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ABSTRACT
A simple test to determine nonlinear system observability is presented
here and applied to several examp1és. Most interesting 1is the bearing-only
tracking example which shows the need for relative maneuvers. A mixed-
coordinate system is compared favorably to the standard rectangular coordinates
and the popular modified polar coordinates for accuracy with a continuous-

discrete truncated second-order filter.



1. Introduction

For linear or linearized systems, the simple rank condition 1is used to
test observability, but for general nonlinear systems there exists the
possibil ity of multiple-valued connections of some states to the measurements
which implies that satisfaction of rank condition is not enough.

Many authors [1] - [8] have derived the conditions by which a given system
may be found observable or not. But, unfortunately, they are usually insuf-
ficient [1], [2], too complicated to apply in practice [3], or applicable for
only special forms of nonlinear systems such as in [8], ratio condition in [4],
or for linearized systems [6], [7].

Here, we introduce a new method which is very simple to apply in practical
problems and provides, not only, the test of observability of the system, but
also, identifies the unobservable states when the system is unobservable.

Verification of the effectiveness of this method is shown by the tracking
of a manuevering target where only bearing information is extracted from the
measurement. When no maneuvering exists, either in the target and/or in the
measuring - ownship, the system 1is unobservable, but when proper manuevering
exists the system is observable for all of the considered three different coor-
dinate systems - rectangular, modified polar, and mixed coordinates.

A specially mixed coordinate combination of rectangular and polar coor-
dinate components is introduced. The most desirable feature of this coordinate
system is that, when the measurement noise level is high, these coordinates
show the least estimation errors in both target-speed and position tracking,
compared with the other two cases.

In the Section 2 the problem of checking nonlinear system obervability is
discussed. Two conditions, connectedness and univalence, are provided along

with examples. Section 3 analyzes a mixed coordinate system of equations as



well as rectangular and modified-polar-coordinate systems. In Section 4 a con-
tinuous-discrete, second-order filter is developed for the bearing-only target
(BOT) motion which is described by the three coordinate systems. Comparisons
between the coordinates are made. The last section contains some conclusions

and suggested further research.

2. Nonlinear System Observability

System observability is directly related to the state estimation problem.
[f the system is not observable then the measurement does not provide enough
information for proper estimation of those states.
Consider the system dynamic equation
X(t) = f(x(t), u(t), t), (1)
where f(+) 1is an n-function, x € R", u €R'. The measurement equation is
y(t) = h(x(t), t), (2)
where h(-) is an m-function, y € RM,
First assume that y(t) is differentiable up to (n-1)-th order and u(t) up
to (n-2)-th order with respect to t, respectively. Then define system observ-

ability as follows: A state xj(tg) is observable to ty if knowledge of

the input u(t) and the output y(t), t € [tg, t;] is sufficient to determine
xi(tg) for finite tj. If every state x(t) € R" is observable on [tg,

t1], then the system is completely observable or said to be system

observable.

By differentiation of (2) (assumed to be sufficiently smooth), and sub-

stitution of (1)

y = nh(x, t)
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where the time variable t is suppressed for convenience.

Define an mn measurement vector Y by

[y ]
yl

S T :
_;(n-l)_

and an mn function H(-) to be

Then one obtains an mn functional relation in vector form -

Y = H(x, v, t), (3)
where v(t) 1is a function of u(i), i=1, ..., n-2, and u(i)(t) is a
known time function. Superscript i refers to the i-th derivative in time.

Again, it is assumed that u(t) is sufficiently smooth.



A Simple Useful Result

The system (1), (2) is observable 1if the following two conditions are
satisfied:

(1) Connectedness

Every state xj(t), i =1, 2, ..., n, is connected to any element of
¥, i.e., equation (3) must constitute n independent functions with respect to
x(t) in terms of y on the time interval t €[tg, t1.

(2) Univalence

Every state xj(t), i =1, 2, ..., n is uniquely determined (single
value) in terms of y.

The reasoning is complete if one can show that the unique connection of
every state xji(t), i =1, 2, ..., n, to any element of y is equivalent to
that every state is connected to the measurement y(t).

Let us expand analytic y(t) in a Taylor series for any t € [tg, t17 at
tg, so that

y(£) = y(tg) + ¥ (tg)(t - tg) + 3y (tg)(t - t)? +

L v D e (e - g™

1

+ + r(t) (4)

Thus knowledge of the measurement trajectory y(t) on [tg, t;] is equivalent
to knowing each coefficient in (4) and the remainder r(t). Since the Taylor
series expansion for an analytic function 1is wunique, each coefficient
y(i)(to), i =1, ..., n-1, is also unique. . This implies that every
coefficient contains the same amount of information about the state as y(t) at
tg. However, the coefficients of expansion (4) are exactly the elements of
the measurement vector y. Thus any state xj(t) is observable if it is con-

nected to any element of y (connectedness). But further, this connection must



be one to one. Suppose it is not, i.e., some state x;(t) has multiple-valued
expressions as

X;(t) = ¥is ¥ou Yau wees s
where y;, i =1, 2, ..., j, may be any appropriate function of the elements
of y. Then x; cannot be uniquely determined from the measurement y(t) since
all yj will give the same initial condition x;(tg). Consequently, this
state is not observable and the system is unobservable (univalence).

The above two conditions, while convenient, can be modified in terms of
more concrete mathematical tools as follows:

(1) The connectedness condition corresponds to the existence of an
inverse of the function (not necessarily unique) (3). Thus the global inverse-
function theorem [15] can be used which states that there exists an inverse
functon G: R x RF—=>RM of Hy(+), where H, 1is any subset of H(.)
consisting of n-functions such that

G(y, v) = x
if

det J # 0
for all x, v, where J 1is the Jacobian of Hhpe In other words, if det J = 0,
then at least one state is not connected to y. So, any states, which make the
det J = 0, are unobservable.

(2) Further if any state has multiple solutions, then by imposing some
constraints about that state, one can choose a unique solution by the following

condition, i.e., if either J is positive definite or negative definite for all

x €RM, then Hu(+) is one-to-one, thus Ho has a unique solution. (Refer

to [16] for the proof.)



The test of this result is demonstrated readily by examples. The simple
rank test for linear systems (time invariant and time variant) follows
imned iately. Then consider the following nonlinear examples.

Example 1 [2]

X = Ap%3
;(2 = -X1X3,
Xy =0,

y =X

Thus,
Yo T X T XXgs
. T 2

From the last three equations

X; =Y,
X2 =i)"/"%,
- ‘/;LLL

X3 + oy

Thus the nonzero initial state satisfies the connectedness condition, and

0 0
J =10 X3 Xo q
50 axgx
det J = -2x1x§ # 0, means that initial states of the form
19 # 0, x35 # 0, actually, satisfy this condition. But  xp,

x3 have multiple solutions, thus the univalence condition is not satisfied.
So, positive or negative definiteness of J is tested and obtained as either
< 0,

{x10 X3 > Of or {x, > 0, X3 < O} can make xp and

X3 have unique solutions.



Example 2 [3]

Xl = x2!
i = 2%, = 3X, - X3X
2 17 3% T X X3
X3 = 'X3X4s
L - o,
y = xl.
So,
1 =
y = &2
3
yll = -2X1 - 3X2 = XIXB,
ylll = 6x1 + 7x2 + 3xix3 + X?X3X4 = 3X§X2X3-
Then,
X1 =Y,
XZ = y"
.. = {2y +3y'+ y'')
3 3 ’
Yy
o oc(2yt 43yt ytthy 3y
4 2y + 3yl + yll y [

Here, the univalence condition is satisfied, but

[ 1 0 0 o ] where
b= i 2
0 1 0 0 g1 = 6(1 - x1x2x3) + 3x1x3(3 + x4),
i s 2
J=l . 3xfx3 -3 -xf 0 [Ja3 = X1+ x4) - 3xyx,,
. 2 . 3
Jgu 7 - 3xyx3 Jp3 xpx3l,




6 L
det J = -X[ X3 # 0, implies {X1o 0, X309 7 O} , makes all the states connected
to y. Thus only such initial states make the system observable.

Obviously, the method has 1imitations with respect to the required smooth-

ness and existence of the inverse functions. But on the plus side, it seems

easy to apply to fairly complicated nonlinear systems, shows which states are

obversable and shows the effect of control as depicted next.

3. Bearings Only Track (BOT)

Consider an object or target (T) and observer (0) configuration as in Fig-

ure 1. When T and/or 0 move with some velocity components Iy va
and Vox? Yoy relative coordinate x(t) and y(t) can be generated as
x(t) = xp(t) - x4(t),
(5)
y(t) = yp(t) - yy(t).
Define state variables for rectangular coordinates by
Xl(t) B XT(t) = xo(t) = X(t),
Xz(t) = VTX(t) - VOX(t) = Vx(t): (6)
x3(t) = yp(t) - yg(t) = y(t),
X4(t) = va(t) = Voy(t) = Vy(t)°
Then, the state equation has the following 1inear form
0 1 0 o0 [0 ]
0 0 0 0 ay(t)
qGNE x(t) + R (7)
0 0 0 1 N
0 0 0 0] _ay(t)_




where ay, ay are acceleration components, and the bearing measurement

equation is

(t) = tan 1100 (8)
yit) = tan 3
x3it$
In modified-polar coordinates, four state variables are defined as
follows:
x, ()] B(t)
X (t) F(t)/r(t)
x(t) = = . : (9)
x5(t) 3(t)
X (t) 1/r(t) |

where g is bearing and r is range.
After differentiation and algebraic manipulation with rectanqular acceler-

ation components ay(t) and ay(t), the state equation can be expressed as

-2x1x2 + x4(axcosx3 - qysinx3)

. x% - xg + x4(axs1'nx3 -a cosx?)

x(t) = S, (10)
2
| "X2%4 J

and the measurement equation is
y(t) = [0 0 1 0Jx(t). (11)
Next instead of using normalized state as in modified polar coordinates,
define the states by a mix of polar coordinate components r, g and rectangu]ér
components vy, vy so that

xl (t) = g(t),

10



(12)
X3(t) = Vx(t)s
xg(t) = v (t)
Then, the state equation in the mixed coordinate system becomes
3 x3cosx1 - x4s1nx1‘
*2
%(t) = X3sinxl + x,cosx, . (13)
ay
e a -
Y

The measurement equation is
y(t) =1 0 0 0Ix(t), (14)
Next observability of the mixed coordinate system is checked according to
the conditions derived earlier for the two cases where maneuvering exists,
i.e., ay(t) # 0 and/or ay(t) # 0, and nonmaneuvering.
From (13) and (14) with a,(t) = 0, ay(t) = a(t) # 0 (i.e., manuever-
ing exists only in the one direction) and by replacing lower-order derivatives

of y(t) to the higher-order derivatives recursively,

Y =X, (15)
X, COSY - X,siny
' 3 4
yt o= - ; (16)
2
-(asiny + Zy'x4cosy + 2y‘x3siny)
y'o : , (17)
2

3ay'cosy + x3(3y"siny + Z(y')zcosy) > x4(3y"cosy - 2(y')251ny)

X2

(18)

11






Then (15) - (18) shows that

Xl =Y, (19)

-2y'x4 - acosy -+ siny
XZ = A s (20)

(y''siny - 2(y')2cosy)x4 - y'asiny

Xy = A (21)

. = a[siny'cosy-y"'-(3Ay'cosy—y'cosy)(3y"siny+2(y')2cosy)]
4 -2y'y"'+(y"siny-Z(y')Zcosy)(3y"siny+2(y')2cosy)-(3y"cosy-Z(y')zsiny)A
(22)

where A = y''cosy + 2(y')2)siny.
From (22) it is clear that, if a(t) # 0 (manuevering exists), then x4 is
connected to the measurement vector Y, it is unique, and thus observable. This
implies from (20), (21) that xp and x3 are also uniquely connected. X1
is already observable from (19). So the system is observable for all nonzero
initial conditions in x(tg) € R4,

But when a(t) = 0 (non-maneuvering), then while x4 = xqn, (22) sug-
gests that x4 = 0; i.e., x4 is not connected to Y and 1is unobservable.
This causes, again from (20) and (21), that xp and x3 are disconnected from
Y, and thus, unobservable also. Only x1 is observable in this case. Thus the
known result, i.e., bearing-only target tracking system 1is observable when
maneuvering exists 1is proved using the proposed two observability conditions
provided earlier.

After Tengthy computation, the determinant of the Jacobian becomes

2
6fa(y''siny - (y')"cosy) + y'y" " (xg5iny + x,cosy)]

det J = i (23)

X2

12



Consequently, the BOT 1is unobservable (in x»2, x3, x4) with det J = 0 for
the following cases (among others):
i) Infinite range, xo = «;

ii)  zero heading rate and acceleration, y' =y'' = 0;
iii) x3 = x¢ = 0, i.e., Xp» = 0, with a(t) = 0 (parallel stationary
movement, including tail chase);

iv)  constant range with special heading such that tang = g''/g'Z2.

In these cases, as well as certain others, more measurements are required.

Using similar procedures, it is easily checked that the system is observ-
able only when manuevering exists for both rectangular and modified-polar coor-
dinate systems as well.

While observability for stochastic systems is not exactly the same as for
deterministic systems, the concept is still useful in the same context as is an
observer relative to a filter. In any event, it must be realized that these
are only models of the real process.

The Fisher information matrix J may be computed to determine the relative

information in the observations from, the conditional expectation,

[xk] , (24)

taken at the kth instant of time for the discrete representation. For this

pA
d npy yk/xk)

(
J, = -E 5
k

ax

example with white Gaussian measurement noise, and no state noise, the infor-
mation matrix traditionally is given by the inverse error covariance matrix
associated with the filter algorithm. Computations of Ji recursively verify
the relative lack of observability for the nonmaneuvering case.

In the stochastic case, however, the information matrix, degree of observ-

ability in the measurements and effectiveness of the filter algorithm depends

13



strongly on the coordinate system. Comparisons have been made between modified
polar coordinates [10], relative coordinates [9], [11], range direction cosine
[12] and modified spherical coordinates [13]. Here the above mixed coordinates
are compared with rectangular and modified polar coordinates.

Of course, some error in the estimation is due to the nonlinear measure-

ments and the finite filter approximation used.

4. Mixed Coordinate Simulation and Comparison

To observe the effect of observability in the nonlinear system and to
compare the usefulness of the proposed mixed coordinate system with other
coordinates, continuous system - discrete observation type, truncated second-
order filter 1is studied. With the T, 0 configuration as in Figure 1, and with
assumed manuevering

a(t) =0

=

= -0.025c0s(0.005t), [m/s2]. (25)

A continuous-discrete filter is developed in two stages, i.e., at the measure-
ment update stage observed data is processed according to the discrete form
filter, and at the second stage, between observation, time propagation
integrals of the first and second moments of state estimation are processed
according to the continuous fashion [14]. To give emphasis on the bearing
measurement noise effect, it is assumed that the dynamic equations are noise'

free. But initial states are assumed Gaussian with mean
Xn = [Brs P, V v ]T and
0 0> "0° "x0* "y0

variance 02 . ‘
x0

14 .



Other important parameters used are:

T = 10 sec (measurement interval),

At =1 sec (time update interval),

r{(0) = 8000 m (range at t = 0),

vix = 10 m/s = 20 kTs, vyy = 0,

Vox = 15 m/s =30 dTs, vgy = 5sin(0.005t),

The measurement noise sequence is also assumed Gaussian.

Figures 2, 3 shows the effect of observability in estimation accuracy for
the three different coordinates. Figure 2 shows speed error and Figure 3 shows
range error. Clearly errors do not converge to zero in any sense in this
algorithm when system is not observable (non-maneuvering) in all of the three
coordinates.

Figures 4 to 7 show the comparison of range errors in estimation according
to the bearing measurement noise level increases. In both low and high noise
Tevels, mixed coordinates produce the least absolute errors. " As the noise in-
creases, the difference in filtering accuracy becomes significant. In fact in
the mixed coordinates, actual absolute error does not increase by much, which
is the most desirable characteristic in the real applicational point of view.
In rectangular coordinates, the error converges asymptotically to zero with
longer convergence tfme than mixed coordinates. The most undesirable char-
acteristics in this simulation are shown in modified polar coordinates. Errors

occur which are always larger than the other two cases, and exhibit

oscillation.

15



5. Conclusion

To check observability of nonlinear systems and to identify unobservable
states, two conditions {connnectedness and univalence were introduced. Since
this method does not require any complicated mathematical manipulations beyond
the apparent inverse functions, its utility is exhibited by medium dimensional
nonl inear systems. Special examples of the method are shown for the bearing-
only target motion equation using so-called "mixed coordinates" where the state
equations are described by mixing rectangular and polar coordinate components.
The system is observable only when proper maneuvering exists. When target
and/or observer do not maneuver some states are not observable for the BOT.

The effects of observability in the estimation problem is shown to be
significant in this simulation. Estimation error converges to zero quite fast
when the system is observable. On the other hand, it does not converge in any
sense in the unobservable case.

Comparison of estimation. accuracy between three different coordinate
systems 1is made. Mixed coordinates show the most desirable feature even when
the measurement noise level is quite high. However continued research is
necessary on the stochastic nonlinear observability problem, and its effect on
the nonlinear estimation of the state to provide more rigorous theoretical
background for the superiority of mixed coordinate systems as well as other

applications.

16
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