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Abstract

-'Wc investigate absolute bounds (or inequalities) on the mean and standard deviation of transfbrmed data

values, given only a few statistics on the original set of data values. Our work, applies primarily to
transformation functions whose dedvatives are constant-sign for a positive range (e.g. logarithm, antilog,

square root, and reciprocal). With such functions we can often get reasonably tight absolute bounds, so that

distributional assumptions about the data needed for confidence intervals can be eliminated. We investigate a

variety of methods for obtaining such bounds, first examining bounding curves which are straight lines, then

those that are quadratic polynomials. While the problem of finding the best quadratic bound is an

optimization problem with no closed-form solution, we display a variety or closed-form quadratic bounds

which can come close to the optimal solution. We emphasize what can be done with prior knowledge of the

mean and standard deviation of the untransforned data values, but do address some other statistics too.
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1. Introduction

Standard transformations of numeric data values such as logarithm, antilog, square root, square, cubc, and

reciprocal are frequently appropriate as a prelude to statistical analysis of finite data sets [7]. Sometimes,

however, tie data are already aggregated into counts and means, and the original data values lost. This

happens when the original data is too large to handle and/or contains sensitive information, as the

U. S, Census, which publishes much of its data as aggregates. We may also deliberately create "database

abstracts" of aggregate statistics to facilitate quick statistical estimates by "antisampling" methods[10].

Statistics on the transformed values cannot be calculated uniquely when the original data is so preaggregated1 .

But if we are doing exploratory data analysis [13, 6], an estimate of a statistic on the transformed data may be

all that we need. We address one set of methods for obtaining such estimates, by finding absolute

(unconditionally guaranteed) bounds on the mean and standard deviation for data under some common

transformations.

Absolute bounds are the only true "nonparamnetric" form of estimate, and as such have advantages.

Compared to "reasonable-guess" estimates [9], biasedness of the estimator need not be dealt with, while at the

same time providing numbers close to the true answer for this category of problems. As [71 discusses,

confidence intervals for the mean and standard deviation of transformed data are difficult to obtain and

methods are subject to exceptions. and thus absolute bounds easil, obtained are appealing, Tight enough

absolute bounds can be equivalent to a good estimate. An estimate of a statistic can also be logically incorrect

when bounds are tight, i.e. it may nt be a statistic of anly possible distribution consistent with the constraints.

Bounds are useful for other reasons as well. Some algorithms exploit only bounds, as the "branch and

bound" methods of[41 for retrieval of information front a database. Other advantages we have investigated in

previous work [10, 11, 121. In addition, the mathematics of absolute bounds is straightforward and requires

only elementary calculus.

Our approach is to give a variety of bounds formulae for the same estimation situation. In general, we do

not know which of several boundinxg methods %ill be the best for a problem, and this suggests the program

architecture of an artificial-intelligence "production system" ill. We can combine results by taking the

minimum of all die upper bounds. and the naxinltim of all die lower bounds.

a1

I I:en f the data is iransfoinicl befoic b-,in. : 121clied. there .1re still rnlln ti'oom to wsant qstils oil the Intransiornied data. To
use ihe t1w o aIntic of[71. it 0i, tctuil Il sli 1N ALl i1 m the , l , Oc f 1 it tiCs. 1u 'l I" l. Cn be InlCItC lCt, ill Si,,lloll cs On tile cibc of
thA., the nicaningfil qiLanutit of ttal volutrlh
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2. Our approach
In this work we examine transformation functions whose derivatives have a constant sign in the interval of

study. (We may be able to relax this restriction in particular cases, however: usually only a constant-sign

second derivative is necessary. Chapter 3 of[5] discusses detailed restrictions, in particular the notion of

function convexity, for tie material we cover in section 3 below.) The so-called "po" xr tranformations" and

their inverses[2] satisfy this constant-sign restriction for positive data values. Six common power

transformations are log, antilog, square root, square, cube, and reciprocal, and these will be our primary

examples. Logarithm is particularly important because the mean of the logs is the log of the geometric mean

of a set of data values; reciprocal is also important because it provides the key to handling quotients of

random variables. To summarize the six example transformations:

Function first deriv, second deriv. stecIest point

In(x) + left side
ex  + + right side
I/x + left side
x2  + + right side
x3  + + right side
1/x + left side

We shall assume the following statistics on the original (untransformed) data values are known:

" u, the mean of the values (or equivalently, the sum of the ValIes and the number of values)

" m, the minimum of the values

" NI, the maximum of the values

Even when we do not k now the minimum and maximum exactly, we can often assume extreme "safe" values

%hich the minimum cannot be less than and the maximum cannot be greater than, and which we can use in

our ,rmidae. So it is reasonable to bclieve we can always come up with a ninimum and maximnum for a set

of values.

In much of what follows we also assume the following is known:

o a, the standard d'\iation of the \alucs -- defined as X1-<Kn(xi-jt) 2/n. inst:etd of the more
conventional formula " ith a denominator of n-I

Note we use the symbols iL and a to emphasi/C that we are consider finite data populaiions, which are not

necessarily samples of anything.

We shall ignore liiCar transformalions of variables as a preliminary to alplying po\ er functions, since

ij _____
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these can be handled trivially. For instance, ftx) - h)(ax + b) can be ana]yzed by defining y ax + b and

analyzing g(y) = ln(y), where ity= a1t + b and ay = aax.

Our basic idea is to find functions that are (a) entirely above, and (b) entirely below the curve of the

function on the data-value interval. We shall consider two important cases: bounding curves that are straight

lines (sections 3 and 4) and bounding curves that are second-degree polynomials (quadratics) (sections 5, 6, 7,

and 8). Subsequent sections consider extensions to this framework: use of subset means and standard

deviations in.section 9. use of order statistics in section 10, use of distribution fits i I, I d adjustments for

small populations in 12. We conclude with some simple test experiments in section 13

3. Linear bounds on the mean

3.1. Overview

For straight lines, one curve can be a tangent to the curve at some point (for convenience, the mean); the

other a secant of the curve through it at the nminimum and the maximum. For curves with negative second

derivative like logarithm and square root, the tangent is an upper bound, the secant a lower bound; for curves

with positive second derivati\e like ,intilog and reciprocal, the tangent is the lower hound and the secant the

upper. These bounding lines map directly into bounds on the mean and standard deviation, for note ifax + b

> ffx) for all x in a range, f some transformation functions satisfying our restrictions, and F denoting

expected value, then

E(ax+b)> l'((x)), or
aE(x) + h > F(fqx)), or
aj. + b > F(Rx))

F(ffx)) being the quantity we are interested in bounding.

3.2. Linear bounds on the mean

let us apply these ideas to the mean of transformed values (see figure 3-1). The tangent to fRx) at t± has
equation

y = x * I/)--[(O L *F/)
I his leads to a well-known bound (gcnerali/ed in [5], p. 70):

1A /A) +i NO~ - IL* r(101 qR[)
On the other side of the curve, the secant through the maximum and minimum forms a bound. "'This line has

equation

y = x * [(lM)-flmn))/(N-n)1 -[f(m) - m * [(fM)-r(m))/(M-I)Jj

which corresponds to the hound
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*[(ffM)-fjn))/(M-m)I + [f(m) - in * ItM-~)/Mm1

=(IL-in) * [(R~ M)-fRm))/(NI-m)] + tbn)
=(L-a)fRm) + CLRM) f q11) + f(')m)

where a =(ji-m)/(M-m)

TO give an example, if a set of data values ranges fromn 10 to 100, arid dhe mean is 23, tie mncan of the

logarithms of the data values has

-in Lipper bound of ln(23) 3.135
a lower bound of 77/90 ln(10) + 13/90 ln(100) -2.635

H-ence the geometric mean of' the original data vALues is between J263 = 13.9 ad e3.13 5 = 23. In general

from these formulae, the geometr-ic mean is betv een tL and m(NM/m)0 : and the harmonic mean is between fL

and 1/[I/rn + 1/M - [L/mM].

3.3. Proof that tangent at the mean is optimal

Note that the bound obtained from taking the tangent at tL is optimal for the conditions we are assuming on

f. ro See this, Suppose we uise the tangent at sonme other point t, i.e. the line y = Rt) + (x-tWr(t). -Ilen the

mean on this bound line IS

EjRt) + (X.-t)C0t1 = f(t) + (,r-t)t(t)

Now we want to find tbe maximum Of this as t varies, so we take the derivative with respect to L and sct it

equal to zero:

r(t) - f(t) + (tLt)tr'(t) =0 =(ijvt)f"(t)

Bunt since we assumed that f had a constant-sign second derivative in the interval of interest, the only way this

can be zero is if tj t. Hence the only extreme value for the bound will be when we ta~ke a tangent at 11- a

minimum for dow nwmards-curving funFctions, and a maximIum 1or upwards-curving.

3.4. Miscellaneous comments

In the case of a negative second derivative. the tangent bound is an upper bound, and the secant bound a

lower bound: otherwise, the reverse. Note the two bounds are related, because they call be rewritten as

R(l-a)n + aI) and
I -a)ftm) + aO NI), where a -- (It-i)/( M-ni)

so they represent intcrchanging of a weighting and functional appl ication.

*Here is a table of the linear bounds for our ';ix comm11on tiansformations:
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Function Upper mean i, a.d Lower nican bound

natural log In(p) (I-a)ln(m) + aln(M)

antilog (1-a)em + acM et

square root A/ (1-a)vm + a -'M

square (1-a)m 2 + aM2  P2

cube (1-a)m 3 + aM, 3

reciprocal a/m + (1-a)/M 1/1

where a = [,u-m]/[M-m]

3.5. Accuracy of linear mean bounds

To illustrate effectiveness of the bounds, we tabulate the bounds for mn 10, M= 100, f=In, and for

.t 19,28,37,46,55,64,73,82, and 91. The "bounds range taction" is the ratio of tie distance between the

bounds to the total range of the function on the values, tie difference between f(M) and fim); it indicates the

quality of the estimate.

mean (A) upper hound loier bound bounds range fraction

19 2.944 2.533 .179
28 3.332 2.763 .247
37 3.611 2.993 .268
46 3.829 3.224 .263
55 4.007 3.454 .240
64 4.159 3.684 .206
73 4.290 3.914 .163
82 4.407 4.145 .114
91 4.511 4.374 .059

It is typical that the estimates are best for extreme [., and the error is worst for a particular value inside the

range. We can calculate this value. Assume f has negative second derivative (the other case is analogous).

Then we want to find the maximum of the finction representing the difference of the tangent and. secant

bounds, or

g(x) (1-a)jim) - atIM), where a = (jL-m)/(M-m)

We find this by setting to z.ero the derivative with respect to p, in other words

dg(ju)/dx = 0 = df i)/dx + fRm)/(M-m)- f(M)/(M-m)
(I) I fM)-f(in))/(M-m)

Or in other words, the riaximumn error occurs for any finction f (that Satisfies our cooilitions) for a mean at

the point where tie tangent to f i., parallel to tile secant t hrough the endpoints. This makes sense because this
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is the point at which t(x) stops "turning away" from the secant and begins turning back towards it. Note by

Rolle's Theorem there is always one such point where the lines are parallel, and the constant sign of the

second derivative ensures that there is never more than one such point.

For specific f we can tabulate the point of maxinum error from this formula. as a function of in and M.

Function Worstp

natural log (In x) (M-m)/ln(M/m)
antilog (c' )  ln[(eM%-eM)/(M-m)]
square root (M m))? /4[ v/M - V11112

square (M + m)/2

cube 4/[11 2 + tn M + M 2 )131
reciprocal ,/(rnM)

The maximum error may then be obtained as If(p) + f"M) -

3.6. Bounds on the standard deviation, given mean

A simple application of the linear bounds on the mean of transformed values is to bounding the standard

deviation of a set of values given only the maximum (M), minimum (m), and mean (p). 1le variance is

computed:

.(x-tt) 2 /n = 10/n- _2

But since square is a continuous function with a constant-sign second derivative, we can bound the second

summation, and hence the bounds on the variance are:

lower bound: 2_P .2 = 0
upper bond: m + (.a-m)(M -m )/(M-m) - p pM + m - mM- p2  ( )(M )

And so the bounds on the standard deviation are:

lower bound: 0
upper bond: v/{(i-m)(M-,)I

We will use this result frlequently.

4. Linear bounds on the standard deviation I
There are two methods we can use to bound the standard deviation of a set of transformed values. First, we

can use the two bounds lines used pr'c iously. hound the sum of the squares, and subtract out the effect of the

mean (i.e. use thc formula Xx 2/n - [1x/nj]). Second, we can construct two new lines passing through fRx) at

the mean of the transformed values.

a7 - ---- '------
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4.1. Sum-of-squares bounds

Bound line y=ax+b has second moment (sum of sqoares) equal to

F[(ax+b) 2
1 = Fla2 x2 + 2abx + b2] = a2(o2+f L ) + 2abh + h2 = (ap +b)' + a 2 2

For our two bounds lines:

tangent: a = '(A). b = [f(p) - p * f(tt)l
secant: a = (fM)-tjm))/(M-m), = [f(rn) -m * [(flM)-flm))/(M-m)l

hence the tangent bound on the sum of the squares is

(a2+j+12)[r(IL)2 14 2,[f'(p)l[fl ) - t * r(p)l + [tQp) - fL * '(I,)I2

= u2Vr(L )12 + [f(P)12

and the secant bound is
fi 2(o 2 +itl2) + 21i4[fRm) - rfl + [f(m) - m/l 2

where # = [f(M)-f(m)/[M-ml

To find bounds on the variance, then, we subtract tie larger of these two bounds from the square of the

lower bound on the mean to get the tipper bound* and subtract the smaller of these two bounds from the

square of the upper bound on the mean to get the lower bound. The standard deviation then has upper

bound the square root of the variance upper bound, and lower bound the square root of the variance lower

bound.

To return to our previous example, suppose fz In, m = 10, M = 100, = 23, and also suppose a = 10. Then

the bounds on the sum of squares are

tangent: 629 * (1/23) 2 + 2 * 23 * (1/23) * ln(23) - 23 * (1/23)]
+ lin( 23) - 23 * (1/23)] 2 = 1.19 + 4.28 + 4.57 = 10.04

secant: fi = ln(100/10)/(100-10) .02558: hence bound is
(.02558) 2 * 629 + 2 * 23 * .02558 * [In( 10) - 10 * .025581 + [ln(I0) - 10 * .0255812

= .412 + 2.409 + 4.189 . 7.010

Now since the bounds on the mean are 2.635 and 3.135 from our analysis in section 3, the bounds on the

square of the mean are 6.95 and 9.82. Hence bounds on the variance are 10.04-6.95=3.09 and

7.01-9.82= -2.81. and bounds on the 'daulard dei~ation are thus 13.09 =1.76 and 0.

4.2. Special standard-deviation bounds lines

To bound the staLndard de'iation of the transformed values we can use different bound lines than for the

* - mean. First, let us assume we know an exact value for tile nean of the transformed data values -- call it '.

I)istance front q to each trusformcd data va.luc is what needs to be linearly bounded, so we use secants

through fqx) at q) (see figure 4-1). We asumc fx) is lllonotolliC, and hence 1 (9) is imique, so let r'(i)=,

(i.e., = fRv)). So to get an upper bound oil the stLod,ird deviation of the transformed values, we use a line

Lh " ---11 . __ __ __ __._ __"___ - -: --t . lhi,,ai
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below f(x) for x<v, and above for x>; and to get a lower bound, a line above f~x) for x<v, and below for xp.

(Vice versa for a monotonically decreasing fix).) Now since we assume Rjx) has a constant-sign second

derivative in the interval, the line segment from m to v must lie constantly to one side of f(x), and similarly the

line segment from , to M. Hence choose the extensions of those two line segments into lines as our bounds

lines. These lines have equations

y = (x-v)(f(y)-f(m))/0,-m) + 11P)

y = (x-v)(f(M)-f(v))/(M-P) + RP')

Now:

YAnd ify = m(x-) + RP) this is:

[[m(x- ,) + f,)- _R,)121 = F[m 2(x-w) 21= m 2 [o + (, - O ') lI

Hence using the formula for the variance, the second moment about the mean, the variance of the

transformed values is bounded by

[a2 + (v-p.) 21 [(v-f(m))/(tL-m) 2 and

and
ja2 + (vP-,)21 _(f(M)-)/(M-p)]2

Hence the standard deviation is bounded by

/[a2+(v-tL)2 ] [(f(i)-f(M))/(v-M)] and
102+(v_ )21 [(2 (+ )-f()/(-m)l

They are upper and lower bounds respectively for curves with positive second derivative, and vice versa for

negative second derivative. Hence the bounds are just an "adjusted" standard deviation of the original values

times the slopes of the lines from the mean of the transformed values to the minimum and maximum on the

interval.

Note since

afr(&) is between a[(f(ji)-f~n))/(p-m)i
and al(t M)-fI i))/(M -1t)), for tC(x) constant-sign

a rough approximtalion of the standard dc i.tion of the transformed values (as opposed to bound) may always

be obtained from af'(v), and this will be increasingly good mn approximation as o gets smaller. Also note that

for a narrow range of mean bounds, the difference between our standard deviation bounds is a rough

approximation of the second derivative of fat ,:

Z, alfM-(,)(- -a[(fRu)-Qin))/(,-nl)] z, 2aftn,

So the width of the bounds varies proportionately with the imagitude of the second derivative at the mean of

the transformed values.

A

,_________________
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4.3. Handling inexact transform means

But this assuntcs we know v, the mc;in of the transforned values, exactly We do for the square function,

for instance. Otherwise there is an adjustment we can make. Let dhe upper and lower bounds on the value V

which maps to the transform mean be v md v u" Then the bounds on the variance of the transformed values

are

rlaxmax < < _ uo +G ±-p)211 l-v)-f(nl))/(v-n) 2.

max, < u l 2 i- (iL-v)2](t(v)-f( M))/(v-M)] 2]

and min[min vl ,, +M.-z)<I]lltl')-f'(n))/(v-nl)]2,

min , < LU ' 4(jL-v),l(f~v)'t(M ))/(v-M )]2

Since max(max(g(x)*s(x)),lax(h(x)*s(x))) i ax(max(g(x)*s(x),h(x)*s(x))) = max(max(g(x),h(x))*s(x)), we

can simplify:

max V 
< , < " [max[(f(v) f( N))/(v-M 1.( t(v)-fm))/( v-m)] 1*a2 + (P-v) 211

and min,, <<,, min[l '(v) f(M))/(v-M)1 2(t'lv)-fl))/(v-m)]2]*[a?+(p,v)2 ]1

First, suppose f(x) is monotonically increasing (like all of our six important functions except 1/x). If the

second derivative is positive, then the inner max is the first uhexpressioa in the first bound above, and the

inner min is the second suhexpression in the second bound. We can then rewrite the formulae:

max, .<V L ( f~v)-fl))/lv-+)I *1+ (IL-) ]

and min, 1, <V<V f(v)f(m))/v-m)?*[? +(

Note that these represent ihe product of tmo fmnctions which are both monotonically increasing with respect

to v. For a monotonically increasing I(x), [L is a lower bound on v. The product of two monotonically

increasing functions is a monotonically increasirm" function. The max of a monotonically increasing ftinction

is the value at the rightmost point, and the Mill i at the leftmost point. So the revised bounds on the variance

of the transformed values, given tQx) increavsina and with positive second derivative, are

Upper: [(RpU)_(M))/( - " ?  ([L_ t )21

lower: [(Rv I )-f(m))/(v1 -n):*ta2 +(ti-v I)21

Similarly it' l(x) has a negative second deritive (again, assuming the first derivative is positive), we can show

by analogour reasoning that the bounds are:

upper: ( f'v )-tfm))/(0v -m)1*[o2  -(._vi) 2 J-

lower: [( f(v , ))/(v " M )j2"[-(L- )2

I Using our example of f= In, .0, 1 00, p 23, a 10, we use the previously found linear bounds on

-. 'k '
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the mean of thelogarithmsof - -.23and 2 -. 5 -13.9. , lencc bounds on the standard deviation

of the logarithms are:

,[10 2+9.1 21[(2.635-ln(10))/(13.9-10)1 -

1102 +0211I1n(100)-3.135)/(100-23)]

both being better than the sum-of-squares bounds in section 4.1.

Untortunately, revised formulae for monotonically decreasing functions arc not as easy. The partial

derivative ofthe bounds expressions must be set to zero and inerted. Consider the case for the upper bound

for a curve with a negative second delivative (like 1/x):

0 = a/af())f(M ))/( -M )l [U -(i-v )? 21
0 = 2[(tP)-f(M))/(,-M) * 1(i(,)(P-M) - (l,)-f(M)) / (,-M) I * +(t-P)

+ [(ffv)-f(M))/(v-M)] *-2(tt-P)

[(f'(,X,-M) - (flv)-f(M)) / (P-1)?l * 10? +(wi-,) •II = (f()-f(NM))/(,-M) * (p-)

which is then solved for P, and the value substituted in the function diflerentiated above to obtain the bound.

Analogously, the other bound is tound by solving

[(f'(v)(v-m) - (fRO)-f(m)) / (v17-)2 ] 1 I 2 +(Lj-v)"l
= [(t()-f(tn))/(,-n)] * (p-,)

4.4. Evaluating standard-deviation bounds

The sum-of-squares bounds of section 4.1 are hard to e%.lutate, but we can extmin the slope-based bounds

of the last section, provided we asstntc P is known exactl',. We ,ire interested in knowing the largest possible

difference between the upper and lov, er hounds for tll exact v, or the Maximum of

D(P) = or2[[( (M)-f(v))/(l-v)l- [( 0 ,)-f(n))/(v-t)II
where a2 = a

2 + ( -P)2

For four of our functions -- x . x , I/x, and Vx -- Lhi, s straightforward to find:

0 x2: D(P) = a 2[(v - M)- , + t1)1 a (NI-tn), so ) is constant.

P: ~v) - u21(12 + vM + MP) - ( 12 4 pm + t 2)1 U2[(M-m) + (M'-m 2 )i. This has
maximum at P = M of o 2(M-m)(2M-m).

,' l/x: X,) -a 2[1/m - 1/TM] = 2(1/m - l/M)/v. this has a maximum at P=m of
2(M-m_)/m; M

* v/x: D(P) = a 2[(l/(VP + /NI)) - (I/( lV + Vm))] = a,(VM- V/m)/(v + (vM-Vm)/i, +
r(mM)). This has a maximnum at , = m of o 2( 0/ Vill - 1/ MY.

For transcendental fiuctions like lI(x) and c' we can attack the phoblen k ith an infinite series obtained

from the Taylor series cxpansiom of the function About v; Alhen the ,'ne is rclttiCly flat in the interval of

interest, the approximation %ill be good.

L i - --f--- . .-...
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D(P) = a2((fqv)-f(M)))/(V-M)- (((P)-l'M))/(",m))I

Ict us expand the first quotient in the brackets into a series.

(f,)-f(M))/(,-M) = f )- [f'() + (v-M)C(u) + (1,-M) 2 r'(P)/2! + ... 11 / (P-M)
= -[fr(v) + (v-M)f"(,)/2! + (,-M) 2C"(,)/3! + ... ]

="i= I to 00[ M) IP '/~

Hence

'=,) =X 1 ( i=IIooof[(V-m) i IO(t)/i!] " (v-M)'' f'(v)/i!J]

We need to take the derivative with respect to v of this in order to see if it has a maximum in the interval. The

condition for the maximum is thus:

0 = ito oo[[(v'm) i (v-M)i-II ti + ()/(i+ )*(i-1)!)J

To approximate this we can take the first few terms:

0 = (M-m)r'(,)/2! + (2v(M-m) - (M +m)(M-m))f"(,)/3!
0 = (M-m)[r'(&,)/2 + (2v-m-M)f'"(v)/6]

As an example, consider f(x) = e'. Then:

0 = (M-m)[e'/2 + (2v-m-M)c"/61 = (M-in)c"(1/2 + ,/3 - m/6 - M/6)

which can be solved iteratively for P.

5. Quadratic bounds on means: Taylor-series methods

5.1. The problem

A straight line is not a very good approximation to a function with a strong curvature. An obvious next

step to improve our estimates of the mean is to constnict quadratic bounds lines of the form y = ax 2+bx+c

and compute the mean along those:

E[ax 2 +bx+c = a(o2+,t2) + bpL + c

However, finding quadratic bounds curves is not as easy as it might seem. We generally cannot just use the

Taylor series about some point of the curC, as with the estimates (not bounds) of[9], because while such

approximations may stay close to the curve of the actual function on some range, they may be above and

below it at different places. [or instance, take the 3-term 'laylor series for Ifx) = hn(x) about x= 1, which is

0 + (x-l)*(l/l) + (x-1) 2*(-I/1 2)/2 = -.5x2 + 2x- 1.5

At x= 2 this is .5, below the logarithm curxe value ln(2) = .69, but at x= .5 this is -.625, above the logarithm

curve value In(.5) = -.69. 1tence the approximation curve crosses ln(x), and cannot be used as a bound on the

values of the latter.

-Lia
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5.2. Quadratic bounding by vertical shifting

There is a way we can use arbitrary polynomial approximations to get bounds: we can shift the

approximation curve upwards or downwards until it no longer crosses the target curve in the interval. To put

this formally for the Taylor series, we want to bound Rx) on the interval m to M by the function

h(x) = f(t) + (x-t)r(t) + .5f"(t)(x-t)2 + K

where t is some arbitrary point in the interval, and K is some constant. If we choose t= 1, (for quadratic

bounds a convenient, but not necessarily best-bound point), then the mean of the approximation function is

E[h(x)l = l(1 L) + (p,-jt)f (t) + .51r2 + - 2p2 + t21 C'(t) + K
= f( ) + .5o2f"(t) + K

If we do not choose t= /L the fonnula is slightly more complicated:

fit) + (IA-t)C(t) + .5(o 2+ (-t)2)r(t) + K

Note for the particular function fi(x)= x2 the Taylor series has only three terms, and hence an exact formula

for the mean of the square of a set of data values is

JA2 + .502(2) = [L2 + a2

The lower and tipper bounds arc tnen found from substituting KU and KI, which are respectively the

maximum and minimum values in the interval of study of the error of the approximation c(x), defined as

e(x) = fx) - ft) - (x-t))f(t) - .5(x-t) 2tr(t)

Since the interval is finite, we cannot just find the zeros of the derivative of e(x). Zeros have to lie within the

data-value interval, and they must be compared to two other points, the function values at the maximum and

minimum of the range. In other words:

Kt is maxle(m).c(M), e(/I), e(z 2), ...1
KI is minle(m),c(M), (l,), e( ), ..

where the 7 arc all zeros ofc'(x) within the intcr al. To find the zeros:

ae/zx = t(x)- f (t) - (x-t)f"(t) = 0
[I'(x)-frtt)I/(x-t) = (t

We always know one solution of the abo'e equation, x = t, because

[no(t- fr(t)l : -t "(to = o

lit there are no other solutions for functions with constant-sign derivatives, implying no other local maxima

or minima for a Taylor-series approximation. To see this, note the equation says the slope of f'(x) from t to

some other point must bc equal to the derivative of tr(x) at t. But this cannot occur if the second derivative of

w(x) (i.e., r"(x)) is constant in sign, because then each value of the first derivative (i.e.. (x)) can occur at most

once.

Hence we can write the Taylor-scries quadratic hound in general as (noting c(.) -0):

A-- ...-
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upper bound: tit) + (,I-t)r(t) + .5( 2+(tL-t) 2
W(t) + max(e(m).e(M),O)

lower bound: ait) + (jI-t)fi(t) + .5(a 2 +(Q,-t) 2 )r"(t) + min(e(m),c(M),O)

For particular functions f we may be able to rule out sonie possibilities for the min and max. For instance,

for fRx)= x3. e(x) is just the fourth Taylor-serics term, (x-t) *6/6, so e(M) > 0 and e(m) < 0. and bounds are

upper bound: t3 + (,A-t)*3tI + .5(a)+(,,-t)I)*6t + (M-t) 3 = 3t(M-L)+ 3t[&+ 2- 2J + M'
'lower bound: 0 + (p,-t)*3t 2 + .5(a? F([t-t) 2)*6t + (m-t) 3 = 3t2(m-) + 3t[oa+, 2 -m2 j +m'

Similarly, e(m)<0 from analyzing the Taylor series for logarithm and square root; O(e(m) for reciprocal; and

0<e(M) for antilog.

5.3. An example

To illustrate, use our previous example of f= In, m = 10. N = 100, t= , = 23, and a z= 10. 'rake the Taylor

series about i. From the preceding we know that the only possible extremes occur at m, M, and ti, so note:

e(x) In(x)- [In(23) + (x-23)/23 -.5(x-23) 2/232 ]
e(m) = ln(10) -[3.14- .56 -. 161 = 2.30-2.42 -. 12 = K1 .
e(t) = In(23) - In(23) - 0
e(M) ln(100)- [3.14 + 3.35 - 5.61 = 4.6 -0.9 3.7 = KU

Which are the bounds offsets we have to add to the estimate of the mean of

ln(23) - .5 102/232 = 3.06

So we estimate the mean of the logarithus is 3.06, with an Upper bound of 3.06 + max(-. 12,0,3.7) = 6.76, and

a lower bound of 3.06 + min(-. 12,0.3.7) = 2.94. [he upper bound is much worse than the linear tipper

bound (3.135), but the lower bound is better than the linear lower bound (2.635).

5.4. Choosing the optimal point for the Taylor series

The question arises as to the best \aluc oft for getting an upper or lower bound. Analysis requires careful

preconditions, but we can often do something like this. Suppose that c(M) is die maximum value of c(x) on

the interval of study. The estimate of the transformed mean from taking the 'aylor series about t is

fat) + (P-t)f(t) 4 5[ + (.-t) 2jf'(t)
= f~t) + (/,-t)f(t) + .51 -+ (,-t)1"t1 + [r(M) - f(t) - (M-t)C(t)- .5( -t)2 r(t)J
= f(M) + (tt-M)f'(t) + .5[" +2 tL-M2 -2itt+ 2Mt)t"(t)j

We want to minimize this maximum error with respect to t, i.e. we want:

o- a/at [I1(M) + (i--i)f(t) + .5[a" +It-M -..tt t 2Mt)jt'(t)J
0 = (.t-M)t'(t) + .5[o1'+ji -M-21pt+2Mt)Jl"(t)j - (M-p)r'(t)
0 = .5G 2+, -M'-2Lt + 2Mt)r"(t)

For a finction with derxtik es constint in sign. this cau nly be zero if the expression in brackets is zero:

0 04-L2 -M -2/Lt2Mt

z •=i.. .. ... il """ --- 1-.-- ..... ...- ,i. . . .-l lIl..



17

t [a2 2 -M2 1/2(Ip-M)
t =[# + M - SM] / 2, where 8M a /(M-1.)

Hence substituting back in the expressio for the bound, the second derivatixe term must disappear, and we

get

RM) + (,1-M)r((j.+ M-S.t)/2)

which is an upper bound prox ided e(M))0 and c(M)>e(m).

By similar analy sis we can show that

t = Lu + rn + / 2, w here S = a2/(/L-m)

is the best t for obtaining the other bound on the c(x) on the interxal of interest, leading to a lower bound of

am) + (,i-m)r((. + m + Sm )/2)

provided e(m)<O and c(m)<e(\i). For a=0 the upper and lower bounds occur at t=(j.+M)/2 and

t=( I+m)/2 respectively: and For a the maximnn,.j[(I-j)(i-m)j. these are both (M-m)/2.

So for the logarithm function ( lhere e(lm)<0 necessarily) It= 23, n =10, and M =100, and this gives for a

lower bound for = (23 + 10 +- .5* 100/(23-10))/2 = 20.3, and the bound is

tim) + (ju-m)tn(20.3) l ln(10) + 13/20.3 = 2.30 + .640 = 2.94

which is negligibly better than fOr Lhe series about I., but may represent an improvement in other cases. In

general, the Taylor series approach works well for nr.oT)iw inter\als of interest or intervals where f(x) is rather

flat. We can, however, use order statistics to improve laylor-serics bounds, see section 10.

6. Quadratic bounds on means from Lagrange interpolation

Taylor series approximation, deteriorate (,n the edges of an approxination interval. We are more

concerned with signed nMxiMnunm dslition of tie approxiniation from the function (a concept distinct from

the 1.o0 approximation, which minimizes the absolute value of desiations), and a better quadratic for our

purposes comes from lagrange interpolation method using the Chehyshev interpolation points. For a

quadratic we need three points to fit the curse thr 1ugh, giving:

h(x) = ffp)(x-q)(x-r)/(p-q)(p-r) 4 )0(\-p)(s-r)/(q-p)(q-r) + fr)(x-p)(x-q)/(r-p)(r-q)
h(x) (8/3(Ni- )2)10p)(x-q)(x-r)- ?fq)( -p)(x-r) -4 l1r)(x-p)(x-q)]
where p = n + (.5- v/3/4)(NI-mn), q (%I I ni)/2. and r - rn + (.5+ V3/-)(M-m)

Using our example of f= In. i - 10. M : 100, It - 23, and a --- 10, we have:

p= 16.029, q= 55.0. r=93.971: 1n(p)-- 2.7744. In(q)=4.0073. In(r)=4.5430
i(x) = -.0002295x 2 I .04 794 x 4 2.0648

Hence an estimate of the mean o0 the logarithms for this example is

-.0002295( 10+ 232) + .04794(23) + '.0648 - .1444 + 1.1026 4 2.0648 3.0710

iI



[his is an estimate. not at bound. Just ats with I'.t\ br-series polynomials, we Call get bounds fr'oml this fromt

knowing die extremta (maximla and minimia) of the error culrse onl the inters a! of interest. For Chebyshcv (as

opposed to t'aylor-series) approximations theic arec two places in the inter-val where e(x)= 0, and hcncc one

local maximum and one local in i im. We c..n findl theCS by solv ing the error curve derivative explicitly;,

for logarithmn and Cube th is is a quadrati~lc eq nAtioim, for square root and reciprocal a Cubic, and fori exponential

a transcendental equation. For exampI fle.11 rou l( x) example:

d/dx[lu(x) - (-.0002295x2 -iF .04794x ± d.0048)] l/x + .000459x - .04794 =:0
hence .000459x? - .04794x + I 0
and x =[.4794 + V' .04794'-.001 830)J / .000918 'S.80 and 75.04

So the extremna of e(x) onl the interVal call occur at onl\ tour points. in -- 10, N1 = 100, 28.80, and 75.64.

Computing e(x) there:

e(10) = -.2 187, e(100) = .04137, e(28'Y80) - .10520, e(75.64) = -.05 193

And hence the agrange-Cheh~i:she\ quadratic homids on the nmc~in of the trausformed values are:

uipper bound:. 3.0230 4 niax(-.2 187. .04 137, 10576. -.0s5193) =3.1283

lower hound: 3.0230 + ntiii(-.2 I1S7, _04 137,. .10520, -.05 193)- 2.81)43

which are better than the lineair hou nd,, 43. 135 and 2.03S (.1 d hew ~c the I it% or series bounds too).

7. Quadratic bounds on means: one-sided m~ethods
T here are quadratic method,, that a~ oid ho llU to 1111d theC CWtCm11i 0fthe er101 unMctioji inl computing all

approximation, by constructn oiitiiou ljjlXl1l lii\ esCltlucl\ tihmk: or eutitel\ helo\ die target function in

the interval. We can do this if' s'e can posititni the putis ()f tersectuon of the ;ipproxiltition curve alx2 + bx

+ C With RX) to lie either (at) odtsid the inet'11 mi o (b) tangenlt it some p)oint. \11iotug our' six demonstration

functions, reciprocal and cube lead to cubic pol1 nonlial1 equations.

7.1. Intersection and tangent positioning: reciprocal

Consider reciprocal first, the error cureC is

e(X) - 1/x - aQ2 - bx - C

and it can have at most three ,eros ss hich ire the solutions to)

0 = aX3 -hx 2 +cx- I

t'o keep the ipprox imitii n m e 'clos;e'' sN e can pit a pint i)ftangency at some t inside thle interval -- i.e., a

douhle iero at t -- ;id an' ther /cto at Ml. We can v mie this function as C(x) = (X/t - I )Nx/,\1 - 1), which

4approaches -00 lort l x. 00- Im or111 aNe s.ciwcs Im local m1,1ifiuiimn at x =t, a local m'linlimumn1 at some targer

x saiand th1mII crosses, /cro pcuiiaiieiitly alt X - \I. Ihlimit we want

Wxt - t)(X/t - I )(x/\1 -1I) ax II hxs I Cx -I
x I /tm -X 2'(2/N f I/M f X(2/t l /\I) I mix; f hK I- cx - I
a =I/C M. 1) r (/tM At lt),C c 21t + I/1M
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So thc quadratic lowerI bound ol (lhe inean is

Cr~~ (2/iNM I ±I/ti)p 1 2/1. 1/0M

We are interested in the best low~er bound po~ili.e. the largesi. Wc can mid this by setting to zero thc

partial derivative of the preceding i, ibh respect ito t:

0 -2(aT2 ±+p2 / 3 M + (Y/iN1 4+ 2/ti),I - ?/t2

0O -(a.,+ tt)/NI (t/NI + I )t-t
t t~l+ t )/\l1/( I - p/NI)

So for a =0 this is It: for a a mniaimm. n1iiiieh V'I( N % (-il (see section 3.6), this is In. We saw this S

term before in at diffecrent kind ofqUa,IItic tIpproI\jIinitionI in section 5.4.

Substituting this InIl the hounid toriotil. kc ctl I quOadlaitic loss r bound of
[(a?)%lIL ± f-l) I(pSt-8 2 /. N(-6\

+ 2 6 1) II \k)

I/NI + [N( (Y -It / It \I - a p / ( N I - It
1/NI + \ (NI -/Ip.a - It

(/M1)IMl-- IL NI -2N1L i/fMIL-a <I
(/MI [.'I? %II - a2 /\ Itp - It - a']

Note that vOCT he0 0 tis is erLIi~l to I / NI \1 / p I/p., the linear11 bound. Since p K5M. a notntero a

will cauIse the denIominator o-f tle traction 10jcr~s prop 0 nion,itel\ more than the denominator, and hence

give a lower bound greater (better ) thin) lh JiM-r 1)(411boud. I he inaiximmi lije of ar is V'f(M-pL)(ji-m)J.

whercuponl S. -- [L-111. anld the 1Oh 1 he ounid I, I /M\ * IM - IlI / IIIn 1/ni1 ± I/NI - p/ItI11V, exactly thle

tipper linear bound for reciprocal (,,cc sect ion 3.2).

Again, let's Use ouir standmrd cxaimple of' In 10, M 100. pt = 23, a = 10, this time fot the reciprocal

fuinction. Then

SM=102/(000-23) = 1.?(9
And at lowser bounld Oii the 11ean11 OfO the ecirocas is

I/100 *- ( 0oo - 1.9)/ (2.1 - .9)-0Pi8

I his is better than the lineair ho%%cr bound. t-rlt ril,d 1as I/pL .0435.

We can get anl tupper qtm~rdr.mt ic bonld b% wfl9\ minlor mlodificationIs: just create a bounding curve that

acroses l/x at i instead tif %I, aInd is' [, ugilt att III tjhe inr~cIrl. WeC just sLstitet Inl lar NI inl the preceding

formiulae, giving?

-In tipperl bounid 01((Y' t/m 2t It "III 2t

a -- -- -~----.-,..- - aw,-'---------- -.
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taken at t = j. - u 2
/(t-ni) = f - 2

which can be written as (l/ni) (i + 8 ) / (/I - 8,) where 6 = a2/(/i-m)

So for our example data, t = 23 + 10?/(23-10) = 30.09. and the Lipper bound is 1/10 - 13/10*30.69 = .0576.

This is significantly better than the linear upper bound of"(77/90)*.1 + (13/90)*.01 = .0871. Hence by using

a quadratic rather than linear bound we have narrowed the range of the answer by a factor of

(.0576-.0455)/(.0871-.0435) = .278.

7.2. Evaluation of the quadratic reciprocal bounds

We can obtain useful approximations of the quadratic bounds by replacing the quotient with the first few

terms o'its binomial expansion, as here for the lo cwr bound:

(/i- 8)
-

1 lilt + 8\i//12 + 82 
3

hence I/M (M - - 8MYZ I /p + (1/1 - I/l/tM) 8
M + (1/t - l/Mp.2)8

= lip + 8\ 1(1//-/M)I Ba - /w/)I

p/p + a 2/Mp1 2 + U4/(M-[L)Nlt
3

Hence the difference between the qutdratic hounds can he approximated by

(1/ni - 1/M)a 2 /l' +- (l/m(nt- 1I) - 1/M(M-J)) 4 /p 3

j( M-rn)a 2/jil I l/nM -4 (m + M -it)u/,mt \l(1m-[L)(kN -I4)

As suggestcd in the previous section, the qtiidratic hotunds are always better than the linear bounds except at

the two extreme cases of Y. We can find the t a1nd a for which they are least accurate. Set the partial

derivative of the difference hetkecu the LiKadriAtic hounds to 0:

0 = a/at [(1/iI - I / I) /t' (1 /111(1nt-IL) - 4 / ( -31))a4 /p310 =O/O[(l)|l/ l~o 4 3

0 = -2(1/in - 1/1)a1 / t 19 I1/1(n-IL) - 1/NM ]/'t
+ -311/m( tn-Jt) - I / M( M - L
2(l/tn - l/M) = [I /tlmtni- I/M(M-1p) j0- 31 l/tm(tn-.L) - l/M(M-pL)]a 2/lp

which can be solved iteratively.

7.3. Intersection and tangent positioning: cube

We can do sonicthin similtar fOr the cube flnction:

e(x) = x3 
-ax -hx - c

which is a third-dcgree ol\ l nniol .ust like the one 1or reciprocal. So we can position )ne intersection point

and one tangency point. This time vs can write e(x) as

c(x) = (x-tL)(x-I) - ax 2  hX -c

hence

a = 2t+ M, -(t ? t0M ), c t M

so an tipper hound on the mitIica is

,.
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(2t+ M)(a 2 +±p.) - (t2 4 2tNlI)IL i CNi

and this is a mninimuni when s% e cho osc a I. ,ich that

2(a+~ ) . - (2t+21)IL A I M (0

Ia 24- s ))- MIL]/ (P.-NI)= t
t = p. - o(N-J.) = t-8%

Substituting this in the equationl For the bound:

(It -6\8
2 (NM-I) + -,(I 6\ )(a ?-f \,I I M(a 

2 +I 2
pM-p 3 + S- 2 8

1  M .M-6 8 + 21ta 2 + 2t,3 -
2I.2*N1 2- G_~1  - 26 6It M .M I f N + P.'M

p.+ o.,(v-p.) + ()p.4i \VIbM6%d
p. + a/Mp)[(211 1 N\ - (T /%rr )
P 3 - a 

4 /( Ni-p.) + (?p.+%I)a 2

-t p
3 + (2 1L + NI - 8),2

Similarly, at lower hound is

(2t + mi)(a 2it ? ) - (1t + 11tm)it + t ?III

and this it maximorn 'Ahen WC echoose aI tSuch thalt

t . ± a /"p.-in1) = +

leading to a lower bound of

3 (2
[L + Ill +

Note the quadratic lower hound is akwass greaiter than the linear lower hound, pt . TVhe difference between

the Upper aid lower booUnds is

I'M-In -6 M -6 o

which provides a uiseftl ciael iol CO; the ,1hT(%i\C eSS of thiese bounds. Note this ik always nonnecgative since

N1 - In - [6 4- \1 - Ill -al\ i )(T p. -n

[he Largest possible lalue ot a k~I\Ip l i) so the quiantity in brackets is aiw ass nonncgative.

8. Optimal quad ratic bounds

The probleru oit finding the betJ (ILAdrimc opproximation for 001 bounding purposes may be viewed as an
optillii/ationl prohbI l in two _11 ib llt\. 1irk 1t quadraitic cuirve i- bx -t e leaids to at hound of'

U1111Cr ~ ~ ~ ~ ~ ~ ~ ~~d 0oin' 1(Y -I' / x)- I\)_-o-l

and the constantM Q cmi be num'ed mllill the Illiilili And 11ininitum. we Canl write:

uipper bountd; 1((o it h it I nax1,,, , il-I\ hxI

lowert bound: 1(if i t i bit 1 u 1111"1 \1Jt(Ox-ax b\

So we have two optilu/.ntiu ploblelu I'M Iv.1l a and h: to 'ind thec %alues [hhu ininiii/e thec upper bound,
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and the values the maxoiie the hi''. r bound. We liavc constructed- a program that does this by estimating

thle gradient from exploratory steps. linindiLgte zcros of' [ie e rr r iltithn by tile quiadrauic fol"61a lor

logarithm and cube, and by iterative bisection 60or aiitilog, Square loot, and reciprocal. Compaiison with the

other obtained bounds is presented latcr inl this paper. Unfbrtninail.y the extiema appear to be "broad", and

convergence is slow, so the other jihodIs discuISSed inl this paper seen, clearly desirabhle in most cases. While

these other methods Cannot usually get thle tightest b)ounds, the diflICIeiice is usually not Much.

A strong local maximuni fond hV the Optilmi/ation Process is guaranteed to be the global maximum over

all quadratic curves, because the funlctioni being optiuni/ked is coils cx. lu see this, note for the uipper bound

for instance

(&a, + (I-8)a2(h 2? +jL') + (Ohl t i -~~
+ malxrn<x<'i[f'( x)-(Oa1 +11 -6tJ))-(lI f (I -O)h,)XI

a ,(u +[j±L + b11L + nix 1 <\~I( X)1 .?f x
+ a12(o +11-) ± ~ xla) << 1f(x)ax - 2x

since max(flx) +g(x)) : nuxlft 0) 4 ina\(g(x)).

For our standard example, s'. e (iii Id thle pi) i 1n1a1Ll nladratic bounlds to be 3.00 and 3. 10.

9. Improving accuracy with outliers and statistics on subsets
We can tighten bounds if'we k-jn) k iWdditionld intI".riation aboult J set of dlata valuecs. We may know a few

extreme Ualues Onl thle ralie (outlliers), and bie ahle to rem1ove these points fromn thle analysis of the rest of the

points. This helps it good deal M.. ien in and/or %11 arc iuuiusuLally unrepresentatie (iof the distributic (and

notice how frequently we bave used inl and )I in our f'ormulas). With the outliers removed, the remaining

values can has e a narrower range, on Mi hich the fuonction canl be better matched by a lincar or qtiadratic

approximation. The transformed valuies for tile k us'. n otiers canl then be added to thle total meacn or total

variance in a final step.

But we call general i/e this. We can in prok.e ac :u racy of bounds amny time we know means and variances of

arbitary Subsets of the original datai valuecs. We mayq then estimate 'latisti,:s on the transformed values for

each subset and combhine (hemi viih hie appropriate %keip'ling.

9. 1. An example

For instance, from 18j. there AsCrC 01.13 muivhIJ,in1 sh ii'. with U.ni ted States registi inl 1982, of an average
gross tonnage of' 31201 per ,fll). Of' hese. '941 vs crc I ishlui vessels, of a'.erage tminjilc 190.6 gloss tons-, 548

were cargo ships. of avciaec tonnuge 9790) tons-, Yd1 scie itankers, fusrg toinnuice ?u7( bons. I lence there
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were 6133 - 2941 - 548 - 361 =2283 other ships ofiavrage tonnage 1(6131 *3120) - (2941 *200) - (548*9740)

- (361-2670)1/2283 = 119,130,000O - 588,0)0 - 5.340.000) - 905,01 / 2283 =5120) tons.

Now suppose we wanit thle m11an1 of the logarithmis of the tonnage valuies. Consider thc upper bounds on

each of the four disjoint subsets, These are just thle lo2,a1ithm1S Of thle means, or 5.30. 9.21. 7.88, and 8.57.

Hence the total uipper bound is the Aeighted mean of these uipper hounds, or

1(5.30*2941)4-(9.21*54t8)+(7.X8*361)+(X.57*2283)I / 6133 =7.018. T[his should be compared with the

upper bound derived fromt the mecan of' the entire set, ll(3 120) =8.03, So the subdivision data gave us a

significant improvmement.

Unfortunately, we do not know ani thinig abOut thle maximUmn and minimIum tonnage of classes of ships, so

we cannot get a cumutiie lower houind. I low ever, we know il = 100 fur this table, and M = 200,000 is a

reasonable figure from k now% ledge ofnmichanmt dhipping, so a global lower bouind is found by

a (3120-100)1(2010000-100)) = .0)151
lower hou nd is lIn( 10)0) ± o l(tI q01))lIn( 100)) = 4.60 + .015 1*7.60)

4.60 + .115 4 1715

9.2. Proof of desirability of subdivision for linear bounds

It can be proved that linear11 hO ninds Onil 010 1eanl are 11001 er orened b\ osing Suich subset statistics. T[his

can be seen grajphically in fipire 9-1. We cons'dcr here thle ease of' binary Subdivision, and further

subdivisions can be cox ered by extension. We also consider Only functions concave dow uwards, but te other

case can be handled analogously.

First consider thle lower' boun1d. If thle ranges of the subdisios are thle same1 ats thle fRill ,Ct, then thle two

lower bounds Must lie along thle Samle linle, anld their Weighted a Crage nust lie along thle line too: hence the

lowr OLTII.ofth fllset is ea tlyde v.ilie a~~ge of the two lowker bounds. If one o both of the

subsets hasa. narrower range of values thail (ti full set, this caIn only increase I iniprow ) the lower bound since

a secant across a subrange lics fully aho'e a secant across a ranlge containing thle subrange. H ence the lower

bound cannot get any worse in this sui1 iSiOnl suImationl of linear lower bounids.

The upper bound also caumn4 be any w orse. 'I his time range reductionl within a subset does not matter

because the upper hound is constrained to lie ailong the cm \ ' e of the function, whichi is independent of where

it is sliced. The weighted average of tile two siubset uipper bounds is a poinit along thle line connecting two

points on(ifte function curve. hit since the funfction is Ccoc uow nards. this point is aways below the
function, lBnt since thle upper bound onl tlik' full set is cuuistr.1iiicd t(I lie Oil thie curveC, thle subdIiiionl process

always grl-antees a better tippcr buntid is -u u the t"4 NwbdiO,,ion neulns ire ulittciemt. and no worse if

A
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FigurcLIAr: lmpiovements inI linear hounds from conmbining statistics on two disjoint sets
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they are not different.

10. Exploiting order statistics as well

So far we have only assumed knowledge of the maximum, minimum, inean. and (sometimes) standard

deviation of sets of data values. If we hae e additional statistics on the data '\,alucs ' C can do a better job of

estimating statistics on the transformed alues. In this section we discuss using order statistics (e.g. medians

and percentiles). Order statistics haie the nice property that they have one-to-one mappings from the original

data values to the transformed values under the monotonic transformations we are assuming.

10.1. Using the median

First, assume we know a median in addition to the maximum, minimum, and mean. We can often get an

immediate improvement in the bounds on estimates. I.et the error curve (linear, quadratic, or whatever) be

e(x). Then the median can be thought to partition the points into two equal-sized subranges (assume the

number of points to be large enough so that exen numbers of points don't bother us). Then an upper bound

on the mean of tie transformed values is the estimate given by the approximation curve plus one half the

maximum of the error curve in the range to the left of the median plus one half the maximum of the error

curve in the range to die right of the median. The lower bound on the mean is found substituting
"minimum" for "maximum" in the aboc rule. Thus knowing the median dccreases the influence of extrema

of the error curve.

10.2. Other order statistics

We can generalize these ideas to the situation where we know arbitrary order statistics on the original

distribution. I)cnote these statistics as r pairs of the form <xrf,>, where fraction f of the items in tie

distribution are claimed to lie to the left of value x. Then we can generalize the formula of section 5 as

follows:

upper bound is <estimate from approximation curve> - X1 <<r If, * min, <X<m00)

lower bound is <estimate from approximation curve> - , If1 <1<r rnax, i <X<e(x) l

where e(x) is the error curve a(x)-fax), x0 is defined as in, with f 0(, and the xr is defined as N1 (with
0 r

corresponding f of 1). 'lus the effects of the extreme points of c(x) are "dilted" i)) their fractional

coefficients, and the more order statistics are knov n, the tighter the eventual hounds.

Under certain circunstinccs -Ae can simplif the ihoe formulac considerably. If' we know even-

subdivision order statistic., (i.e., f -- I1, r lie nuimbher of order statia.tmt), nd if the error curve e(x) is

monotonic, lhen the maximrn and IlmiImtnirn o c(i v ) in c,wlh stihintcrsad hct" cen the order statistic ordinates



26

x, must lie at the endpoints. So if e(x) is nonotonic increasing, the upper bound is [1 <i<mC(X)I / r and the

lower bound is [ 1 <I<,I,(xIl.)J/r: and %ice %crc,;j if" cix) is mootionic decreasing. I lencc the absolute range

between the upper bound and lower b ound is alsiiik s the same number, le(x )-C(x 0N)/r = le(M)-c(m)I/r.

(Note that Taylor-series quadratic approximations ire monotonic if e(m)<0(e(M) or e(M)<0<e(m), conditions

which occur frequently.)

10.3. Order statistics and the standard deviation

Order statistics are also helpful in estimating the standard deviation of the transformed values, especially

order statistics for tlhc leftmost and rightmost suhrainges of the inter. al. Recalling the bounds lines drawn

through the mean of the transformed \,lueS ill section 4.2, we had to draw them so they lay entirely above the

curve to one side of the mean, and entirely above on the other side, and this is a highly conservative

assumption. Assume , is known precisely. We could probably get a better bound if we knew how many

points lay to the left of some x , and the drew a secarit of" Rx) from the transform mean to it, rather than from

the transform mean to m: or if we knew how many points lay to the right of some x r- and drew secant from

the transform mean to it instead of M. See figure 10-1.

The estimate of the standard de iation of the transformed values obtained from these lines is just their

slope times the original standard deviation. But to get a bound, we need a correction fin- the points lying more

extreme than the new point of intersection. Consider the example of curve concave downwards like

logarithm, and take the upper bound line from the transform mean to some point to the left: call the point x1,

and let it be an order statistic so that fraction p of the distribution lies to the left of it. ASsume the mean of the

transformed values is known exactly. Then the correction for a hound corresponds to the situation where all

the p points are at m, which means a difference in the variance of

p*[(fv)-f(m)) . [(v-m)*(fv)-f(xt))/(v-xt) 1

where v is the number " hich maps functionally to the meam of the transformed values. Ience the expression

for the upper bound on the standard deviation is

[[y2+ (.-v,) 2 [(tqv)-f(x,))/(P-x )" + p*(f(p)f fl))?- p*[(vil)*(l,( )-f(x ))/(P-x,)]2l I

So using such a bounds line can give a better slope, but one pays a penalty of a correction term which

subtracts from the slope imprivement. An obvious question is under what conditions use of the order statistic

helps. It turns out this has a surprising answer when v is know n exactly. Denote the two slopes as si and so,

i.e.

s (R P) fQn1))/P,-m).s -- (11' )-f'(xI))/(v-xi)

we can rewrite our expression for the upper bound is

+ S p*I' *)Pm1 p*s( * '1)215
•o -+p(I.n 0-vfP )n
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-A 3)

Figurc (Q- : Fxploiting order statistics obra better hounds onl thle standard
dcx lation

OFANI
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Il his will represent an improvcnient on the linear upper bound [o + (p-1,)21s 2 if

, >+( -) Is , Ia- + (IL-P ) I S " + p*5* 1(v - ) "2  - p *s -*(V -n)
2

or [W?+ (pPIl s I > - o 1)

So the slope terms cancel, and use of the order statistic <x ,p) is going to be helpful when:

[a 2+(p.-) 21 > p * (v,.m)2

or p < [(a2 + (J-,)2)/(,-m)2]

This result is independent of where the order statistic is v.ithin the distribution (xY), and depends only on the

standard deviation and minimnum of the original distribution, and the mean of' the transformed values. The

corresponding result for the rightmost order statistic is

p < [(a2+([L-V)2)l(M-u)21

where p is the fraction of items to the right of xr P

If we know other order statistics than just the leftmost and rightmost (x, and Xr.) we can get better bounds,

though predicting the improvement is difficult. For instance, if we know x2, we can take a line from P to x2,

and estimate the contribution to the correction alictor from the items between xI and x2 differently than the

contribution of items between in and xI*

10.4. Adjustment of standard deviation for an inexact transform mean

If we do not know the exact mean of the transtkirmed alucs, p = fRP), we must adjust these results. Let

the bounds on the transform mean be P1 and PL. as in section 4.3. Assume fix) has a negative second

derivative. The formula for the upper bound is

[[a2+(i-v)2l[(f(v)-f(x,))I(,-x,)]
2 + p*(fv)-f(n)) 2 p*I(P-11)*(f'()-fIxt))/(-x)1

215

Since <g., la +( -v) 21 is monotonicall. decreasing with v in its range. The rest of the expression is the

difference of a term and the difference of two others. The first term is monotonically decreasing with

increasing v since the second derivative of the curve is ncgativc. This represents the second moment of f1

items grouped at m on the curve. As v increases, the possible distance these items could be off the bound line

increases, and their relative weight increases ats flv) becomes relatively larger than fim). Hence since this

correction term is sublrcicled from the slope, the effect as v increases will be for all the terms to decrease.

Hence the adju,,ted value fbr the tipper bound on the standard deviation of lthe transftorm values is just

[1 2+(1A-vt )2l[(Rl )-f(x))/(V_ )12 + f(m))2-p~l~~w -m)(fU, )-ffx ))l(I t-x I1

substituting PU for v in the exact-v formula.

Similarly, we substitute Ill. for i, to get an adjuted lower bound. Analogously, we handle curves with a

positive second derivative by substittting 'I for r' for an upper It umd, vU for P for a lower bound.

/
1,'
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10.5. Quasi-order statistics from the standard deviation

If we know the mean and standard deviation of a set of data values, we can use Chcbyshev's inequality to

bound the number of items lying more than a certain distance from the mean. This information is like an

order statistic, but since it only represents an ipper hound on the number of items in a region and not an

exact number of items, it must he used carefully. It can only be used for partitions of the interval of interest

into two parts, the subinterval of points farther than a certain distance to the left (or right) of the mean, and a

subinterval of all other points of the interval. It can also only be used for an upper hound on the mean of the

transformed values, given ji, when e(x) has a maximum on the first subinterval that is more than the

maximum on the second, or for a lower bound when e(x) has a minimum on the first subinterval that is less

than the minimum on the second.

Actually, Chebyshev's inequality in the standard form (that only a fraction o2/I) 2 of the points of a

distribution can lie greater than distance I) units from the mean) is not the best inequality we can get, since it

refers to both tails of a distribution, and we are only concerned with the number of points in one tail. Only

U2/(02+ 1)2) points can lie to the left of it point 1) to the left of the mean, or lie to the right of a point 1) to the

right of the mean. To see this, note that if fraction fof the points lie to the left ofa point I) units to the left of

the mean, then their weighted second moment about the mean is at least 1)2, which Most be less than a . But

in order for the mean to be at the place it is, this fraction f of the points must be compensated for by (1-)

points R units to the other side of the mean For maximal f, these other (1-f) points must all be at the same

location, for otherwise they would ha c a nonzero variance which plus their mean would add to the variance

of the whole distribution, and would require a lower maximunm f. I lence we have two equations to solve

simultaneously:
fl-)2 + (I.l)R 2 =

fl)-(I-f)R = 0

which imply

R = fI(1-f). fl)'/(l-) a2, f a2/(02 -1)2)

Using this result, we then can put bounds on the mean of the transformed values of

upper bound: fRj) + .5f"
2 1

t- (a /(o-+ I )')*llax <x <e(x))+ (I)2/(02 +I))ax_- .(x)

provided the first iax value is greater than the second

lower bound: q[LQ + .5o0fL tx)
+ (a 2/(a2 +D )*minM<,< _ .(c(x))

3 9 ") 11<(x<
,.

LI)

+(1)"(o"+ I ))*liIl (C(X))
provided the first min aluCis 1ss than Ihe sccond

These are the left-sided hounds: we can also get analogous expressions tor hoinds u;iing points ol the right of

4 _____

, -



30

a distribution. Unfortunately, we c.annot find optimal values of 1) for thesc formulas beci auSC they the

deri% atio e cannot be applied.

Note that while it miay be difficult to determine for an arbitrary c(x) whether tie maximum in one interval

is greater than in another, the 'Ltylor-series quadratc approximation often always has this property for cithcr

the left-side or right-side rule.

10.6. Evaluation of quasi-order statistics from the standard deviation

Let us return to the analysis in section 5.3 of out standard example with the quadratic Taylor series

approximation at pi. Choose ats suhintersals 10<x<33 and 33<x< 100, so D)= 33-23= 10= a. Since the

error curve is monotonically increasing (e(n)<c(pL(e(M), and no e'(x-)=0 except ji) the maxima on the

suLbintervals are at the rightmiost points, and tie minimna at the leftmost. Hence the maxima are

c(33)=3.50-(3.14+.435-.106)=.03 and e(100)= 3.7, Simnilarly for the other bound, choose D= S, 10<x<18,

and 18<x<100: and the mninimia atre c(10)=-.12 and e(lX) 2.89-(3.14-.217-.023)=-.01. The maximum

fraction f for x = 33 is 101(102+ 10') =.5. and for x I8is 1021(102+52) = .8. Hlence the revisedboundson

the mean of the transformed values are

lower: 3.06 - .5*.03 - .5*3.7 =1.20

upper: 3.06 -. 8*.12 - .2*-.01 =3.16

which are better than the bou~ndS obtained in section 5.3.

D is a parameter here that can vary arhitrar ily. Let us find the best value for- it, for the case of a Taylor

series approximation where e(x) increases with x, and at lower bound:

0 alal) [(01,/(a2+1)D)) * C(jI-l)) + (D-)2/(a + [)2)) * C(mv)J
0 a/dl)IGa2 C([L-l)) + I )I * e(M)1 / (,2 +1)1)1
so a.2 aI)l~)-~)lt ( I)-.5I)2l 4 (2 ?21) * (l

-[a 
2[RJL-l)) - t) - I )rQL) - .5l) 2lf-(L)j +- D )e(M)] 21)

IHence UIC$-)-()-(L)t + [21) * CM
-a'fi-l) ~)1 [L~) - .5D)2 -([p)J i- 1) e(M)] 2D)

= r(IA-l) + (l-21)2)W~p) + l)ll'f(t)- 21)RIL)D) - 2Df1)t,)

which we can sol-ve by iterative methods to rlid tile best value Of I).

10.7. Splines and order statistics

We have not referred to spline approximations in the preceding analysis because if an approximation curve

is divided into pieces with different properties then we mnust know how many data points are in each to
calculate means and standard deviations oii the tranfsformed alties. One might think that for a given set of'

o)rder statistics on a distribution wve may he able to createc a spline approximation broken at the points at which



the order statistics arc sited, and usc that for houndinv. Butt wPe still iccd to know mecans of every suhbintervil,

the know ledge discussed in setion 9, whIich may be difficul t to obtainl. '[Iu I s.''plines I nay hc diffiCulIt to use.

11. Using fits to known distributions
As a final kind of in formlation which \\ minght ha~ c about a set Of %aILuCS, w iii know that their

distribution is close to somc kvell-knom n distribtion, with a certain allowed tolerance. If' the tolcrance is

small we can expect quite tight bounids, on thle transfbOned valucs. lBnt estimating statistics this way requires

special preparation in ad\ anee (ninely, mneasuring fits to a predicted (liSt riOn). and is not possible with

most data presented in already-aggregated units.

1 1.1. General formula for known distributions

A well-known result (e.g. [31. section 7.3) gives the distribution of the transformn of some probability

distribution p(x). Under thle transformation function Rx), as

q(y) =p(f (y)) 1 f(y)/dyl

as a function of y, pro ided f is either monotonically increaising of decreasing in the interval.

So for instance if our 10x) approximates a iinitormi distribution onl the interva',l in to MI, q(y) =(l/(N'-ni))

jdFt(y)/dyl. For tlx)= lI(x). q(y) e3(/(NI-i) onl thle interval y = lni(in) to y lnl(k): anl estimate of the mean

of q(y) is

f yq(y)dy / f q(v)dy I~n I1 )I - (ln(ml)- I )iln] / (NVI -in1) 1 1 I10 lii( I) - III lnI(m)I/(M-m)

and an estimate of the second Moment11 ;ibout Iero is

fy'q(y )dy / fq(y)dly fMl(X *uN1 n(M) + 21
m~l~m)ln~) -2 ln~m) + 211 / (-in)

which mlinus thle square of the estimate of thle mecan gi\ es an estimate of the variance.

For p(x) uniform. fRx)= l/x, q(y) = 1/y 2(Mmn) onl thle interval y = l/M to y = I /in; an estimrate of the

mean of q(y) is

[In(lI/m)-n(1/N1)J / (Ni-m) = lii(N\I/mn)/(M-tn)

and anl estimate of the second mioment Jlrou t 1zero is (I/Ill- I / M )/( NI 11n) 1/mM. hce an estimate of thc

variance is

1/mnM - jIn(NM/in)/( M-M)12

A 
- ---'---i- --- ---
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11 .2. Handling inexact fits to distributions

W~e ha~ e not addressed tiow to gct bon ds On nieatils anld stladard deViations. We canl do (his hy defining

an "Lpper fit"'w i d 'lower (i"i'' On dhe discrete set ofin valties x, such that

WU= miax [Xi - go]j fim, [X, - g11

where f 6 p(x)dx = i-.W)ii, and 10x) is (lie distribution the X1 fit to

In other words, tilc tits are the niaxirnuin and mninimum deviations of anl xI fromt its %alue predicted by the

approximating distribution p(x).

We can exploit the aissumred tact dtt( fx ) is moctncyisnl.Hig or decreasing to saiy that the

miax(11im and minimum Of thie ie,inl Ot' the tiJLC nsord lesOCCur- when thle X a11e all alt (" or all atw
L 1

fromi their predicted positions, not necessairil\ respectivel. [his is bccause less thain anl extreme deviatioin for

one point cannot, irnpr~lOve prospects for a miove extremne inca 1:, all point deviations are independent of one

another, vv ithinl the tolerances. I fence to find the extremne aliies of the transformned mean one just calculates

the means of

qL (s * p -c I I Ilt, tl )/d1I aInd
('1 .1 pjft  )-o-i I * 'l IF ( )/(I%

We can- Else this Same appro~icm to get houinds on the ,tandird dev iation in the mannler ot section 4.1. We

just define a g(x) =II(x)'I as ai nee. [tninsfovrnmitioim funiction. 'mdk computeIL thle above forlae vlv i01h g instead

of tf. 'Ne then cont p t ite hoiun ds oi tile 171ea mm. s;q iai-C them, an11 LI uhbtract this intervai howr the interval

cornpu ted in thle nean Of g'( x).

11.3. Example of inexact distribution fit

Suppose we know thle distr'ibutliol of x, Fits an even distribution onl the intem a! 10 to 100, to such an cxtent

that a point is nci er further than 2 units inl ddv ance of where- it would be in a pertectl. even distribution, and

never more than .3 units behind. [hlen thle maiu endistribution is a tinifuOrn distrihution from 12 to

102, and the minimnum-mean distributin is a uil orm distribution from 7 to 97. Suppose vv e wanmt to find the

mean of the logar1ithms of these: data v,'ies. I Ising the formulae we obtaiined in sect ion 11.1, the mean of the

first distributio n is [102 l)( 102) - P? lit(12) - 10)2 + 1 21 / (102-12) = (472 - 29.8)/90) - I1 5.02 - 1 4.02; andj
the mean imfthe s~econd distribmfittion is [97 Il(97) - 7 ln(7) - 97 + 71 / (97-7) =(443 - 13.6)/90 - 1 4.78 - 1 =

3.78. I-ence thle mecan of the tiitsfrmed \aIlueS is between 3.78 and 4.02, corrosponding to antilogs of44 and

S6, \ote the mean of the ori-inail \alues mut lie between (102 -12)12 -57 and (97 +~7)/2 =52.

lImor in estimiite of the standil deviation we use [lhe formiulai prey moiisly derived for ain estiminte (if the sumn

if the squares. namiely

I-A
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IMtln( M)*ln(M) - 2 ln(MN) + 21 - m[1n(rn)*ln(n) - 2 hii(m) + 211 /(M -i)

S[NI(jl(M)- 1)2 - i(n( nm)- I )jI/(M -11) +I

For the uniform distrihution 12 to 102, this is

[102(3.62)2 - 12(l.48)'1/90 + I1 (1338-26.2)/90 + 1 15.61

and for the uniformn distribution 7 to 97 this is

[97(3.57)2 - 7(.945)2j/90 + 1 (1235-6.25)/90 + 1 14.58

From thle previous paragraph we know h~ounds onl the mecan of the transformed values are 3.78 and 4.02,

hence hounds on the square of the mecan are 14.3 and 16.2. 1-fcnce bouinds onl the vatriance are 15.6 1-14.3 = 1.3

and max( 14.58-16.2,0) =0. Hence hounds on the standard des iation of the transformed ales arc 1. 14 and

0.

12. Small populations
lhusfar we have not made uAse of the suie of the data p)oplationi being analyzed. I his is only signifPicant if

thle populationl is particir111Y smiall. in Mhich case the known mxiimum NI and minlimumIT1 m (and the mnedian

and niode too. it known) are a nonincglioil'le proportion ot the points of tie distribution. For instance, the

linear boun11ds rCpi-se tSIIin general the two cxt reme cases ",here (a) all the Points ale gr-ouped at the mnean, and

(b) i the points are at the maxinmum and the m ininii. K nowledge of MI and in thus decreases thle distance

between) linear bounads h\ a factor of 2/n1, 11 the su/e of the data population, since it ieprcsents a weighted

modification of case (a) by two Points froml case (h).

13. Some experimental comparisons of the various bounds formulae
We have run some simiple expei inmoet; of thle eff ctis eneCSS of' our bounds foriu tilac 'I ite miean of the

transformed values. We wkrote progrimios in I NIER I SP-VAX. We uised two test funictio n,, (x)= lux) and

lx)= I /X. For the experients we comipuited uipper and lower bouinds derived the tifllowing svays:

* siinple linear bounds (s ection 3)

*T lo~hr-se ries quadratic bouMn, series around the niean (section 5)

* I.mg~mne.(hcb \lesinterpolaition quadratic bounds (section 6)

* I or the reciprot-d onk,. the onme-sided quadratic hounds (section 7)

* ()mder-qsttistic bound,,s from the (ieh shev-ine quality, using a Taylor serics around Lthe mean11
a (sket tn 10.5)

* llest quadratic bthmtds roiund by expl)icit optinhi/,Ition oii quadratic- coefficients im and b) (section 8):

ti~pet huiol;d '(a +p -b - c -1I iX"m, .1QXI~) i~X bxci
lowemc hounid: '1((T +-It) 4 hit i- c ± mumn m < 1 (Nx)-mx 2-hX-cJ
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We discovered that our[ resuilts lor optiui~t hounds to(r tie reciprocal curse weik: identical (except
for rotindoft er!ror) to those Cfor oie-\ idcd: hound\so we A have ontitied thc foriner from die
recipr-ocal table. lll()iitotiAiiae kke C111e5C hCit iilltle] 1 1)1\' Jtohe Coune1CtiOli (that is, that tile
one-sided hou nds are indeed thle opti lial ones), thiob ughte strongly suspect it.

Results arc contained in figures 13-1 and 1.1-2. Si ne thle close:d- form expressions are simpile coniptltationIS, in

a computer imnplementation it is ad\ isahie to) try all thle diffeirent ho unds methods, and ake tile inimTTum Of

the 'tpper bounds to) get at cinULIsc upperC1 hound, a1nd the mlaxi mum of the lower h)ounds to get a

cumulative lower bound.

14. Application to correlated data
An application of these ideas is to estini,ition of staiti ,tics of one attribute from those of anothier if thc

attributes are k nown to have a nonlinear correlattion desciiable hy a mo notonic function Such as we have

been analyuiing. We can then houind Statistics onl one0 attribu.te from11 Statistics On thle other.

15. Direct optimization
Wc should mnote there is, anuther Kind oftoptimi/ation Ithi c~am he applied to problems of this sort. We can

make the opt im i/ation varialeIs the s attics thCensel\ s e of a it unknI hW distribution and perlor ii a constrained

optimization with objeetis e fuinction) the sit&,tic onl v i ich hounmds are desired, and sk ith constraIints the values

of known other statistics. (iotcpttill\ tlt , i, a i nice approaich since it canl he applied to arbitrary states of

prior knowledge and can bound arbitr-ary staitistics.

We have donte a numbher of experumeuts, wih ,cw do not has e the space here to, discuss, and thle ideai seems
to work. llwer we hac u'~d thalt ti drecl.tiniM01 ishgl - st to optim tation methods,

starting points, and step sue,. iud is smurpri,ins-ly difficult to get cons er'gceI for: Umnli ke quadratic

optimii'ation., the furtciioii opitiumliid is not us' tall' conveCX, lit ihere is an even more serious problem with

direct Optii l.ation, a %cry hui dat hUctl Otil,: it oily gi yes loss r hounids tin tipper honids. and tipper botunds

on lower hounds, aunlike imll the oilier hoitids discutsed inl this paper ss h el are tipper hounds on upper

bounds, and lowerci hounds oin himser houud\'. [I-r inistanlce. 6or our standar-d example wec found a lower bound

on thle tipper hound of 3.0)9771 onl the mn'1 if thle mijcarilhimis front direct olptinitatioi, hot wye base no idea

how much l Igrt hounHd is ps ilti to [!ie chutldrmIti-optiii/ation bouind itt 3.1038N3 Mi ich mepiesents an

absolUtC limi1t. Thus thle utility' of direct u)ptiiti/altiim is qicestioniahle in holided stumti,ifl estnnation,. anid

we do not see it as a climllec to the mectbods des eloped in tliis piper. (It does pros ide- ai useftil tool for

dlebugging (lie miiihds). liosseser, since: toM iitst[iIicc ,1in\ Iti'tosd oud \kC Cind less thll tme tipper bound

on the lowecr buntid is in c, lo.)
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16. Conclusion
We have dc~cloped some quick clowd fbrinl e'jes"iums 1,0 h Iiuld oil thle 11c.11 dild qtiard dce lation of

a fin~ite set of tratildfnned numnerical d'~aI :ils. Mhere thie Ilanslomuamon hint loun has derivatives of

Constant sign in thle intervail of' ilitclest. III nm1,kill, these, e'stillInte\ "C Owu olyl stlttm'Uk mn the original set of

data saIlnes. ald nlk ICtULd \,due,; theilx Cles. Our hounld\ pro- ide a Ll~efiml 'iheltvi~a to oftenl diffictilt-to-

obtain confidence inter\ als. reklulitl 1im10 di'trIhutmO11,l t"S~Uumptiolil'ht,'~ r Such) hounlds are likely to be

lielpful fomr exploiator datai ial\\s i ti mIId to ecitun a lkcl 1'or time data., prcliimm to detailed hypotbcsis

testing.
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