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THE FACTORIZATION METHOD FOR TWO POINTS BOUNDARY VALUE PROBLEMS
FOR ODE”S AND ITS RELATION TO THE FINITE DIFFERENCE METHOD

I. Babudkal® and v. Majer?

L. INTRODUCTION

Finite difference and finite element methods for solving two point
boundary value problems for systems of ordinary differential equations consist

of

a) a discretization procedure which transforms the original problem
into a family of finite dimensional systems of algebraic equations

parametrized by the mesh size h, and

b) a solution procedure for the systems of algebraic equations.
For linear boundary value problems the algebraic equations are linear and step
b) reduces to the selection of a matrix reduction scheme. In this paper we
congider only direct (elimination) methods of matrix reduction.

By these two steps, taken together, the original problem is transformed

into ¢ sequential n-merical orocess (§5) which depends on the mesh parameter

he & complete anslvsis of the numerical procedure must consider this
underlying numerical process, not merely the discretization step a). In this

PAPST e carry dwk such a complete analysis for a model singular perturbation

Ioenartﬁewt of Mathematics and the Institute for Physical Science and
Teehnology, University of Maryland, College Park, MD 20742, Partially i
supporzed by ONR Contract No 0014~77-C~0623.

Zrﬁatitute for Physical Science and Technology, University of Maryland,
College Park, MD 20742, Partially supported by NSF Grant DMS-8315316.

ﬁInvi@ed lecture at the Applied Math Conference, Merimbula, New South Wales,
Australia, TFebruary 1984,




o e o BEPe T e

problem of turning point type (§2) studied by H. 0. Kreiss et al. in {1]. We
show (§4) that the numerical process converges, as h » 0, to the solution of
initial value problems for certain differential equations. These limiting
equations are the closure [2] of the process., Thus it is possible to
interpret the numerical process as a special method (of low order) for solving
these initial value problems.

This fact suggests that one should study directly a class of
transformations of the original boundary value problem into systems of initial

value problems, called factorizations, which class includes the above-

mentioned closure. We address this question in§3, where we single out those
transformations of this class which are stable in a precisely defined sense,
and which therefore can be solved by proper numerical methods. One such
method, of course, would lead to the identical numerical process as that
stemming from the finite element or finite difference discretizations.
Although we restrict ourselves here only to a linear model problem, the
results described here hold for general systems of boundary value problems and

can be applied also to nonlinear problems [3].
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2. MODEL PROBLEM

2.1. Staceament of the problem

Cousider the scalar second-order boundary value problem

2

(2103 ¢ i_f a(8) = = (a(£)u(s)) + b(sdu(s) + &(s), s € [o,0%]
(2.1% »(a) = vy, uw(on) = y*.

The functioms a, b, #&: % afe amoott om (g,0%], and 0 < e <1l 1is a
constant parameter. % solusions of (2.1) can exhibit boundary or interior
layers in whisk t#& soiuti{on %s rapidly changing. A discussion of the range
of possible behaviors may be found im [1;].

We seek the values &f an apgrowximate solution of (2.1) 2n a paftition

W0 B gy gy K eee Lo %P

of target points of [o,0*]. We wpuid =iso like te deteriine the location of

tiie iaterior or boundary layers and zerhaps to resolve them.

2.2. Reformulation as a First Order System

It is possible to recast (2.1) as a first order system in a number of

ways. We consider one of them here, Let v~ = bu + g. Then

w(s) = A2 g5y + L y(o),
(2.2a)

v(s) = b(s)u(s) + g(s),

(2.2b) u(o) = y, Vv(o*) = y*,




-

in which we have used %; = “., Written in matrix form (2.2) becomes

u“(s) a(s)/e 1/e u(s) 0
(2.33) = +
v (v) b(s) 0 v(s) g(s)
subject to
u(o) u(o*)
(2.3b) [1 0] = vy, [1 0] = vk,
v(o) v(o*)

Equation (2.3) is but a special case of

u“(s) a(s) c(s) u(s) £(s)
(2.4a) = +
v°(s) b(s) d(s) v(s) g(s)
subject to
u{og) u(o*)
(2.4b) [« 8] = Y [a*x  B*] = y*,
v(o) v(g*)

The form (2.4) encompasses all the various reductions of (2.1) to first order

form. In the sequel, it is assumed that the solution of (2.4) exists.




]
5
3. INDIRECT SOLUTION OF THE MODEL PROBLEM
The indirect method of solution of (2.4) is based upon the propagation
across the interval [og,o*] of the boundary conditions (2.4b) in a manner
consistent with the original equation. For this we require certain auxiliary
initial value problems.
v 3.1. Auxiliary Initial Value Problems
Consider the initial value problems
1
$°(s) = -a(s)¢(s) - b(s)y(s) + z(s)¢(s),
(3.1)
¢(g) = a,
! ¥ (s) = =-c(s)¢(s) = d(s)¥(s) + z(s)y(s),
3 (3.2)
1 y(o) = 8,
x“(s) = £(s)¢(z) + g(s)y(s) + z(s)x(s),
(3.3)
X(O) = Y
$*“(s) = -a(s)¢*(s) - b(s)y*(s) + z*(s)$*(s),
(3.4)
@*(c*) = a*,
P*7(8) = ~c(8)¢*(s) = b(s)y*(s) + z*(s)P*(s),
(3.5)
v*(c) = B*,
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x*(s) = f(s)¢*(s) + g(s)y*(s) + z*(s)x*(s),
(3.6)

X*(G*) = vk,

in which the conditioning functions s + z(s), z*(s) are continuous but, at
the moment, otherwise arbitrary. Problems (3.1)-(3.3) are solved forward,

while (3.4)-(3.6) are solved backward.

Theorem 3.l. Suppose that (3.1)-(3.3) have been solved on (g,§) and (3.4)-

(3.6) have been solved on [g*,g*]. Then for s € [0,E] N {E*,0*] , and

[u(s)v(s)]T satisfying (2.4),

$(s)  y(s) u(s) x(s)
(3.7) = . -
o*(s)  y*(s)] Lv(s) x*(s)

Corollary 3.2. If s + [u(s) v(s)]T 1is the unique solution of (2.4) and

the hypotheses of Theorem 3,1 are satisfied, then
(3.8) $(s)y*(s) - ¢*(s)y(s) # O
for sé€ [g,6] N [£*,0%]. .

It is possible to relax the hypotheses of Theorem 3.1. It 1is necessary

*
only that z and 2z be plecewise continuous,

Theorem 3.,3. Suppose that (3.1)-(3.6) are satisfied with s + z(s), z*(s)

plecewigse continuous and having points of discontinuity Ei’ i=1,¢ee,0n and

*
EI, i =1,.00,n , respectively, If there exist non-zero constants ki’ 1 =

l,eee,n and ki, 1= l,e..,n* such that
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+ -
(3.9a) WED = kD,

+ -

+ -
for i = 1,...,n, and such that
(3.10a) o'E) = keTED,
(3.10b) ViED = e
(3.10¢) x*(E:-) = ka*(£*+)

for 1 = 1,...,n*, then formula (3.7) continues to hold, as do the

conclusions of Corollary 3.2. a

The collections of functions {¢,¥,x,z}, {¢*,w*,x*,z*}, breakpoints
{Ei}, {E:}, and multipliers {ki}’ {k:} satisfying the conditions of
Theorem 3.3 comprise a factorizations of the two point boundary value problem
(2.4). |

Theorem 3.3 is central to the viability of a computer implementation of

a factorization procedure based on the solution of (3.1)-(3.6) followed by the
solution of (3.7) at selected target points at which the values of u and
v are desired. The conditioning functions z, z*, the breakpoints Ei’ Ei
and the multipliers ki' kI are chosen adaptively by the computer during the

computation in order to stabilize the factorization,
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3.2, Stable Factorizations

Definition 3.4. A factorization for (2.4) is bounded if there exist

constants 0 < A € A < » such that

2

(3.11) AT < ¢2(s)+1p2(s) < A2

* *
for all s € (0,0 ] with a similar inequality for ¢ .

Bounded factorizations are stable in the sense of

Theorem 3.5. let ¢, ¥ x and ¢, ¥, x be the solutions of the

initial value problems (3.1)-(3.6) under the relaxed hypotheses of Theorem 3.3
and such that the right hand sides have been perturbed by functions of
magnitute T (in the L_ norm). Then u, v solving (3.7) with &
replacing ¢, etc., are solutions of a perturbed problem (2.4), for which the
perturbations of the input data are of magnitude c(i,A)tr where c(X,A) {is

independent of the problem. s

The significance of Theorem 3,5 lies in the fact that c¢(X,A) is
independent of the data of the problem (e.g. of € in (2.la)), and in the
E, fact that the numerical solution of the initial value problems (3.1)-(3.6) can
be interpreted as the exact solution of perturbed equations. The magnitudes
of the perturbations of the equations are under the direct control of the
solution tolerance, for example, of an adaptive solver. The adaptive
selection of the functions z, z* the breakpoints Ei’ g; and the

multipliers Kk, k; by the computer itself is essential to ensure that A/X

and A are of reasonable magnitude.

S0 % ee e s aitynS




Example 3.6, Normalized Factorization

Set

a()$2(s)+(b(s)+c(s))o(8)y(s)+d(s)v2(s)

(3.12) z(s) =
82 ()+92(s)

It is not hard to see that ¢, ¢ satisfying (3.1) and (3. with this

choice of 2z have the property that

(3.13) 82(s) + p2(s) = 1

if a2 +82 = ] (which normalization we may assume without loss of general-

ity). In this case =z 1is continuous and the sets of breakpoints and

multipliers are empty,

Example 3.7 . Riccati Factorization
It is possible to normalize the boundary conditions (2.4b) so that

either a=1 and |8} <1 or B=1 and J|aj < 1. If a=1 set
(3.14) z(s) = a(s)¢e(s) + b(s)y(s).

In this case it follows that ¢ satisfying (3.1) 1s constant,

(3.15) $(8) = 1,

and equations (3.2) and (3.3) take the forms

(3.16) P(s) = mc(s) + (als)=d(s))u(s) + b(s)y (s)

(3.17) x“(s) = f(s) + g{s)y(s) + a(s)x(s) + b(s)yP(s)x(s).

If B =1 set




{3.18) z(s) = d(s)y(s) + c(s)¢(s).

In this case it follows that ¢ satisfying (3.2) is constant,

(3.19) y(s) = 1,

and equations (3.1) and (3.3) take the forms

(3.29) 37(s) = b(s) + (d(s)-als))4(s) + c(8)87(s)

(3.21) x7(s) = g(s) + £(s)¢(s) + d(s)y(s) + c(s)¢(s)x(s).

The constraints (3,15) or (3.19) are made explicitly in (3.1), (3.2), and
(3.3). This reduces by one the number of initial value problems to be solved
in each direction and the lower bound A -equals 1. Unfortunately tle
solutions of the resulting (Riccati) equations may not exist on the entire
interval [o,c*]. But if they do not, this fact is signalled by

2 2 2 . .
or ¢ (s) + 1 > A7) in which case a

2 2 2
6°(s) + Y7(s) + » (i.e., 1 + 97{(s) > A
breakpoint can be defined and the solutions renormalized. That is, the

factorization algorithm can switch adaptively between the ¢-problem and the

y-problem.
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4, DIRECT SOLUTION OF THE MODEL PROBLEM

The direct method of solution of (2.!) is based upon the discretization
of the problem by a finite difference (or finite element) scheme and the
subsequent solution of the resulting matrix equations for the values of the
discrete solution. The dicretization may be carried out in the second-order
form (2.1) or in the transformed first-order forms (2.3) or (2.4). In either
case, a complete analysis of the algorithm should consider the underlying
numerical processes which result from the solution of the discrete matrix
equations. Let us carry out such an analysis for a particular discretization

based on (2.4).

s,

4.1. Block-Diagonal Matrix Equations

A difference scheme for poblems of the type (2.4) with a(s) >> d(s)
has been proposed in [l1]), where such problems are said to be essentially
diagonally dominant. 1In the spirit of the particular form (2.3) let us
restrict ourselves to the case d(s) = 0.

Suppose that a mesh

*
n(h): ¢ = c(h) < a(h) { eee ( o(h) z g
0 1 (h)
m
with w ¢ “(h) has been given. The parameter h characterizes the fineress

of the partition; e.g., h = max(c(h)-d(h)). Then the difference scheme

i 1+1 71
proposed in {1] can be written

o) {h)
4179 (h) (h) ) (h)
(4.1a) hi (i(aiu1 +evy ) + (1—«1)(ai+1u1+l + Ci+1vi+1)
L) ()
+71 (h) (n)y , 1
R 7 OBy 08 D) 3 (8%

i




12
where
r0 if |aihi| > 1, a <0
(4.2) €, = w-% if Jah| < 1
;1 if |a;h | > 1, a; > 0.

Written as a system of linear equations for the vector U(h)
= [... ugh),vih),uiii, izi ...]T of nodal variables, (4.1) has the form
(4.3) APy o g(h)
where the structures of A(h) and F(h) are given in Table 4,1, based on the
quantities

Py T T ;i by

q; = -l,

o S ;i By

s; = 1,

- hi

(4.4) £, = 7 (8y*8,,),

ty = ~(+eghiay),

w, = xihici,

Xg = 1= (=ephyay,,

vg = =(=ephyeiy,

for i = 0,1,...,m(h)-1.




| TABLE 4.1
4
h Matrix A<h) and vector F(h).
L
]
E a B 0 0 0 0 0 . . B l Y
% Po 9| |To So| O 0 0 .. I £
?. ty W Xq ¥o 0 0 0 ° v e I 0
. Py 91 T s;j O v S
LD T I U A T | o

. | . H
1

. I

1

o ' .

Py ay T, g 0 o« o o] £y
ty vy XYy 0 SR B
. |
. | .
. | .

Pa-l m-1] [Tm-1 Sm-1 | fu-) |

Em-1 ¥m-l i *n-1  Ym-1 I o

a* B* [ y*

y e

R g (B)
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Perform forward Gauss elimination with pivoting on A(h) in order to
bring it into the upper triangular form shown in Table 4.2. A similar
backward elimination beginning with the last row of A(h) brings it into the
lower triangular form shown in Table 4.3. Observe that the nodal values of

the solution vector U(h) then satisfy the local 2 x 2 matrix equations

% wi u(h) X4
(ats) =

* * (h) *

e YLV X141

for i = 0,1,...,m(h). Clearly (4.5) is a discrete amalog of (3.7). However

now the entries ¢i’ wi, Xy and ¢:, w:, xI satisfy explicit one-~gtep
recursion formulas which are determined by the nature of the elimination
algorithm.

As an example, it is possible to perform the elimination in such a way

that one or the other of the following two recursions hold:

¥ recursion:
({4063) ¢1+1 1’
hn
vy (4eghia, dre b e =(1- 7= by, ) (1-x dhy ey
(6.68) v, = — L
1 , - - L (1=
= 7 by (9 Uy hya )=y by J+Cl= 5= biw ) (1=(1=, by a, )
ny
T (8y+8) *+by % (¥, (14 hya )= hycy )4y, (T4 hyap)
(4.60) X4 = =% h :

a, )

1 i
-5 b1+1(*1(’*‘1“1’1)"1h1°1)*(1‘ 3= by ) (1=(1=x dh,a,
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TABLE 4.2

Forward Elimination




;
g
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TABLE 4.3

Backward Elimination

a, 1 0 0]

* *

$ ¥y 0 0

* * * 0
* *
LI 0 0
* * * 0

* * * 0
* *
¢ ¥ 0 0
* * * 0

* *
Pm+1 wm+1
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® recursion:
Ry hy
=5 by (I hya by o J+(o- 5= b )(1-(1=c dhya, ]
(4.78) ¢34 = R ’

1
(1+xghja =cihie 00)-(0- 5= by ) (1 )byey

(4.7b) ¢1+1 =1,

h h
1 1
(= 5= B8y )+xy )4xy vy hyag =i hyc ¢ )+(9 = = by )k bycixy
h .
(14¢.h.a -« h c o )=-(o,- =L b J(1=xdh ¢
A S S A2 PN S A B | 17715441

It is readily seen (by letting h » 0) that the explicit recursion
formulas (4.6) and (4.7) can be regarded as special one-step methods for the
initial value problems (3.15)-(3-17) and (3.19)-(3-21), respectively. That
is, the closure of (4.6) is (3.15)-(3-17) and the closure of (4.7) is (3.19)-
(3-21). Of course, it is also possible to devise an elimination scheme for
(4.3) which yields the normalized factorization (z given by(3.12))as its

closure. Analogous recursions can be given for the backward elimination.
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5. STABLE NUMERICAL PROCES.ES

The explicit one-step recursion formulas (4.6) and (4.7) are examples of
a general one-step numerical process (cf. [2]) of the form
(5'1) }'1+1 = Qi(yi,hi), i = 0,1’2,000
where yi,o1 € RN. We have already noted that (4.6) and (4.7) are consistent
with (i.e., the closures of) particular realizations of the initfal value

problems (3.1)-(3.3). They are also stable.

Definition 5.1 (Stability). The process (5.1) is stable 1if it is bounded,

(5.2a) Iyt < K,

and if there exist a neignborhood Bd(y) = {z: fz-y IO< 8} of Yoo and an

L € 1 such that

(5.2b) <Luzg-uyl

2301 Vin! 1
for Zy4; 8iven by

241 = 91(z5hy)
with zj € BG(yO)'

Definition 5.1 is an adaptation of BN=-statibility (cf. [4]). 1In
contrast to the concepts of A-stability and B-stability, the definition is
made without reference to a particular test equation, If L < 1 the process

is strongly stable.

Consider the model problem (2.1) with

(5.3a) -"-‘-(—g—)h < -1
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and

(5.3b) b(s) > 0.

Under these conditions it is not hard to see that recursion (4.6) will hold

with <= 0 in (4.2)., In fact, (4.6b) reduces to
hib,
( + e)w - h
2 i i
(5.4) wi+1 = 2 i
(hibiaiﬂ _ Ehi(bi+bi+1)) . Ceha. )
7 3 ¥y 12141

which can be shown to be an order 1 method for (3.16).

Theorem 5.2. For e < €qy» with €9 such that conditions (5.3) hold, the

recursion (5.4) remains in the semi-infinite strip

1
) - (0"
(5.5) v < -————ﬁ%——-, a > max|a(s)|, b > max|b(s)|
and is strongly stable, independently of e. »

Results analogous to Theorem 5.2 hold for the y tecursion (4.6c), and
also for the recursions (4.7) in the event that |hiéil| > 1. For the case
|33%31| < 1 it is not possible to say a priori whether recursion (4.6) or
(4.7) will be used. It is likely that the matrix reduction algorithm will
switch between them, depending upon the behavior of a(s), b(s), and on the
pivoting strategy in a particular case., It is not our iatent to give an
exhaustive analysis here.

As a final example to illustrate the ideas discussed above, note, that

another first order accurate, stable, explicit recursion for the initial value




problem (3.2) can be obtained by applying the implicit Euler method. Thus

. I S 13 2
(5.6) Y141 7LV e A LT L Y §
whence

- h 3!

€ hiai+1 q)ehibiﬂ(enpi hi) /r
(5.7) ¥ = o {1 -

1+1 2eh b (e-h.a. )2
N3
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6. CONCLUSION

We have shown on a model problem

1)

2)

that there exist factorizations of the original two point boundary
value problem into systems of initial value problems with guaranteed

stability properties;

that there can be many methods--some specially designed--which solve
these initial value problems. Some of these methods will produce
the identical numerical processes as the finite difference (or
finite element) methods applied to the original boundary value value

problems.

In view of these two points, we suggest that it mav be advantageous to

avoid the finite element or finite difference approach altogether, and rather

to study the class of stable factorizations directly, with the goal of

selecting both an optimal factorization for the given boundary value problem,

and also an optimal method (possibly a special one) for solving the initial

value problems of the factorization. 1In this way one might employ the modern

ideas and adaptive approaches widely used in todav”s software for the

numerical treatment of initial wvalue problems for ordinary differential

equations.
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