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ABSTRACT

\

,/A class of ocean acoustic wave propagation problems is represented by a

Vt parabolic equation of the Schrodinger type. Using conventional explicit

finite ditference schemes, e.g., the Euler scheme, to solve the parabolic wave

equation Is unstable. Thus, Important advantages of explicit schemes are

completely missing.' This paper presents a conditionally stable explicit

scheme by introducing an extra dissipative term. This new explicit scheme is

then applieo to solve the ocean acoustic parabolic wave equation fully

utilizing the advantages of explicit schemes. The theoretical development,

the computational aspects, and the advantages are discussed. Application of

the scheme to a realistic ocean acoustic problem is included. The solution

obtained is compared with the unconditionally stable Crank-Nicolson solution.
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INTRODUCT ION

A parabolic equation of the Schrodinger type arises in the application of

ocean acoustic wave propagation. In the published literatures, this ocean

acoustic parabolic wave equation has been solved by three different methods:

the Split-step Fourier algorithm[I], the numerical

ordinary-cifferential-equation method[2,3,4), and an implicit

finite-difference method5,5 6 J. The implicit finite-difference method is, by

far, the most general purpose, stable method for solving the parabolic wave

equation; in addition, it has a variety of useful capabilities. However, when

3-dimensional, as well as high frequency problems arise, one needs a more

effective method to ease the requirement of memory storage, to gain

computational speed, and to be implemented easily into modern pipe-line

computers. It is known that explicit schemes have these advantages. Way back

to 1978, Lee and Papadakisf2 j analyzed applicable explicit schemes for such

application and found that the explicit scheme such as the Euler scheme was

unstable'. :It is the main result of this paper to introduce a stable explicit

scheme, newly developed by Chan,'Lee, and Shen( 7) for solving the parabolic

equation of the Schrodinger type. This new explicit scheme is developed to be

conoitionaliy stable by adding a dissipative term, and possesses most

advantages any explicit scheme must have. Prior to the discussion of the

formulation and the stability of the new explicit scheme, two sections are

presented. One Is the Introduction of the problem background, the other is

the discussion of the solution background. An application to a realistic

ocean acoustic problem is presented along with a comparison with the solution

obtained by the Crank-Nicolson method on accuracy and speed.
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PROBLEM BACKGROUND

In order to simplify complicated ocean acoustic wave propagation

problems, Tappert[8] introduced the Parabolic Equation approximation (PE) to

solve the elliptic wave equation in 2 dimensions by a parabolic equation

involving the depth variable z and the range variable r. This PE

approximation produces the parabolic wave equation in the form

ur. 1 ko(n 2 (r,z)-1) u + oo uz  (1)
0

where u(r,z) is the pressure fiela, ko is a reference wave number, and the

n(r,z) is the inoex of refraction which is equal to c0/c(r,z) (reference

sound speed/sound speed). Eq. (1) is .;Varced as the standara parabolic wave

equation first lntroauced by TappertC8 ] .

The parabolic wave equation (1) can be obtained in a couple of different

ways. We give an outline of our development below.

The elliptic wave equation in cylindrical coordinates takes the form

+ 1 0 + + k2 n2 (r,z) 0-0 (2)-r ar  0 k

where 0(r,z) is the acoustic pressure field.

Expressing

I' 0(r,z) .u(r,z) v(r) (3)
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where v(r) has strong dependence on the range variable r while u(r,z) is

weakly dependent on r. We shall derive that the u(r,z) here satisfied Eq. (1).

Substituting expression (3) into Eq. (2), we obtain

+ u [rr + + r) U k2 n'(rz)u] v . 0 (4)
[Vrr r r] l rG' v r) Ur +0z +

Setting the terms in the first [ ) of Eq. (4) equal to "*2v* and setting the
2 0

terms in the second L ] of Eq. (4) to k oU," we find

Vr + i v r + k 0 2 0 ,(5)
rr r r 0

and

U +rr Vur) +U+zz k(n2(r,z)-l)u 0 (6)

Consiaering only the outgoing wave in the range direction, it is easily

seen that the solution of Eq. (5) is the zeroth order Hankel function of the

first kina. If we apply the far-fiea approximation, kor >> 1, to the

argument of the Hankel function, we obtain

v(r) - H(1a (kor) a 1 eo (7)

Expression (7) is used to simplify the coefficient (1 ,2 V of Eq. (6)

which becomes

urr 21kour +U k2(n2(rz)-1) u * 0 (8)
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Making use of the property of n(r,z) being slowly varying in r, and

neglecting the scattering in both directions, Eq. (8) can be rewritten in an

operator form

IF J (n + 1k a2

( ik -ik + 1(n2-) 0

ar 
0

(Lik+1 +n21+1 2. 7)mO . 9

Since a one-way outgoing wave is considered, we can deal with the

solution of the out-going wave equation

+~~~~ 1k-k *( 2 rz-)u 0 *(10)
+ k0 - Ik +. r + ( o

Applying a low order approximation to the square-root operator in Eq. (10), we

obtain

1 n + 1 a

obtained

u) ko(n (r,z)-1) u + uUr  T 0 N+ " z z

I which is exactly the sam as Eq. (1).
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It is understood that if a solution is sought for the elliptic wave

equation, Eq. (2), one must solve a purely boundary value problem in a region

as described below in Figure 1.

where O(ro,z) is the initial boundary condition,

0(r,z,) is the surface boundary condition,

o(r,z8 ) is the bottom boundary condition, and

0(rWz) is the wall boundary condition.

On the other hand, if the elliptic problem was solved by the parabolic

equation, Eq. (1), we deal with a solution of initial boundary value problem

as shown by Figure 2 where we need only to know u(ro,z) the initial

condition, u(r,zo) the surface boundary condition, and u(r,ze) the bottom

boundary condition while the wall boundary can be ignored completely.

I

N'1.i--

Figure 1. Region of Elliptic Figure 2. Region of Parabolic
Problems Problems

.Immeately, we see the advantage that the parabolic problem requires one less

boundary condition on the wall which Is usually difficult to specify. In

addition, the parabolic problem can be solved by a marching process stepping

forward In range. It would be more advantageous if the parabolic problem can

be solvee very efficiently. This is the major result we discuss in this paper.
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SOLUTION BACKGROUND

Three different methods exist to solve the parabolic wave equation, Eq.

(1). These methods are: Split-step algorithmCl], numerical

ordinary-cifferential-equation iethodsL2,3,4], and an Implicit Finite

Difference (IFD) method[5'6] . Ths split-step Fourier algorithm is effective

for deep water problems where the pressure field vanishes at both surface and

bottom boundaries. The numerical orainary-differential-equation solution

applies the Generalized Adams method[3i, recently much improved by Lee,

Jackson, ana PreiserL4]. The method Is effective and general purpose and it

can handle arbitrary boundary conditions. Most frequently used in the

appiication of ocean acoustic propagation for medium.to low frequency problems

is the implicit finite difference (IFD)[6] solution. This implicit finite

difference (IFO) solution is not only general purpose, unconditionally stable,

but also has wider angle capabilities than other existing methods. Trying to

take advantage of requiring less storage, ano the ease of implementation into

pipe-line computers, Lee and PapadakisL2J mace an attempt to apply explicit

schemes such as the Euler scheme to solve the parabolic wave equation. Their

anaiyses showed that using the Euler explicit scheme to solve Eq. (1), the

scheme is unstable. Then, Lee, Botseas, and Papadakis applied the IFD, which

uses the Crank-Nicolson scheme to solve Eq. (1) because of its favorable

unconditional stability. Even though the stability is maintained by the IFD

scheme, the desirable advantage of explicit schemes are completely missing.

Recently,'Chan, Lee, and ShenLTJ developed a group of explicit schemes for

solving the equations of the Schrodlnger type. A new explicit scheme to be

introaucea in the next section is a member of that group which is formulated

to be conditionally stable while other important advantages of the explicit

scheme are all retained.
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A CONDITIONALLY STASLE EXPLICIT SCHEME

Compared to implicit schemes, explicit schemes are generally easier to

implement and demand less storage. These advantages are especially pronounced

for multi-dimensional problems. Moreover, another important advantage is that

the explicit scheme is often easily vectorized on the many pipeline-oriented

computers availaole today such as CraysCyber 205 ana FPS164. Taking these

advantages our method of attack is to introduce an appropriate dissipative

term to derive stable explicit schemes.

We begin by considering the parabolic equation of Schrodinger type in the

general form below

ur = la(r,z) Uzz + b(r,z) uz + c(r,z) u + f(r,z) (12)

Here the function a(r,z) is a real-value function, however, functions b(r,z),

c(r,z), and f(r,z) may be complex-valued. The effects of adding different

dissipative terms have been discussed in Ref. 7. In this paper we discuss one

particular dissipative term which leads to the least restrictive stability

colltion. We use k an h to denote the range and depth Increments

respectively. un means u(rn, zj).

The simplest explicit scheme for a simple Schrodinger equation,

ur iluzz , (13)

is the Euler scheme,

7
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un+1 _n n n +n
ji J+ 2u _1 (14)k kz

with an initial truncation error O(k,h2 ). Scheme (14) is known to be

unstable [2J We introduce a dissipative term R to Eq. (13) to obtain

Ur iuzz + R (15)

where the R in this paper is

R (+) h2 uzzzz (16)

where a and a are real scalars. With the dissipative term R, the

corresponding explicit scneme for Eq. (13) is:

n+1 n n n+U._2 4u + + 6u" - 4ui _ I u _-2
h2 hh0

(17)

ano the least restrictive stability constraint is

) k 1 18
k 1 (18)

h

1 1
which is obtainedwhen u--, a I

To show that scheme (17) is stable when it is used to solve Eq. (13), we quote

a theorem below which has been proved in Ref. 7.
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THEOREM: The scheme (17) is stable if and only if a < 0 and

- n 2a, -2 (19)-h S- 16or + (41-1) z

Tne definition of stability used here is the notion of practical stability as

discussed by RichtmeyeLMorton L8] and Chan (9] which requires the discrete

solution to have a nongrowing norm.

Now we extend scheme. (17) to solve the more general equation, Eq. (12).

It is easily seen that the extenoea stable explicit scheme takes the

expression

Un+1 0l 2 u-u + un 1 \- u i a J*L- ZL -

h /
4

+ -al+ian) h2  J 4u J 6uj -w 1 1 j-

+ ub! J+ UJ1 n Un + fn (20)

Under a slightly weaker stability definition, the stability of this extended

scheme is -]so given by (18).

We have, thus, introouceo a conditionally stable explicit scheme with

least restrictive stability condition. We, now, proceed to show its

advantages. We begin by applying this scheme to a real problem aia comparing

its results with the results producea by the Crank-Nicolson scheme in the

section to follow.
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AN APPLICATION

We apply the explicit scneme (20) to solve a wave propagation problem in

the region of the Mediterranean Sea. The representative wave equation is Eq.

(1). This is a propagation problem unoer a shallow water environment where

the water depth is 100 m. Under such environment, an isovelocity sound speed

is considereo. The bottom is characterized by a slightly different souna

speed, and a different water density is specified; in addition, bottom

attenuation is required due to the bottom energy loss.

Both the source and the receiver are placed at the same depth in the

miodle of the region. The source propagates at a low frequency. We predict

propagation loss up to the range of 25 kilometers. This problem has been

solved by three different methods - a normal mode method (SNAP [11)), a

split-step Fourier algorithm (PAREQ (11]), and the implicit finite difference

method (IFD L6j). The solutions producea by the above three methoas agree

exactlyLj. The SNAP normal mode solution was used as a benchmark reference

solution for comparison. The PAREQ and IFD solutions are all performed in a

marching process. In order to satisfy the Fourier requirements, the PAREQ

used 512 points as a depth partition, then marched with a range step of 1/2

meter. The IFO usea exactly the same step sizes in oroer to make a

point-to-point comparison. Results are all satisfactorily accurate, however,

the IFD is two-thirds faster than the PAREQ. For the discussion of the

application of this new stable explicit scheme, we choose to compare with the

finite-aifference (IFD) solution in terms of accuracy, speed, and itsA
implementation effort.

1
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In solving this problem, the following input parameters were used:

source depth - 50 m

source frequency - 25 Hz

bottom depth - 100 m

receiver depth a 50 m

souna speed (water) - 1500 m/s

sound speed (bottom) - 1550 m/s

density (water column) - 1 g/cm3

density (at bottom) - 1.2 g/cm3

attenuation a 1 dB/wavelength

maximum range - 40 km

initial range a zero m

The result obtained is Propagation Loss (PL) and is measured in

"decibels," abbreviated "dB." Propagation Loss in underwater acoustics

termlnology quantitatively describes the weakening of sound as it travels

through the sea. The conventional formula for the propagation loss is PL -

-20 Olo10 (lul). A graph of PL vs Range is plotted, as shown in Figure 3

where both IFO and explicit numerical results are identical to one another.

The explicit scheme produced satisfactorily results, however, the computation

speed of the explicit scheme is a little faster than the IFD methoa (114 min

IFO vs 90 mn explicit scheme). The largest allowable range step size

required by the explicit scheme for stability was - 0.5 m, which agrees with

the theoretical estimate (18).
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Figure 3. Solutions Comparison

CONCLUSIONS

A conotionally stable explicit finite difference scheme which can be

appliea to shallow water, low frequency, long range wave propagation problems

in the ocean has been introaucea. Comparison showeo the aavantage of

computational speeo over the Crank-Nicolson solution because the explicit

scheme requireo no solution of a system of equations, but scalar operations.

This advantage automatically indicates the relaxation of memory storage. It

also inoicates an easy vectorization of the explicit scheme on

pipeline-oriented computers.

The scheme reported in this article is a memer of a group of stable

explicit schemes. These schemes are primarily developed to solve the equation

of the Schroalnger type in a general nature. It is expectea that this group

12
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of explicit schemes will have equally efficient applications of problems in

other fielas such as plasma physics, quantum mechanics, and seismology due to

their basic advantages - fast, requiring less memory storage, easy to

implement, and easy to vectorize on pipeline-orientea computers.
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