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Abstract )
“—>We investigate absolute bounds (or inequalitics) on the mean and standard deviation of transformed data

values, given only a few statistics on the original set of data values. Our work applies primarily to
transformation functions whose derivatives arc constant-sign for a positive range (¢.g. logarithm, antilog,
square root, and reciprocal). With such functions we can often get reasonably tight absolute bounds, so that
distributional assumptions about the data needed for confidence intervals can be climinated. We investigate a
varicty of methods for obtaining such bounds, first examining bounding curves which are straight lines, then
those that are quadratic polynomials. While the problem of finding the best quadratic bound is an
optimization problem with no closed-forin solution, we display a variety of closed-form quadratic bounds
which can come close to tiie optimal solution. We emphasize what can be done with prior knowledge of the

~

mean and standard deviation of the untransformed data valucs, but do address some other statistics too.
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1. Introduction

Standard transformations of numecric data valucs such as logarithun, antilog, square root, square, cube, and
reciprocal are frequently appropriate as a prelude to statistical analysis of finite data sets [7].  Sometimes,
however, the data are already aggregated into counts and mceans, and the original data values lost. This
happens when the original data is too large to handle and/or contains scnsitive information, as the
U. S, Census, which publishes much of its data as aggregates. We may also deliberatcly create "database
abstracts” of aggregate statistics to facilitatc quick statistical estimates by “antisampling” methods [10].
Statistics on the transformed valucs cannot be calculated uniquely when the original data is so prcaggrcgatedl.
But if we are doing cxploratory data analysis [13, 6], an cstimate of a statistic on the transformed data may be
all that we neced. We address one set of methods for obtaining such estimates, by finding absolute
(unconditionally guarantced) bounds on the mean and standard deviation for data under some common

transfornations.

Absolute bounds arc the only truc “nonparametric” form of cstimate, and as such have advantages.
Compared to "reasonable-guess” estimates [9], biasedness of the estimator need not be dealt with, while at the
samc time providing numbers close to the true answer for this category of problems.  As{7} discusses,
confidence intervals for the mean and standard deviation of transformed data arc difficult to obtain and
methods are subject to exceptions, and thus absolute bounds casily obtained are appealing. 'Tight cnough
absolute bounds can be equivalent to a good-estimate. An estimate of a statistic can also be logically incorrect
when bounds are tight, i.e. it may not be a statistic of any possible distribution consistent with the constraints.
Bounds arc uscful for other reasons as well.  Some algorithms exploit only bounds, as the "branch and
bound” methods of [4] for retrieval of information trom a database. Qther advantages we have investigated in
previous work [10, 11, 12]. In addition, the mathematics of absolute bounds is straightforward and requires

only clementary calculus.

Our approach is to give a varicty of bounds formulae for the same estimation situation. In general, we do
not know which aof several bounding methods will be the best for a problem, and this suggests the program
architecture of an artificial-intelligence “production system™[1]. We can combine results by taking the

minimum of all the upper bounds. and the maximum of all the lower bounds.

| I . .

I'ven if the data s transformed before bamg argicpated. there are still many reasons to want statistics on the untranslormed data. To
use the exammple of [7]. 40 useful 1o study 1anfalln the cube oot of ndhes, but ong may dien be interested in statistics on the cube of
that, the meaming ful guantity of total volume
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2. Our approach

In this work we examine transformation functions whose derivatives have a constant sign in the interval of
study. (We may be able to relax this restriction in particular cases, however: usually only a constant-sign
sccond derivative is necessary.  Chapter 3 of [S] discusses detailed restrictions, in particular the notion of
function convexity, for the material we cover in section 3 below.) The so-called “pow er transformations” and
their inverses [2] satisfy this constant-sign restriction for positive data values. Six common power
transformations are log, antilog, square root, square, cube, and reciprocal, and these wiil be our primary
examples. Logarithm is particularly important because the mean of the logs is the log of the gecometric mean
of a set of data values; reciprocal is also important because it provides the key to handling quotients of

random variables. To summarize the six example transformations:

Function first deriv. second deriv, steepest point
In(x) + - left side

et + + right side

Vx + - left side

x + + right side

x3 + + right side

1/x - + left side

We shall assuince the following statistics on the original (untransformed) data valucs are known:

e u, the mean of the values (or equivalently, the sum of the values and the number of values)
e m, the minimum of the valucs

e M, the maximum of the values

Even when we do not know the minimum and maximum cxactly, we can often assume extreme "safe” vatucs
which the minimum cannot be less than and the maximum cannot be greater than, and which we can use in
our “rmulac. So it is reasonable to believe we can always come up with a minimum and maximum for a set

of values,

In much of what follows we also assume the following is known:

e o, the standard deviation of the values -- defined as 2 (xi-p)?‘/n. instead of the more

. . . 1<i<n
conventional formula with a denominator of n-1

Note we use the symbols p and o to emphasize that we are consider finite data popudarions, which are not

neccessarily samples of anything.

We shall ignore lincar transformations ot vartables as o preliminary to applying power functions, since




these can be handled trivially. For instance, fix) = In(ax+b) can be analyzed by defining y=ax+b and

analyzing g(y) = In(y), where py=ap + band o, =aa,.

Our basic idea is to find functions that arc (a) cntirely above, and (b) entirely below the curve of the
function on the data-value interval. We shall consider two important cascs: bounding curves that are straight
lines (scctions 3 and 4) and bounding curves that arc sccond-degree polynomials (quadratics) (sections 5, 6, 7,
and é). Subsequent scctions consider extensions to this framework: use of subsct means and standard
deviations in_section 9, usc of order statistics in section 10, usc of distribution fits in ' ~d adjustments for

small populations in 12. We conclude with some simiple test experiments in scction 13

3. Linear bounds on the mean

3.1. Overview

For straight lines, one curve can be a tangent to the curve at some point (for convenience, the mean); the
other a sccant of the curve through it at the minimum and the maximum. For curves with negative second
derivative like logarithm and square root, the tangent is an upper bound, the secant a lower bound; for curves
with positive sccond derivative like antilog and reciprocal, the tangent is the lower bound and the secant the '
upper. These bounding lines map directly into bounds on the mcan and standard deviation, for note if ax+b
> fix) for all x in a range, f some transformation functions satisfying our restrictions, and F denoting
expected value, then

E(ax +b) > L(f{x)). or ;
aE(x) + b > E(f(x)), or ;
ap + b > F(fix))

E(fx)) being the quantity we are interested in bounding,

3.2. Linear bounds on the mean

) I et us apply these ideas to the mean of transformed values (see figure 3-1). The tangent to {{(x) at g has
equation
y = x*(pn) + [fp)-p* ()
This leads to a well- known bound (generalized in [S). p. 70):
B () + (fp)-p* FQO] = (p)

On the other side of the curve, the secant through the maximum and minimum forms a bound. 'This linc has

i cquation
y = x * [(fAIM)-lm)/(M-m)] + [f(m) - m * {AM)-Am))/(M-m)]]

which corresponds to the bound




+an3en+

secant

Figure 3-1: 1 incar bounds on the mean of transformed vatues




g * [(AM)-ftm))/(M-m)] + [tf(m) - in * [(1{TM)-Rim))/(M-m)]]
= (p-m) * [(AIM)-fm))/(M-m)] + flm)
= (l-a)fim) + afiM) = fim) + a(fiM)-fim))

where a = (u-m)/(M-m)

To give an example, if a sct of data values ranges from 10 to 100, and the mean is 23, the mean of the
lozarithms of the data values has

an upper bound of In(23) = 3.135
alower bound of 77790 In(10) + 13790 In(100) = 2.635

Hence the geometric mican of the original data valucs is between 26332139 and ¢*13%=23. In general
from these formulac, the geometric mean is between g and m(M/m)®; and the harmonic mean is between n

and 1/{1/m + 1/M - p/mM].

3.3. Proof that tangeni at the mean is optimal
Note that the bound obtained from taking the tangent at g is optimal for the conditions we are assuming on

f. To sec this, supposc we use the tangent at some other point ¢, i.c. the line y = Rt) + (x-0f(t). Then the
mean on this bound line is

Efflo) -+ (xi-t)f‘(t)] = f(t) + (p-0f'()
Now we want to find the maximum of this as t varies, so we take the derivative with respect to t and sct it
cqual to zero:

f) - £ + (u-of'() = 0 = (- 0f()
But sincce we assumed that fhad a constant-sign second derivative in the interval of interest, the only way this
can be zero is if p = t. Hence the only extreme value for the bound will be when we take a tangent at p -- a

minimum for downwards-curving functions, and a maximum for upwards-curving,

3.4. Miscellaneous comments
In the case of a'negative second derivative, the tangent bound is an upper bound, and the sccant bound a
lower bound: otherwise. the reverse. Note the two bounds arc related, because they can be rewritten as

fi(l-a)m + aM) and
(I-o)fim) + aliM), where a = (p-m)/(M-m)

50 they represent interchanging of a weighting and functional application.

Here 1s a table of the lincar bounds for our six common transformations:




Function

natural log
antilog
square root
square
cube

reciprocal

where a = [p-m}/[M-m]

Upper mean b a.d

In(p)

(I-a)e™ + ac™
Vu

(1-a)m? + aM?
(1-0t)m3 + aM?
a/m + (l-a)/M

3.5. Accuracy of linear mean bounds

To illustrate effectiveness of the bounds, we tabulate the bounds for m=10, M =100, f=In, and for
1 =19,28,37,46,55,64,73,82, and 91. The "bounds rangc traction” is the ratio of the distance between the

bounds to the total range of the function on the values, the difference between f{iM) and f{in); it indicates the

quality of the cstimate.

mean (u)

19
28
37
46
55
64
73
82
91

Itis typical that the estimates are best for extreme g, and the error is worst for a particular valuc inside the
range. We can calculate this value. Assume f has negative second derivative (the other casc is analogous).

Then we want to find the maximum of the function representing the difference of the tangent and_ sccant

bounds, or

upper hound lower bound
2.944 2,533
3.332 2.763
3.611 2,993
3.829 3.224
4.007 3454
4.159 3.684
4.290 3914
4.407 4.145
4511 4,374

[.ower mean bound

(1-a)In(m) -+ aln(M)
ck

(I-a)vm + avM

2
u

3
u

1/p

bounds range fraction

179
247
268
263
.240
206
163
114
059

g(x) = flg) - (1-a){m) - afiM), where a = (p-m)/(M-m)
We find this by sctting to zero the derivative with respect to p, in other words

dg(p)/dx = 0 = dfiu)/dx + flm)/(M-in) - iM)/(M-m)
f'(p) = (AM)-Rin})/(M-m)

Or in other words, the maximum crror occurs for any function f(that satisfics our conditions) for a mean at

the point where the tangent to fis paralici to the secant through the endpoints. ‘This makes sense because this




is the point at which f{(x) stops "turning away" from the secant and begins turning back towards it. Note by
Rolle’s Theorem there is always one such point where the lines are parallel, and the constant sign of the

sccond derivative ensures that there is never more than one such point.

For specific f we can tabulate the point of maximum error from this formula. as a function of m and M.

Function Worst p

natural log (In x) (M-m)/In(M/m)
antilog (%) Inf(e™-e™)/(M-m)]
square root (M-in)’ 74[vM - Ym)}?
square (M-+m)/2

cube Viim’ + mM + Mz)/3]
reciprocal Y(mM)

The maximum error may then be obtained as [f{p) + AM) - [(pwom-m)(l(M)-f’(m))/(M-m)]I.
3.6. Bounds on the standard deviation, given mean
A simple application of the lincar bounds on the mean of transformed values is (0 bounding the standard

deviation of a set of values given only the maximum (M), minimum (m), and mean (u). The variance is
computed:

SN S — Syl 2

Z{x-pY/n = Zx/n-p .
But since square is a continuous function with a constant-sign sccond derivative, we can bound the second

summation, and hence the bounds on the variance are:

lower bound: p? - pz =0
upper bond: m? + (y-m)(f\v17'~m7)/(M-m) - p.z = uM + pm-mM - “2 = (p-m)}M-p)

And so the bounds on the standard deviation are:

lower bound: 0
upper bond: v{(p-m}M-p))

We will usc this result frequently.

4. Linear bounds on the standard deviation
There are two methods we can use to bound the standard deviation of a sct of transformed values, First, we
can usc the two bounds lines used previously, bound the sum of the squarcs, and subtract out the cffect of the

. 5 . ) . .
mcan (i.c. use the formula X7 /n - [Zx/n]). Sccond, we can construct two new lines passing through f{x) at

the mean of the transformed values,
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4.1. Sum-of-squares bounds
Bound line y = ax + b has second moment (sum of squares) equal to
El(ax+b)}] = E[a2x? + 2abx + b?] = a¥o?+p2) + 2abp + b? = (ap+b)* + ale?
For our two bounds lines:

tangent: a = f'(u). b = [f(w)- p * ()
secant; a = ((M)-flm))/(M-m), b = [fm) - m * [(RM)-fim))/(M-m)]]

hence the tangent bound on the sum of the squares is

(024 DI + 2ulf QIR - o * F@ + () - p* F@)P

= of( + (f)]’
and the secant bound is

Ba?+p2) + 2up[f(m) - mB] + [f(m) - mBY
where 8 = [AM)-flm)}/[M-m]

To find bounds on the variance, then, we subtract the larger of these two bounds from the square of the
lower bound on the mean to get the upper bound: and subtract the smaller of these two bounds from the
square of the upper bound on the mean to get the lower bound. ‘The standard deviation then has upper
bound the square root of the variance upper bound, and lower bound the square root of the variance lower

bound.

To return to our previous example, supposc f=1In, m=10, M=100, p =23, and also suppose g =10. Then
the bounds on the sum of squares are
tangent: 629 * (1/23)2 + 2*23*(1/723)*[In(23)- 23 * (1/23)]
+[In(23)- 23 * (1720 = 1.19 + 4.28 + 457 = 10.04

secant: B8 = In(100/10)/(100-10) = .02558; hence bound is
(.02558)7 * 629 + 2* 23 * 02558 *[In(10) - 10 * .02558] + [In(10)- 10 * 02558]2
=412 + 2409 + 4.189 = 7010

Now since the bounds on the mecan arc 2.635 and 3.135 from our analysis in scction 3, the bounds on the
squarc of the mean arc 695 and 9.82. Hence bounds on the variance are 10.04-6.95=3.09 and
7.01-9.82 =-2.81. and bounds on the standard deviation are thus v3.09=1.76 and 0.

4.2. Special standard-deviation bounds lines

To bound the standard deviation of the transformed values we can use different bound lines than for the
mean. First, let us assume we know an exact value {for the mean of the transformed data valucs -- call it .
Distance from ¢ to cach transformed data value is what nceds to be lincarly bounded, so we usc sccants

through f{x) at @ (scc figure 4-1). We assume fix) is monotonic, and henee t"(q;) is unique, so let f‘(«p)=v

(i.c. ¢ = ). So to get an upper bound on the standard deviation of the transformed values, we use a line
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below flx) for x<p, and above for x>»; and togeta fower bound, a line above f(x) for x<», and bclow for x>e.
(Vice versa for a monotonically decreasing fix).) Now since we assume Hx) has a constant-sign sccond
derivative in the interval, the lin¢ segment from m to ¢ must lic constantly to onc side of f{x), and similarly the .
line segment from » to M. Hence choose the extensions of those two line segments into lines as our bounds
lines. Thesc lincs have cquations

y = (x-»)(f(p)-flm))/(r-m) + f{»)
Yy = (ep)(EM)-f(0))/(M-») + ()

Now:
ol = Fly-fw))’]
And ify = m(x-») + f{») thisis:

Ellm(x-») + flv)- )] = Elm2(x-»)l
= m‘[e +(v-p)2]

Hence using the formula for the variance, the second moment about the mean, the variance of the

transformed values is bounded by

[0 + (v-w)] [(v-Rm))/(u-m))? and
and
(0 + - (AM)-2)/(M-»)P

Hence the standard deviation is bounded by

Vio2+ () [(Rp)-f(M))/(v-M)] and
Vie?+ ) [(f(p)-fm)/(v-m)]

They arc upper and lower bounds respectively for curves with positive second derivative, and vice versa for
negative sccond derivative. Hence the bounds are just an "adjusted” standard deviation of the original values
times the slopes of the lines from the mean of the transformed values to the minimum and maximum on the

interval.

Note since

of'(v) is between of(flp)-fim))/(u-m))]
and o[(AM)-fp))/(M-)), for t'(x) constant-sign

a rough approximation of the standard deviation of the transformed values (as opposed to bound) may always
be obtained from af'(#), and this will be increasingly good an approximation as o gets smaller. Also note that
for a narrow range of mcan bounds, the difference between our standard deviation bounds is a rough
approximation of the sccond derivative of Fat »:

= o{(AM)-fle))/(M-»)] - ol(TTw)-fin))/(v-m)] =< 201 (v)
So the width of the bounds varies proportionately with the magnitude of the second derivative at the mean of

the transformed valucs.

e % B . .
Y TS e e o &'x o

e —— ——— o
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Figure 4-1: Lincar bounds on the standard deviation of transformed values
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4.3. Handling inexact transform means

But this assumes we know p, the mean of the transformed values, exactly  We do for the square function,
for instance. Otherwise there is an adjustment we can make. [.ct the upper and lower bounds on the value »
which maps to the trasform mean be v and Vi Then the bounds on the variance of the transformed values
are

, . 2 Ry Ny “mI2
‘nmx[maxvlsysyulo +(p-2) T )-fim)) /(v-m)]“,

max, o, <yU[62'+-(IL'V)BI[(“V)"‘(f\«l))/(v-l\i)]zl

and min[min_ <Vl~[02+(;1-1r)3][(f(u)-t‘(m))/(u'm)]z‘

I.
min, <<, 107+ IAMM-MF)
Since max(max(g(x)*s(x)).max(h(x)*s(x))) = max(max(g(x)*s(x).h(x)*s(x))) = max(max(g(x),h(x))*s(x)), we
can simplify:
max, o, Syt[m;lx[(f(u)-f"(?\l))/(u-M)l".( ) fimN/(-m)P 1o + (v)])

andmin, __ [min{(fe) EM)/e-MIP()-8m)/e-m)P*fo” + (uev) ]
[ ="="U

First, suppose f{x) is monotonically increasing (like all of our six important functions except 1/x). If the
second derivative is positive, then the inner max is the first subexpression in the {irst bound above, and the

inner min is the sccond subexpression in the sccond bound. W can then rewrite the formulae: 1

max, SVS”L_[(M)-r‘(M))/(u-M)|~’*[a-’+(,L-y)3]

: y RN ?
and mm”l Susytl(Ih')-t(m))/(p»m)] o'+ (u-v)]
Note that these represent the product of two functions which are both monotonically increasing with respect
to ». For a monotonically increasing {{x), g is a lower bound on ». The product of two monotonically

increasing functions is a monotonically increasing function. 'The max of a monotonically increasing function

is the value at the rightmost point, and the min is at the lefunost point. So the revised bounds on the variance

of the transformed values, given f{x) increasing and with positive second derivative, are
upper: [(Re -/ (v -MI *(o” + (o ]
lower: [(ﬂ"l.)'ﬂm))/("l -m)]"*[02+(p-v|r)2]

' Similarly if f{x) has a negative sccond derivative (again, assuming the first derivative is positive), we can show

by analogous reasoning that the bounds are:

upper: {(flv, )'f(m))/(«'l{‘m)lz"ld7 *'(#“’L))]

lower: [(ﬂub.)-f(M))/(uU-M)lz*[o"‘ﬁ-(p-vu)zl

Using our example of f=1n, m=10, M == 100, u =23, ¢ = 10, we usc the previously found lincar bounds on
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the mean of the logarithms of » ;= MM =23and v, = ¢2*% 2139, Henee bounds on the standard deviation

of the logarithms are:

VI10+9.12](2.635-In(10))/(13.9-10)] = 1. ¢
V(102 +02(1In(100)-3.135)/(100-23)] = ,

both being better than the sum-of-squares bounds in section 4.1,

Unlortunately, revised formulae for monotonically decreasing functions are not as casy. ‘The partial
derivative of the bounds expressions must be set to zero and inverted. Consider the case for the upper bound
for a curve with a negative second derivative (like 1/x):

0 = 3/9»[[(fLw)-f(M))/ (- M)] *[o +(p-v y Il
0 = 2(fly)-AMN/(v-M)] *[(F(r)e-M) - (e ) D) / (5-MY']* [0? + (uew)?])
+ [(Re)- M)/ (v-M)]™* -2p-0)
[(F@Xp-M) - (Re)-fMD) 7 (-MY ] * [0 + () 1] = [(R0)-EMN/(0-MI* (p-w)

which is then solved for v, and the value substituted in the function difterentiated above to obtain the bound.

Analogously, the other bound is found by solving

(F)r-m) - (f)-m)) 7 (v-m)’) * [a? +(u-v)]]
= [(fly)-f(m))/(v-m)] * (p-v)

4.4. Evaluating standard-deviation bounds

The sum-of-squares bounds of scction 4.1 are hard to evaluate, but we can exatning the slope-bascd bounds
of the last section, provided we assume # is known exactly. We are interested in knowing the largest possible
difference between the upper and lower bounds for . exact v, or the maximum of

D(v) = o,[[(IM)- f‘(v))/(\l »Y| - [Ue)-fam))/ (v -m)l]
where ag =0 + (n- %

For four of our functions -- x°, x*, 1/x, and vx -~ this is straightforward to find:

. x2: IXv) = 02[(1' +M)-(r +m)] = o‘,(M-m), so D) is constant.

ox} D) = o,[v7 + wM + M) - 2 4 wm + mD)] = o [W(M-m) + (MAmP)] This has 7
maximum aty =M ofaz(M-m)(I!M-m). i

s 1/x: Dp) = o)[l/vm - 1/¢M] = o(1/m - I/MV/v. This has a muimum at p=m of
2(\/! m)/m ‘M.

o Vx: D(v) = a,[(1/(Vv + VM) - (1/(Ve + V)] = o (VM-Vm)/(v + (VM-Ym)Vr +
v(mM)). This has a maximum at » =m of g (1/ v - 1/ VM),

For transcendental furctions like In(x) and ¢¥ we can attack the problem with an infinite serics obtained
from the Taylor scries expansion of the function about »; when the curve is relatively flat in the interval of

interest, the approximation witl be good.
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D(v) = o,[((flv)-fM)))/(v-M) - ((f(r)-Rm))/(v-m))]
et us expand the first quoticnt in the brackets into a series,
() fAM)/ (M) = [f(r) - [p) + (-Mf(#) + (0-MYH“ ()2 + .. )} / (v-M) !

{E@) + (M )2+ (-MPE ()3 + ]
-z M) eyl

i=11000
Hence

D(r) = 02, _ |, ooll(r-m) ' fe)/it] - [-M) £ (i)
We need to take the derivative with respect to v of this in order to see if it has a maximum in the interval, The

condition for the maximum is thus:

| st

| 0=2_, ,ollrm)"-(r-MY N E )G+ G-y
f To approximate this we can take the first fcw terms:

|

0 = (M-m)f“(#)/2! + (2»(M-m) - (M + m)M-m))f"(»)/3!
0 = (M-m)[f’(v)/2 + Qv-m-M)f"'(#)/6}

As an example, consider f{x) = ¢*. Then:
= (M-m)[e*/2 + 2Qv-m-M)c*/6] = (M-m)e*(1/2 + »/3 - m/6 - M/6)

which can be solved iteratively for v.

5. Quadratic bounds on means: Taylar-series methods

5.1. The problem
A straight line is not a very good approximation to a function with a strong curvaturc. An obvious next
step to improve our estimates of the nican is to construct quadratic bounds lines of the formy = ax?+bx+c

and compute the mean along those:

p F,[ux2+bx+c] = a(az+p2) + by +¢

However, finding quadratic bounds curves is not as casy as it might seem. We generally cannot just use the
Taylor scries about some point of the curve, as with the estimates (not bounds) of {9], because while such
approximations may stay close to the curve of the actual function on some range, thcy may be above and
below it at different places. For instance, take the 3-term Taylor series for ({x) = In(x) about x=1, which is

0+ (x-1*(1/1) + (x-1)2%-1/12)72 = -5x% + 2 - 1.5
At x=2 this is .5, below the logarithm curve value In(2) = .69, but at x=.5 this is -.625, above the logarithm

curve value In(.5) = -.69. Hence the approximation curve crosses In(x), and cannot be used as a bound on the

values of the latter.
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5.2. Quadratic bounding by vertical shifting
There is a way wc can usc arbitrary polynomial approximations to get bounds: we can shift the
approximation curve upwards or downwards until it no longer crosses the target curve in the interval. To put
this formally for the Taylor scries, we want to bound f{x) on the interval m to M by the function
h(x) = () + (-OF @ + SO + K
wherg t is some arbitrary point in the interval, and K is some constant. If we choose t=p (for quadratic

bounds a convenient, but not necessarily best-bound point), then the mean of the approximation function is

Eh()} = () + (uep)f ) + Sle? + p? - 2p2 + p2 £°0) + K
= flp) + .50°t"(1) + K

If we do not choose t= g the formula is slightly more complicated:

() + (w-OF O + S(o2+ (w0 + K
Note for the particular function fix)= x” the Taylor serics has only three terms, and hence an exact formula
for the mean of the square of a set of data values is '

#2 + 50°(2) = “2 + o’

The lower and upper bounds arc then found from substituting KU and KL. which are respectively the

maximum and minimum values in the interval of study of the crror of the approximation ¢(x), defined as

e(x) = f(x) - i) - (x-HF (L) - S0 (1)
Since the interval is finite, we cannot just find the zeros of the derivative of ¢(x). 7cros have to lic within the
data-valuc interval, and they must be compared to two other points, the function values at the maximum and
minimum of the range. In other words:

K is maxfc(m).c(M), (7). C(I,z), -
Kl is minfe(m),e(M), e(z,), c(xz), o

where the 7, are all zeros of ¢'(x) within the interval. To find the 7eros:

d¢/9x = f(x)- () -(x-)f'W) =0
[F()-FOI/(x-1) = £(0)

We always know one solution of the above cquation, x == t, because
[fO-fO] = (=0
But there are no other sotutions for functions with constant-sign derivatives, implying no other local maxima
or minima for a Taylor-series approximation. To see this, note the cquation says the slope of £'(x) from t to
some other point must be equal to the derivative of £(x) at t. But this cannot occur if the second derivative of
£'(x) (i.c.. £"'(x)) is constant in sign, hecause then cach value of the first derivative (i.c., £(x)) can occur at most

once.

Henee we can write the Taylor-series quadratic bound in general as (noting ¢(g) == 0):

O
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upper bound; flt) + (u-0F (1) + 5(0 +p- t) )t“(() + max(e(m).c(M),0)
lower bound: f{t) + (p OF() + .5(a? +(p-t)” )F(() -+ min{e(m),c(M),0)

For particular functions f we may be able to rule out some possibilities for the min and max. For instance,
for {x)= x3 e(x) is just the fourth Taylor-series term, (x-t)‘*6/6 so ¢(M) > 0 and e(m) <0, and bounds arc

upper bound: [ +(u)*3e + 5(0 +(p-0))*6t + (M-1)? = 38(M ) + 3![0 i M2 + M3
‘lower bound: 83 + (u-t)*3c% + .S(o” +(p-0)2)*6t + (m)* = 3(mp) + Mo’ +p’m? + m}

Similarly, e(m)<0 from analyzing the Taylor serics for logarithm and square root; 0Ke(m) for reciprocal; and
Ke(M) for antilog.

5.3. An example
To illustrate, use our previous example of f=1In, m=10, M=100, t=p =23, and o =10. Take the Taylor

serics about p. From the preceding we know that the only possible extremes occur at m, M, and g, so note:

e(x) = In(x) - [In(23) + (x-23)/23 - .5(x-23)2/232]

c(m) = In(10) - [3.14 - 56 - .16] = 2.30-242 = -.12 = K
e(p) = In(23)-In(23) = 0

(M) = In(100) - [3.14 + 3.35-56] =46-09 =37 = KU

Which arc the bounds offscts we have to add to the estimate of the mean of
In(23)- .5 102/23% = 3.06
So we estimate the mean of the logarithms is 3.06, with an upper bound of 3.06 + max(-.12.0,3.7) = 6.76, and

L.

a lower bound of 3.06 + min(-.12,0.3.7) = 2.94. The upper bound is much worse than the linear upper

bound (3.135). but the lower bound is better than the lincar lower bound (2.635).

5.4. Choosing the optirnal point for the Taylor series
The question arises as to the hest value of t for getting an upper or lower bound. Analysis requires carcful
preconditions, but we can often do something like this. Supposc that ¢(M) is the maximum value of ¢(x) on

the interval of study. The cstimate of the transformed mean from taking the Taylor series about t is

fly) + (u-0f (1) + S[a? +(p. )° ]f'(t)
= flt) + (p-Of () + 5o’ +(p-); ]l"(()] + [M) - (1) - (M-OF(L) - .S(M-02F (1)
= fIM) + (e-MF() + S[o” -+ p’-M -2t + 2MOJE ()]

We want to minimize this maximum crror with respect to t, i.c. we want:

0 = 98/3t [f{M) + (p- M)Nt) + 5[0 J—;L -M*- 2t 4 2MOIF (0]
0= (p- M)f (t) + 5[0 + p. -M?- 2t 2MOICO)] - (M-p)E()
0= 5[a +,u -M? 2t 4 2MO)F (1)

For a function with derivatives constant in sign, this can only be zero if the expression in brackets is zero:

0= 0)+"12‘M2'2[Ll+ Mt




t = {62+ p2-M2/2(u-M) )
t=[p +M-8§,,]/2 where 'SM = o°/(M-p)

Hence substituting back in the expression for the bound, the second derivative term must disappear, and we
get

AM) + (- M (s +M-8,,)/2)
whid‘m is an upper bound provided ¢(M)>0 and c(M)>c(m).

By similar analysis we can show that
t=[p+m+3§ |/2 whered = o’/(p-m)
is the best t for obtaining the other bound on the ¢(x) on the interval of interest, leading to a lower bound of
film) + (p-x]l)(((y+111+8n‘)/2)
provided e(m)0 and c(m)XciM). For =0 the upper and lower bounds occur at t={u+M)/2 and f
t=(p+m)/2 respectively; and for o the maxinmnd[(\.\T-vp)(p-m)|, these are both (M-m)/2.

So for the logarithm function (where e(m)<0 necessarily) =23, m=10, and M =100, and this givcs for a
lower bound for t = (23 + 10 + 5*160/(23-10))/2 = 20.3. and the bound is
flm) + (u-m)f(20.3) = In(10) + 13/20.3 = 230 + .640 = 2.94
which is negligibly better than for the series about p, but may represent an improvement in other cases. In

general, the Taylor serics approach works well for narcow intervals of interest or intervals where f{(x) is rather

} flat. We can, however, use erder statistics to improve Faylor-serics bounds: sce section 10.

6. Quadratic bounds on means from Lagrange interpolation

Taylor secries approximation; deteriorate on the edges of an approximation interval.  We are more
concerncd with signed maximum deviation of the approximation from the function {a concept distinct from
the I.., approximation, which minimizes the absolute value of deviations), and a better quadratic for our

purposes comes from Lagrange interpolation method using the Chebyshev interpolation points. For a

quadratic we nced three points to fit the curve through, giving:

h(x) = fip)x-@Yx-n)/(p-(p-1) + RGMx-pHx-1/q-pXg-1) + fr)x-pXx-q)/(r-p)r-q)
h(x) = (8/3(M-m))APIC-QEr) - 20N -pYx-1) + {e-pHx-q)]
wherep = m + (5-V3/ZHM-m), g = AL ra/2.and e = m + (S+ V3/4(M-m)

Using our example of f=1In.m= 10, M =100, =23, and 0 — 10, we have:

p=16.029 4= SS.Q. r=93971: In(p)= 27744, In{q) = 4.0073, In(r) = 4.5430
h{x) = -.0002295x" - .(47%Hx 4+ 200648

Henee an estimate of the mean of the togarithins tor this example is

-4000?195(1()?+7.}?) + 04794(23) + 20048 - - 1444 4 11026 4 20648 - 3.0°0
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This is an estimate, not a bound. Just as with Taylor-series polynomials, we can get bounds from this from
knowing the extrema (maxinia and minima) of the error curve on the interval of interest. 1'or Chebyshev (as
opposcd to Taylor-series) approximations there are two places in the interval where ¢(x) =0, and hence one
local maximum and one local minimum. We can find these by solving the error curve derivative explicitly;,
for logarithm and cube this is a quadraie equation, for square root and reciprocal a cubic, and for exponential
a transcendental equation. For example, for our In(x) example:

dZdx|In(x) - (-.0002295x" + 04794 + 2.0648)] = 1/x + .000459x - .04794 = 0
hence .000459x7 - (4794x + 1 = 0
and x = [4794 £ V(047987-001336)] /7 000918 = 28.80 and 75.64

So the extrema of ¢{x) on the interval can occur at only four points: m =10, M =100, 28.80, and 75.64.
Computing ¢(x) there:

e(10) = - 2187, c(100) = 04137, ¢(28.80) = 10526, ¢(75.64) = -.05193
And hence the agrange-Chebyshey quadratic bounds on the mean of the transformed values are:

upper bound: 3.0230 + max(-. 2187, 04137, 10526 - 05193) = 3.1283
lower bound: 3.0230 + miun(-.2187, 04137, 10326, -.05193) = 28043

which arc better than the lincar bounds of 3.135 and 2.635 (and henee the Favlor series bounds too).

7. Quadratic bounds on means: one-sided methods

There are quadratic miethods that avoid having to find the extrema of the error tunction in computing an
approximation, by constructing approximation curses entirely above or entirely below the target function in
the interval. We can do this if we can position the points ot intersection ot the approximation curve ax? + bx
+ ¢ with f(x) to lic cither (a) outside the interval, or (b) tangent at some poinl. Among our six demonstration

functions, reciprocal and cube lead to cubic polynomial equations,

{ 7.1. Intersection and tangent positioning: reciprocal
Consider reciprocal first. The error curve is
e(x) = 1/x- ax?-bx - ¢
and it can have at most three seros which arce the solutions to
0= ax’ + bx? +ex- 1
To keep the approximation curve "close”. we can put a point of tangency at some tinside the interval - ic., a

double zero at t -- and anather zero at M. We can wriie this function as ¢(x) = (x/t - ;)7(,(/;\,1 - 1), which

{ approaches -00 for small x. + &0 for Lirge . reaches a local maximum at x =1, a local minimum at some larger
- x value, and then crosses zero permanently at x = M. Then we want |
by
1 ) ]
(x/t- D/t DM 1) ax by 4oexc- | 3

Vb boex- |

x‘/t’m;x-’u/m ) \2/UHTAD L = ax
a=1/tM. b = -2/tM 4 1/7t).¢c = 2/t + I/M




So the quadratic lower bound on the mean s

(02+p )/OM - 2/tIM + /0 + 2/U + /M

We are interested in the best lower bound possible, i.c. the Targest. We can find this by sctting to zero the
partial derivative of the preceding with respect to

0= -2g’+p /M + (/M + ’/[ Y- 270
0 (o +p, )/M + (/M 4+ Dp-
t [;1 (02 )/ MP(L- /)
BTN /(’\1 )= 8 \\hu'c(SM (J"/l.'\l-p)

| I

]

So for g =0 this is g for o & maximum, namely VIOM-)(-m)] (see section 3.6), this is m. We saw this 8M

term before in a different kind of quadratic approximation in section 5.4,

Substituting this tin the bound tormula. we peta quadratic tower bound of

[(o” +;1 M) + p S M) b (e ) § /7 M{p-8 1’)

= I/M + [(U o \111) - 2(Mp- ;L o )]/ Mt - o7 /(M- ‘u))]
UM+ [Mp-o - NIy 2 (M-l

1/M + [(M - p) /MM - o7 - )]
(1/\1)[[\|u 0 -;L‘ N ~’\|;L b |/(\1[.L o’ - p )]
l/\l)[\rl “Mp- o I/[\lu o’
= (1/M)(M - 8,,) /(-3

i

i

i1

H

Note that when o = 0 this is equal to IZM M/ uo= 1/ the tinear bound. Since p <M. a nonzero o
will cause the denominator of the traction to decrease proportionately more than the denominator, and hence
give a lower bound greater (better) than the linear lower bound. The maximum value of g is J[(M-,u)(/,rm)].
whercupon §,, = p-m. and the lower bound is I/M > [M - p + m]/m = I/m + 1/M - u/mM. exactly the

upper lincar bound for reciprocal (see section 3.2).

Again, Tet's use our standard cxample of m=10, M= 100, p =23, o =10, this time for the reciprocal
function. Then
8y, = 10%/(100-23) = 1.299

And a lower bound on the mean of the reciprocals is

17100 * (100 - 1.299) /{23 - 1.299) = 01518

‘This is hetter than the incar lower bound, calculated as 1770435,

We cap get an upper quadratic bound by only mimor modifications: just ¢reate a bounding curve that
crosses 1/x at minstead of M_oand is tangent at Cim the interval, We just substitute m {or M in the preceding

formulac, giving

an upper hound of (a7 1 'u’)/l"m -(2/un 1/[“)p + 2+ /m




takenatt = p + o2/(p-m) = p + 8.
which can be written as (1/7my) (e -+ 6 J7 (o + 8 ) where 8, = 62/(’,1. -m)

So for our example data, t = 23 + 10°/(23-10) = 30.09. and the upper bound is 1/10 - 13/10*30.69 = .0576.
This is significantly better than the lincar upper bound of (77/90)*.1 + (13/790)*.01 = .0871. Hence by using
a quadratic rather than lincar bound we have narrowed the range of the answer by a factor of

(.0576-.0455)/(.0871-.0435) = .278.

7.2. Evaluation of the quadratic reciprocal bounds

We can obtain useful approximations of the quadratic bounds by replacing the quotient with the first few
terms of its binomial expansion, as here for the lower bound:

(-8, ) =1l/p+38, /;1 +6'/p.
hence 1/M (M - 8, )(,L s = 1/,1+(1/,1 VM8, + (172 - 1/Mp?)82,
= l/u + 8, l(l/p l/’vl)/p + 8, (ll/p. ]/\/1)/;1.

= Up + o2/Mp? + o*/(M-p)Mp?

Hence the difference between the quadratic bounds can be approximated by

(l/m- I/M)o /;L = (1/m(m-p) - 1/\1(’\1 p.))o /p.
= [(M-m)e’ /1 I/mM 4 (4 Moo Y/ () (M-

As suggested in the previous section, the gquadratic bounds are always better than the lincar bounds except at
the two extreme cases of 0. We can find the p and ¢ for which they are least accurate.  Set the partial
derivative of the difference between the quadratic bounds to 0:

0 = 2/3u[(1/m - 1/’ 4 (/mimep) - /MM w)o )

0 =-2/m-1/\)e"/p' 4 [1/m(on- w) - /ANy lotp?

+ -3[1/m(m-p) - /MM ,u)lo /it

2(1/m - 1/M) = [I/m(m- p) 1/M(N -y ]o -3 1/man-p) - 1/M(M- ,u)]o?/p

which can be solved iteratively,

7.3. Intersection and tangent positioning: cube

We can do something similar for the cube function:

e(x) = Oeax o bx - ¢

which is a third-degree polynomial just like the one for reciprocal. So we can position onge interscction point
and one tangeney point. This time we i write o(x) as
ofx) = (x-l)?(x-.\l) = -ax’-by-c
hence
a=2+M b (M) e UM

so an upper hound on the mean is
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QUMY+ ") - (P4 20D + UM
and this is a minimum when we choose a tsach that

Ao’ +p?) (U+2M) + 2M = 0
[(0® +;1) Mp] 7 (p- M)—[
t=p- 0/(]\11[.1)-—“

Substituting this in the equation tm' the bound:

TN )(M ;L) RS 8\‘ Mo *Il M)+ M(o* tu 2)

_p,\l -4;8 ._}L(S + 8, 18kp.+2;10 +2p.-
RN M - 26, _6 ‘ll. 28, ;LM + 0M+yM

= p (Mp)+(p0\1’b )(7

= p +o/(M o+ Qe+ \1 o/('\l ;L))o
p. -0 /(M u) + (7;L+\l)0

+ (2 + M-8 )0

§
3
3
3
Similarly, a lower bound is
Qt+mXo® +u %)- +2mp + ’'m
and this is a maximum when we choose a tsuch that
b}
pa— ‘ - —
t=p+o/pm)=p+8
lcading to a lower bound of
3 3 2
pHQp+m+3 o
Note the quadratic lower bound is alwavs greater than the linear lower bound, p.j. The difference between
the upper and lower bounds is
- . 2
M-m-8, -8 o
which provides a usetul criterion tor the etfectiveness of these bounds. Note this is always nonnegative since

n ~[8 + 6 ] -m o (\1 /(M - (p-m)
= (M'm)[l o M- ;L)(;L m)|

The largest possible vialue of @ is (MA0Gem). so the quantity in brackets is always nonnegative,

8. Optimal quadratic bounds
The problem of finding the best geadratic approximation for our bounding purposes may be viewed as an

; : . b
optimization problem i two aables. Siee the quadratic curve ax” 4 bx 4 ¢ leads to a bound of

bl hl 1
upperbound: ata” Fge) b b betmax O]
9 3 . T
lower baund: o ) 4 b b oA oo ,\1[l(\) axe - ¢f

and the constant ¢ can be mered out of e masumum and mimmum. we can write:

(\1|I () by
. “It(\) ax” ]

So we have two optimization problems for real aand b to find e values that mimimize the upper bound,

uppet bound: ‘|(n o ) b bomax
lower bound: afa” Fge) b bk o

- easivnnn
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and the values the maximize the lower bound. We have constructed a program that docs this by cstimating
the gradient from exploratory steps. finding the zeros of the error inction by the quadratic formula for
logarithm and cube. and by iterative bisection for antilog, square root, and reciprocal. Comparison with the
other obtamed bounds is presented later in this paper. Unfornately, the extrema appear to be “broad”, and
convergencee is slow, so the other methods discussed in this paper seein clearly desirable in most cases. While

these other methods cannot usually get the tightest bounds, the difference is usually not much.

A strong local maximum found by the optimization process is guaranteed to be the global maximum over
all quadratic curves, because the function being optimized is convex. To see this, note for the upper bound
for instance

(Ba,+(1-0),)ia” +p?) + (Ob, + (1-0)b)u
+ max <M[f‘(x)-(0¢il+( l-()).xz)x'-(I)blrtr(l-ﬁ)hl)x]

m<x

[f(x)ull\(z-hlx]

i 2 ? .
< al(o +u )1+ bl“ + LR \ t
1[l(x)-;lr,_x‘ -bzx]

+ao"+p7) + by + X ey

since max(fix) + g(x)) < max(fix)} + max(g(x)).

FFor our standard examnple, we found the opumal guadratic bounds to be 3.00 and 3.10.

9. Improving accuracy with outliers and statistics on subsets

We can tighten bounds it we know additional information about a set of data valucs. We may know a few
extreme values on the range (outhicrs), and be able to remove these points from the analysis of the rest of the
points. This helps a good deal when m and/or M are uanusually unrepresentative of the distributic » (and
notice how frequently we have used m and M in our tormulas). With the outliers removed, the remaining
values can have a narrower range, on which the function can be better matched by a lincar or quadratic
approximation. Thne transformed values for the known outliers can then be added to the total mean or total

variance in a final step.

But we can gencralizc this, We can improve accuracy of bounds any time we know mcans and variances of
arbitrary subsets of the original data values. We may then estimate statistics on the transformed values for

cach subset and combine then with the appropriate weighting.

9.1. An example
For instance, from [8). there were 6133 merchant ships with United States registry in 1982, of an average
gross tonnage of 3120 per ship, Of these, 2941 were fishing vessels, of average tonnage 199.6 giross tons; 548

weie cargo ships, of average tonnage 9790 tons; 361 were tankers, of average tonnage 2670 wns. Henee there
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were 6133 - 2941 - 548 - 361 = 2283 other ships of average tonnage [(6135%3120) - (2941+200) - (548*9740)
-{361*2670)]/2283 = [19.130.000 - 588,00 - 5. 340,000 - 965,000] / 2283 = 5320 tons.

Now suppose we want the mean of the logarithms of the tonnage values. Consider the upper bounds on
cach of the four disjoint subsets. These are just the logarithms of the means, or 5.30, 9.21, 7.88. and 8.57.
Hence the total upper bound is  the weighted mean  of these  upper  bounds, or
[(5.30"'29-’1l)+(9.21‘548)+(7.88*\\()1)+(8.57*2.’.83)] / 6133 = 7.018. 'This should be compared with the
upper bound derived from the mean of the entire set, In(3120) = 8.03, so the subdivision data gave us a

significant improvement,

Unfortunately, we do not know anything about the maximum and minimum tonnage of classcs of ships, so
we cannot get a cumulative lower bound. However, we know m=100 for this table, and M =200,000 is a
reasonable figure from knowledge of merchant shipping, so a global fower bound is found by

a = (3120-100)/¢200000-100) = 0151
lower bound is In(100) -+ «(In200000)-1n(100)) = 4.60 + 0151*7.60
= 4.60 + .115 = 4715

9.2. Proof of desirability of subdivision for linear bounds

It can be proved that lincar bounds on the mean are never worsened by using such subset statistics.  This
can be scen graphically in figure 9-1. We consider here the case of binary subdivision, and further
subdivisions can be covered by extension. We also consider only functions concave downwards, but te other

case can be handled analogously.

First consider the lower bound. If the ranges of the subdivisions are the same as the full set, then the two
lower bounds must lic along the same line, and their weighted average must lic along the line too; hence the
lower bound of the full set is exactly the weighted average of the two lower bounds. If one or both of the
subsets has a narrower range of values than the full set, this can only increase (imiprove) the lower bound since
a secant across a subrange lics fully above a secant across a range containing the subrange. Hence the lower

bound cannot get any worse in this subdivision summation of lincar lower bounds,

The upper bound also cannot be any worse. This time range reduction within a subset does not matter
because the upper bound is constrained to lic along the curve of the function, which is independent of where
i is sliced.  The weighted average of the two subset upper bounds is a point along the line connccting two
points on the function curve. But since the function is concive uownwards, this point is always below the

function. Butsince the upper bound on the full setis constrained to lic on the curve, the subdivision process

always guarantees a better upper bound as longe as the two sebdivision means are different, and no worse if
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they are not different.

10. Exploiting order statistics as well

So far we have only assumed knowledge of the maximum, minimum, mcan, and (sometimes) standard
deviation of scts of data values. [f we have additional statistics on the data values we can do a better job of
estimating statistics on the transformed values, In this section we discuss using order statistics {¢.g. medians
and percentiles). Order statistics have the nice property that they have one-to-one mappings from the original

data values to the transformed values under the monotonic transformations we are assuming.

10.1. Using the median

First, assume we know a median in addition to the maximum, minimum, and mcan. We can often get an
immediate improvement in the bounds on estimates. |.et the error curve (lincar, quadratic, or whatever) be
e(x). Then the median can be thought to partition the points into two cqual-sized subranges (assume the
number of points to be large enough so that even numbers of points don’t bother us). Then an upper bound
on the mean of the transformed valucs is the cstimate given by the approximation curve plus onc half the
maximum of the error curve in the range to the left of the median plus one half the maximum of the error
curve in the range to the right of the median. ‘the lower bound on the mean is found substituting
“"minimum” for "maximum” in the above rule. Thus knowing the median decrcases the influence of extrema

of the error curve.

10.2. Other order statistics

We can generalize these ideas to the situation where we know arbitrary order statistics on the original
distribution. Denote these statistics as r pairs of the form <xl,fi>, where fraction fl of the items in the
distribution are claimed to lic to the left of value x.. Then we can generalize the formula of section 5 as
follows:

upper bound is <estimate from approximation curved 2‘.lsl5r[fi mlnxr[““ilc(x)]

H LIy A f e . v 11 At aS . *
lower bound is <estimate from approximation curve> - £ [rlgngr maxxH(«xl[c(x)]] A
where e(x) is the crror curve a(x)-f(x). X, 15 defined s m. with fO:(l. and the X, is defined as M (with
corresponding f of 1). Thus the effects of the extreme points of ¢(x) are "diluted” by their fractional

coefficients, and the more order statistics are known, the tighter the eventual bounds.

Under certain circumstances we can simplify the above formulae considerably.  If we know cven-

subdivision order statistics (i.c., f‘ = /10 the number of order statistics), and if the crror curve ¢(x) is

monotonic, then the maximum and minimuam ot ¢(x) in cach subintersal hetween the order statistic ordinates
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X, must flie at the endpoints. So if ¢(x) is monotonic increasing, the upper bound s {2, <.I<mc(xi)]/r and the

lower bound is [2 c(xl,])l/r: and vice versa if egx) is monotonic deereasing, Hence the absolute range

I<hi<m
between the uppcr—b(—)und and lower bound s always the same number, |c(xm)-c(x0)|/r = je(M)-c(m)|/r.
(Note that Taylor-serics quadratic approximations are monotonic if c(mX0<e(M) or ¢(M)XXe(m), conditions
which occur frequently.)
10.3. Order statistics and the standard deviation

Order statistics are also helpful in estimating the standard deviation of the transformed values, especially
order statistics for thic leftmost and rightmost subranges of the interval. Recalling the bounds lines drawn
through the mean of the transformed values in section 4.2, we had to draw them so they lay entirely above the
curve to one side of the mean, and entirely above on the other side, and this is a highly conscrvative
assumption. Assume » is known precisely. We could probably get a better bound if we knew how many
points lay to the left of some Xy, and the drew a secant of f{x) trom the tansform mean to it, rather than from

the transform mcan to m; or if we knew how many points lay to the right of some x__, and drew secant from

r-

the transform mean to it instead of M. Sce figure 10-1,

The estimate of the standard deviation of the transformed values obtained from these lines is just their
slope times the original standard deviation. But to get a bound, we need a correction for the points lying more
extreme than the new point of intersection.  Consider the example of curve concave downwards like
logarithm, and take the upper bound line from the transform mean to some point to the left; call the point X
and let it be an order statistic so that fraction p of the distribution lies to the left of it. Assume the mean of the
transformed values is known exactly. ‘Then the correction for a bound correspomnds to the situation where all
the p points are at m, which means a difference in the variance of

p*[(Rp)-fm))’ - [(v-m)*(1()-fx )/ x|
where ¢ is the number which maps functionally to the mean of the transformed values. Hence the expression

for the upper bound on the standard deviation is

[0+ (IR Fx /) + p*(Re)-fm)) - pelee-m) (o )-fix N/ w-x )}

So using such a bounds line can give a better slope, but one pays a penalty of a correction term which
subtracts from the slope improvement. An obvious question is under what conditions use of the vrder statistic
helps. It turns out this has a surprising answer when v is known exactly. Denote the two slopes as S and Sy
ie.

S = () mP/p-m).s | = (w)-fix )V (v-x))

we can rewrite our expression for the upper bound as

N ) ’ ns
b prs Mem) Spts He-m)’)

llo”+ o)) *

0




27

.
),., .......... P .
'
. L]
: .
. 4
Al )
N N
. \
: '
i [}
: :
. S
. 8
- L[]
F Lo ;o
. v . N
.o . [
. ‘ : [
. ' \ '
Lo P
. : :
. L ‘. ;'
(z)‘o\

(= %5)

Figure (0-1:  Exploiting order statistics for a better bounds on the standard
deviation




28

. . . 2
This will represent an improvement on the finear upper bound [o” +(p.-y)2]slzn f

lo +(p. vy l\‘ >|a (e vy ] "xh+ P 7 Hw-m) - p‘sz)“(u-m)2

nm

or [o +(u-py )]l oy ])p*l\ AT -m)y’

So the slope terms cancel, and use of the order statistic <xl,p> is going o be helpful when:

[0 +(u- v)]>P (- m)’
‘orp< [(o +(p- u) V(v- m) J

This result is_indcpcndcnl of where the order statistic is within the distribution (x), and depends only on the
standard deviation and minimum of the original distribution, and the mean of the transformed values. The
corresponding result for the rightmost order statistic is

p <l(0?+(ur)V(M-»))

where p is the fraction of items to the right of x .

If we know other order statistics than just the Iefimost and rightmost (x1 and xr_l) we can get better bounds,
though predicting the improvement is ditficult. For instance, if we know x,, we can take a line from » to x,,
and estimate the contribution to the correction factor from the items between X, and X, differently than the

contribution of itcms between m and X

10.4. Adjustment of standard deviation for an inexact transform mean

If we do not know the exact mean of the transtormed values, ¢ = flr). we must adjust these results. Let
the bounds on the transform mcan be v, and Vi as in section 4.3, Assumc fix) has a negative sccond
derivative. The forimula for the upper bound is

o2+ (e IR N/ e-x I + p*(w)-fim))? - p*{(e-m)*(1w)-fx )/ (w-x PI

Since v <p, [[az+(p.-v)2] is monotonically decreasing with » in its range. The rest of the expression is the
difference of a term and the difference of two others. The first term is monotonically decreasing with
increasing » since the sccond derivative of the curve is negative. 'Uhis represents the second moment of fl
items grouped at m on the curve. As v increasces, the possible distance these items could be oft the bound line
increases, and their relative weight increases as flv) becomes velatively Targer than {{m). Hence since this
correction term is subtracted from the slope, the cffect as ¢ increases will be for all the terms to decrease.

Hence the adjusted valuce for the upper bound on the standard deviation of the transform valucs is just

[[a +(uev VI ROV, x)]2 + PH(fty, )-fm))’
Py, -m)‘u(u )ﬂx ))/(u <Y

substituting Y for v in the exact-v furmula.

Similarly, we substitute v, for v to get an adjusted lower bound. Analogously, we handle curves with a

positive sccond derivative by substituting ») for » for an upper hound, Yy for » for 2 lower bound.
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! 10.5. Quasi-order statistics from the standard deviation
If we know the mean and standard deviation of a set of data values, we can use Chebyshev's inequality to
. bound the number of items lying more than a certain distance from the mean. This information is like an
order statistic, but since it only represents an upper bound on the number of items in a region and not an
exact number of items, it must be used carcfully. It can only be used for partitions of the interval of interest
into two parts, the subinterval of points farther than a certain distance to the left (or right) of the mean, and a
subinterval of all other points of the interval, It can also only be used for an upper bound on the mean of the
transformed values. given g, when ¢(x) has a maximum on the first subinterval that is more than the
maximum on the second, or for a lower bound when ¢(x) has a minimum on the first subinterval that is less

than the minimum on the second.

Actually, Chebyshev's incquality in the standard form (that only a fraction 0%/D? of the points of a
distribution can lie greater than distance D units from the mean) is not the best inequality we can get, since it
refers to both tails of a distribution, and we arc only concerned with the number of points in onc tail. Only
o*/(a?+ DY) points can lie to the left of a point 1D to the left of the mean, or lic to the right of a point 1) to the
right of the mcan. To sce this, note that if fraction fof the points lie to the left of a point ID units to the left of

. . . bl .
the mean, then their weighted second moment about the mean is at least 1), which must be less than o But

in order for the mecan to be at the place it is, this fraction £ of the points must be compensated for by (1-f)
points R units to the other side of the mean. For maximal f, these other (1-f) points must all be at the same
location, for otherwise they would have a nonzero variance which plus their mean would add to the variance
of the whole distribution, and would require a lower maximum f. Hence we have two equations to solve
simultancously:

M? + (1-HR? = ¢?

fD-(1-HR =
which imply

R = Df/(1-), /(1) = 6% f = 6’ /(a2 + DY)

Using this result, we then can put bounds on the mean of the transformed values of

upper l;oung: ﬂu)) + .SUZF'(p,)
P4 Zywos. N
+ (o 2/(a 2+ II) 2) ‘ln(’nxms)(sﬂ_”(afx))
+ (I) /(o +~ ¥) nmx“»n{‘g‘“(&(x)).
provided the first max value 1s greater than the second

i ) lower bound: f{p) + 562" ()
. + (oi/(ozj I)"’)*minmﬂ<“_”(C(x))
+ (I /(0"+|)L)‘Illillli—)<_ <“(c(x)).
provided the first min v;’lluﬂ; Tess than the sccond

These are the left-sided bounds; we can also get analogous expressions for bounds nsing points on the right of
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a distribution.  Unfortunately, we cannot find optimal values of D for these formulas because they the

derivative cannot be applicd.

Note that while it may be ditficult to determine for an arbitrary ¢(x) whether the maximum in onc interval
is greater than in another, the Taylor-series quadratic approximation often always has this property for cither

the left-side or nght-side rule.

v

10.6. Evaluation of quasi-order statistics from the standard deviation

Let us return to the analysis in scction 5.3 of our standard example with the quadratic Yaylor series
approximation at g. Choose as subintervals 10<<{x<33 and 33<x<100, so ND=133-23=10=0. Since the
crror curve is monotonically increasing (e(m)<c(p)Xe(M), and no ¢'(x)=0 except @) the maxima on the
subintervals arc at the rightmost points, and the minima at the leftmost.  Hence the maxima are
¢(33)=3.50-(3.14+ .435-.106)= .03 and o(100) = 3.7. Similarly for the other bound, choose D=5, 10<x<18,
and 18<x<100; and the minima are ¢(10)=-12 and ¢(18)=2.89-(3.14-.217-.023)=-.01. 'The maximum
fraction f for x=33 is 102/(102+ 10%) = .5, and for x= 18 is 107/(10°+5%) = 8. Hence the revised bounds on
the mean of the transformed valucs are

lower: 3.06 - .5*.03-.5*3.7 = 1.20
upper: 3.06 - 8*-.12 - .2*-01 = 3.16

which are better than the bounds obtained in section 5.3,

D is a parameter here that can vary arbitrarily. Let us find the best value for it, for the case of a Taylor

series approximation where ¢(x) increases with x, and a lower bound:

0=2a/0D [(02/(0 +D? N ® o) + (1’ /(o i ) * e(M))
0= a/al)uo *o(p-1)) + D2 *L(M)]/(o +DY)
so o’ a/anmp 1)-Au)-DE(p)-. il) t'(w) + [’I)"‘C(M)]
=[o’ Tp-D) - ) - DE() - S ()] + D’e(M)] * 2D
Hence o° F(u-D)Flp) D)) + 12D *L('\/‘)!
= [o”[f(p-D) - fm) DI() - SDF ()] + DPe(M)] * 2D
or 2De{m)(1- ? Y/ o
= F(p-D) + (12D () + DA () - 2D D) - 2DRp)

which we can solve by iterative methods to find the best value of .

10.7. Splines and order statistics
We have not referred to splinc approximations in the preceding analysis because if an approximation curve
is divided into picces with different properties then we must know how many data points arc in each to

calcutate means and standard deviations on the transformed values. One might think that for a given sct of

order staiistics on a distribution we may be able to create a spline approximation broken at the points at which
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the order statistics are sited, and use that for bounding. But we still need o know means of every subinterval,

the knowledge discussed in section 9, which may be difficult to obtain. Thus splines may be difficult to use.

11. Using fits to known distributions

As a final kind of information which we might have about a sct of values, we might know that their
distribution is close to some well-known distribution, with a certain allowed tolerance.  If the tolerance is
small we can expect quite tight bounds on the transformed values. But estimating statistics this way requires
special preparation in advance (namely, measuring fits to a predicted distribution). and is not possible with

most data presented in atready-aggregated units.

11.1. General formuia for known distributions

A well-known result (e.g. [3], section 7.3) gives the distribution of the transform of some probability
distribution p(x), under the transformation function fix), as

q(y) = p(f1 () * 1dr (y)/dy)

as a function of y, provided fis cither monotonically increasing of decreasing in the interval.

So for instance if our p(x) approximates a uniform distribution on the interval m to M, g(y) = (/(M-m)) *
ldf‘(y)/dyl. For f{x) = In(x), q(y) = ¢}/(M-m) on the interval y=In(m) to y = In(M); an estimate of the mean
of q(y) is

fya(Wdy 7 faly)dy = {(In(M)-DM - (In(m)-1ym] / (M-m) = 1 + [M (M) - m In(m)}/(M-m)
and an cstimate of the sccond moment about zero is

Iy’ qdy 7 faey)dy = [Mn(MD*In(M) - 2 In(M) + 2] -
m{in(m)*In(m) - 2 In(m) + 2}} / (M-in)

which minus the squarc of the estimate of the mean gives an estimate of the variance.

For p(x) uniform, f{x)=1/x, q(y) = l/y7(M~m) on the interval y=1/M to y=1/m; an estimate of the
mcan of q(y) is
[In(1/m)-In(1/M)] / (M-m) = In{M/m)/(M-m)

and an cstimate of the sccond moment about zero is (1/m - 1/M)/(M-m) = 1/mM. henee an estimate of the

variancc is

1/mM - [In(M/m)/(M-m)}2
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11.2. Handling inexact fits to distributions
We have not addressed how to get bounds on means and standard deviations. We can do this by defining
an "upper fit” wand "lower fit” w; on the discrete setof n vatues x; such that

wi- = max [x - gl], w; = min [xl -2l

where j’_géo p(x)dx = (i-.5)/n, and p(x) is the distribution the X, fit to
In other words, the fits are the maximumn and minimum deviations of an X; from its value predicted by the

approximating distribution p(x).

We can exploit the assumed fuct that tix) iy monotonically increasing or decreasing o say that the
maximum and minimum of the iean of the tansformed values occur when the X, are all at w orallat W
from their predicted positions, not necessarily respectively. This is because less than an extreme deviation for
one point cannot improve prospects for a more extrame mean; all point deviations are independent of one
another, within the tolerances. Hencee to find the extreme values of the transtormed mean one just calculates

the means of

qu{y) = P[f]()‘)'wl b1 )7dy] and
q ) = Pl e, T () dy

We can usc this same approach to get bounds on the standard deviation in the manner of section 4.1, We
. - Rl - . . . . .
justdefine a g(x) = [1(x)] as @ new tansformation function, and compute the above formulac with g instead
of f.We then compute hounds on the mean, square them, and subtract this interval froin the interval

computed on the mean ot g(x).

11.3. Example of inexact distribution fit

Suppase we know the distribution of x fits an even distribution on the interval 10 to 100, to such an catent
that a point is never further than 2 units in advance of where it would be in a perfectly even distribution, and
never more than 3 units behind, Then the maximum-mean distribution is a uniform distribution from 12 to
102, and the minimuwm-mean distribution s a uniform distribution from 7 to 97. Suppose we want o find the
mean of the fogarithms of these data veies. Using the formulac we obtained in section 11.1, the mean of the
first istribution s [102 In¢102) - 12 1n(12) - 102 + 12]/ (102-12) = (472 -29.8)/790- 1 = 5.02 -1 = 4.02; and
the mean of the second distribution is [97 IO - 7 In(7) - 97 + 7] /(97-7) = (@43 - 116)/90-1 = 478-1 =
378 Hence the mean of the transtormed values is between 3.78 and 4.02, corresponding to antilogs ot 44 and

S6. Note the mean of the original values must tie between (102 +12)/2 = S7 and (97+ 7)/2 = S2.

For an estimate of the standard deviation we use the formula previously derived for an estimate of the sum

ot the squares, namely
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IMlIn(MY*IngM) - 2 In(M) + 2]\- mIin(m)*In(m) - 2 In(m) + 2]} 7 (M-m)
= [M(ln(M)-l)2 -m(l.n(m)-1) )/(M-m) + 1

For the uniform distribution 12 to 102, this is

[102(3.62)° - 12(1.48)2]/90 + 1 =(1338-26.2)/90 + 1 = 15.61
and for the uniform distribution 7 to 97 this is

[97(3.57)2 - 7(.945)2]/90 + 1 = (1235-6.25)/90 + 1 = 14.58
From‘ the previous paragraph we know bounds on the mean of the transformed values are 3.78 and 4.02,
hence bounds on the square of the mean are 14.3 and 16.2. Fence bounds on the variance are 15.61-14.3=1.3
and max(14.58-16.2.0) = 0. Hence bounds on the standard deviation of the transtormed values are 1.14 and
0.

12. Small populations

Thusfar we have not made use of the size of the data population being analyzed. l his is only significant if
the population is particularly small, in which case the known maximum M and minimum m (and the median
and mode too. if known) are a nonncgligible proportion of the points of the distribution.  For instance, the
lincar bounds represent in general the two extreme cases where (a) all the points are grouped at the mean, and
(b) ol the points are at the maximum and the minimum, Knowledge of M and m thus decreases the distance
bewween lincar bounds by a factor of 2/n, n the size of the data population, since it represents a weighted

modification of case (1) by two points from case (b).

13. Some experimental comparisons of the various bounds formulae
We have run some simple experiments ot the cflectiveness of our bounds formulae »n the mean of the
transformed values, We wrote programs in INTERLISP-VAX., We used two test functions, fix)=In(x) and

fix)=1/x. For the experiments we computed upper and lower bounds derived the following ways:
e sunple lincar bounds (section 3)
o Taylor-series quadratic bounds, series around the mean (section 5)
o | agrangoe-Chebyshey interpolation quadratic bounds (section 6)
o -or the reciprocal only, the one-sided quadratic hounds (section 7)

e Order-statisuc bounds from the Chebyshev-ineguality, using a Tavlor series around the mean
(~eetion 10.5)

o Best quadratic bounds found by explicit optimization on quadratic coefficients aand b (section 8):

‘:“[1‘(x)—.’|x"~hx~cl
il x)-an"-bx-c]

uppet bound: .|(o'ﬁ+p,?) b B o max
hl ) .
lower hound: (o +p" )Y 4 bpe + ¢+ min

m<ox

m<g

- ‘—ﬁ’ Ve M e - e —_—

r— b — e
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We discovered that our results for optimal hounds for the reciprocal curve weie identical {except
for roundott crror) o those tor one-sided bounds, so we have omitted the former from the
reciprocal table. Untfortunately, we have been unable to prove the connection (that is, that the
one-sided bounds are indeed the opuimal ones). though we strongly suspect it
Results are contained in figures 13-1 and 13-2. Since the closed-form expressions are simple computations, in
a computer implementation it is advisable to try all the different bounds methods, and take the minimum of

the upper bounds to get a cumulative upper bound, and the maximum of the lower bounds to get a

cumulative lower bound.

14. Application to correlated data
An application of these ideas 18 o estimation of statistics of one attribute from those of another if the
attributes are known to have a nonlincar correlation describable by a monotonic function such as we have

been analyzing. We can then bound  statistics on one attribute from statistics on the other.

15. Direct optimization

We should note there is another kind of optimization that can be applicd to problems of this sort. We can
make the optimization variables the values thamseh es of an unknown distribution and perform a constrained
optimization with objective tunction the statistic on which bounds are desired, and with constraints the values
of known other statistics. Conceptually, this is a nice approach since it can be applied o arbitrary states of

prior knowledge and can bound arbitrary statistics.

We have done a number of experiments which we do not hinve the space here to discuss, and the idea scems
to work. However, we have found that this "direct optimization™ is highly sensitive to optimization methods,
starting  points, and step sivzes, and is surprisingly  difficult to get convergence for; unlike quadratic
optimization, the funcion optimized is not usnally convex. But there is an even more serious problem with
direct optimization, a very fundarmental ong: it only gives lower bounds on upper bounds. and upper bounds
on lower bounds, unlike all the other bounds discused in this paper which are upper bounds on upper
bounds, and lower bounds on lower bounds, For instance, for our standard example we found a lower bound
on the upper bound of 309771 on the mean of the logarithis from direct optimization, but we have no idea
how much larger a bound is possible up to the quadratic-optimization bound of 3.10I83 which represents an
absolute limit. Thus the utility of direct optimizatien 1s gquesttonable in bopunded statistical esumation,, and
we do not sec it as a challenge to the methods developed m this paper. (It does provide a useful tool for

debugging the methods. however, since for instince any supposed bound we tind less than the upper bound

on the lower bound is in error.)
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16. Conclusion

We have descloped some quick closed -fornm expressions for bounds on the me.an and standard deviation of
a finite set of transformed numerical data values, where the tansformation function has derivatives of
constant sign in the interval ot interest. In making these estimates we use only statistios on the original set of
data values, and no actual values themselves. Qur bounds provide a useful diternative o often difficult-to-
obtam confidence intervals, reguiting no distributional asstmptions whatsoever. Such bounds arc likely to be

fietpful tor exploratory data analysis as an aid to getting a feel for the data, prehminany to detailed hypothesis

testing.
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