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ABSTRACT 

A simple test to determine nonlinear system observability is presented 

here and applied to several examples. Most interesting is the bearing-only 

tracking example which shows the need for relative maneuvers. A mixed- 

coordinate system is compared favorably to the standard rectangular coordinates 

and the popular modified polar coordinates for accuracy with a continuous- 

discrete truncated second-order filter. 



1.  Introduction 

For linear or linearized systems, the simple rank condition is used to 

test observability, but for general nonlinear systems there exists the 

possibility of multiple-valued connections of some states to the measurements 

which implies that satisfaction of rank condition is not enough. 

Many authors [1] - [8] have derived the conditions by which a given system 

may be found observable or not. But, unfortunately, they are usually insuf- 

ficient [1], [2], too complicated to apply in practice [3], or applicable for 

only special forms of nonlinear systems such as in [8], ratio condition in [4], 

or for linearized systems [6], [7]. 

Here, we introduce a new method which is wery simple to apply in practical 

problems and provides, not only, the test of observability of the system, but 

also, identifies the unobservable states when the system is unobservable. 

Verification of the effectiveness of this method is shown by the tracking 

of a manuevering target where only bearing information is extracted from the 

measurement. When no maneuvering exists, either in the target and/or in the 

measuring ownship, the system is unobservable, but when proper manuevering 

exists the system is observable for all of the considered three different coor- 

dinate systems - rectangular, modified polar, and mixed coordinates. 

A specially mixed coordinate combination of rectangular and polar coor- 

dinate components is introduced. The most desirable feature of this coordinate 

system is that, when the measurement noise level is high, these coordinates 

show the least estimation errors in both target-speed and position tracking, 

compared with the other two cases. 

In the Section 2 the problem of checking nonlinear system obervability is 

discussed. Two conditions, connectedness and univalence, are provided along 

with examples.  Section 3 analyzes a mixed coordinate system of equations as 



well as rectangular and modified-polar-coordinate systems. In Section 4 a con- 

tinuous-discrete, second-order filter is developed for the bearing-only target 

(BOT) motion which is described by the three coordinate systems. Comparisons 

between the coordinates are made. The last section contains some conclusions 

and suggested further research. 

2.      Nonlinear System Observability 

System observability is directly related to the state estimation problem. 

If the system is not observable then the measurement does not provide enough 

information for proper estimation of those states. 

Consider the system dynamic equation 

x(t)  = f(x(t), u(t), t), (1) 

where f(")   is an n-function, xC R",  u C R'".    The measurement equation  is 

y(t) = h(x(t),  t), (2) 

where h(*)   is an m-function, y CR^. 

First assume that y(t) is differentiable up to (n-l)-th order and u(t) up 

to (n-2)-th order with respect to t, respectively. Then define system observ- 

ability as follows: A state XT(to) is observable to tn if knowledge of 

the input u(t) and the output y(t), t C [tg, t^] is sufficient to determine 

x-j(to) for finite ti. If every state x(t) C R" is observable on [tg, 

t^], then the system is completely observable or said to be system 

observable. 

By differentiation of (2) (assumed to be sufficiently smooth), and sub- 

stitution of (1) 

y      = h(x, t) 

„,   _ ah    ah     ax _ ,    , ,   . 
y      ~ ^T "^ TT • "^ ~ h^. + h f, at    ax     at      t      x 

4 h^(x,  u,  t). 
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where the time variable t is suppressed for convenience. 

Define an mn measurement vector Y by 

"y 

Y = 

(n-2) 

L y 
(n-l) 

and an mn function H(-) to be 

r h 
h. 

H(.) = 

n-l 

Then one obtains an mn functional relation in vector form 

Y = H(x, V, t)j (3) 

where v(t) is a function of u^^^ i = 1, .... n-2, and u^^'^(t) is a 

known time function. Superscript i refers to the i-th derivative in time. 

Again, it is assumed that u(t) is sufficiently smooth. 



A Simple Useful Result 

The system (1), (2) is observable if the following two conditions are 

satisfied: 

(1) Connectedness 

Every state x-j(t), i = 1, 2, ..., n, is connected to any element of 

y, i.e., equation (3) must constitute n independent functions with respect to 

x(t) in terms of y on the time interval t C [tg, ti"!. 

(2) Univalence 

Every state x-j(t), i = 1, 2, .... n is uniquely determined (single 

value) in terms of y. 

The reasoning is complete if one can show that the unique connection of 

e'^ery state x-j(t), i = 1, 2, ..., n, to any element of y is equivalent to 

that ewery  state is connected to the measurement y(t). 

Let us expand analytic y(t) in a Taylor series for any t € [tg, ti"! at 

tg, so that 

y(t) = y(tQ) + y*(tQ)(t - tg) + ^y"(t^)(t - t^)^ + ... 

'T^y^"''ht,){t-t^r'.rit) (4) 

Thus knowledge of the measurement trajectory y(t) on [tg, tj] is equivalent 

to knowing each coefficient in (4) and the remainder r(t). Since the Taylor 

series expansion for an analytic function is unique, each coefficient 

y (tg), i = 1, ..., n-1, is also unique. , This implies that e^ery 

coefficient contains the same amount of information about the state as y(t) at 

tg. However, the coefficients of expansion (4) are exactly the elements of 

the measurement vector y. Thus any state xi(t) is observable if it is con- 

nected to any element of y (connectedness). But further, this connection must 



be one to one. Suppose it is not, i.e., some state x-j(t) has multiple-val ued 

expressions as 

x^-(t) = y^, y^, y3,  ..., y. 

where y-j, i = 1, 2, ..., j, may be any appropriate function of the elements 

of y. Then x-j cannot be uniquely determined from the measurement y(t) since 

all y-j will give the same initial condition Xi(to). Consequently, this 

state is not observable and the system is unobservable (univalence). 

The above two conditions, while convenient, can be modified in terms of 

more concrete mathematical tools as follows: 

(1) The connectedness condition corresponds to the existence of an 

inverse of the function (not necessarily unique) (3). Thus the global inverse- 

function theorem [15] can be used which states that there exists an inverse 

functon G: R" x R"" ^ R" of Hn(-), where H^ is any subset of H(.) 

consisting of n-functions such that 

G(y, v) = X 

If 

det J ^ 0 

for all X, V, where J is the Jacobian of Hp.  In other words, if det J = 0, 

then at least one state is not connected to y. So, any states, which make the 

det J = 0, are unobservable. 

(2) Further if any state has multiple solutions, then by imposing some 

constraints about that state, one can choose a unique solution by the following 

condition, i.e., if either J is positive definite or negative definite for all 

X CR", then Hp(-) is one-to-one, thus Hp has a unique solution. (Refer 

to [15] for the proof.) 



The test of this result is demonstrated readily by examples. The simple 

rank test for linear systems (time invariant and time variant) follows 

inmediately. Then consider the following nonlinear examples. 

Example 1 [2] 

Xg = -x^x^. 

Thus, 

= x^. 

1   • 

y = X, XgXj, 

y  = X2X2 + X2X3 2 
"^1^3* 

From the last three equations 

y. 

^2 =*y'/y^. 

X3 = ^ v^. 
Thus the nonzero initial state satisfies the connectedness condition, and 

0 1 

0 

L-"3 

0 

X- 

-2x^X3 

det 
2 

-2x1x3 i     0,  means  that  initial  states  of  the  form 

^10  ^ ^^■ X3g f 0 , actually, satisfy this condition. But X2, 

X3 have multiple solutions, thus the univalence condition is not satisfied. 

So, positive or negative definiteness of J is tested and obtained as either 

Xon >  0|,  or |x 

■^3 have unique solutions. 

10 >  0, '30 < 0 \    can make X2 and 



Example 1 [3] 

Xp, 

X, ~   ""i-X-1    "   OKf\   "   ^I'^Oy 

So, 

Then, 

■^3^4' 

= 0. 

= ^1- 

Xp , 

j "      1   **   OXQ   ■■   X-iX^, 

3 3 2 
= 6xj + 7x2 '*' ^^^1^3 "*" ^l'^3^4 " 3x^X2X3. 

= y. 

= y'. 
1 

- -(2y + 3y' H ̂ y") 
? 1 

- -(2y' + 3y' + Y" ') 
"4 2y + 3y'  + y■ y    • 

Here, the univalence condition is satisfied, but 

where 1 .;■.©. 0 0 

0 1 0 0 

2 - 3x^x3 -3 -A 0 

J4I       7 - 3x^X3 J43 
3 

^1^3 

'41 6(1 - XJX2X3) + 3x^X3(3 + X4), 

J43 " ^1^^ "^ ^4)  ■ 3x^X2, 

f 



det J = -x^x^ / 0, implies |X^Q 5^ H, X^Q ?^ O} , makes all the states connected 

to y. Thus only such initial states make the system observable. 

Obviously, the method has limitations with respect to the required smooth- 

ness and existence of the inverse functions. But on the plus side, it seems 

easy to apply to fairly complicated nonlinear systems, shows which states are 

obversable and shows the effect of control as depicted next. 

3.  Bearings Only Track (BOT) 

Consider an object or target (T) and observer (0) configuration as fn 

ure 1. When T and/or 0 move with some velocity components v^ , 

and VQ^, VQ , relative coordinate x(t) and y(t) can be generated as 

X(t) = X-p(t) - XQ(t), 

y(t) = y^(t) - yQ(t). 

Define state variables for rectangular coordinates by 

x^(t)   = x^(t)   - XQ(t)   = x(t). 

X2(t)  = v^^(t)   - VQ^(t)   = v^(t). 

X3(t)  = y^(t)  - yQ(t)  = y(t), 

>'^i^)   =  VTy(t)   -  VQy(t)   =  Vy(t). 

Then, the state equation has the following linear form 

x(t) 

0 10 0 

0 0      0 0 

0 0      0 1 

0 0      0 0 

x(t)  + 

0 

ax(t) 

0 

ay(t) 

Fig- 

^Ty 

(5) 

(6) 

(7) 



where ax, a^y    are acceleration components, and the bearing measurement 

equation is 

y(t) = tan" ,^T(ty/- (8) 

In    modified-polar    coordinates,    four    state    variables    are    defined    as 

follows: 

"6(t) 

r(t)/r(t) 

6(t) 

l/r(t) 

x(t) 
XgCt) 

x.(t) 

(9) 

where B is bearing and r is range. 

After differentiation and algebraic manipulation with rectangular acceler- 

ation components a^tt) and ay(t), the state equation can be expressed as 

-2x,X2 + x^(a cosxo - a sinx-^) 

x(t) = 

2   2^,. , 
^1 " ^2  ^4(3vS"'nx2 - a cosx^) 

L"^2^4 

(10) 

and the measurement equation  is 

y(t)  =[001    0]x(t). (11) 

Next instead of using normalized state as in modified polar coordinates, 

define the states by a mix of polar coordinate components r, g and rectangular 

components Vx, Vy so that 

Xi(t)  = g(t). 

10 



X2(t) = r(t), 

X3(t) = v^(t), 

x^{t)  =  v^(t). ■ 

Then, the state equation in the mixed coordinate system becomes 

x(t)  = 

x,cosx,  - x.sinx. 

x^sinxl + x-cosx-. 

(12) 

(13) 

The measurement equation  is 

y(t)  =[100    0]x(t) . (14) 

Next observability of the mixed coordinate system is checked according to 

the conditions derived earlier for the two cases where maneuvering exists, 

i.e.,  ax(t)  ^ 0  and/or ay(t)   ^ 0,  and  nonmaneuvering. 

From (13) and (14) with ax(t) = 0, ay(t) = a(t) ^ 0 (i.e., manuever- 

ing exists only in the one direction) and by replacing lower-order derivatives 

of y(t)  to the higher-order derivatives recursively, 

y        =Xl' (15) 

Xgcosy - x^siny 

y 
-(asiny + 2y'x^cosy + Zy'x^siny) 

(16) 

(17) 

3ay'cosy + X3(3y"siny + 2(y')'^cosy) + x^(3y"cosy 2(y')^siny) 

(18) 

11 





Then (15) - (18) shows that 

x^ = y, (19) 

-2y'x. - acosy • siny 
Xg = ^  , (20) 

9 
(y"siny - 2(y') cosy)x. - y'asiny 

X3 = A  (21) 

X 
 a[s1ny'cosyvy' ' '-(3Ay'cosy-y'cosy)(3.y' 's^•ny-^2(y') cosy)]  

^      -2y'y"' + (y"siny-2(y')2cosy)(3y"siny+2(y')2cosy)-(3y"cosy-2(y')2siny)A' 

(22) 

where A = y''cosy + 2(y')2)siny. 

From (22) it is clear that, if a(t) ^ 0 (manuevering exists), then X4 is 

connected to the measurement vector Y, it is unique, and thus observable. This 

implies from (20), (21) that X2 and X3 are also uniquely connected. xi 

is already observable from (19). So the system is observable for all nonzero 

initial  conditions  in x(to) CR^. 

But when a(t) = 0 (non-maneuvering), then while X4 = X4n, (22) sug- 

gests that X4 = 0; i.e., X4 is not connected to Y and is unobservable. 

This causes, again from (20) and (21), that X2 and X3 are disconnected from 

Y, and thus, unobservable also. Only x^ is observable in this case. Thus the 

known result, i.e., bearing-only target tracking system is observable when 

maneuvering exists is proved using the proposed two observability conditions 

provided  earl ier. 

After lengthy computation,  the determinant of the Jacobian becomes 

9 
6[a(y"siny -  (y')"cosy) + y'y" (x^siny + x.cosy)] 

det J = ^ ^ 1  (23) 
X2 

12 



Consequently, the BOT is unobservable (in x?, X3, X4) with det J = 0 for 

the following cases (among others): 

i)  Infinite range, X2 = "; 

ii)  zero heading rate and acceleration, y' = y'' =0; 

iii)  X3 = X4 = 0, i.e., '2 = 0, with a(t) = 0 (parallel stationary 

movement, including tail chase); 

iv)  constant range with special heading such that tang = B'VB'^. 

In these cases, as well as certain others, more measurements are  required. 

Using similar procedures, it is easily checked that the system is observ- 

able only when manuevering exists for both rectangular and modified-polar coor- 

dinate systems as well. 

While observability for stochastic systems is not exactly the same as for 

deterministic systems, the concept is still useful in the same context as is an 

observer relative to a filter. In any event, it must be realized that these 

are only models of the real process. 

The Fisher information matrix J may be computed to determine the relative 

information in the observations from, the conditional expectation. 

J, =-E 

»2 <5'£np^(y^/x,^) 

axr W (?4) 

taken at the kth instant of time for the discrete representation. For this 

example with white Gaussian measurement noise, and no state noise, the infor- 

mation matrix traditionally is given by the inverse error covariance matrix 

associated with the filter algorithm. Computations of J|^ recursively verify 

the relative lack of observability for the nonmaneuvering case. 

In the stochastic case, however, the information matrix, degree of observ- 

ability in the measurements and effectiveness of the filter algorithm depends 

13 



strongly on the coordinate system. Comparisons have been made between modified 

polar coordinates [10], relative coordinates [9], [11], range direction cosine 

[12] and modified spherical coordinates [13]. Here the above mixed coordinates 

are  compared with rectangular and modified polar coordinates. 

Of course, some error in the estimation is due to the nonlinear measure- 

ments and the finite filter approximation used. 

4.  Mixed Coordinate Simulation and Comparison 

To observe the effect of observability in the nonlinear system and to 

compare the usefulness of the proposed mixed coordinate system with other 

coordinates, continuous system - discrete observation type, truncated second- 

order filter is studied. With the T, 0 configuration as in Figure 1, and with 

assumed manuevering 

\{t)  =  0 

a (t^ = -0.025cos(0.005t), [m/s^]. (25) 

A continuous-discrete filter is developed in two stages, i.e., at the measure- 

ment update stage observed data is processed according to the discrete form 

filter, and at the second stage, between observation, time propagation 

integrals of the first and second moments of state estimation are processed 

according to the continuous fashion [14]. To give emphasis on the bearing 

measurement noise effect, it is assumed that the dynamic equations are noise 

free. But initial states are assumed Gaussian with mean 

variance a ^. 
xO 

14 



Other important parameters used are: 

T   =10 sec (measurement interval). 

At  =1 sec (time update interval), 

r(0) = 8000 m (range at t = 0), 

vjx = 10 m/s ^ 20 kTs, vjy =0, 

VQX = 15 m/s =i 30 dTs, VQy = 5sin(0.005t), 

The measurement noise sequence is also assumed Gaussian. 

Figures 2, 3 shows the effect of observability in estimation accuracy for 

the three different coordinates. Figure 2 shows speed error and Figure 3 shows 

range error. Clearly errors do not converge to zero in any sense in this 

algorithm when system is not observable (non-maneuvering) in all of the three 

coordinates. 

Figures 4 to 7 show the comparison of range errors in estimation according 

to the bearing measurement noise level increases. In both low and high noise 

levels, mixed coordinates produce the least absolute errors. As the noise in- 

creases, the difference in filtering accuracy becomes significant. In fact in 

the mixed coordinates, actual absolute error does not increase by much, which 

is the most desirable characteristic in the real applicational point of view. 

In rectangular coordinates, the error converges asymptotically to zero with 

longer convergence time than mixed coordinates. The most undesirable char- 

acteristics in this simulation are shown in modified polar coordinates. Errors 

occur which are always larger than the other two cases, and exhibit 

oscillation. 

15 



5.  Conciusion 

To check observability of nonlinear systems and to identify unobservable 

states, two conditions (connnectedness and univalence. were introduced. Since 

this method does not require any complicated mathematical manipulations beyond 

the apparent inverse functions, its utility is exhibited by medium dimensional 

nonlinear systems. Special examples of the method are shown for the bearing- 

only target motion equation using so-called "mixed coordinates" where the state 

equations are described by mixing rectangular and polar coordinate components. 

The system is observable only when proper maneuvering exists. When target 

and/or observer do not maneuver some states are not observable for the BOT. 

The effects of observability in the estimation problem is shown to be 

significant in this simulation. Estimation error converges to zero quite fast 

when the system is observable. On the other hand, it does not converge in any 

sense in the unobservable case. 

Comparison of estimation accuracy between three different coordinate 

systems is made. Mixed coordinates show the most desirable feature even when 

the measurement noise level is quite high. However continued research is 

necessary on the stochastic nonlinear observability problem, and its effect on 

the nonl inear estimation of the state to provide more rigorous theoretical 

background for the superiority of mixed coordinate systems as well as other 

applications. 
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Figure 1.    BOT Configuration. 
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