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FOREWORD

This report was prepared by Fu-Kuo Chang, Richard A. Scott, and
George S. Springer, Department of Mechanical Engineering and Applied
Mechanics, The University of Michigan for the Mechanics and Surface
Interactions Branch (AFWAL/MLBM), Nonmetallic Materials Division,
Materials Laboratory, Air Force Wright Aeronautical Laboratories,
Wright-Patterson AFB, Ohio. The work was performed under Contract Num-
ber F 335[§F81-C5050. Project number FY1457-81-02013.

This report covers work accomplished during the period June 1983-
December 1983,
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SECTION I

INTRODUCTION

Among the major advantages of laminated composite
structures over conventional metal structures are their
comparatively high strength to weight and stiffness to
wveight ratios. As a result, fiber reinforced composite
materials have been gaining wide application in aircraft and
spacecraft construction. These applications require joining
composites either to composites or to metals. Most
commonly, joints are formed by using mechanical fasteners.
Therefore, suitable methods must be found to determine the
faiiure strengths and failure modes of mechanically-fastened
joints. A knowledge of the failure strength and failure
modes would help in selecting the appropriate size joint in
a given application,

Oving to the significance of the problem, several
investigators have developed analytical procedures for
calculating the strength of bolted joints in composite

materials. Among the recent studies are those of Waszczak

and Cruse (Reference 1), Oplinger and Gandhi (References 2 & 3), Agarwal
(Reference 4), Soni (Reference 5), harbo and Ogonowski (Reference 6),
York, Wilson, and Pipes (References 7 & 8),and Collings (9). The

resylts of these investigations apply only to joints containing a

single hole, and, with the exception of Agarwal's method, none of the
previous methods can predict the mode of failure. Furthermore, as will be
discussed in Section VIII, the previous methods provide conservative
results and underestimate the failure strength, often by as much as 50
percent.
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The first objective of the investigation was,
therefore, to develop a method which a) can be used to
estimate both the failure strength and the failure mode of
pin-loaded holes in composites, b) applies to laminates
congaining either one pin-loaded hole or two pin-loaded
holes in parallel, or two pin-loaded holes in series, c¢)
provide results with better accuracy than the existing

analytical methods and, d) can be used in the design of

mechanically-fastened composite joints. The second

objective was to develop a “user friendly” computer code

wvhich can be used to predict the failure strength and

failure mode of loaded holes (joints) involving laminates

with different ply orientations, different material

‘ properties, and different configurations=-- including

different hole sizes, hole positions, and joint thicknesses.

i The third objective was to generate data vhich can be used

to assess the accuracies of analytical methods,

The analytical model and the corresponding numerical

4 method of solution are presented in Sectiony 111-Vl., The
experimental apparatus and procedures are given in Section

; VIl. The data, and comparisons between the analytical and

experimental results are presented in Section VIII. The use

of the model in the design of joints is5 described in Section
1X.
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SECTION II

PROBLEM STATEMENT

g Consider a plate (length L, width W, thickness H) made
4 ?A of N fiber reinforced unidirectional plies. The ply

i orientation is arbitrary, but must be symmetric with respect
;: ; : to the x3=0 plane (symmetric laminate). Perfect bonding
| i betveen each ply is assumed.
g Three types of problems are being analyzed (Figure 1):
| a) A single hole of diameter D is located along the
centerline of the plate; b) Two holes of diameter D are
located at equal distances from the centerline of the plate
(two holes in parallel); c¢) Two holes of diameter D are
located along the centerline of the plate (two holes in
series). A rigid pin, supported outside of the plate, is

inserted into each hole.

A uniform tensile load P is appried to the lover edge of
the plate and a uniform tensile load P, (referred to as the
“by-pass® load) is applied to the upper edge. These loads
ate parallel to the plate (in-plane loading) and ave
symmetric with respect to the ceaterline. Nence, the loads
cannot create bending ooments about either the x,, ¥os OF Xg
axes. Moreover, for symametric laminates, in-plane lcading
and bending effects are uncoupled. Transverse fovces,

(i.e., forces in the %4 direction) are not applied, and

transverse displacement of the laainate i8 not taken into

account. For exampie, a vasher on each side 0f the

3 g . o .. LR _'V.‘i;e 5”‘&ﬁﬁ‘t3‘!? -
.!’_ ~aaiivber— T T - T
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FPigure 1. Descriptions of the Problem. Top: Single Hole
Model; Middle: Tvo MHoles in Secries; Bottom:
Tvo iHoles in Parallel.




laminate, supported by a lightly-tightened ("finger-tight")
bolt in the hole, would ensure that there is no transverse
displacement, and that the condition of two dimensionality
is satisfied {10].
It is desired to find :

1) the maximum (failure) load (P, ) that can be applied

before the joint fails, and
2) the mode of failure.

Point 2 refers to the fact that, according to
experimental evidence, mechanically-fastensd joints under
tensile loads generally fail in three basic modes, referred
to as tension mode, shear-out mode, and bearing mode. The
type of damage resulting from each of these modes is
illustrated in Figure 2. The objective, listed in point 2
above, is to determine which of these modes vill most be
responsible for the failure.

The calculation proceeds in three steps. For a given
geometry and load :
1) the stress and strain distributions around the hole are
calculated,
2) the maximup (failure) load is predicted,
3) the mode of failure is determined.

The details of these steps are presented in Secticns Ill and
Iv.
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SECTION 111

STRESS ANALYSIS

The calculation of stresses raises the issue of whether
a two or three dimensional stress analysis is required, If
tests fere to show that the stacking sequence did not affect
the failure strength and the failure mode, then a two
dimensional stress analysis would suffice. Existing
experimental evidence indicates that the stacking sequence
is important only when a) the laminate is narrow (and edge
effects are not negligible [(11]), or b) the laminate is
unrestrained laterally [12]. However, even vhen the
stacking sequence affects the results, it seems to affect
the failure strength by only 10 percent to 20 percent
{11-15]). Purthermore, the failure strength and the failure
mode seem unaffected by the stacking sequence vhen there (s
a slight lateral constraint on the laminate, such as
provided by lightly tightened (f{inger-tight) bolts
(10,16,17].

For these reasons, a tvo dimensional stress analysis vas
chosen for the present vork. As will be demonstrated in
Section VII!, this analysis provides a useful estimate of
the failure scrength and the failure zode of loaded holes.
in addicion vo being reasonably accurate, the tvo
dizensional analysis adopted here also provides a sizple and
inexpensive aeans for calculating failure screngths and

failure modes, making it an attractive design aid.

v T mmmmE T oRES R Tr



3.1) Governing Eguations

The stresses in the laminate are calculated on the bases
of theory of anisotropic elasticity and classical-lamination
plate theory. Accordingly, in the analysis, planes are
taken to remain planes, the strain across the thickness is
taken to be constant (sijvf(x1,x2)]. and only plane srresses
are considered (013-023=033=0). Under these conditions, in
the absence of body forces, the condition of force

equilibrium can be expressed as [18)

3011/81“30‘2/332‘ 0

(1)
302‘/331'3022/3:2“ 0

In index notation eg. (!) becomes

’ L. .. -
, 45,3 0 {2}

94 is the stress component in the plane novmal to the
X, axis and is in the % direction. The subscripts i and j
may have the values of 1 or 2. Now consider an elastic

laminate of voluze Vo containing a single pin-loaded hole or

L e A ey I . P ol e e

tvo pin-loaded holes, as shown in Figure 3. Loads are

applied over the surface area Ay . The displacenents aloag

e e s s

the surface ares kg are restricted in a manner described

suigsequently. The sucface area Ap is free of applied

L . A ]

, ‘ Stress.
L

piarea i -ghy Sl

-
e
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" The total surface area is

A= A, + A *Ap {3)

Let us denote by ﬁi any arbitrary displacement inside

the body. Bi is a test function. The only requirement is

that Gi be continuous and differentiable. 1In addition,
along the AR surface, the componeints of Bi normal to the
surface must be zero. By multiplying eq.(2) by ﬁi and by
takting the volume integral of the resulting expression, we

obtain
Iy i3, 3 u; 4v = 0 (3)
By employing the identity

O:s 2U: ® § ) ({5}

13,39 7 ‘O13MY,5 T %YLy
and by utilizing Gauss' theorem, eg. () may be written as
lf* Oij nj G‘ dX - }"!‘)‘Vo Ogj ui.j dv e (6)

_ vhere nj is the unit vector normal to the surface. By
: utilizing ¢g.(3), eg.(8) can be expressed as

!I“L oijﬂjuid:\ hd '.'f'\R Gijﬁjui A » ‘tf&? O:j ﬂj Ui éA
- !fj 0: o 6. R (7)
VO 83 4.3
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On the free surface AF the stresses are zero. This

condition gives
IIAF oij nj ui dA = 0 (8)

The forces per unit area (called surface traction) at each

point of the surface area A, are [18]

T.=a g.. N (9)

Equations (7)-(9) yield

jjALTiai dA + IIAR Oijnjai A = fjfvo oijai'j av {10)

The stress is related to the displacement through the stress

-strain relationship, vhich for an elastic body is [18])

o5 * Bijk1 fx2 (1)

The subscripts k and 1 may take on the values of 1 or 2, In

order to reduce the analysis from three dimensions to tvo

} i dimensions, the reduced modulus Ban is introduced

»* .
o et o

|
Eijk1 * Ean -aésh"_/m Gpm (12)

PR LR

-

vhere WP is the thickness of the p-th ply, and [Q)P is the

transformed ceduced stiffness matrisz for the P-th ply [19)

"
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(Appendix A). The subscripts i,j,k, and 1 are related to m

and n as follows

oo b, = g A

isje1 & m=1 k=l=1 . n=1
isjm2 4 m=2 k=1=2 L n=2
inj + m=3 kel + n=3 (13)

.

Note that this reduced modulus is a constant and is
independent of the thickness of the laminate. The strains

are related to the displacements uj by the expression

€g1 = (1/2)( auk/axl + Uy /3%, ) (14)

By combining egs (10)-(14) we obtain

IIIVOEijklui.juk,l av = IJAL T;u; dA ¢ ffAR 0j4nyu; GA (15)
Since the problem is treated as two dimensional, the
displacements and, consequently the strains are constant
across the laminate, Hence the stresses, as defined by
eq.(11), are also constant across the laminate. However,

the on axis stresses in each ply vary from ply-to-ply, and ‘

are given by

X €4 l
= p
cpy (T)(Q)! €y (16)
°pxy Y12 J
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where the subscripts x and y represent the directions
parallel and normal to the fibers, respectively. The matrix
[T] is the coordinate transformation matrix given in

Appendix B,

3.2{ Boundary Conditions; Single Hole and Two Holes in

Parallel

For problems involving a single hole and two holes in
parallel, it is assumed that a portion of the surface of
each hole is subjected to a surface traction Ti* (Figure 4).
The parameter Ti* is related to the applied load. The
spatial distribution of Ti* depends on the magnitude of the
applied load, on the material properties, and on the
geomefry in a complex manner. It is extremely difficult to
determine the exact distribution of Ti* ingide the hole
[20-22]. To overcome this difficulty, a cosine normal locad
distribution was assumed. With this approximation, a force
balance in the xzdirection gives

w2

PsP,+H[ (D/2)T, cos?e de (17)
-2 2

where Tx is the normal stress at the hole surface at 8=0.
2

‘At any arbitrary angle 6 (-n/2S ¢sn/2), the stress normal to

the surface is

3
i " szni coso (18)

T

e e o
BEAL " e SR R . e - K ittt i B ik 21
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Eq(17) and (18) give

T-*

;= -4 c((P-Pz)/nDH) n; cosé (19)

where P, 1is the by-pass load which is a fraction f of the
total load P

P, =£P . (20)

The values of either P and P, or P and f must be specified.
Thus, the surface traction on AL1 can be written as

*

Ty = -C (P(1-£)/7DH)n, cosé (21)

The surface traction on ALZ is
T
T, = (PZ/HW) n; = (fP/HW) ny (22)

For a single hole C is equal to ' and, for two holes in
parallel it is equal to 1/2. The angle ¢ varies from -n/2
to n/2 in each hole. The angle 6 is in the x,-x, plane,
and is measured clockwise from the x, axis (Figurel). For
isotropic materials, the cosine normal load distribution
‘(eq.21) was found to represent closely the actual load
distribution [23]. Calculations performed by previous
investigators also éhowed that, for composite materials, the

stress distribution inside the body is insensitive to the
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assumed load distribution [1, 6, 24]. Tharefore, eq. (21)
should suffice for the purpose of the present analysis,
vhich is to determine the overzll strength of the joint.

Equations(10),(20),(21) and (22) give

I ve Eijklai,juk,l av = jjALI-C(Gp(1-f)/nDH)niﬁicose dA +

IIALz (£p/HW) n; u; dA ¢ jjARoij ny u; dA (23)

We recall that u; are functions that can be selected
arbi*rrarily. The unknowns in eqg.(23) are the displacements
Ug. Once u, are known, the stresses at every point can be
calculated from egs (14) and (16).

Solutions to eq.(23) must be obtained subject to the
following constraints: a) Along the symmetry axis and along
the lovwer edge, displacements are allowed only in the
divection tangential to the surface. These tangential
displacements may occur freely without any restraints, b)
The intersection of the symmetry axis and the lower edge
K must not move (i.e., the intersection is rigidly fixed),

K The integral (eq. 23) over the Ap surface now applies to
| the surfaces along the symmetry axis and along the lowver

edge (Figure 4)., On these surfaces, the normal component of
the displacement and the tangential component of the surface

traction are zero. Accordingly, ve have

[ il

. I! AQ Oijnjui dA = 0 (24)

Lo
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Equation (23) can now be simplified, and becomes

E:: qU; .U dv a - C(4P(1-£)/uDH)n.u .cos dA
fffvo 13k17i,5%,1 !IALI ! 103

’ ijLz(fP/HW)niﬁi aA (25)

The method of solution of eq.(25) is described in

Section 3.4.

3.3) Boundarv Condition: Two Holes in Series

Por the problems of tvo holes in series, the fractions of
the load carried by each pin are unknown. To analyze the
the problem, it is assumed that 3 uniform locad distribution
is applied along the lover edge of the plate, and it is
further assumed that a rigid pin is inside each hole. The
assumption of the rigid pins implies that the normal
displacenents are zero alcng the contact surface (Figure ¢).
The extent of the contact surfaces are as yet unknown and
need to be determined.

The uniform load distribution on the “Ll surface is

Ti'- -(PAW) n; (26)

vhere K and ¥ are the thickness and the vidth of the place,

cespectively (Figure 1),
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Equations (15), (22), (26) give

ffaijkl“i,j“k,ldv - ffAL1-(P/Hw)niGidA + ijL (£P/HW)n u.da

2
‘Effl\agr&jr‘jui“:A ‘27)

As before, Gi can be selected arbitrarily, but must
satisfy the displacement boundary conditions. Hence, the
unknowns in eq.(27) are the displacements u,. The solution
to eq.(27) must be obtained with the displacement Uy subject

to the following constraints:

a) Along the symmetry axis, displacements are allowed only
in the direction tangential to the surface (i.e., in the

X, direction). This tangential displacement may occur

freely.

b) The contacts between the rigid pins and the surfaces of
the holes are assumed to be frictionless and are assumed
to take place tlhirough arcs bounded by the angles 80 and
BL (Figure 4). Along the arcs the surface displacements

can take place only in the direction tangential to the

surface. Because of the assumption of frictionless

contact, this displacement may occur freely.

¢) The radial displacements at the intersections of the
syemetry axis and the upper edge of each hole are zero
(i.e., these intersections are rigidly fixed ), This

corresponds to the rigid supporting pins being fixed in
space.
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The integral over the Ap area now applies to the
symmetry axis and to contact surfaces. We express Ap as

the sum of two surfaces

Ag® Apg *Apc (28)

ARS is the surface area along the symmetry axis and ARC is
the total contact surface inside the upper and lower holes.
Along the symmetry axis, the normal component of the
displacement and the tangential component of surface

traction are zero. Accordingly, we have

[Iagg®i3nyUio = O (29)
Equation (27) gives

[y Bijkabi, %,18Y = fJy  ~(B/HWIn u dh

Solution to eq.(30) require that the contact area Ap. (i.e.,
the contact angles 6, and 6, , Figure 4) be known., However,
the contact angles BU and BL are as yet unknown; therefore,

these angles must be determined before solutions for u, can

be obtained. Procedures for calculating eu and GL are

described in Section 3.4. Note that the procedure vas also
pecformed for a single hole. Little difference was found
betveen the predicted failure lcad and the one predicted

using the stress boundary condition.
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3.4) Finite Element Analysis

Solutions to eq.(25) and (30) wvere obtained by a finite
element method. As a first step in the solution procedure,
the volume v, is subdivided into M subdomains of volume Vg

%‘ (31)
V. = v N
° g=1 9

BEgs.(25) and (30) may now be written as

M R M .-

gy”vg Eijkavi,jl%,1 9V 'QE{IALQ‘Ti uj dA s

?jf T, %G, da ?fj U, dA (32)
| AETH + 0;:N.U;

9ot Ang 1 i o1 Acg 137371

i‘ and Ti" are the surface tractions given by eqs.(21) and

T
(22) for a single hole and two holes in parallel, and by

eqs. (22) and (26) for twvo holes in series. A,. is the

Lg
surface of an element vhere the surface traction is applied.
At any surface vhere load is not applied, ALgis zero, “cg
is the surface of an element along the contact surfaces.

Por problems invelving a single hole and two holes in
parallel the summation over ALg is zero.
Advantage is now taken of the assumption that the )
strains (e,,,€5,, and ¢,,), the reduced modulus Epne 80d the
stress (eq. 11) are independent of the thickness. Thus, the
three dimensional grid, consisting of N volume elements, ®ay

be

. e TR T A
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replaced by a two dimensional grid consisting of M surface

elements of area s (Figures 5-7)

s =Js (33)

Equation (32) thus becomes

yﬂ y 'ZAI *3

E:ii U ;u ds = T. u; &P +
91 sg i3jkl™i,j k&: g;1rLgl i

o T.*%G.8A ¢ TS, o, .n.u. 4T (34)
g=1fLg2 * 7} gaileg 134

where T and T are segments of a line which coincide
Lg, Lg,
with the boundary of an element g vhere the load is applied

(Figure 5-7). Te denotes the boundary of an element along

the contact regiZns bounded by eu and GL (Figure 7).
Isoparametric 4-nocde elements vere used in the
investigation. The mesh vas generated using & wesh
generator. This mesh genera:oi vas designed to
automatically generate grid sizes around the hole (or holes)
in a manney wvhich ensures accurate resolution of the
stresses in the vicinity of the holes (Appendix C). Smaller
grids were used around the holes to obtain.a better
resolution of the stresses. Utilizing the symmetry about

the x, axis, grids vere placed on one half of the laminate,

JPRS —

8s illustrated in Pigures 5<7., Grids counsgisting of 306, 612

L L e TV TP

and 655 elements were used for problems involving s single
role, tvo holes in pacallel, and two holes in series,

vospectively.,




e 7D sy XSS el

cr»&fwm;ﬁaww.';..'d

LI et D -

P ) ey ey i

25

3.4.1 Method of Solution; Single Hole and Two Holes in

Parallel

For problems involving a single hole and two holes in
parallel, the displacements in each element can be expressed
in terms of the displacements of the four nodal points [25,

26)

ui= Ny 94,

Ui -NQ qlu (3%5)
The subscript u designates the nodal points (g =1,2,3, or
q). N, is the shape funcvion described in detail in
Appendix D, Qg is the displacemant at the nodal point a in
the i direction.

We define 3 stiffness matrix for the g-th element as
kS

Rgiska is an eight by eight matrix. The subscript § may
take on the values 1, 2, 3, and 4. The nodal displacements
Qg 804G éis are independent of the surface and line
integrations.

Accordingly, egs(34), (35), and {36) yield

N
{

g
* | (EP/NR) n, N,.AF) (37}
Srege i M

M
q 3 L “. - . 3
% igka Sxa Sig g%lt:m(!rw‘ CL4P/uDHIn; Nocose &F
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The nodal displacements éiB are arbitrary functions and

hence eq. (37) can be written

Kigka ko = Fig (38)

where the global stiffness matrix Riska and the load vector

F., are given by

ig
- M q
Rigka = ! ¥ igka (39)
(* L]
3 'g(f (4P/7DH)
F -{(4P/1DH)n. N_cos6 dr
8 742, rLg1 iog
v fp.  (fP/HW)n N dT (40)
ng

The elements of Rina and the components of the vector Fie
are known; hence, Qy, can be obtained from eqg. (38), using
the Gaussian elimination method [27]. Once Qi 3T known,

the displacements u; are calculated from eq. (35).

3.4.2 Method of Selution: Two Holes in Series

For problems invelving two holes in series, a local
coordinate system is employed along the contact surfaces.
The coordinates of thir systemix and x%) are everywvhere
normal and tangential to the contact surfaces as illustrated

in Figure 8.

S
LI
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FPigure 8.

Illustration of the Local Coordinate System x/,

and x% along the Contact Surfaces 1
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In this coordinate system the component of Uiy ﬁi and

o.. are denoted by the symbols, ug, G

i3 if
respectively, These parameters in the local coordinate

1
and 0540

system are related to the parameters in the fixed Xqr X,

coordinate system by the expressions

f
uj = Aim Um
- /

ui= Aim Yp

7 7
Oijnj = Aimomknk (41)

The above transformations (eq.40) are only used for the
elements adjacent to the contact surfaces. For all other

elements these transformations are not employed, and we have

osn; = ofsns (42)

Therefore, for elements adjacent to the contact surface, the

matrix [A] is :

cosa sing
[A] = (43)
-sing cosa

@ is the angle measured clockwise from the xq axis to the x,

axis [26]) (Figure 8). For any other elements which are not
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adjacent to the contact surfaces, the matrix [A] is

(A] = (44)

Substitution of‘eqs(41) and (42) into eq.(3¢) gives

?H Ty 'gf
A.. E... A, _u Y ds=
k1l%k .
gﬂmsg im™ij nm,jn,l 9es I‘Lg1
-7 /) =’
+ T (EP/HW)A, A, n G aF +V[. A, %. g0 G dA (45)
g;1rL92 imtinTmn g:yrcg imin“mr ron

. ' =7
('P/HW)Aimainnmun ar

On the contact surfaces, the normal component of the
displacements and the tangential component of the stress are
zero (in the new coordinate system x and x;). Accordingly,
the line integral along the contact surfaces is zero. With

this simplicification, eq.(45) becomes

M
-
Ulg MinPknBijkilm,jYn,) 95 *
gz °g y
t -t ;f
~(P/HW)A A, n 0. 4T+

-t
f (EP/HWIA, A. o’ 0 dI (46
g= rLg, imTin gey

rng im"in o n

The displacements at the nodal point a are nov designated by

the symbol q{a. with this notation, the displacements in

each elemeni become
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u. = N Q. (47)

Nu is the shape function given in Appendix D. The
calculation now proceeds along the line developed previously
for problems involving either a single hole or two holes in
parallel (Section 3.4.1). The stiffness matrix of the g-th
element is defined as

g - [

K nana jjsg AipAenBik1Ng, 18, 5 98 (48)
As before, the nodal displacements q;u are independent of

the surface and line integrations. Thus eqs(48)-({9) yield

M M
g ’ -t - ) - . . ?
QE\K o8na Sna Smg gE‘qu(erg‘ (P/Hw)kxmhxnnnus ar

the nodal displacements ﬁ;s are arbitrary functions. Thus
eq.(49) can be vwritten as

R # {50}

[
mgna Sng * ‘o

Where Ruan and ?as are given by
" 9
Ragna ’g§‘K véna (1)
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F o= hf'(f - (P/HW)A. A. n_ N dT
mB 9=t I‘Lg1 im“in'n VB8
+ ergz (£B/HW) A, A 0 NBdr) (52)
The elements of RmBna and the components of the vector FNB

are known, provided that the components of the matrix [A] in
eq.(50), are known. Hence, eg(50) can be solved, once the
contact angles have been determined. This can be
accomplished as follows.

Values of 6, and 0 BaU and GaL, are assumed such that
Gau angd GaL are greater than n/2. The displacements u; are
then calculated from eqs (41), (42) and (47). Using
egs(11), (14), (41) and (42), the normal stresses along the
centact surfaces bounded by the arcs 8°U and BaL are then
calculated. For contact angles greater than the actual
contact angles coupressive stresses become tensile (stress
reserval), as illustrated in Figure 9. The angles Bau and
G‘L are then decreased slightly (by one grid length, say),
and the stresses are calculated again. This procedure is
repeated until no reversal in sign of the normal stresses
occurs along the arcs, 0 to By and 0 to Oy, (i.e., both
contact surfaces are in coampression) . These values, by and
8 . are taken to be the contact angles. As an illustration,
values of the contact angles vere calculated for Fiberite
7300/1034-C composites with different vidth ratios. The
variation in the contact angles vith the vidth ratios are

given in Pigure 10.
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a
8,> 6y
8> 6,
8y
6
Pigure 9. Illustration of the Reversal of the Normal

Stresgos When the Assumed Contact Angles e'u
and 6 L, ace Greater than the actual Contact
Angles”(Left). No Stress Reversal Occurs for
the Actual Contact Angles 6, and o, (Right),
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SECTION IV

PREDICTION OF FAILURE

In order to determine the load at which a joint fails
(failure load) and the mode of failure, the conditions for
failure must be established. In this investigation, the
jeint is taken to have failed when certain combined stresses
have exceeded a prescribed limit in any of the plies along

chosen curve(denoted as the characteristic curve). The
combined stress limit is evaluated using the failure

criterion proposed by Yamada-Sun (28],

4.1) Failure Criterion

Numerous criteria for failure havs been proposed in the
past (29, 30-33). Although the concepts underlying the
different failure criteria may be different, the results of
the various criteria are generally quite similar. 1In this
investigation, the Yamada-Sun failure criterion vas adopted
[28). This criterion is based on the assumption that just
prior to failure of the laminate ,every ply has failed due
to cracks along the fibers. This criterion states that
failure occurs vhen the following condition is met in ang

one of the plies

t0,/80% * (g, /912 w e [e <1 ne tailure (53)

le 21 failure
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As indicated in eq. (53) failure occurs when e is egual to

or greater than unity. 1In the above equation, ¢, and Oy

x
are the longitudinal and shear stresses in a ply,

Yy

respectively (x and y being the coordinates parallel and
normal to the fibers in the ply). § is the rail shear
strength of a symmetric, cross ply laminate [0/90}5. X is
either the longitudinal tensile strength or the longitud ‘nal
compressive strength of a single piy. The tensile strength
(X=%,) is used vhen the stress g, is in tension (0 ,>0). The
compressive strength (x-xc) is used when o, is compressive

(ox<0).

¢.2) Pailure Hypothesis-Characteristic Curve

The hynothesis is proposed heve that tfailure occurs
vhen, in any one uf tae plies, the combined stresses satisty
an appropriately-chosen failu-e ¢critesicn at any point on &
characteristic curve. The chy acteristic curve (Figurte 1)

is specified by the expression
rc(é) v D/2 o R, * (R, -R‘) case {541

The angle ¢, measured clockvise from the x,-x, axis, may

range in value fram -e/2 to #/2. R and R, ace veferzed o

as the characteristic ienguhs for tension and coapression.
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T S AT A

These parameters must be determined experimentally.

The concept of the characteristic length in tension Ry

e
g

was introduced by Whitney and Nuismer [34-37]. In recent

years, several investigators utilized this concept in

i
{
i
3

analyzing the strength of loaded holes. However, different
investigators used different definitions of Re» and employed

different procedures for determiring the value of R As

.
will be discussed in Sections VI and VII, the method
proposed here for determining R, ditfers from that proposed
by previous investigators [7, 34, 35]. It is also noted
that the characteristic length in compression R, has not yet
been employed ‘n the strangth analysis of loaded holes.

In this investigation, the characteristic curve is used
together with the Yamada-Sun failure criterion. Accordingly
; (see €g. 53), failure occurs when the parameter e is equal

to, or is greater than unity at any point on the

' cheracteristic curve

No failure e < tlatr =r (55)

Failure e 2 1

It is emphasized that the above failure hypothesis is
5'-},';;_ used here in conjunction with the Yamada-Sun failure
g criterion (eg. 53). However, the hypothesis is general and
is not restricted to the Yamada-Sun criterion., The

. ' characteristic curve proposed here may be used with any

other failure criterion.
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4.3) Solution Procedure

Whether or not a joint fails under a given condition is

determined as folilows, Por a given load

a) The components of strains of €117 €32 and e,, are
calculated, using the method of solution described in

Section III.

b) The lengitudinal and shear stresses in each ply are

calculated using eqg.(16".

c) The parameter e is calculated (eq.53) along the

characteristic curve.

d) 1I1f e equals or exceeds the value of unity (e2t) in any
ply along the characteristic curve, the joint is5 taken
to have failed.

The procedure outlined above is used to predict wvhether
or not failure occurs under a given load. Due to the
assumption of a linear stress-strain relationship, the
calculated stresses are linearly proportional to the applied
load P. This fact, together vith Vamada-Sub lailure

criterion (eq.53) gives
p\»e (55)

This relationghip is utilized to determine the maximum

load (Pmax) vhich can be imposed on the jeint, Por a given
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load P, values of e are calculated on the characteristic
curve, as discussed above (points a-d). Note that there are
two characteristic curves when there are two holes. The
highest value of e (eo) is then determined, and the maximum

load is calculated by the expression
Prax * P/eo (57)

The calculation procedure described in the foregoing
also provides the location (angle 8;) at which e first
reaches the value of unity (e=1) on the characteristic curve
(Figure12). A knowledge of 8¢ provides an estimate of the
mode of failure. When 8, is small (ef=0°), failure occurs
by the bearing mode. When 8f=45°. failure is due to

shearout; wvhen 9f=90°. failure is caused by tension.

In summary
g -15° s e S 15° bearing mode
_ 309 & by S 60" shearout mode {58)
3 15° ¢ e 8 90° tension mode

At intersediate values of 6,, failure may be caused by a

cogbingrion of these modes.
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SECTION V
NUMERICAL SOLUTION

A "uyser friendly" computer code (designated as BOLT) was
deve;oped which is suitable for generating solutions to the
problem formulated in Sections III-IV, The reguired input
parameters and the output provided by the code are
summarized in Table 1.  The input-output is illustrated by
the sample calculations included in Appendix E. |

In crder to assess the accuracy of the numerical method,
solutions were generated to problems for which analytical
solutions were available. Specifically, stress
distributions were calculated in isotropic plates containing
both unloaded (open) and loaded holes, and in orthotropic
plates containing unloaded holes.

An analytical solution for the stress distribution in an
infinite (W 4+ =) isotropic plate containing an unloaded hole
was given by Timoshenko [38]. The stress distribution in
sﬁch a plate was also calculated by the present method. The
parameters used in the numerical calculations are given in
Figure 13. A large width (W/D=14) was used in the
calculation to approximate an infinite plate. The results
of the present method and the analytical solution of
Timoshenko are compared in Figure 13. There is excellent
agreement between the stresses calculated by the two

methods.

41
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Table 1. Input parameters reguired by the computer code and
the output provided by the code.

INPUT PARAMETERS
1) Material Properties

a) Longitudinal and transverse Young's moduli; E, and E,

b) Shear modulus, Gy,
c) Poisson's ratio, Uy

d) Longitudinal tensile and compressive ply strength,
X, and Z,.

e) Rail shear strength of a cross ply laminate

f) Characteristic lengths, R, and R,

2) Geometry
a) hole diameter, D

b) thickness, H

c) width, W
d) length, L
e) edge distance, E

f) distance between two holes, G (for two holes only)
3) Ply orientations
OUTPUT PARAMETERS

'1) Failure load

e, e

g} 2) failure mode
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The stresses in isotropic plates containing loaded holes
vere also calculated. Plates of infinite and finite width
were considered. Calculations were performed for the
parameters given in Figure 14.

As shown in Figure 14, the stresses calculated by the
present method are in excellent agreement with De Jong's
approximate solution [24].

The stress distribution in an orthotropic plate of
finite width containing an open (unloaded) hole was also
calculated. The calculations vere performed for a plate
vith the symmetric laminate lay up of [0/90]5. An
analytical solution for this problem was provided previously
by Nuismer and Whitney [35), who modified Lekhnitskii's
earlier solution [39) for an infinite plate. The results
given in Figure 15 shov excellent agreement between the
stresses calculated by the present method and by the
analytical solution,

The aforementioned comparisons indicate that the present

method predicts the stress distribution around loaded and

unloaded holes vith high accuracy.
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Comparison of the Present Results With the
theoretical Results Given by De Jong [24].
Parameters Used in the Numerical Calculationu:
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SECTION VI

EXPERIMENT

! An experiment was performed to measure the mechanical
properties of composite laminates (with and without holes),
, and the failure strengths and failure modes of mechanically-
fastened composite joints.
The apparatus and procedures used in the tests are
described in this section. A brief description of the
procedure used to fabricate the test specimens is also

given.

6.1) Measurement Procedure for the Laminate Shear Strength S

‘ Rail shear tests were performed tc measure the laminate
: shear strength. Cross ply [0/90]s laminates made of either
s 20 or 2¢ plies vere used in the tests. Laminates with
different volume fractions v, 0f 0 plies were tested. Vo is
P the number of zero degree plies divided by the total number
of plies,

The specimens ranged fcom 8 in to 7.75 in in length and
! 2 in to 1.5 in in width, These specimen dimensions vere

selected because it was demonstrated by previous

investigators that for such specimens, edge eflects are

e oL T

negligible [40,41). The configurations of the rail-shear

‘ﬁ specimens are shown in Appendix E.

"‘2/ 47
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cight 3/16 in diameter holes were drilled along two

sides of the specimens, as illustrated in Figure 16. The
specimens wvere placed between a rail-shear fixture. The
geometry and dimension of this fixture are given in Figure
16. The specimen was fastened to the rail-shear fixture by
16 bolts. The bolts were tightened to at least 80 f£t-1bf
torque.

The shear tests were performed by placing the rail-shear
fixture into a mechanical testing machine and by applying a
compressive lcad. The ultimate failure load of the laminate

vas recorded,

6.2) Measurement Procedure for the Characteristic

Length Rt

The characteristic length R, vas measured using
rectangular specimens with an open hole in the center of the
specimen. Tests were performed vith specimens having
differen+ ply orientations, differeni hole sizes, and
different dimensions (Appendix F). During each test, the
specimen was subjected to a tensile load and the ultimate
load vas recorded. In addition, (after failure) the
specimens vere inspected visually to estadlish the mode of
failure.

From che measured tensyile strength the value of R‘ vas
determined as follows ¢

At the failure load, the stresses in the lanminhate vere

- »
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calclated, using the model described in Section III for a
laminate containing and open hole. The stresses calculated
in each ply along the =390 line were substituted into the
Yamada-Sun failure criterion (eg. 53). The point

along this line was found at which the value e became unity.
The distance between this point and the edge of the hole was
taken to be R, . The values of R, thus measured are

presented in Section VII,

6.3)Measurement Procedure for the Characteristic

Length Rc

The characteristic length R, was determined by the
follovwing methed. A single hole was drilled into the
specimen. The position and the diameter of the hole, the
specimen geometry, and the laminate configurations used in
the tests are given in Appendix F. The specimen was
inserted into a fixture shown in Figure 17. The top part of
the fixture consisted of tvo 3 in wide and 9 in long steel
plates (“main plates®). A 1.25 in diameter and 3.% in long
rod vas inserted between these plates. The rod vas fastened
to the main plates by bolts. A 0.5 in dismeter hole was
drilled along the center line of ecach main plate, 1.5 in )
from the bottom edge. A 0.5 in dove! pin vas inserted into
this hole.

The bottom part of the fixture consisted of two J in

w2
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Figure 17. Fixture Used in Testing Loadad Holes (Bage Plate
Geometry Given in Figure 18 and Table 2,), '
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wide and 5 in long "base plates." These plates were
supported by the dowel pin., The material to be tested was
placed between the two base plates. A second 0.5 in
diameter dowel pin was passed through the base plates and
the laminate.

A C clamp was placed around the base plates near the
lower dowel pin and tightened by hand. The purpose of this
clamp was to simulate the lateral force which would be
provided by "finger-tight" bolts in the hole.

During the tests the rod protruding from the main plates
was inserted into the upper grips, and the laminate was
inserted into the lower grips of a mechanical testing
machine. A tensile load was applied by the machine and the
ultimate tensile strength was recorded.

From the measured tensile strength, the characteristic

length R, was determined . The stresses were calculated
using the model described in Section III for a loaded hole.
A value of R, was assumed and the characteristic curve was
constructed in the manner given in Section IV, The value e
in the Yamada-Sun failure criterion {(eq.53) was determined
in each ply along a segment of the characteristic curve,
ranging from §=15 to ¢=-15, The procedure was repeated for
different assumed values of R, until (in any ply) the value
e=1 was reached along the characteristic curve segment
(-155gs+15), This value was then taken to be R.. The

measured values of R, are presented subsequently (Section
7.3).
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6.4) Strength of Mechanically Fastened Composite Joints

The strengths of mechanically fastened joints (loaded
holes) were determined using rectangular specimens. Either
a single hele or two holes in parallel or in series were
drilled in each specimen. The geometries of the specimens
and the laminate configuraticns used in the tescs are
described in Appendix G.

The test was performed by placing the laminate into the
fixture described previously and illustrated in Figure 17,
In each test the same main plate and the dowel pin uére
uesd. The dimensions of the base plates vere different,
depending upon the specimen configurations. The dimension
of the base plates are given in Figure 18 and Table 2.
During the test, a lateral furce was applied with one €
clamp to simulate the lateral force that would be provided
by "finger-tight" bolts placed in the hole. The fixture wvas
inserted into a mechanical testing machine. A tensile load
vas applied and the ultimate tensile strength as recorded.
Afrer the test, each specimen was inspected and the mode of

failure vas determined,
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6.5) Specimen Preparation

The laminates were constructed from Fiberite T300/1034-C

A o A AR PR A LT

prepreg tape. The panels were cured in an autoclave [43].
The test specimens were cut by a diamond saw. The holes
vere drilled with solid carbide drills for hole diameters
less than one half inch and by carbide tip drills for 1/2 in

diameter holes. The nominal sizes of holes were (,125 in,

Nt o ETAT ey T e o
A e T W o
! y

0.1875 in, 0.25 in, and 0.5 in. The nominal size dowel pins
vere the same. To provide a close fit, each dowel pin vas

dressed down by about 0.001 in. The properties of Fiberite
T300/1034-C are listed in Table 3.
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Table 2 Dimensions of the base plates shown in Figures 17
and 18. All units in inches.

Single Hole D G E
plate 1 0.5 1.5
plate 2 0.25 1.0
plate 3 0.1875 0.75
plate 4 0.125 0.5

Two Holes in Parallel

plate 1 0.5 2.5 1.5
plate 2 0.5 1.5 1.5
plate 3 0.25 1.25 1.0
plate ¢ 0.25 0.75 1.0

Tvo Holes in Series

plate 1 0.25 1.25 0.75
plate 2 0.25 0.75 0.75
plate 3 0.1875 0.625 0.5
plate ¢ 0.1875 0.375 0.5

. T » A e e L e e
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composite

Longitudinal Young’s modulus, 3,
Transverse Yocung's modulus, E,
Shear Modulus, Gy,
Poisson's Ratio Ui

Longitudinal tensile strength, X,
Longitudinal compressive strength, X,
Rail shear strength, $=Sgg

Characteristic length in tension, R,

Characteristic length in compression, R,

21300000
1700000
897000
0.3
251000
200000
19400
0.018
0.07

psi

psi
psi

psi

in

Table 3 Properties of Fiberite T300/1034-C ¢raphite/epoxy
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SECTION VII

MEASUREMENTS OF S, R,, AND Rc

L
Tests were performed to determine the rail-shear
strength S and the characteristic lengths R, and R, of
Fiberite T300/1034-C composites. These data wvere generated
because they are required in the numerical calculation of
the failure strength and cthe failure mode of loaded holes.
The data obtained also indicate the sensitivities of §, Ry,
and R. to such parameters as specimen geometry and laminate
configuration,

The material properties used in deducing S, R,, and R.
from the measured data are listed in Table 3. In these
tables the values of S, R, and R. obtained in this

investigation are also included.

7.1) Rail Shear Strength S

Rail shear tests vere performed vith symmetric cross-ply

laminates [0/90]s having different volume fractions of zero

degree plies and different geometries. The test conditions

and the test results are susmarized in Appendix F. During

some of the tests, cracks vere observed neoar the top and y
bottoa holes of the rail-shear f{ixture. These cracks

vesuited in a reduction of shear strength., Specimens with

such cracks wvere not used in calculating the rail-shear

strengths. Accordingly, the rail-shear strength of cross-

58
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ply [0/90]s specimens having 50 percent zero-degree plies by
volume was found to be Sg, =19.4 ksi,
The rail-shear strength depends on the volume fraction
. of the zero degree plies in the laminates, At volume
fractions above 50 percent the rail shear strength decreases
' (Figure 19). At volume fractions above 60 percent the r=zil
shear strength remains nearly constant, Therefore, when the
volume fraction of zero-degree plies is higher than 50
percent, the rail-shear strength corresponding to the
appropriate volume fraction should be used in calculating
the failure strength and the failure mode.
It was observed that the shear stress to shear strain
« relationship was nonlinear. However, in the present model,
this nonlinearity was not taken into account. The
: assumption of linear stress-strain celazion may result in
. some error in the calculated values of the failure strength

(Section VI!1), especially for joints consisting

predominantly of [0/90), and [245])  laminates.

7.2) Characteristic lenath R:

. v .
N R R B .

e e e e i | b e ¢ v 8

The characzeristic length R was deternmined using

laminates vith diffevent geometries and different ply

o e ————

o e e o i 2
e T

orientations, The detailed results of the measurements are

o w r > e

given in Appendix F. The data are summarized in Figures 20

and 2). Each data point in these figures i3 the average of

tour measurements, Figure 20 shows the variations in R
t

vwith laminate lay up. In Figuce 21, all but one ser of da:za
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are presented in a single plot. The data for [(245)]
laminates were excluded from Figure 21, because with these
laminates failure occurred not by tension, but by tear-out
along the 45 dwgree fibers.

The results in Figure 20 show that the value of R,
depends on the hole diameter, the width ratio (W/D), and the
ply orientation. The value of R, increases with increasing
hole diameter (Figures 20 and 21). As was discussed
previously (Section 4.2), different investigators use
different definitions of the characteristic length, It is
still ﬁoteworthy that an increase in characteristic length
with hole diameter was also observed by Whitney and Nuismer
{34, 35) and by Pipes et al. [7] in their tests with
T300/5208 and AS-3501-6 graphite/epoxy laminates. It is
difficult to discern definite trends in R, with width ratio
and ply orientation. In calculating the strength of loaded
hole, the R, value appropriate to the laminate and hole
configurations should be used. When this value is
unavailable, an approximate value of R, must be used.
Fortunately, it was found that strength prediction i{s not
to0 sensitive to the value of R,. For axample, the failure
strengths of loaded holes in T300/1034-C laminates vere
calculated with the values of R =0.007, 0.018, and 0.04 in.
The use of tha lower and higher R, values vielded failure
strengths vhich were about 10 percent to 20 percent

different from the one obtained by the average R, value
(Rta0.0lB in ).
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7.3) The Characteristic Length RC

The value of R. vwas determined for four different ply
orientations, as indicata2d in Appendix F. The data are
summarized in Table 4. EBach R, value in this table is the
average of four measurements.

As was discussed in Section 6.3, the values of R, were
obtained from data generated using loaded holes and from the
Yamada-Sun failure criterion (eq.53). Both the longitudinal
and shear ctresses play a role in this criterion. Thus,
both of these stresses may affect the value of RC. The
shear stress has a significant effect in those laminates in
tthich the shear stress to shear strength ratio (°xvfs} is
comparable to the longitudinal stress to longitudinal
compressive strength ratio ioxfxc). This situation arises,
for example, in [0;’90]s and [:45]5 laminates,

In calculating RC. the stresses vere assumed to vary
linearly with strains. &as vas noted previously (Section
6.1), for shear stresses this assumption ray be invalid,

since the value R. may depend on the shear stress. This

assumption aay have affected the values of R, especially
¥

o
for the tvo cross-ply lasinstes in Table 4. The effects

introduced in R, by the assunption of linear stress-strain
i : relationship is unknown; thecefore, the value of R. {e0.Q7
in.) obtained for quasi-isctropic laminates was adopted in

[ 8 this investigation.




U

o,

oy (e o gm

65

Table 4 The Characteristic Length in Compression R
for Fiberite T300/1034-C. Data obtained f8r
D=0.25 in, W=2.0 in, L=7.0 in , E~1.25 in

Ply COrientation Characteristic Length R, (in)
[(0/.«&45/90)3]s 0.07
[(90,/460/£30),]1 0.08
[(0/90)6]s 0.09
[£45) ] 9.13

e R rmn Ty s




SECTION VIII

EXPERIMENTAL VALIDATION OF THE MODEL

In this section, comparisons between data and the
results of the model are presented. The data used in the
comparisons were generated during the course of this
investigation with Fiberite T300/1034-C graphite/epoxy
composite having different geometries and different ply
orientations. The failure strength and the failure modes
were measured with composites containing either one pin-
loaded hole or two pin-loaded holes in parallel, or two pin-
loaded holes in series. The experimental results are
presented in Figures 22 through 29,

To facilitate comparisons between the data and the
results of the model, the ordinates in these figures
represent the bearing strength P,. For laminates with a
single hole or with two holes in series, the bearing
strength is expressed as Pp= P/DH. For laminates containing
iwo holes in parallel, the bearing strength is taken as Pg=
P/2DH. P is the failure load and DH represents the cross
sectional area of the hole., In Figures 22-29 the measured
bearing strengths and failure modes are represented by
different symbols.

Tae bearing strengths and failure modes were also
calculated by the model. The numerical calculations were
performed using the material properties listed in Table 3.

The numerical results are included in these figures., The

66
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calculated bearing strengths are given by solid lines. The
calculated failure modes were not identified separately as
long as they were the same as those given by the data. 1In
those cases where the calculated failure model differs from
the data, the calculated failure mode is identified by the
letters T, B, or S, next to the corresponding data point.
These letters represent failure in tension, bearing, and
shearout modes,

As indicated in Figures 22-29, for [(0/145/90)3]s and
[(902/160/130)2] laminates the calculated failure strengths
agree with the data within 10 percent to 30 percent. The
specimen geometry (hole diameter, edge distance, and width)
has little effect on the accuracy of the model.

For cross-ply 1aminates([0/90]s and [$45).) the
difference between the calculated bearing strengths and the
data ranges from about 10 to 40 percent. The accuracy is
better for smaller holes (10 percent for D= 1/8 in) and
decreases -3 the hole size increases. The differences
between the calculated and measured bearing strengths become
about 40 percent for 1/2 in diameter holes. In all cases,
the calculated values are conservative and underestimate the
actual bearing strengths. The reason for the lower accuracy
of the model for cross ply laminates is most likely due to
the assumption that the shear stress is linearly
proportional to the shear strain, Since shear stresses are
important in determining the failure strengths of cross ply

laminates (Section VII), the use of nonlinear shear stress-
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strain relationships should improve the accuracy of.the
model for such laminates.

The results in Figures 22-29 show that the model predicts
the failure mode with good accuracy. Of the 83 specimen
configurations tested, the model failed to predict
acéurately the failure mode only in 9 cases - - these cases
being indicated by the letters, T, B, or §, in Figures
22-29., In 3 of those cases where the model gave different
failure modes than the date, the data were ambiguous.
Failure, in fact, may have occurred by the combination of
two different modes.

The results discussed in the foregoing, and represented
in Figures 22-29, show that the model provides the failure
strengths and failure modes of loaded hules with reasonable
accuracy. The accuracy of the present model could be
improved further if, instead of the average values of S, R,
and R, the values corresponding to the specific jeometry
and laminate configuration were used in the calculations.

It is worthwhile to compare the accuracy of the present
model with the accuracy of the models developed by previous
investigators. A sumnary of the accuracies of the various
models is presented in Table 5.

The accuracy may depend on the geometry, ply
orientation, and material properties. Therefore, the
accuracies in Table 5 must be viewed vith caution.
Nevertheless, the numbers in this provide an estimate of the

magnitudes of error of the different models. The present
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model appears to be more accurate than any c¢f the other
models.

Two points are worth noting: First, the models
developed previously apply only to laminates containing a
single hole. None of the models except the present one
applies to laminates containing two holes. Second, of the
existing models, only the present one and the one by Garbo
and Ogonowski [6) have been supplemented with "user

friendly” computer codes. Therefore, presently, only these

two models can be used readily. PFurthermore, the Garbo and
Ogonowski model yields the failure strength, but does not

provide the mode of failure.
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SECTION IX

e

DESIGN CONSIDERATIONS

As illustrated by the sample computer input-output in

>

Appendix E, the model, together with the computer code, can

v readily be used to calculate the failure strengths and

b R e A Sl g S op e o oAV T

failure modes of laminates containing a single pin-loaded
hole, two pin-loaded holes in parallel, or two pin-locaded
holes in series. The mocdel can also be used to design
joints containing wmany pin loaded holes. In joint design,

i it is desired to determine the number of holes, the hole

: diameter, and the hole positions which result in the maximum

failure load Py and the maximum failure load per unit weight
*

3 P ye The failure load per unit weight is defined as

P* = p/w : (59)

TN LA P s SR 8 et

where P is the failure load, and w is the combined weight of

the composite L and the pin W

WweE W +w (60)

In this section, procedures suitable for calculating Py

and P‘M are illustrated via two sample problems. In these

problems, the failure load of 24-ply (thickness H=0,125 in)
[(0/;&45/90)3]S Fiberite T300/1034-C graphite-epoxy
composites are determined. The material properties used in

79
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the calculations are listed in Table 1. The density of the
composite is P = 0.00134 lbm/in3. The pia or pins are
assumed to be 3/4 in long and to be made of steel (density
pg= 0.0093 lbm/in®).

The calculation procedures are presented in Section 9.3
for joints containing one or two holes, and in Section 9.4
for joints containing three or more holes. First, however,
interferences between two adjacent holes, between the edge

and an adjacent hole, and betwesn the side and an adjacent

hole are discussed.

9.1) Interaction Cwefficients

It is desired to know under what conditions, if any, the
proximity of two holes, or the proximity of a hole to the
edge or to the side of the laminate, affects the failure
load. The interaction between two holes, between a hole and
the edge, and between a hole and the side, can best be

evaluated by the use of interaction coefficients.

Two Holes in Parallel The parallel hole interaction

coefficient Iy is defined as
9y = Ps/(PH/Z) (61)
Where Ps is the failure load of a GH wide laminate

containing a single hole, and Py is the failure load of a

2GH wide laminate containing twe loaded holes separated by a
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distance Gy (Figure 30). When G, becomes large, the

interaction between two hcles becomes small (PH/Z + Ps).and

the interaction coefficient approaches unity (g, + 1).

Two Holes in Series

The series hole interaction

coefficient. gy is defined as

gy = Py/Pq (62)

where Py is the faiiure load of a laminate (width W)

P

containing two loaded holes separated by a distance Gy. P

is the failure load of a laminate with the same width
containing two holes; one located at a distance E from the
edge, and the other located at the center of the laminate
(Figure 31). When the hole distance increases, the
influence of one hole on the other becomes small; the

failure load P, approaches PT(Pv - PT) and g, approaches
unity (gy « 1).

Edge Interaction

The edge interaction coefficient 9 is
defined as

9g © PS/PC (63)

where P is the failure load of laminates (width W) vith a

single loaded hole at distance E from the edge. Pe is the

failure load of a laminate of width W with a hole in the

center (Figure 32). The infliuence of the edge on the
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failure load becomes smaller as the edge distance increases.
When the hole is moved to the center (E=L/2), Pg becomes Pc

and the interaction coefficient becomes unity (gg » 1).

Side Interaction Coefficient The side interaction

coefficient 9g is defined as
9g = Py/Pq (64)

where P” is the failure load of a laminate (width W)
containing two loaded holes separated by a distance W/2. Pg
is the failure load of a laminate with the same width

containing two loaded holes separated by a distance Gy (G, 2

H
W/2, Figure 33). As the distance Q between the side and the
hole increases P, . P, and the interaction coefficient 9g

approaches unity.

9,2) Numerical values of the Interaction Coefficients

In order to illustrate the trend in the interaction
coefficients these coefficients vere calculated for Fiberite
T300/1034-C graphite-epoxy composite laminates with ply
orientations of {(0/245/90),)]; and ((0,/245) 5] . The
results, obtained using the computer code, are presented in
Pigures 30-33. The most significant feature of these
results is that the failure load is not affected

significantly
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a) by the proximity of two holes in parallel when the
distance between two holes is larger than 3D
b) by the proximity of two holes in series when the distance

between twvo holes is larger than 2D

c) by the edge when the distance betwveen the edge and the

hole is greater than 3D.

d) by the proximity of side vhen the distance between the
hole and the side is larger than 2D

Mathematically, these conditions can be expressed as

gH - ! ?R - 298 as GH/D 2 3
gy » ! Py <Py as Gy/D22 | tor [(0/:45/90)]$ {65)
gg « ! Pg - P. as E/D 23 ((0,/245) 4]

2

(1"

It is emphasized that the conditions expressed by the
above equations l(eq. 65) may not apply for every ply
orientation. The conditions at vhich the different

coefficients become unity must be evaluated separately for

|- each laminate lay up.

p v T

:, R -
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9.3) Laminates with One or Two Holes

In this subsection, a procedure is described which can
be used to size a laminate containing either one or two pin-
loaded holes.

We consider a laminate of known width (W=1 in), length
(L=8 in; and thickness (H* 0.125 in ). The laminate may
c?_ contain either one pin~loaded hole or two pin-loaded holes
; aé in parallel or in series, as illustrated in Figure 34.

" It is desired to find the number of holes ( one or two
holes), the hole diameter D, the edge distance E, ard the
distance betwveen twvo holes G, which result in the maximum
l%, : failure load Py and in the maximum failuce load per unit
veight P'M.

The calculation proceeds along the following major

steps:

3) Using the computer code, the failure loads of
3 laminate conhtaining a single-lcaded hole are

calculated for different hole diaweters D and

gy

for different edge distance ratios E/D.

T SO AT T

The failure load is plotted versus the edge ratioc
1~§ E/D (Pigure 35). The desired edge ratio
(E/D) is selected.

Here, the edge ratio E/D«3 wvas selected because the failure

i
]
i
p
b
4
r
ko

¥

‘§‘ load re=aches a maximum at the edge ratio of about 3 and

remains nearly coastant at higher edge ratios. This

A
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T300/1034-C

W=1in,L=8in.

FAILURE LOAD,Px 1073 (Ibf)

er o W ke
H olE
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[(07+45/90),]
W | ISR N NUS ;|
0 2 4

EDGE RATIO, E/D

Pigure 35.  Failure Load as a Function of Edge Ratio tor

Laminates Containing & Single Pin-Loaded Koles.
Results of the Model.
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value (E/D) will also be used for joints containing two

loaded holes in parallel and two holes in series. The

g s S NPT

: reasons for this choice of E/D are as follows: 1) For

parallel holes the interaction between two holes has almost
no effect on the failure load (gH + 1 and PH/Z ~ Pg,
: Section 9.2 ). Hence, when GH/D>3 (as is the case in the

E} o present problem), two parallel holes can be treated as two
o independent holes. 2) For two holesin series, the

] o interaction between the holes is unimportant, when GV/D>3
E (gy + 1 and Py + P, Section 9.2). Two holes can be
considered as two independent holes sharing part of the
total load. Hence the value of E/D=3 is a suitable choice

for the present problem when GV/D>3.

3 b) Using the computer code, the failure loads are

calculated for different hole diameters, angd

! for different hole separations G for two heles in

j?;>} i parallel and for two holes in series. The failure
- §

w:

D
m——
)

AV

;
TE AT
-

loads are plotted as functions of the hole distance

ratio G/D (Figure 36, top). From these plots,

the maximum failure load Py can be obtained.
For the problem under consideration, the maximum failure
load is 5000 lb, This load is achieved by two 0.125in pins
in parallel separated by a distance Gy=0.5 in (GH/D = 4).

¢) Frem the known values of the failure load P,
the failure load per unit weight p* is

calculated using the expression

R e

, — A M R e (A EFE 1 P17
LA " - Y M . = :



gt b e
NS T .

P e

92

P* = B/[p WHL + a (rD%/8)(p L =p_H)] (66)

where Lg is the length of the pin. The

parameter a=1 for a single hole, a=2 for

two holes. The failure lo;d per unit weight

is plotted as a function of G/D

(Figure 36, bottom).
For the present problem, the maximum failure load per unit
weight P*, is 8000 1bf/lbf and occurs with two 0.125-in

diameter pins separated by a horizontal distance Gy = 0.5 in

(GH/D = &),

9.4) l:uirutes with Multiple Holes

This problem is concerned with laminates containing
several pin-lcaded holes spaced evenly, either in a single
row or in two parallel rows, as illustrated in Figure 37.

The number of holes in the laminate with a single row of
holes, or the number of columns in the laminates with two

rows of holes is

It is desired to determine the number of holes No' the
hole size D, the positions of the holes Gy and Gy and the

edge distance E, which result in the maximum failure load,
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The model developed in this investigation can be applied
only to laminates containing either a single pin-loaded
hoie, or two pin-loaded holes in parallel or in series.
Therefore, the model can not be used directly to calculate
the failure locad of laminate containing several holes. The
failure loads of such laminates can 5till be estimated with

the use of the model by the procedure described below.

a) The interaction coefficients 95 and gy, are calculated and

plotted in the manner described in Section 9.1.

b) The ratios E/D and Gy,/D are selected, which correspond to
the cohditions 9 » ! and g, ~ 1. 1In this investigation,
the values of both E/D and G,,/D were selected to be 3
because both g, and gy reach unity at this ratio. This
E/D ratio is used for a single row of holes. This is
also a reasonable choice for two rows of holes, because
the first row of holes acts independently of second rows

of holes, to a very large degree.

¢) Valuas are assumed for the number of holes and the hole

diameter. The distance GH is calculated form

Gy = W/No (68)

TR e REATYE ¥ s AND G U

Sl
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d) Using the computer code, the failure load is calculated

for a 26, wide léminate containing two loaded holes in
parallel Py, and for a Gy, wide laminate containing two
loaded holes in series Py. The interaction parameter Iy
is then calculated for the geometry under consideration,
according to the method given in Section 9.2.

e) The failure load is approximated by the expression

(69)

P=P + 2P

N -2

o side

where Py _, is the load carried by the second (n=2) through
)

the next to last (n=N°-1) pins, and P is the load

side
carried by the first (n=1) and last (n=N,) pins. Thus, the

failure load of a laminate containing one or two rows of

holes is
Py = ((No-z)/Z)gHPH *ggPy (one row) (70)
P, = (NO-Z)gHZPv + 29,9¢Py (two rows) (71)

1f Q-GH/z then 9g is equal to unity., This is the case

in the present problem. Azcordingly,

P.y ™ ((NO-Z)/Z)gHPH + Py (72)

- 2
P,y = N,-2)g,“Py + 2g,P, (73)




g7

£) The failure load per unit weight P* is calculated

P‘

2 -
r1,r2 " Pt1’r2/[chHL+aN°(nD /4) (pLo-p H)) (74)
vhere the subscripts r1 and r2 refer to one row or two rows

of holes, respectively.

g) The calculations are repeated tor different values of N,
and D. The failure load Pr1'r2 and the failure load per
unit weight p‘r1,r2 are plotted as functions of N,. From
these figures, the maximum failure load Py and the
maximum failure load per unit weight P‘M are determined.

In the present problem a ¢ in wide and 10 in long
composite laminate was considered. The ply orientation is

((0/2£45/¢90),].. The material properties are listed in

Table 3. The procedures gave the maximum failure load Py, =

23400 lbf when there are twelve 0.125 in diameter holes

arranged in two rows of holes (Figure 38). The maximum

failure load per unit weight (P‘M = 67000 lbf/1lbf) is
achieved vith twelve 0.125 in diameter holes in a single row

(Figure 38).

9.5) Failure Mode

The results generated by the computer code also showv the
modes of the failure. The changes in the modes ot failure
vith the number of holes N, are illustrated in Figure 39.

in éhe present sample problem, at the condition of the
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maximum failure load (N°-12) the failure mode is in tension.
Failure in such mode often happens quite suddenly. 1In some
situations it might be preferable to choose a design in
vhich failure occurs by a less sudden failure mode. For
example, failure would have occurred in bearing mode if, in
the present problem, a hole diameter of 0.125 in were
chosen, and the number of holes were taken to be N_=6.’
However,this would have resulted in a 30 percent to 40

percent reduction in the failure load.
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SECTION X

SUMMARY AND CONCLUSIONS

The following major tasks were completed during the

course of this investigation:

a) A model and a computer code were developed which can be
used in the design of mechanically-fastened composite
joints involving fiber reinforced laminates. The model
can be used to determine the failure loads and failure
modes of laminates containing a single pin-loaded hole,
two pin-loaded holes in parallel, and two pin-loaded

hcles in series.

b) Experimental procedures were developed to determine the

characteristic lengths.

c) Tests vere performed to determine the values of the rail-
shear strength and the characteristic lengths of Fiberite
T300/1034-C composites, and to evaluate the effects of

geometry and laminate lay up on these parameters.

d) A series of tests was performed measuring the failure
strengths and failure modes of Fiberite T300/1034-C

laminates containing a single-pin loaded hole, two pin-

loaded holes in paraliel, and two pin-loaded holes in

series.

101
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e) Comparisons were made between the data and the results of
the model. Good agreements were found between the

analytical zna the experimental results.

f) Procedures were developed for the design of composite

laminates containing one, two, or more pin-loaded holes,

The model was developed on the basis of the following
assumptions: a) classical, two-dimensional laminate plate
;w . 3 theory, and b) linear relationship between the stresses and
» strains. Good agreements between the results of the model
j; a3 ' and the data suggest that these assumptions are reasonable
2 for a wide range of problems. Three dimensional stress

distributions and nonlinear stress-strain relationships

could pe incorporated into the model in the future,

v e e CowRT woAsprp ey et g T Baemee
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APPENDIX A

. . =P
The Transformed Reduced Stiffness Matrix Qij

The components of the matrix Qpif appearing in Eq. (12) are

QP

11=QP1]cos4n+2(QP12+2QP66)Sin2n+QP225in4n'
QP12=(QP11+Q922-4Qp66)sinzncoszn+Qp12(sin4n+cos4n)
6P22=QP11sin4n+2(QP‘2+2QP66)sinzncoszn+Qp22ccs4n
QP13-(QP11-Qp12-2QP33)sinncos3n+(Qp12-QP22+2QP33)sin3ncosn
6923-(Qp11-Qp12'2Qp33)sin3ncosn+(Qp1Z-Qp22+2QP33)sinncosan
5933=(Qp1,*Qp22‘2QP12-ZQP33)sinzncoszn+Qp33(sin4n+cos4n)

in which

p
Qe 12% 21

Cyz = BT 00w 0o 21 /Uy
P P /(1-yP P

ey E 2/(‘ u 124 2\)

3 P

Vi, "6
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The superscript p denotes the material properties of the
p-th ply, and the angle 7 is measured from the x1-axis to
the x-axis. Ep1, EP2 and GP12 are the longitudinal,
transverse, and shear moduli of the p-th ply, respectively.
up12 and uP21 are Poisson's ratios for the p-th ply and

satisfy the relation

P ,P _ P P
W 1/Ey = w /B
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APPENDIZ B
The Coordinate Transformation matrix Tij
+
. 3
n
_.x1
. 2 s 2 .
cos™n sin“n 2s1nncosy
{T] = sinzn coszn -2sinncosy
-sinncosn sinncosn coszn-sinzn
L 4
The angle n is measured from the x1-axis to the x axis.

'\1‘-r:lrvl"'t‘3'\':-\‘t e SUR : Ve *
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APPENDIX C
% The Finite Element Mesh Generator
The mesh generator generates 306 quadrilateral elements

for a single hole, and 612 and 655 elements for two holes in

parallel and two holes in series, respectively. To control

costs, this number was held fixed (the reader should note
that 612 elements involve a matrix of size 1400 x 300). The
mesh is designed in such way that the characteristic curve
can be encompassed by a square of size 2z x 2z, in which a
fine mesh was generated and outside of which the calculated
; stresses are still reasonably accurate (see Figures 5, 6,
f 7). A suitable value of z for a given geometry has to be
determined before calculating the stresses. Mathematically,

- x this problem may be stated :

Optimize =z
' subject to ( R. ¢ D/2 ) $ 2z $ W2 (C.1)

2 S E (C.2)

EQuation (C.1) can be revritten as

B A

i Os(z-ac-n/z)s(w/z-nc-o/z) (C.3)

Assume that E is large enough that eq.(C.2) is alvays

satisfied. Assume that 2/D is a function of W/D and RC/D.

n . N " v‘mw* ot T wiiriatna i dapansr—epe - e e e
g - . BN - . K BN .

v L..E . . S R [ SN PA S
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and can be expressed by
z/D = £( W/2D - R_/D -1/2 ) = £( ¢/D ) (C.4)

where §/D = W/2D - RC/D - 1/2 and { is some unknown
function.
Assume that z/D is a second order polynomial function of

£/D. Then eq.(C.4) can be written as
2/D = a(t;/D)2 + b(g/D) + ¢ (c.5)

This equation reflects the general trend that as W, and
hence {, increases, z must be made bigger, since the total
number of 2lements is constant. Three conditions are
necessary to determine the constants, a, b, and c.

When ¥/2 = R+ D/2 ( ¢ = 0 ), then the only choice of z

is

z2/D = RC/D + 1/2 = W/2 (C.6)

Substituting eq.(C.6) into (C.5), gives
v 2300

c e RC/D + 1/2 (c.7)

When W changes from W, to W,, say, { changes by the

amount 8f = {, - {5. The vriter has found from

computational experience that the following changes in 2z

‘ - i = = - b " - " - R Ay .""‘,"
. v s L e N N
‘ ) N ‘V’W ~~~~~ - :*‘ t" - -«‘ “‘ !‘f*&a;

e ey ——a

N > "?ﬁf‘:t
SN WG AN
hd e W
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generated results close to known analytical solutions.

1<¢S1.5 a(z/D) = (1/4) a(g/D) (c.8)
§ 22 a(z/D) = 4 a(¢/D) (C.9)

Imposing these conditions, we have

at £ = 1, a(z/D)/a(g/D) =d(2/D)/d(g/D) = 28 + b = 1/4
(c.10)
at ¢ .5, 8(z/D)/alg/D) =d(z/D)/d(g/D) = 5a +b = & (C.11)

From eqgs (C.10) and (C.11), give
a = 0.05 (C.12)
b= 0,15 (C.13)

As a result, eq.(C.5) becomes

z D[ 0.05(W2D=-R/D - 1/2)%+ 0,15 (W/2D -R/D = 1/2)
+ (R/D + 1/2)] (C.14)

Using this result, excellent agreement between the
computational results, and Timoshenko's and De Jong's

solutions vere obtained (Figures '3 and 14, Section V.
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Appendix D
Shape Function Used in the Pinite Element Code

In the isoparametric element, the geometry and the
displacement of the element are described in terms of the
shape function Na' by a transformation from a mcaster element
in the r-s coordinate system to the element in the  Phe P

coordinate system (Pigure 40).

i i=1,2

Qa

u; * Na(y.s) Qg a=1,2,3,0r ¢
Na(r.s)-l/d(1¢rta)(1¢ssq) -18Sr,8sS1

Here x; is the coordinate of node a in the i-direction, Qia
is the displacement of node o in the i-direction, and LN and
s are the coordinates of node a referred to the master

element. Note the property

1, i qeg
N“(ra.sa) -
0, it ae8
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LPY A S
(X42.X22) dia (fz,ftz) (rg.54)
- o,
< (X141 %24) 1)
2
¢ (-1,0)
- [
(00) (1,0}
(Xy1sX21) (Xy3:X23) (0,-1)
Crm———— x .
' (ry28) (ry.53)
Element in x,-x, coordinates Master element in local
r-s coordinates
FPigure 40 Geometry of an Element Used in the Finite Element

Calculations; Left: Element in the x -x
Coordinate System. Right: Element (Mﬁ%te%
Element) in the Local (r-s) Coordinate System,
x. is the Coordinate of Node o in the i
DiYection, q, is the Displacement of Node

a in the i Difection and (¢ ,s ) are the
Coordinates of Node a in th¥ ¢¥s Coordinate
System, i=}l,2, a=1,2,3, or 4.
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APPENDIX E

Listing of a Sample of Input-Output of the Computer Code

.
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BRABEXFABRRERBINBBESHSHEBARESESESFBESAEREBASEEIRRIERERR SR
=== << BOLTED JOINTS >> ---

THE PURPOSE OF THIS PROGRAM IS TO PREDICT
THE FAILURE LOAD AND THE FAILURE MODE OF
BOLTED COMPOSITE JOINTS.

FU-KUO CHANG, RICHARD A. SCOTT, GEORGE S. SPRINGER
MECHANICAL ENGINEERING AND APPLIED MECHANICS

THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MI 48109

APRIL 30, 1983

I ES R EE R R RER SRS R REZR SRR RS RRRRE R RRRRRRERRRRRSRE2RR R R

----- CAPABILITIES:

THIS PROGRAM HAS THE CAPABILITY TO DEAL WITH THREE
TYPES OF BOLTED COMPOSITE JOINTS DEFINED AS FOLLOWS:

TYPE Y -~ JOINTS WITH A SINGLE KOLE
TYPE 2 == JOINTS WITH TWO IDENTICAL HOLES IN A ROW
TYPE 3 == JOINTS WITH TWO IDENTICAL HOLES IN TANDEM

SEE FIGURE DELOW:

- w - m-eeswraooee - eweoeewsew

TYPE 1 TYPE ¢ THPE 3
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THIS PROGRAM CAN ALSO HANDLE THE FOLLOWING

LOADING CONDITIONS:

{A). PIN OR PINS CARRY ALL THE APPLIED LOAD.

(B). PIN OR PINS CARRY ONLY A FRACTION OF THE TOTAL
LOAD APPLIED AT THE BOTTOM OF THE JOINT. THE
REST OF THE LOAD 1S CARRIED BY THE UPPER END.

SEE FIGURE BELOW:

) P2

/1IN

/\P1
P=P1+P2, P>P! AND P>P2 QR PuP!
P: THE APPLIED LOAD
P1:LOAD CARRIED BY THE PIN (PINS)
P2:BY-PASSED LOAD

\/

p

T
7

FOR EACH TYPE OF JOINY, THIS PROGRAM CAN HANDLE
THE POQLLOMING SITUATIONS:

TR e

P
DU p— )

(A). DIFFERENT PLY ORIENTATIONS
(8). DIFFERENT MATERIAL PROPERTIES (SYMMETRIC LAMINATE)
. (C). DIFFERENT GEOMETRICAL CONFIGURATIONS INCLUDING
DIFFERENT HOLE SIZES, HOLE POSITIONS, JOINT
1 Th,CKKESSES, AND JOINT LENGTHS.

- e RES?QIC?:&“S:

THE PROGRAM 1S BASED ON THE POLLOWING ASSUMPTIONS:

» (1), A UNIFORM TENSILE LOAD IS ABPLIED SYMMETRICALLY
P WITH RESPECT 90 THE CENTELLINS OF THE PLATE.

i - (2). THE LAMINATE IS SYMMETRIC,
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(3). HOLE SIZES ARE EQUAL IN EACH JOINT WITH TWO HOLE

(4¢). PIN IS RIGID. THE PIN SUPPORT IS ALSO RIGID.

-------- ANALYSIS:

THE STRESSES ARE CALCULATED USING A FINITE ELEMENT METHOD
FORMULATED ON THE BASiS OF TWO DIMENSIONAL CLASSICAL
LAMINATION PLATE THEORY. THE FAILURE LOAD AND FAILURE
MODE ARE CALCULATED USING THE CHANG-SCOTT-SPRINGER FAILURE
HYPOTHESIS TOGETHER WITH THE YAMADA-SUN FAILURE CRITERION

-------- INPUT INSTRUCTIONS

ss38 ENTER MATERIAL PROPERTIES ssss

DO YOU WANT TO USE GRAPHITE/EPOXY T300/1034-C?
ENTER YES OR NO

yes

MATERIAL PROPERTIES OF T300/1034-C :

LONGITUDINAL YOUNGS MODULUS: 21300000.00000
TRANSVERSE YOUNGS MODULUS: 1700000.00000
SHEAR MODULUS: 897000.00000
POISSON RATIO: 0.30000
LONGITUDINAL TENSILE STRENGTH: 251000.00000
LONGITUDINAL COMPRESSIVE STRENGTH: <00000.00000
LAMINATE SHEAR STRENGTH: 1$400.00000
CHARACTERISTIC LENGTH (TENSION): 0.0180 INCH

CHARACTERISTIU LENGTH(COMPRESSION): G.0700 INCH

JOINT TYPE SELECTION

TYBE 1t JOINT WITH A SINGLE KOLE

TYPE 2 ¢ JOINT WITH TWO MOLES !N ROW

TYPE J ¢ JOINT WITH TWO HOLES IN TANDEN
BRICK TYPE OF JOINT DO YOU WANT T0 SELECT?
ENTER 1, 2, OR 3.

PSI
PS!
PSI

PSI
PS!
PSI

o e axx -
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)
5 DO YOU CONSIDER A BY-PASS LOAD?
4 ENTER YES OR NO
§ THE FOLLOWING GEOMETRIC PARAMTERS MUST BE SPECIFIED:
? ) (A) DIAMETER OF THE HOLE, D
; (D SHOULD BE LESS THAN 1 INCH FOR DEPENDABLE RESULTS)
; (B) WIDTH OF THE JOINT, W

i (C) LENGTH OF THE JOINT, L

(D) EDGE DISTANCE OF THE JOINT, E

(E) DISTANCE BETWEEN THE CENTERS OF
TWO HOLES, S

SEE FIGURE BELOW:

B I e

e WA G Y ey e e

L *

— 1 0N ) —

D e 00 S W e A% AR W = e

THE DIAMETER MUST BE INPUTED IN INCHES, THE OTHER
GEOMETRIC PARAMETERS MAY BE EITHER IN INCHES
OR AS A RATIO TO DIAMETER (PARAMETER/ DIAMETER)

__,
M AT TR 1 T L e g e s

T

ENTER THE HOLE DIAMETER IN INCHES
0'25

DC YOU WISH TO ENTER ALL GEOMETRIC PARAMETERS
IN TERMS OF DIAMETER RATIQ (PARAMETER/DIAMETER) ¢
ENTER YES OR NO

Y

ENTER THE WIDTH TO DIAMETER RATIiO:
8
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ENTER THE EDGE TO DIAMETER RATIO:
3

ENTER THE LENGTH TO DIAMETER RATIO:

20

INPUT THE JOINT THICKNESS AND THE PLY ORIENTATICNS
(SYMMTRIC LAMINATE ONLY)

THE PLY ORIENTATION AND THE NUMBERS OF PLIES IN THE
PLY GRQUP HAVE TO BE SPECIFIED.

1. THE PLY GROUP IS DEFINED AS A GROUP OF PLIES
HAVING THE SAME PLY ORIENTATION,

#2, EACH PLY ORIENTATION IS MEASURED FROM THE
LOADING DIRECTION TO THE FIBER DIRECTION,
THE ANGLE 1S POSITIVE CLOCKWISE AND
NEGATIVE COUNTERCLOCKWISE

SEE FIGURE BELOW

- Ty R G Ve A we e -

ANGLE/
>

i/
/

{ /

,/

s HOLE

ENTER THE JOINT THICRNESS IN INCHKES

0.12%

ENTER ‘THE TOTAL NUMBER OF PLY GROUPS.

sss THE MAXIMUM NUMBER OF THE PLY GROUPS < 100
INPUT AN INTEGER

L)

ENTER THE PLY ORISNTATION OF EACH PLY GROUP

ENTER THE PLY QRIENTATION OF PLY GROUP ¥

)
RN TN

A b 2 e T

R

- i
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IN DEGREES

0

ENTER THE NUMBER OF PLIES IN PLY GROUP { IN INTEGER
6

ENTER THE PLY ORIENTATION OF PLY GROUP 2
IN DEGREES

35
ENTER THE NUMBER OF PLIES IN PLY GROUP 2 IN INTEGER
6

ENTER THE PLY ORIENTATION OF PLY GROUP 3
IN DEGREES

~45
ENTER THE NUMBER OF PLIES 1N PLY GROUP 3 IN INTEGER
6

ENTER THE PLY ORIENTATION OF PLY GRQCP ¢
IN DEGREES

90

ENTER THE NUMBER OF PLIES 1M PLY GROUP ¢ IN INTEGER
2 6

DO YOU WANT 70 HAVE A LIST OF THE INPUT DATA ?

ENTER YES OR KO
i‘ . y
! B LIST OF DATA  s=ewwwese-
: JOINT TYPE SELECTIONw !
o LOAD TYPE SELECTION: 0.0 % OF BY-PASSED LD
<  GEOMETRY »: (INCHES)

ﬂ DIAMETER  WIDTH  EDGE  THICKNESS  LENGTH
: G.2500 2,000  0.7500  ©.1350  5.0000
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GROUP ORIENTATION >:
TOTAL PLY GROUP NO.= 4

GROUP 1 ORIENTATION= (.0 THICKNESS= 0.03125
GROUP 2 ORIENTATION= 45.000 THICKNESS= 9,03125
GROUP 3 ORIENTATION=-45.000 THICKNESS= 0.0312%

GROUP 4 ORIEZNTATION= 90,000 THICKNESS= 0.03125

MATERIAL PRCPERTIES > :
LONGITUDINAL YOUNGS MODULUS 21300000.0000¢C
TRANSYERSE YOUNGS MODULUS ¢ 1700000.00000
SHEAR MODULUS: 897000,00000
POISSON RATIQ: 0.3Q000
LONGITUDINAL TENSILE STRENGTH: 2510060.00000
LONGITUDINAL COMPRESSIVE STRENGTH: 200000.00000
LAMINATE SHEAR STRENGTH: 194¢0G.00000
CHARACTERISTIC LENGTH (TENSION): 0.0180 INCH

CHARACTERISTIC LENGTH{CQMPRESSION): 0.0700 INCH

- e em - W WA S W T W W VP Al N TR T TR WE SO WD TP D S TS Th M R M N R N U VA W W WS YR W

DO YDU WANT TO MAKE ANY CHANGE IN YOUR DATA?
ENTER YES OR NO

Do BV b G wp T WD WY BE WA Wl W W A A N NN A BT B R AR S R VT S T ML S8 ] N TR A2 WS R R YR R A W W T W W W

- e L:g? Q}" ;ss}s? - R

JOINT TYPRE SELECTION« 1
LOAD TYBE SELECYTION: 0.0 ¥ OF BY-PASSED LOAD

< GEONETRY > 1 (INCHES)

INCH

INCH

INCH

INCH

PSI

PSI
PSl
PSI

PSI
PSSt

THE STRENGTH PREDICTION QF PASTENED COMPOSITE JOINTS

DIAKETER WIDTH SIE THICKNESS  LENGTH

¢.2500 2.0000 0.7506 0.1250 5.0000
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) <  GROUP ORIENTATION >
¥ TOTAL PLY GROUP NO,= 4

e
+

GROUP 1 ORIENTATION= 0.0 THICKNESS= 0.03125 INCH
GROUP 2 ORIENTATION= 45.000 THICKNESS= 0.03125 INCH
' GROUP 3 ORIENTATION=-45.000 THICKNESS= 0,03125 INCH
GROUP 4 ORIENTATION= 90.000 THICKNESS= 0.03125 INCH

MATERIAL PROPERTIES:

LONGITUDINAL YOUNGS MODULUS: 21300000.00000 PSI
TPANSVERSE YOUNGS MODULUS: 1700000.00000 PSI
SHEAR MODL™US: 897000.00000 PSI
POISSON RATIO: 0.30000

LONGITUDINAL TENSILE STRENGTH: 251000.00000 PSI
LONGITUDINAL COMPRESSIVE STRENGTH: 200000.00000 Ps1
LAMINATE SHEAR STRENGTH: 19400.00000 PSI
CHARACTERISTIC LENGTH (TENSION): 0.0180 INCH

CHARACTERISTIC LENGTH(COMPRESSION): 0.0700 INCH

D L D S e m N e WS T L WS T U WD W W R W G TR s W TS D R YR TP WD wm TR WD ek W TR GD R S W W WA W W M WS W W W W

meowmmnn LIST OF OUTPUT  ~=-===-=---
< FAILURE LOAD AND FAILURE NODE >

THE MAXIMUM LOAD ( P )w 3012.7 LB

PLYITRNEL Y7V 0 NS Py S S

THE BEARING STRENGTH( P/(DsH) )e 96406.5 PSI
(4 : THE LAMINATE THICKNESS)

TRE FAILURE MODE : BEARING MODE, AT TRE ANGLE §6.437 DEGREE

THE PAILURE ARGLE IS DEYINED IN THE FOLLOWING FIGURE :

: -w‘ﬂ» T e i . dm patatrrs e
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- . . e - — - - - -y e - e D - — A D Y e S e - .

+ / ANGLE
/ \ /
' * \ + + /
\ /
+ / ] *
/ HOLE
HOLE

’ ? s THE INITIAL FAILED PLY GROUP (AT THE MAXIMUM LOAD) = 1

THE PLY ORIENTATION OF THIS PLY GROUP= 0.0

- W W W W W WD TR S D R AR WP SE A SN M aw TR e e U P S T WD WD W e N Ym R WR A W A YR W W

DO YOU WANT TO RUN THE PROGRAM AGAIN?
ENTER YES QR NO

Y

DO YOU WANT TO MARE ANY CHANGE IN YOUR DATA?
ENTER YES OR NO

¥

WHICH PART OF THE DATA DO YOU WANT TO CHANGE ?
(1), JOINT TYPE AND GEOMETRY.
{2). PLY ORIENTATION.
{3). MATERIAL PROPERTIES.
ENTER 1,2,0R 3.
; '
JOINT TYPE SELECTION
TYPE JOINT WITH A SINGLE HOLE

' TYPE 2 : JOINT WITH TWO MOLES IN ROW
1 TYPE 3 : JOINT WITH TWO KOLES IN TANDEN

i
§i~ WKICH TYPE OF JOINT DO YOU WANT TO SELECT?

ENTER ', 2, OR 3.

NMeatien

T Tt
i W e
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DO YOU CONSIDER A BY-PASS LOAD?
ENTER YES OR NO

n
THE FOLLOWING GEOMETRIC PARAMTERS MUST BE SPECIFIED:

(A) DIAMETER OF THE HOLE, D
(D SHOULD BE LESS THAN 1 INCH FOR DEPENDABLE RESULTS)
(B) WIDTH OF THE JOINT, W
(C) LENGTH OF THE JOINT, L
(D) EDGE DISTANCE OF THE JOINT, E
(E) DISTANCE BETWEEN THE CENTERS OF
TWO HOLES, S

SEE FIGURE BELOW:

-—_twm!m t—

THE DIAMETER MUST 32 INPUTED IN INCHES, THE OTHER
GEONETRIC PARAMETERS MiAY BE EITRER IN !NCHES
OR AS A RATIO TO OIAMETER (PARAMETER/ DIAMETER)

PR TP

ENTER THE KOLE DIAM: JER IN INCHES

0.25

. DO YOU WISH TO ENTER ALL GEOMETRIC PARAMETERS
o IN TERNS OF DIAMETER RATIO (PARAMETER/DIAMETER) ?
i ENTER YES OR KO

P Y

’
t
R i S = h =0 o AT

A Vo~ S~ . -

- —v‘c-..._ _an - ——— - S ‘-f_‘-. .
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ENTER THE WIDTH TO DIAMETER RATIO:

8

ENTER THE EDGE TO DIAMETER RATIO:

3

ENTER THE LENGTH TO DIAMETER RATIO:

20

ENTER THE TWO HOLE DISTANCE TO DIAMETER RATIO:
3

DO YOU WANT TO HAVE A LIST OF THE INPUT DATA ?
ENTER YES OR NO

W e m A em e G T WS VR e ) W A WP W e G W G W T G S GE W W ER WL R W Gm R WD A WD e e

THE STRENGTH PREDICTION OF FASTENED COMPOSITE .JOINTS

JOINT TYPE SELECTION= 3
LOAD TYPE SELECTION: 0.0 X OF BY-PASSED LOAD

GEOMETRY > : (INCHES)
DIAMETER WIDTH EDGE THICKNESS  LENGTH

0.2500 2.0000 0.75C0 0.1250 5.0000

DISTANCE BETWEEN THE TWO HOLES (INCHKES)

0.7500

GROUP ORIENTATION > :
TOTAL PLY GROUP NO.» ¢
GROUP 1 ORIENTATIONe (.0 THICKNESS« 0.03125 INCH
GROUP 2 ORIENTATICNe 45.000 THICKNESSe 0.03125 INCK
GROUP 35 ORIENTATION»-45.000 THICKNESSe 0,03125 INCH

>
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GROUP 4 ORIENTATIONs 90.000 THICKNESS= 0.03125 INCH

MATERIAL PROPERTIES:

LONGITUDINAL YOUNGS MODULUS: 21300000.00000 PSI
TRANSVERSE YOUNGS MODULUS: 1700000.00000 PSI
SHEAR MODULUS: 897000.00000 PSI
: POISSON RATIO: 0.30000
. LONGITUDINAL TENSILE STRENGTH: 251000.00000 PSI
LONGITUDINAL COMPRESSIVE STRENGTH: 200000.00000 PsI
LAMINATE SHEAR STRENGTH: 19400.00000 PsSI
K CHARACTERISTIC LENGTH (TENSION): 0.0180 INCH

CHARACTERISTIC LENGTH(COMPRESSION):  0.0700 INCH
-------- LIST OF OUTPUT R

< PAILURE LOAD AND FAILURE MODE >

THE MAXIMUM LOAD ( P )= 5346.7 LB
THE BEARING STRENGTH( P/(DsH) )= 171093.2 PS!

(H : THE LAMINATE THICKNESS)

THE PAILURE MODE = SHEARQUT MNODE, AT THE ANGLE 47.812
DEGREE

THE FAILURE ANGLE !S DEFINED IN THE FOLLOWING FIGURE :

e et ¢ oyt oo it + gt 80 com e b

./ ANGLE
/ \ /
™ \ * o /
\ /

*
/ ROLE

-
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* THE INITIAL FAILED PLY GROUP (AT THE MAXIMU# LCAD) = 2
THE PLY ORIENTATION OF THIS PLY GROUP= ¢5.000

#ss THE FAILURE INITIATED FROM THE BOTTOM HOLE

LOAD CARRIED BY THE TOP PIN = 2028.644466 LB
LOAD CARRIED BY THE BOTTOM PIN = 3318.018795 LB

D S S G WD D TR D n AP T AT WP TGS M e Em WS VRGP Gn wm YD AR GRS G T e W S v P W MR WS e e

DO YOU WANT TO RUN THE PROGRAM AGAIN?
ENTER YES OR NO

no
#Execution terminated

SR T gy T o ks Ty
P R I s S
i i i A2
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APPENDIX P
Summary of Data for Calculating R, and R,

This Appendix contains the data which were generated to
determine the rail shear strength S and the characteristic
lengths R, and R, for Fiberite T300/1034-C graphite epoxy
laminates.

Notations used in Tabhles 6-14

D hole diameter {(in)
W specimen wvidth {in)
L specimen length (in)
H " spacimen thickness (in)
3 edge distance {in)
P failure lcad under tension (1bg)
. Pavg average failure load under tension (1bf)
o S rail shear sirength (psi)
% i Savq average rail sheatr strength (psi)
-§ . R, characteristic length in tension {in)
§ E - R, characteristic length in compression {in)

- e
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APPENDIX G

Summary of Data for Loaded Holes

This Appendix contains the data which were generated

from Fiberite T300/1034-C graphite epoxy laminates

containing loaded holes.

The Tables in this Appendix also

contain the failure strengths and failure modes calculated

by the present model for the conditions of the tests.

Notations used in Tables 15-29

m x £ 0O

(1]
x

o e

vg

&2 b 4 a0

3 O = -3
.

hole diameter

specimen width

specimen length

specimen thickness

edge distance

distance betveen tvo parallel holes
distance betveen tvo series holes
failure load under tension

average failure lvad under tension
calculated failure load
experigental failure mude
calculated failure mode

tension fajlure mode

bearing failure mcde

shearout failure @ode

tearoul along fiber direction
at 245

(in)
(in)
(in)
(in)
(in)
(in)
(in)
(1bf)
(1bt}
(1bf)
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