spesd
with full vecions (64 elements for the CRAY-1) caa be achieved
for vecwore with only 10 slemsota

Fourth, 20 s priori tnoviedge can be wsed 10 eliminas cer-
tis computations, ¢ §.. 80 advaotage can bs takes of the fect that
e @rais and source junctions of s MOSFET are reverss biased.

For closs moaitoring of weed the device routines in CLAS-
SIE we sgmenied according 9 ¢ specike msk. Ths bigoler rov-
tisee are ssparaiad @ perform the gather/scutier, computation and
Imiting. The MOSFET routioss perform gether/scatier, drais-
ovalsstien, fapecitance computation, bpolar and FET limitiag.

4 Remin
A sumber of large circuin ® thown ia Tedle | cosuiaing

from o fow hundred 1 over cas thoumad devices OF equations
ave bese enalysed

TARLE )

Clrcuit Type | Devices | Bqe | %Sparse

Adderd | Bigolas 8 450 %)

Adder1é | Bipolar | 1152 1747 | 9965
Puer MOS 1% 410 .6
Special ™MOos 268 68 »”

& W W =

The two adders are aB-NAND ciruits conuining approximately
mummumm The fllter is an NMOS
swiched-capacitor lowpam filter contrining 12 lowpam secuons
with (wo operstional amplificrs per saction. The special-purpose
circuit accomplishes a desired function using digital (NAND,
NOR) and analog (0p-amp) biocks.

Table 2 shows some matistical data oo the matrices in CLAS-
SIE for the two bipolar adders having ‘Inst’ instances of the same
NAND gate each  Four squations out of sixte-n represcaung the
NAND subcircult correspond 0 external sodes. The external
sods cootributions is gathered in the interconnection matix. An
interesting obeervation from ths sbove is the high percentage of
wpanity is the interconpection matrix.

TABLE 2

Circuit | Subckt | Inst | Eqs | %Sparse

Adderd | NAND | 36 | $5 8714
Adderlé | NAND | 144 | 163 | 9445
. NAND | - 16 2

Prom the data in Tadie ) and Tabdie ¢ one cap see the
increase in tota) oumber of iwerations and speed for the sbove cir-
cuits on SPICEV and CLASSIE as compared 10 2 standard Forusa
varsioa of SPICE2 os the CRAY-1. Also displayed are the two
characlaristic times tgand ¢,

TABLE )
n Addlé  Fil SpCxn
Peramn
SPICE2  t(ue) &~ »” ”
L) Y] 'Y Y

n 2 52

Add4

“

L1

%4 1619 2016 00
!

n

4 )
601  $30T 6145 2540
32
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TANLE ¢
Adderd Sutistics oa CLASKIE
o) GG MFLOPS e weed
e ¢ 3.4 $J 621y 42
Subcz 0 1.2 16

The sscoad subecript, 5. ia Tebis ¢ becomen 1° in the frm
ead ¢’ la B2 second ine. The ** ia the ty, colums cormresponding
s isterconnection metriz indicates that ol devices ore part of
e subcircuits. The acalyws for the frat thres circuits of Toable )
ond the snalysis ia Tobis 4 have besa stopped after five migutes of
CRAY-! qu time. The iteration coust in the shove twe wbies
gives s massurs of the spesdup. s general, & is obviows that the
larger the sumber of squations the more important the speedup.

The abors tabie also showsy the rum-time statistics for the &
bit adder a9 CLASSIE. A characteristic sumber for supsrcomgput-
on b the megafiop s (millicn Bosting poist operations per
mcond). The rasms for the sparse equation soivers in CLASSIE
are 17.6 MFLOPS & the subcircuit lsvel (gsnerated code wass vec-
e regisers) and $.3 MPFLOPS ot the interconnection metriz (code
wees maler registers coly). The sscond sumber is quite geasral for
s malr gparm-metriscods solver. The high megafiop s ot
the subcircult level diminishes sves more the relative importeace
of tinsar equatioe solutios is the overall sissulation

4. Commeuts and Concimsivas

As predicied by Eqn. | and 2 the rug time dspendencs with
circult complenity is o linesr functioa The individual times, ty
Lo tad ty, depend os ths vecior lengtd used for differsat circuits.
Por aa ol)-Fortras circuit smulsior implementing sparss matrix
tachaiques the tias per equatioa solution {, increases with 3 power
proatr thee 1. This fact explains the incTeass in Wosdup with
increasing complexity of ths circuit.

.Tabls § provides a measure of the relative imporasce of
diferem simulstor functions is CLASSIE vermn SPICEV for BJT
and MOSFET circuits based o0 the enalysis time breakdows of two
of the shove circuin The columns estited (W)Adderd or
M)Filer im the percaptage of the weal Uensicst amalyss tme
wpest ia & few koy sections of ths program.

TARE 3
CLASSIE SPICEV
Task T MOSFEY 14
MiAddert | W)FUsr | (W)Adderd
OCather/Seatsar 16 ns ns
Dovie Bgn. » L] 1} )
Drain-Sowres By - 63 .
MOS8 Capaciance . 23 .
Dipolar Limiting 10 2 ?
PET Limiting . 2s .
By Sehaion 13 $ n

Prom the sbove data it can e wen that the routines which
perform gathering of parameters and scatisring of maurix terms
from aad 1© memory take mors than oms third of e wial ime ip
SPICEV because of the ssquential mods ie which they are exe-
cuted s CLASSIE however (he analytical mode! evaluation has
Secome dominant @ desred I analytical models are used the
maximum speedup is alrsady in the program for thi . For SPI-
CEV (he percanuge of the equstion ¢valuation = gro.imately
0% for bipolar and 29% for MOS circuin. T tpresents in
faself an impreasive performance of the computati 904 of the
matherosticsl functions (sxpooentistion, logarit) quare root)
snd Bosting point units of the CRAY-1.

More speed can be obkained by incorporau: ¢ iptelli-
gsoce into the program; this would allow for definitios of locg
vectors in the computation part and regrouping according to b
circuits in the gather/scatter part la CLASSIE the percenuage
time apent © link the subcircuits with the interconsection matnx
8 of the order of 3-10% percent.

Asother important observation is the overbead time. From
simulaticn runs it can be noticed that o8 the main parts of the
stalysis (device evaluation and squation soiution) are made faster
the importance of the overhead grows from approximatsly % for
SPICE2 w over 20% for CLASSIE. The major pant of the over-
bead is cootributed by memory manager Operstions, convergence
checking snd truncation-error-timestepconuol. la the Adderd
exampie iterstion-count-limestep-control has been used thus its
overbesd is different from the ooe of the Bler.

A major prodiem for CLASSIE can be a reduced number of
occyrances of identically-structured subcircuits which will increase
the tme for computation. There are two ways of avoiding this
problem.

First, the vector registers of e CRAY-1 can be used
@ferenty ia the computation part in comparison with the memory
teasfer part. A3 owationsd sbove devices can be grouped by
mode} is the compulation phase and then be loeded by subarcuit
i» the satiering phase. This approach cas mve & few percest by
preventing the deswriorsion of the compulstion performance
caused by shorer vecion.

Asother source of mpeed improvement is the reduction of
the overbead by recoding of the critical routines [a Cray Assembdly
Language. 0§, some of the wtility memmory manager rouunes
This will save enother 10% depending upoa circuit and time mep
etauol method.

The use of whis models for devicss will reduce by up 1o $-
10% the oversll JO-40% which the evaluation time of analyuc
SRuaLons CONtributas 16 the analyms time. The major sdvaniags of
®ble models is his coniext is bat the smms sequencs of opere
Sons is performed for all devces regardiems of e opensusg
region. Tablss will prodedly s used fer Lhe static part caly = e
charges will il have 10 Be computed analyucally Par & megalep
machios the uwe of whie models for wpwad » of wcondwy aper




A ol gpesdup clom 9 a order of magnituids aas b
predicwd fer ¢ circuit with over cos thousand dsvices/nodes simu-
inind o8 CLASSIE relative w0 SPICE2 runsing o the CRAY-1.
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CIRCUIT SIMULATION ON VECTOR PROCESSORS

Andre: Vladimirescu and Donald O. Pederson

Department of Electrical Engineering and Computer Sciences,
Electronics Research Laboratory,
University of Califormua, Berkeley, Calitornia 94720

ABSTRACT:

Vector computers have an increased potential for [ast, accurate
simulation at the transistar level of Large-Scale{ntegrated Cir
cuits. Dewign coasiderations far a new circuit simulator asre
developed based on the specifics of the vector camputer archi-
tecture and of LSI circuits. The perfamance of the new LSI
simulator, CLASSIE, is evaluated an & CRAY-1 vectorcomputer
for several circuits with from a few hundred to over one
thousand semiconductor devicea Comments are given cancern-
ing the performance limits and relative hardware dependence.

1. Introduction

In recent years the need for detailed, electrical simu-
lation tor large circuts has initiated the research for algo-
rithms which are faster for LS] circwts and preserve the
same accuracy as in standard circwt simulation. This
research has resulted »n a number of prototype circuit and
circwt/uming simulators such as MACRO i), SLATE [2].
and RELAX 3] From an algorithrnic point of view these
programs can be classified as thurd-generation simulators
All these new programs use computers with conventional
architectures

The advent of vector computers, e g the CRAY-1 and
the CYBER 205, wiuch are capabie of performing hundreds
of rmullions of floating-point operations per secoad (Mfops),
represents a second major factor that can be considered
in the development of a computationally involved simula-
tor High execution rates for floating-point anthmetic are
achieved with new archutectures which perform each single
instrustion on a multiple data stream (SIMD) and through
pipelnung of instructions The specifics of the SIMD archu-
tecture and of LSI circwits have been the two major desizn
considerations 1n the development of another third-
generation prototype circut sumulator, CLASSIE {4], (5]

CLASSIE 18 also intended to reduce the speed perfor-
mance gap between a circwt simulator and a timung simu-
tator It is the only third generation simulator to this point
which takes advantage of a parallel architecture of the
host computer

In the development of CLASSIE. an additional program
has been used for a first characterization of the architec-
ture. SPICEV is a version of SPICE 2G which contains vee-
torized device-mode! routines and a scalar machine-code
solver for the sparse linear equations. Its speed perfor-
mance is approximately half of that of CLASSIE and a lew
times faster than SPICE2, depending on circut size.

2. Yector Processors

The CRAY-1, a 180 Mflops machine, and the CYBER 205.
an BOO Mflops computer, have a number of common archi-
tectural characteristics. Both processors have an instruec-
tion buffer and decode unt, a scalar and a vector process-
ing urut. Both have a large number of arithmetic func-
uonal units, 13 for the CRAY-1 and 11 {or 17) depending on
configuration for the CYBER 205 In most of these func-
tional urnuts concurrent processes can take place. In
scalar or vector computation a floating-point operation is
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partitioned into a number of segments and when an inter-
mediate result 13 ready, it can be chained directly to other
functional unuts A resulting vector element is available at
each clock cycle on the CRAY-1 and two each cycle on the
CYBER 205.

Beyond these overall similarities there are specifics
for each processor. The most unportant diflerences
between the CRAY-1 and the CYBER 205 are the clock
cycle, 125 ns versus 20 ns, the instruction set, hardware
level versus microprogrammed instructions, and the
merory, 4 Mword, 84 bits per word, versus wirtual
memory. Other differences include the number of proces-
sor registers, 72 address, 72 scalar and 8 vector registers
of 64 elements for the CRAY-1 compared to 256 registers
overall for the CYBER 208 The concurrercy of operations
can be higher on the CYBER because of the maxmum of
four floating-point pipes which are part of the vector unt
and which can process an addition and a multiplication
each at the same Lime

For application programs it is important to observe
the simultanecus use of add and multiply uruts, chainung of
operations from a functional urut to arother and the aver-
age vector length The last parameter is an important
measure of the effictency of a vector operation whuch s
associated with an important overhead called start-up
ttme. The average vector length for which the vector pro-
cessor reaches hailf the advertised speed 13 approxamately
15 for the CRAY-! and 50 tor the CYBER 205 The former is
faster for short vectors whereas the latter for long vectors
(over one hundred elements)

For a scientific application program the most
ipteresting performance measure 1s an equvalent Mflops
rate which incorporates the memory trafTic present tn any
algorithm implementation. An est.mate of ttus gumber s
derived below for a circwit sunuiator and cannot be
expected to be larger than a fraction of the maxymum pro-
cessor speed.

3. Simulation of LSI Circuits

A basic consideration in the design of the new simula-
tor 18 the object of the analysis Only simple circuits had
to be analyzed when SPICE was designed over ten years
ago. These same circwts constitute today mere cells of a
LSl system. For the purpose of the simulation a LSI circuwt
can be described usually as a collection of a lmited
number of structurally different functional blocks such as
logic gates, operational amplifiers, etc . each block occur-
ing more than once at the system level The decomposi-
tion of the large clrcuit is the major source for speed
improvement in third-generation circwt simulators

The partitioning of an LSI/VLS] circwt into a cell /
bullding block / systern structure is useful inforrnation at
any level of sunulation. The analysis in CLASSIE 1s done at
two levels, the systemn (bulding block) and the cell (subcir-
cuit) level. The new program groups the cells described by
the same definition together based on huerarchucal tearing
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(derived from the input description) and solves each group
1n one pass through the same code.

An lmportan{‘#uidelme in the design for speed-up is
that the number of items which define a vector be max-
imum. For this purpose a feature in the input language 1s
provided to pass parameters to the cells mth identical
topology (described by the same definition) Another
necessary feature for the convergence of large circuts is
the ability to define initial conditions local to each cell
instance.

Two major parts of a circut simulator can be singled
out as requring most of the floating-point computation
and therefore of the run time These are the evaluation of
the nonlinear characteristics of the sernuiconductor devices

: and the solution of the resulting Lnear equations The

? impact of vetorization on these two major components is
presented in this section as well as in the section com-
menting on results

The speed-up of the semiconductor model evaluation
is essential since it usually accounts for more than half of
the total cpu ume of MOSFET cwrcuwts even when these are

y large The use of generated machine code for the matrix
, solution [5] practically reduces the contribution of thus
part of the simulation to less than one fifth of the total
analysis time. even for very large circuits The data struc-
ture has been specifically tailored to accommodate vector
operations with minimal gather/scatter overhead

Model evaluation can be partitioned in a number of
tasks A model parameter gather is foliowed by device iru-
tialization, terminal voltages initialization, equivalent con-
ductance computation and i1n the end by an indefinite
matrix terms scatter

In CLASSIE as 1o SPICE2, semiconductor devices are
described by geometrical features which are individual for
each device, and general parameters, eg . saturation
current of a pn junction or threshold voltage for a MOS
structure. The first task accomplished by the mode! rou-

tine and called model parameter gather, is to obtain the
T model parameters from memory. After each device 1s
linearized & scatter operation takes place during which the
device indefinite-admittance matrix is stored in the circuit
matrix. These two operations account for more than half
of the ime spent in the mode! routines of SPICE2

In the setup phase a device reordering takes place by
hierarchical level (cell or system) and by model The
model parameters need thus be gathered only as many
times as there are model definitions The importance of
the model parameter gather 1s made negligible in CLASSIE
based on the fact that more than one device uses the same
model parameters

The wuutialization and scatter operations can be per-
formed using vectors only for subcircuits of the same
topology For the interconnection circutry these tasks
are performed sequentially, dewice by dewvice. The
voltage-limiting and equvalent conductance computation
use vector operations on dewvices grouped mainly by
models.

An important issue is the defiuition of vectors
throughout the model evaluation For the transistors at
the system level it is quite straightforward to deflne a vec-
tor across all devices which reference the same model As
has already been mentioned only the computation part 1s
vectorized for these elements

The different possibilities to define vectors can be
presented best by the following example Assume that a
circuit contains 12 instances of a subcircwt OPAMP which
in turn has 20 MOS transistors The semiconductor devices
at the subcircuit level can deflne a vector across all
wnstances of that cell. Thus, the transistors named M09 \n
all 12 instances of the subcircwt OPAMP are Lnearized in
one pass through the code This results in 20 passes
through the mode! evaluation code with a vector length of

12 each time Although all tasks can be vectorized in this
approach a longer vector can be used in the computation
phase where all transistors of the same model and for all
instances of the subcircwt can be grouped together In
wne uutialization and scatter tasks the longer vector used
in computation i1s divnded into a number of short vectors
which contain as many elements as cell instances The
gamn in thus approach comes from a reduction in start-up
times for more vector operation with shorter vector
lengths In the above example assume that 5 of the 20
transistors are depletion loads and are characterized by
the same model parameters and that Lhe remairung 15 are

enhancement devices and are also described by a unique
model For the 12 instances the execution of the computa-
tion loop is reduced from 20 tumes Lo 4 times {once for the
depletion dewvices and three times for the .80 enhance-
ment devices) for 8 maximum vector length of 64

Another trade-off in the design can be between a
longer vector loop which performs also more computation
than necessary or a nunber of shorter loops to which the
execution is directed depending by analysis status flags
Both approaches lead to almost sumilar speeds

As a final comment, the convergence check of the
semiconductor dewvices is performed in the same manner
as for the node voltages The terminal voltages and device
currents are compared in a vector loop and a vector with
ones for the diverging elements and zeroes for the con-
verging ones 1s set up. A fast vector accumulation library
routine is then used for a fast result

4. Results on the CRAY-1

A number ol large circuits containing from a few hun-
dred to over one thousand devices or equations have been
analyzed Two typical circuts are built of two cells, a bipo-
lar NAND gate and an MOS operational amplifier. together
with interconnection cwcwtry The size of the circut s
easlly varied changing the number of instances of the
dufferent cells In the case of the MOS filter of Table 1 the
circwtry at the systemn level {MOS switches and capacitors)
also increases with cornplexity A statistical description of
the benchmarks 1s given in Table ! from both the point of
view of a flat representation as in SPICE2 and a two-leve!
analysis as used by CLASSIE

SPICE2
Circuit Dey Eqs | ZSprs | ZMod Ev ZEq S
Addert T 118 8514 | 443 §64 1; 5221¢8)
Adder4 288 450 993 40.7 (69 6 572 (1) i
Adder16 | 1152 | 1747 | 9965 373 (83) 610(87)
Lowpass 70 42 8389 | 7134 §79 Sg 118(17
Fiter | 758 | 410 | 976 1 667(756) | 236(2
CLASSIE
Adder] 0 16 64 06 697 142
Adder4 0 5 87.14 T4 5 167
Adder18 0 163 94 45 757 188
Lowpass 20 26 747 8.8 63 !
Rilter | 181 | 157 933 869 71 !
Subckt Dev | Eqs | %Sprs Instances
NAND 8 18 82 9. 36. 144
LoPAMP | 25 | 18 45 225 J
Table |

The three adders are all-NAND circuits containung
approximately 607 bipolar transistors and 40% diodes The
filter is an NMOS switched-capacitor lowpass filter contain-
ing 10 lowpass sections wmith two operational amplifiers per
section and two antiahasing and reconstruction circuts




Four equations out of sixteen representing the NAND
subcircuit correspond to external nodes. The OPAMP cir
cuwit has five external nodes. The external node contribu-
tions are gathered in the interconnection matrix It 1s
interesting to note that two cells of totally different func-
tion and complexty, 8 dewices for the NAND gate versus 25
for the OPAMP, have the same size matrix representation

In Table 1 can be found also the percentage contribu-
tions of model evaluation and linear equation solution to
the simulation of the respective circuits. The data wnittea
in parantheses for SPICE2 are obtained from runs using
scalar code generation. The increase in relative impor-
tance for the Fortran equation sotution can be explained
by both the increase of search with increasing complexty
as well as by the reduction of the model evaluation as more
devices are bypassed.

The analysis time per iteration for a subcircuit-
orented program such as CLASSIE can be expressed for
only one subcircuit type as (5]

T =T, + naxT, + overhead (1)
where T, and T, are the tLumes for one iteration at the inter-
connection and the subcurcwt level, respectively, ng the
total number of subcircuit instances. T, and Ty are a
function of two charactenstic times for a circut sunulator.

ty. the tume for one model evaluation, and t,. the time for
solving one equation

T = ngxty + ng1t, (@)
where ng and n, are the number of devices and of equa-

tions, respectively, and a second subscript ‘1’ will stand for
interconnection while ‘s’ wul stand for subcurcwt.

acam | Addl | Add4 | Add'8 [ lowpas | Filter
SPICE2
L‘?ug 51 45 48 121 99
t{pus 38 41 47 30 47
iter 352 8648 1819 478 28:8
 speed | 1 1 1 1
SPICEV
tolus) | 27 27 27 58 52
to(us) 4 4 4 4 8
iter | 3s2 | 27801 | 5307 508 | 8145
[ speed ! 23 32 3.5 26 2
Table 2

Table 2 summarizes the two characteristic times t4
1 t,. introduced earlier \n thus section, as well as the
vne per iteration and and the speedup factor between the
» programs. A first observation from the above data is
.18 very large effect of the scalar machine code generation
which cuts the equation solution time by a factor of 8 to
12. Considering stuill the numbers referring to the equation
solution it should be aoticed that t, increases with the
number of equations for the Fortran solver whereas it
differs very little in the machine-code solver. The
difference in the machinecode solver can be explained on
the basis that another factor becomes dominant, le.
number of Aoating-point operations. This means that
there are more floaung-point operations per equation in
average for the Fliter. The effect of this pumber seems to
be absorbed in other search and memory operations when
the Fortran solver is used

tq is also a very important aumber. The model vector-
ization is seen to bring about a speedup around 1 5 for the
bipolar sux (diode and BJT) and around a factor of 2 for
the MOS circuit. The speedup for this part is oot larger
because more computation is performed to evaluate all
possible formulations of equivalent conductances which
depend on region of operation. This approach replaces
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branchung 1a the vectorized computation by vector merge
operations. Another factor i3 that the parameter gather
and conductance scatter 1s not vectorized The larger
value of ty for smaller circuits run on SPICE2 (see Table 2)
is the result of less bypass than for a large circut.

The speedup factor is influenced by several elements
such asthe ratioolty vs t, and of ny v8 ny, The speedup i3
larger for the bipolar circuts because the contnbution of
equation solution n all-Fortran SPICEZ2 (see Table 1) s
much larger than for the MOS circuts Tlus part 18
reduced more effectively by the code solver than the
model evajuation by vector operations

CLASSIE | ty,{us) | teg(us) | MFLOPS speed-up
Adder! . 44 51 4743742
Adders . 54 53 5/10/755

Adder:.8 4 67 S4 54/°/788
NAND 20 12 A d 4

Lowpass 58 5 53 26/29
Fiiter 52 88 52 3775
oPAVP 29 3 145 .

Table 3

The evaluation of CLASSIE ts presented 1n Table 3. The
characterstic tunes of Eq. 2 are derived. As already men-
tioned the characteristic times differ between the u ter-
connection circwtry and the subcircuits because of the
gather/scatter which s part of ty where x stands for

ther { for the interconnection and s for the
subcircuits.respectively. The equation-solver characteris-
tics are alsoc duferent based on the use of vector code for
the subcircuits and scalar for the wnterconnection

The data in Table 3 should be wniewed 1n connection
with the circut statistics presented in Table 1. An impor-
tant specification is that the runs for thus table have had
just one parasitic resistance in the BJT model and none 1
the MOSFET model. The reduction 1n characteristic times
for the subcircuit can be seen to be larger mith increasing
number of instances. From the analysis of the results
trom SPICEV 1t is expected that the speedup is larger for
the adder circuits compared to the fiters. A first observa-
tion relates to ty, for MOSFETs which 13 reduced by another
factor of almost 2 compared to the tume in SPICEV. The
devices at the interconnecticn circuitry, 181 out of 758
MOSFETs, are still characterized by a ty of 52 us. The
reduction 1n the ty, parameter for the bipolar mix {diodes
and transistors) is closer to 25 to 30X.

Two numbers characterize the sparse solver. one s
the parameter t,; while the second is the Mflops rate
These numbers are computed from the run statistics which
provide information such as the tume for the subcircuit
and interconnection solver, the total number of iterations.
the number of operations for each subcircwt matrix, etc.
The number of operations includes the add, subtract, mul-
tiply and divide because on the CRAY-1 these times are
very close to each other; an addition/subtraction takes 8,
a multiplication 7 and a reciprocal approximation 14 cp
cycles. The Mflops rate Is a better characteristic of the
solver than the t, parameter. The reason for it is that the
operation count proyldes the best measure of the compu-
tational effort. This number proves to be stable for
differeat sparsity patterns and is therefore a good charac-
tenstic of the sparse solver on the CRAY-1. Both tor SPI-
CEV and CLASSIE (ntercoonection equations the scalar
solver performs at 5.3 Mflops.

The vector solver is more dependent on the matnx
structure and vector length (instances). The speed s
between 14.5 - 17.8 Mflops which is impressive but is below




l that predicted by Calahan [8]. As in the case of SPICEV the
3 speedup for the MOSFET circuit is lower, 3 7. compared to
i 5 in the case of the Adder4 and 8 for the Adder18. Chang-
, ing the mix between equations and devices by introducing
} parasitic series resistances in the models brings about
higher speedups as predicted by Eq 2. The three nurmbers
: gven in the speed-up column in Table 3 for bipolar circuits
: correspond Lo one series resistance in the base, two i1n the
base and collector, and three in the base, collector and
emitter, respectively The two data for the MOS circuits
are with and without parasitic drain and source resis-
tances. The speed-up af 10 for the Adder4 with two paras;-
tic resistances is due to an additional reordering of the cir-
cuit equations performed by SPICE2 which increases con-
siderably the aumber of fill-ins compared to CLASSIE

BIT Adder4 MOSFET Filter
Task CLASSIE | SPICEV | CLASSIE | SPICEV

(%) {X) (%) (%)

Gather /Scatter 16 37.5 29 325
Device Eqs 48 13 173 9

D-S Junction Eq - - 113 85

MOS Capacitance - - 5 25
Bipolar Limiting 3 7 1 2

FET Limuting - - 4 25
Eq Solution 187 16 6 5
Convergence Test 2 7 1 1

Table 4

In Table 4 the results of the choice of data structures,
two-level analysis and other features of CLASSIE are com-
pared with SPICEV task by task From the above data it
can be seen that the routines which perform gathering of
parameters, tutialization, and scattering of matrix terms
from and to memory take more than one third of the total
time in SPICEV because of the sequential mode in which
they are executed. In the percentage for the above tasks
1s included also the contribution of the dewice linearization
control. In CLASSIE however the analytical model evalua-
tion has become dominant as desired If analytical models
are used the maximum speedup 13 already in the program
for this part.

In CLASSIE the percentage time spent to link the sub-
circuits with the interconnection matrix is of the order of
5-10% percent.

Another important observation is the overhead time
From simulation runs it can be noticed that as the main
parts of the analysis (device evaluation and equation solu-
tion) are made faster the importance of the overhead
grows The major part of the overhead is contributed by
memory manager operations (moving blocks around) in
SPICEYV, are reduced to less than 5% in CLASSIE. Another
source of concern are the ime-step control computations.
The adders use iteration-count while the filters use trunca-
tion error-tune-step-control. There is not much time
spent in the truncation error evaluation, since it has been
vectorized. Its contribution {s down from 15% in early ver-
sions of SPICEV to approximately less than 2% in CLASSIE.

A major problem for CLASSIE can be a reduced
number of occurances of identically structured subcircuits
which will increase the time for computation. The Lowpass
section which achieves a vector length of only two in most
vectorized code is simulated at half speed of SPICEV.
Defining long vectors in model evaluation however reduces
the run time on CLASSIE to that on SPICEV. Tlus result in
fiself is very important because in the worst case of only 2
instances of a cell the two-level analysis of CLASSIE is
equally fast to a vectorized SPICE The performance of
CLASSIE is expected to be superior for more than two
instances of each cell type

The use of table models for devices will reduce by up
to 5-10% the overall 30-40% which the evaluation time of
analytic equations contributes to the analysis tume. The
major advantage of table models in this context is that the
same sequence of operations is performed for all devices
regardless of the operating region For a Mflops machine
the use of table models for speed is of secondary umpor-
tance Thus is proven by a run of the Filter benchmark
using the simple Shichman-Hodges mode! for MOSFETs
Because this model is so sumple, its use provides a good
estimate of table-lookup for dc charactenstics The per-
centage time spent in the ‘Device Equation’ part which
computes the conductances associated only with the
modeling of the transport in the inversion channel of
Table 5 1s reduced to 3% from 17.3% Ths simple routine
achieves approxamately 60 Mflops

6. Conclusion

The resuits presented in the last section suggest that
the speed-up which CLASSIE offers compared to Fortran
SPICE2 on the same computer i a tunction of the cucwt
The two bounds on performance improvement are the
model evaluation speed-up for a device linearization dom-
inated simulation and the equation solution speed-up when
this part is percentage-wise the most important

CLASSIE can run on other vector and scalar comput-
ers but will not achieve the same speed-up as on the
CRAY-1 comparative to SPICE2 It is estimated that
changes in the data storage are necessary for optiumal per-
formance of CLASSIE on the CYBER 205

In conclusion a total speedup of up to an order of
magrutude can be predicted for a circuit with over one
thousand devices (nodes) ssmulated on CLASSIE relative to
SPICE2 runrung on the CRAY-1
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18 Circuit Simulation on Attached Array Processors

Andrei Viadimirescu

ABSTRACT

The simulation of large-Scale-Integrated (LSI) circuits requires very
long run times on conventional circuit analysis programs such as SPICE2 and
super-mini computers. A new simulator for LS] eircuits, CLASSIE, which
takes advantage of circuit hierarchy and repetitiveness, and array proces-
sors capable of high-speed floating-point cornputation are a promising combi-
nation.

The program development software environment of the Floating Point
Systems 164 is evaluated based on the experience gained with the conversion
of both SPICE2 and CLASSIE to this machine. The FPS-i164 has been used as
an attached processor to a VAX 11/780 with the UNIX operating system.

The performance of the two simulation programs on the bost computer,
the VAX, and the attached processor is compared. The FPS-164 architecture
and Fortran compiler are evaluated by means of the speedup of CLASSIE

compared to SPICE2 on the same processor.




CHAPTER 1

INTRODUCTION

The simulation of large-Scale-Integrated QSI) circuits requires very
long run times on standard circuit analysis programs such as SPICE2 and
standard hardware of the super-mini or main-frame computer class (0.5 to 2
Mips). A new simulstor for LS] circuits, CLASSIE, has been developed
recently {V1ad82] which is more efficient and preserves the same accuracy.
This report describes the experience and results obtained when adapting
SPICE2 and CLASSIE to a commercially available array processor, the Float-

ing Point System 164, attached to a super-mini bost computer, the VAX
11/760. As brought out later Cole [ColeB3] has implemented a first version of
SPICE2 on the FPS-164 attached to a VAX 11/780 with the UNIX operating sys-
tem. ]

SPICE was developed over a decade ago for typical SSI circuits and
scalar computers of the time. The program operates on an entire circuit
whichb is processed at the individual electrical element level. Two basic fac-
tors of present technology bave been considered in the design of the new LS!
circuit simulator, CLASSIE. Tbe first one is that LS] circuits are usually a col- *
Jection of a limited number of structurally identical functional blocks such as ]
logic gates, operational amplifiers, stc. The second factor is the availability

i of paralle! computer architectures which provide an ideal environment for
fast computations on repetitive structures. The analysis in the new program 1
! takes into consideration the hierarchy of the LS] circuit. The identical func-




A e

tional blocks are grouped together and the simulation is performed at two-
Jevels.

The above design considerations speed up the simulation of an LS] cir-
cuit performed by CLASSIE up to an order of magnitude compared to SPICE2
on a CRAY-1 super (vector) computer. From the point of view of the simula-
tion speed for a large circuit on a vector computer CLASSIE rates between
SPICE2 and a timing simulator.

The parallel architecture of the FPS-184 attached array processor is
conceptually different from the CRAY-1: computationally intensive codes can
be sped up however following the same basic concepts as in the case of the
CRAY-1. The floating-point computation rates of the CRAY-1, the FPS-164
and the VAX 11/780 with a floating-point accelerator are 180, 12, and 1
Mflops, respectively. The speeds specified for the vector and array processor
are estimates based on the assumption that more than one operation is pro-
cessed at the same time. Thus, as a rule of thumb, & computationally inten-
sive program such as a circuit simulator should run as many times faster on
the parallel processors as specified by the raw speedup if the implementa-
tion takes full advantage of the architecture.

A general overview of the FPS-184 array processor (AP) is presented in
Chapter 2. After a brief description of the architecture a critical view of the
system and program development soft ware svailable on the AP is presented.

Chapter 3 provides a closer look at the details of porting two circuit
sirpulators, SPICE2 and CLASSIE, to the FPS-184. SPICE bas been developed

-nr the past 14 years with no specific computer architecture in mind while
CLASSIE provides Lhe same algorithms as the former program tailored for

paraliel processing.




A performance evaluation of the two programs follows. The execution
speed of SPICE2 is compared to a general super-mini computer such as the
VAX-11/780 while the speedup due to parallelism is emphasized for CLASSIE

Conclusions on the implementation and performance of circuit simula- ;

tion programs on the FPS-164 are the subject of Chapter 5. .

The work described in this report has been performed on an FPS-164 AP
v
running the ‘D’ software release attached to & VAX 11/780 running release
4.1c BSD of the UNIX operating system.




CHAPTER 2

The FPS-164 Attached Processor

& 1. Introduction

This chapler provides a brief description of the FPS-184 processor. The

architecture is outlined first with emphasis on the parallel processing
features.

From a programmer’s point of view the most important means to benefit
J from the architectural capabilities of a computer is its software environ-
ment. The second section takes a critical look at the two operation modes of
the AP and the system and program development software. The main com-
ponents of the program development software, e.g.. the fortran compiler,
debugger, mathemnatics library, etc., are evalusted The experience gained
from porting SPICE2 and CLASSIE to the FPS-184 is commented on wherever

appropriate.

22 Hardware

The term array processor identifies a single peripheral processor with

bigh-speed floating-point computation capabdility which can be attached to a

general-purpose computer systern. The tandem combination usually pro-

"vides @ much higher computation power than the bost alone. Although the
i erchitectural synopsis and name can csuse confusion with the vector com-
: putlers the term array processor refers to a distinct category of pipelined
Single-Instruction-Multiple-Data (SIMD) processors.




The Floating Point Systems AP-120B and FPS-1684 are examples of com-
marcially available array processors. The former is limited by a 38-bit word
while the latter is better suited for scientific applications where a 84-bit data
word is necessary. The architectural features [CharB1] include multiple
(eight) functional units, multiple (seven) high-speed data paths, two data
register units of 32 registers each, up to 7.25 Mword main memory where
data and instructions are stored separately, and a 187 ns cycle time. The
functional units ailow a8 maximum of two data computations, two memory
accesses, an address comnputation, four data registers accesses, and s condi-

tional branch to be initiated in a given CPU cycle.

The processor achieves performance through parallelism and/or pipelin-
ing. A short pipe, 2 stages for the add and 3 for the multiply unit, character-
ize the FPS-164. This design matches the clock cycle time and explains the
difference in performance compared to the faster vector computers, CRAY-1
and CYBER 205. The short pipe bas an sdvantage of providing most of the
computation speed for s relatively short vector length. [Viad82].

23 Software Environment

The two major components of the processor software are the system
software used st run time and program development software which assists
the conversion of s high-level language code into an executable module. The
specifics of both components of the AP software are outlined in the following
two sections.




231. System Software

There are two major operating systems available for the YPS-184, the
Attached Processor EXecutive APEX and the Single Job Executive SJE. The
two operating systems correspond to the two basic approaches of using the
AP. Programs executing under APEX perform certain tasks on the host com-
puter and other tasks on the AP. Input and output routines which interact
with the user and perform more chnncurdltr{ng operations rether than
floating-point operations can be effectively run on the host. The computation
intensive parts of the program will bowever run fastest on the AP. APEX con-
trols the timely transmission of data between host and AP during the execu-
tion of the program.

Programs executing under SJE run on the AP only. The executable
module together with the relevant data files are transferred to the AP before
8 run is initisted. Upon completion of the job the flles of interest are
transferred back to the host computer.

The conversion of SPICE2 and CLASSIE to FPS-164 run under SJE only.
The AP works together with a VAX running the UNIX operating system.

23 2. Program Development Software

The software available for program development includes a fortran com-
piler, APFTNS4, a linker, APLINKB4, object module librarian, APLIBRS4, sym-
bolic debugger, APDEBUCS4, asyembler, APALB4, and mathematics library,
APMATHG4.




R32.1. APFTNG4

APFTNG4 i3 a cross compiler which runs on the host computer and pro-
@uces instructions which are executed on the attached processor. This is
basically an F77 compiler with a number of extensions intended to utilize the
parallel/pipelined architecture of the processor. There are several ways a
programmer can take advantage of the architecture. One approach is
through 5 different levels of optimization prcvidetf by the compiler.

OPT=0 implies the simplest compiler action where each fortran state-
ment is treated individually: experience bas been that at this level a program

always works once it is operational.

OPT=1 signals the compiler that it can consider blocks of statements at
ene time for generating machine code; a block consists of consecutive state-

ments which finish in a ‘jump’ or 1/0 instruction.

OPT=2 enables the compiler to try a global optimization across state-
tnent blocks as defined above.

OPT=3 adds pipelining to the above optimizations which exploit only
parallelism; multiple elements of an array are processed by setting up one or
two pipes through the functional unit(s).

OPT=4 is defined as ‘unsafe code motion' and consists in moving invar:-
ant expressions outside the body of DO loop. As long as no ‘zero-trip’ loops
occur in the program this level of optimization may provide an additional few

percent of speed improverment

The approach for writing fortran code which takes advantage of the
erchitecture is similar to the guidelines followed for other parallel machines,
e.g.. the CRAY-1, [Vied82]. A ‘well-bebhaved’ DO loop in which operations with

array elements are pesrformaed is transiated on all machines into a ‘vector
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operation’. The difference is that on the CRAY-1 the elements of an array are
loaded into hardware vector registers and a vector operation is performed
whereas on the FPS-184 a 2-3 stage pipeline is set up through the functional
umits.

Release D of the fortran compiler which has been used in this project
bas been found to generate incorrect code for OPT22. A typical symptom is
that the attached processor hangs without being able to be initialized unless
the bost computer is rebooted. The compiler seems to fail to interpret
correctly loops based on test and jump. Working code has been however gen-
erated for ‘well-behaved’ DO loops.

In some cases even OPT=1 can produce wrong code. The approach of
tracing back the latter case is to locate the routine which does not execute
properly and recompile it with a lower level of optimization. This failure
mode does not bang the machine: it results just in an erroneous behaviour of
some routines, e.g.. SPICE2 prints an error message for a perfectly valid

statement.

An useful option of the APFTNGB4 fortran compiler is which turns off the
overflow /underfiow interrupts generated during the execution of a user pro-
gram. Unless this option is used for some of the device routines SPICE2

aborts when an underflow occurs.

Another criticism of APFTN84 when compared to another parallel pro-
cessor fortran compiler, viz, the CRAY CFT [CrayB0) fortran compiler, is its
moncommunicative nature. No reports are provided to the programmer on

the aclion taken on different loops or program blocks which can be con-

werted into paralle! code.




2322 APLIBRS4, APLINKB4, APDEBUGS4

APLIBRS4 is an useful utility for creating an object program Uibrary. For
Jarge programs consisting of tens of modules it is a convenient way to store
the valid object modules and to replace only the ones which bave been
changed.

APLINKG4 is used to produce the executable module called the *®.img’
file by convention. The linker accepts both individual object files and object
libraries. A problem encountered with APLINK64 is the erratic terminator
message of a bad block encountered in an object module which was success-
fully compiled and added to the library. This problem has been cured every
time it bas occurred by recompiling the flagged module and recreating the
library.

A relevant option for the linker is -SYM which generates a symbol table
peeded by the symbolic debugger.

The symbolic debugger. APDEBUGS4, is a very useful tool for program

development. It is & quite powertul debugger similar in its description to the
fortran debugger running under the VMS operating system. An eccurate
trace back including line numbers in the pertinent fortran flles can be
obtained Some of the other features, e.g.. examining values of local and glo-
bal variables, setting breakpoints, etc., could not be tested due to difficulties
encountered with opening the symbol table file. The documentation is very
wvague on this subject and various sensible approaches have lead to the same
dsbugger message of not finding the symbol table file. In these situation it
bas been found to be faster to use just the trace back.

A conceptual drawback of the debugger is that it can be used only for :

modules compiled entlirely with OPT=0. This restriction deprives the user of
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any possidbility of debugging paraliel code which is the primary objective for

this processor.

2323 APMATHS4

APMATHS4 is a collection of mathematical functions which operate on
arrays and scalars. In a pumber of situations it is ndvnntq.eous to use these
efficiently coded vector routines. These functions prove eflective only when
the vector length is sufficient to offset the start-up time of the routine. The
programmer must judge this on a routine-by-routine case based on the time
spent per array element. Thus, for VADD which adds the elements of two
srrays and stores the result in a third array, it takes 15-30 elements in an
array for achieving a 50% efficiency in the wector computation. In other
words it takes that many elements such that the computation time equals

the setup time for the function.




CHAPTER 3

SPICE2 and CLASSIE on the FPS-164

31. Introduction

A major application of the array processor is in the area of circuit simu-

lation.

The problems encountered during the implementation of SPICE2 on the
FPS-184 are outlined. Although SPICEZ2 could not be compiled at a higher
oplimization leve! than 1 its performance is very close to a commercially
avuilable program which is another version of the same code tuned for the

FPS-164.

The results obtained in porting CLASSIE to the AP are very encouraging.
The programming style used in CLASSIE is geared towards parallel architec-
tures and thus the critical parts could be compiled successfully at the
highest optimization level on a Fortran compiler still under development. A
factor of two speedup has been achieved over SPICE2 running on the FPS-164

for a representative medium-size circuit, a four-bit adder.

In this chapter a number of data on CLASSIE and SPICE2 are presented.
These numbers are obtained from runs on both scalar and vector computers.
SPICE2 performs sequential operstions an both types of computers and the
speedup stemns from the differsnces In computer architectures. All data
ﬁ:icb refer to CLASSIE reflect a sequential sxecution of statements on a
scalar computer and paralle! execution on a vector computer or array pro-

cessor. For a small circuit of the basic cell type, e.g.. & logic gate or an

11
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operational amplifier, the only difference between CLASSIE and SPICE2 is &
d@iferent data organization which becomes a source of speed differences.

a2 SPICR2
8.21. Implementation Notes

The first program to be implemented on the FPS-164 attached to & VAX
11/780 running UNIX has been SPICE2 [Nage75). [Cohe78], [ViadB1]), [ColeB3).
In the following paragraphs a UNIX operating system is assumed for the VAX
unless specified otherwise. This provision is important because SPICE2 com-
piled with the VMS Fortran compiler runs roughly twice as fast as when com-
piled with the UNIX f77 compiler. Cole in his work with the FPS-164 has not
been concerned primarily with the simulator performance; the reported
speedup of 3 for & typical circuit such as the UA741 has been obtained by
compiling the program with APFTN64 using OPT=0. This version of SPICE2
runs on the AP under SJE, Single Job Executive.

The next step in porting SPICE2 to the AP bas been to recompile the
entire program using OPT=1. The executable generated in this way did not
run properly causing messages such as ‘LESS THAN TWO CONNECTIONS AT
NODE X' to be printed for s perfectly correct input. It has been found that
by selectively recompiling the subroutines which perform the 1/0 in SPICE2,
viz., READIN, RUNCON, DCOP, OVTPVT, PLOT, with OPT=0 while preserving the
oods of all other routines at OPT=1 a working executable can be obtained.
Typically this code which is referred Lo as an *OPT=1' version in spite of the
above idiosyncrasies runs twice as fast as the ‘OPT=0" SPICE2. The size of
the ‘image file’ Is reduced by ons third from roughly 1.8 Mbytes to 1.2
Mbytes.

-
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The attempt to use OPT=2 for just the computation-intensive routines
such as the device model routines failed The code generated In this way
would typicailly bang the attached processor with no possibility of recovery
short of rebooting the VAX. The only routines which have been successfully
compiled at an optimization level higher than 1 are the equation solution
routines, DCDCMP and DCSOL Both bave been compiled with OPT=3 and a
working SPICE2 version has been generated The speed improvement over
the above '‘OPT=1’ version has been less than 10%. This latter SPICE2 version
is referred to as "OPT=1’ in Tadle 31 and 3.2

The best performance ever reported for SPICE2 on the FPS-184 is the
commercially available program QSPICE [Shan83) which is typically 1.3 times
faster than the best code obtained in this work. It is believed that for obtain-
ing the above performance a number of the SPICE2 routines had to be rewrit-
ten to overcome the deficiencies in the APFTNB4 compiler and to obtain
correct code for OPT=3. Ancther difference in QSPICE is that the linear
equation solving routines bave been coded in APALS4, the FPS-164 assembly
language. The small advantage in speed for QSPICE over SPICE2 proves that
no compute-intensive part of the program can be pipelined. This diflerence
stems mainly from a better control of the operand flow in the sparse equa-

tion solution coded in APALBA.

822 Performance

Table 3.1 summarizes the execution times of SPICE2 for four examples.
The numbers given represent the Ltime in epu seconds needed for the tran-
sient analysis. The UA741 and Adderd are dipolar circuits while MOSAMP2
and DECODER are an NMOS operstional amplifier and a binary-to-octal

decoder. A LEVEL=2 device model bas been used in the analysis of the letter
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Bun Matigtics .
Qreuit | fitsr ] VAX | i) Spesdup
OPT=0 | OPT=1

UAT41 178 3275 10.7 4.p 8.7

Adder4 2828 | 3614.2 | 11389 804 )
MOSAMP2 | 279 134.7 24.3 11.05 12.2
DECODER | 978 | 1009.86 | 130.8 85 15.5

Circuit Statistics

Circuit | #Eqs. | #Xtor | #Diode #Device NModel

UAT41 82 = 0 16 NPN, 8 PNP

Adder4 451 180 108 180 NPN, 108 DIOD
MOSAMP2 25 b-14 0 27 NMOS
DECODER 38 48 0 31 EMOS, 17 DMOS

Table 3.1. SPICE2 Run Time on FPS-164 and VAX 11/780
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two circuita

As a general remark on the performance improvement on the attached
Pprocessor it can be stated that SPICE2 runs up to an order of magnitude fas-
tar than on a VAX 11/780 with floating-point accelerator and UNIX. For the
two bipolar circuits the run times are typically 8 times faster and for the
MOS circuit 12-15 times faster. The difference between bipolar circuits and
MOS can be explained by the much larger percer;t time spent in the mode!
evaluation for the latter compared to the former. The model evaluation

seems to benefit more on the AP than the equation solution.

33 ClLASSIE

431. implementation

The implementation of CLASSIE bas been helped by the experience
guined from the SPICE2 conversion.

As a first step the VAX/UNIX version of CLASSIE has been implemented:;
this version differs from the high performance CRAY-1 version only in the
mode! evaluation routines which do not take advantage of vectorization. This
version bad the same limitation on the optimization leve! used for the sem-

fconductor device routines as SPICE2.

The next step included the conversion of the diode and bipolar vector-
jsed model routines used on the CRAY-1 for the FPS-184. Conceptually the
*well-bebaved’ DO loops of the CRAY-1 CLASSIE code should produce an
equally efficient code on the AP.

A first factor affecting Lthe performance has been Lthe multiple branching
used for the multiple expressions of the semiconductor-device behaviour.
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The usege of the vector merge function 'CVMCxK’ on the CRAY-1 has been
replaced by IF statements inside the DO loop. An equivalent CVMGx state-
ment function [MartB3] could have been used which would have contributed
an 10-15X gpeed improvement in the device-evaluation speed. This improve-
ment is estimated based on a typical vector length of 30.

A second factor has affected the performance of CLASSIE on the FPS-164
more significantly. It is known as the ‘potential data dependency’ problem
which prohibits vectorization (pipelining) of a DO loop. Both in SPICE2 and
CLASSIE all circuit data are managed in a large block of memory defined as
an array VALUE (maximum_pvailable_date_memory). Different data can be
distinguished by table pointers. The compiler however does not know that
there i3 po interaction between the data in two different tables within the
same array. On the CRAY-1 there is a 'force vectorization®' statement which
can be placed in front of a loop. Release ‘D’ of APFTN84 does not bave this
feature. This problem could be noticed as soop as the most time-consuming
modules have been compiled with OPT=3; there was no spectacular jump in
performance which is expected when pipelining tekes place. The speed
improvemnent is between 2-4 per DO loop at OPT=3 compared to OPT=2. In
the simpler forward and back substitution routines for the subcircut
matrices the above problem has been overcome by using the APMATHG4 vec-
tor functions. This has resulted in a8 23X speed improvement for this portion
of the code only. The vector length for the above number is 36.

It is believed that all semiconductor-modelling routines could be com-
plled at OPT=4 in CLASSIE because of the programming style, ‘well behaved'
PO loops. and regular data structures. The equivalent routines in SPICE2
could not be compiled correctly for OPT>1. The equation-solving routines in




PROGRAM | OPT | DEVEVAL | EQN n‘ TRAN | DOCOP
SPICE 1 01 328 825 21.4
CQLASSIE 1 328 172 504 9.7
2 273 187 451 9.1
3 244 148 398 8.1
4 209 112 324 7.8
Table 3.2. CLASSIE / SPICE2 Run Time Comparison

17
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CLASSIE could be compiled at OPT=3 maximum.

The most aggravating experience during the implementation of CLASSIE
bas been the fact that user data can overwrite the AP's system software com-
ponents or buffers thereof if there is not sufficient memory for loading the
user program. In such cases a message from the linker or SJE would be help-
ful instead of getting a trace back leading into the systemn routines.

[}

S32. Performance

A running version of CLASSIE compiled with OPT=1 has been obtained in
& similar way as SPICE2. On any computer, in scalar mode, CLASSIE gains
15-25% in speed over SPICE2 for medium circuits in transient analysis. Even
for & amall circuit, such as the UA741, CLASSIE is 20% faster than SPICE2 on
the sttached processor due to more regular data structures and the possible
optimization associated with it.

In the DC operating point analysis CLASSIE is typically twice as fast as
SPICE2 on medium circuits. The additional reordering process in DC analysis
is performed on the interconnection and one subcircuit matrix for each sub-
eircuit type in CLASSIE rather than a large overall matrix for the entire cir-
cuit In SPICE2. In transient analysis there is no reordering and this explains
the smaller speed difference. These same speed ratios as above between
CLASSIE and SPICEZ is found also on the FPS-184. The ratio between CLASSIE
ocompiled with OPT=1 and OPT=0 is also about 2 on the array processor as in
the case of SPICE2.

Table 3.2 lists the effects of the different optimization levels used in the
ecompilation of SPICE2 and CLASSIE [Viad83]. The times in seconds are for o
transient analysis of the bipolar 4-bit adder circuit of 288 semiconductor




COMPUTER | DEV EVAL/LOAD

EQN SOL

CRAY-1 25
yPS-164 1.3

18
28

Table 3.3. CLASSIE/CRAY-1 vs. CLASSIE/FPS-184 Speedup
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devices, 43] equations or 38 NAND subcircuits. The transient analysis has
bsen performed from O to 350ns using tbe same input waveforms as
described in [V1ad82]. It should be noticed that SPICE2 could not be com-
plled successfully at a higher optimization level than 1.

Table 3.3 shows the speedup which is obtained by running CLASSIE on
the CRAY-1 and on the FPS-184. The speedup numbers are relative to the
pertormance of SPICE G5 on the same bardvn;-e. The overall speedup on
the FPS-184 could conceivably be improved to 3 if machine code generation
would be implemented for the linear equation solution. The speedup in the

device-evaluation part is estimated to be better if the Fortran compiler of
the systems software release ‘E’ is used This latest version of the compiler
is advertised to have better pipelining capabilities than the earlier versions.

All the above factors can narrow the gap of the speedup ratio between CRAY-
1 and FPS-184 to roughly 1.5 in favor of the former. ;
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CHAPTER 4

CONCLUSION

The evaluation of circuit simulation on a commercially available array

[}
processor bas been the purpose of the work presented in this report. Both
the detter known SPICE2 simulator and the prototype simulator CLASSIE for

LS] circuits bave been ported to the FPS-164 array processor.

The FPS-164 is a promising processor for 84-bit floating-point scientific
computations from a hardware architecture point of view. The experience
gained porting the above mentioned programs shows that the available sys-
tem software and program development software is relatively unfriendly and
pot sufficiently debugged. The reported work has been carried out using the
Single Job Executive (SJE): under SJE the application program runs solely on
the AP. large scientific programs intended to run on tbe AP are written in
Fortran; only a solid and well-debugged Fortran compiler will enable the user
to take advantage of the speed offered by the underlying architecture.

The performance of the two programs on the AP is noteworthy. SPICE2
bas been found to run from 8-14 times 7aster on the AP than on a UNIX VAX
11/7680 with floating-point accelerator. This ratio figure is between 3-7 rela-
tive to the same VAX running VMS. CLASSIE runs roughly twice as fast as
SPICE2 on the AP which brings the ratio between CLASSIE on the AP and

CLASSIT on VAX/VMS close to 12; this is also the ratio between the Mflop rate

of the two computers.

2]
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DATAFLOV BASED BEHAVIORALAZVEL SIMULATION AND SYNTHESTS

J. T Deuylsch and A R Newton

Department of Electrncal Ergineering and Ccmputer Scierces
Uruversity of Califorrua. Berkeley, Ca . 94720

ABSTRACT
While a large number of powerful design verification tools have
besn developed for (C demigo al Lhe Lransistor and logic gota lev
sla, theve are vary few mlicon-oriented tools for architectural
dewign and evaluation. As the oumber of gates which can be
implementad an & single chip grows, thews toals are beroming
{ncreasingly impartant.

The FTL2 system descnbed in this paper is an interactive
system far specifying concurrent digital systems and analyming
thar behavnior. FTL2 differs from other bshavioral{evel mmule
Uon systems in that the input specification for a dircuit is & con-
current progrum.  Specifications are incrementally compiled
inlo sugmented datafiow graphs which are then inlarpreted by a
sftware dataiow mechine.

FTL2 uncludes spocial contral structures for describing con-
current behavior in 8 structured fashion, & cumber of user
ariented wnput featurem, and an extensive macro facility. The
coacept of nan-sharsble resources is used to determine timing-
dependent madule accesw cooflicts in & value independent
manner. (ocamplete speafications can be emulated and can he
modified wateractively.

FTL2 has been implemented in USP, and s currestly opere-
ticnal. A companian FTL24msed synthesw system is curreniy
under development

1. Behavorul{svel Simulstion and Synthems

Compiter Aide Rave been used with great success :n several
stages ol the irtegrated circut desgrr process lHowever,
althoigh mary ‘vcis Fave been desmgred 'cr elecirical ard .cgic
level sim_la':or ard ‘or autermatic laycu! of seru-custem chips,
little scpport 1s avaulabie for the begirrirg stages of a digital s, s-
tem Jesigr Computer a:ds for beravicral-'evel specifcat:or ard
syrthems have been developedBa™s Tre reascr i3 trat mary
exist.rg betavicral simiiators dc a pecr jecb of abstractirg cor-
currert betawvicr Xar2ia b.t trey are rot widely -sed ir tre IC
irdustryBree2s Ore reasor .3 that mary existirg beravicral sim-la-
tars do & pcar [ob of sbstractirg corncurrent beravier Therefore,
they provide little more irformatior than can be abtaired frem a
sequertial descripticr 1 a cenverticral programming larglage
In mary cases ttis differecce i3 rot erovgh ard every time a rew
system or ctip s desigred a rew simulator 18 des;gred wmith it

The FTL2 system addresses thls problem by allowrg
specificatiors that combine the characteristics of control flow
ard data flow modeis to allcw Lsers to accura'ely evaluate the
concurrent algorihms that a digital system represerts before
ckoosing a detailed implemertation for it

2. Deacribing Digital Systems
Digital systems can be described dy ret ard comporert lists,
by logic equatiors by sequent:al or concurrert programs, by
data-fow grapks or by systems of corstrairts These metkods
difer in the degree to which they specify the structure of a
specifc mplemertation

Standard electrical ard logic simulators wse the ret and
comporert iist method This type of description gives the struc-
ture of 8 particular implemertation explicitly, but leaves the
bekavior of that system largely implicit At the other extreme s
the mettod of specifying digital circuts as as system of con-
straints. These corstraints specify the what the system accepts
as irput and produces as output, but leave the procedures it goes
throwgh acd the structure of any specific implementatiors impli-
cit  The specification methcd provided by FTL2 lies 1n between
these extreries [n FTL2 systems are described by programs for a
soltware mplemertation of an sugmeried dats-fow mactire I[n
the data-flow model of compytation, programs are described by
directed graphs The vertices of the graphs represent combira-
tional furctiors, the edges of the grapk represent commurica-
tiora paths between these functions Augmented data-flow 19 an
extersion of the data-Cow model which allows storage at the rodes
and allows more gereral rode Bnrg rulesDouBRe actually, thus
model w closer to the dependence model described in Yucéis gnd
some of the exdstirg data-fow machinea¥né%a than it 1s to the
classical data-Pow maodelDen™e

The text representation of FTL2 specificatiors is & sequence
of functions and control structures called forms Specifications

63

eare compiled nto data-fow grapts by exarurirg esch form in
sequerce. determururg the type of objec' the 'crm represer's
callirg a hurction to compile the form, ard repeat.ng the process
rec.ryively for each form it cortairs Trese data ficw grapts are
then passed ‘o a soltware data-fow rmacture ‘or eval _a’.cn

The FTL2 scftware data-%ow mact.re as ~odes 'cr pn—.t.ve
functicrs. for starage. ard for sequert.al ard paralel cant-al e
corcurrercy provided s synchrerows ard deter—ur.stic There-
fore, explicit syrchror.zatior. of pars.lel processes .3 rot requred
and systems mrgirg from synchrarous ard determ.=istic to aayr-
chrorows ard rer-determirustic can be descrbed ard em_ated

e F712 1t 19 possible to specity ezplwitly gro.ps of cpera
ticrs to be performed eitter sequantiaily cr ir. paraliel ~>ese
specificaticrs compile directly irto special cerrol ncdes in 're
s.grerted Jata fcw grapt Zpecial furct.crs are 8l30 grovied
for performirg sequert.al and parallel array cperalicrs

2.2 The Syvtas of FTL2

AFTL2 desc- ;ucr s made _pol acciect.cn
ccraists of an cper. parertes:s !zizwed by :f7C : g
(whick themselves may Ye {arms) ‘cilowed by a <icse parec’tess
for example

(= (elemert i a) (elemert | %))
19 8 form wh.ch cortairs two ctrer forms, ard whcose vaiie s

af:]-bj))

22 Data-Types

The bas.c data-types thar L2 prov des are star fard data
types of mcst programmirg 'arg cages irteger 73t ~g pont 303
strirgs ard arrays 2f these ‘yres he hasic firmoof 3 varoat e
dec'aratior 13

(dec'are {<scope> (<type> i<rare>{)h)
Wrere <scepe> .3 eitter 'ocal or gictal type .8 .rtege- real :r
stricg, <rare> s ary alphan-._merc rame. ard ‘he Tryves Tes”
that there car be zero or mcre occurrences cf 're syilactic r.t
irside of them

23 Nadules
baaed B 3

Modviles are the mair partit.osurg faciity prowvided .o T
Tre syrtax for a module declaration s

(rmodule <crame>
(declare (:rputs {<ipLis-rames>!)
{outpuis {Covtputs-rames>|))
f<formsa>|

Modules :n F712 also provide a mears fsr rescirce matage-
mert Wher declaration of a iLser-defired modiie .s read .t
defres a prototype of that mcdile and creates a sirg'e .rstarce
with the sarie rame Wherever a modiie 13 invcked at run-t.me
F7L2 checks to determire i Lhat rodile .8 1 se I an attect
3 made to re-Lse a modLie which s already :n _se, an errcr .3
reported to the 'ser This. urmirg errors which resUt «n resoure
conflct are detected ard reported

24 Macrom

FTl2 provides s macro facility which can be Lsed wher
copies of a modile are reeded, as well as ~ases where ercapsua-
tion without resource maragement i3 desired Macrcs are
declared as

{macro <rame> (<psrameteri>|<parameter>{)
<lorms>

2 Concurrency Wodes

There are two concurrency modes «n FTL2. lockstep ard PC
These modes provide diferent ways of dealing with time ard
assignment In Lockstep mode, svery primiive operation, includ-
ing assigument, 13 defired to take ore unit of ime  Thus mods has
the advartage of always providing fixed times for operstiors. but
has the disadvartage that balancing delays must be doce by the
user.
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The olher mode ® called "PC’ mode and combines the
“Fetch-Stors” style of assignment described (n™*"® with a uerar
chal method of structuring time In PC mode, esch state is
dinnded itto two phases Computation ts performed during the
firs’. phase and registers are set to Lheir new values during the
second gue As ar example, consider the following fragment

(paralie!
(seta(+b(+ac))

(vet b))
Ucder Lockstep mode. the value of b at Lhe end of the biock is the
orginal value of a, call it olda ard the value of & st the end of the
block will be olda + olda + ¢ The reasor for this is that b is set
to the valus of a by the second assigomert statemert before it is
fetcked by the &ryt one Under PC mode, the value of b al the end
:ﬂe block 1s Lthe origizal value of & but the value of & 13 old.a +

PC mode aizo provides a differect mode! of time The state-
tents in the main module of the user's description are defined
execute one basic tune urut apart Wher necessary. time is bro-
ker up into Bner uruts The sermartics of & parallel block are that
all stetemerts icside of it begic executior at that same time, and
that the block is exited when all statements inside 1t are finlsked
The sernartics of a senal block are that it executes the first state-
mert ir the block waits for that statement to complete, and then
executes the next staternent in the block ard contir.ues ir this
way urlil all of the statemerts ic the block have beer executed
To preserve these semactics wher a serial block 13 nested irside a
paralle! ore. it is tecessary that the irner serial block have a fner
grar..lanty of ume thar the outer one Because the number of
statemerts i the irner block are rol knowr as the compiler 1
exaruring the wwput. time 15 treated as a mixed-radix floatirg-
poict rumber Wrenever a serial block occurs inside s paralle!
ore. a new dygit (of ucknowr radix) is added octo the least
sgruficant end of the state Then, esch element of the seria!
biock 13 assgred a time (state) whict is ore greater ir that digit
pos.tion thar the previous elemert Wrer hardware 13 actualiy
gerersted the mixed redix flostirg-poirt numbers are corverted
to 1zteger state cumbers ard the states are ther re-coded usirg
a- algontkm such UBls 1o gerermte er efficiect state-
o3 grmert for a PLA-based cortroller

4. Detafow Based Synthenis

Thre previcus sectiors of ttus report have described the use
o exp. o1t concurrency 1t FIl2 It is alsc pess.ble to use imphicit
ecrcarrernc) ard tc let the FTL2 compiler determire where it is
t.e to have cperatiors go or. ir. paralle; The FTL2 compiler

poss b
pe-forms a data-fow aralysis of the spec:fcatior. and determures
tre execitior orderirg of ststements based on data-
deperdercies, as:nPadts

Becaise FT12 combires explicit concurrency ard data-fow
aalysis it i3 able Lo delect errors which previcus systems could
rot detect These errors fall icto two categories First, the com-
p.ier may detect that two operaticns cer go orn ir paraliel i a
case where the uyer has spec.fied that they must proceed sequen-
t.ally Secord, the compiler may delect that two operations are
deperdert srd mus’ proceed sequertially ever thougt the Lser
tas specified that they are to go or ir. parallel In Lhe first case.
there are two possibilities Ore is that the desigrer kas rot recog-
r.zed a passble optimization, acd therefore sy get a sysiem
with less thar the highest possible performarce The other is that
trere ts a constract, perhaps critical, whick the desigrer has left
oLt of the specification In the second case, the extra deperdercy
ard tre senehzation it requires may or may not be critical
deperdirg or. whether or not it occurs on the cntical path.

& Simulator Implementation

Emulation of the augmected data-flow graphs i FTL2 13 per-
fcrmed by passirg messages between the nodes of the data-
g87ts The data-flow greph of an FTL2 specification is unusual in
\bat it is & tree, rether than e gereral cyclic graph  Sequertial
betsvior is provided by sequectial evaluatior. of sub-trees and
loopirg is provided by repeated evaluatior. of sub-trees

Corcurrert message passing is simulated through the use of
s cectral message queue ard functior dispstcher The qusue con-
wirs ordered (message. node) pairs The rmain simulator locp
removes pairs from the queue and calls the specified message
tardler with the given node as its argumert The side-efectaof o
ressage handler are highly restricted A message handler for a
rode may only charge the state of that node. the state of that
node’'s parent. or send rmessages Lo other nodes

Wher. &« module is defned, an sugmented dete-flow graph 1s
crested for it When the module is icvoked, the graph is checked
tc determine if it is already in use [f it is, an error message is
printed which specifies where and when (in simulated time) the
eorfict occurred
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& Basults and Canclusians

The Interaclive top-level for FTL2 and the software
augmented-data-flow macline bave been implemerted and the
system has been used to describe and evaluate several desgrs.
including the RISC microprocesscorPs'82e ard o perfect-atiffle ret-
work pode ctup The FIL2 system is currectly beicg used Lo
describe a special-purpase augrierted date-flow macture for per-
fortaing iterated tuming aralys;gSalfse Kas2e
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