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OVERVIEW

In previous papers, a Supply Readiness Assessment (SRA) diagram
was proposed as a framework within which peacetime MICAP data could be
plotted. ihe MICAP data within the SRA diagram give a quickly compre-
hensible picture of those items which determine the peacetime supply
readiness of the unit. Because the SRA diagram is rooted in and is
consistent with the concepts of dynamic pipeline theory for reparable
spare parts, that theory can be used to extrapolate the plotted peace-
time data into wartime surge predictions. One of the benefits of the
SRA approach is that very useful information can be obtained without
detailed and extensive computer programs. That characteristic is just
as desirable when the diagram is used predictively. This note provides
numerous illustrative examples of repair pi line responses tU various
changes in "demand" behavior and "repair ti ... t" distributions that
describe individual parts. By studying the illustrations and under-
standing the functional response to changes, it q-,ickly becomes appar-
ent that linear "approximations" give very good extrapolations. Rules
of thumb are discussed.



SUPPLY READINESS ASSESSMENT: Some Notes on Repair Pipeline Responses

I. INTRODUCTION

In some interpretations of the Supply-Readiness Assessment (SRA) dia-
gram, we need to extend peacetime estimates of expected pipeline quantities
so we can understand the implications of variations in the underlying parame-
ters. Although the extension can be done by a computer program which solves
the convolution integral that yields the exact value of the Poisson parameter,
it can also be very readily approximated by rules of thumb. Simple ways of
doing this are needed so that the interpretation of the SR diagram can be
made by individual observers without having toirelyon a computer. We proposed
some rules of thumb and set them forth in previousl published discussions
of the SRA diagram (references 1 and 2).

We have heard informally that some technicians in the field of pipeline
modeling consider our proposed rules of thumb "inadequate" or "insufficient."
The adequacy or sufficiency of any approximation~ is always a judgment call,
that we don't contest, but we do assert that the call should be made only
aft-er the judge is adequately informed. To some extent, then, this rather
tediously drawn out set of notes explains the homework lying behind our pro-
posed rules.

We set out here to show how a deterministic repair line, i.e., one with
a constant repair time, responds to a step-function increase in daily demands.
Although this is the most simple dynamic situation that can be defined, a
full understanding of the response is truly fundamental to comprehending more
complex situations. It will be shown that deterministic repair lines are
basic building blocks. By forming appropriately chosen linear combinations
of deterministic lines, one may mathematically treat a great variety of
complex demand and repair functions.

The deterministic repair line has additional intrinsic interest because
it gives an upper bound on expected pipeline contents compared to all other
functions with the same average repair time when the demand intensity is
increasing. When the repair distribution function is not known, as is usually
the case, the deterministic line gives a well-behaved limiting case.

Of course, if the time-dependent repair and demand distributions are
very complicated -- and if we think we know their shapes and parameters well
enough to warrant a precise calculation -- then perhaps it is best to call on
computer routines to calculate the points. Usually, however, our information
is pretty poor and that brinrs into question the significance of the computer
precision . Even if we do have the requisite data, it is always helpful to

have a clear mental picture of what is going on whether a computer is
involved or not. Getting a clear mental picture is what this note is all
about.

[A1



II. BACKGROUND THEORY

We consider a non-homogeneous Poisson "demand" process that generates
broken parts which are fed into a repair process. Hillestad and Carrillo
(ref 3) have shown that if the repair process is independent of the demand
process, then the number of parts in the pipeline will be Poisson distributed
with a mean value given by (t) where

t
(1) • x(t) = f m(s) F(s,t)ds

0

lF(s,t) is the probability that a part going into the repair process
at time s is still in repair at time t, depends only on t-s, and

i(s) is the demand intensity function at time s, discussed more fully
later.

We presume for our discussion that the reader is familiar with Hillestad
and Carrillo's paper, which gives the theoretical basis for the several com-
puter models that Rand has named "Dyna-METRIC," abbreviated DM herein.

We note, in passing, that the central DM calculation is that which pro-
vides A(t) for each NSN. That variable, X(t), contains all of the essential
results; all the other calculations are only elaborationind interpretations
of what the collection of the (t)'s tell us. Before going on, we should
emphasize that X(t) is the mean (or expected) quantity in the pipeline. We
have referred to it in describing the SR diagram as the EPQ, i.e., the expected
pipeline quantity. In essence, the entire dynamic behavior of the pipeline
is contained in the time-dependent behavior of the EPQ. Once that is in hand,
the story has been told; all that remains is an elaboration of the theme. If
we want to understand time-dependent repair processes, then, we need to under-
stand the implications of equation (1); and one way to develop that understand-
ing is to study in detail first some simple functions and then go on to more
elaborate ones. We now start that process.

The integral of eqn (1) can be written as a sum:

5- t

(2) A(t) = s m(s)F(s,t)

if m(s) and r(s,t) can be adequately described by discrete functions.

In most applications of the theory, the discrete form is used because it gives
sensibly the same results as continuous functions. This schematization of the
real world is typical of model building, where, for instance, we ignore the
fact that flying occurs only during part of the 24-hour day. In the case at
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hand, the discrete summed form, which looks only at daily intervals, can be
entirely adequate, especially in the light of our generally poor knowledge
of what the functions T(s,t) and rn(s) are like in the real world.

It is a simple matter to define Fls,t) and rn(s) for discrete time inter-
vals of one day and form the vector scalar products of eqn (2) to obtain
values of X(t) for each value of t. PACAF's "Vector" model (ref 4) computes
the convolutions of functions explicitly defined as vectors, whereas 011 may
use either closed form or numerical integrations.

Whether we use the integral form (eqn 1) or the discrete model (eqn 2)
really doesn't matter, although the discrete one may have some advantages
for computer calculations. In the remainder of the paper, we will talk about
both.

Basically the process calls for us to write down the demand intensity
function, mi(s), whose time dependency is that of the sortie rate, the other
inputs serving merely as scaling factors. Specifically, one may write
mi(s) = MD/FH x FH/Sortie x Sorties/Day, where MD/FH is mean demands per
flying hour, FH/Sortie is flying hours per sortie, and Sorties/Day is
obvious. When a unit starts combat flying, it is the sortie rate that
dramatically increases although sortie duration may also change. For this
note, the specific values are of less interest than the general behavior.

Here, we focus on a step-function form of the demand intensity. It is
a commonly used representation of the transition from peacetime to wartime
flying rates.

Figure 1. Step Function Form of Demand Intensity

-3 '-2 '-1 '0 1 2 3 time

Wuse the convention that day 0 is the last day of non-surge flying,
day1 s hefirst day of the surge, and the transition occurs atmdngt
Waloconsider the function to stay constant at 3.0 for future times and
to hve een1.0 at all past times. (These, of course, may have any desired

absoutevalues In place of 1.0 and 3.0 which were chosen only for
illustration.)

Terepair function that represents a "deterministic" or "contt
repar tme"pipeline is shown in figure 2.
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Figure 2. Fit-s) for Deterministic Repair Line
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Here, t represents the "present moment," while tr is the constant repair
time. The "probability of a part entering repair" at a time earlier than
t-tr and still being in the line at t is zero, whereas the probability that a
part which entered less than tr ago is sure to be there still, i.e., with
probability one.

To evaluate the convolution integral (or the discrete sum), we position
the point corresponding to "now" of T(t-s) on point t of the intensity function
and integrate (or sum) over all non-zero values of the product up to "now,"
i.e., "t." Then we move F(t-s) to a new value of "t" and again integrate
(sum), thereby calculating X(t).

In short, the value of the convolution integral is merely the "area" of
m(s) which can be seen through (i.e., weighted by) the window T(t-s). Since
t(t-s) has the value of unity everywhere it is non-zero, it acts like an
"adder" of the demands for the period tr when applied to me(s).

Observe that when "t" is in the peacetime region, the adder sees only
constant values and X(t) = trMns, where mns is the non-surge value. Simi-
larly, when the surge has been going on longer than tr, it is clear that
X(t) = trms, where m is th demand intensity during the surge. During the
non-stationary period when F(t-s) covers the step portion of m(s), the value
of At) depends on how much is seen of each portion.

Rather obviously, now, the time dependence of Xt) is that shown below
(assume trS, mns-l.O, and ms=3.0 for illustration).

Figure 3. Pipeline Contents Response to Step Function Increase in Demands
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To explore this function, we can apply whatever scaling factors are
appropriate, either to rn(s) or to the repair time. If the repair time, tr,
is longer, the ramp is longer and vice versa. Outside the ramp, i.e., outside
the transient period, the pipeline is "stable" at its stationary-state value.

A very long duration repair line means it will take a long time for the
line to stabilize but, conversely, short-time repair lines stabilize very
quickly.

We're now in a good position to look at several variations on the repair
function, one of which is shown in figure 4. Here the former step function
is modified so that a ramp replaces the step. In the discrete form, the
functions would look like the "stair step" as shown by the dotted line.

Figure 4

T(t-s)
1.0

4I (t-t) +1 t

This kind of*F(t-s) describes a repair process in which the part spends
at least a given amount of time in repair and has a uniform probability of
getting out of repair during the ramp portion. The average repair time stays
the same as before, t rrClearly, this "window" gives the same value as the
step-function when we re in the regions of stationary demand intensities.
(We begin also to see why in the stationary-state Palm's Theorem the pipeline
Poisson parameter doesn't depend on the form of the repair distribution, only
on average time of repair.) As the index moves across the demand intensity
step, the behavior of Xdt) is the same as before until (t-tr)+l arrives at
the step, at which point the slope begins decreasing as shown by the curved
line for days 5 and 6 of figure 5.

Figure 5
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The X(t) transient period between stationary states is now broken into two
parts--a ramp and a curve. Obviously, if the period of uniform probability
of repair were four days instead of two, the second part would begin after
t=3 and last through t=7.

When dealing with discrete functions and a "resolution" unit of one day,
the F(t-s) of figure 4 can be written as the weighted sum of two step-repair
functions, one lasting four days, the other lasting six, with the weights for
each being one-half. The convolution integral splits into two equally weighted
ones (with appropriate average repair times), and the A(t) response is the
weighted average of the 4-day and 6-day step-function responses. Clearly, we
can extend the idea and build any kind of "reasonable" r(t-s) we wish by creat-
ing linear combinations of step-function elements. Thus, the deterministic
repair line emerges as a truly fundamental building block, for all complex
repair time distributions can be expressed as combinations of them.

In PACAF, a reparable part may go into one of several repair lines, L(i),
with probability Pi. We can treat these "parallel" repair lines as a single
complex line, or keep them separate if we wish. The theoretical justification
for expressing such complex repair distributions by sums of appropriately
weiahted deterministic repair lines is provided by the theorem that Poisson
arrivals with mean m, independently registered into a component pipeline with
probability fi, produce Poisson arrivals at the component pipeline with mean
fim.

Returning to a discussion of F(t-s) with shapes like that of figure 4,
we can see from the way the response is determined that as long as the repair
function ramps are symmetrical about (t-t ), i.e., the expected repair time
doesn't change, the response of X(t) is always equal to or less than that of
the (t-tr) deterministic line. Consequently, the (t-tr) deterministic line
provides an upper bound on expected pipeline quantities for this aroup of
repair functions. This observation, in fact, Generalizes to all l(t-s) that
satisfy the requirements which must be met by the service time distribution:
It must start at zero somewhere on the left and rise monotonically to 1.0 at
or before the index time "t." The right-most value of 1.0 for F(t-s) guaran-
tees that the slope of A(t) starts off at the beginning of the surge with the
same value as it does for the (t-tr) step function, the eventual stationary
state value is given by mtr (Palm's Theorem stationary-state value), and
monotonicity takes care of the rest, assuring that the pipeline quantity is
never greater than that due to the (t-tr) step function when tr is equal to
the average repair time. Thus, the (t-tr) step function provides an upper
bound to the transient behavior of all other repair functions having the same
average repair time when the average pipeline contents are increasing.
Similarly, it provides a lower bound when the average contents are decreasing.
For this reason especially, as well as being a basic function for linear
expansions, the constant-repair time distribution takes on a "fundamental"
character.

Gordon Crawford proved the "bounding-value" property in section IV of
his 1981 Rand publication, "Palm's Theorem for Non-Stationary Processes,"
R-2750-RC, using much more elegant mathematics and notations. Although

Jl7
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PACAF/0A had long before built the "Vector" model (ref 4) on the computational
procedures discussed herein, the upper-bound characteristic of the constant
repair time distribution had not been fully appreciated until Crawford pointed
it out. His paper is, in its entirety, a superb piece of work packed with
information and insights. It's worth several careful readings.

A Look at More Complicated Demand Intensities

When a flying unit surges, it does so for only a relatively short
time, perhaps up to 8 or 10 days, before it drops back to a lower level of
flying activity. The demand intensity function correspondingl drops.
Thus, instead of looking just at the step up, we also need to look at the
follow-on step down.

Figure 6. Demand Function with an Up-Step and a Down-Step

3 m( t)

2I
F(t-s)

1

t-tr t 0t s

The resulting program could be that shown in figure 6 where t is the
duration of the surae. We have also marked T(t-s) in heavy lines ?without
worrying about normalization or scaling). With ts greater than tr, X(t)
increases just as before, stabilizes when 's "trailing edgte" passes the
up-going step, starts down again in a second transient phase when F's
leading edge passes the down-step, and stabilizes again when T is entirely
in the right-most stationary-state region. Obviously, the "plateau" of X(t)
gets narrower as tr approaches ts and is never reached when tr is greater
than ts.

The behavior is shown in figure 7 where t$ is made successively smaller
with respect to tr. If F has a trailing ramp instead of a step, those
transition points on X(t) which are affected by the trailing edge would be
filleted to a degree determined by the length of the T(t-s) ramp, and
these are suggested in the figure by the dashed fillets.

The overall behavior shown in figure 7 is exactly what one would intui-
tively expect when the surge gets short relative to the repair times of the
pipeline.

8
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Figure 7. Pipeline Response to 2-Step Demand Intensity Function

tr ts  (tr+ts) tr (tr+ts) t s tr(tr+ts}
0 0 ts  0

Case I: (tr<ts) Case II: (tr=ts) Case III: (tr>ts)

Our exposition so far has treated time-dependent demand functions, but
not time-dependent repair functions. We have looked only at those repair
functions which depend on time differences, i.e.,

r(t,s) = It(t-s).

It is quite likely that the repair function will undergo changes at the same
time the demand-intensity changes: When the unit begins a flying surge, the
maintenance folks will beqin to work longer hours, perhaps even be augmented
with additional men, so that the average elapsed time to repair a given part
()uld very well decrease at the start of the surge. To round out our story,
then, we need to explore the effects of time-dependent changes in the repair
function. (Note that the changes must be preordained to occur at points in
time, not to occur as a consequence of increasing pipeline contents per se.
The repair time distribution must remain statistically independent of the
repair line contents.)

The "time-dependent Palm's Theoren" proved in Hillestad and Carrillo's
paper covers the general case, but it is easier to make a few points we have
in mind by talking in terms of discrete epochs of time. When dealing with
non-stationary systems, the theorem can be interpreted as a statement about an
ensemble of identical systems, each operating independently but all operatino
according to the stochastic process described by m(s) and T(t,s). The theorem
asserts that the contents of each pipeline in the collection that make up the
ensemble will be Poisson distributed with an expectation given by equation (1).
To calculate that expectation, one needs know only the "history" of the pro-
cess, not its future. Thus, we can specify for t1 what m1(s) and r(tl,s) has
looked like up 'til t1 and compute away, labelling the result (tI). At
another time, t2 , t2>t, we can specify m2(s) and r(t2,s) and label the
computational result At 2). The two calculations are completely unassociated;
indeed, they are individually unique. Now, however, if we make m](s) and
m2 (s) behave in such a way that they are historically consistent with a real-
world process, and similarly for F(tl,s) and f(t2,s), then we can reasonably
say that the sequence [X(tl), X(t2), ... , Mtk)] describes the time
dependence of the statistics of the ensemble.

'/



What does "historical consistency" mean? Wel, with regard to m(s),
there is almost no constraint between "today's" value and "yesterday's" value.
As long as today's history includes verbatim "yesterday's" history, the func-
tion is acceptable. It is essentially a point function over time to which new
points can be freely added. We face a more difficult constraint on F(t,s)
for, as we have already discussed, the repair line acts as an "adder" of
revious demands. We need to be very careful, then, in deciding whether
(t2 ,s) is historically consistent withlF(tl,s). We note, again, that

this is not a requirement of the mathematics: We must meet it in order to
claim that our model is in consonance with the world we are modeling. Radical
forms for F(t,s) can, for i-nstance, "create" or "destroy," "suck up" or
"return" parts in weird ways.

When the time-dependent Palm's theorem was implemented by RAND in the
string of evolving computer programs they call Dyna-1ETRIC, the following
treatment was implemented:

The demands input to the peacetime line is cut off at the beginning
of the surge and that line returns repaired parts to the user according to
the peacetime repair distribution. A "wartime" repair line begins receiving
the broken parts due to the surge and they are returned according to the
wartime repair distribution. The total parts in the computed pipeline is the
sum of the parts in the component pipelines. This implementation certainly
guarantees the historical consistency of r(t,s) before and after the start
of the surge. Although Dyna-METRIC implements only the one break point (we
believe) the procedure could clearly be repeated again and again to generate
functions more complicated than a pre-surge/post-surge repair distribution.

Let us now look at the response of the pipeline contents to a process
like that above. Figure 8 shows the component pipeline contents.

Figure 8. Component Pipeline Contents for
Pre- and Post-Surge Repair Distributions

,-Rpost-surge

pre-surgq
i~i Post-surge Pipeline

Pre-surge Pipeline A - - -

Start of time
Surge
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Each component pipeline responds to its specific values of mn(s) and r(t,s)
as shown. Because the "nw post-surge repair time is shorter than the pre-
surge repair time, there is a peak in repair line contents. For the values
shown ,(R ost.r~ 0.5,Rr-i e post-surge flying rate = 2 x pre-surge
rate), the pears 25% higher tfal the long-term steady-state value. If the
post-surge repair time were shorter still, the peak would be even higher, and
conversely.

Now in point of fact we doubt that the real world will behave the way
DM says it will. The stepped-up maintenance capability, whether due to longer
hours or extra manpower, could very well work to reduce the peacetime contents
very quickly, causing the long ramp, A to C, to become a short one. If it
emptied the peacetime contents so that the ramp dropped to zero at D (i.e.,
parts remaining in the peacetime pipeline are repaired as fast as parts
entering during surge), then the solid black line representing total pipeline
contents would go directly from A to B and level off without experiencing
a peak. If the peacetime contents were repaired even faster than the surge
parts (it is possible to rationalize such a case), then the AB ramp would be
on the high side, but DM would be even higher.

We hope, at this point, that the reader is receptive to distinctions
between the mathematics implicit in the model, the model's congruence to
the world it is supposed to represent, and approximations to the mathe-
matics. Of all the many ways to get wrong answers when studying these kinds
of problems, the most probable are incorrect data and lack of model con-
gruence to the real world. We will have still more to say about model
congruence in the next section but for now will rest on the above example
which shows that the way the analyst chooses to represent wartime changes
in repair time distributions does have an effect on the calculated peak
pipeline quantities. We find it just as reasonable to postulate a model
that produces a straight ramp as one which goes above or below it. Similarly,
when we do not know either the repair distribution form in peacetime or how
it transiti-oW? to wartime, it seems silly to worry about the "rounding of
the ramps" shown in the illustrative figures.

Our focus in this section has been on showing how a pipeline responds
to various simple changes in the functions that drive it. We have used the
simplest forms -- steps and ramps -- because (1) they are simple, (2) they are
the ones usually implemented when the model is applied, (3) more complex func-
tions can be made up of linear combinations of them, and (4) the determistic
repair function is a bounding case. When a user of any of the time-dependent
pipeline models (Vector or Dyna-METRIC) has truly grasped the pipeline's
behavior we have discussed, he will have'gone a long way toward freeing him-
self from reliance on computer programs. He can use his intellect to explore
model reactions and sensitivities with much greater facility than when he's
tied cripplingly to sifting computer output data. It was in the hope that
more practitioners would start using their own "mental computer" to explore
logistics problems that led us to set up the guiding SRA space within which
the dynamics are easy to implement.

111



III. APPLICATION TO SURGE EXTRAPOLATIONS IN THE SR SPACE

The pipeline response X(t), which we have discussed above, is the
parameter of the Poisson distribution that describes the pipeline quantity.
It is, as previously noted, the EPQ of the SR diagram since the Poisson
parameter is the distribution expectation. Based on our understanding of the
way the pipeline responds, as developed above, we can now make quite credible
extrapolations of peacetime "stationary-state" values. We have elsewhere
described the simple rules-of-thumb that can be used. (Section V of PACAF/OA
paper, "Readiness Assessment and Cannibalization," (ref 1); and section IV
of PACAF/OA paper, "Reparable Item Supply Readiness Assessment Using MICAP
Data," Second Draft, ref 2)). The first reference is quoted in the following
text, and we have just covered the justification for the rules cited in it.

"V. SR SPACE DYNAMICS

"If delicately shaped calculations are needed and if all
the assumed conditions are met, Vector or Dyna-METRIC can tell
us how the SR-plot is mapped into another SR-plot at a different
time. We have just illustrated it in the previous section.
There may well be occasion, however, when such delicacy is not
needed and when approximations will suffice. The occasion may
arise because of an urgency to get answers, because of economy,
because the basic input data are too shaky to warrant precision,
and so on. Or it may Just be useful to have an idea of how an
SR plot is apt to change: such a "feel" is at least part of
understanding the SR space. We will later rely on the intrinsic
behavior to discuss a few large issues, so it is worthwhile dally-
ing a bit to develop the "feel."

"First, we grasp the idea that the SR space is determined by
the repair pipeline distribution. We have, so far, restricted
ourselves to a Poisson distribution.

"Second, it eases matters to think at first of stationary
conditions. Peacetime training flying is a stationary state.*
Even a surge becomes a stationary state if, in our imagination,
we let it go on long enough. We can get some very useful bench-
marks that way, simply by applying Palm's theorem, the one which
preceded the Dynamic Palm's Theorem. In that case, the calcula-
tion of the EPQ is very simple: it is Just the NSN's daily
demand rate multiplied by its mean repair time and, moreover,
does not depend on the form of the repair time distribution.
When the sortie rate changes and after the pipeline reaches the
new steady state, the new EPQf wiTV -be the product of the new
daily demand rate and the new mean repair time. Most simply,
if the mean repair time doesn't change, then

/'
* Note added: Recent evidence suggests that this widely used assumption may

be far from the truth.
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(Sortie Rate)f
EPQf = EPQ i

(Sortie Rate)i

and if it does, the scaling is obvious.

"About now, we should say how long is needed for the new steady
state to be reached. For a constant time-of-repair having a value
of, say, 10 days, it takes exactly 10 days to reach the new equili-
brium. The repair line "memory" is only 10 days, for by then all
NSNs from the previous steady state have been repaired and are gone.
If the repair time is a constant 30 days, it takes 30 days for the
pipeline to forget the past. When the pipeline doesn't remember
the past, steady state has been reached. With repair times which
are not quite so constant, the mean time of repair is still a
generally good approximation to the duration of the transient
period."

The text which appears in the second reference says the same thing, al-
though at greater length. Both are precisely correct extrapolation techniques
for (1) a step-function surge and (2) a constant service-time distribution, as
long as (3) we don't reach the drop-off or step-down point of the surge,
i.e., its end. To the extent "aporoximation" is mentioned, we had in mind
repair distributions with ramps, either linear or curvy, on the trailing
edge. For those, we have seen that the constant time-of-repair yields an
upper bound or "pessimistic" value for EPQ(t) during an up-transient. At the
same time, the diagrams show it is not very pessimistic for common values of
surce duration and average repair times and that those differences from step-
function form don't have much influence. When the repair time distribution
changes, then we have the problem of how to guarantee "historical" consistency.
DM guarantees it one way, but that way may not accurately portray the likely
real-world response. In that event, our approximation may be better than DM1.
This is a question of how well the model approximates the world, not of how to
do the calculation.

Crawford (ref 5) has pointed out -- indeed, we also have been at some
pains in this note to make obvious -- that the stationary behavior of the
pipeline depends only on the average repair time, i.e., is independent of
the shape of the distribution, but that the transient behavior does depend
on the shape. Crawford asserts, and we agree, that the second moment of the
distribution catches most of the shape-factor effects. Instead of para-
phrasing further, we quote from page 27 of Rand's R-2750-RC:

"LACK OF SENSITIVITY TO THE CHOICE OF REPAIR TIME DISTRIBUTION

"In the steady-state calculation less information is needed
about repair times. Palm's Theorem says that we do not need to
know the distribution of repair times, only the mean repair time.
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It was mentioned that the dynamic spares calculation is sensi-
tive to the size of the averaging window--that is, to the mean
repair time. The steady-state calculation is no less sensitive
to changes in the mean repair time.

"The difference between the steady state and dynamic models
is in the sensitivity to the higher moments. The steady-state
calculation is insensitive to (in fact independent of) the
higher moments. The degree of smoothing in the dynamic calcu-
lation is influenced by the size of the tall of the repair time
distribution. In Figs. 4, 6, and 7, I have plotted the mean of
the number of units in the repair pipeline, by day, using the
same flying schedule but three very different repair time distri-
butions having the same mean and the same variance. From the
point of view of requirements calculations, the curves are nearly
the same. The peaks occur at the same time, and the up-slope
parts of the curves that dictate when the extra spares may be
needed are almost identical. The large differences in the tails
of the distributions cause differences in the curves in the days
after the peak, but they would not affect a requirements calcu-
lation. For comparison the more peaked 10(t) corresponding to
constant 10 day repair times has been plotted in fig. 8.

"Such examples lead us to believe that if it is possible
to estimate the mean and variance of the repair time distribu-
tion, it is also possible to use just about any distribution
having these moments and the results will he the same."

For our studies of reparable parts within PACAF, we postulate a repair
pipeline which is a composite of three independent pipelines: a base repair
pipe, a Pacific Logistics Support Center (PLSC) repair pipe, and a depot
repair pipe. Each NSN has its own set of probabilities for finding itself in
one or the other pipes and its own set of average repair times for each pipe.
There was a time when we worried about the shape of the distribution. One
of the reasons we built the Vector Miodel was to explore those effects. We
quickly found that nothing very important happened for reasonable variations
in service-time distribution shapes. Since the early explorations, we have
been content to use the bounding assumption of constant repair times. This
composite catches very well the three first moments (i.e., the two RCTs and
the depot OS/T) which are dominant both in stationary state and transient
periods. In principle, one might want in very precise work to estimate the
variance, but we know of no one attempting a large scale application of time-
dependent pipeline theory who is trying to do so. Most everyone, it seems,
is willing to forego the (loosely speaking) second-order effects of the vari-
ance in order to achieve the economies of not having to estimate it.

* Thus, in the overall context of present-day modeling of reparable part
ii. pipelines, I.e., as they are driven by the peacetime and wartime flying of

real world units, a deterministic repair line is a completely acceptable
repair time distribution. No analyst working these problems (in large-scale
applications, at least) really has collected data on the form of the repair
timie distribution or estimated the variance for each separate NSN. That is
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a minimum precondition to using more complicated distributions than that of
the deterministic pipeline. Even more to the point, the repair cycle times
themselves are individually not very well known for the whole collection of
NSNs that make up the raw material of the model's application. We suspect
that few analysts are searching for the second moments simply because they
already understand that the more important first moments are only poorly
known. Being wrong on the first moment of each NSN's distribution appears to
be a far more grievous source of error than the very minor kinds of approxi-
mations implicit in the rules of thumb we proposed.

The "linear extrapolat-ion" which seems to have offended some readers
now stands exposed as a precise statement of the pipeline response to the
most useful, and probably most used, form of the repair time distribution.
To the extent it is an approximation to the real world, it is a far less
serious and more innocuous approximation than those already imbedded in
the "schematic-pragmatic" models of a complicated real world.

We have never asserted or implied a requirement to carry over to war-
time surges the peacetime parameters that describe the demand and repair dis-
tributions. Nor have we presupposed those values: they are fully at the
choice of the user. We believe, in fact, that wartime values will and should
be different from peacetime ones. Our proposed rules say nothing that limits
the way they change. Whatever their values are, one may still conceive of a
long-term steady-state which could be reached and the time needed to reach
it. Because EPOf is specifically defined as a steady-state value, it may
be obtained from proportional relations of the final and initial demand and
repair time values. We then use a ramp to show how the daily EPQs progress
toward EP~f from day to day during the surge. The overall approximation is
a good one which should be entirely adequate for the duration of the surae.
Indeed it is far better than required for mere discussion of the effects of
functional changes in the parameters . . . and that, after all, was our
stated purpose.
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