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covery can be extended to use information about the behavior of
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linquistic support for atomic types, analyzing the advantages and
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Abstract

Maintaining the consistency of long-lived, on-line data is a difficult task, particularly in a
distributed system. This dissertation focuses on atomicity as a fundamental organizational
concept for such systems. It explores an approach in which atomicity is ensured by the data
objects shared by concurrent activities; such objects are called atomic objects, and data
types whose objects are atomic are called atomic types. By using information about the
behavior of the shared objects, greater concurrency among activities can be permitted. In
addition, by encapsulating the synchronization and recovery needed to support atomicity in
the implementations of the shared objects, modularity can be enhanced.

This dissertation addresses three fundamental questions:

What is an atomic type?

How can an atomic type be specified?

How can an atomic type be implemented?

Atomicity of activities is a global property of an entire system, while atomicity of types is a
local property of individual types. This dissertation examines three definitions of atomicity for
types, each of which is optimal: No strictly weaker definition of (local) atomicity for types
suffices to ensure (global) atomicity of activities. The definitions of atomicity discussed
encompass both serializability and recoverability, and use user-supplied specifications of
objects to permit greater concurrency.

The specification framework presented in this dissertation divides the specification of a data
type into two parts: the serial specification, which describes how the type behaves in the

ii absence of concurrency and failures, and the behavioral specification, which describes how
the type supports atomicity. This division permits the programmer of an individual activity to
ignore how atomicity is achieved, and to focus on the serial behavior of each object. In
addition, the definitions of atomicity permit the behavioral specification of a type to be derived
systematically from its serial specification.
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A novel two phase locking protocol, covering both synchronization and recovery. is

presented and verified. The protocol uses information about the behavior of objects to

achieve greater concurrency than can be achieved with protocols based on read and write

operations. In addition. the protocol permits the results of an operation, as well as its
arguments. to be used in determining the appropriate lock mode for the operation.
Furthermore. the protocol permits operations to be both partial and non-deterministic.

Finally. several implementations of atomic types are presented. illustrating how existing
techniques for synchronization and recovery can be extended to use information about the

behavior of objects to increase concurrency. The dissertation also explores linguistic support

for atomic types. analyzing the advantages and disadvantages of alternative approaches.

Thesis Supervisor: Barbara H. Liskov
Title: Professor of Computer Science and Engineering

Keywords: Distributed Systems, Concurrency Control, Recovery, Atomicity, Formal
Specifications, Program Design, Abstract Data Types, Programming Methodology.
Programming Languages.
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Chapter One

Introduction

There are many applications in which the manipulation and preservation of long-lived. on line

data is of primary importance. Examples of such applications are banking systems. airline

reservation systems, office automation systems. database systems, and various components

of operating systems. A major issue in such systems is preserving the consistency of on line

data in the presence of concurrency and hardware failures In this dissertation we consider

how to define data objects that help provide this consistency.

To support consistency it is helpful to make the activities that use and manipulate data

atomic. Atomic activities are often referred to as actions or transactons: they were first

identified in work on databases [Davies 73, Davies 78. Eswaren et al 76] Atomic activities are

characterized informally by two properties: serializability and recoverability. Serializabihty

means that the concurrent execution of a group of activities is equivalent to some serial

execution of the same activities. Recoverability means that ,.ach activity appears to be all-or-

nothing: either it executes successfully to completion (in which case we say that it comrmts),

or it has no effect on data shared with other activities (in which case we say that it aborts).

Nested transactions [Davies 73, Reed 78, Moss 81. Lynch 83] are useful for decomposing

activities into smaller units. Nested transactions provide increased failure-tolerance

Subtransactions of a transaction fail independently of each other and independently of the

containing transaction. In addition, nested transactions can be used to run parts of the same

activity concurrently, while ensuring that their concurrent execution is serializable. As

discussed in [Liskov 82], nested transactions permit a simple implementation of a remote

procedure call primitive with "at-most-once" semantics: A remote call is executed either zero

or one times; partial and multiple executions cannot occur.

Atomicity simplifies the problem of maintaining consistency by decreasing the number of

cases that need to be considered. Since aborted activities have no effect, and every

concurrent execution is equivalent to some serial execution, consistency is ensured as long

as every possible serial execution of committed activities maintains consistency. Even though

activities execute concurrently, concurrency can be ignored when checking for consistency.

In this dissertation we explore an approach in which atomicity is achieved through the shared

data objects, which must be implemented in such a way that the activities using it appear to

be atomic. Objects that provide appropriate synchronization and recovery are called atomic

objects; atomicity is guaranteed only when all objects shared by activities are atomic oblects.

HIECEDiNG PAGE aLAMW-140T FI1J6D
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By encapsulating the synchronization and recovery needed to support atornicity in the

implementations of the shared objects, we can enhance modularity; in addition, by using
information about the specifications of the shared objects, we can increase concurrency

among activities.

Atomic objects are encapsulated within atomic abstract data types. An abstract data type

consists of a set of objects and a set of primitive operations: the primitive operations are the

only means of accessing and manipulating the objects [Liskov & Zilles 74]. In addition, the

operations of an atomic type ensure serializability and recoverability of activities using the

type.

In this dissertation we investigate the semantics of atomic types and the problems involved in
implementing them. We address three fundamental questions:

What is an atomic type?

We need a precise characterization of the behavior of atomic objects. For
example, we need to know how much concurrency can be allowed by an

atomic type.

How do we specify an atomic type?
What aspects of the type's behavior must appear in the specification of an

atomic type, and how should the specification be structured?

How do we implement an atomic type?

What problems must be solved in implementing an atomic type, and what
kinds of programming language constructs make this task simpler?

The remainder of this chapter is organized as follows: In Section 1.1, we review protocols for

implementing atomicity. Next, in Section 1.2, we discuss atomic types in more detait. Then, in

Section 1.3, we summarize the contributions of this dissertation. In Section 1.4, we discuss
related work. Finally, in Section 1.5, we outline the rest of the dissertation.

1.1 Implementing Atomicity

There are two subproblems that must be solved to implement atomicity: recovery of aborted

activities, and scheduling, or synchronization, of concurrent activities. The effects of aborted

activities must be undone, and the earlier states of objects recovered, to ensure that aborted

activities have no effect on the state of the system. In addition. activities must be
synchronized to avoid non.serializable executions. We discuss these two subproblems in the

next two subsections.

1,-
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1.1.1 Recovery

Recovery is accomplished by maintaining redundant information There are two basic

techniques for performing recovery: undo logs [Gray et al 81. Verholstad 78]. and intentions

lists [Lampson 81, Verhotstad 781. The representation of an object in both cases is divided

into two pieces: the actual value of the object. and separate recovery information (either an

undo log or an intentions list).

Undo logs work as follows: When an activity invokes an operation on an object, the operation

is performed on the value of the object, and sufficient information is recorded in the object's

undo log so that the effects of the operation can be undone if the activity that executed the

operation later aborts. For example, if an activity executes a write operation on an object. the

old value of the object might be saved in the object's undo log. The undo log for an activity is

simply discarded if the activity commits.

Intentions lists are used slightly differently: When an activity invokes an operation on an

object, the operation is simply record "J in the intentions lists associated with the object; it is

not actually performed on the value of the object until the activity commits. For example, if an

activity executes a write operation on an object, the new value of the object might be saved in

the object's intentions list; the new value will replace the old value only if the activity commits.

If the activity aborts, the list of its operations is discarded.

A detailed description of these techniques and alternative storage organizations for them may

be found in [Verhofstad 78].

1.1.2 Synchronization

Many protocols have been developed for synchronizing concurrent activities to ensure

serializability (or concurrency control, as this problem is called in the literature on database

systems -- see [Bernstein & Goodman 811 for a survey of a large number of concurrency

control protocols.) Most are variations or hybrids of two simple techniques: two-phase

locking [Eswaren et al. 76] and multi-version timestamping [Reed 78]. We discuss these two

techniques and a hybrid below.

1.1.2.1 Locking Protocols

One of the earliest protocols developed for concurrency control is two-phase

locking [Eswaren et al. 761. Two-phase locking works as follows: Before reading an object X,

Ik an activity must acquire a read lock on X. Similarly, before writing an object, an activity must

acquire a write lock on the object. An activity can acquire a lock on an object only if no

concurrent activity holds a conflicting lock on the object. In addition, once an activity

releases one lock, it is not allowed to acquire any additional locks.

- - -. z
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Two locks on an object conflict it one is a write lock. This definition of conflicting locks

ensures that at most one activity is writing an object at a time, but also allows multiple

activities to read an object concurrently.

The requirement that an activity not acquire any more locks after it releases a lock means that

activities acquire locks in a two-phase manner (hence the name of the protocol). During the
growing phase an activity acquires locks without releasing any locks. When an activity first

releases a lock, it enters the shrinking phase. During this phase the activity releases its locks,

but may not acquire any more locks. As is shown in JEswaren et al. 76, Papadimitriou 79],

two-phase locking ensures that activities are serializable in the order in which they first

release locks.

A variant of two-phase locking, called strict two-phase locking, is more suited to the

applications of interest to us. Under strict two-phase locking, activities hold all locks until they

commit or abort. This avoids cascading aborts lWood 80], a problem with non-strict two-

phase locking: If write locks are released and then an activity aborts, any activities that read

the values written by the aborted activity must also be aborted. In addition, strict two-phase
locking permits locks to be acquired dynamically as needed. Non-strict two-phase locking

may require more advance planning, particularly to determine when an activity can release a

lock.

Strict two-phase locking can be extended to nested activities as follows: Nested activities

form a natural tree structure, with each activity appearing as the parent of its subactivities.

We define the notions of ancestor, proper ancestor, descendant, and proper descendant in

the usual way. The locking rules for nested activities are defined as follows: As before, an
activity must acquire a read (write) lock before reading (writing) an object. An activity can

acquire a lock on an object as long as no concurrent non-ancestor holds a conflicting lock on

the object. When an activity aborts, its locks are discarded. When an nested activity commits,

its locks are inherited by its parent; when a top-level activity commits, its locks are discarded.
Details can be found in [Moss 81, Liskov et at. 83]; a proof of the correctness of Moss's

algorithm is given in [Lynch 83].

1.1.2.2 Timestamp- based Protocols

The serialization order of activities attained by two-phase locking is determined dynamically

by the order in which activities lock objects. In contrast. timestamp-based protocols

determine the serialization order statically by selecting timestamps for activities when they

start, and then force the execution of activities to obey this order.

Reed's implementation [Reed 78] of a timestamp-based protocol works as follows: An activity

is assigned a unique timestamp when it begins execution. When an activity wants to modify

______________
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an object, it creates a new version of the object. A version of an object has two timestnp,.

associated with it: the wrile timestamp. which is the timestamp of the activity that created te

version; and the read timestamp, which is the maximum of the timestamps of activities that

have read the version. When an activity with timestamp t wants to read an object, it selects

the version of the object with the largest write timestamp less than t, and changes the read

timestamp of the version to the maximum of its current value and t.

Write operations sometimes cannot be executed: Suppose an activity a with timestamp I

wants to write an object, and a version v of the object already exists with write timestamp less

than t and read timestamp greater than t, In a serial execution in which the activities execute

in timestamp order, a must come between the activity that wrote the version v and the activity

that read it. If a is allowed to write the object, then in the serial execution the activity that read

v should instead read the value written by a. Thus, the write operation must be refused.

To avoid cascading aborts, read operations sometimes must be delayed: If an activity with

timestamp I wants to read an object. and the version selected was written by an activity that

has not yet committed or aborted, the read operation must wait until that activity completes.

Otherwise, if the activity that created the version later aborts, the reader must also be aborted.

More details, and in particular the extension of the protocol to cope with nested activities, can

be found in [Reed 78].

1.1.2.3 Hybrid Protocols

Locking and timestamp-based protocols can be combined to yield hybrid protocols that

achieve greater concurrency [DuBourdieu 82, Chan et al. 82, Bernstein & Goodman 81]. We

divide activities into two classes: read-only activities, which never modify objects; and update

activities.

Update activities set locks on objects as in strict two-phase locking, but two locks conflict only

if one is a read lock and the other is a write lock; a write lock no longer conflicts with another

write lock. As with Reed's protocol, each write operation creates a separate version, and

versions have two timestamps. Rather than choosing timestamps for update activities when

they begin executing, however we wait until they attempt to commit. Then, using a Lamport

clock [Lamport 78]. we ensure that the timestamps chosen for updates give a serialization

order consistent with the order induced by the locks. The order of conflicting write operations

is sorted out using the timestamps.

Updaters that invoke read operations always read the version with the largest timestamp.

Read-only activities, however, may read older versions, permitting them to run without

interfering with update activities. Timestamps for read-only activities are chosen when they
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start executing. When a read-only activity wants to read an object, it simply selects the
version with the largest write timestamp less than the activity's timestamp. A proof of the

correctness of this protocol can be found in [Bernstein & Goodman 83].

1.2 Atomic Types

Our motivation for focusing on atomic types is two-fold: First. it is important to understand the
interactions among independent objects, and to understand what constraints must be
satisfied by objects to ensure atomicity of activities. Second, by using information about the
behavior of operations provided by types, we can achieve greater concurrency than can be
achieved by protocols based on a classification of operations as reads and writes. In this
section we discuss these two issues in more detail. In the first part, we illustrate the problems

caused by interactions among objects. In the second part, we discuss how user-defined
atomic types can be used to increase concurrency.

1.2.1 Interactions Among Objects

Each of the protocols discussed in the previous section can be shown to ensure atomicity of
activities. Thus, an object using one of these protocols should be considered "atomic."
However, as the example below illustrates, objects using different protocols cannot
necessarily be used together in the same system.

Consider two objects X and Y, each with read and write operations, and each with initial value
0. Suppose that X is implemented using two-phase locking, and Y is implemented using
multi-version timestamping. Now suppose there are two activities A and B, with timestamps 1
and 2, respectively. Consider the following execution:

B reads X, receiving 0.
B writes 1 into Y.
B commits.
A reads Y, receiving 0.
A writes 1 into X.
A commits.

This execution is not serializable: In a serial execution, the second activity should see the
value written by the first, but both A and B read the initial values of the objects. However, the

execution is atomic at each object: At X, B is serializable before A, and at Y, A is serializable
before B.

The problem in this example is that X and Y use incompatible protocols to ensure atomicity. If
both objects used two-phase locking, or both used multi-version timestamping, the above
execution could not occur and atomicity would be guaranteed. As we will discuss in Chapter
4, some information about the protocol used by an atomic type's implementation must be
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reflected in the type's specification, and only types using "compatible" protocols can be use.d

in the same system.

1.2.2 Type-specific Concurrency Control

The protocols discussed in the previous section were developed for simple data types, such
as files and relations, with read and write operations. To support user-defined types, they
must be extended to cope with arbitrary operations. The primary reason for making such an

extension is increased concurrency: by using detailed information about the specifications of
the operations provided by types, we can allow concurrent executions that must be forbidden
if operations are simply characterized as reads and writes.

Consider, for example, a bank account data type, with operations to create a new bank
account object (with an initial balance of 0), to deposit money in an account, to withdraw
money from an account, and to check the current balance of an account. Now consider the

following concurrent execution of two activities, A and B:

A deposits $3 in a bank account X.
B deposits $2 in X.
A commits.
B commits.

This execution is clearly serializable: A and 8 can execute serially in either order and perform
the same steps. It is not permitted, however, by any of the protocols discussed in the previous

section: A and B both update X (reading the current balance, and writing a new balance), and
so cannot access X concurrently.

The example above is a simple illustration of a general phenomenon: By describing a system

in terms of abstract objects (rather than primitive objects with read and write operations), we

can permit greater concurrency than would otherwise be possible. This additional
concurrency may be essential for achieving adequate performance in an application.
Particularly in a distributed system, activities may take a relatively long time to complete; by

permitting more concurrent access to objects, we may be able to avoid creating bottlenecks
in the system. In the remainder of this dissertation we will provide more examples of this

phenomenon, and will show how implementations of objects can permit high levels of

concurrency.

Achieving the kind of concurrency illustrated above typically requires a more complex
implementation. It may be most effective to implement a system initially permitting littlea iconcurrency, for example, by using a protocol based on reads and writes. If certain shared

objects can then be identified as bottlenecks, more concurrent (albeit more complex)
implementations can be substituted for the types defining those objects. Of course, there are

'I limits to how much concurrency an atomic type can permit. One of the results of this
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dissertation is a precise definition of these limits.

1.3 Overview

As mentioned earlier, we address three fundamental questions in this dissertation:

-What is an atomic type?

- How can we specify an atomic type?

- How can we implement an atomic type?

To answer the first two questions we must generalize existing work on concurrency control

(or serializability) in three ways:

-Our definition of atomicity is data-dependent: It is based on an explicit
specification of the desired behavior for the data objects used by activities. This
is crucial in achieving the concurrency required by applications.

-Our definition of atomicity is integrated: We treat both serializability and
recoverability. This facilitates the description and verification of implementations
of atomic objects, which necessarily must cope with both.

- We focus on modularity issues: We identify local properties of individual objects,
and we identify the conditions under which different kinds of objects can be
combined in a single system while preserving atomicity of activities.

We explore three local properties, each of which is optimal: No strictly weaker local property

suffices to ensure atomicity. The three properties characterize respectively the behavior of

the three classes of protocols discussed in Section 1.1.2: two-phase locking protocols, in
which the serialization order of activities is determined by the order in which they access

objects; multi-version timestamp-based protocols, in which the serialization order of activities

is determined by a pre-determined total order; and hybrid protocols, which use a combination

of these techniques.

We present a novel locking protocol and verify its correctness. Our protocol generalizes

previously existing protocols in two ways: It permits the results of operations, as well as their

arguments, to be used in determining the appropriate lock mode, and it handles partial and

non-deterministic operations. In addition, we describe and verify the .implementation of both

synchronization and recovery; descriptions of previously existing protocols are limited to

synchronization alone.

Our approach to specifying atomic types permits the programmer of an individual activity to

ignore how atomicity is achieved. To reason about whether an individual activity preserves

consistency, one needs only the serial specification of each object used by the activity, and

/
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the knowledge that activities are atomic; one need not know how objects cooperate to ensure

atomicity.

In addition, our specification framework supports an approach that permits the concurrent

specification of an object to be derived systematically from a specification of its sequential

behavior. This is perhaps the most significant contribution of this dissertation: We reduce the

problem of specifying an object to the simpler problem of specifying how it should behave in

the absence of concurrency.

Finally, we present several example implementations of atomic types, illustrating how existing

techniques for synchronization and recovery can be extended to use information about the

specifications of objects to increase concurrency. We also discuss linguistic support for

atomic types, analyzing the advantages and disadvantages of several alternative approaches.

Throughout the dissertation we use a model that permits a restricted class of failures:

Activities can abort, but objects cannot fail. This model is an abstraction of real systems, and

can be approximated arbitrarily closely with a commitment protocol (e.g., two-phase

commit [Gray 78, Lampson 81) or three-phase commit [Skeen 82]) and appropriate use of

redundant information (e.g., stable storage [Lampson 81]).

There are a number of important issues that we do not address:

- We do not investigate particular specification languages for atomic types; rather,
we focus on the underlying formal models of specifications and on identifying

desirable semantic properties of atomic types.

We ignore some issues raised by the distributed nature of applications, such as

the distinction between local and remote data.

* We do not consider how to ensure progress in the face of deadlock, starvation,
and failures.

1.4 Related Work

Most early work on synchronizing concurrent processes occurred in the context of operating

systems. Numerous linguistic mechanisms were developed (e.g., see [Hoare 74, Atkinson &

Hewitt 77, Campbell '& Habermann 74]), permitting modular implementations of

synchronization for individual operations on objects. While similar implementation

mechanisms are useful for supporting atomicity, the concurrency rules for atomic actions are

different: Synchronization must cope with interference among activities invoking multiple

operations, rather than just interference among single operations. Furthermore, there was no

systematic approach for coping with failures.
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Specification and proof techniques were also explored (e.g.. see [Owicki & Gries 76, Owicki &

Lamport 82, Pnueli 771). Much of this work assumed a fixed set of atomic actions, and did not

consider how to lot the programmer build higher-level atomic actions or new data types. In

addition, much of this work did not consider how to specify and verify individual modules.

None of the operating systems work provided a systematic solution to the problem of

choosing the specifications for the modules in a system. Our specification approach

simplifies the problem of specifying an object by reducing it to the simpler problem of

specifying how the object should behave in the absence of concurrency.

The trend in database systems was quite different. Nested atomic actions were first proposed

by Davies [Davies 73] (he called them spheres of control). Single-level transactions were

suggested in [Eswaren et al. 76] as a way of ensuring consistency of databases in the

presence of concurrency and failures. While Davies discussed atomic actions in very general

terms as a concept for controlling concurrency and failures. Eswaren et al presented a

practical implementation based on two-phase locking.

Meanwhile. work at the University of Newcastle on recovery blocks [Randell 75] investigated

using nested atomic actions as a mechanism for localizing the effects of failures. Recovery

techniques were explored in depth, particularly for building user-defined data

types [Verhofstad 76, Anderson et al. 78]. The problems of concurrency, however, were

addressed only for a limited class of data types (e.g.. resource managers in [Shrivastava &

Banatre 78], and objects with read and write operations in [Best & Randell 81, Best 82]). In

addition, the work on concurrency assumed the use of a locking protocol, and did not

consider other kinds of protocols.

As work on distributed systems began in earnest in the mid-1970's, attention was focused on

atomic actions as a general way of reducing the complexity of coping with concurrency and

failures. Work on distributed databases and file systems contributed many new protocols for

implementing atomicity (see [Bernstein 8 Goodman 81] for a survey), including the novel

techniques developed by Reed [Reed 781. Reed's techniques represent the first detailed

design for an implementation of nested atomic actions.

Since then, several projects (including the Argus project at MIT [Liskov & Scheifler 821. work

at CMU [Schwarz & Spector 82], and the Clouds project at Georgia Tech [Allchin & McKendry

83]) have focused on nested atomic actions as a fundamental concept fcr organizing

distributed systems. Moss [Moss 81], as part of the Argus project, developed a locking.based

implementation of nested atomic actions. The Argus project has also explored incorporating

atomic actions into a programming language. One of the major advantages of this approach

is that a language provides a more flexible notion of data object than is supported by a

database system or a file system This dissertation explores how one might take advantage of
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this flexibility.

As discussed earlier, our work on specifying atomic types generalizes earlier database. related

work on concurrency control (e.g., IPapadimitriou 79]) in three ways: First, we treat both

serializability and recoverability. Second. we explore how to analyze user-specified semantic

information to achieve greater concurrency. Third. we focus on local properties of objects

that ensure atomicty, exploring the conditions under which different kinds of objects can be

combined while still ensuring atomicity.

Most of the theoretical work relevant to atomicity has focused on concurrency control, and

has ignored problems of recovery. A notable exception is some work by Lynch [Lynch 83].

Lynch defines atomicity for nested actions, presents a formalization of the locking

implementation in [Moss 81]. and verifies that the (formalization of the) implementation

ensures atomicity. While Lynch analyzes serializability and recoverability together, she does

not consider data-dependent implementations. nor does she address modularity issues.

A few recent papers on concurrency control [Bernstein et al. 81, Korth 81 a, Beeri el al. 83]

address the problem of extending concurrency control protocols to cope with arbitrary user-

defined operations. This research is kimited in several ways, however. Most important is the

lack of consideration of modularity issues. The focus of the work is on locking protocols, and

the interactions among different kinds of protocols are not considered. In addition, the

papers ignore recovery, and require the operations specified by the user to be functions.

Non.determinism, which is often useful to avoid over-specifying abstractions, is not permitted.

We have not considered how to extend all existing protocols to cope with user-defined

operations. For example, we have not analyzed optimistic protocols [Kung & Robinson 81] in

any detail. The primary reason for this is that optimistic protocols, by their very nature, do not

guarantee internal consistency [Goree 83]. a property that prevents orphans [Nelson 81] from

seeing inconsistent states, Our work on specifying atomic types does not rule out optimistic

implementations, but we have not considered in detail how to build them,

Other protocols that we have not considered include non-two-phase locking protocols (e.g.,

see [Silberschatz & Kedem 80, Korth 81 b]) and protocols for implementing replicated objects

(e.g., see [Gifford 79]) Non-two-phase locking protocols, while useful for achieving greater

concurrency, place strong restrictions on how data can be structured. These restrictions may

be difficult to satisfy in the general class of applications considered here. Replication

techniques, while essential for reliability and availability, are beyond the scope of this

dissertation. Researchers at Cornell [Skeen & Birman 83] and MIT (Herlihy 84] are currently

investigating how to replicate user-defined data objects.

There is some debate over whether atomicity is too strong a requirement, and whether it
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permits adequate performance Fischer [Fischer & Michael 82] has illustrated how greater

concurrency can be achieved for a distributed directory by sacrificing serializability. The

Grapevine system [Birrell et al 82. Schroeder. et al. 84] also violates atomicity in places.

primarily for performance reasons. It remains to be seen whether the performance

advantages of violating atomicity are worth the resulting increase in complexity. and whether

the protocols in [Fischer & Michael 82] and [Birrell et al. 821 can be generalized and applied to

other systems.

Lamport [Lamport 76] has also argued that atomicity is too strong a requirement. As evidence

for this claim, he presents an example of a banking system. with transfer and audit

transactions. Locking implementations of this system do not perform well: audits can run for

a long time, preventing transfers from running. Lamport presents an ad hoc protocol that

ensures that transfers are serializable, and that each audit sees a consistent state of the

database. His protocol permits some, though not all. transfers to run concurrently with an

audit. Protocols developed since the publication of [Lamport 761, including those in [Reed

78], [DuBourdieu 82], and [Chan et al. 82], ensure serializability of all transactions (not just

transfers). Furthermore, the protocols in [DuBourdieu 82, Chan et al. 82] permit all transfers

to run concurrently with an audit, thus providing greater concurrency than Lamports ad hoc

protocol. Unlike Lamport's protocol, these protocols are easily applied in a large class of

similar situations.

A detailed comparison of these and other papers with our work can be found in comments

throughout the dissertation.

1.5 Roadmap

In chapters 2 throough 4 we focus on specifications of atomic types. In Chapter 2, we present

our formal model of computations and specifications. Then, in Chapter 3. we use the model

to define atomicity of activities. Finally, in Chapter 4. we define three "local atomicity

properties:" properties of individual objects that ensure atomicity of activities. The formal

model used in these chapters does not permit activities to be nested. We expect it to be

relatively easy to integrate our results with existing formal work on nested activities (e.g.,

[Lynch 83)). but do not do so in this dissertation.

In chapter 5, we connect the earlier material on specifications with the later material on

impJementations. In this chapter we focus on one of the local atomicity properties defined

earlier, dynamic atomicity, We present an algorithmic description of a novel locking protocol

for implementing dynamic atomic objects and prove that it is correct.

In Chapters 6 and 7, and in Appendix A. we discuss implementations of atomic types. In
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Chaptei 6. we discuss thU problems !hal must be solved by implementations of atomic types

and informally discuss how to extend the material on specifications to cope with nested

activities. Then. we present the approach taken in Argus [Liskov et al. 83] to cope with the

problems involved in implementing atomic types. and illustrate several limitations of this

approach. In Chapter 7 we present an alternative approach that avoids some of the

limitations of the Argus approach The appendix contains several additional examples

illustrating how to implement user-defined atomic types, and further illustrating the

differences in the two approaches presented in Chapters 6 and 7.

Finally, in Chapter 8. we summarize our results and discuss further work.

An index for the technical terms defined in Chapters 2 through 5 is contained in Appendix B.

* -(
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Chapter Two

System Model

In this chapter we describe our model of systems. We begin in Section 2.1 by describing the

components of a system and defining computations. Then. in Section 2 2. we describe how

we model specifications of objects.

2.1 Computations and Observations

We view a system as composed of activities and objects. Activities correspond roughly to

processes or threads of control: they are the active entities in the system, and perform tasks

for users. Objects contain the state of the system: they provide operations by which activities

can examine and modify the system state, and constitute the sole path by which activities can

pass information among themselves. We will typically use the symbols a, b, and c (possibly

subscripted) for activities, and the symbols x, y, and z (again possibly subscripted) for objects.

We use an event-based model of computation. In general, the events in which we are

interested are events that occur at the interface between objects and activities. For the

remainder of this chapter, Chapter 3, and the first part of Chapter 4, we assume that an event

is either the invocation of an operation on an object by an activity, the termination of an

invocation, the commit (successful completion) of an activity at an object, or the abort

(unsuccessful completion) of an activity at an object. A note on terminology: We will use the

term "termination" to mean the end of the execution of a single operation, and the term
"completion" to mean the end of the execution of an entire activity. Each event identifies the

activity and the object that participate in it. If an activity (object) participates in an event, we

say that the event involves the activity (object). In Chapters 4.2 and 4.3 we will augment our

model with additional events that introduce information about timestamps for activities.

For example. suppose x is an object that is intended to behave like a set of integers, with

operations to insert an integer in x, to delete an integer, and to check for membership. If a is

an activity, example events include the following:

-a invokes insert on x with argument 3 (written <insert(3),x,a>)

an invocation of an operation by a on x terminates with result "ok" (written

<okx,a>)

-a invokes member on x with argument 7 (written <member(7),x,a>)

-an invocation of an operation by a on x terminates with result "true" (written
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<tue xa))

a commits at x (written <commit,x,a>)

A computation is most properly viewed as a partial order of events For our purposes it

suffices to restrict our attention to the observable behavior of a system We model an

observation of a system as a finite sequence of events.

For example, if a and b are activities, the following event sequence might be a observation of

a system containing a set object x:

<insert(3),x a>
<ok,x,a>

<member(3),x.b>

<commit,x,a>
<true,x,b>

<commit,x,b>

If h is an event sequence and X is a set of objects, we define hJX ("h restricted to X") to be the

subsequence of h consisting of all events in which objects in X participate. We define hIA

similarly for a set of activities A. If x is an object and a is an activity, we write hIx for hl{x), and

hja for h{a}. We also define commitfed(h) to be the set of activities that commit in h, and

aborted(h) to be the set of activities that abort in h. Finally, we define completed(h) to be the

set of activities that complete (commit or abort) in h; i e., cornpleted(h) = committed(h) U

aborted(h).

We will use the following notation for sequences: The symbol "'" denotes concatenation of

sequences, and the symbol "A" denotes the empty sequence.

We include here two technical lemmas. The first lemma asserts the commutativity of the

restriction operators:

Lemma 2-1: Suppose X and Y are sets of objects, and A and B are sets of

activities. Then

1. (hlX)lY = (hlV)IX = hI(Xf"Y)

2. (hlA)IB = (hIB)IA = hj(AfnB)

3. (hlX)A = (hIA)IX

The second lemma asserts the independence of the restriction operators and the

concatenation operator on sequences:

Lemma 2-2: Suppose S is a set of objects, and h and k are event sequences.

Then

(hk) IS = (hiS) * (kJS)

The same property holds when S is a set of activities.
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Wc will be n11tcisted in those event sequenc-es that are complete in the following sense An

event sequence h is complete if every activity either completes at every object or does nothing

at the object: i.e., for all a and x. either a C conmpeted(hA), or hlalx = A.

Not all event sequences make sense as observations: activities are intended to act like

sequential processes (Concurrency within an activity should be achieved by using nested

activities, our formal analysis of atomicity does not cover nesting.) Thus. we restrict our

attention to event sequences h satisfying the following conditions

An activity must wait until one invocation terminates before invoking another

operation More precisely, let op events(h) be the subsequence of h consisting of
all invocation and termination events: then op.events(hla) must consist of an
alternating sequence of invocation and termination events, beginning with an
invocation event. In addition, an invocation event and the immediately
succeeding termination event must involve the same object.

No activity both commits and aborts in h (at the same or different objects); i.e.,
commit(o) n abort(h) = 0.

An activity cannot commit if it is waiting for an invocation to terminate, and an
activity cannot invoke any operations after it commits. More precisely, if a E
committed(h), then hia consists of an alternating sequence of invocation and
termination events, ending in a termination event, followed by some number of
commit events.

Such "well-formed" event sequences will be called histories: in the remainder of this

disseriation we will be concerned cnly with histories, not with arbitrary event sequences.

These restrictions on activities are intended to model the typical use of atomic activities in

existing systems. An activity executes by invoking operations on objects, receiving results

when the operations terminate. Since we disallow concurrency within an activity, an activity is

permitted at most one pending invocation at any time. After successful termination of all

invocations, an activity can commit at one or more objects.

We make very few restrictions on aborted activities; for example, an activity can continue to

invoke operations after it has aborted. We have two reasons for avoiding additional

restrictions. First, we have no need for them in our analysis. Second. and most important,

additional restrictions might be too strong to model systems with orphans [Nelson 81, Goree

83] and we would like o'ur results to be as generally applicable as possible.

An activity is not allowed to commit at some objects and abort at others: this requirement,

called atomic commitment, can be implemented using a commitment protocol such as two-

phase commit [Gray 78, Lampson 81] or three-phase commit [Skeen 82].

/
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2.2 Specifications
Our specifications take the form of sets of sequences. A set of sequences is like a language.

and can be conveniently described by a machine. In Section 2 2.1 we define slate machines,

which we will use for describing specifications. Then, in Section 2.2.2. we define our model

for specifications of objects. Finally. in Section 2.2.3, we describe how properties of a system

can be inferred from the specifications of its components.

2.2.1 State Machines

Informally. a state machine consists of a collection of states and a collection of transitions.

The transitions can be used to change the state of the machine A step of the machine

consists of a single transition; the machine executes steps one at a time.

We begin with some notation. We use the notation -. to denote a partial function. The

symbol .L denotes "undefined," and will be used to indicate when a partial function is not

defined for a given set of arguments. The symbol -, as mentioned earlier, denotes

concatenation of sequences.

Formally, a state machine M consists of: a state domain SM; an initial state IM C SM; a

collection of transitions TM: and a partial transition function NM: SMX TM -p S

The transition function NM can be extended to finite sequences of transitions in the obvious

way; i.e., if T is a transition and Tseq is a finite sequence of transitions, then:

NM(S,A) = S

NM(S, TseqT) = NM(Nki(S, Tseq), T), if NM(S, Tseq) * -L

J-. otherwise
If Tseq is a sequence of transitions for machine M, we will sometimes use the notation Tseq(S)

for NM(S, Tseq).

If Tseq(S) * -L, we say that Tseq is defined in S. We say that a sequence of transitions Tseq

is accepted by a machine M if Tseq is defined in IM,

We may easily associate a set of sequences with a machine: Given a machine M, define the

language of M (denoted L(M)) to be all finite sequences of operations that are accepted by M.

Our definition of a state machine differs slightly from the usual definition of an

automaton [Ginsburg 75]. Rather than introducing the notion of an accepting state, and then
saying that a sequence Tseq is accepted by a machine M if Tseq(l,,) is an accepting state, we

have found it convenient for the examples that we will present to define acceptance as above.

Not all languages (or even all recursive languages) can be defined by one of our state

°A
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m .hine. however It follows troin our dflilition of acceptance that the language of a state

machine is prehi, clcsed. If a sequence s is in the language of a machine M, then every finite

prefix of ; it also in the language of M.

An example of a description of a machine appears in Figure 2.1: the language of the machine

consists of all finite alternating sequences of as and b's. The transition function is described

by giving, for each transition, a pre.condition describing the set of states in which it is defined.

and a list of state changes caused by the transition.

States: {a, b, i) initially i

Transitions: {a, b)
N(sa):

whens=aors=i

changes s to b

N(s,b):
when s = b or s =i
changes s to a

Figure 2,1:An example machine.

The state set of this machine is (a,bJi. In later examples we wilt describe state components,

giving a name and domain for each component. This indicates that the state set is the

cartesian product of the sets listed; we will refer to the component name of state s as s.name.

In descriptions of machines, we use "when <expr>," where <expr> is a boolean expression, to

describe preconditions for transitions. If the precondition is omitted from the description, it is

assumed to be true. We use "changes <list>," where each item in <list> has the form "(state

component> to <expr>," to describe the relationship between the state before a transition and

the state after the transition. Components not listed are assumed to be unchanged. We will

also use the form "if <expr> then <changes> else <changes>" to describe conditional

changes.

2.2.2 Specifications of Objects

Assuming that all executions of a system are atomic, consistency is preserved if every activity

preserves consistency when executed in isolation with no failures. To check this property we

only need to know how each object and activity behaves in a sequential, failure-free

environment. We have found it convenient to specify an object by first describing the object's

sequential, failure-free behavior, and then describing how the object controls concurrency

and failures to ensure atomicity. We reflect this two-stage process directly in our model: A

specification of an object x consists of two parts, the scuaf specification (denoted x.serial),

?:
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and the belh~iv'o, iI specihcatun (denoted x Trclhut,) The serial specilication of an object is
intended to model the acceptable behavior of the object in a sequential. failure-free

environment, while the behavioral specification describes how the object supports atomicity.

The behavioral specification of an object x describes the acceptable histories involving X. and

consists of a set of complete histories h such that every event in h involves x. In Section
2.2.3 we will describe how the behavioral specifications of objects constrain the behavior of a

system.

It is convenient for the serial specification of an object to be in a slightly different form from its
behavioral specification. Instead of a set of complete histories, we will use a set of operation
sequences. An operation is a pair consisting of an invocation and a termination event. In
addition. an operation identifies the object on which it is executed. An operation does not
identify an activity; we have found no need for the serial specification of an object to vary

depending on which activity executes an operation. and indeed find it more convenient to
describe the serial specification in a way that is independent of activities.

We often speak informally of an "operation" on an object, as in "the insert operation on a set
object." An operation in our formal model is intended to represent a single execution of an
"operation" as used in the informal sense. For example, the following might be an operation

(in the formal sense) on a set object x:
x:(inser(3),ok>

This operation represents an execution of insert on x with argument "3" and result "ok."

A state machine is a convenient tool for describing the serial specification of an object. We
define the transitions of a machine to be the operations on the object, and choose a transition

function such that the language of the machine is the desired set of operation sequences.
For example, the state machine in Figure 2-2 describes the serial specification of a set object
x. A set object provides three operations: insert, delete, and member. Insert adds a specified
item to the set object. Delete removes a specified item from the object. Member determines

whether a specified item is an element of the set object.

The reader may check that the following operation sequence is in the language of the state
machine in Figure 2-2:

x:<insert(3),ok)
x:<member(3),true>

The following sequence, however, is not:
x:<insert(3),ok>

x:(member(3),false>

Another example, the serial specification of a semiqueue object y, appears in Figure 2-3. A
semiqueue object provides two operations: enq and deq. Enq adds a specified item to the

A
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States: sets of items initially 0

Transitions: {x:<insert(i),ok>, x:<delete(i),ok>, x:<member(i),b>: i is an

item and b is a boolean)

N(s,x :insert(i),ok>):

changes s to sUfi)

N(s.x:(delete(i),ok>):

changes s to s-{ i)

N(s,x:(member(i),true>):

when its

N(s,x:<member(i),false>):

when i(s

Figure 2-2:Serial specification of a set object x.

semiqueue object. Deq nondeterministically chooses an item in the semiqueue, deletes it,

and returns it; deq is not defined if the semiqueue is empty. Semiqueues are like multisets,

rather than sets, in that an item can appear more than once. We will return to this example in

later chapters, first precisely describing the concurrency that can be permitted by an object

with this serial specification, and then illustrating how semiqueues can be implemented to

achieve this level of concurrency.

States: multisets of items initially 0

Transitions: {y:<enq(i),ok>, y:<deq,i>: i is an item)

N(s,y:<enq(i),ok>):

changes s to sU{i)

N(s.y:(deq,i>):

when iEs

changes s to s-{i)

Figu re 2-3:Serial specification of a semiqueue object y.

2.2.3 Behavior of a System

The behavior of a system is determined by the behaviors of its components and the

interconnections among the components The specification of a component constrains the

*1 behavior of the component, and indirectly constrains the behavior of the system. In this

section we describe how constraints on the behavior of a system can be inferred from the

specifications of the system's components.
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The behavioral specification of an object x, as described above, is a set of complete histories

involving x. Similarly, we define the behavioral specification of an activity a (denoted

a. behavior) to be a set of complete histories involving a.

We define the behavior of a system .to be all complete histories h such that, for all a and x, hia

E a behavior and hlx E x.behavor. In other words, any history of a system must be permitted

by the specification of each of the system's components. Notice that the behavioral

specification of each component describes how the component constrains the occurrence of

events in which it participates, and places no constraints on the occurrence of other events.

Many papers have been published on models for distributed systems. Recently, Stark [Stark

84] has been studying how to model specifications of modules in distributed and concurrent

systems. He has developed a general framework incorporating notions of composition and

abstraction; in particular, his notion of "observations" is similar to ours, as is his notion of

composition of behaviors for components of a system. However, he does not consider well-

formedness conditions on observations specific to any particular applications; in addition, his

desire to be able to specify and to model eventuality properties forces him to consider infinite

observations, complicating his framework. A framework such as his. however, could be used

to develop a more rigorous formalization of our model and associated results.

I 
.
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Chapter Three

Global Atomicity

In this chapter we develop a formal definition of atomicity. Our goal is to understand how

objects can cooperate to ensure that all complete histories in a systems behavior are atomic.

The definitions in this chapter apply to all histories, however, not just to complete histories In

Chapter 4 we will concentrate on complete histories, and will look at several different ways in

which objects can cooperate to ensure atomicity of complete histories. In Chapter 5 we will

consider prefixes of complete histories, and illustrate how an implementation of an object can

ensure atomicity in an on-line manner.

The remainder of this chapter is divided into two sections. In the first, we develop our

definition of atomicity. Then, in the second, we compare our definition to common definitions

of serializability in the literature, illustrating some limitations of the model used in those

definitions.

3.1 Definitions

Informally, a history of a system is atomic if it is equivalent to a sequential, failure-free

execution of the committed activities in the history. The serial specifications of objects

describe the acceptable behavior of the system in a sequential, failure-free environment.

Since serial specifications are sets of operation sequences, not sets of histories, we need to

establish a correspondence between histories and operation sequences. The paragraph

below provides the necessary definitions.

We say that a history is serial if events for different activities are not interleaved. If h is a serial

history, and all, .... an are the activities in h in the order in which they appear, then we can
write h as hla ,... hlan . We say that a history h is failure-free if aborted(h) = 0. Now, if h is a

serial failure-free history, we define opseq(h) as follows: Opseq(hla). for an activity a, is the

operation sequence obtained from hia by pairing each invocation event with its

corresponding termination event, and discarding commit events and pending invocation

events. Let al ..... a, be the activities in h in the order in which they appear: then opseq(h) is
defined to be opseq(hla,)*....opseq(hlan). Opseq(h). for a serial failure-free history h, is the
operation sequence corresponding to h.

For example, it h is the serial failure-free history

- -.
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(insert(3),x,b>
(ok,x,b>

(commit.x,b>
(member(3),x.a>

(truexa>
<cornmmit x a>

then opseq(h) is the operation sequence
x:(insert(3), ok>

x;(member(3), true)

Similarly, if h is the serial failure-free history
(insert(3),x,a>

(ok,x,a>
<delete(2),x,a>

then opse q(h) is the operation sequence
x:(mnsert(3), ok>

Notice that we do not restrict the domain of opseq to complete histories, we will need to apply
it to incomplete histories in Chapter 5.

We say that two histories h and A are equivalent if every activity performs the same steps in h

as in A: i.e., if hia = Ala for every activity a. We also say that a serial failure-free history h is
acceptable at x if opseq(hir) E x.serial; in other words, if the sequence of operations in h
involving x is permitted by the serial specification of x. A serial failure-free history is

acceptable if it is acceptable at every object x.

For example, suppose that x is an integer set object with a serial specification as given in

Figure 2-2. If h is the serial failure-free history
<insert(3),x,b>

(ok,x,b>
<commit,x,b>

<mnember(3),x,a)
(true,x,a)

(commit,x,a>
then apse q(h) is the operation sequence

x:(insert(3),ok)
x:<member(3),true>

which is in x. serial. Thus, h is acceptable. On thle other hand, if h is the history
(insert(3).x,b>

<ok,x,b>
<commit,x,b>

* <member(3) ,x,a>
<falsexa>

(commit,x,a>

then h is not acceptable, since opseq(h) is not in x. serial.
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If 1i is a history and r is a total order on activities, we define s.r/a(7. 7) to be the serial history
equivalent to h in which activities appear in the order T. If a. ..... an are the activities in h in the
order T. then serial(h, T) = hla -... *hla.

The following lemma asserts the independence of the serializing operator and the restriction

operator.

Lemma 3-1: If h is a history, X is a set of objects and T is a total order on

activities, then serial(hX, T) = serial(h, T)IX.
Proof: Let a, ... an be the activities in h in the order T. The following equalities
show the desired result:

serial(hiX, T) = (hlX)a *'...'(hX)lan

= (hlaI)IX"."(hla)X
= (h1a ' ... "hla,)lX

= serial(h, T)JX

The first line follows from the definition of serial. The second line follows from

Lemma 2-1, and the third line from Lemma 2-2. The fourth line again follows from

the definition of serial.

If T is a total ordering of activities, we then say that a failure-free history h is serializable in the
order T if serial(h, T) is acceptable. We say that a failure-iree history h is serializable if there
exists a total order T on activities such that h is serializable in the order T. In other words, a
failure-free history is serializable if it is equivalent to an acceptable serial history.

For example, if h is the failure-free history
<member(3),x,a>

<insert(3),x,b)

<ok,x,b>
<true,x,a)

(commit,x,b>
<commit,x,a>

and T is a total order in which b precedes a, then h is serializable in the order T: Serial(h,T) is
the history

<insert(3),xb>
<ok,x,b>

(commit,x,b)
<member(3).x.a>

<true,x.a>
<commit,x,a>

a and, as illustrated above, this history is acceptable.

Note that serializability is defined for all failure-free histories, not just those that are complete.
We will consider incomplete histories in Chapter 5.
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Lemma 3 2 describes the rLclalioil between sef i ilizability of a history and svrializanlitY Of Its

subhistories at each object.

Lemma 3-2: If h is a history and T is a total order on activities. hi is serializable in
the order T if and only it. for every object x. hjx is ser ializable in the order T.

Proof: Follows easily from the definitions and Lemma 3- 1.

Now, define perniarien(h) to be hjconiwlied(h) We then say that h is atomic if pernianen(1)

is serializable Thus. we formalize recoverability by throwing away events for non-committed

activities. and requiring that the committed activities be serializable.

For example. if x is an integer set as above and h is the history
(member(3),x,a)
(insert(3).x ,b>

(ok,x,b>
(true,x,a>

<commit,x,b>
<delete(3),x,c>

<ok,x,c>
<commit,x~a>
(abor~xc)

then permanent(h) is the failure- free history
<member(3),x,a>
(insert(3),x ,b>

(ok,x,b>
(true,x,a>

(commit~x,b>
(commit,x,a>

which, as illustrated above, is serializable. Thus, h is atomic.

On the other hand, the history
(member(2),x,a.)

(true,x,a>
<commit.x,a>

is not atomic, since x. serial does not contain the sequence
x:(member(2), true>

The final lemma asserts that permanent commutes with restriction to an object for complete

histories.
Lemma 3-3: If h is a Complete history and x is an object, permanent(h)jx a
permanent (hlr).

Proof: We show that permanent(h)Ix is a subsequence of permanen(hlx); a
similar argument shows that permanent(hlx) is a subsequence of permanent (h)Ix.
Since both histories are subsequences of h, it suffices to show that every event
appearing in permnanent(h)Ir also appears in permanent~hIx). Suppose e is an



event in efnane'(th Let a be the activit, that participates in e By the

definition of restriction, x must also participate in e Thus, e also appears in hik

Since e appears in permanenl(h)I,, a must commit in h: since h is complt-te, and

talb * A a must commit in tlx. Thus. e appears in permanent(hix).

Our definition of atornicity is similar to the definition of serializability in [Papadimitriou 7]

where it is assumed that some underlying recovery mechanism handles aborts of activities.

and the formal analysis considers only events for committed activities It is different in that we

include events for aborted and active activities in our formal model. as we will discuss in

Chapter 5 this facilitates the precise description of online support for recoverabiity. It also

differs in that the definition of serializability is based on user-supplied specifications of the

acceptable serial behavior of objects, rather than a free interpretation as in [Papadimitriou

79] As we will discuss in Section 4.4.1, this enables us to achieve more concurrency

3.2 Limitations of the Scheduler Model

Our model is slightly different from that used in much of the literature on concurrency control,

including those papers that consider user-specified operations (e.g., [Papadimitriou

79. Bernstein et al 81. Korth 81a. Been et al 831). That model, which we will call the

scheduler model, is pictured in Figure 3-1.

Activities Database

Scheduuer

Figu re 3.1 :The scheduler model.

The boxes on the left represent transactions, which submit invocations to the scheduler in the

middle The scheduler determines the order in which to run operations invoked by

transactions, and submits the invocations in that order to the storage module on the right,

which processes the operations and returns their results to the transactions. (The storage

module behaves similarly to the state machines that we use to describe serial specifications.)

The problem addressed in the papers cited above is to analyze the properties of the scheduler

module. The problem that we address is slightly different: we analyze the properties of the

interface represented by the dotted line.

1"

. -



40

TI ilt soicu(flr Model IpOSes linecessary liiltations on the problen as the following

example illustrates. Let z be a first in first-out queue object with a serial specification as

described by the machine in Figure 3-2 A FIFO queue object provides two operations. enq

and oeq t nq appends a specified item to the back of the queue. Deq removes and returns

the item at the front of the queue: if the queue is empty. deq signals empl Now consider the

following history:

<enqueue(1).z.a>
<ok.z.a>

<enqueue(2),z.b>
<ok,zb>

<commitz,a>
<cornmit,z,b>

<dequeue,z,c>
<2,z,c>

<dequeue,z,c>
<1 Zc>

<commit,z,c>

Note that this history is atomic: The equivalent history with a, b, and c in the order b-a-c is

acceptable.

States. sequences of items initially A

Transitions: {z:<enq(i).ok>, z:<deq,i>, z:(deq,empty>: i is an item)

N(sz:<enq(i).ok>):

changes s to s-i

N(s,z:(deqi>):
when s = i's'

changes s to s'

N(sz:<deqempty)):

when s = A

Figure 3-2:Serial specification of a FIFO queue object z

Now consider what happens in the scheduler model This history cannot be produced using

the scheduler model (assuming that the order of termination events corresponds to the

scheduling order). If it were, the state of the storage module after a and b commit would be

1.2 (reading from front to back); then c would have to receive 1 before 2. not 2 before 1

Thus, the scheduler model restricts the histories that can occur, and indeed rules out some

histories that appear "atomic."

The cause of this limitation of the scheduler model is its fixed internal structure. It imposes a

fixed interpretation on all histories, based on the interface between the scheduler and the

2PW
'I.
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Sl(ur d, modlule. In conl;as! we do not iliterpret eve'nts in te ins of some lower level model of

execution Opseq provides a kind of "operational" interpretation. but we use it only for serial

histories. not for all histories.

The scheduler model was intended to be used to study the concurrency coqtrol problem.

which is but one aspect of the more general problem of ensuring atomocity. Our model was

designed to be used to study atoinicity in as general a setting as possible. thus. we needed to

make our model as abstract as possible. This means that we avoid the limitations of the

scheduler model illustrated above, but also means, since our model incorporates less fixed

structure, that it may be more difficult to verify implementations.

I



Chapter Four

Local Atomicity Properties

We are interested in ways of ensuring that all possible histories of a system are atomic At

discussed in Chapter 2. the hisories of a system are constrained hy the specifications of thre

components of the system In this chapter we investigate several properties of individual

objects that ensure atomicity of activities using the objects We call such properties local

atomicity properties More precisely. a local atomicity property is a property P of

specifications of objects such that the following is true If the specification of every object in

system satisfies P. then every history in the system's behavior is atomic.

The problem that must be solved in designing a local atomicity property is to ensure that the

objects agree on at least one serialization order for the committed activities Solving this

problem can be difficult because each object is aware of only the events in which it

participates In other words. each object has purely local information: no object has complete

information about the global computation of the system.

As discussed in Chapter 1, there are many different protocols that ensure agreement among

objects, and these protocols are not always compatible. In this chapter we present three

different local atomicity properties, highlighting the way in which agreement is reached. We

also show that each property is optimal. in a sense to be defined below Our optimality results

imply that no local property is both necessary and sufficient for global atomicity.

The three properties presented in this chapter provide formal characterizations of the

behavior of three different classes of protocols, exemplifcd by the three types of prctocols

(two phase locking, multi-version timestamping, and hybrid methods) dicussed in Chapter 1.

Each of the properties is based on user-supplied specifications of the acceptable serial

behavior of objects. thus permitting implementations that achieve greater concurrency than is

possible when operations are simply characterized as reads and writes

The remainder of this chapter is divided into four sections. In each of the first three we

present a different local atomicity property. In the fourth we conclude with some remarks on

classes of atomic types and related work.

d%
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4.1 Dynamic Atomicity

Two-phase locking protocols [Eswaren et al 76. Bernstein et al 81. Korth 81a) determine a

serialization order for activities dynapmcally. based on the order in which activities invoke

operations and obtain locks on objects Our tirst local atornicity property characterizes the

behavior of protocols, including two-phase locking protocols which are dynamic in this

sense We call this property clynamic alomncfly

Informally stated, the fundamental property of protocols characterized by dynamic atomicity is

the following. If the sequence of operations executed by one committed activity conflicts with

the operations executed by another committed activity, then some of the operations executed

by one of the activities must occur after the other activity has committed Locking protocols

(and all pessimistic protocols) achieve this property by delay'in conflicting operations,

optimistic protocols [Kung & Robinson 81) achieve this property by allowing conflicts to

occur, but abo.rtng conflicting activities to prevent conflicts among committed activities.

The remainder of this section is divided into two subsections. In the first, we present dynamic

atomicity and prove that it is a local atomicity property. In the second. we define optimality,

and show that dynamic atomicity is optimal. In Chapter 5. we will examine dynamic atomicity

in greater detail, describing locking-based implementations and verifying that dynamic

atomicity indeed characterizes their behavior. We will also illustrate the limitations of locking,

showing that there are useful non-locking protocols that are characterized by dynamic

atomicity.

4.1.1 Definition of Dynamic Atomicity

We can describe dynamic atomicity precisely as follows. If h is a history. define precedes(h)

to be the following relation on activities: <ab)Eprecedes(h) if and only if there exists an

operation invoked by b that terminates after a commits. The events need not occur at the

same object The relation precedes(h) captures the concept of an operation being delayed: If

<a.b)(precedes(h), then some operation executed by b was delayed in h until after a

committed.

For example, if x is a set object as before, and h is the history

<insert(2),x,a)

<ok,x,a>
<member(3),x,b>

<false,x,b)
<commit~x,b>

<commit,x,a>

then precedes(h) is the empty relation, while if h is the history

- -" - ... .. .. . tim . . ...-- - --
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(insert(2),x a)
(ok,x,a)

<member(3),x,b>
<commit,x,a)

<false,x,b>
<commit,x,b>

then precedes(h) contains the pair <a,b>. Note that, for any history h, precedes(h) Is a partial

order.

The following lemrna provides the key to our definition of dynamic atomicity

Lemma 4-1: If h is a history and x is an object, then precedes(hix) C precedes(h)

If h is a history of the system, each object has only partial 'nformation about precedes(h)

However, if each object x ensures local serializability in all orders consistent with

precedes(hJx), we are guaranteed global serializability in all orders consistent with

precedes(r) To be precise. we have the following definition of dynamic atomicity We say

that a history h is Cynamic atomic if perrnanent(h) is serializable in every total order consistent

with precedes(h) In other wordc every serial history equivalent to perrnanent(h). with the

activities in an order consistent with precedes(h), must be acceptable.

For example, the following history t is atomic, but not dynamic atomic:

<member(3),x,a>
<insert(3),x,b>

<ok,x,b)
<false,x,a>

<member(3),x,c>
<commit,x,b>

<true,x,c>
<commitx,a>
<commit,x,c>

Permanent(h), which is the same as h. is equivalent to the following acceptable serial history:

<member(3),x,a>
<false,x,a>

<commit,x,a>
<insert(3),x,b>

<ok,x,b)
<commit,x,b>

<member(3),x,c>

<true,x,c>
<commit,x,c>

and thus is serializable in the order a followed by b followed by c (written a-b c). However,

since precedes(h) contains only the single pair bc), permanent(h) must also be serializable

in the orders b a c and b c-a for h to be dynamic atomic. This is not the case; for example, the

serial history

A
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<insert(3).x,b)
(ok,x,b)

<commit,x,b)

(member(3).x,a>
<false,x,a>

(commit.x.a>
<member(3),x,c>

<true~x,c>
<commitx,c)

is not acceptable.

As another example. the history
<member(2),x,a>

(insert(3),x,b)
<ok,x,b>

<false,x,a>
<member(3),x,c>

<commit,x,b)
<truex,c>

<commit,x,a)
<commit,x,c>

is dynamic atomic. Precedes(h) contains the single pair <bc), and permanent(h) is

serializable in the orders a-b-c, b-a-c, and b-c-a.

We say that an object x is dynamic atomic if every history in x.behavior is dynamic atomic.

The following theorem justifies our claim that dynamic atomicity is a local atomicity property:

Theorem 4-2: If every object in a system is dynamic atomic, then every history in

the system's behavior is atomic.

Proof: Suppose every object in a system is dynamic atomic, and let h be a history

of the system. Precedes(h) is a partial order, so let T be a total order of the

activities in h that is consistent with precedes(h). By Lemma 4.1, precedes(hJx) C

precedes(h), so T is also consistent with precedes(hlx) for every x. Since each

object is dynamic atomic, permanent(hlx) is serializable in every total order

consistent with precedes(h); in particular, it is serializable in the order T. By

Lemmas 3-3 and 3-2, permanent(h) is serializable in the order T. Thus, h is atomic.

4.1.2 Optimality

Dynamic atomicity is optimal. there is no other local atomicity property that is strictly more

permissive The paragraphs below state this result precisely and provide a proof. We caution

the reader, however, that "optimal" does not mean "best." As we will see in Section 4.2,

there are other local atomicity properties that are also optimal, yet are different: Each allows

specifications not allowed by the others. Also, the optimality of a local atomicity property

depends on the events in the underlying model: a property that is optimal in one model may
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be SUboptimal in a mod-. with more eveI, if the hk It I i I , J vert, pi f. (It, oUJlt'( 5 v I.Ih us-fUl

information about the execution of the system We will see an example of this Idter Situation

in Section 4 3. With these caveats in mind we nov. present the theorem.

As defined earlier a local atomicity property P is any property P of specifications of obJtjcls

such that the following is true If the specification of every object in a system satisfies P. lien

every history in the system's behavior is atomic We say that a property P is 6 acae', (or muet.

permiis:ive) than a property 0 if every specification that satisfies 0 also satisfies P. in other

words, if 0 implies P. A property P is strictly weaker than a properly 0 if P is weaker than 0.

and 0 is not weaker than P. Note that if P is strictly weaker than 0, then "here exists some

specification that satisfies P and does not satisfy 0 If we equate the level of concurrency

permitted by a property with the behaviors permitted by the property for a given serial

specification, then if P is strictly weaker than 0. P permits more concurrency than 0

We say that a local atomicity property P is optimal if no local atoinicity property is strictly

weaker than P. The following theorem shows that dynamic atomicity is optimal:

Theorem 4-3: For systems using the events described in this section, dynamic

atomicity is optimal.

Proof: The proof proceeds by contradiction: Suppose dynamic atomicity is not

optimal. Then there exists a local atomicity property P that is strictly weaker than

dynamic atomicity. We will exhibit a system composed of objects satisfying P, and

show that there is a non.atomic history of that system, thus contradicting the claim

that P is a local atomicity property.

Since P is more permissive than dynamic atomicity, there must be a specification
S, of an object x such that S, satisfies P but x is not dynamic atomic. In particular,

there must be at least one history h, in x.behavior that is not dynamic atomic; that

is, such that permanent(h.) is not serializable in at least one total order T

consistent with precedes(h,). We will construct an object y whose specification

contains a history h Y involving the committed activities in h,. Now, consider a
system containing x, y, and all the activities in h,. We will choose h so that hY is

serializable only in the order T, and there is a history h of this system such that

hfx = h and hly = hy. Since permanent(h,) is only serializable in the order T, and

permanent(h.) is not serializable in that order, it follows from Lemma 3-2 that

permanent(h) is not serializable. Thus, h is not atomic.

Construction of y:

The construction of y is as follows: Let y have a single operation calied increment.

Y is intended to behave as a counter: Its state is initially zero, and each invocation

of the increment operation increments the state of y and returns the resulting

AJ.
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value. A state machine describing the serial specification of y appears in Figure
4-1.

States: integers initially 0

Transitions: (y:increment.iX: i is an integer)
N(sy:<increment.i)):

wheni=s+l

changes s to s + I

Figure 4- 1 :Serial specification of a counter object y.

The operation sequences in y.serial have the following form:
y:<incrementl>
y:(increment,2>

y:(increment,n>
Let y.behavior be the largest set of histories such that y is dynamic atomic; i.e., let
y.behavior contain all dynamic atomic histories h such that h = hly. Since P is
weaker than dynamic atomicity, S satisfies P.

Choice of hY

Now, let a 1, a2 ... , an be the committed activities in hx in the order T, and let h be

the following serial history in y.behavior:

<increment,y,al >
<1,y,al>

<commit,y,al)
<increment,y,a2>

<2,y,a2>
<commit,y,a2>

<increment,y,an>
<n,y,an>

<commity.an>
Note that h is serializable only in the order T.

y

Construction of h:

It now suffices to show that there exists a history h such that hJr = h, and hly
h . We note several facts about h. and h

1. T is consistent with precedes(h,).

2. h is serial, and activities appear in the order T.

gm-
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3 7 is consistent with precedo.(hV)

4. comnitted(hy) = committed(h).

5. aborted(h Y) = 0.

Now consider the following algorithm, which we will show "merges" h and h to

get a history h satisfying our requirements:
s:= A
sx = h

x

sy:= hY

while commitled(sx) * 0 do

let s 1. s2, and a be such that sx = s I (<commir,x,a>'s2,
and committed(s1) = 0

S:= S'Sl
sx := s2
if syla # A then

let s3 and s4 be such that sy = s3"<commit.v.a>'s4

s : = s * s3 - <commit,y,a>

sy:= s4
end

s s= s <commit,x a>

end
S:= S * Sx * sy

let h = s

It is clear that the algorithm terminates, since each iteration of the loop shortens

sx. In addition, it is obvious that the final value of h contains th-, initial values of h,

and h Y as subsequences, as desired. It remains to be shown that the event

sequence h is a history, that is. that it is well-formed. This we do below.

We//-formedness of h:

We repeat here the conditions on well.formed sequences from Chapter 2:

An activity must wait until one invocation terminates before invoking
another operation. More precisely, let op-events(h) be the subsequence of
h consisting of all invocation and termination events: then op-events(hla)

must consist of an alternating sequence of invocation and termination
events, beginning with an invocation event. In addition, an invocation
event and the immediately succeeding termination event must involve the
same object.

No activity both commits and aborts in h (at the same or different objects);
i.e., commit(h) fl abort(h) = 0,

An activity cannot commit if it is waiting for an invocation to terminate, and
an activity cannot invoke any operations after it commits. More precisely, if
a E coninitted(h), then hla consists of an alternating sequence of

' -..-
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invocation and termination events, ending in a termination event, followed
by some number of commit events.

The second condition follows from the fact that committed(h) = committed(h) U

committed(h Y) and aborted(h) = aborted(h.) U aborted(h y). and from the

previously stated facts about h and h.

We argue the first condition as follows: If b ( connmitted(h) then hlb = hlb, and

the first condition follows from well-formedness of hx. Suppose b E committed(h),

and suppose that the first condition does not hold for hlb; we will derive a

contradiction. Note that if an invocation event is in the subsequence s3 moved

from sy to s, then the corresponding termination event immediately follows it in s3,

and hence in h.

Let hl be the longest prefix of hIb such that hi is an alternating sequence of
invocation and termination events, beginning with an invocation event. Since the

first condition does not hold for hlb, h is longer than hi. We claim that h1 ends in

an invocation event from h,:

Sh i cannot end in an invocation event from h since the corresponding
termination event immediately follows it in /7, implying that h I is not thelongest prefix of alternating invocation and termination events.

* hi cannot end in a termination event from h , since the next event in hlb
would then have to be a termination event: this second termination event
cannot come from h since it immediately follows its corresponding
invocation event, and it cannot come from h,, since otherwise hxIb wouldcontain two adjacent termination events.

* hl cannot end in a termination event from h : If it did, the next event in hlb
would have to be a termination event, and would have to come from h.; the
next-to-last event in hI would have to be the invocation event from h , and
the event preceding it would have to be an invocation event from h ,

contradicting the assumption that h I is an alternating sequence.

Since hi ends in an invocation event from h, the next event in hjb must be an

invocation event from h .

Now consider the iteration of the main loop during which the events for b in h Y are

moved in s3 from sy to i. s already contains h I as a subsequence before s3 is

appended to s, and s2 contains a termination event for b. Let a be the activity

whose commit event is moved from sx to s during that iteration. Since s2 contains

a termination event for b, a termination event for b follows a commit event for a in
h, so (a,b> E precedes(h). But events for b at y appear in s3, and so appear in h

before the commit event for a; by the construction of h Y, (ba> E precedes(hby).

This is a contradiction, since T is consistent with precedes(h,) and precedes(h Y).

a -~--. - __
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Thus, the first condition holds for ft).

Now consider the third condition. Suppose a . connlitted(h) By the first

condition, op.events(hla) consists of an alternating sequence of invocation and

termination events: since h and h are well-formed. it suffices to show that no

events involving a except commit events occur in h after the first commit event for

a. As shown above, when the commit event for a at y is moved to s, only commit

events remain in sx for a. When the first commit event for a at x is moved to s,

either no events remain for the activity in sy, or the events for the activity in sy are

moved to s, on the same iteration of the main loop, before the commit event from

sx is moved to s.

Thus, h is well-formed. Since permanent(h.) is not serializable in the order T, and

perrnanent(hy) is serializable only in the order T, h is not atomic. This is the

desired contradiction, showing that dynamic atomicity is optimal.

The locking protocols of [Bernstein et al. 81] and [Korth 81a] are suboptimal: while sufficient

to ensure atomicity (given their assumptions about the underlying recovery mechanism), they

achieve strictly less concurrency than permitted by dynamic atomicity. We will illustrate this

point with detailed examples in Chapter 5.

4.2 Static Atomicity

Protocols characterized by dynamic atomicity determine a serialization order for activities

based on the dynamics of the execution of activities. In contrast, timestamp protocols (see,

e.g., [Reed 78]) determine a serialization order for activities statically, based on timestamps

chosen when activities start. Our second local atomicity property characterizes the behavior

of protocols which are static in this sense. We call this property static atomicity.

The remainder of this section is divided into three subsections. In the first, we define static

atomicity and prove that it is a local atomicity property. Then, in the second, we show that

static atomicity is optimal. Finally, in the third, we compare static and dynamic atomicity.

4.2.1 Definition of Static Atomicity

Static atomic objects ensure that activities are serializable in a pre-determined order. We

model this behavior as follows, Let ACT be the set of all activities, and let TS be a fixed total

order on ACT. Let h be a history containing initiation, invocation, termination, commit, and

abort events. We say that h is static atomic if permanent(h) is serializable in the order TS.

For example suppose x is a set object as before. Suppose that a and b are activities, and that

?
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TS orders b before a Then the following histoiy htis atomic. but not static atomic:

<member(3),x,a>
<false.x.a>

<commit,x,a>
<inser(3),x,b>

<ok,xb)
<commit,x,b>

Permanent(h) is a serial history and is serializable in the order a b. However, permanent(h) is
not serializable in the order ba. which is the order specified by TS.

As another example, the history

<insert(3),x,a>
<ok,x,a>

<commitx,a>

<member(3),x,b)
<false,x,b>

<commit,x,b>

is static atomic: Permanent(h) is serializable in the order TS.

We say that an object is static atomic if every history permitted by the object's behavioral

specification is static atomic. The following theorem verifies that static atomicity is a local

atomicity property:

Theorem 4-4: If every object in a system is static atomic, then every history in the

system's behavior is atomic.

Proof: Suppose that every object in a system is static atomic, and let h be a history

of the system. By the definition of static atomicity, permanent(hJx) is serializable in

the order TS. By Lemmas 3-3 and 3-2, permanent(h) is aiso serializable in the

order TS, so h is atomic.

4.2.2 Optimality

Static atomicity, like dynamic atomicity, is optimal. The paragraphs below provide a precise

proof of this result. We begin with some definitions, and then prove the theorem.

If h is a history, define the relation commit.order(h) on activities to contain alt pairs <a,b such

that a.b E committed(h) and the first commit event for a in h occurs before the first commit

event for b in h. Note that commit.order(h) is a partial order on activities, and that it totally

orders committed(h).

Theorem 4-5: For systems using the events described in this section, static

atomicity is optimal.

Proof: The proof proceeds by contradiction, along the lines of the proof of

Theorem 4-3. Suppose P is a local atomicity property that is strictly weaker than

static atomicity. We will exhibit a system composed of objects satisfying P, and
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show that there is a non atomic history of that system. thus contradicting the claim

that P is a local atomicity property.

Since P is more permissive than static atomicity. there must be a specification S

of an object x such that S satisfies P but x is not static atomic. In particular, there

must be at least one history h in x.behavtor that is not static atomic: that is such

that perrnanent(h.) is not serializable in the order TS We will construct an object y

whose specification contains a history h involving the committed activities in h

Now, consider a system containing x, y. and all the activities in h,. As in the proof

of Theorem 43, h will be chosen so that it is serializable only in the order TS. andy
there is a history h of this system such that hlx =h, and hly = h . Sincey

permanent(h) is only serializable in the order TS, and perrnanent(h is not

serializable in that order, it follows from Lemma 3.2 that permanent(h) is not

serializable. Thus, h iS not atomic.

Construction of y:

The serial specification of y is the same as in the proof of Theorem 4-3, and is

described by the machine in Figure 4.1. Let y.behavior be the largest set such that

y is static atomic Notice that while the serial specification of y is the same as in

the proof of Theorem 4-3, the behavioral specification is different. Since P is

weaker than static atomicity, S satisfies P.

Choice of h :

Now, let al, a2 ...., an be the activities in committed(h x ) in the order

commit -order(h). Let order: {al?....an) -- [1,2,....n] map the ai to the integers

between 1 and n such that order(ai)<order(aj) if and only if TS orders ai before aj.

Let h be the following seiial history in y. behavior:V

<increment.y,al>
<order(al),y,al>
<commit,y,al>

Oincrementy,a2>

<order(a2),y,a2>
<commit,ya2>

<increment,y,an>
<order(an),y,an>
<commit,y,an>

Note that h is serializable only in the order TS.

Existence of h:
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By the same arguments as in the proof of Theorem 43. there exists a history h

such that hlx = h and hy = h .This gives the desired contradiction.x y

4.2.3 Discussion

Dynamic atomicity and static atomicity are different- each permits operations to be

interleaved in ways that the other does not. This implies that optimal does not mean "best."

but rather that nothing else is strictly better.

Which of these two local atomicity properties is better for a given application will depend on

the patterns of operations invoked by activities. For example, dynamic atomicity works poorly

for long read-only activities such as audits. If dynamic atomicity is implemented using a

locking protocol, a read-only activity, once it has a lock on an object, will cause other

activities that need conflicting locks to wait. Because of the need to wait for locks, long
read-only activities can be quite prone to deadlock. Static atomicity, however, works

reasonably well for long read-only activities. In the implementation proposed by Reed [Reed

7B]. read-only activities are never forced to abort (the analog of deadlock in a locking system).

and are rarely delayed by other activities. On the other hand, static atomicity works poorly for

update activities with old timestamps. For example. in the implementation proposed by Reed,
if an activity attempts to write an object after another activity with a later timestamp has

already read the object. the former activity must be aborted. Using dynamic atomicity, the
writer might be delayed until the reader committed, but would then be able to proceed.

4.3 Hybrid Atomicity

Our final local atomicity property. which we call hybrid atomicity, characterizes the behavior

of protocols that exhibit some of the characteristics of dynamic atomic protocols and some of
the characteristics of static atomic protocols. Examples of such protocols include the mixed

methods of [Bernstein & Goodman 81, Section 5.3.2] and the multi-version scheme proposed
in [DuBourdieu 82] and formally analyzed in [Bernstein & Goodman 83].

Hybrid atomicity is based on two ideas. First, we partition activities into two classes: read-

only activities, and update activities Intuitively. a read-only activity is one that does not

invoke any operations that change the state of an obtect Formally if the serial specification

of an oblect is described by a state machine M, then an operation 0 on the object is read only

if Nm(S.0) = S for all states S in which 0 is defined. An activity is read-only if every operation

executed by the activity is read-only. All other activities are considered to be update activities

As in Reeds implementation of static atomicity, timestamps for read-only activities are chosen

ir I l 1[ I i - "" "ii'[ .. . Illl.



when they beyii executiot Timestamps for update activities. however. are choy,.,n

dynamically as they commit The system ensures that the timestamp order on updates is

consistent with the P'.cedes order, objects can use this property to ensure that updates are

serializable in limestamp order.

When a read only activity with timeslamp i invokes an operation on an object, the answer to

its query IS conputed by including the elfects of all operations executed by committed update

activities with timestamps less than i The system also ensures that update activities that

commit later choose a timestamp greater than t. ensuring that the results returned to the

read-only activity are not invalidated by an update that commits later.

The remainder of this section is divided into three subsections. In the first, we describe the

additional events needed to define hybrid atomicity. In the second. we define hybrid atomicity

and prove that it is a Iccal atomicity property We also claim that hybrid atomicity is optimal.

Finally, in the third, we compare hybrid atomicity to static atomicity and dynamic atomicity.

4.3.1 Additional Events

To define hybrid atomicity precisely. we need to introduce some new events that describe the

timestamps chosen by activities. In addition. we must partition the set of activities into two

subsets: the updates (written a, b. and c), and the read-only activities (written r and s).

Timestamps for updates are chosen when they commit, and an object learns of an update's

timestamp when the update commits at the object. We write the event corresponding to the

commitment of an update a at object x with timestamp t as <commit(t),x.a> Timestamps for

read-only activities are chosen when they start, and an object learns of a read-only activity's

timestamps when the activity invokes an operation on the object. We model this by including

initiation events: Before invoking an operation on an object. a read-only activity must Initiate

at the object to let the object know its timestamp We write the event corresponding to the

initiation of activity r at object x with timestamp t as <initiate(t)x.r>. We use the term

timestamp events to denote the set of all commit events for updates and all initiation events

for read-only activities.

We assume that timestamps are taken from some countable, totally ordered set. in our

examples we will use natural numbers.

In addition to the well-formedness constraints on event sequences stated in Chapter 2, we

have the following constraints:

A read-only activity must initiate at an object before invoking any operations at
the object; i e., for every read-only activity r and every object x, hlrlx begins with
an initiation event.
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Any two ttinestamp eve'nts for distinct activities have distinct tilcstainps

Any two timestamp events for the same activity have the same timestamp

For example. the following sequence is well formed:
(insert(3).x a)

(ok~x a)
<commit(2),x~a>
(initiate(l).xjr)

(member(3),xr>
(talsex,r)

(commit.x~r>
The following sequence h, however, is not:

(inser(3),x~a>
<ok,x,a>

(commit(2),x,a>
(member(3),x~b>

<true~x,b)
(commit(1 ),x,b>
(initiate(2),x,r>

since.r and a use the same timestamp, violating the uniqueness property of timestamps.

We e-xtend the definition of opseq to histories including timestamp events by having opseq
throw away timestamp events in addition to completion events. Acceptability, serializabiity,
and atomicity for histories are then defined as before in terms of opseq.

4.3.2 Definition of Hybrid Atomicity

Let h be a history. We say that h is hybrid atomic if permanent(h) is serializable in timestamp

order,

For example, let x be a set object as before, then the following history h is atomic:
(insert(3),x,a>

(ok.x,a>
(insert(4),x,b>

<ok.x,b>
<commit(1 ),x'a>
<commit(3),x,b>
(initiate(2),x,r)

<member(3),x,r>
(true,x,r)

4 <member(4),x,r>
(truexr5

(commit~x .r)
since it is serializabf' in the order a-b-r. However, it is not hybrid atomic, for the following
reason. Permanent(h) in timestamp order is the history
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(insert(3).x. a>

<ok.x.a>
<commit(1),x,a>
<initiate(2),x,r>

<member(3),x,r>
<true.x,r>

<member(4),x,r>
<true,x.r>

<commitx,r>
(insert(4),x.b>

<ok,x,b>
<commit(3),x.b>

which is not an acceptable serial history.

As another example, the history

(insert(3)x,a>
<ok,x,a>

<insert(4),x,b>
<ok,x,b>

<commit(1),x,a>
<commit(3),x,b>
<initiate(2),x,r>

(member(3),x,r>

<true,x,r>
<member(4),x,r>

<false,x,r>
<commitx,r)

is hybrid atomic.

We say that an object is hybrid atomic if every history permitted by the object's behavioral

specification is hybrid atomic. The following theorem verifies that hybrid atomicity is a local

atomicity property:

Theorem 4-6: If every object in a system is hybrid atomic, then every history of

the system is atomic.

The proof is identical to that for static atomicity.

Hybrid atomicity is optimal; the proof again is by contradiction.

4.3.3 Discussion

At first glance hybrid atomicity might not seem very different from static atomicity: both work

by establishing a single global ordering on activities and ensuring that activities are

serializable in that order. Static atomicity uses a pre determined order, chosen before

activities begin executing. Hybrid atomicity, in contrast, uses an order determined by the

order in which updates commit. This difference is substantial it raises a number of
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interesting implementation issues. and results in some useful properties

One simple way to implement hybrid atomicity is to use dynamic atomicity for update

activities, generating timestamps for them so that the timestamp order on updates is

consistent with the precedes order, and to compute the results of an operation invoked by a

read only activity with timestamp f by including the effects of all committed updates with

timestamps less than t. (See. e g.. [DuBourdieu 82. Bernstein & Goodman 83] for a detailed

description of this approach for simple objects with read and write operations) This simple

implementation. like implementations of static atomicity. permits read only activities to run

without interfering with update activities: by using dynamic atomicity for updates, however,

the problems of static atomicity are avoided.

More complex implementations of hybrid atomicity can allow more concurrency among

update activities than is permitted by dynamic atomicity. Consider. for example, a first-in-first-

out queue obiect z with a serial specification as described by the machine in Figure 3-2.

Hybrid aomicity allows activities to enqueue items in parallel as is illustrated by the following

hybrid atomic history:

<enqueue(1),z,a>
<enqueue(2),z,b>

<ok,z,a>
<ok.zb>

(commit(3),z,b>

(commit(5),z,a)
<dequeue,z,c>

(2,z,c>
<dequeue,z,c>

<1 ,z,c>
<commit(17),z,c>

Dynamic atomicity allows activities to enqueue items in parallel, but the items enqueued

cannot be dequeued by another activity. Consider the following history h:
<enqueue(1),z,a>

<enqueue(2).z,b)
<ok,z,a>
<ok,zb>

<commitzb>
<commit.z,a>

(dequeue,z,c>
<?,z.c>

<commit.z,c>

If c dequeues 1 in place of the "?," then h is not serializable in the order b a-c; if c dequeues

2. then h is not serializable in the order a b-c. Since precedes(h) contains only the pairs (a.c>

and <b.c , h is not dynamic atomic, regardless of which item is dequeued by c. (In Chapter 5,

we will discuss this problem with dynamic atomicity in more detail, and will explain how to

- ,--.-.-----



solve it.)

Hybrid atomicity can allow more concurrency than dynamic atnnocity hecause the objects

have more information, namely the timestanips assigned to update activities as they commit
This does not contradict our optinality results, but rather serves to emphasize their

dependence on the information available to objects (Cf the work in [Kung & Papadimitriou

791 on the "optimality" of concurrency control protocols. and the dependence of "optimality
on the amount of information available to the protocols.)

Lamport fLamport 76) suggested that atomicity is too strong a requirement because it permits
too little concurrency. and presented the example of a banking system to support his claim.
The system contains transfer activities (which move money between two accounts) and audit

activities (which print out the current balances of all accounts). Lamport noted the
performance problems of locking implementations, and suggested that the solution to these

problems is to allow non-atomic executions. He defined a correctness property, namely that
the view of the database seen by an audit must be consistent, and described an
implementation that guarantees this property while permitting more concurrency than a
locking implementation of atomicity. His correctness property does not ensure, however. that
the view seen by an audit bears any relation to the actual state of the database. In addition,

audits under his implementation still interfere with some updates. The implementations of
hybrid atomicity discussed above solve the problem addressed by Lamport, namely the
performance problems with read-only activities under dynamic atomicity. In contrast to
Lamport's solution, hybrid atomicity ensures atomicity; this means that the view seen by an
audit can be related to the updates performed by transfers and to the views seen by other

audits. In addition, hybrid atomicity can be implemented so that audits do not interfere with
any updates, and the techniques can be applied easily to other situations involving read-only

activities.

Our primary motivation for developing hybrid atomicity was to solve the problems of dynamic

atomicity with long read-only activities. In addition, hybrid atomicity permits more
concurrency among update activities than does dynamic atomicity. For example, hybrid

atomicity permits a FIFO queue that allows concurrent use of enn operations. Hybrid
atomicity also appears useful for replication: Herlihy [Herlihy 841 has developed novel

replication techniques. based on hybrid atomicity, for user-defined objects Hybrid alomicity
permits greater freedom in choosing quorums for operations than dynamic atomicity,
providing the potential for increased availability.

I
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4.4 Remarks

In this section we discuss a number of Issues related to the material presented earlier The

section is divided into three subsections In the first, we return to the issue of type specific

concurrency control discussed in Chapter 1. In the second, we discuss the meaning of the

term "atomic type." and explain how the local atomicity properties discussed above serve to

classify different kinds of atomic types Finally. in the third, we discuss the structure of

specifications of objects

4.4.1 Type-specific Concurrency Control

Let us consider the example of a semiqueue object discussed earlier. The serial specification

of a semiqueue object y was given in Figure 2-3. Consider the following history h:

<enq(1 ),y.a>
<enq(2),y,b)

(ok,y,b>
<ok,y,a>

<enq(3),y,a>
(ok,y,a>

<enq(4),y,b)
<ok,y,b>

<commit,y,a>
<commit,y,b>

(deq,y,c>
<3,yc>

<commit,y,c>

Permanent(h) is the same as h, and precedes(h) contains the pairs <a,c> and <b,c>. The

reader may check that permanent(h) is serializable in the orders a-b-c and b-a-c, and thus

that h is dynamic atomic.

Protocols based on a free interpretation of the operations (as used in [Papadimitriou 79])

cannot achieve this kind of concurrency: each operation is assumed to update the object's

state, implying that activities cannot access an object concurrently. For example, two-phase

locking using exclusive locks is shown in [Kung & Papadimitriou 79] to be optimal, given that

no information is available about the semantics of operations. The example above, and

others throughout this dissertation, illustrate how a specification of the acceptable serial

behavior of objects can be used to achieve greater concurrency.

4.4.2 Atomic Types

As discussed in the introduction, a data type consists of a collection of objects with

associated operations We extend properties of objects to types as follows: We say that a

type satisfies a property P if all of its objects satisfy P. For example, if a type's objects are all

dynamic atomic, wp say that the type is dynamic atomic.
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Each of the three local atomicity propeities discussed in this chapter defines a class of
"atomic" types The types within a single class are "compatible." in the sense that as long as

all types in a systcm belong to a single class, activities are guaranteed to be atomic Types in

different classes are not necessarily compatible for example. as illustrated in Chapter 1,

atomicity is not guaranteed if dynamic atomic and static atomic objects are used together

Indeed. a recent paper on concurrency control [Been et al 831 claims to "verily" an

implementation of an atomic type taken from [Weihl & Liskov 82] The type happens to be

dynamic atomic. However, all that is shown in [Been et a! 83] is that every history permitted

by the implementation is atomic. As we illustrated in Chapter 1. if the implementation were

placed in a system containing incompatible types, atomicity could be violated Our results

show that there are many different definitions for the term "atomic type," and that it is

necessary to check that the different types in a system are all compatible.

4.4.3 Structure of Specifications

We separated the serial specification of an ot,..'t from its behavioral specification to reflect

the stages of our informal design process. As the following example illustrates, this

separation also enhances the modularity of a system, by reducing the amount of information

about an object needed by the programmer of an activity.

Consider the plight of the programmer of a single activity who is given a behavioral

specification (and no separate serial specification) for each object and the assurance that

every system history is atomic. The programmer would like to ignore the non serial histories

in each object's specification, since atomicity is supposed to ensure that all histories are
"serializable." Now consider the following serial history in the specification of an object x

which is informally documented as a set of integers:

<insert(3),x,a>
<ok,x,a>

<commit,x,a)
<member(3),xb>

<false,x,b>
<commit,x,b>

Without knowing the local atomicity property satisfied by x. the programmer will find it difficult

to place a reasonable interpretation on this history. If x is static atomic, and TS orders b

before a. then the history makes sense for a set object, since it is serializable in the order TS.

If. however, x is dynamic atomic, the history is rather odd: One would expect b to find 3 in the

set after it has been inserted by a. By separating the serial specification from the behavioral

specification. we avoid the need for the programmer of an activity to understand the details of

the local atomicity property used by objects. Instead, the programmer needs to know only

that every system history is atomic; he or she can then check that an activity preserves

consistency using only the serial specification of each object.
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Chapter Five

Locking

In this chapter we look at how two phase locking protocols can be used to implement

dynamic atomic objects. We begin in Section 5.1 by reviewing the locking protocols in the

literature IBernstein et al. 81, Korth 81a], These protocols are limited in several ways.

particularly in their inability to handle non deterministic operations. Then. in Section 5 2, we

describe a general locking protocol that avoids some, but not all. of the limitations of existing

protocols. Our description covers both synchronization and recovery. Next, in Section 5.3,

we verify that the protocol described in Section 5.2 ensures dynamic atomicity. Finally, in

Section 5.4, we discuss a number of related issues.

5.1 Existing Protocols

The two phase locking protocol of [Eswaren et al. 76] has been extended in [Bernstein et al.

81] and [Korth 81a] to use user-specified information about objects to increase concurrency.

These extended protocols restrict invocations to be total and deterministic: If M is a machine

describing a serial specification, S M is the state domain of M, and TERM is the set of

termination events, then for every invocation event i we can define a total function perform:

SM -- S M X TERM, where perform,(s) = <s',r> and NM(si,r)) = s'. In other words, for every

invocation i, and every state s of M, there exists exactly one termination event r such that

NM(s.i,r>) # _L. In contrast, we permit partial invocations, for which there may be no

termination event in some states, and non-deterministic invocations, for which there may be

more than one termination event in some states. The serial specification of the semiqueue

object in Figure 2-3 illustrates both. The deq invocation is partial (there are states in which no

execution of deq is defined) and non-deterministic (there are states in which more than one

execution of deq is defined).

Like the read-write locking protocol discussed in Chapter 1, these extended protocols

partition the set of operations on an object into classes, and use a different lock mode for

each class Classes are relatively coarse-grained; for example, all operations with the same

invocation event are in the same class.

Informally. we say that a lock mode for one class is compatible with a lock mode for another

class if all operations in the first class "commute" with all operations in the second class.
Two lock modes conf/ict if they are not compatible.

An execution of an operation must first acquire a lock in the mode defined for its class A lock
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can be acquired if no concurrent activity holds a conflicting lock. Locks are released when

activities complete. If an operation is unable to acquire its lock, it waits until conflicting

activities complete.

The proof that this extended protocol ensures dynamic atomicity is relatively simple: since

operations executed by concurrent activities "commute," they can be reordered without

affecting their results or the final state By appropriately reordering operations. we can obtain

a serial execution equivalent to any concurrent execution that obeys the locking rules. This

proof depends, however, on the requirement that operations be total and deterministic. In the

next two sections we define and verify a general locking protocol that permits partial and

non-deterministic operations. The protocols of [Bernstein et al. 81] and [Korth 81a] are

specll cases of our protocol. In our remarks at the end of the chapter we discuss the

differences between our protocol and the protocols of [Bernstein et a! 81, Korth 81a], and

illustrate how their requirements enable the proof to be simplified.

5.2 A General Locking Protocol

Like the locking protocols of [Eswaren et al. 76, Bernstein eta!. 81, Korth 81a], our protocol is

based on the notion of "commutativity" of operations. We begin our description of the

protocol by precisely defining commutativity.

5.2.1 Definition of Commutativity

It is convenient to define commutativity quite generally, so that it covers sequences of

operations, not just individual operations. If M is a state machine, and T and U are two

sequences of transitions of M, we say that T and U commute if, for every state s in which T

and U are both defined, T(U(s)) = U(T(s)) and T(U(s)) * .

The obvious definition of commutativity is simply that T and U commute if, for all states s,

T(U(s)) = U(T(s)). Our definition differs in two respects from this simple definition: First, we

only care about those states in which T and U are both defined. Second, we require that the

state resulting from application of both T and U be defined. The simple definition permits

T(U(s)) = U(T(s)) = 1. As should be clear from the proof in the next section, the more

complex definition is necessary for the protocol to work.

We illustrate our definition of commutatvity with some examples taken from the serial

specification of a set object x in Figure 2-2. If T = x:<insert(i),ok> and U - x:insert(j),ok>,

then T and U commute: Both are defined in all states. and T(U(s)) = U(T(s)) = sU{i0U1j}.

On the other hand, if V = x:(delete(i),ok>, then T and V do not commute: T(V(s)) = sU{i),

while V(T(s)) = s- (i). U and V commute, however, as long as i*j.
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Suppost W = X< imtnber(l)tiut,' W aid V do not commule V and W are both dolined only

in states containing i It s contains . V(W(s)) = V(s) = s {i) However, W(V(s)) = W(s 1i})

. so W and V do not commute. On the other hand. W and T commute If s contains I.

T(W(s)) = W(T(s)) = sUti} = s.

5.2.2 The Protocol

Our description of our protocol is designed to emphasize the general strategy followed by the

protocol, and t highlight the differences with other locking protocols. We do not address in

this chapter the problem of designing an efficient implementation of the protocol for a

particular object. An efficient implementation of this protocol for a "map" data type can be

found in the appendix.

We assume that the serial specification of an object x is given by a state machine SERIAL. We

let the behavioral specification of x consist of all dynamic atomic complete histories. An

implementation of x is described by the state machine LOCK in Figure 5-1. The language of

the machine LOCK consists of a set of event sequences involving x; in the next section we will

show that LOCK is correct in the sense that every complete history in L(LOCK) is dynamic

atomic.

The definition of LOCK uses some new notation: ACT is the set of all activities, INV is the set

of all invocation events, and sequence(S), where S is a set, is the set of atl sequences of

elements of S. Also. the expression mix----y), where m is a (possibly partial) function from X to

Y. xEX, and yEY, denotes that function identical to m except at x. which it maps to y. Recall

that the symbol -p is used to denote a partial function.

The machine LOCK works roughly as follows: Recovery is accomplished using intentions

lists. When a termination event occurs for an activity, the operation (consisting of the

termination event and its corresponding invocation event) is appended to an intentions list for

the activity When an activity commits, the operations on its intentions list are applied to the

current value of ), producing a new current value. Thus, the current value of x reflects all

changes made by committed activities.

Each activity has its own "view" of the current value of x, defined by applying the operations

in the activity's intentions list to x's current value. An activity's view reflects all changes made

by committed activities, plus changes made by the activity itself. A termination event is

allowed to occur for an activity only if the operation (again consisting of the termination event

and its corresponding invocation event) is defined in the activity's view, This is clearly

necessary: If the activity then commits. and all other activities abort, the activity must be

serializable after the other committed activities.

tI
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State Components
cuirrent E S SRIAL initially I SERIAL

pending: ACT - P INV initially -L

intentions. ACT - sequence(T SERIAL) initially A

committed C ACT initially 0
aborted C ACT initially 0

Transitions: events involving x
N LOCK(s, <commit~xa>):

if aEscommitted then no change else changes

s.current to N SERIAL (s.current. s.intentions(a))
scommitted to scommitted U {a)

N LOK(S' <abortxa>):
changes

spending to s pending[a-.Ll
saborted to saborted U (a)

when i is an invocation event

changes spending to s.pending[a--.i]

when
r is a termination event

and s.pending(a) * I
and NSERIAL (scurrent, s.intentions(a) x:(s.pending(a),r)

and x:<s.pending(a),r> commutes with every operation in
s.intentions(b), for every b in
ACT-s.committed-s.aborted-{a)

changes
spending to s.pendingla-.L]
sintentions to s.intentions[a-s.intentions(a)*x:<s.pending(a),r)J

Figure 5- 1 :The machine LOCK.
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In addition, a termination event is allowed to occur for an activity only if tile operation

commutes with all operations executed by concurrent activities This is sufficient to ensure

serializability in all orders consistent with the precedes order

A more precise explanation of LOCK follows The str'!es of LOCK have five components

Current E SSERIAL is the current serial state. derived from the initial serial state by performing

the operations executed by committed activities Pending ACT - INV maps each activity to

its current pending invocation, if any Intentions. ACT -- sequence(TSERAL) maps each

activity to the sequence of operations it has executed Committed C ACT is the set of

committed activities, and aborted C ACT is the set of aborted activities We denote the

components of a state s E SLOCK by s.current. s-pending, s intentions, s committed, and

s.aborted.

When an activity commits for the first time. LOCK updates the current serial state by applying

the activity's intentions list to the state. (Multiple commit events may occur for an activity at

an object: we only want to apply the activity's changes to x's current value once.) When an

activity aborts, the current serial state is not changed.

Each active activity has its own "current view" of the current serial state, defined by applying

the activity's intentions list to the current serial state. Invocation events are recorded in

pending. Termination events can occur for an activity whenever three conditions are

satisfied:

1 The activity has a pending invocation.

2. The resulting operation (obtained by pairing the pending invocation with the
termination event) is defined in the activity's current view.

3. The operation commutes with all operations executed by concurrent activities
(those that have not yet committed or aborted).

When a termination event occurs, the corresponding operation is appended to the intentions

list for the activity, and the record of the pending invocation is discarded.

Note that the "intentions list" for an activity is never discarded. A real implementation of this

protocol would not keep intentions lists for aborted activities, or for committed activities once

the intentions list had been applied to the current value of the object. The intentions lists for

completed activities have no effect on the behavior of the machine; we keep them around

solely for convenience in the proof of correctness in the next section. Similarly, if intentions

lists for completed activities are discarded, there is no need in a real implementation to
remember the sets of committed and aborted activities. Again, we keep them for

convenience. These parts of the state of LOCK are not unlike the "ghost variables" of [Owicki

& Gries 76].
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5.3 Correctness Proof

We wish to prove the following theorem:

Theorem 5-1: Let SERIAL be a machine, and let x be an object with x.sernal =

L(SERIAL), and with x.behavor defined to be the set of all dynamic atomic

complete histories involving x Let LOCK be a machine as defined in the previous

section Then every complete history in L(LOCK) is in x behavior.

We note that there may be histories in x behavior that are not in L(LOCK). i.e.. dynamic

atomicity permits more histories than can be achieved by this locking protocol. We will

discuss the differences between dynamic atomicity and locking-based implementations of it in

Section 5.4.2.

Our proof of the theorem consists of the verification of a collection of invariants relating the

state of LOCK with the histories it accepts. We present our proof in three parts. First, in

Section 5.3.1. we present some technical lemmas about commutativity. Then, in Section

5.3.2. we describe our main invariant. Finally, in Section 5.3.3, we present a series of lemmas

that complete the proof.

5.3.1 Commutativity

We begin with some notation. In a diagram such as:

Si\

an arc leading downward indicates that T(s 1) = sT and hence that T is defined in s1 . If T and

U commute, and we have the diagram:

TU

then by the definition of commutativity we can complete the diagram to:

T U

The first lemma provides an inductive technique for proving that two sequences commute:

Lemma 5-2: Let A and B. for ij E (0,1), be sequences of transitions. If A

commutes with BI for all i and j, then Ao0 A1 commutes with B0 B 1.

Proof: Let s be such that A.A I(s) * _L and BoOBI(s) : 1. We need to show that

,.
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ACA I(Bo-BI(s)) B B I (Ao'A (s)) and that Ao'A 1 (Bo&BI(s)) I _ We have the

following diagram

which by the hypotheses of the lemma can be completed to

'k0 80

Al 1 0

O AO

1 A1

which shows the desired result.

The folluvin c -:rollary extends the lemma to sequences composed of more than two parts

Corollary 5-3: Let A,1 <i<m, and . 1 ,<I<n. be sequences of transitions, and

let A = A,*... Am and 8 = 8 1...B If A, commutes with B1 for all i and j, then A

commutes with B.

The following lemma addresses the situation when we have a collection of more than two

sequences that commute pairwise.

Lemma 5-4: Let S be a state, and let Ti. 1 <i<n, be sequences of transitions such

that:

1. T. is defined in S for all i.

2. T, commutes with T for all i and j, 1 <iKjn.

Let i1.i2. in be a permutation of 1,2.,.n. Then:

1. T1*T *...Tn(S) * i-

2. T,1"T Q*"...°*Tin(S) = T1'T 2"...°*T n(S)

Proof: The proof proceeds by induction on n. The case when n = 1 is trivial The

case when n = 2 follows directly from the definition of commutativity.

For the induction step. assume that the lemma holds for fewer than n sequences
Let I be such that ij=1 (so Ti = T1 ). By the induction hypothesis,

T2 "T3 "...'Tn(S)*., and T,II...T,(0 1)*T(i, # )'...'T,(S) = T2"...'Tn(S).

Now let S1 = T1 * ... .T,(, 1)(S). Since T, *..,(r1I.T(I+ T). T n(S) -,L it follows

'V -
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that S1 m I and T,( ' *Tn is defined in Sl

By Corollary 5.3. T, commutes with T2 "*.. .T ,  T, I T(1 and T i n

Since T, is defined in S. and so is T2'...*Tn . T2"..' T(T 1 (S)) .1. This proves the

first half of the lemma.

Now. since T, is defined in S, and so is T,1* ... T,(i 1) it follows from the definition of

commutaivity that T1  is defined in S1. Therefore T (T(J ) .. Tn(Si)) =

T,( T IT.. "Tn (S1)).

The following equalities show the second half of the lemma:

T I°T2 ° ,*° T , (S) = 2 ... T n(T I(S ) )

= T (T2"T.. T0(S))
= 2Ti °..- i~ n ) T ( ) ' ' i( )

=T(T T T )(Si))
1 ~ ~ l ... in

= T -...*T (T (Si))

i + 1) ... in .

*.J+ ) *Tn (TI(T,* .. *IT, )(S))
T1o+ 1) ' in (Til(, Tio-i)(

= TIT i2* ...*Tin(S).

The second line follows since T1 commutes with T2 ... oTn . The remaining lines

follow from equalities argued above.

5.3.2 On-line Dynamic Atomicity

In this section we define the main invariant to be proved about the histories in L(LOCK). We

actually define two properties: strong dynamic atomicity, and on-line dynamic atomicity.

Let x be an object and M a machine, with x.serial = L(M). We say that a history h is strong

dynamic atomic at x it the following conditions are satisfied:

hJx is dynamic atomic.

* if Ti and T2 are total orders on activities consistent with precedes(hjx), then

NM(IM. opseq(serial(permanenl(hjx., T1))) =I

NM(IM , opseq(serial(permanent(htix), T2))).

In other words, the final state of M resulting from executing the operations in

serial(permanent(hix), T) does not depend on T.

We say that a history h is strong dynamic atomic if it is strong dynamic atomic at all objects X.

The following lemma follows easily from the definitions:

Lemma 5-5: If h is strong dynamic atomic, h is also dynamic atomic.

I 1 i -- I -1I
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In Section 4 3 3 we illustrated a problerm with dynamic atorlmcilt naniel that concurrent

activities can enqUCU items on a FIFO queue, but that the Items cannot be deqUtfued later

We repeat the example history here
<enqueue(1 ).z.a>

<enqueue(2).z.b>
<ok.z,a)
<ok,z,b>

<commit,z,b)
<commit,z,a>

(dequeue,z,c>

<?,z,c>
<commit,z,c>

The problem is that the result returned by the dequeue operation depends on the order in

which a and b are serialized Consider the following prefix t7 of this history:

<enqueue(1),z,a>
<enqueue(2),z,b)

<ok,z,a>
<ok,z,b)

<commit,zb>
<commit,z,a>

This prefix is not strong dynamic atomic: The state of the machine M resulting from serializing

a before b is the sequence 1 2, while the state resulting from serializing b before a is the

sequence 2" 1.

This example is an instance of a general problem with dynamic atomicity. If an

implementation allows a history that is not strong dynamic atomic, it may have difficulty

responding to later invocations. There are two solutions to this problem. One is to use hybrid

atomicity, as discussed in Section 4.3.3: Once activities commit, they can be totally ordered

by their timestamps. The other is to strengthen dynamic atomicity, requiring strong dynamic

atomicity instead. This latter solution results in a loss of concurrency: however, the lost

concurrency does not seem useful, since it leads to situations where an activity invokes an

operation and never gets a response. All implementations of dynamic atomicity that we have

studied produce histories satisfying strong dynamic atomicity.

Our second property. on-line dynamic atomicity. seems fundamental to all pessimistic

implementations of dynamic atomicity. We say that a history h is on line dynamic atomic at x

if. for every set C of activities such that commitred(ijx) C C C ACT - a.orted(hIx), the

following conditions are satisfied:

ihf IC is serializable in every total order consistent with precedes(hlx).

if T I and T2 are total orders consistent with precedes(hjx), then NM(IM ,

opseq(serfal(hjxIC, T 1))) = NM(IM , opseq(seri,,(hjxjC. T2)))

* .
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Pessimistic implementations have the property that once an activity executes an operation, it

can commit at any time without violating dynamic atomicity. Consider a history h and all
extensions of h obtained by appending commit events for some of the active activities in h;

on-line dynamic atornicity simply requires that all these histories be strong dynamic atomic.

We say that a history h is on line dynamic atomic if it is on-line dynamic atomic at all objects x.

The following lemma is immediate:

Lemma 5-6: If h is online dynamic atomic, h is also strong dynamic atomic.

5.3.3 Verification of LOCK

We will now present a series of lemmas describing properties of the machine LOCK and the

histories accepted by it. The final lemma completes the proof of Theorem 5.1.

Recall that commit-order(h) is the partial order on activities containing all pairs <ab) such

that the first commit event for a in h occurs before the first commit event for b.

The first lemma describes a number of simple relationships between a history accepted by

LOCK and the final state of LOCK after accepting the sequence.
Lemm3 5-7: Suppose h is a history in the language of the machine LOCK. Let s

= h(ILOcK). Then:

1. opseq(hla) = s.intentions(a)

2. hla ends in the invocation event (i,x,a) - s.pending(a) = i

3. a E committed(h) - a E s.committed

4. a E aborted(h) - a E s.aborted

5. a * b A a,b ( committed(h) U aborted(h) := s.intentions(a) commutes
with s.intentions(b)

6. Let T be a total order consistent with commit -order(h), and let permanent
= opseq(serial(hcommitted(h), T)). Then s.current = NSERIAL(IsERIAL,
permanent).

Proof: The proof is by induction on the length of h. For illustration we will prove
the fifth property, showing that the sequences of operations executed by two

active activities commute.

The basis case, when h = A, is trivial.

For the induction step, suppose h* A, and assume that the fifth property holds for

4. I~ll' ".. . . L



73

all histories in L(LOCK) that ari ' shorter than ti Then h A k* fur sonl-h Iti ory A in

L(LOCK) and some event e. Since A is shorter than h. the fifth property holds for k,

Note that if a I conmaited(h) U aborted(h). then a I conmitted(k) U aborted(A).

and similarly for b. There are two cases, depending on the type of e.

If e is a commit, abort, or invocation event, then s intentions = A(ILOCK).intentons.

and the result follows from the induction hypothesis.

If e is a termination event (r,) c>, s intentions differs from A(ILOCK).intentions only

at c. If atc and btc, then the result again follows from the induction hypothesis

Suppose without loss of generality that a = c From the definition of LOCK it

follows that s ntenrrons(a) = k(ILOCK).intentiors(a)o<K('LocK) .pending(a),r>, and

by the induction hypothesis k(ILOCK).intentions(a) commutes with s intentions(b).

By Corollary 5-3 and the precondition on e, (A(ILOCK).pending(a),r> commutes with

s intentions(o). The result then follows from Lemma 5.2.

The next lemma shows that the sequence of operations executed by an active activity is

always defin ed in the current serial state.

Lemma 5-8: Suppose h is a history in the language of the machine LOCK. Let s

= h(ILOCK). Then:

a i commtted(h) U abortedh) => s.intentions(a) is defined in

s.current

Proof: The proof proceeds b induction cn the length of h. The basis case, when

h = A, is trivial.

For the induction step suppose h*A, and assume that the lemma holds for all

histories in L(LOCK) that are shorter than h. Then h = koe for some history k in

L(LOCK) and some event e, Since k is shorter than h, the lemma holds for k. Note

that if a 1 committed(h) U aborted(h), then a E comintted() U aborted(k). There

are three cases, depending on the type of e.

!f e is an abort event or an invocation event, then s intentions = (ILOCK).intentions

and s current = k(ILocK).current. The result follows from the induction

hypothesis.

If e is a termination event, the precondition for e ensures that the lemma holds for h

if it holds for k.

If e is a commit event <comnit.x.b). then s intentions = k(ILOCK).intentions. (Note

that b-a, since alcommitted(h) ) If b~committedA) then k(ILO(- ) = h(ILOCK) , and

the result follows from the induction hypothesis, Suppose b~comnmitted(h).
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By the induction hypothesis A (Ilo ).I " C i:(s,) is defined in k(lLO K) Cutrtt

Since bcucniited(k) and h is well-formed. A(ILOCK).mnfenhon.(b) is defined in

P(ILOCK).current. By Lemma 5-7. A(ILOCK).mntentions(b) commutes with

k(ILOCK).intentions(a). By the definition of commutativity, k(ILoK)-intentions(a) iS
defined in NSERiAL(k(ILocK)curwetn. A( 0OCK) inenfuris(b)). which is

h(ILocK ).current.

An obvious corollary of the above two lemmas is that h(l ocK) current is never 1. implying

that hjconmitted(h) is serializable in any order consistent with comnm1t-order(h).

The penultimate lemma shows that the active activities can be serialized in any order starting

in the current serial state, and the resulting final serial stale does not depend on the order.

Lemma 5-9: Let h be a history in the language of the machine LOCK, and let s =

h(ILOCK). Suppose A C ACT-aborted(h)-cornrm 1ted(h), and let T be any total order

of activities. Then NSERIAL(s.Current, opseq(ser,ai(hjA,T))) is defined and does not

depend on T.

Proof: Let al.an be the elements of A. By Lemmas 5.7 and 5-8. opseq(hlai) is

defined in s.current for all i. By Lemma 5-7, opseq(hjai) commutes with opseq(hlal)

for all i and j, 1 _i<j<n. The result follows from Lemma 5-4.

The final kemma proves that every history in LtLOCK) is on-line dynamic atomic. This

completes our proof of Theorem 5-1, since by Lemma 5-6, every history (and hence every

complete history) in L(LOCK) is therefore dynamic atomic.

Lemma 5-10: Suppose h is a history in L(LOCK). Then h is on-line dynamic

atomic.

Proof: Since h = hlx, it suffices to show that h is on-line dynamic atomic at x. We

repeat the conditions for on-line dynamic atomicity here: h is on-line dynamic

atomic at x if, for every set C of activities such tha t. ,mmitted(hilx) C C C ACT

aborted(hlx), the following conditions are satisfied:

- hlxC is serializable in every total order consistent with precedes(hlx).

-if T1 and T2 are total orders consistent with precedes(hlx), then NM(IM-

opseq(seral(hjxjC, T1))) = NM(IM , opseq(seral(hxC, T2))).

The proof proceeds by induction on the length of h. The basis case, when h = A,

is trivial.

For the induction step. suppose h* A. and assume that the lemma holds for all

histories in L(LOCK) that are shorter than h. Then h = ke for some history k in

L(LOCK) and some event e. Since k is shorter than h, the lemma holds for k.



7 5

Let C be such that conimiled(hI) C C C ACT caburted(h), and let T I and I" be

total orders consistent with prececles(h).

First, note that precedles (A)C precedes (h)., committed(k,Ccommitted(h), and

aborted(k)Caborted(ti). Thus, C. T1 and T2 satisfy the conditions of the definition

of on-line dynamic atonicity for A. There are now two cases, depending on the

type of e.

If e is a commit, abort. or invocation event, note that opseq throws away pending

invocation events (those without corresponding termination events) and

completion events. Thus. opseq(setia(hjC,Ti)) = opseq(seria(AIC,T1)). Since the

lemma holds for A, it also holds for h.

Now suppose that e is a termination event (r,x,a). This is the difficult case. Note

that if aqC then hIC = k1C, and the result follows from the induction hypothesis.

Assume that aEC.

Let T ba a total order of the activities in C such that the committed activities in h

appear in commit order(h), a appears next, and the remaining activities appear in

arbitrary order. Note that T is consistent with precedes(h). We will first show that

hjC is serializable in the order T, and then show that for any order U consistent with

precedes(h), NSER iAL (1SERIAL' opseq(seria(hIC, T))) = NSERIAL (ISERIAL'

opseq(serial(tiIC, U))). This suffices to prove the lemma.

Let A = C-commit ted(h). The sequence opseq(sera(hjC,T)) can be written as

opseq(seria(hlcommited(i),commit-order(h))) *opseq(seria(hA,T)). By Lemma

5-7, h(ILOCK).current N SRIAO~SERIAL.

opseq(seria(ilcorimitted(h),commit-order(h)))). By Lemma 5-9,

N SERIAL(h(LCK ).current, opseq(sera(hA,T)) is defined. Thus, hjC is serializable

in the order T.

Now suppose U is consistent with precedes(h). The sequence opseq(seria(hjC,U))

can be written as S1-opseq(hla)-S2, where S1 opseq(seria(hCT,U)), S2

opseq(seria(hIC2,U)), and committed(h)gC1. Note that Si

opseq(seria(AICi,U)), since a(Ci.

Let V be a total order on C I in which the elements of cornm'fed(h) occur first in

commit -order(h). following by the remaining elements of C I in arbitrary order. Let

NS 1 = opseq(seria(k IC1, V)). By the inductive hypothesis, IN SEIAL (ISERIAL' Sl)-

NSERIAL (I SERIAL NS1).
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Now let NS2 = opseq(H,a(AI CI.ciucmlted(i),V)). The sequence NS1 can be

written as opseq(serial(tilcon tt11ired(li),cofiinhtt.order(1))) • NS2. The following

equalities show the desired result:

NSERIAL (ISERIAL .opseq(setal(hJC,U)))

= NSE IAL(IsERIALS1 opseq(hla)°S2)
= N ~lA(Is ILNSI -opseq(hla)-S2)

= NSERIAL(IsERIAL'

opseq(serial(hjconiinitted(h),commit .order(h)))-NS2°opseq(hla).S2)

= NsERIAL(h(l LCK).current,NS2"opseq(hla)°S2)

= NSERIAL(IsERtALOpseq(sena/(hiC,T))).

The last line follows from Lemma 5-9: the others follow from equalities argued

above.

5.4 Remarks

This section consists of two parts. In the first we discuss the protocols in [Bernstein et at.

81, Korth 81a]. In the second we illustrate limitations of locking protocols, showing that there

is potentially useful concurrency permitted by on-line dynamic atomicity that cannot be

achieved by locking.

5.4.1 Existing Protocols Revisited

In this section we discuss the relationship between our general protocol and the locking

protocols in [Bernstein et al 81, Korth 81a]. We argue tnat these other protocols are special

cases of our protocol.

The protocols in [Bernstein et al 81, Korth 81a] are modeled using the scheduler model (see

Figure 3-1). The scheduler determines whether an invocation can be executed; if so, the

invocation is passed to the storage module The storage module executes invocations in the

order in which they are received, changing state and determining the results to be returned.
(We note that the presentations in [Bernstein et al. 81, Korth 81a] do not consider recovery.

The protocols are presented as characterizing the behavior of committed activitits, and the

implementation of recovery is not discussed.)

As discussed above, the protocols in [Bernstein et al. 81, Korth 81a] require invocations to be

total and deterministic. This means that we can treat invocations as functions: If the serial

specification of an object is described by a machine M (with state domain SM), and TERM is

the set of termination events, we can define a function perform :M -. SM X TERM for each

invocation event i. This function is defined by perform,(s) (s',r) such that NM(S,(i,r>) = S'.

" J .. . " " I ... . . . ' . , h. , m . -- I Ilpil I
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storage module is ., and pettu rtm(,) = 5'.1). then the new state ol the storagt, InOdule Pftter

executing, is s' and the result returned is the event

Commutativuty is defined for rnvocal,ons rather than operatlrs. in [Bernstein et u' 81 Korth

81a). Two invocations i and ) commute if ,ctl trm, o pefforn) = fo fT o pelrfof( , wh.l e
denotes composition of functions (If invocations are restricted to be tolal and

deterministic this is equivalent to saying that <.q) commutes with <, r0 for all termination

events q and r ) The scheduler schedules an invocation for an activity if it commutes with all

other invocations already executed by concurrent activities.

Recovery is not covered in [Bernstein et a! 81, Korth 81a]: rather, they rely on unstated

assumptions about the operation of the storage module in handling abort events for activities

The description in the papers and our explanation above, only cover committed activities It

is not clear how one would implement recovery using the scheduler model. the intent
in [Bernstein et a; 81. Korth 81 a] is clearly to use some sort of undo log, but this approach is

complicated by the fact that not all operations have natural inverses (consider, for example.

the insert operation on a set object) One could use intentions lists, but this requires a more

complex notion of what it means for the storage module to "execute" an invocation once it

has been scheduled (Indeed, one would then have a description much closer to our machine

LOCK, and much less like the scheduler model.)

From the above definition of the protocols in [Bernstein et al 81, Korth 81a]. it is easy to show

that every history involving committed activities that is permitted b these protocols is also

permitted by our protocol. The converse, however, is not true. One reason is that we permit

objects, such as semiqueues, with partial non-deterministic invocations. The protocols

in [Bernstein et al 81, Korth 81 a] do not.

The other reason is that our locking protocol, unlike the protocols in [Bernstein et al

81. Korth 81a]. permits information about the results of executing an invocation (i.e.. the

termination event) to be used in scheduling invocations. For example, consider a bank

account object y. with a serial specification described by the machine in Figure 5-2. A bank

account provides three operations: deposit, withdraw, and balance. Deposit adds a specified
amount to the bank account. Withdraw withdraws a specified amount from the bank account

if the current balance is adequate (in which case its result is "ok"): otherwise it leaves the

account unchanged (with a result of "no"). Balance detefmines the current balance of the
bank account. Note that the invocations on y are total and deterministic: For each invocation

and every state s of the machine M in Figure 5.2, there exists exactly one termination event r

such that NM(sir>) * 1. Further note that the invocation wilhdraw(3) does not commute

with the invocation balance (by the definition of "commutativity" for invocations given above)

0A..
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States integers initially 0

Transitions: {y <deposit(i).ok>, y:<withdraw(i),ok>,
y.,withdraw(i),no>. y:<balance.i>: i is an integer)

N(s,y <deposit(i).ok)):

changes s to s+ i

N(s.y:(withdraw(i),ok>):

when s>i

changes s to s-i

N(sy:<withdraw(i),no)):

when s<i

N(s.y:<balance,i)):

when s = i

Figure 5-2:Serial specification of a bank account object y.

Now consider the following history:

(withdraw(3),y,a)

<balance,y,b)
<no,y,a)
(O,y,b>

<commit,y,b>
<commit,y,a)

Since the invocation withdraw(3) does not commute with balance, the protocols in [Bernstein

ef at. 81, Korth 81a] cannot produce this history. However. this history can be produced by

our locking protocol, since the operation y:<withdraw(3),no> commutes with the operation

y:<balance,O.

5.4.2 Limitations of Commutativity-based Protocols

All known two-phase locking protocols are based on some notion of commutativity: activities

are allowed to execute operations concurrently only if the operations "commute." As

discussed in the previous section. previously existing locking protocols are special cases of

our protocol. In this section we illustrate how on-line dynamic atomicity permits more

concurrency than can be achieved by any known locking protocol.

Consider is a bank account object y, with a serial specification as described in Figure 5-2
Two operations of the form y:(deposit(i).ok> and y:<deposit(i),ok> commute, since addition is

commutative. However, two operations of the form y:(withdraw(i),ok> and y:(withdraw(j).ok>

do not commute: Itf the current balance is greater than i and j but less than their sum, then

neither sequence of both operations is defined. Similarly, y:(deposit(i),ok> does not commute

A .4i
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with y <wIthidraw(j).no). The latter operation is defined only in states s less than If s 4 i Is

greater than 1. then y:withdraw(j),no , is not defined in the state resulting from executing
y:(deposit(i),ok> in state s. Also, y:(deposit(i),ok) does not commute with y <withdraw(j).ok>

Consider the following history:

<deposit(10).y,a)
<oky.a>

<commit,y,a>
<withdraw(4),y,b>
<withdraw(3),y,c>

<ok,y,c)

<ok.y,b>
<commit,y,c>

<commit,y,b)

This history is on-line dynamic atomic: It is serializable in the orders a-b-c and a c b, and the
"final serial state" does not depend on the serialization order. However, since

y:<withdraw(4),ok> does not commute with y:(withdraw(3).ok). and b and c execute these

operations concurrently, this history is not permitted by locking protocols.

Similarly, the following sequence is on-line dynamic atomic but is not permitted by locking

protocols:

<deposit(1 ),y,a)
(ok,y,a>

<commit,y,a>
<deposit(1),y,b>

<ok,y,b)
<withdraw(1 ),y,c>

<ok,y,c>
<commit,y,b>
<commit,y,c>

On-line dynamic atomicity allows withdraw operations to be executed concurrently with

deposit operations as long as the deposits are not needed to cover the withdrawals, or the

withdrawals are too large to be affected by the deposits.

Locking implementations of on-line dynamic atomicity achieve less than maximal

concurrency because they do not use two kinds of information available to them. First,
locking protocols are conflict-based: synchronization is based on a pair-wise comparison of

operations executed by concurrent activities. In contrast. on-line dynamic atomicity depends

on the sequences of operations executed by activities. Second. locking protocols are history-
independent: synchronization is independent of past history, in particular the operations

executed by committed activities. In contrast, on-line dynamic atomicity depends on the

entire history: witness the concurrent execution of withdraw operations when enough money

has been deposited by committed activities to cover all of the withdrawals.
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An example of a Ilight reservation list for an airline reservation dalabase is presented

in (Reuter 821. This example is similar to our bank account, and also illustrates tile limitations

of locking.

A similar situation aiises with semiqueue objects (see the serial specification in Figure 2-3).

Deq operations do not always commute with other dpq operations or with enq operations. but

on line dynamic atomicity permits deq S to be executed with eiqs and other otqs as long as

there are enough enqueued items to cover all the deq's.

Locking protocols are clearly useful for many applications, and can be implemented relatively

easily. The examples above illustrate, however, that there may be applications for which

locking protocols are inadequate Later in this dissertation we will present implementations of

the semqueue and the bank account that achieve the kind of concurrency illustrated above.

It remains to be seen whether the increased concurrency is worth the added complexity of the

implementations.
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Chapter Six

Linguistic Support in Argus

In the next two chapters. and in the appendix, we consider how atomic types can be

implemented Our purpose is two-fold. First, we will provide several detailed examples of

implementations of highly concurrent atomic types. Second, we will evaluate alternative

programming language constructs for implementing atomic types.

Our approach in these chapters is informal. We do not provide formal specifications of the

types used in examples, nor do we formally verify the correctness of example

implementations. Taking a formal approach to these issues vAould require developing a

formal specification language and deductive system, and a formal semantics for the language

in which implementations are expressed. Such work is well beyond the scope of this

dissertation.

We limit our scope in these chapters in two ways. First, we focus on implementing dynamic

atomic types. Second, we restrict our attention to pessimistic (as opposed to optimistic [Kung

& Robinson 811) implementations. In our remarks at the end of Chapter 7 we will discuss what

can be concluded about other kinds of atomic types, and about optimistic implementations.

We use Argus [Liskov & Scheifler 82, Liskov et al. 83] as a vehicle for describing

implementations. The mechanisms in Argus support a program structure in which no user

code is executed when activities commit or abort. In this chapter we present the Argus

approach. In Chapter 7 we will introduce extensions to Argus to support an alternative

program structure, and discuss the relative merits of the two approaches.

In our formal analysis of atomicity we restricted our attention to single-level activities. In our

study of implementations, we will permit activities to be nested, and will explore how

implementations can support atomicity for nested activities. We will discuss the extensions

needed to cope with nesting in Section 6.2.

Each of our example implementations ensures on-line dynamic atomicity (see Section 5 3 2).

In addition, all of our examples are implemented usinq clusters [Liskov et al 83]. a data

abstraction mechanism originally developed for CLU [Liskov et a/ 81] The view of types

supported by clusters is slightly different from the class-like view (as in Simula [Dahl et al 70]

and Smalltalk [Robson 811) taken in our formal model. These differences, however, are

unimportant for our purposes; we will discuss them briefly later in this chapter.

The remainder of this chapter is organized as follows: In Section 6.1, we discuss the issues

'JIM- _
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involved it implementing an atomic type. Then. in Section 6.2. we discuss atornicity of nested

activities, and illustrate how the definition of dynamic atomicity applies to nested activities.

Next, in Section 6 3. we discuss the differences between the Argus view of types and the view

taken in our formal model. Finally, in Section 6.4. we discuss the linguistic support provided

by Argus. illustrating its use with a detailed example.

6.1 Issues

Like an implementation of a data type in a sequential language, an implementation of an

atomic type must define a fepTesentation for objects ol the type. and must provide

implementations for each operation of the type in terms of that representation. However, the

implementation of an atomic type must also ensure appropriate synchronization and recovery

for activities using objects of the type. The necessary synchronization and recovery are

defined by the type's specification, and depend on the local atomicity property satisfied by the

type.

To provide synchronization and recovery for activities using objects of an atomic type, it is

necessary to update the representation of objects as activities commit and abort. In Argus,

the programmer relies on the system to update the representation. We call this an implicit

approach. An alternative is for the programmer to supply code that is run when activities

complete to update the representations of objects. We call this an explicit approach. In this

chapter we focus on the implicit approach as supported by Argus We will discuss the explicit

approach and compare the two alternatives in Chapter 7.

In addition to providing appropriate synchronization and recovery for activities using objects

of the type, an implementation of an atomic type must cope with internal concurrency and

failures. An operation invoked by an activity is not executed instantaneously: It may fail after

completing only some of the steps described by its implementation. Operations invoked by

concurrent activities may also run concurrently. Steps must be taken by the implementation

of the type to manage concurrency and failures of operations. (We avoided this issue in our

analysis of LOCK in Chapter 5 by assuming that the transitions of LOCK were instantaneous.)

6.2 Nested Activities

Nested activities, or subactivities. are used for composing activities into larger activities. They

are also a mechanism for limiting the scope of failures, and for introducing concurrency

within an activity.

An activity may contain any number of subactivities, some of which may be performed

sequentially, some concurrently. Atomicity for nested activities means that the internal

.. . .. . . " . . . i 1 1 I . . I kr
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structure of an activity cannot be observed outsde the activity. in other words the activit , as

a whole, including all its nested activities, is serializable with respect to other activities at the

same level If the order in which nested activities appear to be executed does not matter

nested activities can be executed concurrently without any additional synchronization

Nested activities can commit or abort independently, and a nested activity can abort without

forcing its parent activity to abort However, the commit of a nested activity is relative to its

parent Even if a nested activity commits, it will have no effect if its parent later aborts A

top-level activity has no parent: its effects cannot be undone once it has committed (See

[Reed 78. Moss 81, Liskov & Scheifler 82] for more detailed discussions of nested activities)

As discussed in Chapter 1, nested activities form a natural tree structure with eacn activit,

appearing as the parent of its subactivities. We can define the notions of child sibling

ancestor, proper ancestor, descendant, and proper descendant in the usual way As a

technical device, we assume the existence of a single "root" activity which is the parent of all

top-level activities.

The notion of the least common ancestor of two activities and the related notion of ,, t-

are keys in extending dynamic atomicity to cover nested activities If a and t are activities

then the least common ancestor of a and b is the ancestor of both a and b which is a

descendant of all other ancestors common to a and b. For example consider the folJcwng

tree of activities:
d

&Z C e

b

The ancestors common to a and b are c and d; c is the least common ancestor of a and b

Informally, we say that an activity b is visible to an activity a if b has commitled up to the level

of the least common ancestor of a and b. For example. suppose that a and b are subactivities

of the same activity. Then b is visible to a if and only if b has commitled As another example.

consider the following tree of activities:

Ical

a7Nbp
I
b

b is visible to a if and only if b and its parent. bp. have com- ,d If b is not visible to a. then

either b (or one of its ancestors) has aborted, or b (or one ot its ancestors) is still active In

,.!



84

either case, a should not be permitted to "depend on" b's effects, since if b aborts a must

then be aborted as well (Note that the least common ancestor of two toplevel activities is the
"root" activity, thus. one top level activity is visible to another if and only if it has committed.)

We extend our notion of the precedes order as follows: We say that b precedes a in an

execution if b is visible to a when a. or a descendant of a, executes an operation. If t

precedes a, then dynamic atomicity only requires that b be serializable before a. If. however.

a and b are unrelated by the precedes order, then a and b must be erializable in either order.

(On.line dynamic atomicity also requires that the final "serial state" not depend on the

serialization order.)

For example, consider the tree of activities described above, and suppose activities execute

the following steps on a semiqueue object y:

<enq(1 ),y,b)
<ok,y.b>

<commit,y,b>
<deq,ya>
<ty,a>

<commity,bp>

<commity,a>
<commit,y,lca>

In this history b does not precede a. yet a is serializable only after b. Thus, this history is not

dynamic atomic On the other hand. the following history is dynamic atomic:

<enq(1 ),yb>
<ok,y,b>

<commit,y,b)
<deq,y,a>

(commit,ybp)

<1 ,y,a)
<commit,y,a>

<commit,y, ca)

If an activity a is executing an operation on an object, then a's "view" of the object includes

the effects of all activities that are visible to a. The results returned by the operation are

allowed to "depend on" the activitys view, but must be independent of operations executed

by concurrent (not visible) activities.

As liscussed eirlhr nested activities must be serializable at every level: each subactivity

must appear ufivisible to its siblings The following example illustrates this requirement.

Consider the following tree of activities.

I
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al a2 b b2

Suppose that x and y are both semiqueue objects. and consider the following history

(enq(1).x,al)
<ok,x,al>

<enq(2),y,bl>
<ok,y,bI>

(commit,y,bl>
<commit,x,al >

<deq,ya2>
(2,y,a2>

<deq,x,b2>
<1,xb2>

<commit,y,a2>
<commit,x,b2>
<commit,y,a>
<commit,y,b>

<commitx,a>
<commit,x,b>

al and bI enqueue items concurrently at x and y, respectively, and then a2 and b2 dequeue

items at y and x, respectively However, a2 is serializablfe only after b i. while b2 is seriafizable

only after al. This implies that a and b are not serializable, since in any equivalent serial

execution, the activity that executes first will not see the item enqueued by the other activity.

Indeed, the deq operation invoked by a2 should not return the item enqueued by bl until bI is

visible to a2: i.e., until bi and b have committed. At the point that a2's deq operation

terminates in the above history, a? s view of the semiqueue contains no items. Similarly, the

deg operation invoked by b2 should not return the item enqueued by al until aI is visible to

b2.

6.3 Types versus Objects

In our formal model we take a "class-like" (Dahl et al 70. Robson 811 view of oblects We

treat objects as independent entities, each with an associated Collection of operations Argus

takes a different view treating each data type as a "type manager," and associatng

operations with the type rather than with the objects This view is called "cluster-like " after

the name of the module used to implement such types.

The class-like view is more appropriate to distributed systems. in which the objects may be

physically distributed. (For example, guardians in Argus. used to implement distributed
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Objlet,? . ,1k Cl,&ss like We use clulsters fol out iiplen entations to avoid inti oducing issues

such as the distinction between local and remote data ) The clusterlike view is useful for

local data. for example. operations that involve more than one object of the type are more

conveniently expressed The class like view. on the other hand, provides natural support for

hierarchies of types None of these dstinctions, however is important for our examples

Operatons that create new objects are not naturally associated with the objects themselves

rather, they are more naturally a part of the data type. A cluster-like view easily

accommodates creation operations since alt operations are associated with a type A class

like view can be made to accommodate creation operations by assuming that each type is

itself an object, and by associating the creation operations with the type object.

We took the class-like approach in our formal model: We assumed that each type is itself an

object. with operations to create new objects of the type. We model the serial behavior of

creation operations in the following way. We assume that all objects exist for all time. and that

when a system starts execut:ng there is a sufficient supply in the system of each kind of

object. in each possible initial state, to satisfy all creation operations that will ever be

executed. (Formally. we can model this by assuming an infinite number of each kind of

object) A creation operation provided by a type simply selects any object of the type (in the

apprGpriate initial state) that has not been previously selected.

The behavioral specification of a type must then describe how the type copes with

concurrency and failures of activities creating objects We require that an object never be

returned by a creation operation more than once in an execution: since our sequential

specification of creation operations is non-deterministic, this suffices to ensure that the type

satisfies all three local atomicity properties discussed earlier.

6.4 Implementing Atomic Types in Argus

In this section we discuss how atomic types can be implemented in Argus The section is

divided into three parts In the first, we discuss the linguistic support in Argus for

implementing atomic types In the second, we present an example implementation Finally, in

the third, we discuss the strengths and weaknesses of the approach taken in Argus,

6.4.1 Linguistic Support

The mechanisms in Argus have two important characteristics The names of activities are not
accessible to user code. and no user code runs when activities complete The programmer

must rely on the system to update the representations of objects when activities complete,

The linguistic support in Argus consists of several built in atomic types, statements that use



those types, and a mutual exclusion primitive.

The only processing done by the Argus system when an activity completes is to updit , o s

and versions in the representation of each object of a built in atomic type Because of this

the programmer has to include some lower level alomic objects (and ultimately at tli, lowest

level some built in atomic objects) in the representation of a user defined atomic type

However. to implement types that permit highly concurrent use the programmer must inclLJj:

non atomic oblects in addition to atomic objects Some kind of synchronization and recovery

is needed for these objects to cope with internal concurrency and failures, this is the purpose

of the mutual exclusion primitive in Argus. The details of ti.e Argus mechanisms are

described below, a more complete descriptior can be found in [Liskov et al 83]

6.4.1.1 The Type Generator Atomicvariant

Argus provides several builtin atomic types and type generators Of particular interest to us

in our examples is the builtin type generator atomicvariant. The serial specification o1

atomic variants is essentially that of variants in CLU [Liskov et at 81] A variant type

specification consists of a list of tags and associated types. The state of a variant object

consists of a tag and a value, if the current tag of a variant is t. then the type of the current

value of the variant imc 'he type associated with t For each tag t in the type specification, there

are four operations: mahet, changet, is_t, and valuet. Make_t takes one argument of the

type associated with the lag t. and returns a new variant object whose tag is I and whose value

is the argu.nent of the operation Change_t takes two arguments. a variant and an ob. ' of

the type associated with t, and changes the state of the variant so that its tag is t and its value

is the second argument of the operation. Is_t takes one variant argument. and returns true if

and only if the tag of the variant is t. Finally, va/ue_t takes one variant argument. if the tag of

the variant is t then it returns the current value, and otherwise it signals rc.'g tag When

on!y these operations are used. atomic variants are dynamic atomic.

Atomic variants are used in two ways in conjunction with other atomic objects. to make

activities atomic, and -n conjunction with non atomic objects as part of the representation of

a user defined atomic object In the latter case. it may be possible for an activity to gain

access to an atomic variant created by another activity that has aborted or is still active For

example, one activity might create an atomic variant and insert in a (non atomic) array, a

concurrent activity with access to the array could then access the newly created atomic

variant Thus. the ri-.,_ operations, which create new atomic variant objects. require

special consideration We mist define what happens to an atomic variant when its creator

aborts adr whether concurrent activities can use an atomic variant before the object's

ir,-\)r has completcd

.,ir .;es the mPet op'ration to create a new atomic variant object whose tag is t and
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whosc vAue is the aigument to the operation, this state is the objects "base" state. and the

object will continue to exist in this state even if the creating activity aborts. (An alternative is

to have the object "disappear" when its creator aborts; our experience indicates that this

leads to awkward and complex programs.)

Concurrent use of a newly created atomic variant is limited as follows The operations on

atomic variants are clissified ,is readers and writers Synchronizotion of activities using an

atomic variant oblect is done vith read and write locks The usual locking rules apply: Any

number of activities can hold read locks simultaneously, but if one activity holds a write lock

then no other activity can hold a read lock or a write lock. MakefI is _. and value _ are all

readers, and changet is a writer, readers acquire read locks when executed, and writers

acquire write locks By having the activity that creates an atomic varant rtain a read lock, we

ensure that the activity wil not observe concurrent use of the object by other activities.

6.4.1.2 The Tagtest Statement

In an implementation of a user-defined atomic type, it is convenient for an activity to be able to

test whether it would have to wait if it were to invoke a particular operation on an atomic

variant Argus provides the tagtest statement as structured support for testing and setting

locks on atomic variants. The use of the tagtest statement can violate atomicity, since it

permits an activity to observe the presence of concurrent activities. However, it appears to be

necessary for implementing user-defined atomic types using an implicit program structure.

A tagtest statement has the following form: 1

tagtest expression

atagarm { atag-arm }
[ others: body]

end

where

atagarm tag kind name ... [(idn: type-spec) J • body

tagkind tag

J wtag

The expression must evaluate to an atomic variant object. If a read lock could be obtained on

the atomic variant object by the activity executing the statement, then the tag of the object is

matched against the names on the atagarms; if a matching name is found. tfen the tag-kind

on the arm is considered.

I

1We use an extended RNF for syntactic descriptions, with the following conventions I is used to separate

J[ a derOt' an n }, denoesa sequence of zero or more as, and a., denotesa
list of oiw. or more a s s pi ted by commas

4;WA



If the tag-kind is tag Iread lock is obtained on the object and the match is complete If 1lit

tag kind is wtag and the activity can obtain a write lock on the object. then a write lock is

obtained and the match is complete. In all other cases the match is incomplete.

If a complete match is not found. or the activit could not obtain a read lock. then the body in

the others arm, if present, is executed. if there is no others arm. the taglest statement

terminates

When a complete match is found, if a declaration (idn. typespec) appears on the matching

arm. the value component of the object is assigned to the local variable Idn. The body on the

matching arm is then executed, ion. it declared. is defined only in that body. The entire

matching process, including testing and acquisition of locks, is indivisible

6.4.1.3 Mutual Exclusion

Argus provides the built-in ty' , generator mutex and the seize statement to enable

implementations to cope with concurrency among executions of operations. Mutex and

seize can be used to ensure mutual exclusion among regions of code executed by

concurrent operations; thus, for example, implementations can prevent interference among

concurrently executing operations by forcing them to run serially.

Mutex objects are mutable containers for intormation. The type generator mutex has a single

parameter, which is the type of the contained object. Mutex types provide operations to

create and decompose mutex objects. The create operation takes a single argument of the

parameter type and creates a new mutex object containing the argument object. The

getvalue operation extracts and returns the contained object from its mutex argument

following the conventions of Argus, the expression "mutex[tJ$getvaue(m)" is usually

written "m.value".

Mutexes are used primarily to provide mutual exclusion on non-atomic shared data. Argus

provides the seize statement, which allows a sequence of statements to be executed by an

activity while the activity is in exclusive possession of a mutex object The seize statement

has the following form:

seize expression do body end

The expression must evaluate to a mutex object. After evaluating the expression, the

executing activit attempts to gain possession of the resulting mutex object. Only one activity

may have possession of a mutex object at one time: thus. an activity may be forced to wait

when it attempts to gain possession Once the activity gains possession, the body of the

seize statement is executed. Termination of the body causes possession of the mutex object

to be released. It several processes are waiting for possession of the same mutex object,

possession will be awarded fairly, in the sense that as long as no process retains possession

.Ib ,
"
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forever, every waiting process will eventually gain possession.

An implementation of an operation often has a precondition that must be true before the

operation can be executed. Sometimes it is necessary to gain possession of mutex objects

simply to test the precondition: if the precondition is false, the operation must wait It is

important to release possession of mutex obtects while waiting particularly if some other

operation that requires possession of the mutex oblects must be executed for the

precondition to become true Argus provides the pause statement for this purpose. It may

be executed only inside the body of a seize statement. When a process executes pause, the

mutex object seized by the closest enclosing seize statement is released. and the process is

blocked for a system-determined time When the process is unblocked, it regains possession

of the mutex object released by the pause statement, waiting if necessary. and then

continues execution with the statement following the pause.

Activities in Argus never fail while in possession of a mutex object unless the containing

guardian crashes When such a crash occurs, the states of the objects in the guardian are

restored from stable storage. A discussion of the interactions between implementations of

atomic types and stable storage in Argus can be found in IWeihl & Liskov 82]. In this chapter

and the next we will assume that an activity in possession of a mutex object executes the body

of the seize statement correctly. and does not abort until after it has released possession of

the mutex.

6.4.2 Implementation of the Semiqueue Type

Our first example is an implementation of the semiqueue type. The serial specification of a

semiqueue object was presented in Figure 2-3; the corresponding informal specification of

the semiqueue type is presented in Figure 6-1. Semiqueues are similar to queues, except that

enqueued items are not necessarily dequeued in first-in-first-out order. Instead, the deq

operation makes a non-deterministic choice of an item to remove and return.

As noted in Sections 4.4.1 and 5.4.2. semiqueues place few constraints on concurrency. Two

enq operations commute with each other, as do an enq and a deq operation or two deq

operations as long as they involve different items. Thus. many different activities can enq

concurrently or deq concurrently. Furthermore. one activity can enq while another deq's,

provided only that the deq not return the newly enq'd item Dynamic atomicity permits some

additional concurrency as well one activity can eng an item while another deq's the same

item as long as at least one committed activity has enqueued the same item.

An implementation of the semiqueue data type appears in Figure 6-3. The plan of this

implementation is to keep the enqueued items in a regular (non-atomic) array. This array can

be used by concurrent activities, but it is enclosed in a mutex object to control internal
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data type senimquielileni type] is c'cate. enq deq

% A semniqueue is like a bag (or multiset) ot items. semiqueue[item] is dynamic atomic it

% item is dynamic atomic.

create = proc () returns (semiqueue)
0. Returns a new empty semiqueue.

enq = proc (q: semiqueue, i: item)
% Adds i to q

deq = proc (q semiqueue) returns (item)
% It q is non-empty, chooses some element of q, removes it from q. and returns it.

Figu re 6-1 :Informal specification of the data type semiqueue.

concurrency. All modification and reading of the array occurs inside a seize statement on

this containing mutex object. An informal specification of arrays appears in Figure 6-2.

To determine the status of each item in the array, we associate with each item an atomic

object that tells the status of activities that inserted or deleted that item. For thi. purpose we

use the built-in atomic type atomicvariant (described in the previous section).

The semiqueue operations are implemented as follows: The create operation simply creates a

new empty array and places it inside a new mutex object. The enq operation associates a

new atomic variant object with the argument item; this atomic variant will have tag
"enqueued" if the calling activity commits later. and tag "dequeued" if it aborts. Then enq

seizes the mutex and adds the new atomic variant to the contained array.

The deq operation seizes the mutex and then searches the array for an item it can dequeue: If

an atomic variant has tag "enqueiied" and the activity that called deq can get a write lock on

it, the contained item is selected and returned after changing the variant's tag to "dequeued."

If no suitable atomic variant is found, pause is executed (releasing the mutex) and later the

search is retried.

Proper synchronization of activities using a semiqueue is achieved by using the qitems in the

buffer An enq operation need not wait for any other activity to complete. It simply creates a

new qitem and adds it to the array. Of course. it may have to wait for another operation to

release the mutx oblect before adding the qten to the array, but this delay should be

relatively short. A cdeq must wait until some activity that executed an enq operation commits

relative to the activity that invoked deq: thus it searches for a qitem with tag "enqueued" that

it can write.

The qitems are also used to achieve proper recovery for activities using a semiqueue. Since

~'
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data type array[t type] is new. size, empty fetch store. addh. addl. reih, rernl, elements

% Arrays are extensible they can grow and shrink They may be viewed as partial mappings

% thoin inttgers to objects of type t. with file restriction that an array is always defined on a
% connected interval of integers The state of an array a can be modeled with two compo.
% nents an integer a low. called the low bound, and a sequence a elts of objects of type t,
% called the elements An array a is empty if a elts is the empty sequence, and is otherwise
% defined on integers roim a low to a low + Ia eltsl. 1, where 1a eltsl is the lenyth of a elfs. We
% say that an integer i is ini bounds for an array a if a is defined on i If s is a sequence, we
% use s(o) to denote the ith element of s (where s(1) is the first element of s)

new = proc () returns (array[t])
% Returns a new empty array with low bound 1.

size = proc (a- arrayt) returns (int)
% Returns la.eltsl.

empty = proc (a array[t]) returns (bool)
% Returns true if and only if laeltsi = 0.

fetch = proc (a arrayft]. i: int) returns (t) signals (bounds)
% It a is defined on #, then returns a elfs(i-a low + 1), otherwise signals bounds.

store = proc (a array[t]. t int, x: t) signals (bounds)
% It a is defined on i, then changes a elts(m~a low + 1) to x, otherwise signals bounds.

addh = proc (a: array[t], x: t)
% Changes a.ets to a.eltsllx.

addl = proc (a array[t], x: t)
% Changes a.elts to xlIa.elts, and changes a low to a.low-1. Decrementing

% a low keeps the indexes of the previously existing elements the same.

remh = proc (a: array[t) returns (t) signals (bounds)
% Changes a e/ts by removing the last element in the sequence, signals bounds if la.e/tsl 0.

reml = proc (a; array[t]) returns (t) signals (bounds)

% Changes a elts by removing the last element in the sequence, and increments a.low; signals
% bounds if Ja ettsl = 0 Incrementing a low keeps the indexes of the previously existing
% elements the same.

elements = iter (a: array[t]) yields (t)

% Yields the elements of a elts in order from the first to the last.

Figu re 6-2:Informal specification of the data type array.

AIL
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Figure 6-3:1 niplicit implementation of the data type serniqueue

semniqueue =clusterfitem type] is create, enq, deq

qitein atomic variant[enqueued: item,
dequeued: null]

buffer =array[qitem]

rep =mutex[buffer]

create =proc () returns (cvt)

ret urn( rep$create(buffer$newo))

end create

enq = proc (q: cvt. i: item)
qi: qitern: = qitem$makedequeued(nil) 00 dequeued if activity aborts
qitem$changeenqueued(qi, i) % enqueued if activity commits
seize q do

b: buffer:= q.value
buffer$addh(b, qt) % add new qitem to buffer
end

end enq

deq = proc (q: cvt) returns (item)
cleanup(q) % cleanup should be called less frequently
seize q do

b: buffer =q.value

white true do
tor qi. qitem in buffer$elements(b) do

tagtest qi % see if item can be dequeued by this activity
wtag enqueued (v: item): qitem$Changedequeued(qi, nil)

return(i)

edend

pause
end

end
end deq
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the array in the mutex is not atomic, changes to the array made by activities that abort later

are not undone. This means that a deq operation cannot simply remove a qifem from the

array since this change could not be undone if the calling activity later aborted. Instead. a

deq operation changes the state of a qidem; the atomicity of qdiems ensures proper recovery

for this modification. If the calling activity later commits to the top level, the qitem will have

tag "dequeued" permanently. Such qiterns. which are also generated by enq operations

called by activities that later abort, have no effect on later operations Leaving them in the

array wastes storage, so the internal procedure cleanup, called by deq, removes them from

the low end of the array (Of course, a more realistic implementation would call cleanup only

occasionally )

Note that cleanLp cannot run in the calling activity If the calling activity had previously

executed a deq operation that Liu,; is visible to a later operation executed by the same

activity Instead. c,ea- , runs as an inde endent activity This activity will only be able to

lock qiters that are not beiiy used by a : aitiv, activities, thus it will not remove any qitems

that could affect later operations

6.4.3 Remarks

The implementatior of tht, ,, i in the previous section illustrates the general

strategy used to rnpierlent ,J Uit'A On,. atomic type in Argus The representation of a

user-defined atomic type typically con.i.,,is of a mutex oblect containing a non atomic

collection (e g , an array) of atomic oblects (lypically atomic variants) Greater concurrency

among activities using the type is achieved by, introducing atomic oblects only at the lowest

level of the representation.

The implementation in the previous section also illustrates a number of limitations of the

expressive power of the implicit approach supported by Argus

First, the implementation of deq is relatively inefficient since in the worst case it takes time

proportional to the size of the representation of the semiqueue There is no obvious way to

improve the efficiency of this implementation The activity that executes an operation is

implicit. so there is no way to structure the representation of an object based on the activities

that enqueued or dequeued an item.

Second, scheduling of deq operations is accomplished using busy-waiting The system has

very little information on which to base scheduling decisions implying that an activity is likely
to be awakened when it is unable to complete the operation, and also that an activity may be

unlikely to be awakened very soon after the precondition for the operation becomes true.

Finally, the programmer has no control over when the representation of an object gets

.. JIPM.-. . ..
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updated by the system as activities commit and abort In Argus. the system updates built in

atomic objects automatically when activities complete. and does so at arbitrary times. The

tollowing example illustrates the problems that can result Suppose that we want to

implement the semiqueue type with the following additional constraint If there is only one

dequeuing activity at a time and dequeuing activities do not abort then items enqueued by a

single activity should be dequeued in the order in which they were enqueued This constraint

is not satisfied by the iuplementation presented above Suppose that activity A has enqueued

two items. X and Y, in that order. and that activity B starts to execute a deq operation. If A

commits after B has examined the first qitem (containing X) in the representation of the

semiqueue and before B has examined the second, the deq operation will return Y.

It seems impossible to modify the implementation of semiqueue presented above to satisfy

this additional constraint given the semantics of Argus Suppose deq has found an item that

can be dequeued. There is no way to tell whether some other item was enqueued by the

same activity. If we impose the additional restriction on the system that commits and aborts

appear to be instantaneous (so if an activity has committed at one atomicvariant then it has

committed at any others that it touched). then we can modify deq to search backwards

through the representation and to return the last available item that it finds. (Or to search

forwards until it finds one available iter, and then to search backwards from there.) The

resulting implementation satisfies the additional constraint on semiqueues.

This example illustrates that the programmer does not have complete control over all events

that affect the representation of an object. Commit and abort events involving lower-level

objects are controlled by the system, and can occur asynchronously This asynchrony is

visible to the programmer. and can affect the correctness of an implementation.

In the next chapter we will present an alternative approach that avoids the problems

discussed above.

I
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Chapter Seven

Support for an Explicit Approach

In this chapter we discuss an explicit approach for implementing alomic types, in which the

programmer supplies code that is run when activities complete to update the representations

of objects. We begin in Section 7.1 by describing extensions to Argus to support the explicit

approach Then. in Section 7 2. we present an example implementation to illustrate the

approach Finally. in Section 7.3. we compare the implicit and explicit approaches

7.1 Linguistic Support

We present the language constructs as additions to Argus We do not intend this to be a

complete language proposal. rather, it is a vehicle for presenting examples using an explicit

approach. The examples will serve both to illustrate how implementations of atomic types can

be constructed using an explicit approach. and as a basis for comparing the explicit and

implicit approaches.

We extend Argus in three ways. First, we add a new built-in data type, aid. to represent

names of activities Second. we extend the existing module for implementing abstract data

types (the cluster) to provide the implementation of an operation with access to the name of

the activity that invoked it, and to permit easy identification to the system of the code to be run

when activities commit and ab'rt. Third, we add a queuing/signalling mechanism designed

to support efficient synchronization of activities.

An informal specification of the type aid appears in Figure 7-1. Note that no operations are

provided to create new aids. While we will allow an implementation of an atomic type explicit

access to the aid of an activity that invokes one of the type's operations, we follow Argus in

implicitly associating aids with processes Thus. the system automatically creates new aids

whenever an existing activity executes the enter statement to create subactivities or nested

top level activities and associates the new aids with the corresponding processes Also note

that the set of operations provided by the type aid is not complete, we have included only

those that we need for our examples. and expect that others would be needed for general

use

We extend clusters in two ways First, a routine in a cluster that implements an operation of

the defined type can have two Irrface spcifications The external specification

corresponds to the interface specification of the operation in the type's specification The

intera' ) specification differs from the external ,p(c'fication in that it has an additional implicit

W4-.



dita type aid is i ,itfc d nLts!ors prtojIFi iCesturS. top, equal

paren:- proc (a aid) returns (aid) signals (top)
% ;.,,uis a s ,arent s gnais top it a has no parent

acestors i iter (a aid) yields (aid)
O Yeldjt Vie arictet-, S a ' nciudng a itself in toot to-leaf order

pfoperarlct-,furs = iter (a aid) yields (aid)
' Vte,dt the proper ancestors of a (, e . not including a !tself) in root-to leaf order

top proc (a aid) returns (bool)
% ikt.trns true if a is a top level activity. otherwise returns false

c.,ua; = proc (al a2 aid) returns (true)
% keturns true if d I and a, name thre same activity, otherwise returns false.

Figu re 7. 1 irfcrmal specification of the data type aid.

argument. This implicit argument must appear as the first argument in the argument list of the

routine, and has type aid Thus. for example, an operation with external speciftcation

op = proc (x: tl...)...

might have internal specification

op = proc (a: aid, xl: tl,

The identifier used to declare the implicit argument may be chosen at the convenience of the

programmer. When a routine with distinct internal and external specifications is invoked, the

implicit argument is assigned the value of the aid of the invoking activity, and the other

arguments are assigned the values of the corresponding actuals.

Second. a cluster may supply two additiona; operations. called commit and abort. We call

these special operations comple' on operations Their interfaces are as follows:

commit = proc (a aid, x rep) signals (faifure(st ring))

abort = proc (a. aid. x rep) signals (failure(st ring))

These operations are intended to be called by the system (say. with arguments a and x) when

an activity a that used the object represented by x commits or aborts To let the system know

that an activity has used an cblect, the routines inside a cduster may call the special procedure

register, which has the following interface.

register = proc (a aid. x rep) signals (completed)

An invocation of register will si ral compiet,:'d if the activity named by the first argument has

alread committed or aborted Otherwise the invocation will return Sometime after the

activity i complett!, the system will invoke the appropriate completion operation defined in

the cluster (commit it the activity commits. abort if the activity aborts) with arguments a and

Y, If Ihe completion operation signals failure, the system will try again at some future time If a

committing activit, Is a subactivity of another activity, and the invocation of the commit



operation terminates normally, the system will also register lhu activity's parent on the -inv'

object, thus, when the parent completes, the appropriate completion operation will again be

invoked (Similarly, if the parent commits and its commit operation terminates normally the

system will register its parent on the same object, and so on until a top level activity is

reached.)

We will use the mutex type and the seize statement in Argus to cope with internal

concurrency As in the previous chapter. we assume that activities do not fail when in

possession of a mutex object.

Finally we add the built in data type action queue to allow operations to wait for necessary

preconditions. An informal specification of the operations provided by action queue

appears in Figure 72, We also provide the block statement to allow an activity to wait on an

action queue. The block statement has the following form:

block exprl on expr2

The first expression must evaluate to an aid, and the second to an actionqueue The

block statement can appear only within a seize statement When executed, it blocks tie

executing process on the specified action queue on behalf of the specified aid, and

releases the mutex obtect seized by the closest enclosing seize statement.

A process blocked on an ac° on queue is in one of two states. asleep or waing. When a

process executes a bir ,tatement, it is initially asleep. An asleep process on an

action queue changes to the waiting state when some other process executes the notify or

wake operation on the actionqueue. A process in the waiting state attempts to regain

possession of the mutex object that was released when the process blocked, and is

unblocked as soon as it regains possession.

7.2 Implementation of the Semiqueue Type

In this section we present an implementation of the semiqueue type using the linguistic

constructs described in the previous section An informal specification of semique ies

appeared in Figure 6-1 The implementation appears in Figure 7-4 It uses the type generator

log, an informal specification of logs appears in Figure 7-3.

The representation of a semiqueue consists of three components enclosed in a mutey oblect

The components are committed, which represents thu items known to be in the semiqueue

(they have been enqueUed by activities that have committed to the top level, and they have

not been dequeued), logs, which is a collection of summary information about the operations

executed by active activities, and pending. which is an activity queue used for blocking deq

operations that cannot find an item to dequeue The mutex object is used to prevent
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data type actionqueue is ceate notify, wlke empty

% A process can add itself to an action queue by executing the block statement. specifying

" aii aid oil whose befhilf it wishes to wait A process on an action queue is in one of two

% states asleep or vwailnp, A wattng process will be unblocked as soon 's it can regain
% possession of the mutex object ree,.st, when it blocked An actionqueue is empty if
% and only if no processes asleep , wiling are blocked on it

create = proc () returns (action queue)
% Returns a new, empty action queue

notify = proc (q action queue, a aid)
% Changes all asleep processes on q waing on behalf of siblings of a or their descendants to
O% waiting: all top-level activities are considered to be siblings of a top-level activity.

wake = proc (q action queue)
% Changes all asleep processes on q to waiting.

empty = proc (q action queue) returns (bool)
% Ret, -ns false it any process, asleep or wa/ting, is blocked on q, otherwise returns true.

Figure 7-2:lnformal specification of the data type actionqueue.

interference among concurrently executing operations on the same semiqueue by forcing

them.to run serially.

The summary for an activity consists of two parts: enq. which represents the items enqueued

by the activity (or its committed descendants) and not subsequently dequeued: and deq,

which represents the items dequeued by the activity (or its committed descendants), and

contains sufficient information to be able to "undo" the deq operations if the activity aborts.

The implementation of enq works as follows: It finds the summary record for the invoking

activity by calling the internal procedure find-log It then adds the item to be enqueued to the

list of items enqueued by the activity, registers the invoking activity and the semiquee object

(so the appropriate completion operation will be invoked by the system when the activity

completes), and returns The mechanism used for enq operations is like an intentions list: a

record of the operation is kept. but the operation only becomes visible to the activity's siblings

when the activity commits If the activity aborts, the record of the operation is discarded.

The implementation of dep is more complcx It first looks for an item to dequeue by calling

the internal procedure Iinlwist Fineh-. searches the committed items and the intentions

lists for the calling activity and its ancestors. looking for a non-empt), list The lists searched

by find efl;t contain the enqueued items that are visible to the calling activity and that have

not yet been dequeued If no list is found by find_eist, dep blocks on the queue in the

representation of the semiqueue. and tries again when some activity that used the semiqueue

becomes visible to the calling activity If a non-empty list is found by find_elist, deq removes

'i' I I .. ..1 .. .. ... .. ... " 'il T , - . .. .
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data type log[t: type) is create, fetch, store, delete, ancestors

% A iog[tl object maps aids to I objects.

create = proc () returns (log[t])
% Returns a new, empty log.

fetch = proc (1: log[t], a: aid) returns (t) signals (not_found)
% Returns the f object associated with a in I. signalling not-found if a is not bound in I.

store = proc (: log[t], a: aid, x: t)
% Binds a to x in 1.

delete = proc (1: log[t], a: aid)
% Unbinds a in I.

root2leaf = iter (1: log[t], a: aid) yields (aid, t)
% Yields each ancesto- o a (including a itself) with its associated binding, if it is bound in I;

% items are yieldeC in oot-to-leaf order.

leaf2root = iter (1: log[t]. a: aid) yields (aid, t)
% Yields each ancestor of a (including a itself) with its associated binding, if it is bound in I;

% items are yielded in leaf-to-root order.

Figure 7.3:lnformal specification of the data type log.

the first item from the list and creates an undo record containing that item and the list. Next, if

the item dequeued was not enqueued by the invoking activity (or one of its committed

descendants), the undo record is added to the summary information for the activity. (If the

same activity enqueued and then dequeued an item, there is no need to remember either

operation; the net effect on the semiqueue will be the same regardless of whether the activity

commits or aborts.) Finally, the invoking activity and the semiqueue are registered, and the

item to be dequeued is returned.

The mechanism used for deq operations is like an undo log: If the invoking activity aborts, the

information in the undo records is used to put the item back in the list from which it was

removed, effectively "undoing" the operation.

The abort routine is simple: It undoes the deq operations executed by the aborting activity

and its committed descendants by putting the dequeued items back in the lists from which

they were removed, and then discards the summary (including the intentions list of enqueued

items) for the aborting activity. Finally, if any deq operations were undone, the abort routine

, unblocks any pending deq operations, since the items that were returned from the aborting

activity's undo list might now be visible to the pending operations.

The commit routine merges the summary for the committing activity with that for its parent.

The activity's list of enqueued items is simply appended to its parent's list. The undo

/ &
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Figure 7-4:Explicit implementation of the data type semiqueue.

semiqueue = cluster [itemr: type] is create, enq, deq

undo =struct[i: item, % item returned by deq op.
deleted-from: elist] % elist it was removed from.

elist =array[item] % intentions list for enq's. and list
% of fully committed enq'd items.

duist =array[undo] % undo log for deq's.

summary = struct[enq: elist, % summary of operations executed by
aq aclonueudeq: dlist] % a single activity.

components = st ruct[comnitted: elist, % committed items in semniqueue.
logs: log [summary], % summaries for all activities.
pending: aqj % pending deq ops.

rep = mutex [compornents]

% rep invariant:
" for each activity a. and for each undo record u in rep. value. logs(aI.deq, either
" u.detetedjfrom = rep. value. committed, or there exists a proper ancestor a' of a such
" that u.deletedjrom = rep.value.logsla'].enq

create = proc () returns (ovt)
retu rn(rep$create(components$committed. elist~newo,

logs: log[summaryl$createo,
pending: aq$create0)))

end create

% external spec: enq = proc (q: cvt, i: item)
enq = proc(a: aid, q: cvt, i: item)

seize q do
s: summary := findjlog(q.value.logs. a)
elist$addh(s.enq, i)
register(a, q)
end

end enq
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Figure 7-4. (continued)

% external spec: deci =Proc (q: cvt) returns (item)
deq = proc (a: aid, q: cvt) returns (item)

seize q do
while true do

visible: elist: find..elost(q.value.a)
except when none, block a on q.value.pending % pause

continue % and retry
end

u: undo : = undo$(i: elist$reml(visible). deletedjfrom: visible)
s: summary: = findlog(q.value.logs, a)
it u.deletedjfrom ~ s.enq

then dlist$addh(s.deq, u) end% else operations cancel each other
register~a, q)
retu rn(u .i)
end

end
end deq

% gets the summary for a from logs.
find~log = proc (logs: log~summary], a: aid) returns (summary)

retu rn(logs~aJ)
except when not-found: s: summary : = summaryS(enq: elist~newo,

deq: dlist~newo)
logs[a] a
return(s)

end
end find log

" finds a non-empty elist visible to a (i.e., either committed, or belonging to an ancestor
" of a). If q.committed is non-empty it is returned. Signals if no non-empty elist is found.
find-elist =proc (c: components, a: aid) ret urns (elist) signals (none)

it elist$size(c.committed) - =0 then retu rn(c.committed) end
for anc: aid. s: summary in log[summary]$root2teaf(c.logs, a) do

if elist$size(s.enq) - =0 then retu rn(s enq) end
end

signal none
end find elist
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Figure 7-4: (continued)

commit proc (a: aid, q: rep) signals (failure(st ring))
seize q do

qv: components:= q.value
1: iog~summaryl : = qv.logs
as: summary:= [[a]

except when not~found: return end
log [summaryj$delete(l, a)
ps: summary := find jog(l, aid$parent(a))

except when top: merge..enq(qv.committedl, as.enq)
if elist$size(as.enq) - = 0 then aq$wake(qv.pending) end
return

end
merge..enq(ps.enq, as.enq)
rnergedeq(ps, as-deq)
If elist~size(as.enq) - = 0 then aq$notif y(qv. pending, a) end
end

end commit

abort = proc (a: aid, q: rep) signals (failure(st ring))
seize q do

as: sumnmary := q.value.logsfa]
except when notfound: return end

log [summary]$delete(q.vaiu.0g, a)
for u: undo in diist~elements(as.deq) do

elistladdh(u.dleleted.from, uW)
end

if d~list$size(as.deq) - = 0 then aq~wake(q.value.pending) end
end

end abort

% appends (in order) items in from onto to.
merge.enq a proc (to: elist, from: elist)

for i: item in elist$elements(from) do
eiist$addh(to, Q)
end

end merge..enq
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Figure 7-4: (continued)

% appends (in order) undos in from onto to.deq. ignoring those undoS u
% with u.deleted trom = to enq (such deqs have committed to the
% level of the corresponding enq, so both operations can be forgotten).
merge deq = proc (to: summary. from: duist)

f or u: undo in diist~elements(f rom) do
if udeloted-from - = to.enq

then dlist$addh(to-deq, u)
end

end
end merge _deq

end semiqueue
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information for deq operations is similarly appended, except that records for items enqueued

by the parent are discarded from the undo log. (The operations effectively cancel each other

in this case.) In the case of a committing top-level activity, the tentatively enqueued items are
appended to the list of committed items. and the undo log is discarded. Finally, if any items

enqueued by the committing activity were added to its parent's intentions list. the commit
routine unblocks pending deq operations invoked by activities to which the committing

activity is now visible.

When a blocked deq operation is unblocked, there is no guarantee that it will be able to

execute. For example, there may be several pending deq operations unblocked by the same
completing activity, but it is possible that only one will actually be able to dequeue an item.
Thus, the deq operation loops after blocking, and may block again if it still finds no items

available for it to dequeue.

7.3 Remarks

In this section we discuss the relative merits of the implicit and explicit approaches. We begin
in Section 7.3.1 by summarizing the conclusions to be drawn from the examples, including
those presented in the appendix. Next, in Section 7.3.2, we compare the two approaches.
Finaliy, in Section 7.3.3, we discuss related work.

7.3.1 Summary of Examples

First, in Section 7.3.1.1 we discuss the two implementations of the semiqueue type. Next, we

summarize the conclusions to be drawn from the three examples in the appendix. Two of
those examples are implementations of the map type, one using an implicit approach and the
other an explicit approach. The third is an implementation of the bank..account type. We
discuss the implementations of map in Section 7.3.1.2, and the implementation of
bank-account in Section 7.3.1.3.

7.3.1.1 Implementations of the Semlqueue Type

The explicit implementation of the semiqueue type has a number of advantages over the
implicit implementation. First, the implementation of the deq operation in the explicit
implementation is more efficient than in the implicit implementation. In the implicit
implementation the deq operation takes time proportional to the size of the representation of
its semiqueue argument (in the worst case); in the explicit implementation the deq operation

takes time proportional to the number of ancestors of the calling activity (again in the worst
case). This difference arises because the explicit implementation has access to the names of
invoking activities.

/



107

Second, the semiqueue type cannot be implemented in Argus to satisfy additional properties

like the restriction that items enqueued by a single activity be dequeued in the order in which

they are enqueued: the explicit mechanism presented here does not suffer from this limitation.

The problem with Argus is that the system does not update the states of all built in atomic

objects instantaneously, so it is possible for one activity to see that another activity has

committed at one built-in object. and later to see that the activity still holds a lock on another

built-in object. It is possible to change the semantics of Argus to avoid this problem

However, it might be expensive for the system to guarantee that commits and aborts appear

instantaneous in a distributed system. In addition, even with this additional guarantee. it can

be difficult to implement the "fifo"-Iike restriction on semiqueues.

Third, the implicit implementation of the semiqueue type uses busy.waiting to schedule dec1

operations, while the explicit implementation uses a signalling mechanism. The signalling

mechanism can be significantly more efficient than busy-waiting: In the implicit

implementation, the system has very little information on which to base scheduling decisions,

and is quite likely to awaken a pending operation when the operation cannot proceed, and not

to awaken a pending operation when in fact it can proceed. In the explicit implementation, a

pending deq operation is awakened only if an activity that enqueued some items becomes

visible to the activity waiting to deq, or if an activity that dequeued some items aborts, making

those items available for other activities to dequeue.

Finally, the implicit implementation requires a "cleanup" routine to keep the size of the

representation of a semiqueue from increasing forever; the explicit implementation

accomplishes the same effect with the user-supplied completion operations, and does it more

efficiently since it is possible to tell from the arguments to the completion operation exactly

what information needs to be deleted from the representation and when it needs to be

deleted.

7.3.1.2 Implementations of the Map Type

Maps are like associative memories, binding uids to other objects. A map provides three

operations: insert, which adds a new binding to the map; delete, which deletes a binding from

the map; and lookup, which retrieves the binding for a specified uid from the map.

Both implementations of the map type in the appendix use a two-phase locking protocol,

based on the state machine LOCK described in Chapter 5. They illustrate how a locking

protocol that chooses locks based on the results of operations as well as their arguments can

be implemented.

The two implementations provide the same level of concurrency. In addition, they use similar

representations for maps: both represent a map using a non-atomic table protected by a

="ll'L',-- - §TZ...... -. r- ,,:,L ? ..
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mutex: tables are like maps. except that they are not atomic. The implementations differ in

several ways, however.

First, the implicit implementation requires an internal "cleanup" routine (like the cleanup
routine in the implicit implementation of semiqueues) to keep the representation from growing

too large. The explicit implementation uses the completion operations to update the
representation of a map as activities complete. avoiding this kind of periodic "garbage

collection" of the representation.

Second, the implicit implementation uses busy-waiting for scheduling, while the explicit
implementation uses actionqueues. Separate queues are used for each uid, with the result

that a pending operation on a uid will be awakened only if an activity that used the same uid
aborts cr becomes visible to the activity that invoked the operation (i.e., commits to their least
common ancestor). A queue is stored for a uid only if an operation on the uid that was

invoked by an active activity was forced to wait. If conflicts causing operations to wait are
relatively rare, then the number of queues stored should be small.

Third, the explicit implementation keeps track explicitly of the uids used by an activity; this
effect is achieved in the implicit implementation by the fact that the system keeps track of the
built-in atomic objects used by each activity.

The explicit implementation appears significantly more complex than the implicit
implementation: It contains 156 lines of code, while the implicit implementation contains 64
lines of code. Some of the extra code (31 lines) is needed for managing queues. Much of the

rest (65 lines) is needed to manage information and perform tasks that are handled

automatically by the system in the implicit approach, Tor example, the completion operations
themselves, and keeping track of the uids used by each activity.

7.3.1.3 Implementation of the Bank account Type

A bank account provide three operations: deposit, which adds a specified amount to the

account; withdraw, which removes a specified amount from the account, signalling
insufficient funds if the balance is too low; and balance, which returns the current balance in

the account. The explicit implementation in the appendix illustrates how an implementation of
an atomic type can provide more concurrency than can be achieved with two-phase locking.
It also serves to illustrate further the greater expressive power and, in some cases, ease of
use, of the explicit approach: The lack of access to the names of invoking activities in the
implicit approach makes it difficult, if not impossible, to construct an implicit implementation

that permits comparable levels of concurrency.

/
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7.3.2 Comparison

We base our comparison of the implicit and explicit approaches on the two implementations

of the semiqueue type presented above, and on the implementations of the map and

bankaccount types presented in the appendix.

The explicit approach described earlier in this chapter is strictly more powerful than the

implicit approach in Argus. It extends the Argus approach in three ways: implementations of

atomic types have explicit access to the names of invoking activities: the programmer can

supply code that is run when activities complete to update the representations of objects: and

implementations can explicitly awaken a pending operation when it might be able to proceed.

rather than using busy-waiting to perform scheduling.

By permitting implementations to access the name of the activity that invokes an operation,

we achieve greater flexibility in structuring the representations of objects. and avoid some of

the limitations of the implicit approach. For example, the deq operation in the implicit

implementation of the semiqueue type takes time proportional to the size of the

representation of its semiqueue argument (in the worst case). In the explicit implementation,

the deq operation takes time proportional to the number of ancestors of the calling activity

(again in the worst case).

Similarly, it is impossible using the implicit approach to satisfy the constraint on semiqueues

that, as long as at most one activity dequeues items at a time and that activity does not abort,

items enqueued by a single activity should be dequeued in the order in which they were

enqueued. The reader can easily verify that the explicit implementation of the semiqueue type

satisfies this constraint.

Achieving this flexibility in structuring representations appears to require access to the names

of invoking activities, but does not require the use of user-supplied completion operations.

We could provide a "query" operation on aid objects, permitting an implementation to find

out from the system whether a given activity is still active, and if not, whether it has committed

or aborted. An implementation could periodically check the status of active activities, and

update the representation of an object appropriately when told that an activity has completed.

In this way we could achieve much of the effect of user-supplied completion operations,

without having them executed automatically by the system.

While user-supplied completion operations are not needed for flexibility in structuring

representations, they may be necessary for achieving efficient scheduling of operations. The

-' implicit approach in Argus uses busy-waiting to schedule operations; as illustrated by the

implementations of the semiqueue and map types, the queuing mechanism in the explicit

*approach presented here permits much more control over scheduling of operations. The

mechanism relies on user-supplied completion operations to awaken blocked operations

r . __ _ _ _
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explicitly. It is not clear whether comparable control over scheduling can be achieved without

user-supplied completion operations.

The explicit implementations that we have presented are obviously more complex than the

implicit ones. Much of this complexity arises from the need to represent explicitly certain

kinds of information that are handled automatically by the system in the implicit approach.

For example, in the explicit implementation of the map type in the appendix, we explicitly

represent the uids used by an activity: in the implicit implementation, this is not necessary

because the system keeps track of the built-in atomic objects used by activities.

Some of the complexity, however, arises out of the desire for more efficient and more

concurrent implementations. Some of the information that is handled automatically by the

system in the implicit approach may be more efficiently used when structured differently (e.g.,

compare the two semiqueue implementations): As discussed above, the explicit approach, by

permitting implementations to access the names of invoking activities, provides control over

this structure, while the implicit approach does not. In addition, the management of queues

introduces complexity, but also permits much more efficient scheduling.

More work may be required of the programmer in the explicit approach, since it may be

necessary to supply completion operations. However. in the implicit approach it is frequently

necessary to provide an internal operation that compacts the representations of objects (e.g.,

the cleanup routine in the implicit implementation of the semiqueue type); this kind of internal

garbage collection is not needed in explicit implementations.

In addition, the explicit approach does not require linguistic support that is specific to a

particular local atomicity property. The tagtest statement in Argus is designed to support

implementations of dynamic atomic types, and provides little if any help in building

implementations of static atomic types. In contrast, the explicit structure presented above, by

permitting explicit access to aids, provides the programmer with tools that can be used for

implementing static atomic types as well as dynamic atomic types. Hybrid atomic types can

also be implemented using the explicit structure, although for efficient management of old

versions it might be useful to add explicit "initiate" operations for read-only activities.

Neither the linguistic support in Argus, nor the extensions we presented earlier in this chapter,

supports optimistic implementations. It appears relatively easy to do so using an explicit

approach, simply by allowing programmers to supply an explicit "pre-commit" operation for

objects to vote on whether to allow an activity to commit. It appears very difficult to extend an

implicit approach to permit optimistic implementations.

The use of mutual exclusion to control internal concurrency is just a simple way of making the

implementations of operations "atomic," by forcing them to run serially. A more general
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approach is to use atomic actions. making each execution of an operation a top level activity

This approach appears viable, however, only if implementations have access to the names of
invoking activities. In an implicit structure, certain steps in the implementation of an operation

(e.g., operations on lower-level atomic objects) must be executed on behalf of the invoking

activity, yet there is no way for a process to act on behalf of two activities at the same time.

Even in an explicit structure, this approach may have difficulties. It is not clear whether a

queuing mechanism comparable to our action queues can be designed to work with top-
level activities instead of with seize statements.

In summary, the expressive power of the implicit approach is limited in several ways.

However, implementations using an explicit approach appear more complex. It is not clear

whether an intermediate approach can be found that provides the efficiency of the explicit
approach but avoids some of the complexity.

7.3.3 Related Work

Some recent work at CMU by Spector and Schwarz [Schwarz & Spector 82] has con-, ,.r
how to build "atomic objects." Spector and Schwarz ignore recovery, however, and __"s

only on locking implementations. They appear to suggest that the system should manage
"lock tables" automatically, but do not describe in detail how the programmer can describe
the set of lock modes and their conflict relationships to the system. In addition, it is
sometimes difficult for an operation to tell in advance what kind of lock it will need: for
example. in implementations of the map type. an insert operation will need a different kind of
lock depending on whether it terminates normally or signals. This indicates that an automatic
locking mechanism might be difficult to use.

Work at Newcastle on recovery blocks [Anderson et al. 78, Anderson & Lee 79, Verhofstad 76]
investigated recovery techniques for building user-defined data types. While concurrency
was not considered, alternative program structures were explored. The inclJusive recovery
scheme in lAnderson et al 78] is similar to our implicit approach, while their disjoint recovery
scheme is similar to our explicit approach. The authors of [Anderson et a/ 78, Anderson 6

Lee 791 note that the inclusive scheme provides limited control over recovery and can be less
efficient than the disjoint scheme, but that implementations in the disjoint scheme can be
more complex than those in the incfusive scheme. These conclusions are similar to our
conclusions about the implicit and explicit approaches for implementing atomic types.

Allchin [Allchin & McKendry 83, Allchin 831 has also investigated "atomic objects." He has
focused on the implicit approach, attempting to make the system do as much of the work as
possible. As we have discussed above, this approach provides limited expressive power.
One interesting mechanism that he proposes is a queuing mechanism for an implicit scheme:
He associates one queue with each object. An activity can wait on a queue, and will be
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awakened when another activity that Use( the saime object becomes visib'e to it However, he

does not consider examples like the map type (illustrated in the appendix of this dissertation.

and discussed in Section 7.3.1). for which it may be important to have finer control over

scheduling. In particular, it is important in the implementation of map in Section A.2 to be

able to discard queues that are no longer needed for pending operations. This appears

impossible in the implicit queuing mechanism proposed by Allchin.
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Chapter Eight

Summary and Conclusions

8.1 Summary

Atomicity is a useful organizational concept for reducing the complexity of a concurrent

system. If activities are atomic, concurrency can be ignored when checking that the state ol

the system remains consistent. In this dissertation we have explored how to specify and

implement "atomic types," which support atomicity of activities.

One of the most important contributions of this dissertation is a specification framework that

permits the behavioral specification of an object to be derived systematically from a

specification of its serial behavior. In addition, our framework permits the programmer of an

individual activity to ignore how atomicity is achieved, and to focus on the serial behavior of

each object.

In studying what it means for an object to be atomic, we generalized existing work on

concurrency control in three important ways:

* Our definition of atomicity is based on an explicit specification of the desired

behavior for the objects shared by activities.

- Our definition of atomicity encompasses both serializability and recoverability.

- We identify local properties of individual objects that ensure global atomicity of
activities.

Our focus on local properties appears to be unique A few papers (e.g., [Bernstein et al.

81, Korth 81a, Beeri et al 83]) have considered using specifications to increase concurrency,

and at least one paper [Lynch 83] has considered recovery in addition to synchronization.

However, we know of no other work focusing on local properties of objects, or dealing with

more than one of the above three issues.

We also presented a novel twophase locking protocol, and verified its correctness. Our

presentation and analysis of the protocol, unlike published descriptions of existing protocols,

cover recovery as well as synchronization. The protocol extends existing protocols in two

ways: It permits operations to be partial and non.deterministic, and it permits the results of

operations. as well as their arguments, to be used in synchronizing activities.

Finally, we presented several examples of implementations of atomic types, illustrating how

existing techniques for synchronizing and recovering activities can be extended to achieve
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greater concurrency In addition, we presented two different linguistic mechanisms. The

mechanism in Argus is clearly limited in expressive power; the alternative that we explore,

while more powerful, may also be harder tin use.

8.2 Conclusions and Further Work

Each of the three local atomicity properties defined in this dissertation characterizes the
operatioi of a large class of protocols. Each defines limits on the concurrency among
activities that can be permitted by types. In addition, each is optimal, in the sense that no
more conculrrency can be permitted without violating atomicity. The three properties do not
characterize all protocols. however. It might be worth investigating how to extend other
protocols (see, e.g.. [Silberschatz & Kedem 80. Kung & Robinson 811) to cope with user-
defined operations.

Our optimality results indicate that, without further constraints, objects satisfying different
local atomicity properties (e.g., dynamic atomicity and static atomicity) cannot be used in the
same system. As systems grow and existing systems are interconnected. it will become
necessary to cope with connet.. .g systems that use different protocols. Existing protocols
will need to be extended so that the interactions among different protocols can be handled
gracefully.

At the moment it does not appear that any one local atomicity property is clearly "best," in the
sense of providing better performance than any other. This means that a system designer
must choose which local atomicity property to use in a system. More experimentation is
needed to determine the kinds of applications for which each local property provides good

performance.

It is clear from the example implementations that we have presented that implementing an
atomic type is a difficult task. One of the reasons for the complexity of these implementations
is the interaction between synchronization and recovery. The traditional approach to
analyzing atomicity in database systems is to assume that synchronization and recovery are
provided by separate modules in the implementation. However, our presentation and
verification of the locking protocol in Chapter 5 should make it clear 1hat synchronization and
recovery can interact in subtle ways, particularly when we consider operations other than
reads and writes. Implementations of atomic types need to be explored further in an attempt

to develop a better understanding of how they should be structured.

a Of the two program structures that we have studied, the explicit structure is the more general,
but requires more work on the part of the programmer. It seems unlikely that general support
could be designed that would significantly reduce the complexity of implementations and at



115

the same time provide the expressive power of the explicit structure studied here On the

other hand, it may be that specialized support can be developed for particular implementation

strategies, such as locking. Experimental work is also needed to evaluate the need for certain

kinds of expressive power: it may be that the expressive power limitations of the mechanisms

in Argus are not important for many applications.

Perhaps the biggest problem with the Argus mechanism is its lack of flexibility: It appear,-

difficult to use for implementing types other than dynamic atomic types. A more flexible

mechanism would be preferable, if only because it would permit experimentation with

different local atomicity properties.

Atomic types are clearly useful in many applications for supporting atomicity. However. it is

not clear how often the programmer will need to take on the job of implementing

synchronization and recovery. It may be that the performance demands of most applications

can be satisfied without basing synchronization on the specifications of objects. or that only a

few types in a system need to provide this extra concurrency. It is clear that this extra

concurrency will be provided rarely as long as it is so difficult to construct an implementation

that provides it.

A hard problem that we have not considered is how to test and debug a concurrent system.

Activities using atomic types, as well as implementations of atomic types, will need to be

tested and debugged. It may be that the needs of testing and debugging will also influence

the choice of mechanisms for implementing an atomic type.

We have barely touched on the problem of ensuring "reliable" operation of a system. Among

the possible requirements that an application might make are that systems remain available,

that information not be lost, and that activities make progress. Existing protocols for meeting

these requirements need to be extended to cope with user-defined operations, and the

interactions of these extensions with implementations of atomic types need to be explored.

j
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Appendix A

Example Implementations

In this appendix we present three example implementations of dynamic atomic types. The

first. in Section A 1, is an implementation of a map data type using an implicit structure The

second, in Section A.2, is an implementation of the same data type using an explicit structure.

The third, in Section A.3. is an implementation of a bank account data type using an explicit

structure. This implementation illustrates how a data type that permits more concurrency

than allowed by locking can be implemented. Finally, in Section A.4, we discuss the

conclusions to be drawn from the examples.

A.1 Implicit Implementation of the Map Type

In this section we present an implementation of the map type using an implicit structure. An

informal specification of the map type appears in Figure A.1. Maps are like associative

memories, binding uids to other objects. In different maps, the uids can be bound to different

types of objects. The type of the bound object for a particular map type is given by the

parameter type vtype.

Maps permit substantial concurrency. Insert, delete, and lookup operations involving

different uids commute, and so can be used by concurrent activities. Not much concurrency,

however, is possible among operations involving the same uid. If we classify insert and delete

operations that terminate normally (rather than signalling) as writers, and all other operations

as readers, we see that readers commute with each other, and that a writer does not commute

with any other operation involving the same uid. For example, if an activity inserts a binding

for a uid, concurrent activities cannot execute any operations involving that uid, although the

lookup operation could be performed by a concurrent activity if the insert had signalled

duplicate. Similarly. if a lookup executed by an activity terminates normally, a concurrent

activity cannot delete the same uid, while if a lookup executed by an activity signals

not-found, a concurrent activity cannot insert the same uid.

The concurrency analysis above is the basis for the implementation of map in Figure A.2. The

strategy employed in this implementation is similar to that used in the implementation of the

semiqueue type presented earlier. A map is represented using a regular (non.atomic) table.

4 {Tables provide the same operations as maps, with the same serial specification, and in

$addition an iterator pairs, with the following specification:

pairs = iter (t: tablefv,,pel) yields (uid, vtype)

pRECEWIN pAaE BLAwI1O4? YLUSD

poll
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data type maplvtype type] is create, insert. delete, lookup

% Maps are like associative memories, binding uids to vtype objects; map[vtype] is dynamic
% atomic it vtype is dynamic atomic.

create = proc () returns (map)
% Returns a new. empty map (one containing no bindings).

insert = proc (ni map. u: uid. v: vtype) signals (duplicate)
% It u is not bound in m, binds u to v in nm; otherwise signals duplicate.

delete = proc (m: map, u: uid) signals (not found)
% If u is bound in m, unbinds u in in; otherwise signals notfJound.

lookup = proc (m: map, u: uid) returns (vtype) signals (nottound)
% If u is bound in m, returns the associated vtype oblect; otherwise signals not~Jound.

Figu re A- 1: Informal specification of the data type map.

Pairs yields all pairs (u. v) such that u is bound to v in i. Unlike maps, however, tables are not

atomic. Since the table is not atomic, changes to it made by activities that later abort are not

undone; thus, the table maps uids to atomic variant objects rather than directly to the

corresponding vtype objects. In addition, the table is enclosed in a mutex object to handle

internal concurrency.

The implementation of map also uses the Argus built-in type null. Null is generally used as a

kind of "place filler" in a variant type when the tag contains all necessary information. Null

has exactly one immutable object, represented by the literal nil.

The implementations of insert, delete, and lookup are all similar. Each seizes the mutex, and

then calls the internal procedure find-status to obtain the atomic variant associated with a

given uid. Next, if the status object can be locked appropriately, its tag is checked, and then

either information is returned about the binding or the status object is modified to reflect a

change in the binding. (Of course, if the invoking activity later aborts, this modification to the

status object will be undone.) If the status object cannot be locked appropriately, the

operation pauses, releasing possession of the mutex. When possession is regained, the

operation tries again.

Find-status gives the illusion that a status object exists for all uids. If the uid is bound to a

status object, that one is returned. Otherwise. the uid is not bound by the map. so find-status

creates a new status object with base state "absent." binds the uid to it in the table, and

returns it.

When an activity that deleted a uid from the map commits, the status object associated with

the uid will have tag "absent." Such status objects waste space: The same information can

be represented by the absence of a binding for the uid in the table. The internal procedure



Figure A -2: Implicit implementation of the data type map.

map =cluster[vtype: type] is Create, insert, delete, lookup

status = atom ic va rian t[present: vtype,
absent; null]

log tableistatus] %v maps uids to stattus objects.

rep mutex(log]

create = proc () returns (cyt)
retu rn( rep$create(iog$createo))
end create

insert = proc (mn: cvt, u: uid, v: vtype) signals (duplicate)
seize mn do

while true do
s: status: = fi nd status(m. value, u)
tagtest s

tag present: signal duplicate
wtag absent: status~change present(s, v)

return
end

pause % couldn't lock s; wait and try again.
enend

end insert

delete =proc (mn: cvt, u; uid) signals (not found)
seize m do

while true do
S: status : = find status(m.value, u)
tagtest s

wtag presen:: status$changeabsent(s, nil)
return

tag absent: signal not found
end

pause % couldn't lock s; wait and try again.
end

end
end delete
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Figure A-2: (continued)

lookup Proc (in. Cvt, u: uid) returns (vtype) signals (not found)
seize m do

while true do
tagtest find stalus(m value, u)

tag present (v: vtype): return jv)
tag absent. signal not found
end

pause % couldn't lock s. wait and try again.
end

end
end lockup

find-status = proc (L: log, u: uid) returns (status)
cleanup(l)
return (Iog$lookup(l, u))

except when not -found:
s: status:= status$makeabsent(nil)
log$insertQl, u, s)
retu rn (s)
end

end find -status

cleanup = proc (1: log)
enter topaction

for u: uid, s: status in log~pairs(l) do
tagtest 5

wtag absent; Iog$delete(l, u)
end

end
end

end cleanup

end map

W-Am-
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cleanup, called by fuid sltus finds and removes such bindings from the table.

Note that cleanup runs as an independent activity, and removes only those status objects that

are not being used by any active activity. Cleanup cannot remove status objects with tag
"absent" that are being read by active activities- these status objects must be retained to

prevent the "phantom record" problei. [Eswaren et al 76]. in which one activity observes the

absence of a binding for a given uid, and another activity adds a binding for the uid before the

first activity completes, the first activity may then observe the state of the map both before and

after the second activity, thus violating serializability.

Note that insert, delete, and lookup all call find_status each time they test whether the

appropriate locks can be acquired. They cannot use the same status object each time, since

it might have been removed from the table by another activity's call of cleanup. The mutual

exclusion enforced by the seize statement, however, ensures that a status object returned by

findstatus will remain in the table at least until the calling operation releases the mutex.

A.2 Explicit Implementation of the Map Type

In this section we present an implementation of the map type using an explicit structure. The

implementation appears in Figure A-5. It uses two types, versions and set, whose

specifications appear in Figures A-3 and A-4, respectively.

This implementation of map can be viewed as an optimized implementation of the state

machine LOCK discussed in Chapter 5. suitably extended to allow activities to be nested. The

implementation does not store the entire sequence of operations executed by each activity,

however; instead, it keeps track of a summary that is sufficient to update the committed state

when the activity commits and to synchronize with other activities.

Recall from the previous section that we can classify insert and delete operations that

terminate normally as writers, and all other operations as readers. Operations involving

different uids commute, as do readers involving the same uid: a writer does not commute with

any other operation involving the same uid This implementation synchronizes operations by

using read/write locks on individual uids. An operation can acquire a read lock on behalf of

an activity as long as no concurrent activity holds a write lock on the same taid, in other words,

as long as only ancestors of the requesting activity hold write lncks An operation can acquire

a write lock on behalf of an activity as long as no concurrent activity holds a read or write lock

on the same uid. on other words, as long as no non-ancestors of the requesting activity hold

locks of any kind When an activity commits, its locks are transferred to its parent: when an

activity aborts, its locks are discarded.

The representation of a map is enclosed in a mutex object. and consists of three pieces:

.~ ~ - -
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data type versions[t type] is create, canread. canwrilte, read lock. write lock.
read, write, busy. commit, abort

% A versiorisfi object is a stack of versions. each with an associated set of readers and
% writers. The usual read/write locking discipline for nested activities is observed: any
% number of concurrent readers, and at most one writer (with r1o concurrent readers).

create = proc (x* I) returns (versions(t)

% Returns a new object with base state x.

can read = proc (v: version[t], a: aid) returns (bool)
% Returns true it and only if every writer of v is an ancestor of a.

can-write = proc (v: version[t], a- aid) returns (boo[)
% Returns true it and only if every reader and writer of v is an ancestor of a.

read = proc (v version[t], a: aid) returns (t) signals (conflict)

% If a can read v, returns the most recent version of v; otherwise signals conflict. Does not
% make a a reader of v (the operation reacd lock must be used explicitly to set a read lock).

write = proc (v: version[t]. x: t, a aid) signals (conflict)
% If a can write v, removes any version of v associated with a and pushes x on v on bahalf
% of a; otherwise signals conflict. If no conflict, also makes a a writer of v.

read-lock = proc (v: version[t], a: aid) signals (conflict)
% If every writer of v is an ancestor of a then makes a a reader of v; otherwise signals conflict.

write-lock = proc (v: version[t], a: aid) signals (conflict)
% If every reader and writer of v is an ancestor of a then makes a

% a writer of v; otherwise signals conflict.

busy = proc (v: version[t]) returns (bool)
% Returns false if and only if there are no readers or writers of v.

commit = proc (v: version[t], a: aid)
% If a is a reader (resp. write,) of v, makes a's parent (if any) a reader (resp. writer) of v,

% and removes a as a reader (resp. writer) of v. If a version was pushed on v on behalf of
% a, replaces version associated with a's parent (if any) with that associated with a.

abort = proc (v: version[t], a: aid)
% Releases Jocks held by a on Y and discards any versions of v written by a.

Figure A-3: Informal specification of the data type versions.

d..,
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data type set[t type] is create, insert, delete. member. empty, append

create = proc () returns (set[t])
% Returns a new, empty set.

insert = proc (S: set, x: t)
% Inserts x in s.

delete = proc (s: set, x: t)
% Removes x from s.

member = proc (s: set, x: t) returns (bool)
% Returns true if and only if x is in s.

empty = proc (s: set) returns (bool)
% Returns true if and only if s is empty.

append = proc (to, from: set)
% Inserts all elements in from into to.

Figu re A-4: Informal specification of the data type set.

items, which contains versions and locks for uids; logs, which records for each active activity

a summary consisting of the uids for which it has executed operations; and pending, which

contains an activity queue for uids. Items contains versions and locks only for those uids that

are bound in the map or that have been used by an active activity. Pending contains queues

only for those uids with pending operations; queues are created when needed, and removed

as soon as all activities that used them either commit to the top level or abort. Items and

pending use the type table, also used in the implicit implementation of map presented in the

previous section. The mutex object is used to prevent interference among concurrently

executing operations.

The implementation of insert works as follows: First, it finds the summary for the invoking

activity, adds the uid to the summary, and registers the activity and the map. Then. it finds the

versions for the uid, and attempts to read the most recent version. If there is a conflict, the

operation blocks on the queue associated with the uid, and tries again when a conflicting

activity becomes visible or aborts. If there is no conflict, the operation tests the tag of the

version. If the tag is "present," the operation acquires a read lock on the version and signals

duplicate. If the tag is "absent," the operation writes a new version with tag "present" and

value v, and returns; a write lock is acquired in writing the new version, unless there is a

conflict, in which case the operation blocks and tries again later.

The implementations of delete and lookup are similar to that of insert. They differ largely in

the conditions under which they acquire particular types of locks.

The commit routine begins by finding the summary for the committing activity. For each uid

touched by the activity, it finds the versions for the uid and transfers the activity's locks and

_N1-
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Figu re A -5: E xplicit implementation of the data typO map

map = cluster[vtype- type] is create, insert, delete, lookup

aq = actiofljlueue

status = oneotj[present. vtype,
absent: null]

tentative = versions[status]

data = table[ tentative] % versions for each uid.

queues = table[aq] % queues for pending operations on each uid.

summary = ,et[uid] % uids touched by an activity.

components = st ruct[items: data,
logs: !og (summary],
pending: queues]

rep = m utex [components)

"%rep invariant:
" if there exists a such that u C rep.value.logs[a], then u is mapped by rep.value.itemns,
" if there is a blockz-d operation involving u, then u is mapped by rep. value. pending;
" a is a reader or writer of repvalue.items[u] if and only if u ( rep -value. logs[aJ.
" it u is mapped by rep.value. pending then u is mapped by rep.value. items.

create =proc () returns (cvt)
ret ur n(rep$create(componen ts$ (items: data$createo,

logs: log [summary]$createo,
pending: queues$createof)))

end create
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Figure A-5. (continued)

% external spec. insert =proc (i cvt. u uid v vtype) signals (duplicate)
insert =proc (a aid. m cvt. u: uid. v vtype) signals (duplicate)

seize m do
s: summary l ind log~m value logs, a)
summary$inisert(s. u)
register(a, in)

t: tentative.= finditeni(m .value -items, u)
while true do

tagcase tentative~read(t, a)
tag present- tent atlive$readjloCk(t, a)

signal duplicate
tag absent: tentalivC$wrIle(t, status~make..present(v). a)

return
end
except when conflict: q: aq li fnd queue(m. value. pending. u)

block a on q
continue

end
end

end
end insert

% external spec: delete = proc (in: cvt. u: uid) signals (notjfound)

delete = b[proc] (a. aid, m. cvt, u: uid) signals (not,.found)
seize m do

s: summary: = find log(m.value.logs, a)
suminary$insert(s, u)
register(a, mn)
t: tentative:= f inditen(m. value. items, u)
while true do

tagcase tentative$read(t, a)
tag present: tentative~write(t, status$,nake~absent(nil), a)

return
tag absent. tentative$readjloCk(t, a)

signal not-found
end
except when conflict: q: aq: =find queue(m value-pending, u)

block a on q
continue

end
end

end
end delete

I I P -.- 
.
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Figure A -5: (continued)

% external spec: lookup =Proc (in: cvt. u: uid) returns (vtype) signals (not jound)
lookup = proc (a: aid, in. cvt, u: uid) returns (vtype) signals (notjfound)

seize m do
s. summary :=tindjlog(m.value. logs, a)
summary$insert(s, u)
register(a, m)
t: tentative = f ind item(m. value. items, u)
while true do

tentative~read.lock(t, a)
except when conflict: q: aq :=find queue(m value.pending, u)

block a on q
continue

end
tagcase tentative~read(t, a)

tag present (v: vtype): retufn(v)
tag absent: signal notjound
end

end
end

end lookup

find-log = proc (logs: log~summary]. a: aid) returns (summary)
retu rn(logs[a])

except when notjfound: s: summary: = summary~create()
logsja) : = s
return(s)

end
end findjog

find item = proc (items. data, u: uid) returns (tentative)
t: tentative: = data~loodkup(items, u)

except when not..found: s: status:= status$make..absent(nl)
t: =tentative~create(s)
data$insert(items, u, tQ

end
return(t)
end find-item
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Figure A -5: (continued)

find queue =proc (pending: queues. u: uid) returns (aq)
q: aq := queuiesSlookup(pending, u)

except when notjound q : = aq$createo
queuos$insert(pending. u, q)

end
ret urn(q)
end find-queue

commit = proc (a. aid. m. rep) signals (failure(st ring)
seize m do

my: components: =m.value
as: summary:= mv.logs[a]

except when not-found: return end
log [summaryj$delete(mv.logs, a)
is-op: bool := aid$top(a)
for u: uid in summary$elements(as) do

t: tentative: = find ,tem(mv.itemls, u)
tentative$commit(t, a)
q: aq: = queues$Iookup(mv. pending, u)

except when notjound: if issjop cand -tentative$busy(t)
cand status$is-absent(tentative$read(t, a))

then data~delete(mv.items, u)
end

continue
end

aq~notify(q, a)
if is-top cand aq$empty(q)

then queues$delete(mv. pending, u)
if -tentative$busy(t) cand status$is..absent(tentative$read(t, a))

then data$delete(mv.items, u)
end

end
end

ps: summary: = findjlog(mv.logs, ald$parent(a))
except when top: return

end
summary~append(ps, as)
end

end commit
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Figure A -5: (continued)

abort =proc (a aid. m: rep) signals (failure(st ring)
seize m do

my: components: = m value
as. summary:= mvlogs[a]

except when not found: return end
log Isurninar y]$delete(mv.logs, a)
for u. uid in summary$elementS(3s) do

1: tentative: = Ii nd item(mv. items, u)
tentative$abort(t, a)
q: aq: = queues$took up(mv. pending, u)

except when not found: if -tent at ive$busy(t)
cand status$is absent(tentative~read(t, a))

then data$delete(mv. items, u)
end

continue
end

aq~wake(q)
if aq$empty(q)

then queues$detete(mv.pending, u)
if -tentative~busy(t) cand statussis absent(tentative~read~t, a))

then data$detete(mv.items, u)
end

end
end

end
end abort

end map
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version (if any) to its parent. It then unblocks pending operations on the uid that were invoked

by activities to which the committing activity is now visible. Finally, if the versions or the

queue for a uid are no longer needed, they are deleted from the representation of the map.
After processing each uid. the commit routine adds the summary information for the activity

to that for its parent.

The abort routine is similar: For each uid touched by the activity, it releases the activitys

locks and discards its versions, unblocks all pending operations for the same uid, and then

deletes versions and queues that are no longer needed.

The process scheduling in this implementation is safe in the sense that all asleep pending

operations that can proceed will be changed to waiting, and eventually unblocked, when an

activity completes. However, some pending operations that cannot proceed might also be

unblocked. For example, suppose that an activity invokes the insert operation for a uid. and

the operation is forced to block because several other activities have read locks on the uid.
When one of the readers becomes visible to the blocked activity, the pending operation will be

unblocked. However, it can not yet proceed, since there are still conflicting readers.

Similarly, if several activities are blocked waiting to get a write lock on a uid, they will all be
unblocked at the same time, but only one of them will obtain the lock and proceed.

The commit and abort routines delete the versions for a uid only if no processes are blocked

on the uid's queue. This permits the implementations of insert, delete, and lookup to find the

versions for a uid only once, before entering the loop; if one of these operations blocks, the

uid will remain bound to the same versions object at least until the operation unblocks.

A.3 Explicit Implementation of the Bankaccount Type

In this section we present an explicit implementation of the bank_account type. The serial

specification of a bank account object was given in Figure 5-2; the corresponding informal

specification of the bank account type appears in Figure A-6. (The signal negarg appears in
the informal specification and not in the original serial specification because the arguments to

the deposit and withdraw operations in the informal specification are integers rather than

natural numbers.)

The implementation appears in Figure A-8. It permits significantly more concurrency than

would be permitted by a locking implementation: for example, it permits activities to withdraw
money concurrently from an account as long as the account contains sufficient money to

cover all the withdrawals. (Cf. Section 5.4.2.) The implementations of the deposit and

withdraw operations are similar to the implementations of enq and deq in the semiqueue

implementation presented in Section 7.2. Deposits are handled using intentions lists, while<Jr _ ____ ___ ____
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data type bankaccount is create, deposit, withdraw, balance

% A bank account always has a non-negative balance. The type is dynamic atomic.

create = proc () returns (bank_account)
% Returns a new bank account with a balance of 0.

deposit = proc (b: bank account. amt int) signals (neg arg)
% Adds amt to b it amt > 0: otherwise signals negarg.

withdraw = proc (b. bank account. amt int) signals (insufficient funds, neg arg)
% If arm < 0 then signals neg_arg: otherwise if amt > b then signals insufticient_tunds;
% otherwise subtracts amt from b.

balance = proc (b: bankaccount) returns (int)
% Returns the current balance in b.

Figu re A-6: Informal specification of the data type bank-account.

withdrawals that terminate normally are handled using undo logs. Withdrawals that signal

and balance operations are handled separately. Not all concurrency permitted by on-line

dynamic atomicity is permitted by the implementation; for example, withdrawals that signal

cannot be executed concurrently with withdrawals that succeed. This additional concurrency

could be permitted at the expense of a more complicated and less efficient implementation.

The implementation uses the data type crowd; an informal specification of crowds appears in

Figure A-7. The representation of a bank account is enclosed in a mutex object. and consists

of five pieces: committed, which represents the money known to be in the account (it has

been deposited by activities that have committed to the top level, and it has not yet been

withdrawn); changes, which is a collection of summary information about the operations

executed by active activities; reads, which records the active activities that have read the

account (i.e.. executed withdraw operations that signalled or executed balance operations);

writes, which records the active activities that have written the account (i.e., executed

withdraw operations that succeeded or executed deposit operations); and pending, which is

used for blocking all pending operations on the account.

The summary for an activity consists of two parts: credit, which represents the money

deposited by the activity (or its committed descendants) and not subsequently withdrawn; and

debit, which represents the money withdrawn by the activity (or its committed descendants),

and contains sufficient information to be able to "undo" the withdraw operations if the activity

aborts.

Operations that read the account exclude operations that write it, and vice versa, but readers

can run concurrently with each other, as can writers. The only restriction is that a withdrawal

operation can be executed only when the account is guaranteed to contain sufficient funds,

regardless of withdrawals executed by concurrent activities.

i
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data type crowd is create. add. contlicts, eniply. commit, abort

% A Crowd is a set of activity ids.

create = proc () returns (crowd)
% Returns a new. empty crowd.

add = proc (c: crowd, a: aid)
% Adds a to c.

conflicts = proc (C: crowd, a: aid) returns (bool)
% Returns true if and only if a non-ancestor of a is a member of c.

empty = proc (c: crowd) returns (bool)
% Returns true if and only it c is empty.

commit = proc (c: crowd, a: aid)
% If a is a member of c, removes a from c and adds a's parent (if any) to c.

abort = proc (c: crowd, a: aid)
% Removes a from c.

Figu re A-7: Informal specification of the data type crowd.

The internal procedure find lower bound is used to obtain a lower bound on the amount of

money available to an activity. It adds the balances in the intentions list for each ancestor of

the activity to the committed balance; since money required to cover withdrawals executed by

other activities has been removed from the intentions lists, the amount computed by

findjlowerbound is available to cover a withdrawal by the specified activity. The value

returned by find lowerbound equals the activity's view when there are no concurrent writers.

The implementation of deposit works as follows: First it checks for conflicting read

operations. If there is a conflict, it blocks and tries again when one of the conflicting activities

has completed. Otherwise. the invoking activity is added to the set of writers, the deposited

amount is added to the activity's intentions list (using the internal procedure credit), the

activity and the object are registered, and the operation returns. The money deposited by an

activity will only become visible to the activity's siblings when the activity commits: if the

activity aborts the record of the deposit will be discarded.

The implementation of withdraw is more complex. First, it uses find_/owerbound to compute

a lower bound on the money available to the invoking activity. There are then three cases. If

the amount to be withdrawn is greater than the lower bound, and there are no concurrent

writers, then the lower bound equals the activity's view and the account has insufficient funds.

In this case the operations records the activity as a reader, registers the activity and the

object, and signals insufficient junds. If the amount to be withdrawn is less than the lower

bound, then the account can cover the withdrawal: If there are no concurrent readers then

.

7tTT7T.
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Figure A -8: Explicit implementation of the data type bank-account.

bank-account =cluster is create. deposit, withdraw, balance

source = oneof [committed: null,

active: aid)

undo = struct[debit: int,
taken-from: source]

udlist =array[undo]

summary = record[credit: mlt,
debit: udlist]

aq = actionqueue

Components = recor d[committed: int,
changes: log[summary],
reads, writes: crowd,
pending: aq]

rep = m utex [components)

" rep invariant:
" rep. value. committed > 0; for each activity a, and for each undo record u in
" rep.value.logs[a].debit, either tag(u.taken~fom) = committed, or value(u.takenjfrom)
" is mapped by rep.value.changes; if a E rep.value.writes, then a is mapped
% by rep.value.changes

create = proc () returns (cvt)
return(rep$create(componentsSfcommitted: 0,

changes: Iog[summary]$createo,
reads: crowd~createo,
writes: crowd$createO,
pending: aq$createo)))

and create
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Figure A-B (continued)

% external spec. deposit =proc (b- cvt. amt. int) signals (negarg)

deposit = proc (a. aid. b cvt, arnt int) signals (ncgarg)
if aint ( 0 then signal neg,.arg end
seize b do

while true do
if crowd$contticts(b value reads, a)

then block a on b-value pending
continue

else crowd$add(b. value.wrtes, a)
credit(b value changes, a. amt)
register(a, b)
return

end
end

end
end deposit

% external spec withdraw = proc (b. cvt, amt inl) signals (insufficientjfunds. negarg)

withdraw = proc (a. aid. b cvt, amt int) signals (insufficient..uflds, negarg)

if amt ( 0 then signal neg~arg end
seize b do

by. components. = b value
while true do

lb- mt -= find -lower bOujnd(bv, a)
it amt > lb cand -crowd$conf licts(bv writes, a)

then crowd$add(bv.reads, a)
registe f(a, b)
signal insutticientjfunds

elseit amt < lb cand -crowd$conflicts(bv. reads, a)
then crowd$add(bv. writes, a)

debit(bv, a, amt)
register(a, b)
return

else block a on bv.pending
continue

end
end

end
end withdraw
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Figure A-&: (continued)

% external spec balance = proc (b: cvt) returns (int)
balance zproc (a. aid, b. cvt) returns (int)

seize b do
while true do

if ci owd$conflicts(b value.writes, a)
then block a on b.value pending

continue
else crowdSadd(b value reads, a)

register(a. b)
return(find lower bounid(b.value, a))

end
end

end
end balance

% Returns a lower bound on the amount ot money available to a. the value returned equals
06 a's view if no concurrent activity has deposited or withdrawn money.
find tower bound = proc (c: components. a: aid) returns (int)

lb: int : = c.committed
for anc: aid, s: summary in log [summary]S$ancestors(c. changes, a) do

lb : = lb + Scredit
end

retu rn(tb)
end find-tower bound

findjog =proc (togs: tog[summary]. a: aid) returns (summary)
return(logs[a])

except when not-found: s: summary : =sumnmary$( credit: 0, debit: udlist$newo)
togs[a] : zs
return(s)

end
end findjog
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Figure A-B (continued)

ccinmit = proc (a. aid, b. rep) signals (tailure(st ring))
seize b do

bv. components: = b value
Crowd$Coinmit(bv reads, a)
crowdScommrit(bv writes, a)
aq$notity(bv pending, a)
as. summary := bv-changesla]

except when not -found return end
log [su mmar y]$delete(bv.changes, a)
ps summary = findIog'bv changes. aid$parent(a))

except when top by comimitted =by comnmitted + as credit
return

end
ps credit = ps Credit + ascredit
merge debits(aidSparent(a), PS debit, as debit)
end

end commit

abort = proc (a aid, b rep) signals (tailure(st ring))
Geize b do

by components =b.value

crowd $abort (bv. reads, a)
crowd$abort(bvwrites, a)
aq$wake(bv pending)
as: summary = bv-changes[a]

except when not -found return end
log [summary]$delete(bv.chingos. a)
for w undo in udlist~elements(as.debit) do

tagcase u.takenjfrom
tag committed. bv.committed bv.committed +u debit
tag active(ancestor: aid) ancs summary := find Iog(bv.changes, ancestor)

anc-s.credit =anc scredit + udebit
end

end
end

end abort

credit = proc (effects: log[summary], a: aid, amt: int)
S: Summary := find log(eftects, a)
scredit : = scredit + amt
end credit
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Figure A-B: (continued)

debit =proc (c components, a aid. amt: int)
S summary = find_Iog(c.chanyes. a)
f or anc aid anc-s. summary in I og[SU mmaryl$teat 2root(c. changes, a) do

if anc-scredit > 0 then
f anc - = a then

if amnt > anc_ scredit
then

udlist$addh(s.debit,
undo$(debit: anc-s credit, taken from. source~rnake-active(anc)))

else
udlistSaddh(s debit,

undo$(debit: amt, taken-from source$makeactive(anc)))
end

end
if amt > anc-s.credit

then aimt = amt .anc-s-credit

anc..s.credit ==0
else anc scredit :=anc-scredit - amt

amt: = 0
end

end
if amt = 0 then return end
end

if airit ) 0 then
c commilled :=c.committed - amt
udtist$addh(s.debit, undo$(debit, amnt, taken from: source$make committed. nil))
end

end debit

% appends undos in from onto to, ignoring undos with taken from = parent.
merge debits = Proc (parent: aid, to: udlist, from: udlist)

for u: undo in udlist$elerrents(from) do
tagcase u.takenjfrom

tag committed:
tag activc(ancestor: aid). if ancestor =parent then continue end
end

udlist$addh(to, u)
end

end merge~debits

end bank-account
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the activity is recorded as a writer; the specified amount is removed from the committed

balance and the intentions lists of the activity's ancestors, and recorded in the undo log

(using the internal procedure dcbit), with sufficient information to be able to put the money

back in the intentions lists from which it was removed; the activity and the object are

registered: and the operation returns. In all other cases the operation blocks and tries again

later.

Debit searches the intentions lists for the activity and its ancestors, removing money from the

intentions lists and adding appropriate undo records to the activity's undo log so that the

money can be returned to the proper list if the activity aborts. (It searches from the activity

toward the root to try to minimize the impact on concurrent activities.) If the activity withdraws

money that it (or one of its committed descendants) had deposited. the operations cancel (at

least in part), and no record of the canceling part is kept. If the activity and its ancestors have

not deposited sufficient money to cover the withdrawal, money is removed from the

committed balance instead. Debit assumes that the lower bound on the funds available to the

activity is greater than the amount to be withdrawn: otherwise the committed balance would

become negative, violating the representation invariant. It is easy to see that the call to debit

in the implementation of withdraw satisfies this precondition.

The implementation of balance is simple: If there are no conflicting writers, the invoking

activity is recorded as a reader and registered with the object, and the activity's view is

returned. Otherwise the operation blocks and tries again later.

The implementation of commit follows the pattern of the semiqueue implementation

presented earlier. First, it commits the activity in the crowds of readers and writers, and

unblocks pending operations that might now be able to proceed. Then, it finds the summaries

for the activity and its parent. deletes the summary for the activity, and merges its intentions

lists and undo logs into its parent's (Undos that cancel with the parent's deposits are

discarded.) If the activity is a top-level activity, the deposits are added into the committed

balance, and the entire summary is discarded.

The abort routine is also similar to the abort routine in the semiqueue implementation. It

aborts the activity in the crowds, and then unblocks all pending invocations. Next, it retrieves

the summary for the activity, deletes it, and uses the information in the undo list to return all

withdrawn money to the' intentions list from which it was taken.

Withdrawals that signal could be run concurrently with withdrawals that succeed and with

deposits if sufficient information were maintained to determine an upper bound on the money

available to an activity. Reuter [Reuter 821 has explored an implementation of a similar type

(to be used for reserving seats on flights in an airline reservation system) that exploits this

idea. However, the implementation is quite subtle, and probably inefficient.
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A.4 Remarks

The implementation of the bank_account type is interesting for two reasons. First, it illustrates

how a type that permits more concurrency than can be obtained using locking can be

implemented. Second, we have been unable to construct an implicit implementation of the
bank-account type that provides a comparable level of concurrency: while it is difficult to
argue that no such implementation exists, it is clear that such an implementation would be
quite complex. The problem is partly due to the inability to tell which changes to the
representation were made by which activity (because the representation cannot be organized
to group data by aids), and partly due to the asynchronous processing of commits and aborts
by the system. In contrast to the implicit approach, the explicit approach permits a reasonably
systematic approach to building implementations like the bank_account implementation in
Figure A-8.

It is also instructive to compare the two implementations of the map type. First, the explicit
implementation is much more efficient in scheduling operations. While the implicit
implementation uses busy-waiting, the explicit implementation uses separate queues for each

uid for which an operation is blocked, and only unblocks a pending operation when an activity
that used the uid of interest to the operation becomes visible to the activity that invoked the
operation. A queue is actually stored for a uid only if an activity that invoked an operation on
the uid was forced to wait and is still active.

Second, the explicit implementation does not need a "cleanup" operation to keep the
representation from growing too large. Instead, versions for a uid can be discarded when an
activity completes, precisely at the time that they are no longer needed. The kind of periodic
"garbage collection" performed by the cleanup operation in the implicit implementation of
map seems characteristic of implicit implementations.

Third, in the explicit implementation the programmer keeps track of the uids used by an
activity. Otherwise, when an activity completed, it would be necessary to commit or abort the
activity on the versions for all uids: unless the map were quite small, this approach would be
too inefficient. In the implicit implementation, the system keeps track automatically of the
built-in atomic objects used by each activity, avoiding having to represent and manipulate this
information explicitly.

Finally, it is instructive to compare the sizes of the two implementations. The implicit
implementation contains 64 lines of code, while the explicit implementation contains 156 lines

of code. This additional complexity arises from several sources. First, the tagtest statement
in Argus provides an efficient encoding of the lock tests in the bodies of the loops in the
insert, delete, and member routines; the explicit implementation requires a total of 12 extra
lines of code for testing and setting locks. Second, 31 lines of the explicit implementation are



147

devoted to managing queues, and could be removed if busy-waiting were used instead.
Third, 13 lines, not counting those in the completion operations, are devoted to keeping LI-ck

of the uids used by each activity. Finally, the completion operations contain 37 lines, not

counting those needed to manage queues.

/
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Appendix B

Index of Definitions

This appendix contains an index of the terms and notations defined in Chapters 2 through 5.

abort event 27 read-only activity 54
aborted(h) 28 read-only operation 54
acceptable 36 restriction operators ("1") 28
accepted by 30 serial(h, T) 37
activity 27 serial history 35
atomic 38 serial specification 31
behavior of system 34 serializable 37
behavioral specification 32 state machine 30
commit event 27 static atomic history 51
commit-order(h) 52 static atomic object 52
commitfed(h) 28 strong dynamic atomic 70
commute 64 terminatiun event 27
complefed(h) 28 timestamp event 55
complete sequence 29 total invocation 63
completion 27 undefined ("1L") 30
concatenation (".) 28 update activity 54
defined in 30 weaker 47
deterministic invocation 63 well-formed sequence 29, 55
dynamic atomic history 45
dynamic atomic object 46
empty sequence ("A") 28
equivalent 36
failure-free history 35
history 29
hybrid atomic history 56
hybrid atomic object 57
initiation event 55
invocation event 27
language 30
local atomicity property 43
LOCK 66
non-deterministic invocation 63
object 27
observation 28
on-line dynamic atomic 71
operation 32
opseq(h) 35
optimal 47
partial function (., ) 30
partial invocation p 63
perform 63
permanent(h) 38
precedes(h) 44
prefix-cloeed 31
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