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THE FACTORIZATION METHOD FOR TWO POINTS BOUNDARY VALUE PROBLEMS
FOR ODE-S AND ITS RELATION TO THE FINITE DIFFERENCE METHOD

I. Babuska1 . and V. Majer
2

1. INTRODUCTION

Finite difference and finite element methods for solving two point

boundary value problems for systems of ordinary differential equations consist

of

a) a discretization procedure which transforms the original problem

into a family of finite dimensional systems of algebraic equations

parametrized by the mesh size h, and

b) a solution procedure for the systems of algebraic equations.

For linear boundary value problems the algebraic equations are linear and step

b) reduces to the selection of a matrix reduction scheme. In this paper we

consider only direct (elimination) methods of matrix reduction.

By these two steps, taken together, the original problem is transformed

into a sequential n'nierical nrocess (§5) which depends on the mesh parameter

h. A comp-tate; anlysis of the numerical procedure must consider this

underlying nt rntrical )rocess, not merely the discretization step a). In this

papqrc m carry o auth a complete analysis for a model singular perturbation
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problem of turning point type (§2) studied by H. 0. Kreiss et al. in I]. We

show (§4) that the numerical process converges, as h + 0, to the solution of

initial value problems for certain differential equations. These limiting

equations are the closure (2] of the process. Thus it is possible to

interpret the numerical process as a special method (of low order) for solving

these initial value problems.

This fact suggests that one should study directly a class of

transformations of the original boundary value problem into systems of initial

value problems, called factorizations, which class includes the above-

mentioned closure. We address this question in§3, where we single out those

transformations of this class which are stable in a precisely defined sense,

and which therefore can be solved by proper numerical methods. One such

method, of course, would lead to the identical numerical process as that

stemming from the finite element or finite difference discretizations.

Although we restrict ourselves here only to a linear mdel problem, the

results described here hold for general systems of boundary value problems and

can be applied also to nonlinear problems [3].
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2. MODEL IROBLEM

2.1. Stat,"want of the problem

Consider the scalar second-order boundary value problem

d 2 d
(Zds' z a~)-~ (a(s)u(s)) + Du(s)u(s) + g(s), s E (0,0*1

(2. V0 ys kk(oa) * ,

The functions a, b., j i. V .e sot osi 'f e-a],fid 0 < e << I is a

constant parameter, 7** 59104iorwe of (2.1) can exhibit boundary or Interior

layers in whi(r,,w, t~ soiutto is rapi-diy changing.~ A discuisjov of the range

of possible beha-~iors may be fqund iv, (1?l.

We seek the v&lIues os azi, apj.roximate solution -of (2. ) nn a pzttion

Wt: a X M5'01<04 0T C

of target points of 10,0*1. We *"u-Id :qiso like~r~ determine the location of

t .nterior or boundary layers and ,w~rhaps to resolve them.

2.2. Reformulation as a First Order System

It is possible to recast (2.1) as a first order system in a number of

ways. We consider one of them here. Let v' - bu, + g. Then

u,(s) _a(s) us ~)

(2.2a) u )us)+.vs,

(v'(s) - b(s)u(s) + g(s),

(2.2b) u(a) - Y, V(a*) - *
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da

(2.3a) [ '] 
- [ )[ + [1

v'(v) b(s) 0 v(s) (s)

subject to

(2.3b) [I O] yo [I O] = Y*.

v(a) [v(a*)

Equation (2.3) is but a special case of

(2.4a) - S C(S U()f

(.a v'(s) [b(s) d(s)] IV(S)] + g(s)]

subject to

(2.4b) [a ] =Y [a* 8*] " y*.

The form (2.4) encompasses all the various reductions of (2.1) to first order

form. In the sequel, it is assumed that the solution of (2.4) exists.
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3. INDIRECT SOLUTION OF THE MODEL PROBLEM

The indirect method of solution of (2.4) is based upon the propagation

across the interval [a,o*] of the boundary conditions (2.4b) in a manner

consistent with the original equation. For this we require certain auxiliary

initial value problems.

3.1. Auxiliary Initial Value Problems

Consider the initial value problems

0 '(s) = -a(s)o(s) - b(s)*(s) + z(s)o(s),

(3.1)

*'(s) = -c(s)o(s) - d(s)*J(s) + z(s)Wp(s),

(3.2)
,()= 8,

x'(s)= f(s)o(z) + g(s),(s) + z(s)x(s),

(3.3)

x(o) = ,

0*'(s) -a(s)o*(s) - b(s)**(s) + z*(s)o*(s),

(3.4)
0*(a*) =a*,

S,*'(s) = -c(s)o*(s) - b(s),*(s) + z*(s)**(s),

(3.5)

,8*
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X*(s) = f(s)*(s) + g(s)**(s) + z*(s)x*(s),

(3.6)

X*(a*) =Y"

in which the conditioning functions s + z(s), z* (s) are continuous but, at

the moment, otherwise arbitrary. Problems (3.1)-(3.3) are solved forward,

while (3.4)-(3.6) are solved backward.

Theorem 3.1. Suppose that (3.1)-(3.3) have been solved on (a, ) and (3.4)-

(3.6) have been solved on [F,*,a*]. Then for s E [a,] n [R*,a*] , and

[u(s)v(s)]T satisfying (2.4),

**(s) *(s) v(s) [X*(s)J

Corollary 3.2. If s + [u(s) v(s)IT is the unique solution of (2.4) and

the hypotheses of Theorem 3.1 are satisfied, then

(3.8) (s)*(s) - 0*(s)*(s) # 0

for sE [o,] n [ *,o*I.

It is possible to relax the hypotheses of Theorem 3.1. It is necessary

only that z and z be piecewise continuous.

Theorem 3.3. Suppose that (3.1)-(3.6) are satisfied with s + z(s), z*(s)

piecewise continuous and having points of discontinuity Ei' i - 1,...,n and

1i - ,...,n , respectively. If there exist non-zero constants ki, i -

1,...,n and ki, i - 1,...,n* such that
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(3.9a) +() ki

(3.9b) () = kip(i),

(3.9c) *('')- =ki×(E),

(3.1a)( 
= k 

(3.10 ) ( c i hl,(s h)

* *- . * * *+

(3.10c) x (Ei =kiX*(E*i)

S- *

for i - 1,...,n ,then formula (3.7) continues to hold, as do the

conclusions of Corollary 3.2.a

The collections of functions {0,*,XZ}, *x ,, z },breakpoints

{E) { i}  and multipliers (ku} ,  {ki }  satisfying the conditions of

Theorem 3.3 comprise a factorizations of the two point boundary value problem

(2.4).

Theorem 3.3 is central to the viability of a computer implementation of

a factorization procedure based on the solution of (3.1)-(3.6) followed by the

solution of (3.7) at selected target points at which the values of u and

v are desired. The conditioning functions z, z , the breakpoints E,'

and the multipliers ki, ki are chosen adaptively by the computer during the

computation in order to stabilize the factorization.
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3.2. Stable Factorizations

Definition 3.4. A factorization for (2.4) is bounded if there exist

constants 0 < X 4 A < - such that

(3.11) X2 2 (s) + 2(s) A2

for all s E [,a with a similar inequality for

Bounded factorizations are stable in the sense of

Theorem 3.5. Let , X and * , X be the solutions of the

initial value problems (3.1)-(3.6) under the relaxed hypotheses of Theorem 3.3

and such that the right hand sides have been perturbed by functions of

magnitute T (in the L. norm). Then u, v solving (3.7) with

replacing 0, etc., are solutions of a perturbed problem (2.4), for which the

perturbations of the input data are of magnitude c(X,A)r where c(X,A) is

independent of the problem. a

The significance of Theorem 3.5 lies in the fact that c(A,A) is

independent of the data of the problem (e.g. of E in (2.1a)), and in the

fact that the numerical solution of the initial value problems (3.1)-(3.6) can

be interpreted as the exact solution of perturbed equations. The magnitudes

of the perturbations of the equations are under the direct control of the

solution tolerance, for example, of an adaptive solver. The adaptive

selection of the functions z, z the breakpoints ' i and the

multipliers ki, ki  by the computer itself is essential to ensure that A/iX

and A are of reasonable magnitude.
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Example 3.6. Normalized Factorization

Set

(3.12) Z(s) = a(s) 2(s)+(b(s)+c(s)) (s) (s)+d(s)p2(s)
2 (s)+2 (s)

It is not hard to see that *, J satisfying (3.1) and (3. with this

choice of z have the property that

(3.13) *2(s) + *2  =

if a2 +02 _ I (which normalization we may assume without loss of general-

ity). In this case z is continuous and the sets of breakpoints and

multipliers are empty.

Example 3.7. Riccati Factorization

It is possible to normalize the boundary conditions (2.4b) so that

either a = I and 181 < I or 8 1 1 and jai 4 1. If a = I set

(3.14) z(s) = a(s) (s) + b(s)ip(s).

In this case it follows that € satisfying (3.1) is constant,

(3.15) *(s) - 1,

and equations (3.2) and (3.3) take the forms

(3.16) p(s) -c(s) + (a(s)-d(s)),(s) + b(s),P(s)

(3.17) X'(s) - f(s) + g(s)i(s) + a(s)x(s) + b(s)4(s)y(s).

If 8 I set



\3.18) z(s) = d(s)*(s) + c(s) (s).

In this case it follows that p satisfying (3.2) is constant,

(3.19) p(s) - ,

and equations (3.1) and (3.3) take the forms

(3.20) 0-(s) = b(s) + (d(s)-a(s))(s) + c(s)Y 2 (s)

(3.21) )'(s) = g(s) + f(s)1(s) + d(s)x(s) + c(s)O(s)x(s).

The constraints (3.15) or (3.19) are made explicitly in (3.1), (3.2), and

(3.3). This reduces by one the number of initial value problems to be solved

in each direction and the lower bound ) equals 1. Unfortunately t:.e

solutions of the resulting (Riccati) equations may not exist on the entire

interval [a,a ]. But if they do not, this fact is signalled by

2 2 2, 2 2(s )(S) + * (S) (i.e., I + *(s) > A or 0 (s) + 1 > A2 ) in which case a

breakpoint can be defined and the solutions renormalized. That is, the

factorization algorithm can switch adaptively between the -problem and the

t-problem.

/



4. DIRECT SOLUTION OF THE MODEL PROBLEM

The direct method of solution of (2.1) is based upon the discretization

of the problem by a finite difference (or finite element) scheme and the

subsequent solution of the resulting matrix equations for the values of the

discrete solution. The dicretization may be carried out in the second-order

form (2.1) or in the transformed first-order forms (2.3) or (2.4). In either

case, a complete analysis of the algorithm should consider the underlying

numerical processes which result from the solution of the discrete matrix

equations. Let us carry out such an analysis for a particular discretization

based on (2.4).

4.1. Block-Diagonal Matrix Equations

A difference scheme for poblems of the type (2.4) with a(s) >> d(s)

has been proposed in [1], where such problems are said to be essentially

diagonally dominant. In the spirit of the particular form (2.3) let us

restrict ourselves to the case d(s) = 0.

Suppose that a mesh

I(h) (h) (h) < ... < 0(h) *

It(h_=a)< a h

with n c 7(h) has been given. The parameter h characterizes the fineness

of the partition; e.g., h = (h (h)) Then the difference scheme
i i+- i

proposed in [1] can be written

u(h)u (h)

(4.1a) i+- I(a (h) + cv(h) )+ (1---i)(a u(h) + civ ()
h iiii ii  i+1 i+1 l ~

v(h) (h)
i+l_ ,i1 bu (h) ) I-(g 1+
h i 2 i+1i I, i(2 ++ 1
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where

0 if Jaih 1i > 1, ai < 0

(4.2) if lahil 4 1

I if Iaihi j > 1, ai > 0.

Written as a system of linear equations for the vector U(h)

[.. u(h) ,v~ ,u),vi+I -.] of nodal variables, (4.1) has the form

(4.3) A(h)U(h) - F(h)

where the structures of A(h) and F(h) are given in Table 4.1, based on the

quantities

h 
i

pi - - ip

qi = -

h
i  b

i - i+ 1

s i  M I

hi
(4.4) f. = (9+9i+l)t

t - (I+Kih ai),

w -K ihici,

Xi - I - ( - i h ai ,Yi -(I-i)h c+,,

for i - O, ,...,m ( h ) - l .
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TABLE 4.1

Matrix A(h) and vector F(h).

a B 0 0 0 0 0 •

rO o I So 0 0 0 " " "f0

O Wo X0 YO 0 0 0 •••0

P1 q I r, Sli 0 j fl

ti wi xi YI 0 • • •0

Pi q r i  si  0 "f

ti xi Yi 0 • 0

Pm-l qm- r- S- fm-1

* I

t -1 q xm- Ym-1 0

i 0 * B* *l 0

A (h) F (h)

* I

... .. - i m 1 r..i S ..

t- - II I lmI II-I I I0 '
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Perform forward Gauss elimination with pivoting on A(h) in order to

bring it into the upper triangular form shown in Table 4.2. A similar

backward elimination beginning with the last row of A(h) brings it into the

lower triangular form shown in Table 4.3. Observe that the nodal values of

the solution vector U (h) then satisfy the local 2 x 2 matrix equations

(4.5) * )
L ~ ~ i+1J Lv Xi+1_

for i - 0,1,...,m Clearly (4.5) is a discrete analog of (3.7). However

now the entries i, *i' Xi and 0j' *i' Xi satisfy explicit one-step

recursion formulas which are determined by the nature of the elimination

algorithm.

As an example, it is possible to perform the elimination in such a way

that one or the other of the following two recursions hold:

4 recursion:

(4.6a) i+ = 1,

h

(4.6b) 'hi+i a ) C bii)(I )hici

hi

- - bi+( (1+Ki h a )-PCih ci)+(1- h, b Ip )(1-0-i )h a )

i+1 i i i i 12 1 1 1+1

(g+ b )*(+ - +

(46c x! 0 1|x ii+i
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TABLE 4.2

Forward Elimination

o o o 0 0 XO
o * 1 * * I *

o 0 o 1 C 0

02 X2

* I.

o * I* * I *
o 0 * i xi

0 I

0 * !* * *

o 0 y ';x
jm i

* * *

!.i



f
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TABLE 4.3

Backward Elimination

I BI 0 0 y

~~1

0 *0 0.

€i q oooo ixz

* *** 0 0

** * I

¢2 2 0 0X2

* 0

xl?
01+1 0 0 ×*

i.i Om+l *m+i ! ×n I
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' recursion:

hi  hi

(4.7a) - b +I +ihi ai- i hi ci ) +( ci- - 5b ) 1-( l-, )ha i+,

Sformul4.as (4.6) an 47 a ergre sseiloese ehd o h

+1 h
(i+K h a _3 h cii-(3 i - a bi)(-i)h ci+l

o(4.7b) t i+h c 
a t

hi  0 1 h a 1C h h ' i ) , h c
(4.7c) Xi+l (9=i i) X ) X h - i .

(I+K ih iai-K ih ~i -(oi- b i) (1-Ki)hici+l

It is readily seen (by letting h + 0) that the explicit recursion

formulas (4.6) and (4.7) can be regarded as special one-step methods for the

initial value problems (3.15)-(3-17) and (3.19)-(3-21), respectively. That

is, the closure of (4.6) is (3.15)-(3-17) and the closure of (4.7) is (3.19)-

(3-21). Of course, it is also possible to devise an elimination scheme for

(4.3) which yields the normalized factorization (z given by(3.12))as its

closure. Analogous recursions can be given for the backward elimination.
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5. STABLE NUMERICAL PROCESSES

The explicit one-step recursion formulas (4.6) and (4.7) are examples of

a general one-step numerical process (cf. [2]) of the form

(5.1) Yi+j = *i(yi,hi), i - 0,1,2,...

where yi,0i E RN. We have already noted that (4.6) and (4.7) are consistent

with (i.e., the closures of) particular realizations of the initial value

problems (3.1)-(3.3). They are also stable.

Definition 5.1 (Stability). The process (5.1) is stable if it is bounded,

(5.2a) lyi 0 K,

and if there exist a neighborhood B6(y) = {z: Iz-y 1 < 6} of y0, and an

L 4 I such that

(5.2b) 1Z i+l-Yi+lH 1 Llizi-u 1 1

for zi+ 1 given by

z = i(zi9hi)

with z0 E B5(Y0 ).

Definition 5.1 is an adaptation of BN-statibility (cf. [4]). In

contrast to the concepts of A-stability and B-stability, the definition is

made without reference to a particular test equation. If L < 1 the process

is strongly stable.

Consider the model problem (2.1) with

(5.3a) _ < -1
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and

(5.3b) b(s) > 0.

Under these conditions it is not hard to see that recursion (4.6) will hold

with <i - 0 in (4.2). In fact, (4.6b) reduces to

h2b,(7-A+ e)pi - h

(5 .4 ) * + l h 2 b a 2 >hii t i

h i ai+i ch i(b i+b i+1) (- aS 2 2 ')*i + (c-h ia i+1)

which can be shown to be an order 1 method for (3.16).

Theorem 5.2. For c < cot with EO such that conditions (5.3) hold, the

recursion (5.4) remains in the semi-infinite strip

2 - 0

(5.5) 4'< h ' a ; maxla(s)!, b > maxlb(s)f

and is strongly stable, independently of c. U

Results analogous to Theorem 5.2 hold for the X recursion (4.6c), and

also for the recursions (4.7) in the event that I > 1. For the case

I ( 1 it is not possible to say a priori whether recursion (4.6) or
C

(4.7) will be used. It is likely that the matrix reduction algorithm will

switch between them, depending upon the behavior of a(s), b(s), and on the

pivoting strategy in a particular case. It is not our intent to give an

exhaustive analysis here.

As a final example to illustrate the ideas discussed above, note, that

another first order accurate, stable, explicit recursion for the initial value
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problem (3.2) can be obtained by applying the implicit Euler method. Thus

+ hia'+ i+ j l 2 1

(5.6) 1+1+ hi - + i+-]I +

whence

e-hi a i+1  h - b 1+h(ei-h i ) 1/2
i(5.7) *1+1 2-h b (-hi ai+1

)2
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6. CONCLUSION

We have shown on a model problem

1) that there exist factorizations of the original two point boundary

value problem into systems of initial value problems with guaranteed

stability properties;

2) that there can be many methods--some specially designed--which solve

these initial value problems. Some of these methods will produce

the identical numerical processes as the finite difference (or

finite element) methods applied to the original boundary value value

problems.

In view of these two points, we suggest that it may be advantageous to

avoid the finite element or finite difference approach altogether, and rather

to study the class of stable factorizations directly, with the goal of

selecting both an optimal factorization for the given boundary value problem,

and also an optimal method (possibly a special one) for solving the initial

value problems of the factorization. In this way one might employ the modern

ideas and adaptive approaches widely used in today's software for the

numerical treatment of initial value problems for ordinary differential

equations.
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