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i. INTRODUCTION

In the wave propagation in randomly fluctuating ocean, most researchers arc

concerned with the time-independent random media [1), i.e. the local sound

speed varies independently of time. For short range propagation, this is

perhaps not a serious omission. However, in the long-range transmission, the

temporal fluctuation of media becomes important and should be taken into

account.

The main objective of our work is to investigate the statistical laws in

the acoustic wave propagation through random media, such as the ocean. We

introduce the method of progressing waves for the time-dependent random media.

If the fluctuation is weak, this is the case in ocean, we are interested in

the accumulative effect over a long time. This consideration leads to the

diffusions limit: c - 0, t - w with T = c2t fixed, where c is the scale of

random fluctuation. Our major result is that, in the diffusion limit, the

statistics of the phase and the amplitude for each wave component may be

computed easily according to the probability law of a simple diffusion

process with the variance parameter o depending on the covariance function,

the invariance principle of Donsker in the classical situation.

In Section 2, we develop the basic theory via a simple model equation.

The first-order random PDE (partial differential equation) is to be solved by

the method of characteristics. Then we apply the Khasiminski's [2,3] limit

theorem to random ordinary DE for the characteristics. Thereby, in the . -,

diffusion limit, we can determine the fluctuations of phase and amplitude by

the limiting diffusion process. In the next section, the system governs the A

acoustic waves in one dimension is treated. There we introduce the method of

progressing wave solution. This together with the method of characteristics

~M
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enable us to resolve the question of statistical fluctuations of waves.

Finally, in Section 4, the results in one dimension will be extended to the

physically important, three-dimensional problem.

2. A SIMPLE MODEL EQUATION

To illustrate the basic ideas, we consider the following simple, first-order

partial differential equation with random coefficient

(2.1) rL+ V(t,x) -JU = r) (t,x,(,)U

(2.2) u1t=0 = a(x),

where a, V are the given functions and Tj is a random function depending on a

small parameter L > 0.

By the method of characteristics in partial differential equations, we

introduce the characteristic equation

(2.3) d= V(x,y) Y(t) = x

whose solution is a characteristic curve Ft through (t,x)

(2.4) y = (s;tx) , 0 < s < t .

Along Ft the system (2.1) and (2.2) becomes

(2.5) ds Ujs,,(s;tx)I = n (s, (s;txW)1U[s,s;tx)I

V (2.6) U[O,F(O;t,x)] = a[(O;t,x)]

The solution of the above simple ordinary differential equation is

- (2.7) U(s;t,x,w) = a[C(t,x)]exp (ftn [a;&(a;tx)]do}

where &(t,x) = &(O;t,x)

W*W A
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rom (2.7) the solution of (2.1)-(2.2) is given by

(2.8) U(t,x,w) = U(O;t,x,w) = aj(t,x)]exp{6 (ttw)}

where the amplitude a[F(t,x)) is deterministic, while the phase function

() L(tx,(w) = 0E(s;t,x,w)sO with

(2.9) 0 (s,t,x,w) = fsn [(,(ao;t,x),w]do

is random.

For fixed (t,x), the dependence on which will be suppressed, (2.9) takes

the form

(2.10) eS(t) = ftcs,w)ds

In studying the statistical law of the solution (2.8), one naturally raises the

E
question, as L 0, (t-s)t -, whether a family of processes {0 t _. O} con-

verges weakly to a certain limi. distrib -n.n 0t (w), under appropriate scaling.

The weak convergence of C to e will be denoted by

(2.11) . .>0E =>
The expression (2.10) is in the form of the "sum" of random variables. If

the necessary moments exists and the process C(t,w) is asymptotically inde-

pendent, then the normalized {O - E 6 t/o{ ) > = C N (0,1), the normal

distribution with mean zero, variance one. It follows the phase fluctuation

is asymptotically normal with mean ESt and variance a2{0t}. Thus the wave

function satisfies the log-normal law.

Another interesting case is the diffusion limit. This limit is important

because it renders the problem computable and permits generalization to

higher-dimensional situations. Suppose is such that

S(2.12) hE 0 ri + Cfi

where i 0 is deterministic, Ei = 0 and

(2.13) E{(i(t) i(s)} u a(t,s).

q... . _____-
p "
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Assume the limit

(2.14) a 2 = lrn I ft+ 0 atsdd
T_ Tt0 t0

exists, independent of to, and the process is asymptotically independent (to

be made precise later). Then the rescaled phase function 0 CT 6Tt: 2,

for fixed -r = F, 2t. we have

which is a Wiener process with the variance parameter a. This is a consequence

of the well-known Khasiminski theorem [3].

Now we consider a variant of (2.1):

(2.5) -L+ nc(t,x,w) -LI]U b(t,x) Up

(216)Ujto = a(x)

In contrast with the previous equation (2.1), the characteristic equation

(2.17) dy = nE (s'yL CW) p y Ct) =x

is stochastic. The limit theorem for the stochastic differential equation

(2.17) was treated by Khasiminski as mentioned before.

Let

(2.18) n E (t,x,w) = nl0 + cn(t,x,w)

where n 0 is a constant (in general, may be a function xt). The random field

satisfies

4..(2.19) En= 0

(ii) njt,x,w) is (a.e.) continuous, and its partial derivatives up to

second-order are uniformly bounded in [0,T] x R .

2iiT
(2.20) 02 lis -1 ffnt+-.x _-t)n(t +T-s~x _71 s) dt

T_ T 000 0 00

RH-



which exists independently of t0 1 0 and x0

(iv) The a-field F tis increasing in [t,s] such that n(t,x,w) is measurable
S

with respect to F t ,and for all A in B 66 Ft+T , we have

(2.21) JP(A B)- P(A)P(B)I .!. 6(T)P(A)

where T 6 3(T) 4- 0 as T t-

Then we can apply Theorem K (Khasininski's theorem) to get

Lemma 2.1: As E 4- 0, (t-s) t - , with T = E t and a = c s fixed, the solution

(2.17) converges weakly to a Markov diffusion about the mean characteristic,

that is

(2.22) Y :(t) => E (x,t-S) + (T-a) =Y (t)

where F 0Cx,t) = (x-riot), U(OM = 0,

and C(T,W) is a Markov diffusion process with mean zero and the diffusion coeffi-

cient 02defined by (2.20)#.

Remark: In fact the above lemma says that the limit process will satisfy the

1t8 equation

(2.23) dys = no0 ds + ExTdw(t-s) , yt X.

Lct F t(w) be the random characteristic curve

(2.24) CZ Y C(t,.W), 0 S. s S. t

Similar to (2.8), along r (w), the system (2.15)-(2.16) may be integrated to
t,

give

(2.25) U (t,x) =aII.I~jiexp(w(t.yEIl.

where

(2.26) O(t'y') *ftbfs,Ye(t)]ds

_ _ _ _ _ _ _ _ - ~.0 . .W
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To ensure the weak convergence of the amplitude and the phase in (2.25),

we assume the following conditions hold:

(2.27) lir sup P{ su Yo (s')- Y0(s)I > 61 0, V6 0
h4O c[ 0,E] ls'-s5.h

(2.28) lim sup P{ sup jY£,(t) - Y'(s)>} 0, V6 > 0
h+0 ce[O,c0 0<s, s'<_Et0

0 Is'-sl<h

Then by invoking Theorem I on p. 449 and Theorem 2 on p.486 in [41, we can

prove the following lemmas.

Lemma 2.2 As E + 0 and t t -, with T = c2 t held fixed, we have a(Y Et1

a[ 0 (x,t)+ (T)] asymptotically provided that the condition (2.27)) holds

anti a C C(R)

L.emma 2.3 Suppose the condition (2.28) holds and if ] g(x) on JRwhich is posi-

tive, increasing as lxi - - such that

sup sup E g[YC(t)] = C <
E*[O,C01 tZszo

If b satisfies =

lim sup sup Ibtx) 0N_ t >__ I x [>N g Cx)

then

*(t,Y
c) => 0(t,Y) asymptotically #

Thus the above results may be summarized as

Theorem 2.1. If the assumptions in Lemmas 2.1 and 2.2 are satisfied, then the

statistics of the amplitude a and the phase * in the solution (2.25), in the

2
limit as c .0, t + - with T = c t fixed, may be computed according to the

distribution Y (t) given in (2.22) #.
s

1%S



-7-

Remarks:

(1) In general it is not necessarily true that U > U = a(Y0) exp{p(t,y)}.

This is valid if we can show that a stronger convergence, such as the conver-

gence in probability, takes place.

(2) Theorem 2.1 implies an invariance principle. For small c and large t, one

can approximately compute the statistics of a and 0 by means of a Brownian

motion (2.22).

(3) "a[Yo(t)] -> a[Y 0 (t)] asymptotically" means that, writing Yo(t) =

F0 (x,t) + (T), the limit is taken with respect to e, with 0 and T both held

fixed. Similar interpretation is given for 0(t,Yc).

3. RANDOM HYPERBOLIC SYSTEMS IN ONE SPACE-DIMENSION

The acoustic wave propagation in one-dimension may be described by the

first-order system:

2k + Pc2 'u I
9t 7 = ql

(3.1) t -

auD-t ax =2

which is subject to appropriate initial and boundary conditions. In (3.1),

p and u denote the acoustic pressure and velocity; p is the mean density;

c(t,x,w) is the local speed of sound which fluctuates randomly, and ql,q 2 are

the source terms. For convenience, we let U = pu, U = p so that (3.1) can

be written as

(3.2) U -A 3U

where ru'

(3.3) A- " 0

,,~----- ..- -mom- -, ,
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In the theory of partial differential equations [5], the system (3.2) is

usually analyzed by the method of characteristics. But this approach yields

a rather complicated statistical problem. Such a consideration has lead us to

a formal progressing wave solution. Though difficult to justify mathematically,

it is physically appealing and has been applied widely in studying time-depen-

dent wave propagation problems. More importantly the method may be easily

extended to higher dimensions.

Let us consider the homogeneous version of (3.2):

(3.4) L U =- - A- = 0

For the first-order progressing wave solution, we seek a solution of the form

(p.622, [51)

N
(3.5) U(tx) - I z.(t,x)gj[S(t,x)]

j=1 )1

where z is the amplitude-vector; g is the scalar wave form, and S is the phase

funct ion.

Let

(3.6) U. = zjgj(S) , j = 1,2,...

Then

(3.7) L U1 = g1 Lz1 + gi[StI-SxAI z,

= gI LZ,

if we choose

(3.8) MzI = (StI - SXA) z1 = 0

,4 Let X and z+ denote the eigenvalue and the right eigenvector of (S xA),

respectively. We get

((3.9) z. pjz. , j * 1,2....

J 3,.

. ,. . . ..~mP
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(3.10) St = X(x,t,Sx)

Thus

(3.11) M = (I - S XA)

and

(3.12) L U2 = + g1Lz2

It is easy to check that

(3.13) L(U1 + U2) = glLZ 2

if we choose

(3.14 g = g

rind

(3.1S) Mz -Lz
2 1

This process can be continued in such a manner that

n(3.16) L( j iJ) = g1L z , for any n :L N.

We tacitly assumed that the sequence {z n} is decreasing in magnitude so that

the remainder term on the RHS of (3.16) also diminishes. For simplicity, we

stop at n = 2. In view of (3.9), (3.15) becomes

(3.17) Mz2 = -L(01 z
+) ,

which is solvable provided that

(3.18) z-L(p1z ) = 0

Here z denotes a left eigenvector of (S XA). Hence, to a first-order approxi-

mation, the amptitude and the phase of the wave function U are determined by

(3.10) and (3.18).

According to the Hamilton-Jacobi theory, we introduce the "bi-characteristic"

curve F:
t

(3.19) f - X(s,y,q), y(t) = x,

uS ay X

741

UFO. ~ - 4__ -w .

- ~-~;~?'&~
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The curve I't = Y = Y(x,s), 0 < s s_ t, is the physical characteristics or the

ray. Note that if \ is linear in q, then (3.19) is independent of (3.20).

The amplitude or "transport" equation (3.18) can be simplified to give

(3 .21) -~ + b ) 0, ,(,x) = a(x)

where f) = p and . I S x

(3.22) b = (z-Lz ) with (z-, z+) = 1

Now the system (3.19)-(3.21) resembles the system (2.1)-(2.3) treated in

section 2. Therefore the analysis there may be carried over to the present

case.

To illustrate the procedure, we return to the original problem (3.2)

with Q = 0. It is easy to see that there are two distinct eigenvalues

(3.23) X = Xl, 2 = + C(t,x,)S x(t,x,&I)

The corresponding normalized eigenvector are1, ' and z1,2 = 2  [l 1

(3.24) z, an

The equation (3.10), (3.19) and (3.21), become

(3.25) St = ±C(t,x,wL)S , S(0,x) = 6(x)

(3.26) ds = ±C(s,y,w), y (t) = x.

(3.27) Pt ± Cpx + bo = 0, p(O,x) = a(x)

where b (zl 2Lzl 2).

Now suppose that the local sound speed C fluctuates about a constant mean

value n10 so that

(3.28) C(t,x,,) = n0 + cn(t,x,W)

where c > 0 is a small parameter. Thus for each characteristic curve, we can

"'I-. .. #, ,
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apply Theorem 2.1 to (3.26) to obtain an asymptotic limit law along the

unperturbed characteristic curve, or, as r 4 0, t t , -r = e t fixed,

(3.29) Y C (s;x,t) - Y1  (s;x,t) asymptotically,

where Y(s;x,t) is the Brownian motion defined by the lt6 equation (2.23).

In view of (3.28), since L is a differential operator, b = 0(c). If

wc neglect b in (3.27), the equations (3.25) and (3.27) become identical.

Their solutions are simply

(3.30) S(t'x'w) = e [YL(x,t~w)1
3 3

(3.31) p(tx,w) = a [Y.(x,t,w)1 , Y.C(x,t) =Y.(0;x,t), j=1,2

Suppose we assume that q, a, 0 satisfy the conditions for Lemma 2.2. Them we

can assert that

(3.32) e.IYf-(x,t)] =-> 0 [Y.(xlt)]

andf

(3.33) a [Y.(x,t)] => a.Iy (x,t)] , j =1,2 , asymptotically.

That is, for small F, we may compute the statistics of amplitude and phase

for each wave component by the distribution of the Brownian motion Y1j,0t).

To write down pathwise solution explicitly, let the initial state

IJ(O,x) be written as

(3.34) iJ(0,x) = az a 1(x)z4expfikO (W)

+cia aCx)z~expfikO2()

Then the first-order progressing wave approximation is

U(t'x'W) - C a,[Yc(x,t)Iziexp{ikeP(Y E(x,t)]}

(33a +*a 2[YExt)z +exp{ik E rYx't)1)

In view of (3.24), the eigenvectors Z+2 are random. But from (3.28), we have

h . ~ - - -.~~1,2



-12-

(3.36) = C, 2 + 0(c), C1 ,2 L 0 0 x(f 0 t)

where C is not random. Thus z. may be replaced by C.• in (3.35).

Let us summarize the above results as a theorem.

Theorem 3.1: In the first-order progressing wave approximation, the acoustic

problem (3.1) or (3.2), with q=G and the initial condition (3.34) has a sample

solution (3.35), where zi may be replaced by Ci, j=1,2. Thus, in the diffusion
2

limit 4 - 0, t t - , with T = E t fixed, the statistics of the amplitude a.

and the phase 0., j = 1,2, can be computed approximately by the probabilityJ

laws for the Brownian motions Y. (x,t) satisfying

(3.37) dYj = (-1) 10dt + adw(t), Y.(x,0) = x, j = 1,2,

where w(t) is the standard Brownian motion and o is defined by (2.20). #

4. RANDOM HYPERBOLIC SYSTEMS IN HIGHER DIMENSIONS

In three dimensions the acoustic system (2.1) in one dimension should be

modified to give

+ pc2  u=
at
u

p) + Vp =q 2

Here x = (x,,x2,x3), u = (Ulu 2,u ) and q2 = (q21,q22 q23)' and they have

similar interpretation as before. For convenience, we set

(4.2) a =- a T- ja ,,
t t j = , j = 1,2,3

l)efine

PU
(4.3) 3 9

' -" ) L?

,, . , , , -L :" ... ...w
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o 0 0 6lj

0 0 0 2j
(4.4) A ij , i j, i,j=1,2,3.

C 0 Ij C262j C2 3, 

(4.5) F-1
q 21

Q q22{

q 23j

Then (4.1) may be put in the form

3
(4.6) L U = (t- I AD) U

j=l 

which is a generalization of (3.2). By an analogy to one-dimensional case,

it is clear that the progressing wave formalism can be extended to the present

case in a straight-forward manner. Therefore we shall only sketch the proce-

dure without going into the details.

In the first-order approximation, as before, let

(4.7) U - zg[S(t,x)]

Then we set Q = 0 in (4.6),

(4.8) LU = gLz

and

3
(4.9) Mz = ISl - Z (a S)A )z -0

j=l j

The matrix M has two repreated eigenvalues A 0 and two distinct ones

at

(4.10) l, 2 = tyC

where
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3
(4.11) Y= { ( ( S)2

j=1 i

Again denote by z+ (z ,2) the right (left) eigenvector corresponding to 2

respectively, with (z-,z + ) = 1.

Suppose that the initial wave vector belongs to the subspace spanned by
+ +

z1 , z2 so that

2
(4.12) U(O,x) I a.a.(x)z+(O,x)exp{ik j(x)}

j=1 
j

Then, corresponding to (3.25)-(3.27), the amplitude and the phase are deter-

mined by the following set of equations

(4.13) D tS = ±C(t,x,W)IVSl, S(O,x) = 6(x)

which has the bi-characteristic equations:

(4.14) dy = +C(s,y,w)- , q # 0, y(t) = xds - 7

(4.1S) !q = ±VC(s,y,w) q , q(t) = p = VS
ds

and

(4.16) 3t P VS'Vp + bP 0, o(O,x) = a(x)

In contrast with the one-dimensional case, the system of equations (4.13)-

(4.16) are highly nonlinear. Even without randomness, the system is rather

difficult to deal with. In order to proceed, we shall linearize the system.

Again assume

(4.17) C(t,x,W) = O + Ec(t,x,w).

Then (4.15) implies q a p, and (4.14) yields

(4.18) d -±C(s,y,W)p, y(t) X,
s

(4.19) p= p/Ip VS0/IVS0

',.- .- " q,, ' 'm .. "-N'2:, . ''~a r',
.

.
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where S0 (t,x) denotes the phase function as = 0. The "eikonal" equation

(4.13) may be approximated by

(4.20) t S = + CSt x,w) • VS, S(Ox) = O(x)

In the same spirit, (4.16) is replaced by

(4.21) t + C p Vp = 0, p(O,x) = a(x)

Now the linearized system (4.18) - (4.21) is similar to (3.25) - (3.27) in

one-dimension, and can be treated accordingly. We are able to generalize

Theorem 3.1 to the following.

Theorem 4.1: In the first-order progressing wave approximation, the acoustic

wave problem (4.1) or (4.6), with Q = 0 and the initial condition (4.12), has

a sample solution of the form

2
(4.22) U(t,x,w) - j cx.a.[y.(x,t)]exp{ik Od[yE(x,t)]}

where a. = Z+jr=O"

Further, in the diffusion limit, the statistics of the amplitude a. and the

phase 0. can be determined by the probability distribution of the Brownian

motion Y.(x,t) which satisfies

(4.23) dyj = [(-1)J 0dt + a dw(t)]O,

yj(x,0) = x, j = 1,2,
ei

where pO = V(x) , w(t) is the standard Brownian motion, and a is definedSI vo~x) I

as in (2.20) #.

REMARKS

(I) The method presented above can be applied to other random hyperbolic

systems.

..... ~ • ,



-16-

(2) Since, for simplicity, we assume the mean value E C = 0 is constant.

This will limit the application in underwater acoustics to the propagation

over the horizontal range.

(3) In theory the straitification in depth may be treated as well. The

difficulty in computation lies in the deterministic, rather than stochastic

part.

(4) As in theory of geometric optics, by properly choosing the asymptotic

sequence, we should be able to study the statistical fluctuations near a

smooth caustics, which is important in the underwater sound propagation.

(5) Since the sample solutions, in the diffusion limit, are Brownian

fuictionals, the actual computation of statistical properties of solution

may be carried out by the method of functional integrals as proposed by the

author [6].

1
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