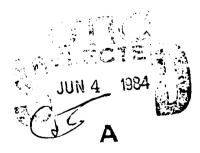


MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A



M. D. HATHAWAY T. H. OKIISHI DECEMBER 1983

AERODYNAMIC DESIGN AND PERFORMANCE OF A TWO-STAGE, AXIAL-FLOW COMPRESSOR (BASELINE)

C FILE COPY,

AD-A141

84 05 30 055

ISU-ERI-AMES-84178 TCRL-24 ERI PROJECTS 1384, 1480, 1848

Approved for public release; distribution unlimited.

Qualified requestors may obtain additional copies from the Defense Documentation Center; all others should apply to the National Technical Information Service.

CONDITIONS OF REPRODUCTION
Reproduction, translation, publication, use and disposal in whole or in part by or for the United States Government is permitted.

ENGINEERING RESEARCH ENGINEERING RESEARCH ENGINEERING RESEARCH ENGINEERING RESEARCH ENGINEERING RESEARCH

TECHNICAL REPORT

AERODYNAMIC DESIGN AND PERFORMANCE OF A TWO-STAGE, AXIAL-FLOW COMPRESSOR (BASELINE)

This took and the south of the

ISU-ERI-Ames-84178 TCRL-24 ERI Projects 1394, 1490, 1645 DEPARTMENT OF MECHANICAL ENGINEERING ENGINEERING RESEARCH INSTITUTE IOWA STATE UNIVERSITY, AMES

UNCLASSIFIED jii
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REFOSK-TR. 84-0417 AD-A144	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublitio) Aerodynamic Design and Performance of a Two-Stage, Axial-Flow Compressor (Baseline)	5. Type of Report & PERIOD COVERED Technical Report - 1 October 1978-30 November 198: 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	TCRL-24 B. CONTRACT OR GRANT NUMBER(s)
Michael D. Hathaway Theodore H. Okiishi	F49620-83-K-0023
9. PERFORMING ORGANIZATION NAME AND ADDRESS Turbomachinery Components Research Laboratory Engineering Research Institute/Department of Mechanical Engineering lowa State University, Ames, Iowa 50011 11. CONTROLLING OFFICE NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS G1102 F 2307 / A4
Air Force Office of Scientific Research Directorate of Aerospace Sciences (AFOSR/NA) Bolling Air Force Base, Washington, D.C.	December 1983
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	190 pages 15. SECURITY CLASS. (of this report) Unclassified
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for Public Release; Distribution Unlimite 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) axial-flow turbomachinery axial-flow compressor multistage axial-flow compressor	
A two-stage, baseline configuration, low-speed, ax compressor was designed, built and tested at design fabrication and data acquisition and reduction det Time-averaged, spatially detailed and overall flow performance data for design flow operation of the and discussed.	n flow. The design, ails are described. and aerodynamic

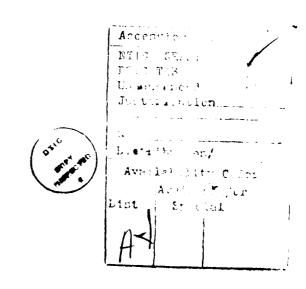

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)	iv
•	

TABLE OF CONTENTS

				Page
	SYMBO	LS AND N	OTATION	i
	LIST	OF FIGUR	RES	xi ii
	LIST	OF TABLE	es .	xvi
1.	INTRO	DUCTION		1
2.	RESEA	RCH COME	PRESSOR FACILITY	3
	2.1.	Axial-H	Tlow Research Compressor	3
		2.1.1.	Aerodynamic Design	3
		2.1.2.	Mechanical Design	9
		2.1.3.	Blade Fabrication and Installation	13
	2.2.	Probe a	and Stationary Blade Row Actuators	20
	2.3.	Pressur	e and Temperature Sensing Instrumentation	21
	2.4.	Compute	r Control System	22
	2.5.	Calibra	tion Equipment	23
3.	EXPER	IMENTAL	PROCEDURE AND DATA REDUCTION	27
	3.1.	Calibra	tion	29
		3.1.1.	Cobra Probe Yaw-Angle Calibration in Free- Stream Portion of Flow	31
		3.1.2.	Cobra Probe Calibration in Wake Portion of Flow	31
		3.1.3.	Spanwise Calibration of the Cobra Probe	33
		3.1.4.	Scanivalve Pressure Transducer Calibration	33
	3.2.	Data Aq	uisition	37
		3.2.1.	Overall Performance Map	37
		3.2.2.	Time-Averaged Measurements	39

	3.3.	Data Reduction	42
		3.3.1. Flow-Field Parameters	43
		3.3.2. Performance Parameters	45
4.	PRESE	ENTATION AND DISCUSSION OF DATA	47
	4.1.	Error Analysis	47
	4.2.	Overall Performance Map	51
	4.3.	Spatially Detailed Time-Averaged Measurement Results	57
	4.4.	Comparisons of Circumferential-Mean Data with Design Code Predictions	86
5.	SUMMA	RY AND CONCLUSIONS	111
6.	RECOM	MENDATIONS FOR FURTHER RESEARCH	113
7.	REFER	ENCES	115
8.	ACKNO	WLEDGEMENTS	117
9.	APPEN	DIX A: CORRELATIONS USED IN NASA DESIGN CODE	119
	9.1.	Blade Loss	119
	9.2.	Incidence and Deviation Angle	121
0.	APPEN	DIX B: NASA DESIGN CODE RESULTS	123
1.	APPEN	DIX C: COMPUTER PROGRAMS AND DATA STORAGE	155
2.	APPEN	DIX D: PARAMETER EQUATIONS	157
	12.1.	General Parameters	157
		12.1.1. Basic Fluid Properties	157
		12.1.2. Blade-Element Location	159
	12.2.	Flow-Field Parameters	159
		12.2.1. Point and Circumferential-Average Blade Element Quantities	159
		12.2.2. Global Parameters	163

	12.2.3.	Performance Parameters (based on cobra probe measurements)	164
	12.2.4.	Performance Parameters Used in Generating Performance Map	166
13.		TABULATION OF EXPERIMENTALLY DETERMINED	169

SYMBOLS AND NOTATION

A	compressor flow passage annulus area, m ²
c	blade chord length, m
FCC	comparison of integrated and venturi flow coefficients (Eq. 12.34), percent
g	local acceleration of gravity, m/s ²
g _c	gravitational constant, 1.0 kgm/Ns ²
Н	total head with respect to barometric pressure (Eq. 12.5 or 12.48), Nm/kg
h	static head with respect to barometric pressure, Nm/kg
h _{hg}	barometric pressure, m of Hg
h _w	annulus outer-surface end-wall static head with respect to barometric pressure (Eq. 12.9 or 12.10), Nm/kg
i	incidence angle (Fig. 12.1; Eqs. 12.25 or 12.27), deg
Patm	barometric pressure (Eq. 12.1), N/m ²
P _t	total pressure with respect to barometric pressure, m of water
P _w	annulus outer-surface static wall pressure with respect to barometric pressure, m of water
РИН	percent passage height from hub (Eq. 12.4), percent
Q_{a}	integrated volume flow rate at probe-traversing measurement stations (Eq. 12.32), m^3/s
$Q_{\mathbf{v}}$	venturi volume flow rate (Eq. 12.30), m ³ /s
R	gas constant, Nm/kg°K
r	radius from compressor axís, m
RPM	rotor rotational speed, rpm
S	circumferential space between blades, blade pitch, m or deg
T	compressor drive motor torque, Nm

```
temperature, °K
           barometer ambient temperature, °K
t
baro
t
max
           blade section maximum thickness, m
U
           rotor blade velocity (Eq. 12.14), m/s
           absolute velocity (Fig. 12.1; Eq. 12.12 or 12.13), m/s
VΊ
           relative velocity (Eqs. 12.21 or 12.22), m/s
           tangential component of absolute fluid velocity (Fig. 12.1;
          Eqs. 12.17 or 12.18), m/s
          tangential component of relative fluid velocity (Eqs. 12.19
           or 12.20), m/s
v<sub>z</sub>
          axial component of fluid velocity (Fig. 12.1; Eqs. 12.15 or
           12.16 and 12.47), m/s
Y
          circumferential traversing position, deg
          absolute flow angle with respect to axial direction
           (Fig. 12.1; Eqs. 12.7 or 12.8), deg
          relative flow angle with respect to axial direction
           (Eqs. 12.23 or 12.24), deg
          specific weight of water manometer fluid (Eq. 12.3), N/m<sup>3</sup>
^{\gamma_{H_2O}}
          specific weight of mercury, N/m<sup>3</sup>
Hg
\mathbf{P}_{\mathbf{vent}}
          differential pressure across venturi, m of water
          deviation angle (Fig. 12.1; Eqs. 12.26 or 12.28), deg
          hydraulic efficiency (Eqs. 12.42, 12.43, and 12.44)
          blade angle, angle between tangent to blade camber line and
          axial direction (Fig. 12.1), deg
          density of air (Eq. 12.2), kg/m<sup>3</sup>
          blade row solidity
          flow coefficient (Eq. 12.29)
          integrated flow coefficient at probe-traversing measurement
          stations (Eq. 12.33)
          venturi flow coefficient (eq. 12.31)
```

ψ head-rise coefficient (Eqs. 12.36 through 12.41 and 12.49, 12.50)

total-head losss coefficient (Eqs. 12.45 and 12.46)

Additional General Subscripts

h annulus inner surface, hub

i ideal

me mechanical

overall overall compressor

pm torque meter based performance parameters

R rotor

S stator

stage stage

t annulus outer surface, tip

blade-row inlet

blade-row outlet

1R first rotor

2R second rotor

1S first stator

2S second stator

Superscripts

- relative to rotor
- average; blade-to-blade circumferential average value
- mass-averaged in the radial direction
- cross-section average

LIST OF FIGURES

			Page
Figure	2.1	Schematic of baseline compressor showing original and redesigned components.	4
Figure	2.2	Representative rotor blade sections at three spanwise locations.	6
Figure	2.3	Representative stator blade sections at three spanwise locations.	7
Figure	2.4	Meridional-plane view of redesigned section of baseline compressor with each ring assembly identified.	10
Figure	2.5	Schematic diagram showing axial location of probe measurement stations relative to adjacent blade rows (dimensions in mm).	12
Figure	2.6	Radial and circumferential interlock design of outer ring assembly.	14
Figure	2.7	Probe access hole configuration.	15
Figure	2.8	Schematic of blade fabrication showing laminates sandwiching trunnion spline.	17
Figure	2.9	Representative eyelash drawing.	18
Figure	2.10	Schematic diagram of data acquisition system.	24
Figure	3.1	Baseline compressor overall performance curve and operating point.	28
Figure	3.2	Logic diagram of data acquisition system.	30
Figure	3.3	Cobra probe yaw-angle total-head calibration curve in free stream portion of flow for flow coefficient = 0.587 at 2400 rpm.	32
Figure	3.4	Cobra probe total-head calibration curve in wake portion of flow for flow coefficient = 0.587 at 2400 rpm.	34
Figure	3.5	Cobra and Kiel probe comparison behind first rotor and first stator for flow coefficient = 0.587 at 2400 rpm ($Y/S_c = 0.0$).	35

Figure	3.6	Blade cascade showing circumferential measurement window.	4
Figure	4.1	Predicted and measured overall performance data.	5
Figure	4.2	Blade-to-blade distribution of time-averaged total head for flow behind the first and second stage rotors (ϕ = 0.587 at 2400 rpm).	58
Figure	4.3	Blade-to-blade distribution of time-averaged total head for flow behind the first and second stage stators (ϕ = 0.587 at 2400 rpm).	6
Figure	4.4	Spanwise distribution of circumferential-mean data for flow behind the first and second stage rotors (ϕ = 0.587 at 2400 rpm).	6
Figure	4.5	Spanwise distribution of circumferential-mean data for flow behind the first and second stage stators (ϕ = 0.587 at 2400 rpm).	70
Figure	4.6	Contour map of the distribution of total head behind each blade row (ϕ = 0.587 at 2400 rpm). Data enhancement employed.	74
Figure	4.7	Locations of actual data points used in constructing the contour map behind the first stator.	78
Figure	4.8	Contour map of the distribution of total head behind the first stator (ϕ = 0.587 at 2400 rpm). No data enhancement.	79
Figure	4.9	Comparisons of measured circumferential-mean incidence and deviation angles for both stages (ϕ = 0.587 at 2400 rpm).	8(
Figure	4.10	Comparisons of measured and predicted velocity triangles behind the first rotor (ϕ = 0.587 at 2400 rpm).	87
Figure	4.11	Comparisons of measured and predicted velocity triangles ahead of the second rotor (ϕ = 0.587 at 2400 rpm).	88
Figure	4.12	Comparisons of measured and predicted velocity triangles behind the second rotor (ϕ = 0.587 at 2400 rpm).	89
Figure	4.13	Comparisons of the measured and predicted spanwise distributions of circumferential-mean	Q.

Figure 4.14	4 Comparisons of the measured and predicted spanwise distributions of circumferential-mean data for the first and second stage rotors (φ = 0.587 at 2400 rpm).	94
Figure 4.15	Comparisons of the measured and predicted spanwise distributions of circumferential-mean data for the first and second stage stators (φ = 0.587 at 2400 rpm).	97
Figure 4.16	Spanwise distributions of design code rotor blade angles.	101
Figure 4.17	7 Spanwise distributions of design code stator blade angles.	104
Figure 4.18	Comparisons of measured and predicted spanwise distributions of blade loss for each blade row $(\phi = 0.587 \text{ at } 2400 \text{ rpm})$.	105
Figure 9.1	Blade loss correlation curves used in NASA design code.	120
Figure 10.1	Typical rotor and stator blade sections using manufacturing coordinates.	154
Figure 12.1	Sketch showing nomenclature and sign conventions (all positive except as noted) for slow-response instrument parameters.	158

LIST OF TABLES

			Page
Table	4.1	Uncertainty estimates of measurement parameters.	48
Table	4.2	Flow coefficient comparison between venturi and integrated measurement station flow coefficients.	51
Table	4.3	Rotor, stator, stage, and overall performance parameters.	85
Table	10.1	Design code input parameters.	124
Table	10.2	Design code predictions of aerodynamic parameters.	132
Table	10.3	Design code stage and overall performance predictions.	143
Table	10.4	Rotor blade manufacturing coordinates generated by NASA design code.	144
Table	10.5	Stator blade manufacturing coordinates generated by NASA design code.	149
Table	13.1	Point-by-point distributions of circumferential survey data.	171
Table	13 2	Circumferentially-averaged flow-field narameters	190

TO COLOR OF THE SECOND SECOND SECOND OF THE SECOND SECOND

1. INTRODUCTION

A significant portion of the inefficiency of axial-flow turbomachines is associated with viscous and turbulent flow phenomena in
the boundary layers which develop on blade surfaces and on annulus hub
and casing walls. For example, large secondary flow losses can
accompany the complex, three-dimensional flow patterns of annulus-wall
boundary layers passing through blade rows. This behavior affects
both local work transfer and the management of the flow in subsequent
blade rows. It can be appreciated, therefore, why there has been
considerable interest in the possibility of reducing axial-flow turbomachine stationary-blade-row secondary and end-wall flow losses by
incorporation of unusual blade configurations (e.g., Mitchell and
Soileau [1]; Wisler [2]; Senoo, Taylor, Batra, and Hink [3]).

In order to initiate a local program of research to provide a clearer understanding of the potential for better controlling the secondary and end-wall flows in axial-flow turbomachines, a suitable baseline research compressor was required. The existing three-stage, axial-flow compressor [4] of the Iowa State University Turbomachinery Components Research Laboratory was evaluated for possible service in this capacity. It was decided that the best course of action would involve the design and fabrication of new blades which would be more representative of conventional compressors. However, much of the rest of the existing compressor rig such as drive system, inlet flow path, and flow-rate control and measurement duct could be used with the new blades to form the baseline compressor. The design of the new

baseline blades was accomplished with the aid of a NASA computer code [5] and included the following considerations:

- Higher blade-chord Reynolds numbers than were previously attainable with the three-stage compressor blading.
- A better blade material which would be more durable than that already available.
- 3. Conventional blade-section shapes.
- A favorable ratio of number of rotor blades to number of stator blades.
- 5. Elimination of inlet guide vanes.

In order to use as much of the existing compressor rig as possible while also achieving a significantly higher blade-chord Reynolds number, a two-stage configuration without inlet guide vanes was selected.

Fiberglass blades were fabricated and fitted into specially made flowpath rings to form the baseline compressor.

This report is intended to document in detail important aspects of the design, fabrication, and aerodynamic testing of the baseline compressor configuration. Subsequent reports will deal with specific stator blade modifications for possibly improved control of end-wall and secondary flows as well as related tests and comparisons of data.

2. RESEARCH COMPRESSOR FACILITY

The axial-flow research compressor and data acquisition system of the Iowa State University Engineering Research Institute/Mechanical Engineering Department Turbomachinery Components Research Laboratory were used to accomplish the research described in this report. The compressor, instrumentation, data acquisition system, and calibration equipment are described in this section.

2.1. Axial-Flow Research Compressor

Aerodynamic considerations mentioned earlier led to the design of a new two-stage, baseline, axial-flow research compressor configuration. An existing three-stage axial-flow compressor [4] was modified to form the baseline compressor. Much of the existing compressor such as the drive system, inlet flow-path, and flow-rate control and measurement duct were incorporated into the current system. A schematic of the baseline compressor rig which indicates the extent of the redesigned section is shown in Figure 2.1.

2.1.1. Aerodynamic Design

Aerodynamic design of the two-stage baseline compressor was accomplished with the aid of an axial-flow compressor design code [5] developed at NASA Lewis Research Center. The aerodynamic portion of the code assumes steady, axisymmetric flow and uses a streamline curvature method for the iterative solution--between blade rows--of the property, continuity, and momentum equations with empirical subsonic flow viscous loss correlations provided by the user (see

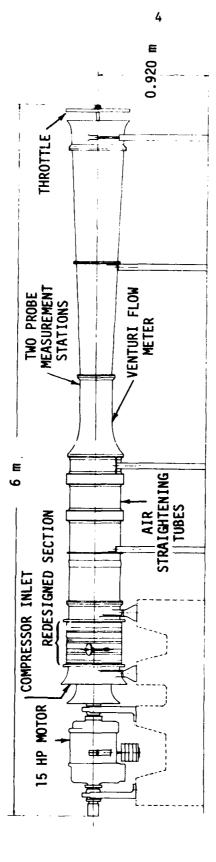


Figure 2.1 Schematic of baseline compressor showing original and redesigned components.

Appendix A). Coupled with the aerodynamic solution iterations, is a blade design procedure which constructs blade elements on specified conical surfaces and then stacks them on a user defined axis (see Reference [5]). These blade elements are positioned in the flow with incidence and deviation angle correlations selected by the user (see Appendix A). After aerodynamic and blade design solution convergence has been achieved, blade fabrication information consisting of coordinates for several blade sections—formed by the intersection of planes perpendicular to the radial direction and the blade at different radii—are provided by the code. Blade sections between elements are obtained by interpolation. Examples of such blade sections at three spanwise locations are shown in Figure 2.2, for the baseline rotor blade, and Figure 2.3, for the baseline stator blade.

The baseline compressor was designed to have high reaction stages typical of transonic compressor configurations. Further, a uniform spanwise distribution of total pressure was prescribed for each rotor exit. The stators were designed to discharge fluid axially and inlet guide vanes were not used.

The coordinates of the annular flow path for the existing compressor were retained in the baseline compressor to allow use of the existing inlet and exit flow sections. A rotor speed of 2400 rpm was selected as it was considered to be the maximum safe level obtainable with the existing equipment. A mass flow-rate of 5.25 lb/s (2.29 Kg/s) was established from preliminary design trials with a simple radial equilibrium based computer code [6] developed by Detroit Diesel Allison for NASA. An overall compressor pressure ratio of 1.0125 was obtained

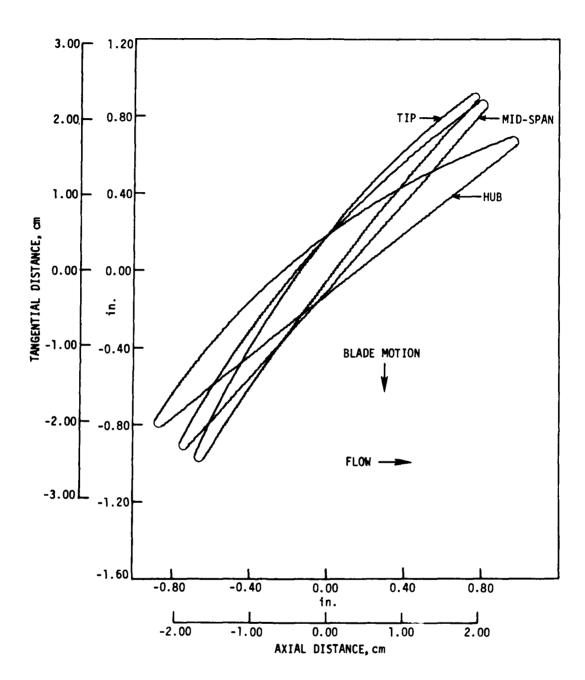
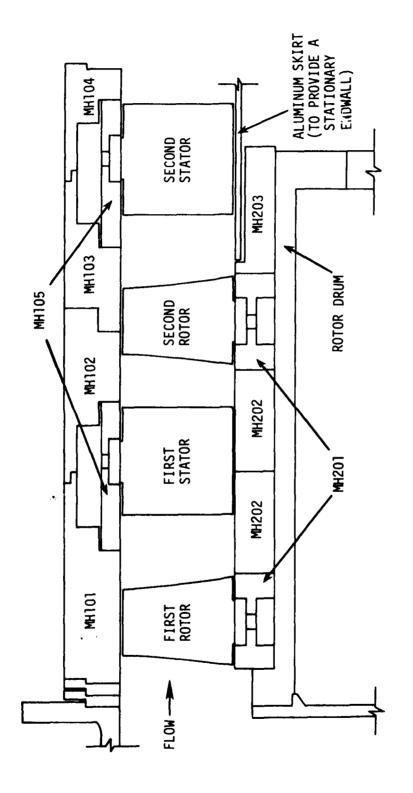


Figure 2.2 Representative rotor blade sections at three spanwise locations.

PROGRAM BROKESKI BESTERNE MAKESKI KARAKET BESTERNE KARAKET ZORGEKE BESTERNE BESTERNE

Figure 2.3 Representative stator blade sections at three spanwise locations.


with the codes--with the rotor tip diffusion factor limit specification of 0.4 being the only aerodynamic limit reached during the design process. Circular arc blade-elements were selected as they were considered suitable for the low Mach number service involved. For the baseline configuration, blade chord and leading and trailing edge radii were held constant across the span. The blade maximum thickness to chord ratio was varied linearly from 0.1 at the blade root to 0.06 at the other extremity. In order to maximize the blade chord Reynolds number, the rotor chord length was made as large as possible while still allowing two stages to fit within the predetermined flow path. The selected rotor chord length, 2.39 in (6.07 cm), coupled with a reasonable value of rotor tip solidity (1.0) yielded 21 rotor blades. At design point, the blade chord Reynolds number was on the order of 1.8×10^{5} . To achieve a reasonable ratio of number of rotor blades to number of stator blades, the acoustics-related guidelines of Reference [7] were used which set the number of stator blades at 30. A stator chord length equal in value to the rotor chord length resulted in a reasonable stator solidity (1.4 at the tip) and was thus adopted. The aspect ratio of each blade row was 1.0. A radial stacking axis through the center of gravity of each blade element was considered appropriate for the baseline rotor and stator blades. Additional blade parameters and blade fabrication coordinates are given in Appendix B. Annulus-wall blockage factors (see Appendix B) were estimated, keeping in mind that specifying smaller than anticipated blockage is conservative. If blockage is higher than specified, the flow in the mid-span region will be accelerated and loading will be relieved. On the other hand, if

blockage is less than specified, the flow in the mid-span region will tend to be accelerated less and loading will increase. Tabulated velocity diagram output from the NASA aerodynamic design code are provided in Appendix B.

2.1.2. Mechanical Design

Except for the blades, all machining and fabrication of the baseline compressor was performed in the Iowa State University Engineering Research Institute Machine Shop. The geometry of the baseline compressor as well as improvements in the original compressor mechanical design are described in this section.

A meridional-plane view of the redesigned portion of the compressor rig is shown in Figure 2.4. The basic components of the baseline compressor consist of eleven independent rings which facilitate disassembly and reassembly of the compressor flow-path. The five inner rings (MH201 to MH203) which make up the hub flow path are mounted on the original rotor drum and are held in place by friction. Four independent circumferentially and radially interlocking rings (MH101 to MH104) make up the outer casing of the baseline compressor. The two stator blade row supporting rings (MH105) are mounted in circular tracks in the outer casing, formed by rings (MH101 to MH104), to permit independent circumferential positioning of each stator blade row about the compressor axis of rotation. The stator blade rows can, thus, be moved circumferentially during tests by means of a circumferential motion actuator which is mechanically linked to each stator blade row mounting ring (MH105) through slots provided in the outer casing rings. Cylindrical trunnion holes were used in each stator and rotor support ring

Meridional-plane view of redesigned section of baseline compressor with each ring assembly identified. Figure 2.4

(MH105, MH201) to facilitate blade attachment and to simplify readjustment of blade setting angles. For the present study, both rotor blade row rings (MH201) were positioned circumferentially during assembly so that the blade stacking axes for each rotor row were in line axially. Since no discernible difference in compressor aerodynamic noise level was noticed for different relative circumferential positions of the stator rows with respect to each other it was decided that, for this study, the stator blade rows would also be aligned so that their stacking axes were in line axially. Probe traversing stations were arranged in line axially and positioned upstream of the first rotor blade row, downstream of the second stator blade row, and between all other blade rows. The axial location of each probe measurement station relative to adjacent blade rows is shown in Figure 2.5. Static pressuretap holes, spaced 90 degrees apart circumferentially, were also provided at each probe hole axial location.

Several improvements to the original compressor were achieved during the redesign effort and are described herein. Binding and sticking during circumferential rotation of the stator rows was avoided in the baseline compressor with the aid of teflon pads. The teflon pads were placed around the full circumferential extent of both vertical edges of each stator blade row supporting ring (MH105). Ten equally spaced teflon pads were also attached to the outer cylindrical surface of each stator blade row supporting ring. The teflon pads eliminated metal-to-metal contact on all sliding surfaces which resulted in smooth operation of the stator blade row support rings during circumferential positioning. Some of the binding problems

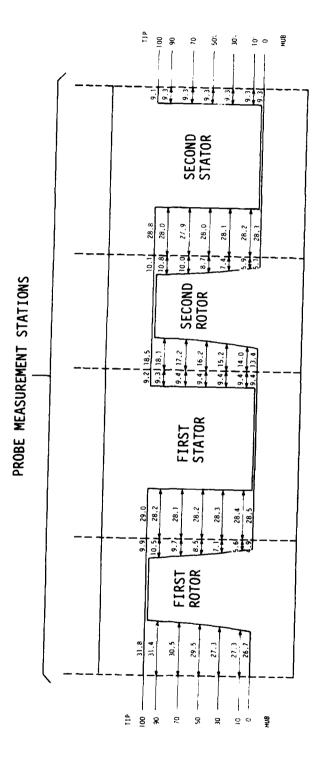


Figure 2.5 Schematic showing axial location of probe measurement stations relative to adjacent blade rows (dimensions in mm).

experienced in an earlier build were attributed to poor radial and circumferential positioning of the outer annulus rings. This problem was eliminated by matching the outer annulus rings so that each ring interlocked both radially and circumferentially with adjacent rings (see Figure 2.6). Reference marks were provided at each coupling point to insure proper circumferential positioning of both stator and rotor blade rows.

Anticipated tests of blade-fillet geometry effects on stator performance required that at least one of the stator blade rows be provided with a stationary flow path at the stator tip. Since the rotor drum surface is the annulus hub, it was necessary to extend an aluminum skirt upstream from the outlet duct hub contour in order to provide a stationary hub surface for the second stage stator. Both the rotor drum and outlet duct hub contour were provided with a circumferential recess to allow for adequate running clearance between the rotor drum and the aluminum skirt, and to insure sufficient continuity of the hub contour. The circumferential recess in the downstream rotor ring (MH203) is shown in Figure 2.4.

The probe access holes were designed to facilitate mounting and dismounting of the probe actuator assembly. A keyway configuration (see Figure 2.7) was chosen since it provided minimal intrusion into the flow path and yet permitted insertion of all anticipated probe configurations.

2.1.3. Blade Fabrication and Installation

Fabrication of the blades for the baseline compressor was performed at Dayton Scale Model Company, Dayton, Ohio. Several materials

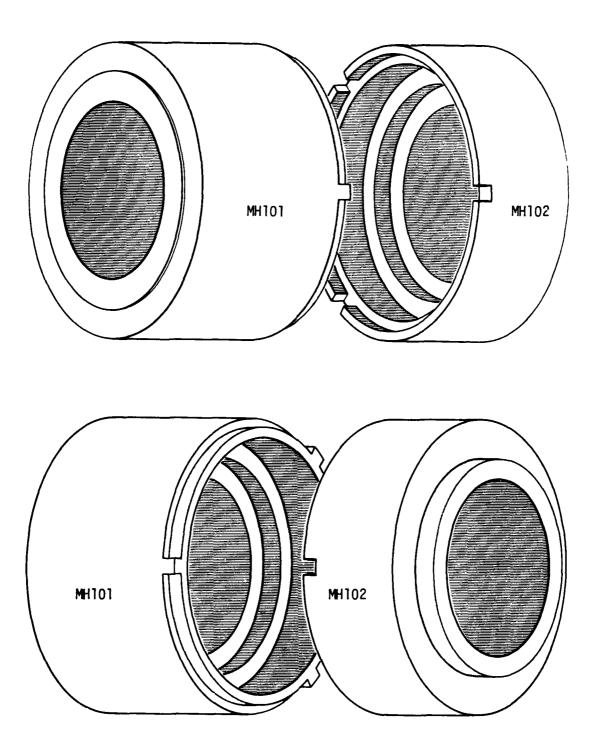


Figure 2.6 Radial and circumferential interlock design of outer ring assembly.

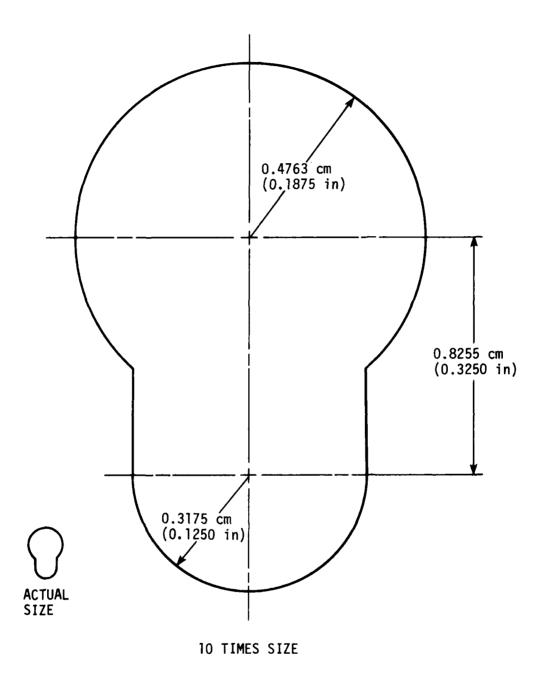
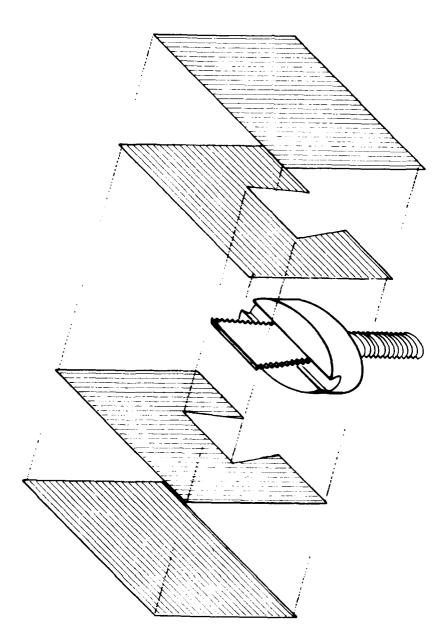



Figure 2.7. Probe access hole configuration.

such as aluminum, plastic, and fiberglass were considered for possible use in the construction of the blades. Molded blades constructed with a fiberglass reinforced epoxy resin material were selected as being most appropriate for this application.

Rotor and stator blade section coordinates at eleven different radii (see Appendix B) were generated from the design code for use in construction of a master rotor blade and master stator blade. coordinates were also used to produce ten times size drawings of each blade section, on mylar, for use in checking the shape of the master and actual blades. The master blades, constructed of aluminum, were used to manufacture molds for both the rotor and stator blades. The fiberglass reinforced epoxy resin material, in sheet form, was cut to the general shape of the blade and stacked in layers in the mold bottom, sandwiching a spine which protruded from the trunnion base for the blades (see Figure 2.8). Each fiberglass layer was stacked so that the glass fibers of adjacent layers were perpendicular. The mold top was then put in place and the entire mold assembly was placed in a press which slowly applied pressure while also heating the fiberglass to an appropriate temperature to insure complete filling of the mold and bonding of the fiberglass laminates. Upon cooling, each blade was removed from the mold and the leading and trailing edge radii were checked under a microscope and dressed if necessary. Ten times size "eyelash" profiles (see Figure 2.9) of each blade section, corresponding to the blade sections of the mylar drawings, were produced at each step of the manufacturing process. These eyelash drawings of the master blades and a few representative finished blades were compared

Schematic of llade fabrication showing laminates sandwiching trunnion spline. Figure 2.8

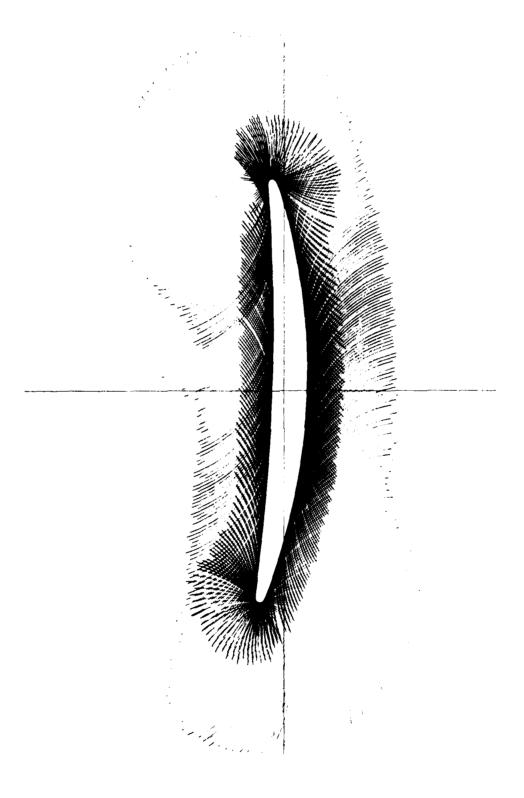


Figure 2.9 Representative eyelash drawing.

to the mylar drawings to insure precision control. The maximum deviation from the mylar drawings was less than 0.005 inches (0.127 mm) along the entire blade surface. The trunnion base for the blades was a machined cylindrical plug with an extended flat spine on one end to which the fiberglass blades could be formed around, and a threaded stud on the other end for attachment to the blade mounting ring (see Figure 2.8). This simple trunnion design allowed for easy adjustment of blade setting angles and facilitated blade attachment to the mounting rings. The length of the trunnion base was made slightly less than the depth of the corresponding holes in the blade mounting rings to prevent any intrusion into the flow. After all stator and rotor blades were attached to their respective blade mounting rings, specially made gauges were used to insure correct adjustment of blade setting angles. The blade setting angles were checked at the blade root and mid-span and found to be within 0.25 degrees of the design setting angles for all blades. The stator blade mounting rings and the rotor drum assembly, with rotor blade mounting rings installed, were placed on a lathe and a high speed grinding tool was used to grind the blade tips to an appropriate radius. The grinding insured that the blades would conform to the curvature of the end-walls with a mean clearance of 0.034 inches (0.864 mm) (1.4% span) for each blade row. Silicon rubber glue was then used to fill in the gap between the rotor root section and rotor hub in order to provide a smooth transition between the blade and the rotor drum surface. A caulking compound, Mortite (Mortell Company, Kankakee, Illinois), was used to seal the gap between the stator blade root and stator blade mounting ring.

No attempt was made to provide a particular fillet radius, however, the fillet was made as small as was practical. The entire rotor drum assembly was dynamically balanced for smooth operation up to 3600 rpm.

2.2. Probe and Stationary Blade Row Actuators

A circumferential motion actuator [4] was used to control circumferential positioning of the stator blade rows during testing. The actuator was connected to each stator blade row mounting ring through an adjustable hand-screw link. Each blade row mounting ring could then be moved independently or simultaneously. The circumferential position of each stator blade row was determined from calibrated scales, marked in degrees, which were attached to the outer casing. The scales were marked such that positive circumferential angles were in the direction of rotor rotation. The zero degree circumferential position was set with the aid of reference scribe marks on the stator blade mounting rings and outer annulus rings such that the probe was positioned circumferentially in the flow midway between two stator stacking axes. The circumferential positions of the actuator were determined by monitoring the voltage from a linear potentiometer. The potentiometer was calibrated to indicate the circumferential position of the actuator through a linear least-squares fit. The circumferential position of each stator blade row was ascertained by recording the circumferential position of the actuator in degrees as determined from the potentiometer voltage and by knowing the circumferential position of each blade row when the circumferential position of the actuator was

at zero. The actuator system could be used to determine the circumferential position of the stator blade rows to within \pm 0.05 degrees (Y/S_S = 0.004).

A probe actuator (L. C. Smith Company model BBS-3180) was used for probe yaw-angle and immersion positioning. Mechanical digital counters as well as linear potentiometers were used to determine the probe yaw-angle and immersion positions which were calibrated to indicate the extent of their respective motions using a linear least-squares fit. The probe actuator could be used to set the probe yaw-angle and immersion to within \pm 0.05 degrees and \pm 0.1 mm, respectively. A probe actuator control indicator (L. C. Smith Company model DI-3R) and probe actuator switchbox (L. C. Smith Company model DI-3R-SB4) were used to control the probe actuator.

2.3. Pressure and Temperature Sensing Instrumentation

A scanivalve pressure-port selector actuator system (Scanivalve Company model 48D3-1) including a strain-gauge pressure transducer (Scanivalve Company model PDCR22), a signal conditioner (Endevco model 4470), and an amplified bridge circuit conditioner (Endevco model 4476.2A) were used to obtain all quantitative pressure measurements. A scanivalve actuator control box (Scanivalve Company model CTLR2/S2-S6) was used to control and monitor selection of up to 48 separate pressure ports. Transducer voltage was correlated with pressures from four separate reference columns using a linear least-squares fit. A precision micromanometer (Meriam model 34FB2) was used as a standard for

calibration of all pressure measurements. All pressure probes, static pressure taps, etc., were connected to the pressure-port scanivalve. A cobra probe (United Sensor type CA-120-24-F-18-CD)--capable of measuring flow angle and total pressure--was considered to be most suitable for use in the baseline compressor and was relied on for all slowresponse (time-averaged) measurement tests. A Kiel probe (United Sensor type KBC-24-L-22-W) was used as a standard of calibration for all total-pressure measurements. A depth micrometer was used to insure correct radial positioning of the probe in the actuator. The probe yaw-angle was set by placing the probe actuator assembly in a uniform nozzle flow and insuring that the side-port pressures balanced when the actuator yaw-angle counter read zero. Annulus-wall static-pressure taps were provided at all probe axial measurement locations. Staticpressure taps were also located at the inlet and throat of the venturi. Copper-constantan thermocouples were used to measure room air temperature, compressor inlet temperature, and venturi throat temperature. Precision mercury-in-glass thermometers were used to calibrate all thermocouples. A mercury-in-glass barometer (Princo Instruments, Inc. model B-222) was used to measure atmospheric pressure.

2.4. Computer Control System

A desk top computer (Commodore PET model 2001-32) and digital voltmeter (Hewlett Packard model 3455A) were used in conjunction with a multiple channel voltage scanner (Hewlett Packard model 3495A) to provide automatic control of the data acquisition process. A schematic

of the data acquisition system is shown in Figure 2.10. The computer controlled data acquisition system was used to control probe and circumferential motion actuators, to control the scanivalve pressure-port selection actuator, and to allow automatic reading of individual thermocouple voltages and all pressures. The data acquisition system also allowed for on-line calibration of the pressure transducer used for all pressure measurements. A tape cassette and printer were interfaced with the computer to record on tape and paper all pertinent data. The computer was also interfaced with a central disk-storage unit (UNIX) where all pertinent data and computer programs were also stored.

Because of limited printing and plotting capabilities of the desk top computer, the Iowa State University Computation Center computing system (National Semiconductor AS6) was utilized for data reduction, tabulation, and plotting.

2.5. Calibration Equipment

An air nozzle, described in detail in Reference [4], provided a uniform nozzle exit velocity suitable for checking probe yaw-angle and total-pressure calibrations. A pressure reference system [8] was used to enable on-line calibration of the scanivalve pressure transducer used for all quantitative pressure measurements. The pressure reference system consisted of four columns of water, balance scales, and glass tubes inserted to an arbitrary depth in each column. The glass tubes were connected with tygon tubing to the scanning valve. The pressures, in volts, from each column were read individually and correlated, using

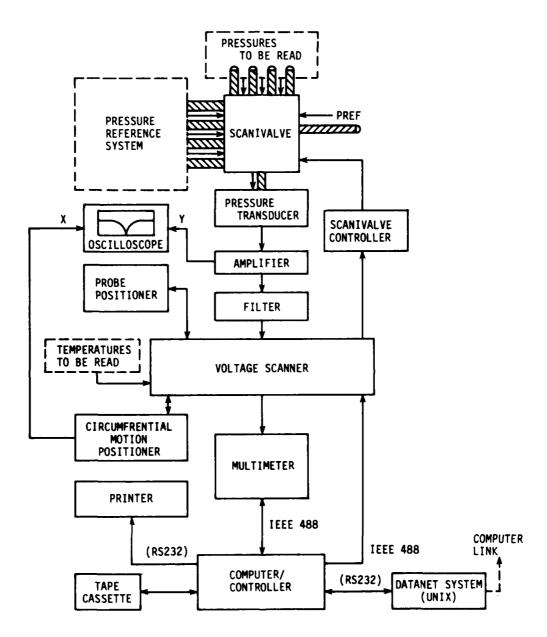


Figure 2.10 Schematic diagram of data acquisition system.

a linear least-squares fit, with the true column pressures. A precision micromanometer was used in conjunction with the balance scales to calibrate, using a linear least-squares fit, the pressure of each column with its corresponding weight. Correlation coefficients of 0.99999 or better could be achieved consistently.

3. EXPERIMENTAL PROCEDURE AND DATA REDUCTION

The objective of the experimental procedure included: 1) generating an accurate overall performance map in order to establish the operating characteristics of the baseline compressor over a large operating range, and 2) obtaining spatially detailed time-averaged measurements of total pressure and flow angle between adjacent blade rows, at one flow rate (design condition), in order to determine pertinent velocity triangle information for comparison with the values associated with the compressor design code.

The time-averaged measurements were obtained at several span locations between blade rows, using appropriate probes, with the compressor operating at the same design point used in the compressor design code; i.e. 2400 rpm, with a flow coefficient of 0.587 as shown in Figure 3.1. The rotor speed was maintained to within ±1 rpm. The flow coefficient was calculated from equilibrium venturi flow meter data and ambient conditions. Adjustments of the flow to maintain the reference flow coefficient value were made by moving the throttle plate at the exit of the diffuser section. Using this procedure, it was possible to maintain the flow coefficient to within ±0.0005 of the reference value.

A data acquisition program was written for the PET computer to control the step-by-step procedures of the experimental tests. Data were either entered into the computer by the operator or read by the computer through an interface from the digital voltmeter. The data acquisition program consisted of seven major parts as shown in the

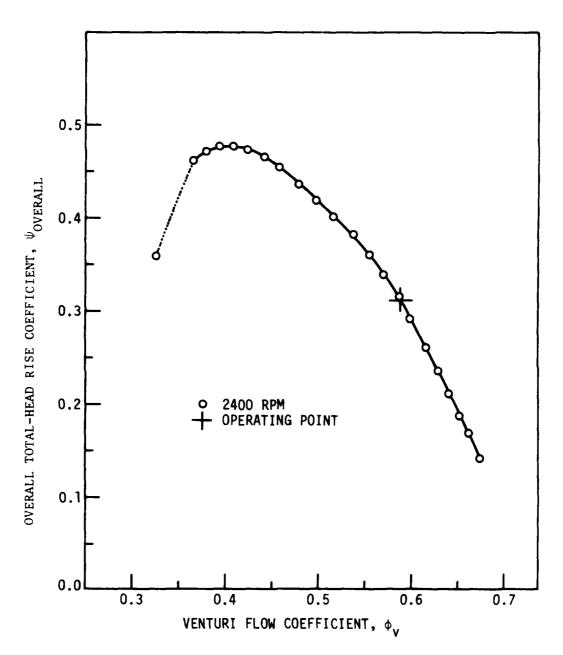


Fig. 3.1 Baseline compressor overall performance curve and operating point.

logic diagram of Figure 3.2. These parts were:

(cassette or reel) are listed in Appendix C.

- 1. Set flow coefficient and measure test conditions.
- 2. Input probe survey position parameters.
- 3. Position probe radially and in your plane.
- 4. Determine circumferential survey parameters with oscilloscope wake trace.
- 5. Yaw-null cobra probe in free-stream portion of flow.

7. Print out data and store data on magnetic disk.

- Measure cobra probe pressures and shroud end-wall static pressures.
- In addition, data reduction programs were written for the mainframe computer (National Semiconducter AS6) to accept data and preliminary results recorded on disk, and to perform the calculations required to obtain final results. All data and computer programs stored on tape

3.1. Calibration

A micromanometer and a mercury-in-glass thermometer were used respectively as standards for pressure and temperature calibration.

Calibrations of all electronic components used in this experimental investigation were performed at the Iowa State University Engineering Research Institute Electronic Shop. Before each test, approximately one hour of running time was allowed for the electronic instrumentation to warm up and for the laboratory and compressor fluid temperatures to reach equilibrium values.



Figure 3.2 Logic diagram of data acquisition system.

All time-averaged measurements of total pressure and flow yawangle were obtained using the cobra probe. Extensive total-pressure
and yaw-angle measurement calibrations with the cobra probe in a uniform nozzle exit flow have already been documented in Reference [4].
This section will, therefore, deal only with verifying cobra probe
measurements in the compressor. Kiel probe data were used to validate
the cobra probe measurements. The Kiel probe provides accurate totalpressure information for probe yaw-angles within ±45.0 degrees of the
true flow angle, see Figure 3.3.

3.1.1. Cobra Probe Yaw-Angle Calibration in Free-Stream Portion of Flow

Since total-pressure measurements using the cobra probe are sensitive to flow angle, it is necessary to determine how accurately the probe yaw-angle must be set in order to achieve accurate total-pressure measurements. A comparison of cobra probe and Kiel probe total-pressure measurements from -45.0 degrees to +45.0 degrees of probe yaw-angle is shown in Figure 3.3. The test was made behind the first stator, station 3, 50% span, $Y/S_S = 0.0$ (free-stream) operating at the design point flow conditions. The results indicate that the cobra probe will give fairly accurate total-pressure measurements, ± 2.0 Nm/Kg, ($\pm 0.45\%$), if the probe yaw-angle is set within ± 5.0 degrees of the true flow angle.

3.1.2. Cobra Probe Calibration in Wake Portion of Flow

Using the cobra probe to measure total pressures can be very inaccurate if the probe yaw-angle is set too far from the true flow angle (see Figure 3.3). This can be a significant problem in regions of high total-pressure gradients, such as in stator wakes, where the cobra probe cannot be used to accurately determine the true flow angle.

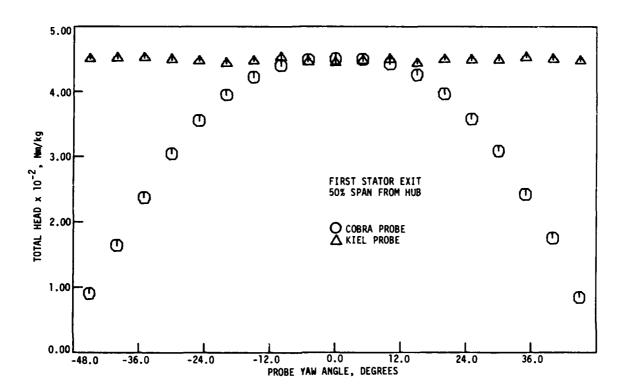


Figure 3.3 Cobra probe yaw-angle total-head calibration curve in free stream portion of flow for flow coefficient = 0.587 at 2400 rpm.

In order to circumvent this problem, the cobra probe yaw-angle in the wake region is set to the integrated-average free-stream flow angle measured by the cobra probe. A comparison of the cobra probe and Kiel probe measurements--with the Kiel probe set at the integrated-average free-stream flow angle--is shown in Figure 3.4. This comparison test was made behind the second stator, station 5, 50% span, operating at the design point flow conditions. The results show very good agreement in the free-stream regions, $\pm 5.0 \, \text{Nm/Kg} \, (\pm 0.6\%)$. The wake region data also show good agreement in total-pressure levels, but some slight shifting of the wake position is evident.

3.1.3. Spanwise Calibration of the Cobra Probe

A spanwise comparison of cobra probe and Kiel probe total-head measurements are shown in Figure 3.5 for flows behind the first rotor and first stator. The results show fairly good agreement between the cobra probe and Kiel probe measurements, less than 10.0 Nm/Kg (1.7%) difference, except near the end-walls where the difference was as much as 17 Nm/Kg (4.5%). The larger error near the end-walls was suspected to be due to wall effects. Total-head measurements behind the first rotor were generally better than behind the first stator.

3.1.4. Scanivalve Pressure Transducer Calibration

On line pressure-transducer calibration was accomplished using a pressure reference system consisting of water columns and triple-beam balances. The pressure reference system is described in detail in Reference [8]. The system provides four reference pressures against which the pressure transducer can be calibrated. The pressure transducer is calibrated every time the flow coefficient is to be readjusted

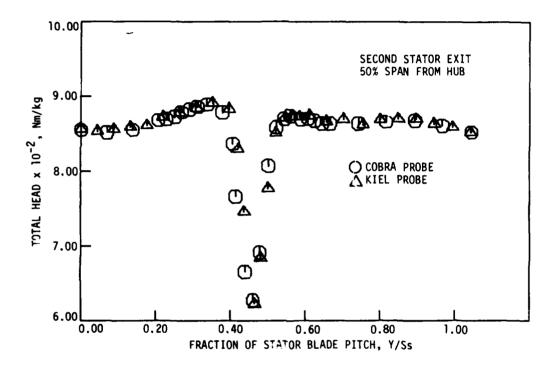


Figure 3.4 Cobra probe total-head calibration curve in wake portion of flow for flow coefficient = 0.587 at 2400 rpm.

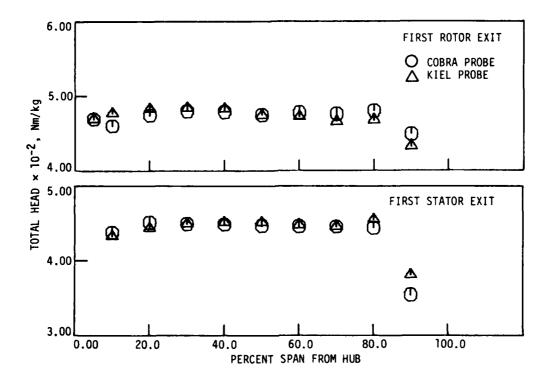


Figure 3.5 Cobra and Kiel probe comparison behind first rotor and first stator for flow coefficient = 0.587 at 2400 rpm (Y/S $_{\rm S}$ = 0.0).

prior to taking any total-pressure measurement. Periodic on-line recalibration of the pressure transducer helps reduce thermal drift and other transient errors inherent in strain-gauge transducers of this type. Tests have shown that the reference pressures can be determined with resolution better than 0.003 inches (0.076 mm) of water. All pressure reference columns are calibrated using the precision micromanometer. Calibration of the pressure reference system is performed once every three months or more often as needed.

An additional water column is used to provide a back pressure to the scanivalve transducer in order to insure that the pressure transducer is always displaced from zero. This eliminates errors from having the transducer pressure fluctuate around zero. On-line calibration of the pressure transducer consists of a linear least-squares correlation of transducer output voltage versus the known reference column pressures. The reference column pressures are determined from linear least-squares correlation equations entered into the computer which have been previously determined from a calibration of column pressure versus column weight. Therefore, it is only necessary to weigh each column prior to testing in order to determine the reference column pressures. During on-line calibration, each column pressure and transducer voltage recorded is referenced to one of the columns, the same column each time. Again, this is done in order to reduce errors due to thermal drift as well as other transient errors between successive readings. In addition, it helps insure that the linear correlation goes through zero, as it should. As mentioned earlier, this procedure consistently provided a linear correlation coefficient

of transducer voltage versus column pressure of 0.99999 or better. The calibration is repeated if this correlation criterion is not met.

3.2. Data Aquisition

The data acquisition procedure consisted of obtaining two types of information: overall performance data, and spatially detailed time-averaged measurements of total pressure and flow angle between adjacent blade rows. The details of obtaining both types of measurements are described below.

3.2.1. Overall Performance Map

The overall performance map parameters are based on compressor drive motor torque meter measurements (to establish the compressor ideal head rise), static-head measurements at the compressor exit (to estimate the actual head rise), and venturi flow rate measurements (to determine the compressor flow coefficient). The above procedure was used to quickly and accurately establish a performance map for the baseline compressor. The method for establishing the compressor exit total head relies on the stator exit swirl being zero and, therefore, the static head at that station being a constant across the span. The venturi-measured flow rate was used to determine the average axial velocity at the compressor exit which, since the swirl is zero, is also the fluid velocity. Using the measured circumferentially-averaged static head and the computed average fluid velocity at the compressor exit total head was determined. The actual head rise delivered to the working fluid could then be determined by

referencing the compressor exit total head to the total head at the compressor inlet (atmospheric conditions, zero velocity).

The measurements involved in establishing the performance map were obtained as follows. With the compressor operating at 2400 rpm, the diffuser exit throttle plate was adjusted to provide incremental control of the compressor flow rate. At each flow rate, venturi flow meter measurements, torque meter measurements, and compressor exit static-head measurements were recorded along with other pertinent data related to the operating and ambient conditions. The torque meter measurements were obtained with the compressor drive motor floating on air bearings while various weights were added to the torque arm in order to balance the drive motor torque. A calibrated meter employing an incremental load transducer consisting of a solid-state gauge bridge on a cantilevered beam was used to resolve torque arm loads to within ±0.0125 Kg. The meter was calibrated to read from 0.0 Kg to 1.0 Kg full scale. Meter fluctuations due to motor vibrations and minute torque fluctuations reduced torque measurement accuracy to within ±0.25 Kg. Static-head measurements at the compressor exit were obtained from four equally spaced (circumferentially) outer annulus-wall static pressure taps. The measurements were made while decreasing the flow rate from maximum flow rate until stall occurred and then repeating the measurements from stall to the maximum flow rate. The stall limit was accurately established by adjusting the flow rate until a slight disturbance at the diffuser exit would instigate a full span stall, which was audibly detectable. Once the stall flow rate was determined, measurements were made just before and after stall.

3.2.2. Time-Averaged Measurements

Time-averaged total pressure and flow angle data variation in the radial, axial, and circumferential directions of the compressor flow field were obtained with the cobra probe set at five passage height locations of 10%, 30%, 50%, 70%, and 90% of span from the hub--ahead of and behind each of the rotating and stationary blade rows--at several circumferential positions over one stator pitch. In addition, outer annulus-wall four-hole-averaged static-pressure measurements were made at each axial measurement location. The steps followed to obtain these data are described below.

Prior to testing, several preliminary setups were accomplished. The cobra probe was mounted in the probe actuator and the probe yawangle zero was set by balancing the side-tube pressures with the probe immersed in the calibration nozzle jet. The probe radial positioning was set using a depth micrometer. The probe actuator mechanical counters were set to read zero yaw-angle for compressor axial flow and 5.6 inches (14.22 cm) for contact with the hub surface. Thus, the counters would indicate true probe angular and radial positions. All calibrations were performed through the data acquisition system with the PET computer controlling the calibration procedures. Before each test, the scanivalve pressure reference system columns were refilled with water to predetermined levels and each column was reweighed. The reference column ice bath was checked and reiced if necessary.

The following miscellaneous data were recorded by the computer for each test to insure the attainment of intended measurement conditions.

- 1. Probe axial measurement station number, (see Figure 2.5)
- 2. Compressor rpm
- 3. Static pressure difference across venturi throat, ${\rm N/m}^2$
- 4. Barometer ambient temperature, degrees Kelvin
- 5. Barometric pressure, N/m²
- 6. Temperature at compressor inlet, degrees Kelvin
- 7. Static pressure at venturi throat, N/m²
- 8. Temperature at venturi throat, degrees Kelvin
- 9. Date
- 10. Time

The circumferential surveys were made by moving the stators circumferentially past a stationary probe located at one of the probe axial measurement stations at the proper depth of immersion. Figure 3.6 shows, to scale, the axial position and extent of each circumferential measurement window as well as the circumferential survey coordinate direction. A qualitative trace of total pressure versus circumferential position with the probe set at the approximate average flow angle was recorded on an X-Y storage oscilloscope screen from the electrical signals of the strain-gauge pressure transducer and the circumferential motion potentiometer. The trace was used in selecting the spacing of circumferential measurement points and in determining the extent and position of the wake and free-stream regions. For each survey, measurements were made over one stator blade pitch. The circumferential measurement positions in the wake and free-stream regions were determined by the computer, based on the number of free-stream circumferential measurement positions desired and the circumferential measure-

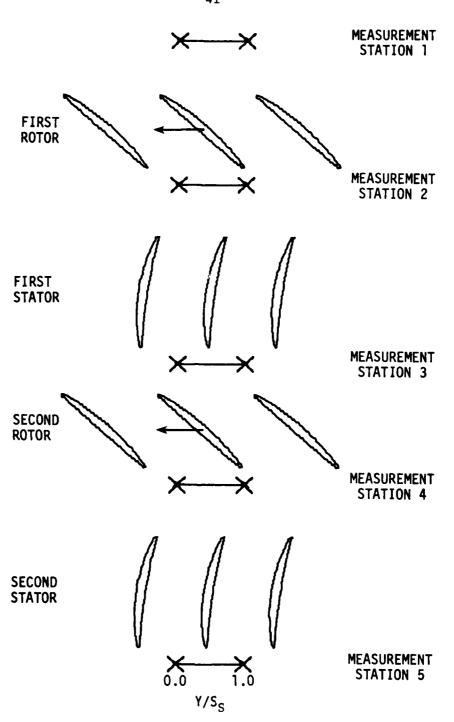


Figure 3.6. Blade cascade showing cicumferential measurement window.

ment increment desired in the wake region. Flow angle measurements were made by balancing the cobra probe side-tube pressures through a computer controlled algorithm or by manual over-ride with the aid of a U-tube manometer. Flow angle measurements were made at every flow field measurement point behind a rotor blade row and at free-stream measurement positions only behind stator blade rows. The circumferentially-integrated-average free-stream flow angle was then determined with the computer acquisition program and this flow angle was used when making total-pressure measurements in the corresponding stator wake regions of each circumferential survey. The probe yawangle, circumferential position, and total pressure were recorded at each circumferential measurement point. After the last measurement at each circumferential survey was taken, the miscellaneous data, flow-field data, and measured circumferentially-averaged static head were printed out and stored on magnetic disk for reduction at a later time.

3.3. Data Reduction

Preliminary reduction of the time-averaged data was performed during data acquisition and consisted of determining primary flow-field values of total head, static head, and absolute flow angle. These primary values were then read into the data reduction program where other flow-field parameters such as absolute velocity, relative velocity, incidence angle, deviation angle, etc., were calculated along with their circumferentially-averaged values. Finally, overall rotor,

stator, and stage performance parameters such as ideal head-rise (Euler turbine equation based values), actual head-rise, efficiencies, and losses were determined. The flow was assumed incompressible for all calculations as the velocities involved Mach number levels less than 0.2. Integrated values were computed using a spline-fit integration [9]. A complete list of all quantities and equations used in reducing the data is presented in Appendix D.

3.3.1. Flow-Field Parameters

The total head was determined at each flow field measurement point from the cobra probe measured total pressure. Circumferentially-averaged values of total head and absolute flow angle were determined for each radial position at every axial measurement station. All circumferential averages except for flow angle averages behind stator blade rows were determined by integrating over one stator blade pitch. The circumferentially-averaged absolute flow angles behind stator blade rows were obtained by integrating over the free-stream portion only. The static head was assumed to be circumferentially constant, and the radial distribution of static head was determined at each radial position for every axial measurement station by solving the radial equilibrium equation in the following form:

$$\frac{dh}{dr} = \frac{2 \sin^2 \overline{\beta}_y(\overline{H} - \overline{h})}{r}, \text{ (see Reference [4])}$$
 3.1

using the Runge-Kutta numerical technique [10]. The circumferentialaveraged outer annulus-wall static head was used as an initial value, and the solution was obtained by marching radially toward the hub at increments of 5% of passage height. The circumferentially-averaged values of total head and absolute flow angle required at each step of the Runge-Kutta solution were obtained by a second-order Lagrange interpolation of their measured radial distributions.

From the radial distributions of total head, absolute flow angle, and static head; the circumferentially-averaged absolute velocity was determined at each radial position for every axial measurement station. With the circumferentially-averaged absolute velocity and the flow angle determined, the following circumferentially-averaged variables were calculated at each radial position for every axial measurement station.

- 1. Axial velocity, m/s, Eq. 12.16
- 2. Absolute tangential velocity, m/s, Eq. 12.18
- 3. Relative tangential velocity, m/s, Eq. 12.20
- 4. Relative velocity, m/s, Eq. 12.22
- 5. Relative flow angle, degrees, Eq. 12.24
- 6. Blade incidence angle, degrees, Eq. 12.25 and Eq. 12.27
- 7. Blade deviation angle, degrees, Eq. 12.26 and Eq. 12.28
- 8. Flow coefficient, Eq. 12.29

In addition, for each axial measurement station, an annulus crosssection integrated flow coefficient was calculated for comparison with
the flow coefficient determined from venturi flow meter data. In
determining the annulus cross-section flow rate and corresponding flow
coefficient, the axial velocities at the hub and shroud end-wall
surfaces were assumed equal to zero.

3.3.2. Performance Parameters

The actual and ideal (Euler turbine equation based) head-rise coefficients and their ratio (hydraulic efficiency) were determined at each of the five radial positions for both rotor rows, stages, and for the overall compressor. Total-head loss coefficients were also determined for each rotor and stator blade row. In addition, radially mass-averaged values of each of the above quantities were determined for both rotor rows, stages, and for the overall compressor (see Appendix E). The above parameters were calculated from spatially detailed time-averaged measurements and circumferentially-averaged values of the previous section.

Performance map parameters and mechanical efficiency were calculated from motor torque-meter measurements and the overall head-rise across the compressor. The overall head-rise for the performance map was determined from the measured venturi flow rate and the circumferentially-averaged static head at the outer annulus-wall of the last axial measurement station.

4. PRESENTATION AND DISCUSSION OF DATA

The results of the torque meter related performance measurements and the slow-response (time-averaged) data are presented and discussed in this section. Comparisons between these measured results and corresponding calculated values associated with the design code are also presented and discussed. The design code results are tabulated in Appendix B. The experimentally determined data are tabulated in Appendix E. In graphing the results, all data variation curves-except for the performance curves--were drawn with interpolated curves through the actual data points. Smooth curves were drawn through the performance map data using a least-squares fit. All measured data points are graphed with a symbol marking the actual data point. The design code results are represented with continuous curves.

4.1. Error Analysis

Measurement errors associated with the primary measurement quantities and flow-field parameters are presented in Table 4.1. Representative values of each primary measurement quantity and flow-field parameter are presented, along with their estimated uncertainty and percentage of error. The uncertainties of the flow-field parameters were determined using the procedures of Kline and McClintock [11] based on the estimated uncertainties associated with the primary measurement quantities. The estimates of the uncertainties of the primary measurement quantities were based on the repeatability of the measurements and comparisons with the Kiel probe in the case of total pressure

Table 4.1. Uncertainty estimates of measurement parameters.

Flow Parameters	Symbol	Typical Values	Estimated Uncertainty (20-to-1 odds)
			(20 00 1 0000)
Primary measurements			
Temperature	t	299 deg. K	0.25 deg. K (0.08%)
Transducer pressure	$^{\mathtt{P}}_{\mathtt{t}}$	52.0 mm Hg	1.2 mm Hg (2.2%)
Absolute flow angle	Ву	20.0 deg.	1.0 deg. (5.0%)
Barometric pressure	Patm	735 mm Hg	0.03 mm Hg (0.003%)
Torque	T	4.0 Kg	0.03 Kg (0.6%)
Flow field parameters			
Absolute velocity	V	30.0 m/s	0.3 m/s (1.1%)
Axial velocity	v_z	28.0 m/s	0.4 m/s (1.3%)
Absolute tangential velocity	v _y	10.3 m/s	0.5 m/s (4.9%)
Relative flow angle	B' y	50.0 deg.	0.6 deg. (1.1%)
Performance parameters			
Actual head-rise coefficient	Ψ	0.17	0.004 (2.3%)
Ideal head-rise coefficient	$\Psi_{\mathbf{i}}$	0.19	0.02 (8.7%)
Hydraulic efficiency	η	0.88	0.07 (8.0%)
Rotor total-head loss coefficient	w _R	0.05	0.03 (60.0%)
Stator total-head loss coefficient	^ω s	0.06	0.02 (33.0%)
Ideal work coefficient	Ψ i,pm	0.4	0.005 (1.3%)
Mechanical efficiency	η _{me}	0.75	0.01 (1.8%)

measurements. The uncertainty levels given in Table 4.1 are generally consistent with the random scatter observed in the results. It should be noted that the uncertainty levels tend to be higher near the endwalls (see Figure 3.5).

Of the primary measurement quantities, absolute flow angle measurements have the most uncertainty, primarily because of the totalpressure gradients affecting the cobra probe yaw-angle measurements. Behind the stator blade rows, ascertaining the circumferential extent of the free-stream--particularly near the end-walls--was difficult. Comparisons of total-head measurements obtained using a cobra probe and Kiel probe were presented in section 3.1. These comparisons show that even with the uncertainties of determining the absolute flow angle, the cobra probe gives a fairly accurate measure of the total head. Performance parameters based on the Euler turbine equation ideal head-rise, however, are highly dependent on the accuracy of the absolute flow angle measurements (see Table 4.1). It would be reasonable to conclude, therefore, that very little confidence can be afforded the Euler turbine equation based performance parameters. The effect of torque measurement accuracy on the torque based performance parameters is also given in Table 4.1. The torque based efficiencies are more reliable than the Euler turbine equation based efficiencies, but only as an indicator of relative measure. The torque based efficiencies were very repeatable, but were highly dependent on the mechanical characteristics of the compressor and drive motor which affected the absolute measure of the efficiencies. Since the torque meter based efficiencies were affected by bearing friction and other mechanical

losses, they are not reliable as an absolute measure of efficiency.

However, with precautions they are a reasonable indicator of relative measure of efficiency.

All time-averaged measurements were obtained with the throttle plate adjusted so that the venturi flow coefficient was within ± 0.0005 of the desired flow coefficient of 0.587. An integrated average flow coefficient based on the spanwise distribution of circumferential-mean axial velocity -- as determined from cobra probe measurements -- served as a check between venturi based and cobra probe based flow coefficients. Comparisons of the integrated flow coefficients and venturi flow coefficient for each axial measurement station are given in Table 4.2. The integrated flow coefficient was obtained by two different approaches; 1) using the extrapolated circumferential-mean axial velocity at the end-walls, and 2) by considering the circumferential-mean axial velocity to be zero at the end-walls. A splinefit integration routine [9] was used to perform the integration. Even with only five spanwise measurement locations, the integrated-average flow coefficients--based on zero axial velocity at the end-walls-compared very favorably with the venturi based flow coefficients. The integrated flow coefficients--based on extrapolated circumferentialmean axial velocity at the end-walls--were consistently higher than the venturi based flow coefficients.

Table 4.2. Flow coefficient comparison between venturi and integrated measurement station flow coefficients.

	Flow Coefficient Comparison		Flow Coefficient Comparison Percent
Station	Percent	Station	
1	6.0	1	1.0
2	4.4	2	-0.2
3	2.5	3	-1.9
4	3.4	4	-1.0
5	0.8	5	-2.9

4.2. Overall Performance Map

The results of the torque meter related performance tests are presented in Figure 4.1. Overall compressor head-rise coefficient, work coefficient, and efficiency variations with flow coefficient are plotted. The curves were obtained by recording venturi flow rate, compressor exit (station 5) shroud static pressure, and drive motor torque. The venturi flow rate was used to determine the average axial velocity at the exit of the compressor. Since swirl was virtually non-existent at the compressor exit, the static pressure was presumed constant across the span; thus making it possible to determine representative total pressures and subsequent head-rise coefficient at the compressor exit. The torque meter measurements were used to determine

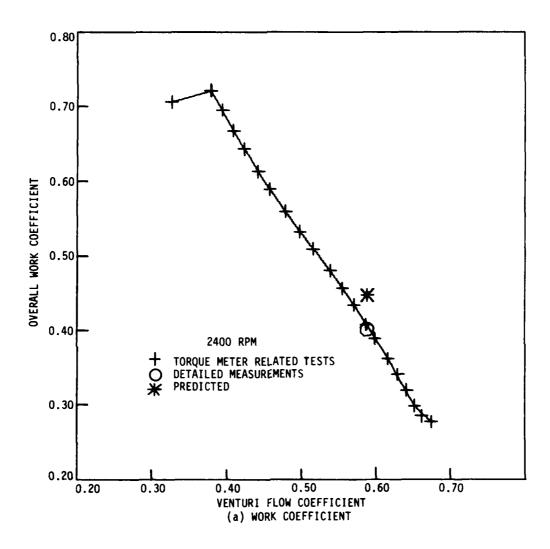


Figure 4.1 Predicted and measured overall performance data.

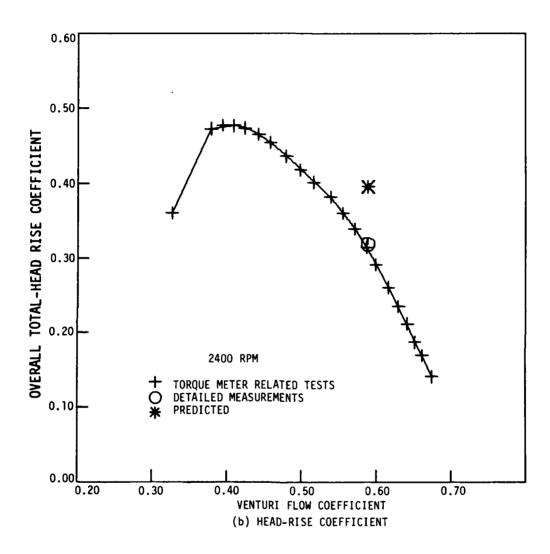


Figure 4.1 continued.

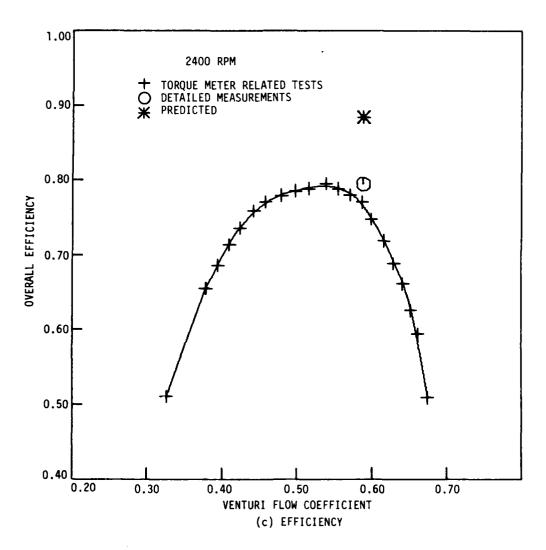


Figure 4.1 concluded.

the work coefficient from Equation 13.50. Also noted in Figure 4.1 are the design point overall head-rise coefficient and hydraulic efficiency as determined from the detailed time-averaged measurements and Euler turbine equation based ideal head-rise, as well as the design point overall hydraulic efficiency and head-rise coefficient predicted from the design code. Both measured efficiencies corresponding to the design point flow coefficient are significantly lower than the predicted efficiency. The reason for this discrepancy will be explored further in a later section (4.4. Comparisons of Circumferential-Mean Data with Design Code Predictions).

As mentioned in the previous section, the Euler turbine equationbased performance parameters are highly dependent on the accuracy of the absolute flow angle measurements and are, therefore, unreliable measures of compressor performance. Although the relative characteristics of the performance curves depicting work coefficient and efficiency variations with flow coefficient proved to very repeatable, the absolute values of each curve were sensitive to the mechanical characteristics of the compressor, such as bearing friction. These mechanical effects appeared as shifts in the absolute magnitudes of the torque measurements which tended to move the level of the work coefficient and efficiency curves, but did not significantly affect the relative aspects of each curve. The head-rise coefficient curve was consistently repeatable and compared favorably with the design point overall head-rise coefficient determined from the detailed timeaveraged measurements, thus lending credence to the procedure used in determining the head rise versus flow coefficient performance curve.

Because of the effects of bearing friction on torque measurements, the performance curves could not be used for absolute predictions of the compressor performance. Thus, no means were available for comparing the design program efficiency predictions.

To obtain an accurate performance map which could be used for absolute as well as relative measures of efficiency, the compressor should be run without blading to measure the tare torque; thus obtaining corrections for bearing friction and other mechanical effects. Without regreasing the bearings and with the blades reinstalled, a new performance map could be generated from which the tare torque is subtracted. This procedure was not attempted because of insufficient time.

The curve of compressor efficiency variations with flow coefficient shows an uncharacteristic flat portion where the efficiency is essentially constant over a range of flow coefficient values. The flat portion of the efficiency curve may be due to the fact that blade losses were constant over a range of incidence angles. However, there may also be some over-riding effect that is causing slight improvements in efficiency to be "washed out." For example, Wisler [2] shows a considerable Reynolds number effect on compressor efficiency for a low-speed four-stage axial-flow compressor. Wisler's results show a flattening of the efficiency curves as the Reynolds number is decreased. The Reynolds number range examined by Wisler was 1.0×10^5 to 4.0×10^5 . The Reynolds number for the baseline compressor is about 1.8×10^5 . Further discussion of the constancy of compressor efficiency over a range of flow rates may be found in Reference 12.

4.3. Spatially Detailed Time-Averaged Measurement Results

Detailed time-averaged aerodynamic data were obtained in the baseline compressor at numerous circumferential positions for 10%, 30%, 50%, 70%, and 90% span locations--measured from the hub, ahead of and behind each blade row. The axial measurement locations and circumferential survey windows relative to each blade row are shown in Figure 3.6 for one spanwise location. Figure 3.6 should be referred to when analyzing the figures in this section. All total-head measurements presented in this report are referenced to atmospheric conditions. Graphs of the blade-to-blade distribution of total head for all spanwise locations at each axial measurement station are illustrated. Figure 4.2 is for flows behind the first- and second-stage rotors, and Figure 4.3 is for flows behind the first- and second-stage stators. The data for flow behind the second rotor (Figure 4.2) indicate a peculiar pattern involving two regions of lower total head. This unexpected trend is explained in Reference 12. The detailed time-averaged measurement data were used to obtain circumferential-mean values of total head, flow angle, and absolute velocity. The spanwise distributions of these circumferential-mean quantities are shown in Figure 4.4, for 11 ws behind the first- and second-stage rotors, and in Figure 4.5, for flows behind the first- and second-stage stators. The graphs of the spanwise distributions of circumferential-mean total head and axial velocity behind each blade row (Figure 4.4 and 4.5) show significantly lower total head and axial velocities at the 90% from hub measurement location indicating higher losses near the shroud end-wall there. Evidence

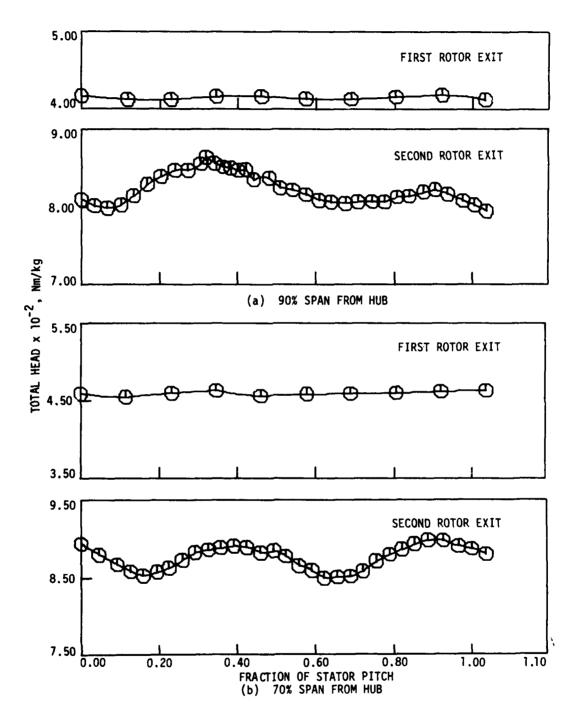


Figure 4.2 Blade-to-blade distribution of time-average total head for flow behind the first and second stage rotors ($\phi = 0.587$ at 2400 rpm).

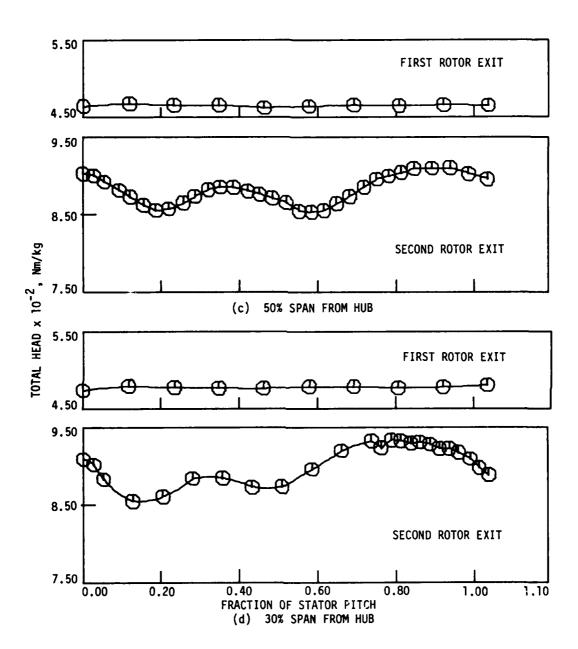


Figure 4.2 continued.

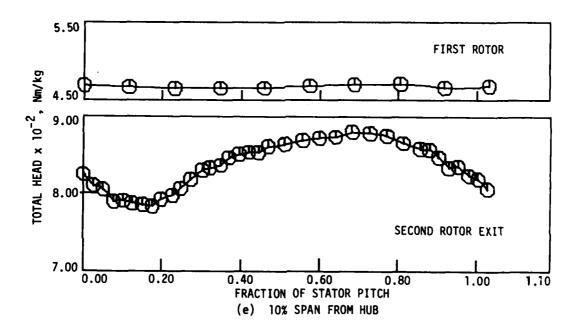


Figure 4.2 concluded.

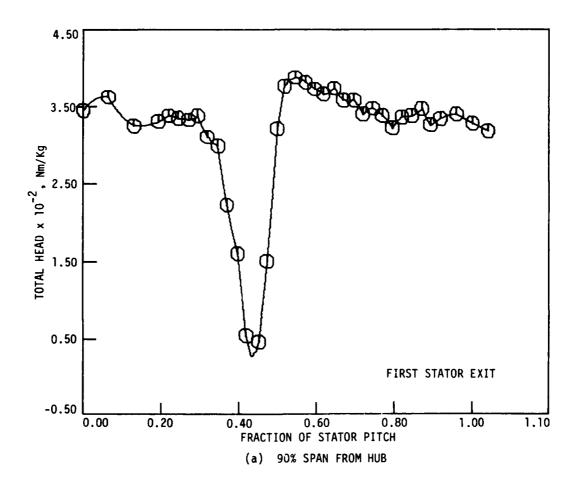


Figure 4.3 Blade-to-blade distribution of time-average total head for flow behind the first and second stage stators (ϕ = 0.587 at 2400 rpm).

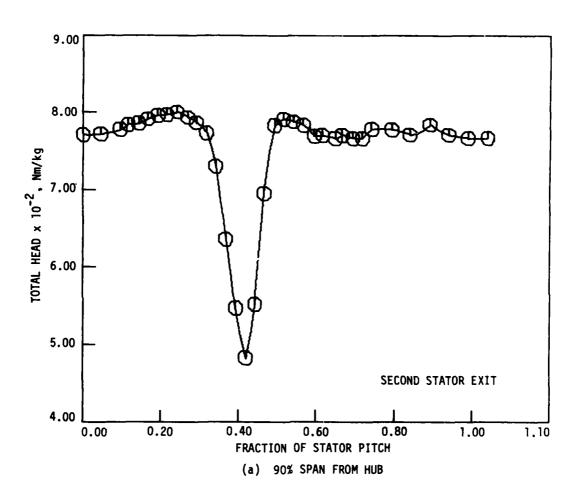


Figure 4.3 continued.

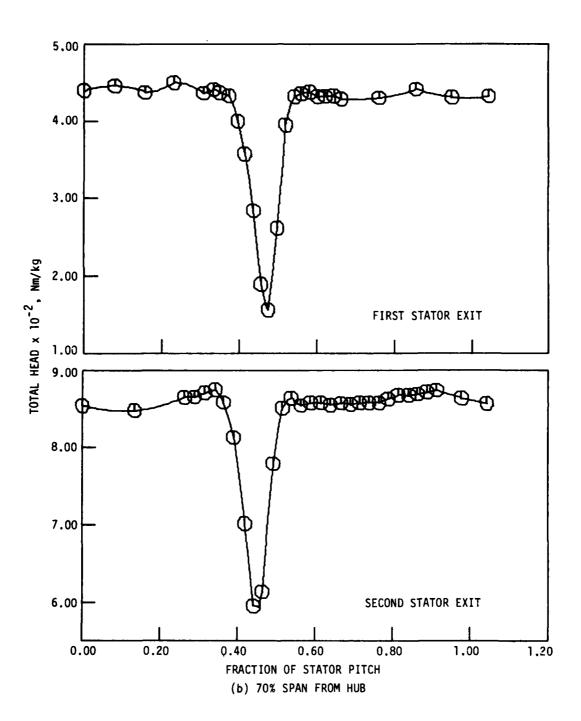


Figure 4.3 continued.

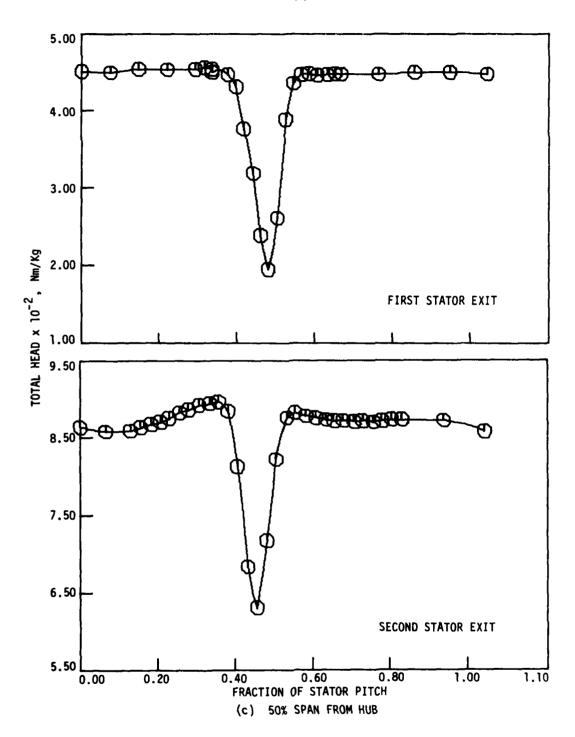


Figure 4.3 continued.

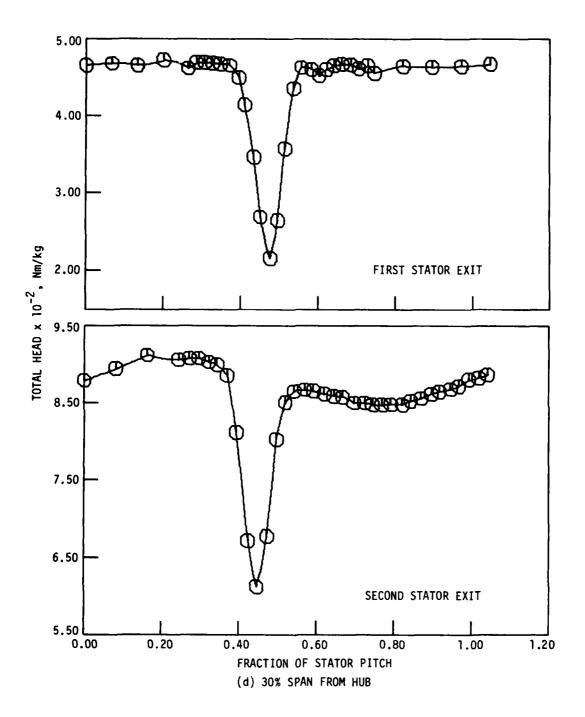


Figure 4.3 continued

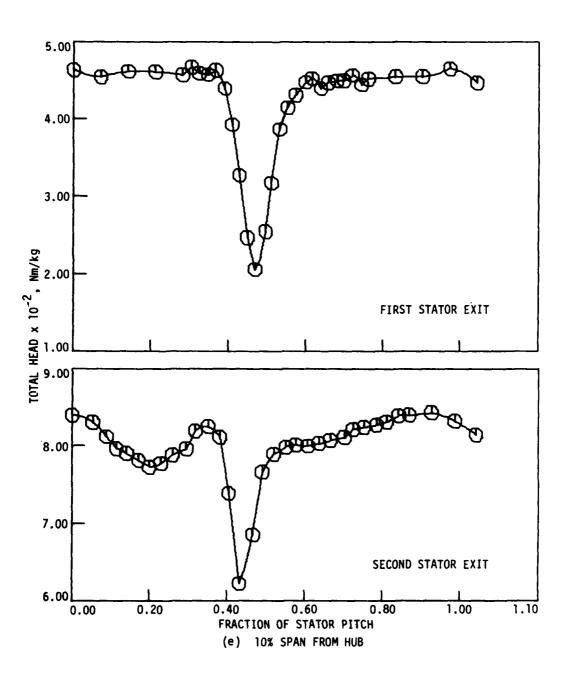


Figure 4.3 concluded.

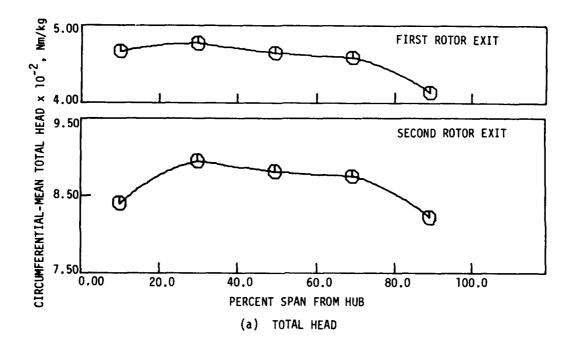


Figure 4.4 Spanwise distribution of circumferential-mean data for flow behind the first and second stage rotors (ϕ = 0.587 at 2400 rpm).

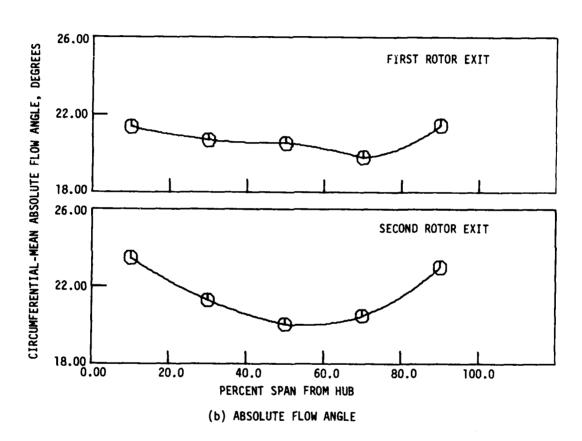


Figure 4.4 continued.

AND THE SECOND S

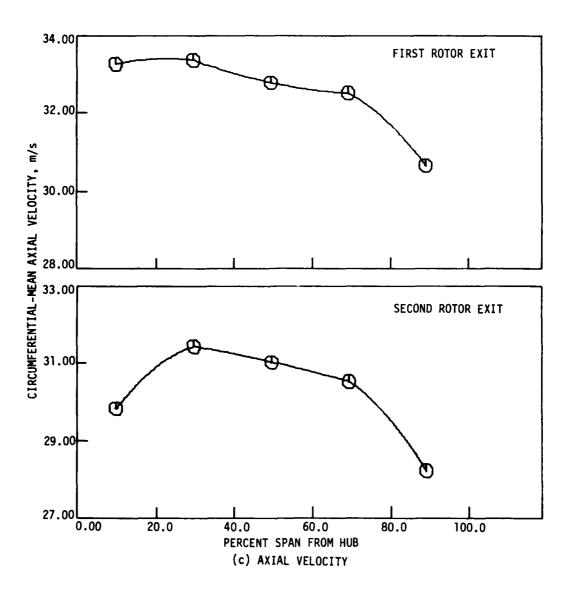


Figure 4.4 concluded.

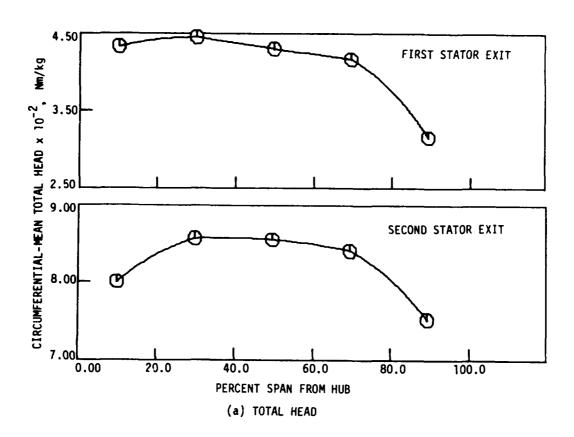


Figure 4.5 Spanwise distribution of circumferential-mean data for flow behind the first and second stage stators (ϕ = 0.587 at 2400 rpm).

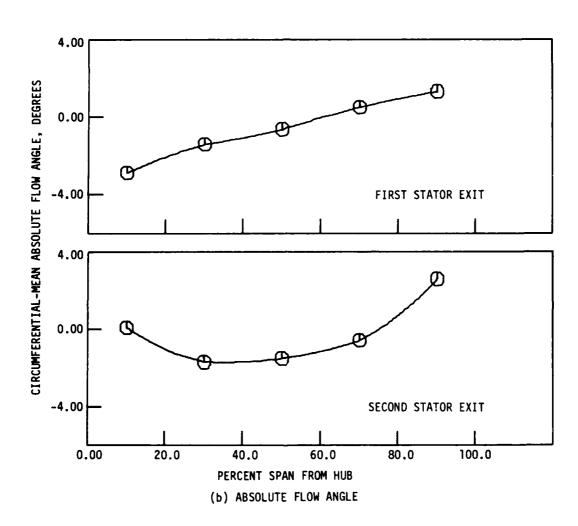


Figure 4.5 continued.

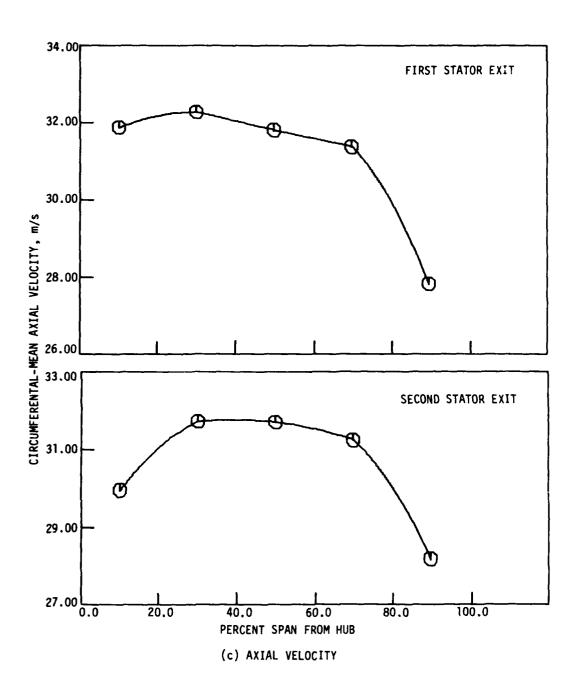
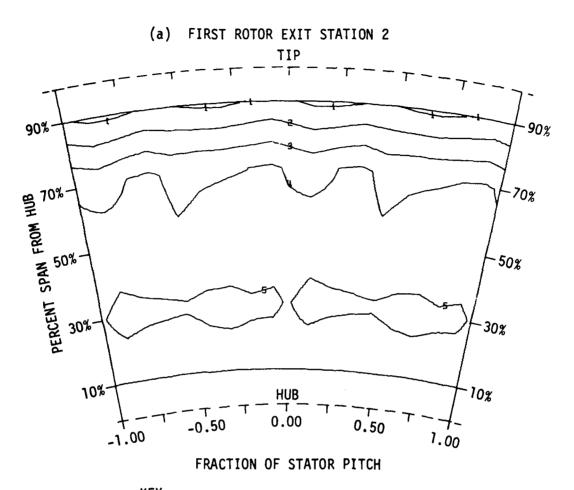
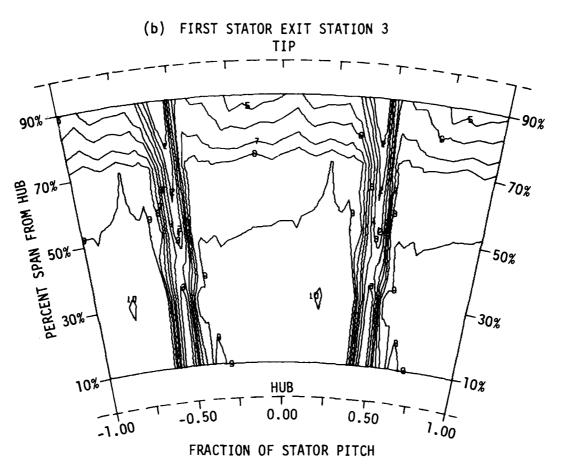



Figure 4.5 concluded.

SUBJECT OF THE PROPERTY OF THE

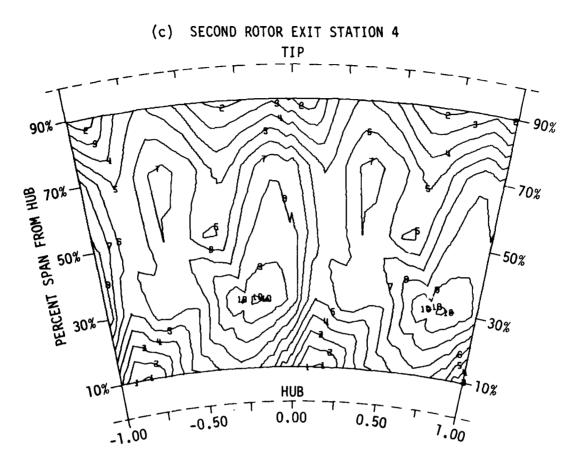
of hub end-wall effects appears behind the second rotor and stator as seen by the appreciable decrease in total head and axial velocity levels there.


Circumferential-radial plane contour maps of total-head variation at each axial measurement location are presented in Figure 4.6. Figure 4.7 shows the locations of the actual data points used in constructing the contour map for station 3. The single-stator pitch data actually acquired were repeated over two stator blade pitches in order to afford better visualization of the flow pattern. The abscissa and ordinate correspond to fraction of blade pitch, Y/S_S , and percent span location measured from the hub, PHH. The actual data were taken between $Y/S_g = 0.0$ to $Y/S_g = 1.0$. In order to provide a smoother representation of the flow pattern, a data enhancement option provided by the contour plotting program was utilized. The data enhancement option was only employed in the radial direction since there were an adequate number of points available in the circumferential direction. For each contour map, an additional five enhanced data points between each pair of actual data points in the radial direction were requested. For the contour map of station 3, there were five circumferential survey line segments consisting of an equal number of data points -- for this case 51--therefore, the total number of enhanced data points was ((5-1)*5*51) = 1020. The data of station 3 without enhancement are shown in Figure 4.8 for comparison with enhanced data contours of Figure 4.6(b). The contours with enhanced data are a slightly smoother representation of the flow field. Trends, however, are not significantly altered by the enhancement process.

KEY
CURVE CURVE
LABEL VALUE
1 0.415000E 03 Nm/kg
2 0.430000E 03 Nm/kg
3 0.445000E 03 Nm/kg
4 0.460000E 03 Nm/kg
5 0.475000E 03 Nm/kg

Figure 4.6 Contour map of the distribution of total head behind each blade row (ϕ = 0.587 at 2400 rpm). Data enhancement employed.

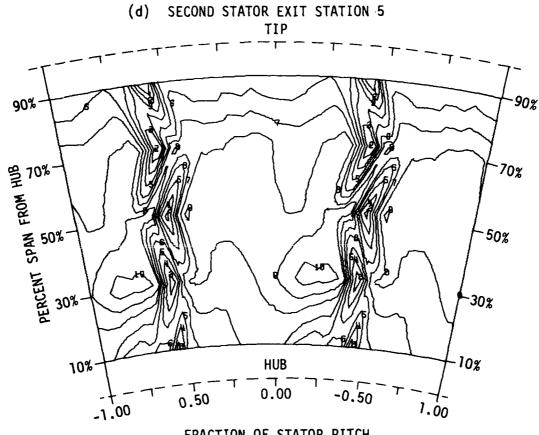
HE PROPERTY OF THE SECTION OF THE SECTION OF THE PROPERTY WITH THE SECTION



KEY

CURVE CURVE
LABEL VALUE

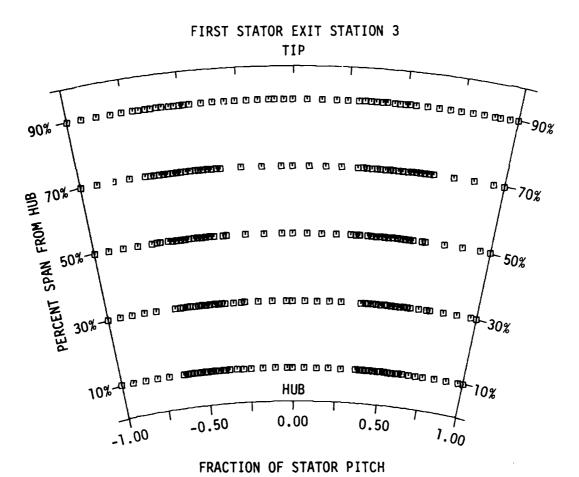
1 0.150000E 03 Nm/kg
2 0.200000E 03 Nm/kg
3 0.250000E 03 Nm/kg
4 0.300000E 03 Nm/kg
5 0.350000E 03 Nm/kg
6 0.380000E 03 Nm/kg
7 0.410000E 03 Nm/kg
8 0.430000E 03 Nm/kg
9 0.450000E 03 Nm/kg
10 0.470000E 03 Nm/kg


Figure 4.6 continued.

FRACTION OF STATOR PITCH

KEY			
CUR	VE CURVE	:	
LAB	E L V ALUE	:	
1	0.790000E	03	Nm/kg
2	0.810000E	03	Nm/kg
3	0.825000E	03	Nm/kg
4	0.840000E	03	Nm/kg
5	0.855000E	03	Nm/kg
6	0.870000E	03	Nm/kg
7	0.885000E	03	Nm/kg
8	0.900000E	03	Nm/kg
9	0.915000E	03	N√m/kg
10	0.930000E	03	Nm/kg

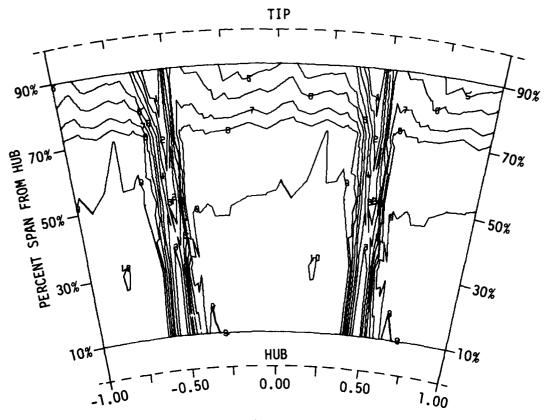
Figure 4.6 continued.


FRACTION OF STATOR PITCH

KEY

CURVE CURVE
LABEL VALUE

1 0.550000E 03 Nm/kg
2 0.600000E 03 Nm/kg
3 0.650000E 03 Nm/kg
4 0.700000E 03 Nm/kg
5 0.750000E 03 Nm/kg
6 0.800000E 03 Nm/kg
7 0.830000E 03 Nm/kg
8 0.860000E 03 Nm/kg
9 0.880000E 03 Nm/kg
10 0.900000E 03 Nm/kg


Figure 4.6 concluded.

NOTE: SINGLE PITCH DATA ACTUALLY ACQUIRED REPEATED OVER TWO STATOR BLADE PITCHES FOR VISUALIZATION ENHANCEMENT

Figure 4.7 Locations of actual data points used in constructing the contour map behind the first stator.

FIRST STATOR EXIT STATION 3

FRACTION OF STATOR PITCH

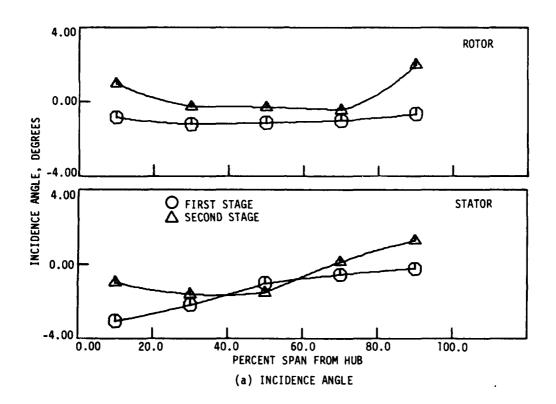
KEY CURVE CURVE VALUE LABEL 0.150000E 03 Nm/kg 0.200000E 03 Nm/kg 2 0.250000E 03 Nm/kg 0.300000E 03 Nm/kg 0.350000E 03 Nm/kg 0.380000E 03 Nm/kg 0.410000E 03 Nm/kg 0.430000E 03 Nm/kg 9 0.450000E 03 Nm/kg 10 0.470000E 03 Nm/kg

Figure 4.8 Contour map of the distribution of total head behind the first stator (ϕ = 0.587 at 2400 rpm). No data enhancement.

The contour map of total-head variation behind the first rotor, Figure 4.6(a), indicates a fairly uniform total pressure level distribution with some evidence of an end-wall loss region (lower total head) from about 70% span to the shroud end-wall. The majority of the span from about 10% to 70% span is at about the same total head level, except at about 30% span where there is a core of slightly higher total-head fluid.

The contour map for flow behind the first stator, Figure 4.6(b), shows very well defined stator blade wakes involving steep gradients in total head and the lower total-head values. Again, the shroud end-wall region from about 70% span to the shroud end-wall consists of lower total head fluid associated with end-wall related losses. The highest total head--as for the first rotor exit flow--occurs at about 30% span.

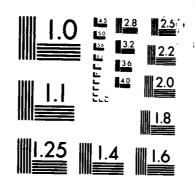
The second rotor exit contour map, Figure 4.6(c), involves a very nonuniform total head variation in contrast to the fairly uniform total head distribution found behind the first rotor. Zierke and Okiishi [13] discussed the large influence of rotor/stator wake interaction on rotor exit total-head distribution when stator wakes are chopped and transported through a downstream rotor blade row. Evident from the contour map of flow behind the second rotor, in Figure 4.6(c), are two regions of lower total-head fluid (as mentioned earlier in discussing Figure 4.2) along the span. Several possible explanations for the occurrence of these two regions of lower total-head fluid were investigated. The wakes of upstream struts used to support the inlet bell housing were eliminated as a possible cause of this trend since they remained stationary relative to the probe during any circumferential


survey and, thus, would not show up as a circumferential variation of total pressure. Only those compressor components which moved relative to the probe were considered further. Potential flow effects upstream from the second stator leading edge were considered next, although they seemed an unlikely cause; no evidence of this kind of effect was observed behind the first rotor. Subsequent tests with the first stage stators held stationary during a circumferential survey demonstrated that as the second stage stators only were traversed circumferentially relative to the probe, the first rotor exit flow total-head remained essentially constant with no evidence of either region of low totalhead fluid appearing. Similar tests, with the second stator held stationary while the first stator was circumferentially traversed relative to the probe, resulted in both regions of low total-head fluid appearing. Both regions of low total-head are, thus, quite clearly related to the first stator blade row. This unusual observation has been studied further. Heated first stator wake fluid was tracked through the first rotor row and a logical explanation of the appearance of the two regions of lower total-head fluid behind the first rotor may be found in Reference 12.

The second stator exit contour map, Figure 4.6(a), shows the same end-wall loss region near the shroud end-wall region--from about 70% span to the shroud end-wall--and the same core of high total-head fluid at about 30% span as found in the other contour maps. The unusual wake contours were studied further (Reference 12). Adjustment of the contour plotting procedure resulted in more conventional wake contour lines.

The core of high total-head fluid at about 30% span, apparent at all stations, suggests that there was no significant radial migration of fluid. This is to be partly expected because the hub and shroud end-walls are parallel. Further, the rotor and stator boundary layer flows were probably not substantially separated from the blade surfaces and, thus, as was demonstrated by Dring, Joslyn, and Hardin [14], little radial migration of blade surface flow should have been anticipated. Hub end-wall loss regions could only be detected in the second-stage contour maps. The difference between the extent of hub and shroud loss regions indicates that the shroud losses are higher as discussed further in the next section (4.4. Comparisons of Circumferential-Mean Data with Design Code Predictions).

Comparisons of the spanwise distributions of the measured rotor and stator incidence and deviation angles for both stages are shown in Figure 4.9. Analysis of this figure indicates that the rotor deviation angles are about the same for both stages; whereas, the first rotor is operating with greater negative incidence. The first-stage stator is also operating with slightly more negative incidence and its deviation angles are considerably greater than for the second-stage stator.


Although the stator exit circumferential-mean absolute flow angles are difficult to determine accurately, the difference in stator deviation angles are much larger than the estimated uncertainty of the absolute flow angle measurements (see Table 4.1). The negative incidence angles experienced by both stages resulted in the compressor not operating at optimum efficiency--a consequence already seen in the overall performance map results (see Figure 4.1). Table 4.3 shows head-rise coeffi-

TO SERVICE THE CONTROL OF THE PROPERTY OF THE

Figure 4.9 Comparisons of measured circumferential-mean incidence and deviation angles for both stages ($\phi = 0.587$ at 2400 rpm).

AERODYNAMIC DESIGN AND PERFORMANCE OF A THO-STAGE AXIAL-FLOW COMPRESSOR (...(U) IOWA STATE UNIV AMES ENGINEERING RESEARCH INST M D HATHAMAY ET AL DEC 83 ISU-ERI-AMES-84178 AFOSR-TR-84-8417 F/G 21/5 AD-A141 796 2/3 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART

ATRINAS HUMBAS - STANSIANI - AND A

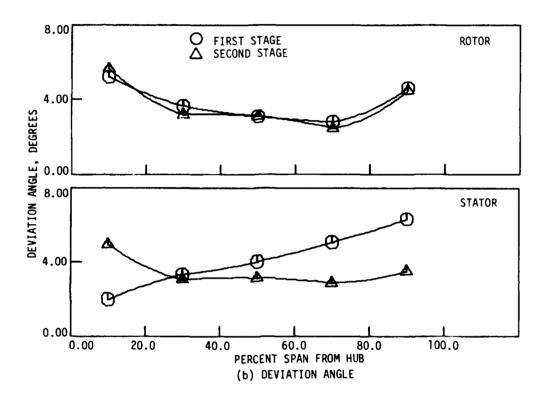
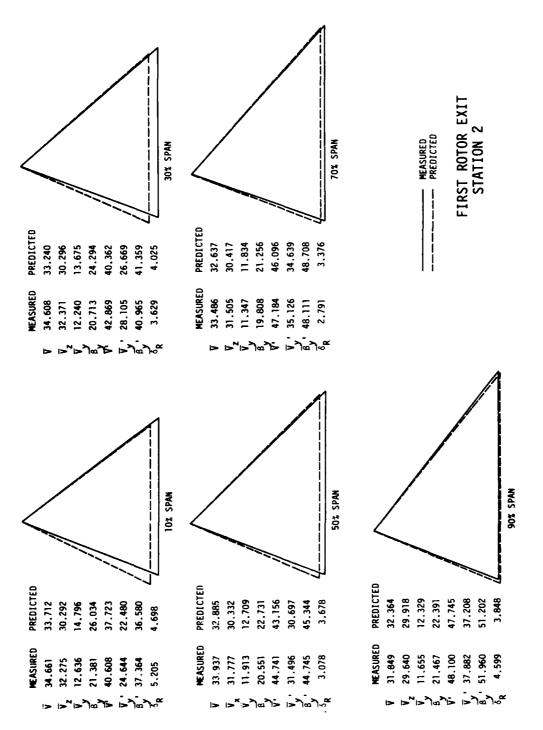
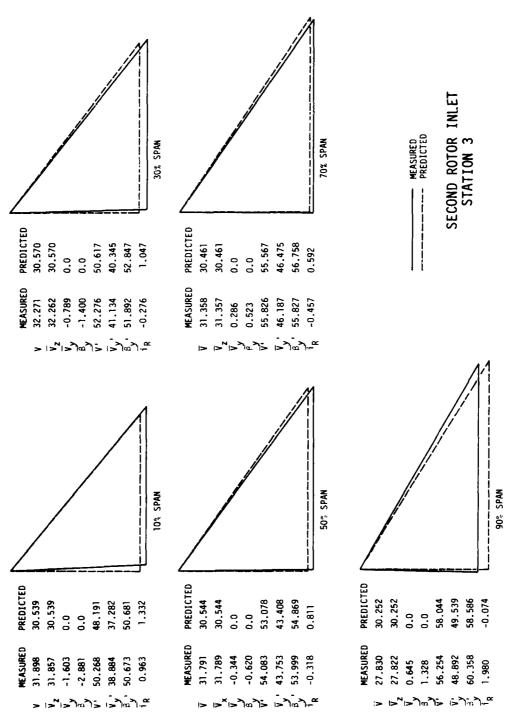


Figure 4.9 concluded.

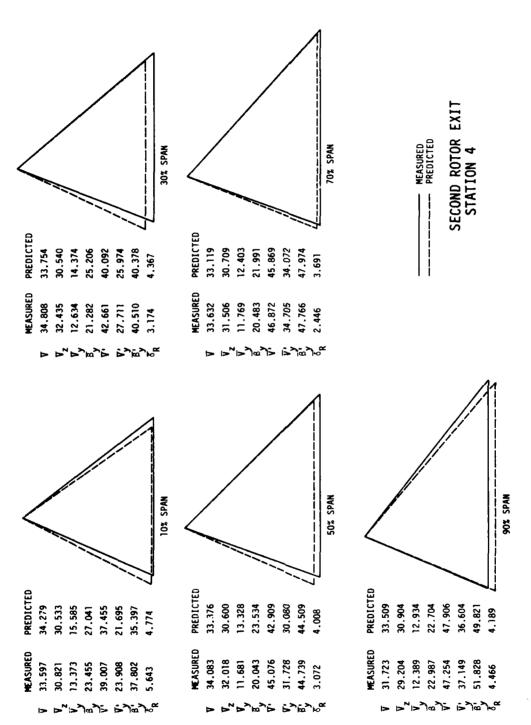

Table 4.3. Rotor, stator, stage, and overall performance parameters.

			First Stag	<u>e</u>		
РНН	ΨR	Ψ stage	w _R	w _s	$\eta_{ m R}$	$\eta_{\mathtt{stage}}$
10.0	0.179	0.167	-0.016	0.055	1.042	0.969
30.0	0.183	0.171	-0.014	0.054	1.040	0.971
50.0	0.178	0.165	0.018	0.060	0.949	0.878
70.0	0.176	0.160	0.035	0.075	0.893	0.811
90.0	0.170	0.133	0.078	0.0193	0.769	0.599
Mass						
Averaged	0.178	0.160	0.025	0.083	0.926	0.833
			Second Stag	<u>e</u>		
РНН	$\Psi_{\mathbf{R}}$	Ψ	w _R	w _s	$\eta_{ m R}$	n.
_	R	stage	R	S	'R	$\eta_{\sf stage}$
10.0	0.156	0.141	0.120	0.070	0.728	0.658
30.0	0.172	0.158	0.067	0.063	0.830	0.760
50.0	0.173	0.163	0.049	0.044	0.864	0.815
70.0	0.176	0.163	0.049	0.059	0.858	0.796
90.0	0.194	0.168	0.048	0.136	0.870	0.752
Mass						
Averaged	0.175	0.159	0.063	0.071	0.833	0.760
			<u>Overall</u>			
		РНН	Ψ overall	η _{overall}		
		10.0	0.307	0.796		
		30.0	0.329	0.857		
		50.0	0.328	0.846		
		70.0	0.323	0.803		
		90.0	0.300	0.676		
		Mass				
		Averaged	0.319	0.795		


cient, blade losses, and hydraulic efficiencies for both stages and for the overall compressor. The performance parameters are based on the Euler turbine equation ideal-head rise and are subject to large errors (see Table 4.1). Even considering these large errors, the first stage is apparently operating more efficiently than the second stage.

4.4. Comparisons of Circumferential-Mean Data with Design Code Predictions

Comparisons of the velocity triangles for the circumferential-mean measurements and the design code calculated results are presented in Figure 4.10 (for flow behind the first rotor), Figure 4.11 (for flow ahead of the second rotor), and Figure 4.12 (flow behind the second rotor). Inspection of these velocity triangles shows very good agreement between the measured and predicted rotor exit relative flow angles, except near the end-walls. This indicates apparent success of the rotor deviation angle prediction option. Also apparent, is the higher axial velocity level of the measured data and the poor agreement between measured and predicted absolute flow angles for almost all cases shown. It is suggested that the differences in measured and predicted absolute flow angles behind the rotors are primarily due to the differences in predicted and measured axial velocity levels. Since the axial velocity levels can be related to the end-wall blockage estimates, this observation indicates that poor blockage estimates were used in the design process. From the calibration tests in section 3.1, the cobra probe was found to be able to accurately measure the total pressure as long as the probe was yawed to within ± 5.0 degrees



Comparisons of measured and predicted velocity triangles $(\phi = 0.587 \text{ at } 2400 \text{ rpm})$ behind the first rotor Figure 4.10

Comparisons of measured and predicted velocity triangles ahead of the second rotor (ϕ = 0.587 at 2400 rpm). Figure 4.11

In additional account of each material yrana an reserved head and additional production of the reserved

Comparisons of measured and predicted velocity triangles behind the second rotor (ϕ = 0.587 at 2400 rpm). Figure 4.12

of the true absolute flow angle. The estimated uncertainty in the absolute flow angle measurement for 20-to-1 odds is \$1.0 degrees (see Table 4.1). Static head measurements were found to be constant across the span as expected, and were estimated to be accurate to within ±5.0 Nm/Kg for 20-to-1 odds (see Table 4.1). Since absolute velocity is a function of the difference between the total and static head, it is estimated that the uncertainty in absolute velocity should be no more than ±0.34 m/s for 20-to-1 odds (see Table 4.1). Given these observations, if the rotor exit absolute flow angle was truly in error by a significant amount, this error should also be evidenced as an error in the rotor exit relative flow angles. Since this is not the case, the large differences in measured and predicted rotor exit absolute flow angles must be predominantly due to the axial velocity discrepancies. Inspection of Figure 4.10--first rotor exit at 90% span--shows good agreement between the measured and predicted axial velocities and, as expected, also shows good agreement between the measured and predicted absolute and relative flow angles. On the other hand, discrepancies between measured and predicted relative flow angles at the inlet of the second rotor were due to errors in measured absolute flow angles as well as differences in axial velocity levels. As mentioned in section 4.1, the difficulty in ascertaining the circumferential extent of the free-stream and wake regions behind the stator blade rows adversely affects the precision of those circumferentialmean absolute flow angles determined from the measured data.

Figure 4.13 shows a comparison between measured and predicted circumferential-mean axial velocities ahead of and behind each blade

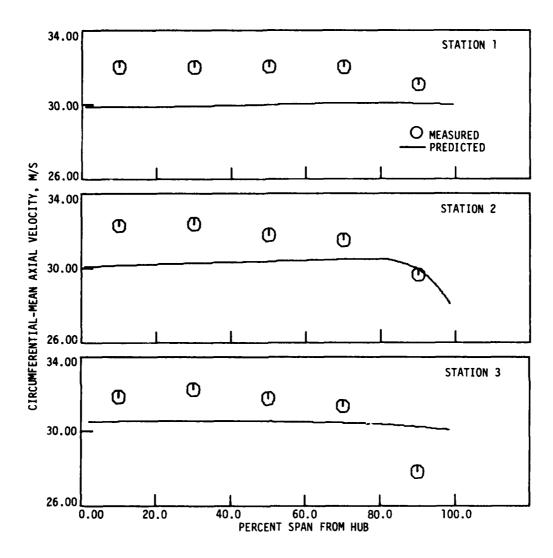


Figure 4.13 Comparisons of the measured and predicted spanwise distributions of circumferential-mean axial velocity (ϕ = 0.587 at 2400 rpm).

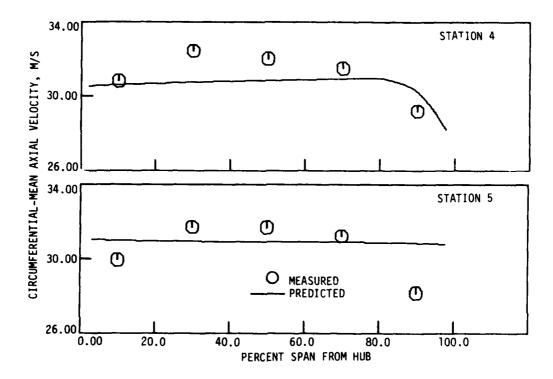


Figure 4.13 concluded.

row. The measured axial velocities are higher than the predicted axial velocities except near the shroud end-wall. As shown in the contour maps of the previous section (see Figure 4.6), there was a loss region (lower total-head fluid) near the shroud end-wall. The lower total-head fluid corresponded to lower axial velocities. In order to achieve the design point flow coefficient, the actual midspan axial velocities would have to be larger to compensate for the lower axial velocities near the shroud end-wall, thus explaining the higher measured midspan axial velocities. Subsequent tests using tuft probes showed that the flow was separating at the shroud lip of the compressor inlet bell housing. This behavior contributed to a larger shroud end-wall boundary layer than might be expected normally. Subsequent tests with a new inlet have all but eliminated flow separation at the inlet of the compressor.

Spanwise distributions of the circumferential-mean values of total head, incidence angles, and deviation angles are shown for the first-and second-stage rotors in Figure 4.14, and for the first- and second-stage stators in Figure 4.15. The comparisons of the measured and predicted spanwise distributions of circumferential-mean total head behind both rotor and stator rows (Figure 4.14 (a) and 4.15 (a)) show significantly lower measured total-head levels than predicted by the design code, and less measured energy addition per stage as well as less overall energy addition than predicted by the design code. As mentioned earlier in connection with the velocity triangle plots (Figures 4.10, 4.11, and 4.12), the measured axial velocities were generally higher than predicted by the design code (also see Figure

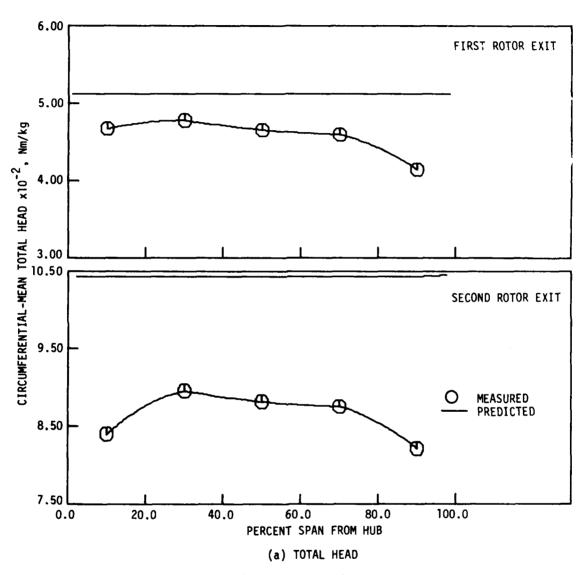


Figure 4.14 Comparisons of the measured and predicted spanwise distributions of circumferential-mean data for the first and second stage rotors (ϕ = 0.587 at 2400 rpm).

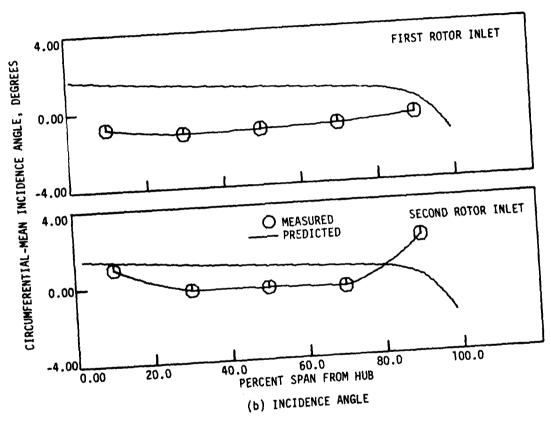


Figure 4.14 continued.

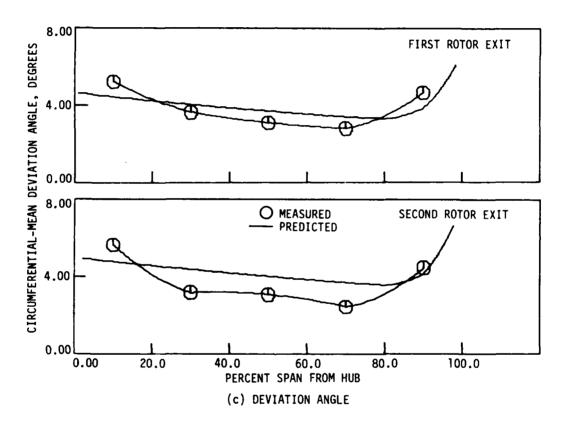


Figure 4.14 concluded.

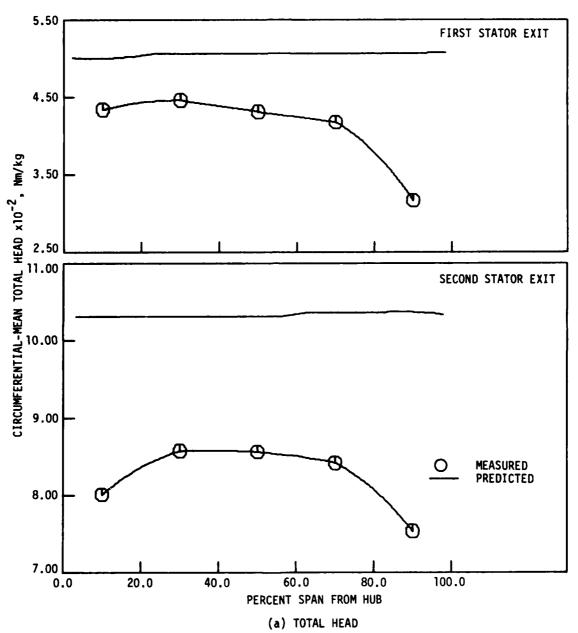


Figure 4.15 Comparisons of the measured and predicted spanwise distributions of circumferential-mean data for the first and second stage stators ($\phi = 0.587$ at 2400 rpm).

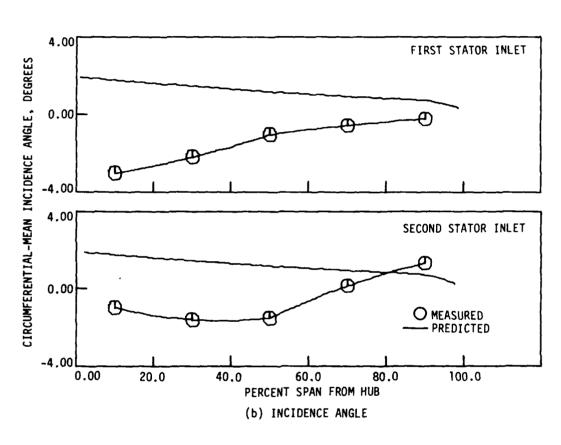


Figure 4.15 continued.

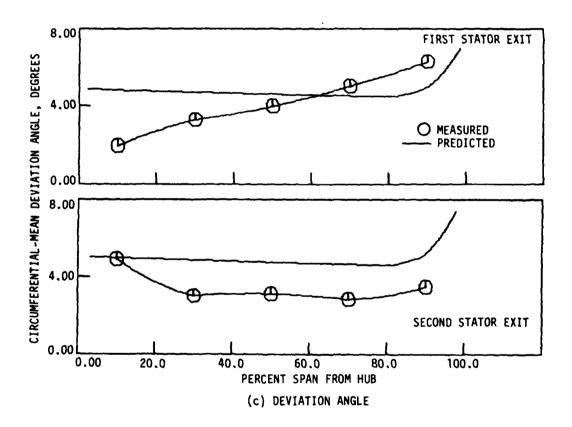


Figure 4.15 concluded.

4.13). The higher measured axial velocities resulted in less measured flow turning than was predicted. With less measured flow, turning the measured energy addition would be less than predicted, as is shown in Figure 4.14 (a) and Figure 4.15 (a). The measured circumferential-mean total head is consistently lowest at the shroud which again shows effects due to the higher shroud end-wall losses as a result of the flow separation at the shroud lip of the inlet bell housing. The measured total head behind the second rotor and stator is also low near the hub which is due to hub end-wall effects beginning to appear there.

As found from inspection of the velocity triangles, the first-stage rotor measured and predicted deviation angles (Figure 4.14 (c)) compared favorably. Flow behind the second rotor exit shows slightly poorer agreement between the measured and predicted deviation angles. The poorer agreement between the measured and predicted deviation angles for the second-stage rotor is due to the fact that the second-stage blade angles for the actual compressor and design code are different (see Figure 4.16). For economic reasons, both stages of the actual compressor were designed based on the first-stage blading of the design code. The actual second-stage rotor exit blade angles are greater than the design code blade angles, and since the measured and predicted relative flow angles were about the same this resulted in smaller deviation angles than predicted by the design code. Figures 4.16 and 4.14 (c) show that the design code blade exit angles for the first rotor are greater than those for the second rotor, and that the design code deviation angles are slightly greater for the second rotor

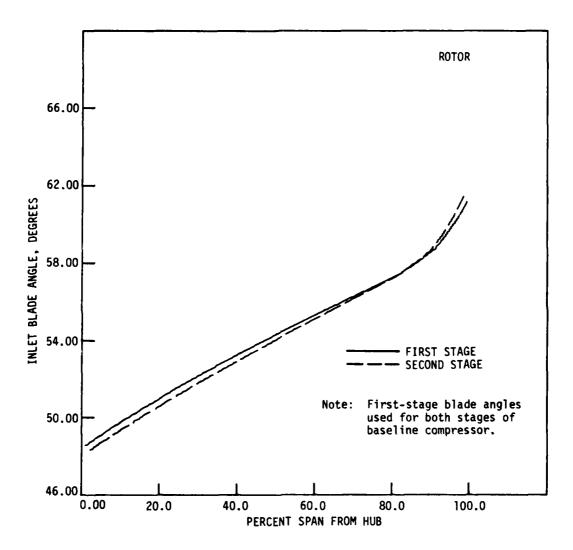


Figure 4.16 Spanwise distributions of design code rotor blade angles.

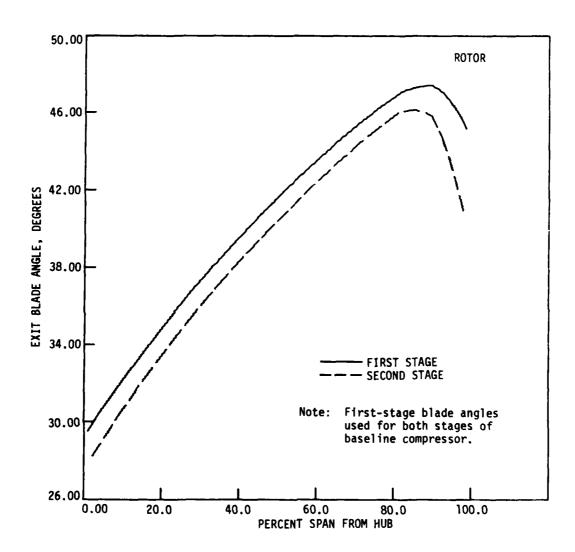


Figure 4.16 concluded

than for the first rotor. The actual blade exit angles for the first and second rotors were the same, and the actual deviation angles for the first and second rotors were about the same. The good agreement between measured and predicted deviation angles indicates that the deviation angle prediction correlation used in the design code (see Appendix A) is quite good. Measured incidence angles (Figure 4.14 (b)) were lower than desired for both rotors. However, these incidence angle differences did not result in appreciable deviation angle differences. Measured stator incidence angles (Figure 4.15 (b)) show poor agreement with predicted stator incidence angles. Comparisons of the measured and predicted stator deviation angles (Figure 4.15 (c)) also show poor agreement. The reason for the poor agreement between measured and predicted stator deviation angles in contrast to the good agreement between measured and predicted rotor deviation angles is partially due to the greater uncertainty in absolute flow angle measurements behind a stator blade row (see Table 4.1). However, not all of the difference between the measured and predicted stator deviation angles can be accounted for by the measurement uncertainty. No satisfactory explanation has been found for the additional differences in measured and predicted stator deviation angles, except to blame the deviation angle prediction method used. A comparison of the stator blade angles for both stages is shown in Figure 4.17.

The spanwise distributions of the measured and predicted blade loss coefficients for each blade row are shown in Figure 4.18. The difficulty in accurately predicting blade losses is evidenced by the large discrepancies between the measured and predicted blade losses.

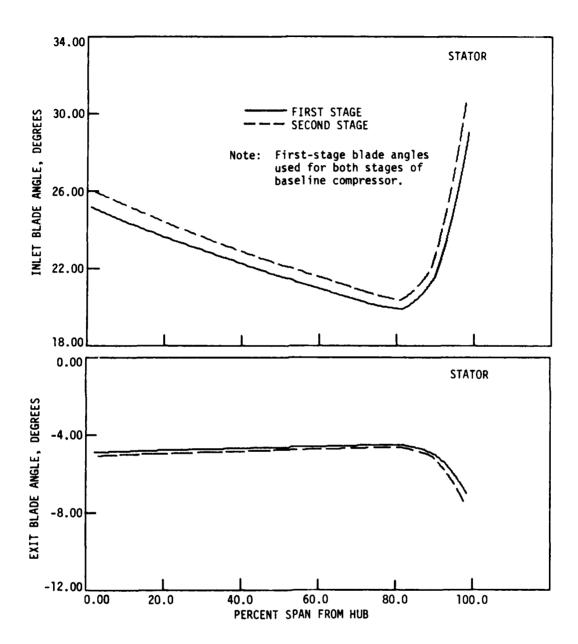


Figure 4.17 Spanwise distributions of design code stator blade angles.

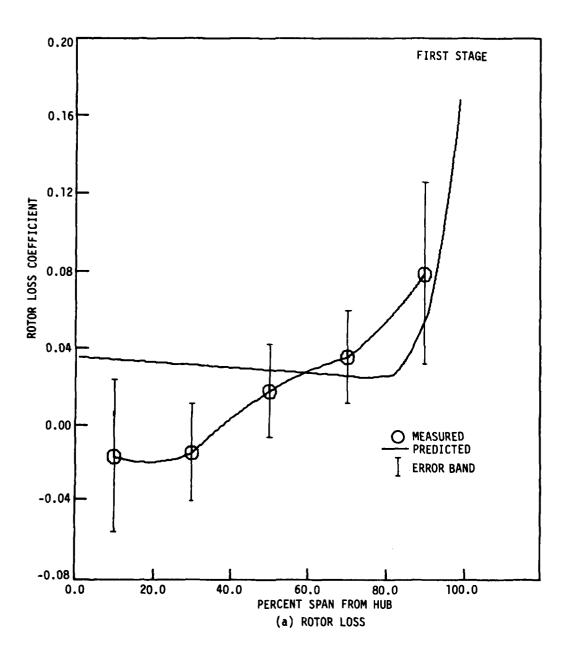


Figure 4.18 Comparisons of measured and predicted spanwise distributions of blade loss for each blade row $(\phi = 0.587 \text{ at } 2400 \text{ rpm})$.

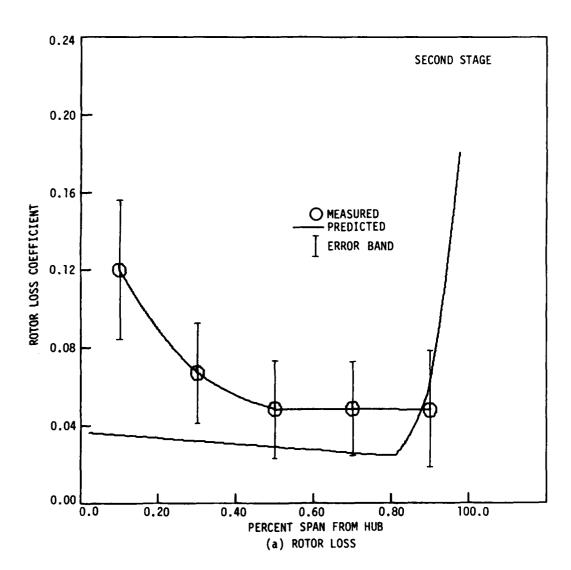
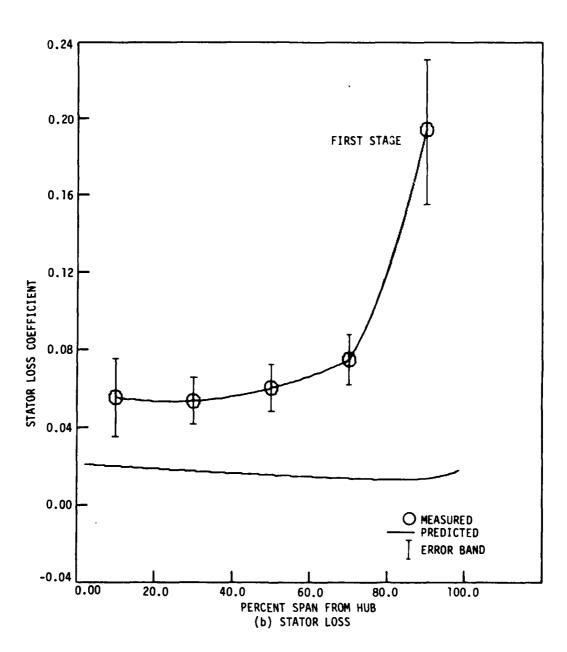



Figure 4.18 Continued.

. Figure 4.18 Continued.

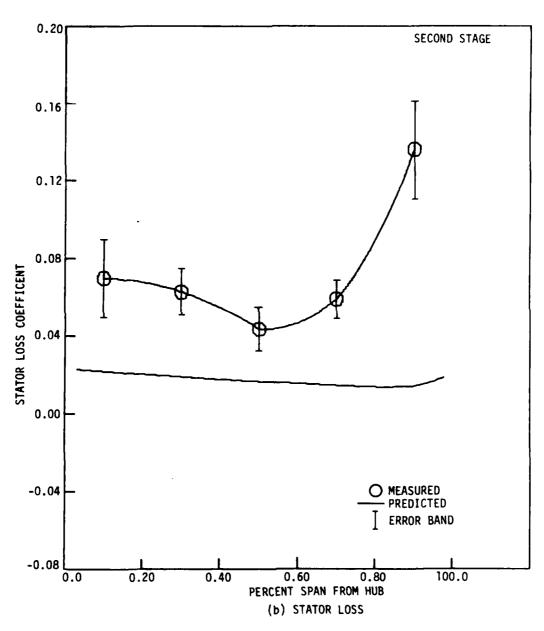


Figure 4.18 Concluded.

Although the uncertainties in the measured loss coefficients are quite large, the design code blade loss predictions are generally lower than the measured losses. Thus, it seems the blade loss correlation used in the design code (see Appendix A) is inadequate. With the lower predicted losses and higher predicted overall energy addition, the predicted overall efficiency would be expected to be much higher than the measured overall efficiency, as is shown in Figure 4.1 (c).

5. SUMMARY AND CONCLUSIONS

A two-stage baseline research compressor has been designed which has resulted in:

- Higher blade-chord Reynolds numbers than were previously attainable with three-stage compressor blading.
- 2. A better blade material which would be more durable than that already available.
- 3. Conventional blade-section shapes.
- A favorable ratio of number of rotor blades to number of stator blades.
- 5. Elimination of inlet guide vanes.

This baseline compressor can provide a suitable means for evaluating specific stator blade modifications for possible improved control of end-wall and secondary flows. The data acquisition system and computer programs developed during this research program are expected to aid in the acquisition and reduction of associated time-averaged measurements.

Some limitations of the design code used to design the baseline compressor have been observed. The blade loss prediction correlations (see Appendix A) were shown to be inadequate. The deviation angle correlation (see Appendix A) proved to be quite accurate for predicting rotor but not stator blade deviation angles.

A curious pattern of total head distribution was observed downstream of the second rotor. The relationship between the observed distribution of rotor exit total head and the interaction between upstream stator wakes and the rotor has been studied further and is discussed in another report (Reference 12).

6. RECOMMENDATIONS FOR FURTHER RESEARCH

The next phase of research included tests of a specific stator blade geometry designed for improved control of end-wall and secondary flows (see Reference 12). A stator blade geometry, designed for improved control of end-wall and secondary flows, was selected and tested in conjunction with the baseline compressor described in this report.

Relative to the compressor design code used to design the baseline compressor, it is clear that improvements in stator blade deviation angle and rotor and stator blade loss prediction correlations are required. These correlation methods were developed in the 1950s from two-dimensional cascade tests of fairly conventional blade sections (i.e., parabolic, circular arc, double circular, etc.). Periodically unsteady effects due to blade wake chopping, transport, and interaction should also be investigated further to help explain the unusual total-head distribution behind the second rotor of the research compressor.

7. REFERENCES

- Mitchell, W. S., and Soileau, J. F. "Turbine Exit Guide Vane Program." AFAPL-TR-77-75, November 1977.
- Wisler, D. C. "Core Compressor Exit Stage Study, Volume II-Data and Performance Report for the Baseline Configurations." NACA CR-159498, November 1980.
- Senoo, Y., Taylor, E. S., Batra, S. K., and Hink, E. "Control of Wall Boundary Layer in an Axial Compressor." Gas Turbine Laboratory Report No. 59, Massachusetts Institute of Technology, June 1960.
- Schmidt, D. P., and Okiishi, T. H. "Multistage Axial-Flow Turbo-machinery Wake Production, Transport, and Interaction." ISU-ERI-Ames-77130, TCRL-7, November 1976.
- Crouse, J. E., and Gorrell, W. T. "Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors." NASA Technical Paper 1946, 1981.
- 6. Bryans, A. C., and Miller, M. L. "Computer Program for Design of Multistage Axial-Flow Compressors." NASA CR-54530, 1967.
- 7. Sofrin, T. G. "Aircraft Turbomachinery Noise, Fan Noise." Notes from the Course in the Fluid Dynamics of Turbomachinery, Iowa State University, Ames, Iowa, 1973.
- 8. Morgan, B. D. "A Water Column Balance Pressure Reference System."
 Unpublished Report, Department of Mechanical Engineering, Iowa
 State University, Ames, Iowa 1979.
- 9. Greville, T. N. E. <u>Theory and Applications of Spline Functions</u>.

 New York: Academic Press, 1967.

- 10. Wylie, C. R. Advanced Engineering Mathematics. New York:

 McGraw-Hill Book Company, Inc., 1975.
- 11. Kline, S. J., and McClintock, F. A. "Describing Uncertainties in Single Sample Experiments." Mechanical Engineering, 75 (1953), 3-8.
- 12. Tweedt, D. L., and Okiishi, T. H. "Stator Blade Row Geometry

 Modification Influence on Two-Stage Axial-Flow Compressor Aerodynamic Performance." ISU-ERI-Ames-84179, TCRL-25, December 1983.
- 13. Zierke, W. C., and Okiishi, T. H. "Measurement and Analysis of the Periodic Variation of Total Pressure in an Axial-Flow Compressor Stage." ISU-ERI-Ames-81121, TCRL-18, November 1980.
- 14. Dring, D. P., Joslyn, H. D., and Hardin, L. W. "An Investigation of Axial Compressor Rotor Aerodynamics." Transactions of the ASME, <u>Journal of Engineering for Power</u> 104, No. 1 (January, 1982): 84-96.
- 15. Johnson, I. A., and Bullock, R. O., eds. "Aerodynamic Design of Axial-Flow Compressors." U.S. NASA SP-36, 1965.

8. ACKNOWLEDGMENTS

We would like to express our appreciation to our colleagues of the Iowa State University Engineering Research Institute/Mechanical Engineering Department Turbomachinery Components Research Laboratory for their assistance and encouragement, in particular, Daniel L. Tweedt for his help in obtaining and reducing data and George K. Serovy for his helpful comments. We are also grateful to Leon Girard and Kurt Ante for their dispatch of related machining, and to the staff of the Iowa State University Engineering Research Institute/Office of Editorial Services/Technical Illustration for their patience and expertise in editing the text and in helping to prepare the many figures and tables in this report. Finally, we acknowledge the support of the Air Force Office of Scientific Research (James D. Wilson - Contract Monitor) throughout.

9. APPENDIX A: USER-DEFINED CORRELATIONS USED IN NASA DESIGN CODE

Advanced compressor design codes frequently require the user to input various empirical correlations of blade profile losses and incidence and deviation angles, and annulus-wall blockage factors. The various user-defined correlations required as input to the NASA design code are presented in this section. The actual tabular input to the design code is given in Appendix B. The variables used in the correlation parameters are defined in the symbols and notation section.

9.1. Blade Loss

The blade loss correlations used are illustrated in Figure 9.1.

The loss curves are typical of annular cascade tests of double-circulararc blades as used in the baseline compressor. The correlating parameters are:

• Loss parameter
$$\equiv \frac{\overline{w}\cos\beta_{y,2}'}{2\sigma} \equiv \text{approximate measure of blade wake momentum thickness to chord ratio.}$$

where $\sigma = c/s$

• D-factor =
$$1 - \frac{v_2'}{v_1'} + \frac{(rv_y)_2 - (rv_y)_1}{\sigma(r_1 + r_2)v_1'}$$

• Percent span from hub

The trends shown are similar to those indicated in Figure 203 of Reference [15].

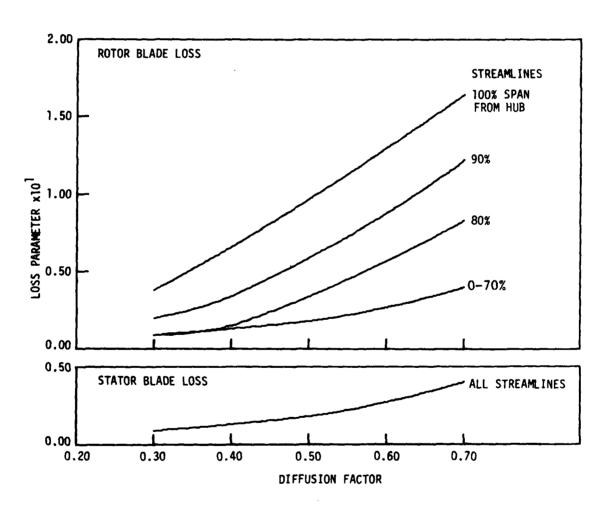


Figure 9.1 Blade loss correlation curves used in NASA design code.

9.2. Incidence and Deviation Angle

The design code provided several options for the incidence and deviation angle correlations. A two-dimensional incidence angle correlation was considered suitable for the baseline compressor design. Carter's rule was selected for the deviation angle correlation. Both correlations are described below.

The incidence angle correlation is described in Chapter VI of Reference 15 in the form of:

$$i = i_0 + n\theta$$

where n is obtained from Figure 138 of Reference 15 as a function of

 σ and κ_1

 θ = blade camber angle

 $i_0 = (K_i)_{sh} (K_i)_{t} (i_0)_{10} = incidence angle for zero camber$

where (i_o) is obtained from Figure 137 of Reference 15

(K₁) = 0.7 for double circular arc blades

 (K_i) is obtained from Figure 142 of Reference 15 as a

function of t_{max}/c

The deviation angle correlation (Carter's rule) described in Chapter VII of Reference 15 is

$$\delta = \frac{m_c \theta}{\sqrt{\sigma}}$$

where m is obtained from Figure 160 of Reference 15 for circular arc blades.

10. APPENDIX B: NASA DESIGN CODE RESULTS

The output from the NASA design code is presented in the following tables. Table 10.1 lists all input parameters and user-defined correlations, in tabular form, required for the design code analysis. Table 10.2 lists the aerodynamic output (e.g., velocity triangle information, blade element performance, etc.) for 11 streamlines at each axial computation station. The NASA design code gives the streamline radial positions as a percentage of the blade span measured from the shroud end-wall, whereas, the convention used for all data figures in this report is percent span measured from the hub end-wall. Table 10.3 lists the stage and overall mass-averaged aerodynamic performance parameters. Table 10.4 and Table 10.5 list the manufacturing coordinates at 17 spanwise locations for the rotor blade and stator blade, respectively. Only the first stage stator and rotor blade manufacturing coordinates generated from the NASA design code are given as they were used for both stages of the baseline compressor. Figure 10.1 shows representative rotor and stator blade sections and associated manufacturing coordinate nomenclature.

Table 10.1 Design code input parameters.

*** INPUT DATA FOR COMPRESSOR DESIGN PROGRAM ***

AFCSR/ISU TASK 4 2-STAGE BASE W/SP-36 P.248 LOSS 2400RPM 6SEP79

THE INLET FLOW RATE 1S 5.250 (LB/SEC).	THE MOLECULAR WEIGHT IS 28.97 .	THE COMPRESSOR HAS A SEADE DOWN
THE COMPRESSOR RUTATIONAL SPEED IS 2400.0 RPM.	THE DESIRED CCMPRESSOR PRESSURE RATIO IS 1.019 .	CALCULATIONS WILL BE PERFORMED ON 11 STREAMLINES.

CALCULATIONS WILL BE MADE AT THE BLADE EDGES AND AT 7 ANNULAR STATIONS.

0.0 *T*		STREAMTUBE FLOW FRACTION	0000000000 00000000000 00000000000 1NM 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
* ***		STREAMTUBE NO.	~ଶଳ କଥା ଏକ ଅବନ୍ଦ
SPECIFIC MEAT POLYNOMÍAL IS IN THE FOLLCHING FORM + C.O = T8#2 + O.O = T##3 + O.O	INPUT DISTRIBUTIONS BY STREAMLINE OR STREAMTUBE	INLET WHIRL VELOCITY (FT/SEC)	0000000000
THE SPECIFIC MEAT PO #T + C.O #T	INPUT DISTRIBUTIO	INLET TOTAL PRESSURE (PSIA)	24444444 4444444 6444444 6444444 644444 64444 64444 64444 64444
÷		INLET TOTAL TEMPERATURE (DEG. R.)	88888888888888888888888888888888888888
CP = 0.23970b 00		STREAMLINE NO.	

Table 10.1 Continued.

INPUT DATA POINTS FOR TIP AND HUB CONTCURS.

RADIUS (INCHES)	8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
MUB AXIAL COORDINATE (INCHES)	0000 0000 0000 0000 0000 0000 0000 0000 0000
TIP RADIUS (INCHES)	0,0000000000000000000000000000000000000
TIP AXIAL COORDINATE (INCHES)	04-10

THE INPUT PROFILE LOSS TABLES - CMEGA(BAR) + COS(BETA)/(2.0+SIGMA)

	PARAM.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0
	LOSS PA	00000000 A 000000000000000000000000000	0.0
	D-FACTOR L	00000000000000000000000000000000000000	0. 1000
	LOSS PARAM.	COSS PARAMAN COS	0.0270
	D-FAC TOR	00000000000000000000000000000000000000	0.6000
LE NC. 1 **	LOSS PARAM.	L C C C C C C C C C C C C C C C C C C C	0.0100
LE LOSS TABLE	D-FACTOR	L L L L L L L L L L L L L L L L L L L	0.5000
** PROFILE	LOSS PARAM.	CSS PARA **	0.0130
	D-FACTOR	00000000000000000000000000000000000000	0.4.00
	LCSS PARAM.	AA A A A A A A A A A A A A A A A A A A	0600.0
	D-FACTOR	00000000000000000000000000000000000000	0.3000
	STREAM INE	ST RE 100000000000000000000000000000000000	:

Table 10.1 Continued.

		MASS BLEED FRACTION	0 • 0		MASS BLEED FRACTION	0.0		MASS BLEED FRACTION	0.0		MASS BLEED FRACTION	0.0
1A ***	TATION **	HUB BLOCKAGE FACTOR	0 • 0	STATION **	HUB BLOCKAGE FACTOR	0.0030	TATION **	HUB BLOCKAGE FACTOR	0900.0	STATION **	HUB BLOCKAGE FACTOR	0.0080
*** PRINTOUT OF INPUT STATION DATA ***	** INPUT SET NO. 1 IS AN ANNULAR STATION **	TIP BLOCKAGE FACTOR	0.0	T NO. 2 IS AN ANNULAR STATION .*	TIP BLCCKAGE FACTCR	0.0030	** INPUT SET NO. 3 IS AN ANNULAR STATION **	TIP BLOCKAGE FACTOR	0900 •0	** INPUT SET NO. 4 IS AN ANNULAP STATION **	TIP BLOCKAGE FACTOR	0.0000
*** PRIN	A* INPUT SE	HUR AXIAL LOCATION (INCHES)	-11.4000	** INPUT SET NO.	HUB AXIAL LOCATION (INCHES)	0000-01	S TUGNI **	HUB AXIAL LOCATION (INCHES)	-4.9500	S TUNNI **	HUB AXIAL LOCATION (INCHES)	-1.6000
		TIP AXIAL LOCATION (INCHES)	-5.9500		TIP AXIAL LOCATION (INCHES)	-4.7500		TIP AXIAL LOCATION (INCHES)	-3.5800		TIP AXIAL LOCATION (INCHES)	-1.4500

Table 10.1 Continued.

TIP C.G.	AXIAL LOCATION	HUB C.6.	AXIAL LOCATION	INLET TIP BLOCKAGE	INLET HUB BLOCKAGE		INLET MASS BLEED
	1.6800 1.6830	-	1 • 8300	0600*0	0660.0	Ū	0.0
F07	LOSS SET USED	BLADE	BLADE TILT ANGLE	OUTLET TIP BLOCKAGE	OUTLET HUB BLOCKAGE		OUTLET MASS BLEED
	-	3	0.0	0.0180	0600 0	•	0.0
TIP 0	TIP O FACTOR LIMIT	HUB FLON	Y ANGLE LIMIT	TIP SOLIDITY	NUMBER OF BLADES		CUM ENERGY ADD FRACT
	0.4000	3	0.0	1.0027	21	J	0.5000
TERM	ROTOR GUTLET PRESSURE	RESSURE	* POLYNGWIAL L.E. RAJIUS/CHORD	* POLYNCMIAL CONSTANTS FOR THE FCLLOWING RADIUS/CHORD T.E. RADIUS/CHCRD	:LLOWING * ICRD MAX. THICKNESS/CHORD		CHORD/TIP CHORD
CONSTANT LINEAR QUADRATIC			0000	0000	000000000000000000000000000000000000000		00
CUBIC QUARTIC QUINTIC	000		o • o	0.0	0		0.0
			+ INPUT 9L	# INPUT SLADE ELEMENT DEFINITION OPTIONS	OPTIONS +		
INCIC	INCIDENCE DEV	DEVÍATION ANGLE	TURNING RATE RATIO	TRANSITION POINT	MAX. THICKNESS POINT	CHOKE BLADE	BLASE MATERIAL DENSITY LB/(IN)403
2-D	-O CARTERS	ERS RULE	CIRCULAR ARC	CIRCULAR ARC	TRANS. PT.	NO.	0.10000

000

000

NONE

MAX. THICKNESS POINT TRANS. PT.

* INPUT SLADE ELEMENT DEFINITION OPTIONS * TRANS IT ION POINT CIRCULAR ARC

TURNING RATE CIRCULAR ARC

INC IDE NCE ANGLE

CARTERS PULE

0000

Table 10.1 Continued.

٠
* * *
*
•
۳
DATA
a
_
7
ŏ
⋍
Ξ
STAT
_
ς.
v
_
INDCI
Q.
Z
=
ш
9
_
_
Ξ
ಸ
~
ᆮ
Z
INTOUT
8
σ
*
٠

*
TOR
STATOR
Š
VANE
SUIDE
V SI
9 15
è
SET
1 NO.
*

	•	ALL PROGRAM OPTIONS EXCEPT OFF - DESIGN PUNCH ARE DESIRED FOR THIS BLADE .	OFF - DESIGN PUNCH ARE	DESIRED FOR THIS BLADE .	
TIP C.G. AX	TIP C.G. AXIAL LOCATION	HUB C.G. AXIAL LOCATION	INLET TIP BLOCKAGE	INLET HUB BLOCKAGE	INLET MASS BLEED
5.2	5600	5.2600	0.0180	0600*0	0.0
ross s	LOSS SET USED	BLADE TILT ANGLE	CUTLET TIP BLOCKAGE	OUTLET HUB BLOCKAGE	OUTLET MASS BLFED
	8	0.0	0.0180	0.0180	0.0
HUB D FAC	HUB D FACTOR LIMIT 0.5000	INLET HUB MACH LIMIT 0.5000	TIP SOLIDITY	NUMBER OF BLADES	NTESTK NCVSTK 0 0
		* PCLYNDWIA	* PCLYNDMIAL CONSTANTS FOR THE FOLLOWING *	LOWING *	
TERM	STATOR OUTLET	V(0) L.E. RAJIUS/CHORD	D T.E. RADIUS/CHORD	RD MAX. THICKNESS/CHORD	TO CHORD/TIP CHORD
I NV - SG.	000				
L INEAR	900			0004000	000
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	•				•

0.10000

NONE

CIRCULAR ARC

CIRCULAR ARC

CARTERS RULE

2-0

Table 10.1 Continued.

** INPUT SET NO. 7 IS ROTOR NO.

	INLET MASS BLEED	OUTLET MASS BLEED	CUM ENERGY ADD FRACT	0.0 0.0 0.0 0.0	BLADE MATERIAL DENSITY LB/(IN)**3
ESIRED FOR THIS BLADE #	INLET HUB BLOCKAGE	OUTLET HUB BLOCKAGE 0.0180	NUMBER OF BLADES	#ING * MAX. THICKNESS/CHURD 0.0600 0.0400 0.0	OPTIONS * MAX. THICKNESS CHOKE MAX. THICKNESS MARGIN
PROGRAM OPTIONS EXCEPT OFF - DESIGN PUNCH ARE DESIRED FOR THIS BLADE	INLET TIP BLOCKAGE 0.0180	OUTLET TIP BLOCKAGE 0.0270	11P SOLIDITY 1.0027	* POLYNOWIAL CONSTANTS FOR THE FOLLOWING ** RADIUS/CHORD T.E. RADIUS/CHORD M 0.0100 0.00 0.00 0.00 0.00 0.00 0.00 0.	* INPUT BLADE ELEMENT DEFINITION OPTIONS * NING RATE TRANSITION MAX. THICK RATIO
	HUB C.G. AXIAL LOCATION (INCHES)	BLADE TILT ANGLE O (DEGREES)	HUB FLOW ANGLE LIMIT (DEGREES)		T. T.
* ALL	TIP C.G. AXIAL LOCATION H (INCHES) 8.2700	LOSS SET USED 1	TIP D FACTOR LIMIT 0.4000	TERM RGTOR OUTLET PRESSURE CONSTANT 0.0 CUBIC CUBIC 0.0 CUBIC 0.0 CUBIC 0.0 CUBIC 0.0 OUTLET PRESSURE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	INCIDENCE DEVIATION ANGLE ANGLE

Table 10.1 Continued.

SAS PRINTON OF INDUT STATION DATA SES

STATOS
7
-
â
VANE
4
GUIDE
3
J
⋖
2
40
SET NO.
Ξ
띭
_
INPUT
Ž
:
_

	INLET MASS BLEED	0.0	OUTLET MASS BLEED	0.0	NTESTK NCVSTK 0 0
E DESTRES FOR THIS BLADE #	INLET HUB BLOCKAGE	0.0180	OUTLET HUB 3LDCKAGE	0.0270	NUMBER OF BLADES
T OFF - DESIGN PUNCH ARE	INLET TIP BLOCKAGE	0.0270	OUTLET TIP BLOCKAGE	0.0270	TIP SOLIDITY 1.4324
* ALL PROGRAM OPTIONS EXCEPT OFF - DESIGN PUNCH ARE DESIRED FOR THIS BLADE	HUB C.G. AXIAL LOCATION	11.7000	BLADE TILT ANGLE (DEGREES)	0.0	INCET HUB MACH LIMIT 0.5000
•	TIP CAG. AXIAL LOCATION	000000	LOSS SET USED	2	HUB D FACTOR LIMIT 0.5000

* DOLYNOWIAL CONSTANTS FOR THE FOLLOWING *

	CHORD/IIP CHORD	000	600 600					
	MAX. THICKNESS/CHORD	00000		CHOKE	NONE			
, 20110			ION CPTIONS *	MAX. THICKNESS POINT	TRANS. 21.			
	T.E. RADIUS/CHORD	00000	* INPUT BLADE ELEMENT DEFINITION CPTIONS	TRANSITION	CIRCULAR ARC			
	L.E. RADIUS/CHORD	0000	# INPUT BLAD	TURNING RATE RATIO	CIRCULAR ARC			
	STATOR GUTLET V(+)	00000		DEVIATION Angle	CARTERS RULE			
		INV-SG. INVERSE CONSTANT LINEAR CUBIC	NVERSE CONSTANT LINEAR GUADRATIC CUBIC	INCIDENCE ANGLE	2-D			

*** PRINTOUT OF INPUT STATICN DATA ***

	MASS BLEED FRACTION	0.0					
STATION **	HUB BLOCKAGE FACTOR	0.0270					
** INPUT SET NO. 9 IS AN ANNULAR STATION **	TIP BLOCKAGE FACTOR	0.0270					
3S TUGNI **	HUB AXIAL LOCATION (INCHES)	14.5000					
	TIP AXIAL LG TION (INCHES)	14.5000					

Table 10.1 Concluded.

	MASS BLEED FRACTION	0.0		MASS BLEED FRACTION	0.0	AR	0.0 1.6969	1.4520	1.9356	1.3125	11.88	2.1955	0.00	1.0971	• 3556 • 3556	2.2666
TATION **	HUB BLOCKASE FACTOR	0.0270	TATION **	HUB BLOCKAGE FACTOR	0.0270	((*1))Z	-6.4947		1.0003	2.7808	6.3881	7.4405	10.7621	12.6280	0000	16.5000
SET NO. 10 IS AN ANNULAR STATION **	TIP BLOCKAGE FACTOR	0.0270	SET NO. 11 IS AN ANNULAR STATION	TIP BLOCKAGE FACTOR	0.0270	₩.										
S TURNI **	HUS AXIAL LOCATION (INCHES)	15.5000	S LUGNI **	HUB AXIAL LOCATION (INCHES)	16.5000	IFT Z(IFT.J4)	1 -8.4947					Φ.	o =		m «	15 15-5000
	TIP AXIAL LOCATION (INCHES)	15.5000		TIP AXIAL LOCATION (INCHES)	16.5000		0	M 4	r un	· o f	- 60	٥.	0=		m d	+ 40

operation proportion in the statement of the proportion of the proportion of the statement of the statement of

Table 10.2 Design code predictions of aerodynamic parameters.

	_																	
	STATIC TEMP. (DEG.R.)	518.45	518.48	518.50	518.51	518.53	518.53	518.54		STATIC TEMP.	518.31	518,33	518.38	518.40	518.44	518.46	518.52	518.55
	STATIC PRESS. (PSIA)	14.681	14.684	4.686	14.687	14.689	14.689	14.690		STATIC PRESS. (PSIA)	14.667	14-670	14.674	14.676	14.680	14.683	14.688	14.691
	TOTAL TEMP. (DEG.R.)	518.60	518.60	518.60	518.60	518.60	518.60	518.60	:	TOTAL TEMP. (DEG.R.)	518.60	518.60	518.60	518-60	518.60	50 B	518	518.60
	TOTAL PRESS. (PSIA)	14.696	14.696	14.696	14.696	14.696	14.696	14.696	ANNULUS	TOTAL PRESS. (PSIA)	14.696	14.696	14.696	14.696	14.656	14.040	14.696	14.696
	CURV.	00.0	0.037	0.034	40.0	0.038	0.0	0.00	2. WHICH IS AN	STREAM. CURV.	0.117	00.00	0.00	0.0	260.0	0.104	0.169	0.248
1	STREAM. SLOPE (DEG)	-42.97	-38.58	-35.07	00.00	-33.18	134.65	145.69		STPEAM. SLOPE (OEG)	-36.24	131.82	-29.70	-25.56	-23.53	-10.74	-18.46	-19.14
i	ABS.FLOW ANGLE (DEG)	00	00	0	•	0	000	00	IT STATION.	ABS.FLOW ANGLE (DEG)	00	•	00	•	00	•	0	0
	MACH NO	0.0378	0.0344	0.0310	0.0279	0.0265	0.0254	0.0244	ON STREAMLINES AT	ABS.	0.0529	0.0	4040	0.0417	0.0391	0.0326	0.0281	0.021
•	ABS. VEL. (FT/SEC)	42.24	36.40	34.64	31.14	29.62	27.58	27.20		ABS. VEL. (FT/SEC)	59.06	54.20	51.76	46.59	43.68	36.40	31.35	24.31
	YEL.	00	•	0	0	0	•	•	PARANETERS	TANG. VEL. (FT/SEC)	000	•	000	•	•	0	0	• . •
	WERD. VEL. (FT/SEC)	42.24	36.40	40.00	31.14	29.62	27.58	27.20	** VALUES OF F	MERD. VEL. (FT/SEC)	59.06	54.20	51.76	46.59	43.00	36.40	31.35	24.31
•	VEL. VEL. (FT/SEC)	30.91	30.02 29.27	28.35	26.10	24.79	7 7 6 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6	19.00	> *	AXIAL VEL• (FT/SEC)	47.63	46.05	44.06	42.03	40.05	34.27	29.74	22.97
;	C0080.	-5.950	-6.715	-7-624	-8-714	900 900 900 900 900	-10.605	-111-		AXIAL COORD. (IN.)	-4-759	-5-187	-5.427	-5-978	0000	-7.095	-7.623	-0.450 -0.450
44.0	RADIUS (1N.)	10.454	9.914	9.400	9.210	6.031	8,319	8.000		RADIUS (IN.)	9.450	9.011	404.4	8.200	7.494	7.054	6.513	5.768
	0 P	-01	m 4	ın «	~	© 0	•	- E		STRI NO.	-~	l IFO	4 10	01	•	0	2:	25

Table 10.2 Continued.

	STATIC TEMP. (DEG.R.)	51.00 51.00 51.00 51.00 51.00 51.00 51.00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	STATIC TEMP.	(DEG.R.) 517.77 517.83 517.83 517.93 5517.94 5517.95
	STATIC PRESS. (PSIA)	444 444 664 664 664 664 664 664 664	444444 6666000 666660000 666660000000000	STATIC PRESS.	
:	TOTAL TEMP. (DEG.R.)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		TOTAL	
IS AN ANNULUS	TOTAL PRESS. (PSIA)	14.696	444444 6444444 6444444 6444444 6444444 6444444 6444444 6444444 6444444	ANNULUS TOTAL PRESS.	
WHICH IS AN	STREAM. CURV.	00.151	00000000000000000000000000000000000000	4. WHICH IS AN	0.000000000000000000000000000000000000
m	STREAM. SLOPE (DEG)	1283.90 1283.90	111111111111111111111111111111111111111	STREAM.	0.000 0.000
T STATIO	ABS.FLOW ANGLE (DEG)		0000000	AT STATION. ABS.FLOW S	0000000000
AMLINES A	ABS.	0.0070	00000000000000000000000000000000000000	STREAMLINES A S. ABS. L. MACH ND.	00000000000000000000000000000000000000
S ON STRE	ABS. VEL. (FT/SEC)	78.17	00000000000000000000000000000000000000	v 4>	(FT/SEC) 100.06 96.28 96.28 94.64 91.86 90.71 89.72 88.19
PARAMETERS ON STREAMLINES AT STATION.	TANG. VEL. (FT/SEC)	0000	0000000	PARAMETERS Tang.	71/SEC
VALUES OF F	MERD. VEL. (FT/SEC)	78.17	00000000000000000000000000000000000000	VALUES OF P MERD. VEL.	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* *	AXIAL VEL: (FT/SEC)	600 600 600 600 600 600 600 600 600 600	56666666666666666666666666666666666666	** VA AXIAL VEL.	
	AXIAL COORD.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0044444 004484 004484 004484 0044444 004444	AXIAL COORD.	11111111111111111111111111111111111111
	RADIUS (IN.)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SAML INE	11 P (17.2) 2 1 70.118 3 2 7 70.118 5 7 7 8 8 6 7 7 8 8 6 7 7 8 8 6 7 8 8 8 8
	NO.		1000101	STRE NO.	11-0848848011 11-08488488

Table 10.2 Continued

•
•
é
9
-
2
Č
WHICH IS THE IN ET OF BOTTOB MILES
H
7
=
<u>u</u>
Ē
S
_
3
Ξ
-
'n
•
Š
Ξ
¥
s
¥
ES
Z
훅
EA
Ŧ
S
ĕ
S
ER
Ħ
Ĭ
Ä
ã
** VALUES OF PARAMETERS ON STREAMLINES AT STATION,
ø
3
¥
*

0883	•	•	ý		8.54
	08882 08882 08880 08780 0878 0678	0.00882 0.00882 0.00882 0.00879 0.00878 0.00878	98.55 0.0883 0.0 98.53 0.0882 0.0 98.52 0.0882 0.0 98.09 0.0879 0.0 98.01 0.0879 0.0	5.3 0.0 98.53 0.0884 0.0 5.3 0.0 98.53 0.0882 0.0 5.4 0.0 98.52 0.0882 0.0 5.5 0.0 98.00 0.0879 0.0 6.0 98.01 0.0879 0.0 6.0 98.01 0.0878 0.0	98.47 98.71 0.0 98.71 0.0885 0.0 0.087 98.55 98.55 0.0 98.45 98.55 0.0 98.45 0.0 98.45 0.0 98.45 0.0 98.37 98.27 0.0 98.37 0.0 98.37 0.0 98.37 0.0 98.27 0.0 98.27 0.0 98.27 0.0 98.27 0.0 0.0 98.27 0.0 0.0 98.09 0.0 0.0 98.00 0
,	FLOW L.E.RAD.	FLOW L.E.RAD. COEF. /CHORD	MACH WHEEL FLOW L.E.RAD.	REL.MACH WHEEL FLOW L.E.RAD. NUMBER SPEED COEF. /CHORD	REL. REL.MACH WHEEL FLOW L.E.RAD. VEL. NUMBER SPEED COEF. /CHORD
	5671 5687 5689 5690 5690 5690 5690 5690 5690	0.5871 0.5883 0.5889 0.5899 0.5899 0.0100	1739 167.57 0.5871 0.0100 1707 167.18 0.5871 0.0100 1674 158.56 0.5890 0.0100 1640 154.08 0.5890 0.0100 165 140.46 0.5890 0.0100	7/SEC) (F7/SEC) 93.98 0.1739 167.57 0.5871 0.0100 90.44 0.1707 162.93 0.5883 0.0100 86.78 0.1674 158.56 0.5890 0.0100 82.99 0.1640 154.08 0.5890 0.0100 79.08 0.1605 140.46 0.5890 0.0100	(FT/SEC) (FT
	50000000000000000000000000000000000000	0.55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1640 154-08 0.5890 0.0100 1565 149-69 0.5890 0.0100 1532 149-69 0.5870 0.0100 1532 139-75 0.5870 0.0100 1454 134-61 0.5864 0.0100 1374 117-83 0.5888 0.0100 1374 117-83 0.5888	0.1640 154.08 0.5890 0.0100 0.1605 149.46 0.5886 0.0100 0.1532 139.75 0.5870 0.0100 0.1454 134.61 0.5861 0.0100 0.1454 129.27 0.5861 0.0100 0.1414 129.27 0.5888 0.0100	\$4.00 182.99 0.1640 154.08 0.5890 0.0100 \$4.46 179.08 0.1605 149.46 0.5896 0.0100 \$4.46 175.08 0.1559 144.69 0.5876 0.0100 \$4.46 175.09 0.1532 139.75 0.5870 0.0100 \$4.41 156.44 0.1454 134.61 0.5861 0.0100 \$22.27 162.27 0.1454 134.61 0.5863 0.0100 \$23.47 157.80 0.1414 17.83 0.5848 0.0100
5000000	0.55870 0.58870 0.58870 0.58881 0.588881 0.588881 0.58888 1.51 1.51 1.51	124.650 125	1536 144.00 0.507	0.55 0.1556 144.65 0.5879 0.58	4.69 175.05 0.1550 144.69 0.5870 145.69 0.58
	00	17.5EE 17.5EE 17.5ED 17	UMBER CHEEL UMBER CHEEL UMBER CHEEL UMBER CHEEL	REL.MACH WHEEL EC) NUMBER SPEED FC) 98 0-1739 167-57 99 0-1707 162-93 99 0-1707 162-93 99 0-1707 162-93 99 0-1707 162-93 99 0-1707 162-93 90 0-1707 162-93 90 0-1707 162-93 90 0-1707 162-93 90 0-1707 162-93 90 0-1707 1707 1707 90 0-1707 1707 90 0-1707 1709 90 0-1707 1709 90 0-1707 1709	REL. ANGEVEL. ANGEVEL. ANGEVEL. FT/SEC) FT/

Table 10.2 Continued.

	TATIC TEMP.		ELEMENT SOL IO ITY	1.0227 1.0293 1.0576	1.1586	1.3542	T.E.EDGE CIR.CENT R#DØ/DR	100.1313 100.1213 100.1213 100.022 100.022 100.032 100
:	STATIC ST PRESS. 1	**************************************	SHOCK LOSS COEF.	00000	0000	000	CONE +++ MAX.CAMB. PT.LOC.	
NUMBER. 1	TOTAL S TEMP. P DEG.R.) (40000000000000000000000000000000000000	ON LOSS COEF.	0.0568 0.0568 0.0256	0000	66	++ LAYOUT CUT.BLADE ANGLE (DEG)	24444000000000000000000000000000000000
OF RCTOR	TOTAL PRESS. (PSIA) (100 100 100 100 100 100 100 100 100 100	DIFFUSION FACTOR	00000	00000	000	AMLINE OUT BLADE ANGLE (DEG)	4444444MMWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
E OUTLET	STREAM. CURV.	70000000000000000000000000000000000000	AD ADIAB	0.6381 0.8439 0.9250	0000	00	LET STREAM DEV. (ANGLE (DEG)	00000000000000000000000000000000000000
WHICH IS THE	STREAM. SLOPE (DEG) (111111111 000000000 40044000	IDEAL HEAD COEF.	0.2330	0000	00	T.E.RAD.	
•	ABS.FLOW Angle (DEG)	229 229 220 220 220 220 220 220 220 220	HEAD COEF.	0 1967 0 1967 0 1967 0 1967	0000	00	FORCES LL TANG. (LBS/IN)	00000000000000000000000000000000000000
AT STATION	ABS.	00000000000000000000000000000000000000	FLOW COEF.	00.00 00	0000	00	CAL BLADE F FOR.AXIAL (LBS/IN)	00.16043 00.178643 00.178644 00.16548 00.14518 00.14518 00.14518 00.14518 00.14518
STREAMLINES .	ABS. VEL. (FT/SEC)	00000000000000000000000000000000000000	N WHEEL SPEED (FT/SEC	166.78 162.40 158.07 153.63	1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	117.83	LOCAL RADIUS (IN.)	7. 7. 7. 7. 7. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
Š	TANG. VEL. (FT/SEC)	84Mww44468 	REL.MACI	0.1320	00128	0.101	MEAN SPACING (IN.)	2.3854 2.3238 2.3238 2.1979 2.0644 1.9944 1.9454 1.7662
PARAMETERS	YERD. VEL. (FT/SEC)	00000000000000000000000000000000000000	REL. VEL. (FT/SEC	156.77 156.77 156.36 152.36	m @ 4 0	20.	AERG. CHORD (IN.)	00000000000000000000000000000000000000
VALUES OF	AXIAL VEL• (FT/SEC)	00000000000000000000000000000000000000	TANG.VEL	11224 11222 11202 1206 1306 1306 1306 1306 1306 1306 1306 13	, O G G W	75.54 67.44	TEMP. RATIC	000000000000000000000000000000000000000
:	AXIAL CDORD. (IN.)	00000000000000000000000000000000000000	REL.FLOW ANGLE (DEG)	51-19 51-19 50-32 47-06	444 44.03 39.23	37.24 34.16	PRESS. RATIO	000000000000000000000000000000000000000
	2.5	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	₹à -	0000 0000 0000 0000 0000 0000 0000 0000 0000		000	<u>.</u>	00100000000000000000000000000000000000
		11-10-00-10-10-10-10-10-10-10-10-10-10-1	~ •	- N m 4 €	∞ ►∞∞	110	S C Z	

Table 10.2 Continued.

:	ATATIC TEMP- (DEC.R.) (DEC.R.) (SIBS-004-11		L.E.EDGE CIR.CENT. R*D&/DR	0.00414 0.00714 0.00671 0.00724 0.00724 0.00914 0.00914 0.00914
NUMBER. 1	PATA PATA PSTA PSTA PSTA PSTA PSTA PSTA		MINSCHK. PT.LOC.IN COV.CHAN.	00000000000000000000000000000000000000
. OF STAGE	THE		++++++ MIN-CHK- AREA MARGIN	444444444 • • • • • • • • • • • • • • • • • • •
NUMBER. 1.	PRESS. PRESS. PRESS. 1 A A A A A A A A A A A A A A A A A A A		COV-CHAN- COV-CHAN- AS FPACT OF S.S.	0.6768 0.7753 0.7752 0.7752 0.7755 0.7755 0.7775 0.7775
OF STATOR	A > N = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CLANE ANG. CONF. ANG. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO	+++++++ SH.LOC. AS FRACT OF S.S.	00000000000000000000000000000000000000
THE INLET C	STREAM STREAM SCOPE CDEG 111 000122 000122 000122 000122	SEGMENT INCOUNT TURN - RATE 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	YOUT CENE MACH ND. AT SHOCK LOCATION	00.00000000000000000000000000000000000
WHICH IS T	ABS, FLC ANGLE ANGLE 547 29-38 557 22-29 653 22-17 663 22-17 663 22-17 663 22-17 663 22-17 663 22-17 663 22-17 663 22-17 663 22-17 665 22-17 665 22-17 665 22-17	/ CHANN	++++++ LAY 1ST SEG. M S.S.CAM. A (DEG) L	00000000000000000000000000000000000000
. 7.	MI 000000000000000000000000000000000000	00000000000000000000000000000000000000	#++++++ BLD.SET ANGLE (DEG)	100-100 100-10
S AT STATION	VEEC (FCEC) (FCE	/AA /AB /AB /AB /AB /AB /AB /AB /AB /AB	++++++++ TRAN.PT. BL.ANGLE (DEG)	10000000000000000000000000000000000000
STREAMLINES	5	44 00000000000000000000000000000000000	IN-BLADE ANGLE (DEG)	20000000000000000000000000000000000000
TERS ON	647299988 C	# C C C C C C C C C C C C C C C C C C C	AMLINE N. IN. BLADE ANGLE (DEG)	229 2000 2000 2000 2000 2000 2000 2000
OF PARAME	AKINA	มีรู้ เพิ่มเรียงรู้รู้ พมพ	LET STRE S.S.INC ANGLE (DEG)	111111111 0000000000000000000000000000
. VALUES	4054444444444	00080000800	ANGL	
•	STREAM INE RO. BALINE (10) 11 P 6.00 12 7.754 27.754 37.4354 46 7.117 66 6.992 76 6.693 76 6.693 77.4354 77.	548EAMLINE NO. 8/11NE 1 0.0000 1 0.0000 2 0.0000 3 0.0000 5 0.0000 6 0.0000 6 0.0000 1 0 0.7000 1 0 0.7000 1 0 0.6000	STREAMLINE NO. PCT. SPAN	

Table 10.2 Continued.

_		പരപ്രമാദ്യാ ര്ശ് ശ	MEAN SPACING (IN.)		
-	STATIC TEMP.	516 516 516 516 516 516 516 516 516 516	SP (SP)		
E NUMBER.	STATIC PRESS. (PSIA) (11111111111111111111111111111111111111	AEPO. CHORD	22.22.22.22.23.23.23.23.23.23.23.23.23.2	
1. OF STAGE	TOTAL TEMP. (DEG.R.)	888.8888888888888888888888888888888888	ELEMENT	1.44324 1.65105 1.65105 1.65105 1.65106 1.75106 1.75106 1.92433 2.0229	
NUMBER.	TOTAL PRESS. (PSIA)	1144-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	SHOCK LOSS COEF.	0000000000	RIS CONTROL OF CONTROL
OF STATOR	. STREAM. CURV.	4mmm4d4ba=4	STATOR LOSS COEF.	00000000000000000000000000000000000000	100 100 100 100 100 100 100 100 100 100
THE OUTLET	CW STREAM.	20000000000000000000000000000000000000	DIFFUSION FACTOR	0.000 0.1110 0.1110 0.1110 0.000 0.000 0.000 0.000 0.000	++ LAYOUT CO DATABLADE M ANGE :
WHICH IS 1	NO. ANGLE (DEG)		STAGE AD.EFF.	00000000000000000000000000000000000000	CANAGE OF THE PROPERTY OF THE
STATION. 6.	ABS. ABS. VEL. MACH 1/SEC)	00000000000000000000000000000000000000	STAGE PO.RATIO	000000000000000000000000000000000000000	NOX 0 004444444
¥	TANG. AE	0000000000	STATOR PO-RATIO	00000000000000000000000000000000000000	7.E. RAD. CHORD. 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
ON STREAMLINES	MERD. T	1000-1000 1000 1000 1000 1000 1000 1000	IDEAL HEAD COEF.	00000000000000000000000000000000000000	RCES (LBANG) (LBANG) (1375) (0.0983) (0.0988) (0.0988) (0.0988) (0.0979) (0.0979)
PARAMETERS O	AXIAL VEL: (FT/SEC) (99999999999999999999999999999999999999	HEAD COEF.	00000000000000000000000000000000000000	FGRAIN (LBS/IN) (LBS/
VALUES OF PA	AXIAL COORD.	00000000000000000000000000000000000000	FLOW COEF.	20000000000000000000000000000000000000	LOCAL RADIUS FE (IN-) (1 17-563 77-558 77-55
*	EAM.	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		00000000000000000000000000000000000000	17 REAM PLOT NE PER PER PER PER PER PER PER PER PER PE
	NA C		NO.	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NZ FO → N M 4 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0

Table 10.2 Continued.

	STATIC TEMP. (DEG.R.)	\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\\\\\\\\\\\\\\\\\\\\\\	CLA CONTROL CO	L.E.ED CIR.CE	
*	STATIC ST PRESS. 1	44444444444444444444444444444444444444	SEGMENT INCOUT TURN.RATE 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	MIN-CHK. PT-LOC-IN COV.CHAN.	000000000
NUMBER. 2	TOTAL TEMP.	2012 20 12 12 12 12 12 12 12 12 12 12 12 12 12	COCA1. P. C.	+++++++ FINECIK - AREA MARGIN	22.22.22.22.22.22.22.22.22.22.22.22.22.
OF ROTOR	TOTAL PRESS. (PSIA)	114444 114444 114444 1144 1144	147 000000000000000000000000000000000000	◆ • 17	00000000000000000000000000000000000000
THE INLET	STREAM. CURV. (1./ IN.)	000000000000000000000000000000000000000	/ / / / / / / / / / / / / / / / / / /	+++++++ SH.LOC. AS FRACT DF S.S.	00000000000000000000000000000000000000
WHICH IS	OW STREAM. E SLOPE	1111111111 00000000 000000000 400000000 400000000	00000000000000000000000000000000000000		00000000000000000000000000000000000000
STATION. 9.	S. ABS.FLON H NO. ANGLE (DEG)		00000000000000000000000000000000000000	1 ST SEG. 1	11 12 12 12 12 12 12 12 12 12 12 12 12 1
4	BS. AB EL. MAC /SEC)	00000000000000000000000000000000000000	18880 18890 18900 18000 18000 18000 18000 18000 18000 18000 18000	Ţ u	00000000000000000000000000000000000000
ON STREAMLINES	TANG. AI VEL. VI FT/SEC) (FT	0000000000	NUMBER NU	7 1 1	00000000000000000000000000000000000000
PARAMETERS	MERO. VEL. FT/SEC) (F	0.000000000000000000000000000000000000	REL. VEL. 17/5CC) 190.45 190.45 190.45 175.68 175.68 175.96 167.96 167.96 167.96 167.96	ANG ANG	######################################
ALUES OF P.	_	00000000000000000000000000000000000000	A REL- FANGS-VEL- 167.5 ECJ (162.558 189.622 189.77 139.77 139.77	EAMLIN C. IN.	41 69 112 69 115
٧> **		7444444 667444444 677444444 6774444444 6774444444	ANCIE LOW 100 100 100 100 100 100 100 100 100 10	INLET S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.	00000000000000000000000000000000000000
	44	7	RAME TO THE TOTAL	1 4 1	08 08 08 08 08 08 08 08 08 08 08 08 08 0
	STR NO.		2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ .	まま まりむむより 50 中間の

Table 10.2 Continued.

										lui in co		
	STATIC TEMP.	9000 9000 9000 9000	19996 19996 19996 1999 1999	8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ELEMENT SOLIDITY	1.0027	1.0865	1.1957	1.3464	- CIR	m - 00000	0.0974 0.1091 0.1237 0.1375
:	STATIC ST PRESS. 1		4.783 51 4.782 51 4.782 51 4.740 51	ຄທ	SHOCK	000	000	000	000	CONE +++ MAX.CAMB. PILLOC.	000000	
NUMBER. 2	TOTAL ST	~ Nm N	44444444444444444444444444444444444444	n n	COEF.	0.1806 0.0568 0.0250	0.0253	0.0299	0.0330 0.0347 0.0364	++ LAYDUT DUT.BLADE ANGLE (DEG)	444444 6040	37.12 34.57 31.64 28.24
OF ROTOR N	TOTAL TOPRESS. TO	20000		20	DIFFUSION	0.2807				INE T. PLADE ANGLE (DEG)	444444M 00040M 00040M 00040M 00000M 00000M	37.11 34.56 31.63 26.23
OUTLET	TREAM. CURV.	00000 00000	500000	500	AD ADIAB. EFF.	0.6328 0.8497 0.9301	0.9302 0.9302 0.9208	0.9296	0.9295 0.9298 0.9208	ET STREAML DEV. OU. ANGLE (DEG)	04WWWW40 00WWWWW 0000040	4444 N4V0
WHICH IS THE	SLOPE (10EG) (1	90000	000000000000000000000000000000000000000	80	IDEAL HE	0.3265	000	000	000	T.E.RAD.	0000000	000
. 10.	ABS.FLOW S ANGLE (DEG)	222.00	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27.81	HEAD CCEF.	0.200	000	000	000	RCES TANG. (LBS/IN)	100°124 100°224 100°12474 100°12474 100°12476	448
AT STATION	ABS. NACH ND.		0.0948	ċ	000	0.6072				L BLADE FORCES FCR.AXIAL TA (LBS/IN) (LBS	00000000000000000000000000000000000000	
STREAMLINES /	ABS. VEL: (FT/SEC)	109.70 109.70 108.44 108.59	1109-30	1 13.31 H #HEE!	SPEED (FT/SEC!	166.38 162.27 158.03	64	134	118	RADIUS F	7.4.400 7.4.400 7.4.400 7.4.400 7.4.400 7.4.400 7.4.400 7.4.400	5.000
N O S	TANG. VEL. (FT/SEC)	55.08 41.52 39.31 40.41	4 4 4 4 W	E.	NUMBER	0.1348	0.1317	0.1195	0.1112	MEAN SPACING (IN.)	22.33797 22.3363 22.1361 22.1361 1.9966 1.9966	1.8497 1.7723 1.6912
PARAMETER	MERD. VEL. (FT/SEC)	101.75	100011	2			142	133	124	AERO. CHORD	22.22.23.23.23.23.23.23.23.23.23.23.23.2	3861 3861 3861
VALUES OF	AXIAL VEL. (FT/SEC)	1011.74	100.23		,	111.30 120.35 116.72	101-45	86.34	73.65	TEMP. RATIO	000000000000000000000000000000000000000	000
	AXIAL COORD. (IN.) 9.086	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.266 REL.FLOW	NGLE DEG)	45.89 48.89 8.34	90.0	-6	ůň	PRESS. RATIO	20000000000000000000000000000000000000	
	Ũ*	7.748 7.545 7.336 7.121	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ξ,	à -	0.9485				EAML INE PCT. SPAN		97.84
	Tô T	- こうゅうく	N-000-	ST ST	ġ ŝ.	-0 m + 1	400	600	2-2	F O		-0-

Table 10.2 Continued.

	ر 	ov4wии~oo®a		F. ED	000000000000000000000000000000000000000
:	TEMP.	0000000000000 000000000000		jū"	00000000000
N	ST T	<u> </u>		+ × ×	F00040-0-0F
œ W	∵.°?	50400==00F		N. CHK.	25000000000000000000000000000000000000
NUMBER	STAT I	14.798 14.798 14.798 14.798 14.798 14.798 14.778 14.778		CONT	0000000000
	289	444444444		‡ .	
STAGE	•	- anammmmmm		MIN-CHK+	444444444
	TOTAL TEMP. DEG.R.	00000000000000000000000000000000000000		A A A	444444444
. 04	10	មានមានមានមានមាន មានមានមានមានមានមាន			
~	.~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CHAN.	66 36 36 36 36 36 36 36 36 36 36 36 36 3
Ä.	TAL ESS SIA			++++ COV+ AS FR	0000000000
NUMBER	PRE (PS	*********		+0×0	0000000000
	£.:	4014440000000	.	*****	040M00040
TATOR	CURV.	00000000000 00000000000000000000000000	00000000000000000000000000000000000000	H+++++	22709 20054 18883 18883 18990 18891 18891 18891
ST	ST.	0000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ w &	0000000000
6	_	0.0000000000000000000000000000000000000	- ti	W . x Z	
ET	SLOPE (CEG)	04000000000000000000000000000000000000	212	NYOUT CONE MACH NO. AT SECK LOCATION	00000000000000000000000000000000000000
N.	222		WZ 0000000000	PAPE CAPE	0000000000
Ŧ	Duig.	V		¥	
	ANGLE (DEG)	00000000000000000000000000000000000000	00000000000000000000000000000000000000	15T SEG. 5.5.CAM. (DEG)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	¥ .		X	51 55 60	00000000000000000000000000000000000000
WHICH	.2	00000000000000000000000000000000000000	χυν οοοοοοοοοοο Ευν	Ţ-0/	
	ABS.	00000000000	1un 0000000000	+ 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
=			00000000000000000000000000000000000000	H+++++ BLD.SET ANGLE (DEG)	
AT 10N.	ABS. VEL. 17/SEC)	00000000000000000000000000000000000000	11 0000000000	+ • m + 80	
TAT	AB VE	35111111111111111111111111111111111111	•	FRAN.PT. BL.ANGLE (DEG)	
T ST	~		1X 000000000000000000000000000000000000	RAN CDE	10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
S AT	ANG. EL.	0044444400 004400000000000000000000000	## 00000000000000000000000000000000000	Ť	
STREAML INES	FYE	N44444444 N-40-W46804		H++++++ IN-BLADE ANGLE (DEG)	9999994 9999994 9999994
A M L	_		• • • • • • • • • • • • • • • • • • •	+ B S B C	000011000000 00001100000
TRE	MERD. VEL: 1/SEC	00000000000000000000000000000000000000	44 00000000000000000000000000000000000	I M	
	#NF	000000000	7, 0000000000	1233	51 - 10 0 7 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
S S			a	NE ANGLE COEC	₩ 44 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
AMETERS	(IAL /EL: //SEC)	99 90 90 90 90 90 90 90 90 90 90 90 90 9	PEC -	¥ .	
A ME	AXI FI	44000000000	120 00000000000000000000000000000000000	STREA S. INC. NGLE DEG.)	40000000000000000000000000000000000000
PAR	- 5		_	⊢• ∢~	00000000000000000000000000000000000000
ъ В	46.5		## WWW. WW. W.	Ä M α	
S	XOL S	ກທ່ານທ່ານທ່ານທ່ານທ່ານທ່ານທ່ານ ວັດວັດວັດວັດວັດວັດວັດ		INC. INC. DEG.	00.22
VALUE			<u> </u>	1-20	
>	MS CS	00000000000000000000000000000000000000	MT 00-F40-NWN040	A-A	88848989888888888888888888888888888888
÷	HOUSE STATE	856666444444666666666666666666666666666	APL APL APL APL APP APP APP APP APP APP	SPAN INE	00400000000000000000000000000000000000
	ě.,	. 6		TREA O.	
	SO I		N	S N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 10.2 Continued.

			MEAN SPACING (IN.)	* * * * * * * * * * * * * * * * * * *
2	STATIC TEMP. (DEG.R.)	5520 5519 5519 5519 5519 5519 5519 5519 551	SPAC (1N	
E NUMBER.	STATIC PRESS. (PSIA) (44444444444444444444444444444444444444	AERO. CHORD	### ## ## ## ## ## ## ## ## ## ## ## ##
1. OF STAGE	TOTAL TEMP. (DEG.R.)	68 68 68 68 68 68 68 68 68 68 68 68 68 6	ELEMENT SOL IDITA	2.000 000 000 000 000 000 000 000 000 00
NUMBER.	TOTAL PRESS. (PSIA)		SHOCK LOSS COEF.	CH
OF STATOR	STREAM. CURV.	00000000000000000000000000000000000000	STATOR LOSS COEF	A MANUAL
THE OUTLET	STEEAN SLOPE (DEG)	00000000000000000000000000000000000000	DIFFUSION FACTOR	00000000000000000000000000000000000000
WHICH IS TO	ABS.FLON NO. ANGLE (DEG)	000000000000000000000000000000000000000	STAGE (AD.EFF.	00.6200 00.620
. 12. W	ABS.	00000000000000000000000000000000000000	0	444444444444
STAT ION	ABS. VEL. (FT/SEC)	10011 10011	STAGE IO PO.RATI	
¥	TANG. VEL. FT/SEC)	0000000000	PO.RATIO	17 1 1 1 1 1 1 1 1 1
ON STREAMLINES	MERD. VEL. (FT/SEC) (00000000000000000000000000000000000000	IDEAL HEAD COEF.	OF 2221 OF 222
PARAMETERS (AXIAL VEL• (FT/SEC)	00000000000000000000000000000000000000	HEAD COEF.	2
UES OF	AXIAL COORD.	00000000000000000000000000000000000000	FLOW COEF.	AAD COORD CO
** VAL	3"	0.000000000000000000000000000000000000	REAMLINE . R/KTIP	NOT SEE SEE SEE SEE SEE SEE SEE SEE SEE SE
	STR NO.		NO.	

STATE OF THE PROPERTY OF THE P

00000000000

TANG.

MERO - VELC - VE

NO. RAM INC RA

Table 10.2 Concluded.

	STATIC TEMP. (DEG.R.)	520.71	519.77	519.77	519.77	519.78			STATIC TEMP. (DEG.R.)	520.71	519.96	519.76	519.77	519.77	519.78	519.78	
	STATIC PRESS. (PSIA)	14.795	14.795	14.795	14.795	14.795		į	STATIC PRESS. (PSIA)	14.795	14.795	14.795	14.795	14.795	14.795	14.795	
:	TOTAL TEMP. (DEG.R.)	521.57	520.63	520.63	520.63	520.63	:	;	TOTAL TEMP. (DEG.R.)	521.57	520.82	520.62	520.63	520.63	520	520.63	
N ANNULUS	TOTAL PRESS. (PSIA)	0.0	14.881		ထုရား	9 60	v 2 2 4		PAESS.	14.880	14.00.01	14.881	14.880	14.880	14.880	14.880	
WHICH IS AN	STREAM. CURV.	0.000	000	000	000	0000	HOI NA AN		CURV.	000-0	000	000	000	000	000	0000	
13.	STREAM. SLOPE (DEG)	0-	000	0.0	555 000	80	STATION, 14, WHICH IS		SLOPE (DEG)	00.0-	000	000	000	000	000	0.02	
AT STATION,	ABS.FLOW ANGLE (DEG)	000	000	00	000	0	AT STATION	3 0 0	ANGLE (DEG)	0	00	00	0	00	00	0	
STREAMLINES A	ABS.	0.0907	0000	0.0908		E060-0	STREAMLINES A		ģ	0.0907	0000	00000	90600	0000	0000	0.0904	
ő	ABS. VEL. (FT/SEC)	101-45	101.59	101-50	101.29	100.95	ě	AB 5.	(FT/SEC)	101.46	101	101.61	101-50	101	101-26	101.04	
PARAMETERS	TANG. VEL. (FT/SEC)	000	000	000	000	0.0	PARAMETERS	TANG	VEL:	000	0	•••	00		••	••	
VALUES OF F	MERD. VEL. (FT/SEC)	101.45	101.59	101	101.29	100.95	VALUES OF P	AERD.	VEL.	101.46	101.66	101.56	101	101	101-15	101.04	
>	AXIAL VEL: (FT/SEC)	101.45	101.39	001	101-29	100.95	*	AXIAL	VEL.	101-46	101-66	101.36	101-50	101	101.15	101.04	
	AXIAL COORD. (IN.)	444	14.500	0000	14.500	14.500			COORD.								
	STREAMLINE NO. RADIUS (IN.) TIP 8.000	1 7.945 2 7.748 3 7.547						STREAM INE	7. RADIUS (1N.)	7.945	7.547	7-127	6.680	9000	0.00	1 5.678 UB 5.600	
	oz ⊢	•			-	-Ī		S	ž F		•		•	_ •	-	Ť	

Table 10.3 Design code stage and overall performance predictions.

*** COMPUTED COMPRESSOR DESIGN PARAMETERS FOR A ROTATIONAL SPEED OF, 2409.0, RPM ***

** THE CORRECTED WEIGHTFLOW PER UNIT CF CASING ANNULAR AREA AT THE INLET FACE OF THE FIRST BLADE ROW IS 7.37 LBS/SEC/FT SO **

POWER	1.82	FRACT	1.0000
TORQUE (FT-LBS)	3.99	PCWER (HP)	1.82
GAS BENDING MONENTS FCR. AX. TANG. (FT-LBS) (FT-LBS)	-0.033 0.022 -0.034 0.023	TORQUE (FT-LBS)	3.99 8.16
	00000 0000 0000 0000	FOR. AX. THRUST (LBS)	7.66 -5.93 1.46 -12.01
RAMETERS #4 FOR. AX. THRUST (LBS)	7.66 7.59 -13.47	AERODYDAMIC PARAMETERS ** DIA. POLY. THRUST (LBS)	0.8996 0.8844 0.8926 0.8844
ASPECT FATIC	0000	SE AERODI ADIA. EFF.	0.8995 0.8995 0.8924 0.8882
** MASS AVERAGED ROTOR AND STAGE AERODYNAMIC PARAMETERS ** AD PRESS. TEMP. ADIA. POLY. ASPECT FOR. AX. BATIO RATIO EFF. FATIO THRUST (LBS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MASS AVERAGED ROTOR AND STACE TEMP. HEAD IDEAL HEAD A RATIO COEF. COEF.	0.2186 0.2186 0.4476 0.4476
ADIA.	0.88995 0.9995 0.9093 0.8843	AGED ROTO	0.1967 0.1993 0.3999 0.3998
RAGED ROTO TEMP. RATIO	1.0020 1.0020 1.0021	MASS AVER Temp. Ratio	1.00020
MASS AVER PRESS. Ratio	1.0062 1.0065 1.0065	SUMS OF PRESS. RATIO	1.0062 1.0061 1.0127 1.0125
10. HEAD	0.2186 0.2186 0.2290 0.2290	CUMULATIVE TOTAL TEMP.	518.60 519.62 519.62 520.69
HEAD COEF.	0.1967 0.2062 0.2062	TCTAL PRESS. (PSIA)	14.696 14.767 14.766 14.882 14.880
FLOW COEF.	0.5872 0.5910 0.5965 0.5995	WEIGHT FLOW (LBS/SEC)	ភពភាព ១០១០១ ១០១០១ ១០១០១
E BLADE	RCTOR STATOR POTOP STATOR	BLADE	INLET RCTOR STATOR RUTOR STATOR
STAGE NO.	00	STAGE NO.	00

THE STATE OF THE S

Table 10.4 Rotor blade manufacturing coordinates generated by NASA design code.

TETTON TE	w
W. F. 20000	00000000000000000000000000000000000000
IN SECOND SE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F = 1 = 8 30 S = 1 M A X S = 1 M A X C D E G = 1	######################################
CDMPRESSO H. C. G. INFATIA (INFA)** (0.09686 0.10309	0 000000000000000000000000000000000000
LO TE	T
SECTION BREA (IN) ** 2 (IN	RECT 1 00000000000000000000000000000000000
AXIAL LOCATION LADE SECTION COCORDINATES (1N-) 929 0.0998 932 0.0548 935 0.0648	TIZOOOOOITTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
O CHARA	Q
SECTION SECTION SECTION ANTENC (DEG.) (DEG.) (S2.742 52.742 52.9139	NUNNUNNULTITITITIO
BLADES = 16 POINT 10 POINT	7 E S S S S S S S S S S S S S S S S S S
STACKING P 87 ACK OF 87 AC	00000000000000000000000000000000000000
ECTION FAD. (10.0) (10.0) 7.660 7.660	Z Z 2 000000000000000000000000000000000
MAN NO.	000000000000000000000000000000000000000

Table 10.4 Continued.

Table 10.4 Continued.

	SECTION TAIST	9##(*XI)				COORD INATES	S. C.	0.0243	0.0492	0.0706	0.0963	0.1193	0.1397	0.1573	0.1724	0.1850	0.1951	0.2027	0.2079	0.2107	2112	0.5093	1007.0	000	0-1700	0.1658	0.1504	0.1327	0.1128	0.0907	0.0663	0.0493	0.0242
. Z.	SECTION TORSION		0.0034	0.003751		NO. 12 COO	- N - C	0.0241	000000															-0.0067									
1.830	SETTING	(OEG.)	46.151	45.032	7000	SECTION	ž	0.0	0.0241	0.1000	0.2000	0.3000	0.4000	0.5000	0.6000	0000	0.800	0000	1.0000	1.1000	1.2000	1 . 3000		0009	1.7000	1 - 8000	1.9000	2.0000	2.1000	2.2000	2.3000	2.3646	2.3889
STACKING LINE IN COMPRESSOR	OF INERTIA	**(*NI) *		9 0-12424	,	COORDINATES		0.0241	0.0491	0.0695	0.0940	0.1159	0.1353	0-1521	0.1665	0.1785	0.1881	0.1954	0.2004	0.2030	0.2035	7102-0		0.1832	0.1727	0.1601	0.1454	0.1295	0.1396	0.0895	0.0653	0.0492	0.0242
ING LINE I	MOMENTS OF THROUGH	**************************************	0000	0.00107		NC. 11 COO	ž	0.0241	000000	-0.0001	+0000-0-	8000	-0.0013	-0.0019	-0.0025	-0.0032	6F00*0-	90000	-0.0053	0.0059	60000	01000	1000	-0.0076	-0.0075	-0.0071	9900-0-	-0.0057	-0.0046	-0.0032	-0.0014	00000-0-	0.0242
n N	SECTION AREA	(IN.)**2	0.35808	0.36855		SECTION	: : :	••	0.0241	0.1000	0.2000	0000	0000	0000	0000	000	00000	0000	0000	0000	0000			1.6000	1.7000	1 - 6000	1.9000	2.0000	2.1000	2.2000	2.3000	2.3646	2.3888
AXIAL LOCATION	ADE SECTION COORDINATES	CIN'S	0.07	0.0804		DINATES		4	0.0490	0.0684	0.0917	.1126	0.1311	0.1472	5091-0	0.1724	0.1815	1.1885	0.1932	1958	2061-0	440	0000	0.1768	0.1668	0.1547	0-1407	0.1246	ě	စ္တ	0.0644	0.0491	0.0242
AX I.	ซีซ์. บ	٠.	-	1.1942	:	. 10 COORDINAT		1241	000000	2005	7000	0012	6100	900	035	5500								082									
21.0	SECTION SETTING					SECTION NO.	is.			,	1	•	•	•	•	1	•	•	•	•	'	•	' '	1.6000	'	•	•	•	•	'	'	•	
BLADES =	NG PCINT	Į,	0.0716	0.0758		MATES	•	0241	0489	0673	2896	1095	1271	424	200	000	26,1	7.0	1854	900	2401	0.00	1000	1706	1611	1496	1361	1208	1036	C#45	0635	0400	0242
NUMBER OF	STACK INC CDORD	1 Z -	::	1-1937		S COORDIN	_	0	0	٠	0	0	0	00	90	•	90	0	9	90	90	00	Э С	0	0	0	0	0	0	0	0	0	•
	SECTION FAD.	Z	6.500	6.340			•	_	147	000	000	0000	000	000		000			000	000													
	BLADE		. 0	17	!	SEC	J	ċ	•	o	ó	ŏ	ŏ	ō	50	Š	š	ŏ,	-	Ξ.			-		_	i	i	Ñ	Ń	Ň	Ni (N	Ñ

Table 10.4 Continued.

	SECTION TWIST STIPFNESS	(IN.)**6 0.047327	0.048334 0.049354 0.050393	RDINATES HS (IN.)	6640	0.0759	0.1351	0.1309	0.2141	0.2262	0.2416	0.2456	0.2435	5.2310	0.2206	0.1917	0.1732	0.1278	001.0	0.0710	0.0244	
Z.	SECTION	494400 °0	0.004853 0.005265 0.005701	0 16 COO	7	.0012	0034	9400	0040	0048	1400	0000	0023	000		900	110	213	010	900	244	
1.830	IMAX SETTING ANGLE	(DEG.)	41.296 39.908 38.440	SECTION P	024	00 00 00	0000	000	200	000	200	000	000		~-	8000	0000		2000	3000	٠.	
COMPRESSOR	S OF INERTIA	•0	000	DINATES HS (IN.)	0.0497	0.0745	0.1308	0.1746	0.2063	0.2179	0.2326	0.2358	0.2343	0.2223	0.2124	0.1847	0.1670	0.1237	0.0981	0.0697	0.0243	
NG LINE IN	MOMENTS THROU	28	0.001426 0.001561 0.001707	C. 15 COCF										0.0015		0.0026	0.0027					
OF STACKING	SECTION AREA	÷0	0.41092 0.41092 0.42166	ECT ION		• •	0000			• •		1.2000	1.0000	1.5000	1.6000		•			•	2.3892	
AXIAL LOCATION	SECTION ORDINATES M	(IN.) 0.0876	0.0916 0.0960 0.1006		0.00	.1015	.1268	1686	1989	•2099 FA16	2240	.2276	22.56	.2140	• 2045 1025	1781	1612	1199	.0955	.0685	.0243	
AXIA	Ü		1.1946	14 COORD		0000	0.0013	0013	0000	0000	0008	00700	0026	0035	00	0045	0041	90	.0022 0	0100	•	
21.0	SECTION SETTING ANGLE	(DEG.)	41.467 40.084 38.620	0N NOI	241	000	0000	000	200	000	000	000	• 1	•	1 1	•	0000	0000	- 2000	0000	ı	
BLADES =	IG POINT	0.08 0.08 0.08 0.08	0.0969	ATES S	10 t	989	200	628 786	916	000 000	157	192	172	062	175	718	556	163	930	674	24 0	
NUMBER OF	ACKIN	-• 943	1.1945	COORDIN	000	200	004	000	600	20 0.5	256 0.2	338 0.2	244	0.5)55 0.1	555 0.1	001	338 0.1	326 0.0	200	0 m	
	SECTION RAD. LOC.	(1N.) 6.020	5.400 5.400 5.000	CTION NO. 12																		
	MADE.	13	450	SECT	•	•	00	00	ö	• •				-		-			Ň	oi o	้เล่	

Table 10.4 Concluded.

	NOMBER O	ER OF BLADES =	21.0	AXIAL	LOCATION	OF STACKIN	AXIAL LGCATION OF STACKING LINE IN COMPRESSOR =	ESSOR =	1.830	ž	
BLADE SECTION	STACKI	ACKING POINT	SECTION	BLADE SECTION	SECTION	SECT ION	AND SOUTH THE		HAX		SEC
.ON	, ,	I	ANGLE		I		NINI NINI	XAM	ANGLE		STIF
17 5.600	1.1948	6860.0	39-176	1.1948	6860.0	0.41765	0.001651 0.13		3.997	(IN.)**4 0.005535	zo Co
SECTION NO.	17 COORD1	ORDINATES									
, C	IN C	SIL									
0.0		0242									
0~0545 0		0498									
0000		1754									
0000		300									
0004.0		1576									
0 0005-0		1785									
00000		2963									
		0100									
0000		2320									
1.0000		2382									
00000		2415									
00000		2400									
1.4000		2352									
1.5000 0		,2277									
1-6000		2175									
01 000/1		2046									
0006-1		1709									
2.0000 -0		1499									
2-1000		1263									
2.2000		8660									
2.3000		20405									
10000											

on of the construction of the property of the construction of the

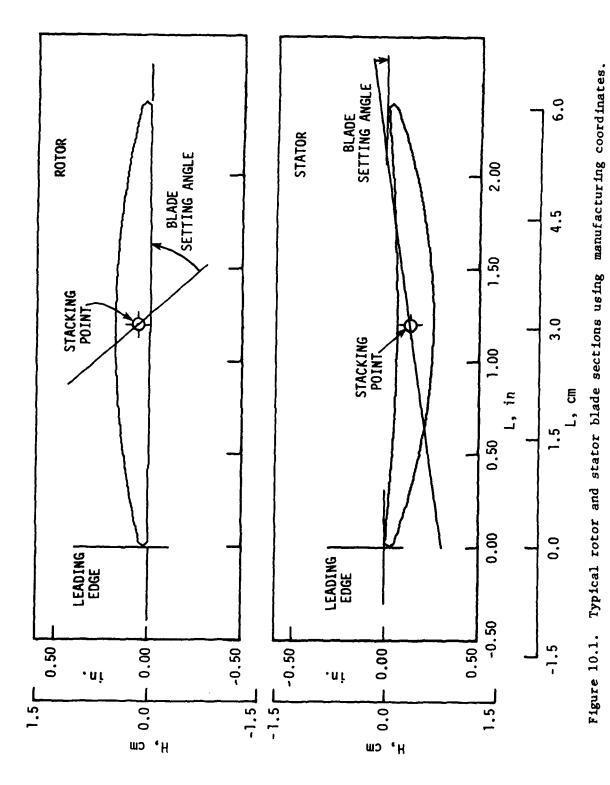
Table 10.5 Stator blade manufacturing coordinates generated by NASA design code.

	SECTION TWIST STIFFNESS (IN.)+++ 0.052922 0.048220 0.048220	COORDINATES COORD	
, N	SECTION TORSION CONSTANT (IN.)+++ 0.005740 0.005740 0.004668	00000000000000000000000000000000000000	
5.260	SETTING SETTING ANGLE (266.) 12.538 7.688 7.688	NAME OF THE OF T	
IE IN COMPRESSOR	THR DUGH C.6. THR DUGH C.6. TIMBA TO 3.0.3.4.4. TO 3.0.13.6.4.4. TO 3.0.13.6.4.4. TO 3.0.13.6.4.4. TO 3.0.13.6.4.4. TO 3.0.13.6.4.4. TO 3.0.13.6.4.4.	COORDINATES (NAS)	
STACKING LINE	1 T0000	00000000000000000000000000000000000000	
6	SECTION AREA (IN.) ++2 0.40275 0.39616 0.38548	REC. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
AXIAL LOCATION	E SECTION DORDINATES (IN.) 00.11830 00.121830 00.12183	00000000000000000000000000000000000000	
AXI	C.G. ADE (IN. 1995) 11.1993 11.19945 11.19945 11.19945	00000000000000000000000000000000000000	
90.0	SECTION SETTING ANGLE (DEG.) 12.623 12.623 7.683	N	
OF BLADES	DIN POINT PO	ON 1-00 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M	
NUMBER 0	STACKING COORD (IN.) 1.1955 1.1945 1.1945	1	
	SECTION RAD. LOC. (10.) 7.940 7.660 7.660	Z	
	KADE NO.	W -000000000000000000000000000000000000	

Table 10.5 Continued.

	Z.	SS	9	271	375	174	564	u	•																												
	SECTION	•						STAM COOL	J	Z	0.0348	0.0492	0.0757	0.1074	0.1359	0.1612	0.1833	0.2023	0.2183	0.2314	0.2414	0.2486	0.2528	0.2541	0.2525	0.2480	0.2406	0.2302	0.2169	0.2005	0.1812	0.1587	0.1331	0.1042	0.0720	0.0493	0.0230
ž	SECT 10N	CONSTANT	(I N.) * * 4	0.003934	0.003601	0.003287	0.002991	α,	, }	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.00 AR	0.0	0.0075	0.0167	0.0250	0.0324	0.0390	0.0447	0.0495	0.0535	0.0566	0.0587	0.0601	0.0605	0.0600	0.0587	0.0564	0.0533	0.0493	0.0444	0.0386	0.0319	0.0243	0.0158	0.0065	-0.000	0.0239
= 5.260	SETTING	ANGLE	(DEG.)	7.845	8.036	8.226	8.413	CENT TON NO		Q.Z.	0.0	0.0238	00010	0.2000	0.3000	0.4000	0.5000	0.009-0	0.1000	0.8000	0.9000	1.0000	1.1000	1.2000	1.3000	1.4000	1.5000	1.6002	1.7000	1.8000	1.9000	2.0000	2.1000	2.2000	2.3000	2,3650	2.3889
STACKING LINE IN COMPRESSOR	OF INERTIA	•	Ξ					TNATES	SH	. N	.0238	.0492	.0758	.1078	.1364	.1618	. 1840	- 2032	.2193	. 2323	. 2424	.2496	.2538	.2552	.2536	.2490	.2416	.2311	.2177	. 2013	. 1819	.1593	.1335	.1045	0.0722	.0493	•0239
IG LINE IN	MOMENTS OF THEORIGH	211	**(°Z !)	0.001382	0-001304	0.001231	0.001161		ā																		U	•	Ç	٠	Š	O	Ö	•	0.0059	0000.0	0
OF STACKIN	SECT ION		(IN.) **2	0.37517	0.36493	0.35468	0.34441	SECTION NO.		~·			1000	2000	3000	000	5000	2000	2000	9000															2.3000	'	
AXIAL LOCATION	DE SECTION	I	- × :	2	0.1214	53	\$	NATES		~	0238	0.0492	0760	1080	1368	1623	1847	.2039	2200	.2332	.2433	2505	2548	. 2561	.2545	.2499	2425	,2320	.2185	2021	1825	1598	.1339	.1048	.0723	.0493	.0239
AX I AL	9. 0		7.7	_	_	_	_	ANTOROGO	d T	. z	0238	0000	1900	.0136	.0204	. 0265	• 0319	.0365	.0405	.0437	.0462	.0480	.0491	• 0494	.0490	.0479	.0461	.0435	.0403	.0363	•	.0261	.0199 0	.0130 0	.0053 0	0000	.0239 0
30.0	SECTION	ANGLE	(DEG.)	7.842	0.030	8.220	8.406	FCTION NO.	_	•			0001	2000	3000	4000	5000	2000	7000	9006	0006										0006	0000	0001	2000	2-3000 0	-3650 -	.3889
BLADES =	G POINT	T	? ?	0.1198	0.1214	0.1230	0.1244	ď	•													15	57	7.	54	6	4.	58	93	28							
NUMBER OF	STACKING		(. v .)					COORDINA	I SX	- Z -	38 0.02	*0.0	54 0.07	20 0.10	81 0.13	35 0.16	82 0.18	123 3.23	159 0.22	187 0.23	110 0.24	25 0.25	35 0.25	38 0.25	35 0.25	25 0.25	000 0.24	386 0.23	157 0.21	122 0.20	80 0.18	31 0 16	76 0.13	15 0.10	0.07	000 0.04	39 0.02
	SECTION RAD.							CT TON NO. 5		_	J	٥	0	•	•	0	0	0	0	0	0	0	0	•		_		•	•	•	•	•	٠.	•	2.3000 0.00	_	_
	BLADE S	• 0 2			•			SECT	_	Z	0.0	0.0	•	0.2	0.3	4.0	0.5	0	0.1	.0	0.0	•		1.2	1.3	*	5.	9.1	1.7		1.9	2.0	2.1	2.2	2°9	2.3	2.3

Table 10.5 Continued.


	SECTION TELST (IN.)++66 (IN.)++66 0.042550 0.0403090 0.0403090	COORDINATES (IN IN STATES (IN IN IN IN STATES (IN IN IN IN IN STATES (IN
ž	SECTION TORSION CONSTANT (IV.)+++ 0.002414 0.002414 0.002414 0.002414	NO. 112
1 = 5.260	SET#A CDECTE CDE CDECTE CDE CDE CDECTE CDE CDE CDE CDE CDE CDE CDE CDE CDE CD	00000000000000000000000000000000000000
STACKING LINE IN COMPRESSOR	INERTIA C.G. (1N.) IMAX (IN.) 0.11529 0.11529 0.10964	00 00 00 00 00 00 00 00 00 00 00 00 00
S LINE IN	INTERNATION OF THE COLOR OF THE	000 1 1 2 000 000 000 000 000 000 000 000 00
OF STACKI	SECTION AREA (IN 0.334+2 0.334+2 0.334+2 0.31455	N. W.
AXIAL LOCATION	CDRSINATES (1N+) (1N+) 944 0-1275 943 0-1275 943 0-1275	ES 2000000000000000000000000000000000000
AXIAL	BLADE SE C.G. CODRJ (IN.) 1-1943 1-1943 1-1943	
30.0	SECTION SETION (DESC.) (DESC.) (DESC.) (DESC.) (DESC.) (DESC.) (DESC.) (DESC.) (DESC.)	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
BLADES =	16 POLENT (IN.) (IN.) (12.59 (12.25) (12.25) (12.25) (12.25)	v
NUMBER OF	STACKING COORDIN (IN.) 1.1944 1.1943 1.1943	N N N N N N N N N N
	SECTION RADO. LCC. (LNC.) 6.3500 6.3800 6.3800	D
	BLADE NO. 10 11 12	A

7034400	OH THEE
·	
_	֝֝֝֝֝֡֜֜֜֝֝֡֜֜֜֝֝֜֜֜֜֝֡֜֜֜֜֜֝֡֜֜֜֜֝֡֓֡֜֜֝֡֡ ֓֓֞֜֞֜֓֞֜֞֜֓֓֓֞֜֩
Total	

	SECTION	01×00×10	0.038940	0.037364	0.036110	INATES	2		0000	.074	7	٦,	₹	7	1983		'n	٩	ç	ď	ů	'n	١٩	~	7	7	٦,	7	7	٠,	90	•
ž	SECTION TORS ION	•					١	920		0132	3296	0446	0579	2697	0.0799	900	1011	050	1074	1081	1073	000	95.60	3883	9640	2692	0572	0436	7284	0115	0000	
= 5.260	SETTING	(DEG.)	9.71	9.972	10.246	SECTION NO	ر 2 - ا		0.0238	0.1000	0.2000	0.3000	0.4000	00000	0000	0008	0006-0	1.0000	1.1000	1.2000	1 . 3000	900	1.6000	1.7000	1.8000	1.9000	2.0000	2.1000	2.2000	2.3000	2.3050	
STACKING LINE IN COMPRESSOR	OF INERTIA	Z Z		0.0983	0-0954	DINATES	7.2	0.0248	0.0491	0.0748	0.1058	0.1335	0.1582	9671-0	0.21465	0.2269	0.2368	0.2438	0.2479	0.2492	0.2477	0.0450	0.2259	0.2129	0.1969	0.1780	0.1560	0.1310	0.1028	0.0714	2540.0	0 0 C 3 3
NG LINE IN	MOMENTS OF THROUGH	***(· N I)	0.000000	0.000798	0.000763	NO. 15 COORDI									0.00.0																	6000
8	SECTION AREA	(IN.) **2	0.28263	0.27229	0.26194	Š	, Z		0.0238	0001.0	0.2000	0 3000	0000	000	0002	000000	0.9000	1.0000	1 - 1000	1.2000	0000		1.6000	1.7000	1.8000	1.9000	2.0000	2.1000	2.2000	2.5000	00000	
AXIAL LOCATION	ADE SECTION COORDINATES	S N	0 1342	0.1360	0.1380	INATES	ر د کا	0238	.0491	0749	.1059	1337	- 158+	1001	44.0.0	1.2272	1.2371	.2441	1.2482	.2495	2480	0.450	0.2262	.2131	1.1971	1782	.1562	1311	92019	6170	2640	
AXIA	g 6.) Z .	1 . 1 9 4 2	-	:			85.00		0117	0262	0393	5511	0100	0.0700	0843	0892	. 0926		45.60	744		0841	07.78	0701	0610	0504		0520	1000		
30.0	SECTION SETTING	(DEG.)	004.6	9.956	10.226	SECTION NO	- Z - Z - Z - Z - Z - Z - Z - Z - Z - Z	3.0	0.0238	0.1000	0.5000	0.3000	0000		0000	0.800	0006-0	1.0000	1.1000	1 -2000	0000		1.6000	1.7000	1.8000	1.9000	2.0000	2.1000	2.2000	2.3000	00000	
F BLADES =	NG POINT DINATES	Z.	0.1342	0 - 1 360	~	NATES	, ,	0238	1640	0750	1061	1340	- DO	100	2149	2277	2375	2446	2487	0000	10440	368	2266	2135	1575	1785	000	515	0501	000	2000	```
NUMBER OF	STACKING COOSDIP	C.NI.	1.1942	3	1.1940	O RO	2	0238	0000	6010	0245	0368	9440		0731	0789	0835 (0.867	9886	2000	9990	0000	0787	0728	0656	0570	0472	6550	9534	,	, .	
	E SECTION RAD.	200	900	5.740	0 ° 0 60	ON NO.	C'NE		3238	000	0000	0000			0002.0	0006	0000	0000	000	000		0000	2000	000	0000	0000	0000	000			0000	
	LADE		9 🖛	5	9	S	•	•	_	_	_	٠.	- •	_		_	_			•	. •		_	•		'		- 1	٠,		• • •	

Table 10.5 Concluded.

SECTION TELSTON STINESS (1) ++65 0.052386	
D	
5 2 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	
AXIAL LOCATION OF STACKING LINE IN COMPRESSOR = LADE SECTION SECTION AREA INTROUGH C.6. (IN.) *** (IN.) *	
MOMENTS OF THE	
OF STACKIN SECTION AREA (IN.)**2 0.4256	
AXIAL LOCATION BLADE SECTION C.G. COORDINATES (IN.) 1.1946 0.1809	
© 0 1 2 -	
30.0 SECTION SECTION CANGLE 12.100 12.100	
# 10	239
	200
	0000
NO 000000000000000000000000000000000000	2.3664

さいかい のはないない はれているのかのことを見れないのかのからし

THE THE PROPERTY OF THE PROPER

11. APPENDIX C: COMPUTER PROGRAMS AND DATA STORAGE

The computer programs used during this research program are listed in this section. These programs as well as all experimental data and reduced data results are stored on magnetic tapes (cassette or reel) and are indexed according to tape and file numbers as specified below.

Actuator position correlation program: Linear least-squares correlation between actuator potentiometer voltage readout and actuator motion for probe and circumferential positioning actuators; cassette 1, file 1

Slow-response data acquisition program: Acquisition of timeaveraged total-head and flow angle survey data; cassette 2, file 1

<u>Compressor</u> overall performance acquisition program: Acquisition of compressor torque meter based performance data; cassette 2, file 2

Time-averaged data reduction program A: Reduction of time-averaged data to obtain point flow-field parameters and circumferentially-averaged flow-field parameters (a plotting option is available); tape DSMDH, file 16

<u>Time-averaged</u> <u>data reduction program</u> <u>B</u>: Reduction of time-averaged data to obtain rotor, stator, stage, and overall performance parameters; cassette 3, file 1

Contour map generation program: Generates contour maps of point flow-field parameters over two stator pitches behind any blade row; tape DSMDH, file 15

<u>Data uncertainty</u>: From estimates of primary measurement uncertainties calculates, using the procedure of Kline and McClintock [11], the uncertainty estimates for all flow-field and performance parameters; cassette 3, file 2

<u>Time-averaged data</u>, station 1: Storage of circumferential survey data at 10%, 30%, 50%, 70%, and 90% span locations including probe data, outer annulus-wall static-head data, and test condition parameters; tape COMP, file 1

Time-averaged data, station 2: Storage of circumferential survey data at 10%, 30%, 50%, 70%, and 90% span locations including probe data, outer annulus-wall static-head data, and test condition parameters; tape COMP, file 2

Time-averaged data, station 3: Storage of circumferential survey data at 10%, 30%, 50%, 70%, and 90% span locations including probe data, outer annulus-wall static-head data, and test condition parameters; tape COMP, file 3

Time-averaged data, station 4: Storage of circumferential survey data at 10%, 30%, 50%, 70%, and 90% span locations including probe data, outer annulus-wall static-head data, and test condition parameters; tape COMP, file 4

<u>Time-averaged</u> <u>data</u>, <u>station</u> <u>5</u>: Storage of circumferential survey data at 10%, 30%, 50%, 70%, and 90% span locations including probe data, outer annulus-wall static-head data, and test condition parameters; tape COMP, file 5

Reduced time-averaged data, station 1: Storage of results of data reduction program A; tape COMP, file 6

Reduced time-averaged data, station 2: Storage of results of data reduction program A; tape COMP, file 7

Reduced time-averaged data, station 3: Storage of results of data reduction program A; tape COMP, file 8

Reduced time-averaged data, station 4: Storage of results of data reduction program A; tape COMP, file 9

Reduced time-averaged data, station 5: Storage of results of data reduction program A; tape COMP, file 10

12. APPENDIX D: PARAMETER EQUATIONS

The equations used in calculating the time-averaged and performance parameters are presented in this section. The symbols used in the equations are defined in the symbols and notation section and the sign conventions are shown in Figure 12.1. Circumferentially or radially averaged parameters were obtained using a spline-fit integration scheme [9].

12.1. General Parameters

12.1.1. Basic Fluid Properties

Barometric pressure, N/m²:

$$P_{atm} = h_{hg@t_{baro}}$$
 (1.0-0.00018 (t_{baro}-273.15)) $\gamma_{hg@273°K}$ 12.1

Density of air, kg/m³:

$$\rho = \frac{P_{atm}}{R t}$$
 12.2

Specific weight of water, N/m³:

$$\gamma_{\text{H}_2\text{O}} = \frac{g}{g_c} \left(996.86224 + 0.1768124 \left(\frac{9}{5} \text{ t} - 459.67 \right) - 2.64966 \times 10^{-3} \right)$$

$$\left(\frac{9}{5} \text{ t} - 459.67 \right)^2 + 5.00063 \times 10^{-6} \left(\frac{9}{5} \text{ t} - 459.67 \right)^3 \right)$$
12.3

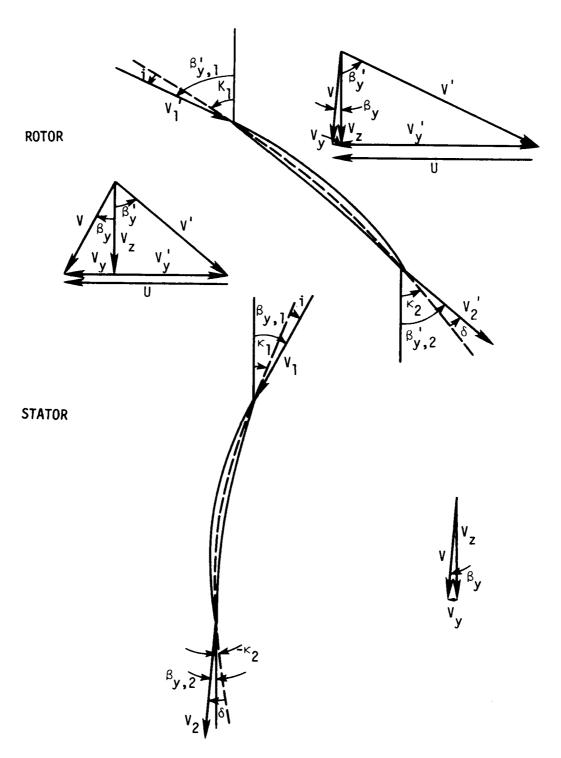


Figure 12.1 Sketch showing nomenclature and sign conventions (all positive except as noted) for slow-response instrument parameters.

12.1.2. Blade-Element location

Percent passage height from hub:

$$PHH = \frac{r - 0.14224}{0.06096} \times 100$$

12.2. Flow-Field Parameters

12.2.1. Point and Circumferential-Average Blade Element Quantities

Total head, Nm/kg:

$$H = \frac{P_t \gamma_{H_2}^0}{\rho}$$
 12.5

and

$$\overline{H} = \frac{1}{S_S} \int_0^{S_S} H dY$$

Absolute flow angle behind rotors (see Figure 12.1 for sign convention), degrees:

$$\overline{\beta_y} = \frac{1}{S_S} \int_0^{S_S} \beta_y dY$$
 12.7

Absolute flow angle behind stators (see Figure 12.1 for sign convention), degrees:

$$\overline{\beta_y} = \frac{1}{Y_{\text{freestream}}} \int_{\text{across}} \beta_y dY$$
 12.8

Annulus outer surface endwall static head, Nm/kg:

$$h_{w} = \frac{P_{w} \gamma_{H_2} o}{\rho}$$
 12.9

and

$$\overline{h_{\mathbf{w}}} = \frac{1}{S_{\mathbf{S}}} \int_{0}^{S_{\mathbf{S}}} P_{\mathbf{w}} dY$$
12.10

Static head (radial equilibrium equation), Nm/kg:

$$\frac{d\overline{h}}{dr} = \frac{2 \sin^2 \overline{\beta}_y (\overline{H} - \overline{h})}{r}$$
12.11

Absolute fluid velocity, m/s:

$$V = \sqrt{2 g_c(H-\bar{h})}$$
 12.12

and

$$\overline{V} = \frac{1}{S_S} \int_0^{S_S} V dY$$
 12.13

Blade velocity, m/s:

$$U = \frac{r\pi RPM}{30.0}$$
 12.14

Axial component of absolute fluid velocity, m/s:

$$V_z = V\cos \beta_v$$
 12.15

and

$$\overline{V}_z = \overline{V}\cos\overline{\beta}_v$$
 12.16

Tangential component of absolute fluid velocity (see Figure 12.1 for sign convention), m/s:

$$V_{y} = V \sin \beta_{y}$$
 12.17

and

$$\overline{V}_{y} = \overline{V}\sin \overline{\beta}_{y}$$
 12.18

Tangential component of relative fluid velocity (see Figure 12.1 for sign convention), m/s:

$$v_y' = v - v_y$$
 12.19

and

$$\overline{v_y} = \overline{v} - \overline{v}_y$$
 12.20

Relative fluid velocity, m/s:

$$v' = \sqrt{(v'_y)^2 + (v_z)^2}$$
 12.21

and

$$\overline{v'} = \sqrt{(v'_y)^2 + (\overline{v}_z)^2}$$
12.22

Relative tangential flow angle (see Figure 12.1 for sign convention), degrees:

$$\beta_{y}' = \tan^{-1} \left(\frac{v_{y}'}{v_{z}} \right)$$
 12.23

and

$$\overline{\beta_{y}} = \tan^{-1} \left(\frac{\overline{v_{y}}}{\overline{v_{z}}} \right)$$
12.24

Incidence angle for rotors (see Figure 12.1 for sign convention), degrees:

$$\overline{i}_{R} = \overline{\beta'_{y,1,R}} - \kappa_{1,R}$$
12.25

Deviation angle for rotors (see Figure 12.1 for sign convention), degrees:

$$\overline{\delta}_{R} = \overline{\beta}_{y,2,R} - \kappa_{2,R}$$
 12.26

Incidence angle for stators (see Figure 12.1 for sign convention), degrees:

$$\bar{i}_{S} = \bar{\beta}_{y,1,S} - \kappa_{1,S}$$
 12.27

Deviation angle for stators (see Figure 12.1 for sign convention), degrees:

$$\bar{\delta}_{S} = \bar{\beta}_{y,2,S} - \kappa_{2,S}$$
 12.28

Flow coefficient:

$$\overline{\phi} = \frac{\overline{V}_z}{U_t}$$
 12.29

12.2.2. Global Parameters

Venturi volume flow rate, m³/s:

$$Q_{v} = 0.05229 \sqrt{\frac{2g_{c}Y_{H_{2}}O^{\Delta P_{vent}}}{\rho}}$$
 12.30

Venturi flow coefficient:

$$\phi_{\mathbf{v}} = \frac{Q_{\mathbf{v}}}{A U_{\mathbf{r}}}$$
 12.31

Integrated volume flow rate at probe axial measurement locations, m^3/s :

$$Q_{a} = 2\pi \int_{r_{h}}^{r_{t}} \overline{V}_{z} r dr$$
12.32

Integrated flow coefficient at probe axial measurement stations:

$$\phi_{\mathbf{a}} = \frac{Q_{\mathbf{a}}}{A U_{\mathbf{t}}}$$
 12.33

Integrated and venturi flow-coefficient comparison, percent:

$$FCC = \frac{\phi_a - \phi_v}{\phi_v} \times 100$$

General radial mass-average parameter equation (let ξ be any general parameter):

$$\frac{\dot{\xi}}{\xi} = \frac{\int_{r_h}^{r_t} \xi \, \overline{V}_{z,2} \, r \, dr}{\int_{r_h}^{r_t} \overline{V}_{z,2} \, r \, dr}$$
12.35

12.2.3. Performance Parameters (based on cobra probe measurements)

Actual total-head rise coefficient for rotor:

$$\Psi_{R} = \frac{g_{c}(\overline{H}_{2,R} - \overline{H}_{1,R})}{U_{+}^{2}}$$
12.36

Actual total-head rise coefficient for stage:

$$\Psi_{\text{stage}} = \frac{g_c(\overline{H}_{2,S} - \overline{H}_{1,R})}{U_t^2}$$
12.37

Actual total-head rise coefficient for overall compressor:

$$\Psi_{\text{overall}} = \frac{g_{c}(\overline{H}_{2,2S} - \overline{H}_{1,1R})}{U_{+}^{2}}$$
12.38

Ideal total-head rise coefficient for rotor:

$$\Psi_{i,R} = \frac{U(\overline{V}_{y,2,R} - \overline{V}_{y,1,R})}{U_{t}^{2}}$$
12.39

Ideal total-head rise coefficient for stage:

$$\Psi_{i,stage} = \frac{U(\overline{V}_{y,1,S} - \overline{V}_{y,1,R})}{U_{\perp}^{2}}$$
12.40

Ideal total-head rise coefficient for overall compressor:

$$\Psi_{i,overall} = \Psi_{1,1R} + \Psi_{i,2R}$$
 12.41

Hydraulic efficiency for rotor:

$$\eta_{R} = \frac{\Psi_{R}}{\Psi_{i,R}}$$
12.42

Hydraulic efficiency for stage:

$$\eta_{\text{stage}} = \frac{\Psi_{\text{stage}}}{\Psi_{\text{i,stage}}}$$
12.43

Hydraulic efficiency for overall compressor:

$$\eta_{\text{overall}} = \frac{\Psi_{\text{overall}}}{\Psi_{\text{i,overall}}}$$
12.44

Total-head loss coefficient for rotor:

$$w_{R} = 2(\Psi_{i,R} - \Psi_{R}) = \frac{U_{t}^{2}}{(V_{i,R})}$$
12.45

Total-head loss coefficient for stator:

$$w_{S} = -2g_{C} \frac{(\overline{H}_{2,S} - \overline{H}_{1,S})}{(\overline{V}_{1,S})^{2}}$$
12.46

12.2.4. Performance Parameters Used in Generating Performance Map

Cross-section average absolute velocity at the exit of the second stator assuming zero swirl, m/s:

$$\overline{\overline{V}}_{z,2,2S,pm} = \frac{Q_{v}}{A}$$
 12.47

Cross-section average total-head at the exit of the second stator assuming constant circumferentially average static-head, Nm/kg:

$$\overline{\overline{H}}_{2,2S,pm} = \overline{h}_{w,2,2S,pm} + \overline{\overline{v}}_{2,2S,pm}^2$$
 12.48

Actual head-rise coefficient for overall compressor:

$$\Psi_{\text{overall,pm}} = \frac{\overline{\overline{H}}_{2,2S,pm}}{\overline{U}_{t}^{2}}$$
12.49

Ideal work coefficient:

$$\Psi_{i,pm} = \frac{T\pi RPM}{30\rho Q_{v}U_{t}^{2}}$$
12.50

Mechanical efficiency:

$$\eta_{\text{me}} = \frac{\Psi_{\text{overall,pm}}}{\Psi_{\text{i,pm}}}$$
 12.51

13. APPENDIX E: TABULATION OF EXPERIMENTALLY DETERMINED DATA

The time-averaged data obtained ahead of and behind each blade row are tabulated in this section. All data were obtained at the design point flow condition predicted by the design code (i.e., 2400 rpm at a flow coefficient of 0.587). The measured point-by-point distributions of various flow-field parameters are listed in Table 13.1. The corresponding circumferentially-averaged flow-field parameters are listed in Table 13.2. The axial locations of the measurement locations with respect to the blade rows are depicted in Figure 2.5, for a radial (spanwise) view, and Figure 3.6, for the circumferential survey window. Total head and static head were measured with respect to atmospheric pressure. The sign conventions for flow angles, incidence angles, and deviation angles are shown in Figure 12.1. A complete listing of mathematical symbols is given in the SYMBOLS AND NOTATION section. The definitions of the Fortran variables used in the computer output listings of Tables 13.1 and 13.2 are:

- o BETA R = Relative flow angle, β_v .
- o BETA Y = Absolute flow angle, β_{v} .
- o FC = Flow coefficient, $\bar{\phi}$.
- o HS = Static head with respect to atmospheric pressure, h, Nm/kg.
- o HT = Total head with respect to atmospheric pressure, H, Nm/kg.
- o PHH = Percent passage height from hub, PHH.
- o V = Absolute velocity, V, m/s.

- o VR = Relative velocity, V', m/s.
- o VY = Tangential component of absolute fluid velocity, V_y , m/s.
- o VZ = Axial component of fluid velocity, V_z , m/s.
- o VYR = Tangential component of relative fluid velocity, v_y' , m/s.
- o Y/SS = Circumferential spacing, Y/S_S .

Table 13.1 Point-by point distributions of circumferential survey data.

	survey	y data.						
			STATION	1 / PHH	= 10.00			
X/SS	BETA Y Deg.	N THE N	×× ×	×2× ×/S	M/S	BETA R Deg.	M/S	M /S
•	4	.30	2.06	2.06	.27	9.09	8.96	7.01
-	•65	.57	2.07	2.06	•36	9.02	8.89	6.91
. 23	8	01	2.06	2.06	55	8.89	8.77	6.75
. 35	8	7	2.03	2.03	• 54	8.91	8.74	6.74
40	9	1.35	2.01	2.00	• 61	8.88	8.66	6.56
5	8	0.57	2.03	2.02	9	8.86	8.68	99.9
20	2	90	2.00	99	5	8.88	9.66	6.66
200	91	200	1.98	1.97	E	8.73	8.48	9 4 4
1.042	0.738	-1.805	31.996	31.993	0.490	48.557 49.050	48.413 48.813	36.291
			STATI	10N 1 / PHH=	30.00			
X/85	BETA Y	ĭ	>	^^	>	-	9	0 >
,	DEG.	N\$W/KG	M/S	M/S	M/S	DEG.	M/S	M/S
0:	1.661	-0.837	32.025	32-012	0.929	50.919	50.778	39.417
•	9 6	4	200	100	, a	0 0		
֓֞֝֝֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֡֓֡֓֡֓֓֡֓֡֓	2		200	30			100	
4	10	0	1.00	000) K			
58	64	0.74	2.02	2.01	6		9 6	10
	9		2.04	2.03	89.	96.0	900	510
. 81	• 32	0.46	2.03	20.2	.73	1.03	0.93	09.6
•92	.74	04.	2.06	2.05	.97	0.84	0.76	9.36
•	•04	. 83	2.02	2.01	50	1 - 14	1.03	9.74
			STATI	ON 1 / PHH	= 50.00			
¥/85	BETA Y	H	>	7.7	>	-	<u>«</u>	V A
	DE G.	N\$M/KG	M/S	S/W	W/S	DEG.	S/W	M/S
	-	.27	2.05	2.05	-62	3.16	3.46	2.78
. 11	==	40.	2.07	2.06	-62	3.15	3.46	2.78
.23		92.	2.07	2.06	9	3-14	3.47	2.78
	?	9	200	200	֓֞֜֜֜֜֜֜֜֜֓֓֓֓֓֓֜֜֜֜֜֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֡֓֜֜֜֡֓֡֓֜֜֓֡֓֡֓֜֜֡֡֡֡֓֜֡֓֡֡֡֡֓֜֡֓֡֡֡֡֡֡	2.0) ·	200
	::	9	2.00	2.03	9	97.50	0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22.7
.70	.10	1.08	2.01	2.01	•	3.20	3.44	2.79
200	51:	.00	2002	2.01	90	3-17	3.42	2.76
1.042	00	0.08	32.058	32.057	00.00	53.17	いる・またい	42.760
	,)))))				

	٠
7	1
- 2	7
9	ų
	7
i	4
٠.'	7
7	7
4	J
- 4	
	7
_,	Ę
2	2
,	4
-	
-	
,	•
101	175
101	1.0
-	177
12.1	ייי
101	י
101	TADLE

STATION 1 / PHH= 70.00

V V R	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	××××××××××××××××××××××××××××××××××××××	44444460000000000000000000000000000000
M V R	00000000000000000000000000000000000000	X S S	NUNNUNUNUNUN 00000000000000000000000000
BETA R Deg.	99999999999999999999999999999999999999	BETA R Deg.	500 500 500 500 500 500 500 500 500 500
¥ \	00000000000000000000000000000000000000	# 90.00 VY M/S	00000000000000000000000000000000000000
27 M/S	00000000000000000000000000000000000000	ON 1 / PHH=	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
¥ <	20000000000000000000000000000000000000	STATION V W	MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
HT N#M/KG	00000000000000000000000000000000000000	HHNOMING	10000000000000000000000000000000000000
BETA Y Deg.	00000000000000000000000000000000000000	BETA Y Deg.	000000000000000000000000000000000000000
758	00000000000000000000000000000000000000	755	0.000000000000000000000000000000000000

	X < X ×		4.7	4.74	4.75	4 . S.B.	4	9		70.4	4.5	4.61	24.592		2	S/W		8.16	8.11	8.12	8 13	9	8.08				28.06		Q >>	S/#	1.5.5	1.08	1.36	1.50	1,53	1.51	31.502	1.51	1.5	1.50
	# \ X		• 72	0.69	0.65	0 9 0				000	0.62	0.53	40.579		9	X/S		2.84	2.91	2.89	2.88	2.83	2.86	200	7 9 6	200	42.888			M/S	47.4	4.78	4	4 . 75	4.71	4.74	44.760	4.74	4.78	4.75
	BETA R DEG.		7.37	7.45	7.51	7.45	0 0			7.23	7.20	7.37	37,303		-	DEG.		1.10	0.92	76.0	1.00	1.00	0.03	0 0	80		40.872		-	DEG.	4 . 7R	4.67	4.65	4 - 74	4.85	4.78	44.732	4.76	4.74	4.74
= 10.00	M/S		• 55	2.53	2.52	000		90	10	2 • 7 1	2.71	2.67	12.689	= 30.00	>	W/S		. 18	.23	.21	.20	-24	.26	200	200	100	12.280	= 50.00	>	¥/S	0 0 0	1.02	2.04	1.90	1.87	1.89	11.908	1.89	1.88	1.90
ON 2 / PHH=	M/S		9	2.30	2.25	2.23	200	0.00	9 6	6.33	2 • 35	2.21	32.278	ON 2 / PHH		S/E		2.28	2 • 4 5	2.38	2,35	2.32	2.38	2.38) N	200	32.431	ON 2 / PHH	^^	W/S	1.75	1.84	1.74	1.78	1.70	1.75	31.797	1.77	1.80	1.78
STATION	× × × ×	i	. 7.1	• 65	.59	09	9	2	2		.76	• 61	34.683	STATI	>	M/S		.50	• 65	• 61	.58	• 56	.52	62	. 58	19	34.678	STATI	>	S/W	3.01	4.00	3.95	3.94	3.95	3.90	33.954	3.92	3.95	3.93
	HT N#M/KG	1	9	56.60	64.70	65.00	65.00	7.00	100	2	70.50	65.40	67.70		Ĭ	N#W/KG		74.00	79.30	77.70	76.80	6.2	78.20	78.30	76.60	77.70	80.00		Ĭ	N#W/KG	64.20	67.40	65.50	65.30	62.10	64.00	465.600	64.70	65.60	65.10
	BETA Y Deg.		-	1.51	1.22	1.34	1.47	7.47		1.40	1.45	1.47	S.		-	DEG.	,	0.67	0.67	0.67	0.57	ċ	0.74	0.74	0.74	0.74	20.740		-	DEG.	0.53	0.53	0.78	0.53	0.53	0.53	20.530	0.53	0.40	0.53
	4/88		0		623	35	9) «	2	ò	٠	• 92	4		\$5/A			0	. 1	.23	.34	4.0	.58	69.	. 81	92	1.041		55/A			-	.23	.34	446	.58	969.0	.81	, 92	•0•

Table 13.1 Continued.

Table 13.1 Continued.

			NOTIVIS	ON A PER				
۷/SS	BETA Y Deg.	HT N&M/KG	¥ <	v2 M/S	¥ < 8	BETA P. DEG.	Z < S	8 × ×
110	19.700	458.700	できる である でなる でなる	31.514	11.284	48.154	47.238 47.146	300 300 300 300 300 300 300 300 300 300
044 044 044	19.700	462.900 456.900 456.000	0 6 M	31.614	11.376	144 176 100 100 100 100 100 100 100 100 100 10	- P- P- I	8000 1000 1000 1000 1000 1000 1000 1000
	10.000	4588 . NOO	33.4.53 33.4.79	31.443	11.443	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	47.076 47.083 47.208	35.025 35.025 35.138
900	1000	462.100	300 300 300 300 300 300 300 300 300 300	31.629	11.263	48.067	47.331	35.211
			STATION	ON 2 / PHH=	•			
85/4	BETA Y Deg.	HT NAM/KG	£ <	V2 N/S	W/S	BETA R DEG.	X \ X	KYR N/S
119	20.820	416.300	31.922	29 . 838 29 . 685	11.346	52.001	48.465	38 191
1040 1040 1040	21.670	4113	40 m	7000 7000 7000 7000 7000 7000	11.77	7222 7222 7222 7222 7222 7222 7222 722		37.760 37.760 818.78
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200000 200000 200000000000000000000000	41111111111111111111111111111111111111	311.03 310.03 31	29.55 29.55 29.53 29.73 29.73 29.73 29.73	11.716 11.532 11.534	52-003 51-892 52-093 52-892	47.000 48.000 48.000 48.000	37.882 37.7886 37.906

Table 13.1 Continued.

	M V S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	X < S	$\begin{array}{c} 0.00000000000000000000000000000000000$
	BETA R Deg.	$\begin{array}{c} 0.000004444000000000000000000000000000$
10.00	¥ <	
N 3 / PHH=	8/W M/S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
STATION	E <	$\begin{array}{c} uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu$
	N H T	44444444444444444444444444444444444444
	BETA Y Deg.	
	4/ 55	00000000000000000000000000000000000000

PETA Y MATHREE DEG. MATHREE MATHREE				STATION	HH4 / E NO	= 30.00			
-1.177	¥/85	₹ 0	TX X	> \	V 2 W / S	M/S	ETA DEG.	N/S	> 3
1922 1929 468 - 100 32 - 967 32 - 968 -1 - 269 468 - 100 32 - 967 32 - 968 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268 468 - 100 32 - 964 -1 - 268	•	1.17	9	2.69	ς.	0.67	_	2.57	-
-1.786	9	1.59	00	2.96	2	0.92	_	2.80	-
199 -2,-203 472-200 33.099 33.069 -1,572 51.529 53.156 41.526 469.200 33.099 32.949 -1,572 51.529 53.272 53.264 -1,518 469.200 33.096 32.949 -0.874 51.324 52.7207 41.520 469.300 33.096 32.994 -0.874 51.324 52.7207 41.520 469.300 32.994 -0.874 51.324 52.7207 41.520 469.400 32.994 -0.874 51.324 52.7207 41.520 469.400 32.999 32.994 -0.874 51.324 52.7207 41.520 449.400 32.999 32.994 -0.874 51.324 52.720 41.520 44.520 32.999 32.994 -0.874 51.324 52.720 41.520 44.520 32.999 -0.874 51.324 52.720 41.520	٦,	1.78	2	2.89	ä	1.02	_	2.84	~
2662 - 2.780	٦.	2.20	200	3.09	'n	1.27	:	3.15	-
1.518	'n	2.78	2	2.78	'n	1.59	å	3.20	~
-1.558	?	1.51	200	3.00	å	0.87	-	2.79	-
1.520 468.300 32.976 32.964 -0.875 51.350 52.780 41.550 466.300 32.997 32.964 -0.875 51.350 52.780 41.550 466.100 32.997 32.984 -0.859 51.837 52.764 41.550 466.100 32.998 32.386 -0.859 51.833 55.769 41.550 1.693 266.200 26.287 -0.859 52.472 51.403 52.705 41.550 1.693 266.200 26.287 -0.689 52.472 51.403 52.409 41.550 1.693 266.200 26.287 -0.689 52.403 50.324 41.593 266.200 26.287 -0.689 52.403 50.324 41.593 266.200 26.023 -0.689 52.403 50.324 41.593 266.200 26.023 -0.689 52.403 50.324 41.593 266.200 26.023 -0.689 52.403 50.324 41.593 463.5400 31.962 31.952 -0.689 52.103 52.120 41.593 463.800 32.747 32.736 -0.883 51.529 55.621 41.593 465.200 32.747 32.736 -0.883 51.529 55.621 41.593 465.200 32.249 32.942 -0.887 51.346 55.745 41.593 465.200 32.942 32.931 -0.887 51.346 55.745 41.593 465.200 32.942 32.931 -0.887 51.346 55.745 41.593 465.200 32.942 32.931 -0.887 51.346 55.745 41.593 465.200 32.942 32.931 -0.887 51.346 55.745 41.593 465.200 32.942 32.931 -0.887 51.346 55.745 41.593 465.200 32.942 32.943 -0.887 51.417 55.745 41.593 465.200 32.942 32.943 -0.887 51.346 55.2745 41.593 465.200 32.942 32.943 -0.887 51.346 55.2745 41.593 465.200 32.942 32.943 -0.887 51.346 55.2745 41.593 465.200 32.942 32.943 -0.887 51.417 55.745 41.593 465.200 32.942 32.943 -0.887 51.9417 55.745 41.593 465.200 32.942 32.943 -0.887 51.9417 55.745 41.593 465.200 32.945 -0.887 51.9417 55.745 41.593 465.200 32.986 -0.887 51.9417 55.745 41.593 465.200 32.986 -0.887 51.9417 55.745 41.593 465.200 32.986 -0.887 51.9417 55.745 41.593 465.200 32.986 -0.985	۳.	1.51	30	3.00	'n	0.87		2.70	~
1.520	'n	1.52	8	2.97	å	0.87	÷	2.78	~
-1.518 466.100 32.909 32.897 -0.859 51.405 52.736 41 41 41 41 41 41 41 41 41 41 41 41 41	۳.	1.52	50	2.95	ູ່	0.87	_	2.76	-
-1.520	r,	1.51	2	2.90	å	0.87	_	2.73	-
-1.518	۳.	1.52	6	2 - 39	ູ່	0.85	_	2.40	-
-1.497 346.400 29.045 29.035 -0.759 54.763 50.324 41.493 268.900 26.241 26.232 -0.684 57.407 48.699 41.493 268.900 26.241 26.232 -0.684 57.407 48.699 41.252 -1.493 264.200 26.061 26.053 -0.679 57.582 48.597 41.252 11.493 435.400 32.9421 21.29411 -0.853 55.491 55.150 41.252 11.493 455.400 32.9421 32.9421 -0.853 55.491 55.150 41.252 11.493 455.400 32.9421 32.736 -0.853 55.491 55.150 41.252 11.493 455.500 32.747 32.736 -0.853 55.491 55.150 41.252 11.493 456.500 32.747 32.736 -0.853 55.491 55.2707 41.253 466.500 32.942 11.253 55.453 55.2707 41.253 466.500 32.942 11.253 466.500 32.942 11.253 45.1742 55.732 41.253 466.500 32.962 11.253 466.500 32.962 11.253 466.500 32.866 11.253 466.500 32.866 11.252 55.1043 452.500 32.866 11.252 55.1043 452.500 32.866 11.252 55.1043 452.500 32.866 11.252 55.1043 465.500 32.866 11.252 55.1043 465.500 32.866 11.252 55.1043 465.500 32.866 11.252 55.1043 465.500 32.866 11.252 55.1043 465.500 32.866 11.252 55.1043 465.500 32.866 11.252 55.1043 465.500 32.866 11.252 55.1043 465.500 32.866 11.252 11.366 52.276 41.252 11.252 41.2	•	1:51	8	1.29	÷	0.82	å	1.71	-
-456 - 1-493	•	1.49	6	40.6	ċ	0.75	4	0.32	-
-475 -1.493 215.700 24.129 24.121 -0.629 59.515 47.546 40 -495 -1.493 356.200 26.061 29.053 -0.679 57.582 47.546 -1.493 435.400 31.962 31.952 -0.833 52.191 52.120 -1.493 465.400 32.815 32.803 -0.855 51.473 52.120 -1.493 465.800 32.736 -0.853 51.529 52.664 41 -1.493 465.200 32.736 -0.853 51.529 52.661 41 -1.493 465.200 32.747 32.736 -0.853 51.529 52.661 41 -1.493 465.200 32.747 32.736 -0.857 51.366 52.745 41 -1.493 466.500 32.747 32.736 -0.857 51.366 52.777 41 -1.493 466.500 32.787 -0.857 51.386 52.777 41 -1.493 466.500 32.788 -0.857 51.386 52.777 41 -1.493 466.500 32.789 32.788 -0.857 51.386 52.777 41 -0.531 464.800 32.889 32.889 -0.305 51.063 52.276 40 -1.252 467.200 32.866 32.869 -0.305 51.396 52.276 40 -1.252 467.200 32.866 32.889 -0.305 51.396 52.276 40 -1.252 467.200 32.866 32.889 -0.305 51.396 52.276 40	•	1.49	8	6.24	ċ	0.68	Ļ	8.69	-
-1493 264-200 26-061 26-053 -0-679 57-582 48-597 41	4	1.49	5	4.12	÷	0.62	ċ	7.54	0
512 -1.493 357.400 29.421 29.411 -0.767 54.420 50.549 41 534 -1.493 435.400 31.952 -0.853 52.191 52.191 52.120 41 550 -1.493 460.800 32.747 32.736 -0.853 51.529 52.654 41 500 -1.493 460.800 32.747 32.736 -0.853 51.529 52.621 41 501 -1.493 460.800 32.747 32.746 -0.853 51.417 52.621 41 502 -1.493 465.200 32.982 32.931 -0.857 51.417 52.707 41 502 -1.493 465.200 32.982 32.953 -0.857 51.417 52.745 41 502 -1.493 465.500 32.921 32.953 -0.857 51.417 52.745 41 502 -1.493 465.500 32.921 32.986 -0.857 51.941 52.745 4	•	1.49	200	90•9	ં	0.67	ċ	8.59	-
-534 -1.493 435.400 31.962 31.952 -0.833 52.191 52.120 41 -554 -1.493 463.400 32.815 32.803 -0.855 51.473 52.654 41 -1.493 460.800 32.815 32.482 -0.853 51.529 52.654 41 -1.493 460.800 32.747 32.736 -0.853 51.529 52.651 41 -1.493 460.800 32.882 32.736 -0.857 51.362 52.757 41 -1.493 467.200 32.882 32.931 -0.857 51.366 52.745 41 -1.493 467.200 32.921 32.930 -0.857 51.366 52.745 41 -1.493 461.500 32.969 32.989 -0.137 51.16 51.967 61.063 -1.493 466.800 32.869 32.869 -0.137 51.196 52.776 40 -1.252 464.800 32.869 32.869 -0.137 51.196 52.276 40 -1.252 467.200 32.866 32.826 -0.477 51.196 52.592 41 -1.252 467.200 32.962 32.934 -0.720 51.346 52.592 41	r,	1.49	6	9.42	ċ	0.76	4	0.54	~
-554 -1.493 463.000 32.815 32.803 -0.855 51.473 52.664 41 -560 -1.493 462.500 32.747 32.736 -0.853 51.752 52.621 41 -1.493 460.800 32.747 32.736 -0.853 51.752 52.621 41 -1.493 460.800 32.747 32.732 -0.853 51.529 52.621 41 -1.493 465.200 32.982 32.870 -0.857 51.366 52.707 41 -1.493 465.500 32.982 32.931 -0.857 51.366 52.707 41 -1.493 461.500 32.769 32.758 -0.857 51.366 52.707 41 -1.493 461.500 32.882 32.889 -0.857 51.366 51.969 40 -1.253 464.800 32.866 32.868 -0.305 51.969 52.276 40 -1.252 467.200 32.866 32.826 -0.477 51.396 52.592 41 -1.252 467.200 32.952 32.939 -0.720 51.396 52.592 41	ņ	1.49	64.	1.96	ä	0.83	å	2.12	-
-580 -1.493 460.800 32.747 32.736 -0.853 51.529 52.621 41 -600 -1.493 465.800 32.497 32.482 -0.887 51.742 52.458 41 -610 -1.493 465.800 32.882 32.870 -0.887 51.417 52.707 41 -1.493 465.800 32.982 32.931 -0.887 51.417 52.707 41 -1.493 461.500 32.921 32.931 -0.887 51.366 52.707 41 -1.493 461.500 32.921 32.931 -0.887 51.36 52.745 41 -1.493 461.500 32.982 32.980 -0.887 51.969 40 -1.493 464.800 32.889 32.886 -0.305 51.046 52.276 40 -1.493 463.800 32.889 32.886 -0.305 51.046 52.276 40 -1.252 467.200 32.886 32.986 -0.305 51.196 52.384 40 -1.252 467.200 32.886 32.936 -0.719 51.196 52.384 40	ç	1.49	9	2.81	'n	0.85	_	2.66	-
.600 -1.493 452.500 32.493 32.482 -0.847 51.742 52.458 41 .619 -1.493 460.800 32.747 32.736 -0.853 51.529 52.621 41 .658 -1.491 467.200 32.942 32.931 -0.857 51.366 52.745 41 .652 -1.491 466.500 32.942 32.930 -0.857 51.366 52.745 41 .702 -1.493 461.500 32.942 32.930 -0.857 51.86 52.745 41 .743 -0.241 465.500 32.882 32.889 -0.137 51.166 51.969 40 .817 -0.532 464.800 32.869 32.868 -0.305 51.063 52.276 40 .892 -0.833 463.500 32.869 32.868 -0.305 51.063 52.384 40 .892 -0.633 463.500 32.869 32.826 -0.477 51.196 52.384 40 .892 -1.252 467.200 32.942 32.934 -0.720 51.270 52.560 41	ŝ	1.49	8	2.74	ä	0.85	-	2.62	-
-619 -1.493 460.800 32.747 32.736 -0.853 51.529 52.621 41 -637 -1.493 465.200 32.882 32.870 -0.857 51.467 52.707 41 -682 -1.491 466.500 32.921 32.910 -0.857 51.386 52.745 41 -702 -1.493 461.500 32.921 32.910 -0.857 51.386 52.745 41 -725 -1.493 461.500 32.882 32.870 -0.857 51.386 52.745 41 -725 -1.493 461.500 32.889 -0.857 51.386 52.777 41 -0.532 464.800 32.869 32.868 -0.305 51.063 52.276 40 -0.633 463.500 32.869 32.868 -0.305 51.366 52.276 40 -0.633 463.500 32.866 32.858 -0.477 51.396 52.587 40 -0.525 467.200 32.866 32.939 -0.720 51.396 52.587 41	۰	1.49	ŝ	2.49	ä	0.84	÷	2.45	-
-637 -1-493 465-200 32-882 32-870 -0-857 51-417 52-707 41 -658 -1-491 467-200 32-942 32-931 -0-857 51-366 52-707 41 -702 -1-493 461-500 32-942 32-931 -0-857 51-366 52-745 41 -702 -1-493 461-500 32-769 32-758 -0-854 51-314 52-635 41 -725 -1-493 461-500 32-882 32-870 -0-857 51-147 52-959 40 -817 -0-532 464-800 32-869 32-866 -0-305 51-047 51-196 52-276 40 -892 -1-252 467-200 32-866 32-959 -0-719 51-196 52-384 40 -0-525 467-200 32-865 32-959 -0-710 51-334 52-592 41	•	1.49	89	2.74	'n	0.85	÷	29.2	-
-658 -1.491 467.200 32.942 32.931 -0.857 51.366 52.745 41 -682 -1.491 466.500 32.921 32.910 -0.857 51.384 52.732 41 -1.493 465.500 32.882 32.87 51.417 52.707 41 -7.25 -1.493 465.200 32.882 32.888 -0.137 51.466 51.969 40 -817 -0.532 464.800 32.869 32.868 -0.137 51.466 51.969 40 -892 -0.633 464.800 32.869 32.868 -0.477 51.39 52.592 41 -0.52 467.200 32.962 32.934 -0.720 51.270 52.640 41	÷	1.49	29	2.88	'n	0.85	-	2.70	=
-682 -1.491 466.500 32.921 32.910 -0.857 51.384 52.732 41 -702 -1.493 461.500 32.769 32.758 -0.857 51.511 52.635 41 -735 -0.241 455.600 32.882 32.888 -0.137 51.166 51.969 40 -817 -0.532 464.800 32.869 32.868 -0.305 51.063 52.276 40 -892 -0.633 463.500 32.869 32.826 -0.477 51.196 52.384 40 -1.252 467.200 32.942 32.934 -0.720 51.270 52.580 41	٥	1.49	200	2.94	ċ	0.85	=	2.74	-
-10493 461-500 32-769 32-758 -0.854 51-511 52-635 41 -725 -11-493 465-500 32-882 32-870 -0.857 51-166 51-969 40 -817 -0.532 464-800 32-889 32-868 -0.305 51-063 52-276 40 -882 -0.833 463-500 32-869 32-868 -0.477 51-196 52-384 40 -862 -1.252 467-200 32-866 32-859 -0.719 51-334 52-592 41	9	1.49	Š	2.05	å	0.85	_	2.73	~
.725 -1.493 465.200 32.882 32.870 -0.857 51.417 52.707 41 .743 -0.241 455.600 32.588 32.588 -0.137 51.166 51.969 40 .817 -0.532 464.800 32.869 32.868 -0.305 51.043 52.276 40 .828 -0.833 464.700 32.856 32.826 -0.477 51.196 52.592 41 .968 -1.253 464.700 32.942 32.934 -0.720 51.270 52.640 41	•	1.40	Š	2.76	'n	0.85	=	2.63	-
.743 -0.241 455.600 32.588 32.588 -0.137 51.166 51.969 40 .817 -0.532 464.800 32.869 32.868 -0.305 51.043 52.276 40 .892 -0.833 464.500 32.850 -0.477 51.34 52.592 41 .042 -1.252 467.200 32.942 32.934 -0.720 51.270 52.640 41	•	1.49	200	2.88	ä	0.85	÷	2.70	-
.817 -0.532 464.800 32.869 32.868 -0.305 51.043 52.276 40 .892 -0.833 463.500 32.830 32.826 -0.477 51.396 52.384 40 .808 -1.253 464.700 32.866 32.939 -0.720 51.270 52.592 41	۲.	0.24	ŝ	2.58	ö	0.13	÷	1.96	0
-892 -0.833 463.500 32.830 32.826 -0.477 51.196 52.384 40 -968 -1.253 464.700 32.866 32.859 -0.719 51.334 52.592 41 -042 -1.252 467.200 32.942 32.934 -0.720 51.270 52.640 41		0.53	89	2.86	ö	0.30	_	2.27	0
.908 -1.253 464.700 32.866 32.859 -0.719 51.334 52.592 41 .042 -1.252 467.200 32.942 32.934 -0.720 51.270 52.640 41		0.83	ŝ	2.83	ä	0.47	ä	2.38	0
-042 -1:252 467:200 32:942 32:934 -0:720 51:270 52:640 41	9	1.25	5	2.86	Ň	.71	÷	2.59	-
	۰	1.25	ຂຸ	2.94	ä	.72	:	2.64	-

Table 13.1 Continued.

			STATION	=HH4 / E NO	20.00			
1/55	BETA Y Deg.	HT N#M/KG	××××××××××××××××××××××××××××××××××××××	42 H/S	K/S	BETA R Deg.	# S	K V R
0.0	-0.625	451.200	32.452	32.450	0.35	•	60 (וניו
140	-1.299	454.200	, ru	32.536	-0.738	53.610	54.841	44.147
250	1.887	•	សូ	å	1.07	mı	0	4
317	-0.727		9	ini	0.41	ຳຕ	S. P.	3 M
3335	-0.726	•	ຕຸ	å	0.41	'n	8	m
356	-0.726	•	•!	å	14.0	m	5	m
2010	10, 01	•	3	v.	N 6 6 0	ů	9	7) !
0.418	-0.729		9	•	90	ຳທ	2=	חור
0 * 4 * 0	-0.729		0	6	0.35	,	0	~
.461	-0.731	•	٩	ŝ	0.32	;	2	m
0.460	-0.729		٩	'n	0.29	÷	Š	m
.004	-0.729		•	'n.	E . O	Ġ	*	(F)
7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	720	•	•	٠.	96.00	ů	3 4	7) (
.565	-0.729		מו ל	•	4.0) M	\$ C	7
.585	-0.729		•	N	0.41	'n	-	1
909-	-0.731		'n	å	0.41	'n	•	m
7.056	0.729	٠	7	å	~	• }	9	P) P
466		•	•	ů		•) !	9	"
76.0	0.00 0.00 0.00		7 1	ů	9	,,	00	יו ני
9.856	-0.029			,,) M	0	"
1.948	-0.197			'n	77	m		,,,,
**0*	-0.616		F.	'n	0.34	'n	-	m)

Table 13.1 Continued.

# < X < X < X < X < X < X < X < X < X <	46.101	444 466 466 465 465 465 465	46.407 46.405 405	46.311	46.352 46.352	46.336	466.44 66.40 6.40 6.00 6.00	46.306 46.306	4444 6555 000 000 000 000 000 000
M/S	56.186	56.982	56.304	55.645	51.748 51.121	53.11.00	56.285	56.214 56.222 56.231	00000000000000000000000000000000000000
BETA R Deg.	55.135 55.073	55.305 56.005	55.212 55.328 55.48	56.330 57.569	63.602	56.465	55.340	555 555 555 555 555 555 555 555	556 566 566 566 566 566 566 566 566 566
×< ×××	0.372	-0.947	0.168 0.168 0.168	00.163	0.121	0.137	00.100	0.167 0.167 0.167	00000
8/W	32.119	322 - 422 -	32.170 32.030 31.895	30.850	23.007	25.960	32.049	31.870 31.886 31.902	31.75 32.815 31.625 31.6828
×< S	32.121	32.43	32.170 32.030 31.896	30.850	23.007	25.960	32.049	31.831	31-776 31-827 32-167 31-833
HT N&M/KG	440.500 446.600	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	447.500 437.600 433.300	357.700	189.300	261.600	436.800 436.800	4 4 4 5 5 6 6 6 6 7 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
BETA Y DEG.	0.364	10.664	0.301 0.302	0.302	0.302	0.302	0.301	0.301 0.301	11 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
/88	079	3000	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	300 410 413 413 413	426	519	555	000 000 000 000 000	00876 00876 00876

Table 13.1 Continued.

	M V R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	M/S	$\begin{array}{c} \alpha_{11}\alpha_{12}\alpha_{13$
	BETA R Deg.	$\begin{array}{c} 0.00000000000000000000000000000000000$
00.06	K <	$\begin{array}{c} -000000000000000000000000000000000000$
N 3 / PHH=	8 V 2 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	20000000000000000000000000000000000000
STATION	K <	20000000000000000000000000000000000000
	HT N&M/KG	
	BETA Y Deg.	
	4/5 8	00000000000000000000000000000000000000

Table 13.1 Continued.

	VR M/S		38.797 24.091		8-299 24-52	8.316 24.50	8.267 24.54	8.237 24.57	8.214 24.59	8.342 24.48	8-413 24-42	8.538 24.31	8.701 24.17	8-879 24-02	8.014 23.99	8.969 23.94	9-111 23-82	9.175 23.77	9.210 23.74	9.208 23.74	8.795 23.11	8.949 23.19	9-118 23-23	9-195 23-23	9.352 23.35	9.595 23.44	9.816 23.72	9.933 23.93	9.832 24.07	9.719 24.16	9.264 23.70	9.123 23.82	8.023 23.08	A0.60	8.779 24.10	8.715 24.16
	BETA R Deg.		38.386						•				•															•	•							
10.00	M/S		13.190		Š	~	'n	à	'n	Ň	ď	ď	m	m	'n	'n	m	m	m	m	÷	4	4	4	n	'n	n		M							
	K \ 8		30-011	8.0	4.0	4.0	6.3	9.2	9.2	9.5	9.6	0.0	0.2	0.5	0.6	7.0	1.0	1.1	1.2	1.1	7 : 1	1.2	4.4	1.5	1.6	1.9	1:9	1.9	1.7	1.5	1.3	1.0	0.0	9.0	E .0	0
STATION	> X		33.148	2.55	2.06	2.10	1.99	1.93	1.87	2.16	2.31	2.59	2.94	3.32	3.39	3.50	3.80	3.93	4.00	4.00	4.22	4.31	4.46	4.55	4.59	4.77	4.72	4.63	4.36	4.14	4.12	3.82	3.41	3.45	3.11	2.07
	HT NON/KG		624.988 810.439	3		6.0	7.5	5	9.0	8.	7.8	6.7	8.2		3.2	.0	6.9	1.4	3.8	3.7	1.3	4.	6	3	•	2.0	8	3.	9		۶.	7:7	3.8	5.2		,
	BETA Y Deg.		23.447	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	4.45	4.24	4.05	3.99	3.73	3.44	2.97	2.66	2.59	2.58	3.44	3.44	3.44	3.44	3.44	3.64
	/55	1	026	10	078	0	a	MO.	~	0	m	S	•	0	N	S	^	0	N	ŝ	-	-	10	0	S	0	m	8	N	ø	0	-	4	v	0	-

Table 13.1 Continued.

SS	BETA Y DEG.	NON/KG	>X S/S/	V 2 W 7 S	# \<	BETA R Deg.	M/S	WYR W/S
_	21.281	1 - 606	55 212	32.811	12.780	40.034	42.853	27.565
92	21.283	901.8/6	35,005	32.618	12.706	40.276	42.753	27.639
52	20.825	883.031	34.463	32.211	12.252	41.093	42.741	28.093
27	21.354	854.542	33,626	31.317	12.244	41.901	42.076	28.101
0.5	22.154	860.518	33,803	31.308	12.747	41.396	41.735	27.598
82	21.675	883.939	34.489	32.051	12.738	40.740	42.301	27.607
59	21.022	884.463	34.504	32.208	12.378	40.969	42.656	27.968
5	20.728	872.561	34,158	31.947	12.089	41.491	42.649	28.256
12	20.977	873.376	34.182	31.916	12.237	41.370	42.529	28.108
9	21.276	896.138	34.841	32.466	12.642	40.473	42.679	27.703
99	21.402	919.865	35,515	33.067	12.960	39.631	42.934	27.385
643	21.315	932,395	35,867	33.413	13.037	39.258	43.153	27.308
69	21.283	923.245	35,611	33.182	12.926	39.568	43.045	27.419
94	21.283	933.693	35.903	33.454	13.032	39.230	43.188	27,313
118	21.283	932.698	35,875	33.428	13.022	39.262	43.174	27.323
4	21.283	929.480	35,785	33,345	12.989	39 - 365	43.130	27.356
67	21.281	930.854	35.824	33,381	13.002	39.322	43.150	27.343
E 0	21.283	927.948	35.742	33,305	12.973	39.415	43.109	27.372
11	21.283	922.679	35,595	33.167	12.920	39.587	43.037	27.425
m	21.201	922.703	35,595	33.168	12.919	39.587	43.039	27.426
67	21.281	917.151	35.439	33.023	12.862	39.769	42.963	27.483
86	21.281	908.987	35,208	32.807	12.778	40.039	42.851	27.567
20	21.281	897.845	34.890	32.511	12.663	40.413	42.700	27.682
4	100 10	000	ACA AE	Cuc cr		156 01	45 64	100

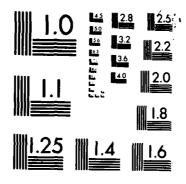
Table 13.1 Continued.

VVR M/S				v		-	~ .		_	-	- 0	ľ	N	~	-	-	•	•	•	_	~	-	_
K < S	വവ	ຄໍຄ.	• •	• •	3 4	2	Š	່ຄ	ŝ	4 4	• •	3	•	ġ.	÷	ດທຸ	ŝ	ŝ	S.	ທໍ	ŝ	3.	ŝ
BETA R Deg.	90	44	900	50	E C	73	5	78	.92		89	72	65	35	0	280	. 14	5	20	7	7.	50	53
8/H			::.			: -		•	÷			-	Ξ.	: ,	∹.		=	ä	å	ċ	å	_:	•
VZ M/S	NO	ก่ ณ์				Ċ	'n		=		: -	-	-	≟.	٠,	in	'n	ċ	å	Ň	å	å	'n
K <	44	4 4 1		, הי	W W	•	3 4	•	m	m, w	ייי אוני	6	'n	m,	•	 t t	•	;	ċ	3	;	÷	•
HT NOM/KG																							
BETA V DEG.	~~	. ·	 .	, .	u		v	, .				·	•			,,	_	•	•	_	•	•	_
X/SS						•	• (•	•	• •		•	•	•	•		•	•	•	•	•	•	•
	BETA V VZ VV BETA R VR DEG. NOM/KG M/S M/S M/S DEG. M/S	V/SS BETA Y HT V VZ VY BETA R VR V DEG. M/S M/S M/S W BETA R VR V V DEG. M/S	V/SS BETA Y HT V VZ VY BETA R VR VR DEG. M/S M/S DEG. M/S W BETA R VR VR DEG. M/S W/S DEG. M/S W BETA R W W DEG. M/S W/S M/S W DEG. M/S W W BETA R W W DEG. M/S W W BETA R W W W BETA R W W W W W W W W W W W W W W W W W W	V VZ VV BETA P V VZ VV BETA R V VR DEG. M/S M/S DEG. M/S W BETA R V VR DEG. M/S W/S DEG. M/S W BETA R V VR DEG. M/S W/S DEG. M/S W BETA R VR V	VESS BETA Y HT V VZ VY BETA R VR NS	V VZ VV BETA P V VZ VV BETA R V VR	DEG. NUMMARKS M/S M/S M/S M/S DEG. N/S BETA R WAS DEG. NUM/KKS M/S M/S M/S M/S M/S M/S M/S M/S M/S M/												PEGA V NHIT N V N V N V N V N V N V N V N V N V N	PEG. NAMEN W W.S. M.S. M.S. M.S. M.S. M.S. M.S. M.	PEG. Name	PETA Y NAMING MYS NY NETA R Y NETA R Y NETA R Y NETA R Y NAMING MYS NAMING MY	

Table 13.1 Continued

MYR N/S		•
M V S	$\begin{array}{c} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} d$	31.
BETA R Deg.		77.
E V		•
V2 M/S		•
> X × × × × × × × × × × × × × × × × × ×		* > - • > -
HT N&M/KG	$\begin{array}{c} 0 \\ $	
BETA V Deg.		•
V/55	10000000000000000000000000000000000000) ,

Table 13.1 Continued.


0 440	m	2	2.645 835.1 2.980 837.4 3.084 837.4
\$	80000000000000000000000000000000000000	//	20000000000000000000000000000000000000

THE PROPERTY OF THE PROPERTY

AERODYNAMIC DESIGN AND PERFORMANCE OF A TWO-STAGE AXIAL-FLOW COMPRESSOR (...(U) IOWA STATE UNIV AMES ENGINEERING RESEARCH INST M D HATHAWAY ET AL. DEC 83 ISU-ERI-AMES-84178 AFOSR-TR-84-0417 F/G 21/5 UNCLASSIFIED NL

3/3

AD-A141 796

TO STATE OF THE ST

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Table 13.1 Continued.

4/88	BETA Y DEG.	HT N\$M/KG	> X	7 S M	H V	BETA R Deg.	M < R	WYR M/S
0.0	0.263	839-574	31.246	31.246	0.143	49.924	48.533 64.533	37.137
0.089	9	812.021			010	50.830	80.053	٠.
0.114	5	796.722			92	51,304	47.735	Ņ
0.140	ş	790.410	•	•	• 05	51.503	47.602	N
0.172	Š	781 - 188		•	• 02	51.800	47.409	Ň
0.199	9	772.833		•	200	52-073	47.232	ď
622.0	Ş	117.058		•	90	51.915	47.334	Ň
0.260	2	788.737			90	51.557	47.568	Ň
0.295	Š	796.385		•	• 02	51.315	47.728	ú
0.318	Ş	819.845			.02	50.594	48.216	ď
0.352	ģ	825.212	•		.02	50.434	48.327	ň
0.381	Ş	811.794		•	•02	50.837	48.049	ď
404.0	ģ	738.910		•	• 02	53,233	46.509	Ň
0.432	á	622.984			.01	57.976	43.949	ď
0-467	ģ	686.000	•	•	• 02	55.229	45.359	ņ
0.492	ģ	766.389	•	•	.02	52.287	47.096	ď
0.522	Ş	789.729	•	•	.02	51.525	47.588	ņ
0.552	ģ	798.652	۰	•	.02	51.244	47.775	ņ
0.579	ģ	801.748	•	•	•02	51.148	47.841	ņ
0.609	ģ	800.101		-	.02	51.198	47.806	Ŋ
0.637	Š	803.286		•	•05	51.099	47.872	'n
0.667	9	807.786	•		•05	50.961	47.967	ņ
0 - 703	Š	811-155	•	•	• 05	50.857	48.036	ņ
0.725	Š	821.533			• 02	50.544	48.252	ň
0.754	ģ	824.742		•	• 02	50.448	46.318	ď
0.786	Ş	827.781	•		• 02	50.359	48.381	ņ
0.611	ģ	831.776	•		•05	50.240	48.463	ď
0.842	Š	839.606	•	•	• 02	50.012	48.624	ď
0-870	ó	840.426		•	. 55	49.591	48.236	۲.
0.927	õ	843.298	•		.37	49.639	48.429	ç
0.988	8	832.221	•	•	•	50.212	48.456	ņ
	٩	7 Y Y L G			•	***		(

Table 13.1 Continued.

DEG.	Ī	>	^^	>	RFTA D	9	2
1	N#W/KG	8/H	W/S	H/S	DEG.	#/s	N/S
0	878.933	32.481	Q.	•	1.53	2.20	
	•	•	32.948	•	51.239	52.627	41.036
1	•		'n		96.0	3.14	1.2
07.7.		•	'n	1.3	1.38	3.32	1.6
97.1-	•		'n	.0	1.13	3.14	1.3
-1.76	•	•	'n	:	1.13	3.14	1.3
-1.76	•	٠	Ė	1:0	1.25	3.03	1.3
-1.76	•	٠	ě	:	1.34	2.97	
-1.76			ď	1.0	1.60	2.60	
-1.76			å	0	3.70	1.22	
-1.76				7	4	10.8	
-1.76		•		,		.00	
1.76			2	7	18	4	•
-1.76	•			0	90		
-1.76		•		0	19.0	000	
-1.76		•		0		2.00) [
-1.76				0	2.17	10,0) P
-1.76			N	0	2.21	700) (
-1.76	•	•	_	•	2.32	2.21	
-1.76	•	•	-	•	2.39	2.16	
-1.76	•		:	•	2.42	2.14	
-1.76	•	•	:	•	2.62	1.99	
-1.76	•	•	:		2.62	1.99	
-1.76	•	•	:	•	2.69	1.94	1.3
-1.76			:	••	2.69	1.94	
-1.76	•	٠	÷	•	2.67	1.95	1.3
-1-76	•		÷	0	2.68	1.95	
9/1-	•	٠	_	o. O	2.55	2.04	1.3
-1.76	•		÷	••	2.46	2.11	1.0
-1.76	•		_	•	2.31	2.22	1.3
-1-76	•	•	å	6.0	2.23	2.28	1.3
-1.76	•		તં	٥.	2.14	2,35	1.3
-1.76	•		ដំ	٥٠٥	2.05	2.42	1.3
-1.76	•	•	ċ	200	1.82	2.59	1.3
-1:00	- 4			•	*) (
	•	•	ı	֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	•	200	٥

Table 13.1 Continued.

CACAL TREBURE SEPTEMBER COCACCAC LINESSES (1993)

WYR W/S	4444 4040 4040 4040	7777	NN		
M/S					
BETA R Deg.	5544 544 544 544 544 544 544 544 544	88888888888888888888888888888888888888	50000000000000000000000000000000000000		
¥ <	1111 1111 1111 1111 1111 1111 1111 1111 1111	00000	70-10-10-10-10-10-10-10-10-10-10-10-10-10	0000000	00000000000000000000000000000000000000
K/2 R/5	00000000000000000000000000000000000000	32.12 32.205 32.360 32.693 33.693	4 W W W W W W W W W W W W W W W W W W W	10000000000000000000000000000000000000	
M/S	311.000 311.000 311.000 311.000 311.000	32. 32. 32. 32. 369. 302. 602. 67	20000000000000000000000000000000000000		
NAM / K G					00000000000000000000000000000000000000
BETA Y Deg.				. ~ ~ ~ ~ ~ ~ ~ ~	# 0 # # # # N N # # \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
4/55	0000	00000000000000000000000000000000000000	00000000000000000000000000000000000000		00000000000000000000000000000000000000

Table 13.1 Continued.

	# S X X	46.625	20	7.5	.75	7	2	8	٥١	75	7	7.	7.	5.	5	U R	75	7	.75	-75	5	5	.75	.75	ě.	õ	.71
	M/R	56.398	7.11	6.00	98.9	5.56	3.66	1.62		6.44	6.67	6.49	6.56	6.56	6.51	000	500	6.56	6.56	6.65	6.75	9.74	6.76	6.81	6.52	6.54	6.52
	BETA R DEG.	55.768	101	o io	'n	'n	6	ė	'n		'n	'n	ຕໍ	'n	'n.	o K	מו	'n	'n	'n	ທໍ່	ທີ່	ທ່	'n	ທ່	ທ່	'n
. 70.00	N/S	-0.151		'n	ď	S	N		7,	אר ספ	N	٩	Ŋ	0	0	30	20	'n	4	0.0	0	7	'n	Ÿ	٦,	7	ç
N 5 / PHH=	2/H 2/H	31.724	•			• •		٠	•			•	•	٠	•	•		•	•		•	•	•	•	•	٠	•
STATION	#/S	31.724	0	ה ה	Ř	85.	•	9	5	7.	0	.72	6	5	5	9 L	.00	.85	•	ŝ	9	12	-	5	5	õ	5
	HT N#M/KG	854.738	865.736	871.304	875.332	858.916	701-192	595-587	*****	651.376	864.613	854.863	658.451	858.461	855.631	856.115 856.226	858.221	858.729	858.623	863.635	868.838	866.388	869.885	872.378	875.084	864.500	827.688
	BETA Y Deg.	-0.274	3	20	9	22	0.40	9	3 9	0.0	0.49	0.40	0.40	0.51	0.50	o c	0.50	20	0.50	8	8	900	8	8	23	2	ņ
	7.55	134	263	315	342	000 000 000	418		000	200	537	562	587	419	8 K 9	000	714	738	764	787	613	641	863	887	912	716	045

Table 13.1 Concluded.

			STATION	ON 5 / PAH	00-06			
4/85	BETA Y Deg.	NAN/KG	M/S	×××	> S / X	BETA R Deg.	M VR	WYR M/S
0.0	2.208	770-615	28.951	28.930	1.115	59.144	56.406	48.422
) . 	500.00	760°I	921-66	9.0	•
0.116	90	֭֭֓֞֜֝֓֓֞֝֓֓֓֓֡֓֜֜֜֜֜֓֓֓֡֓֜֜֜֡֓֡֓֡֓֜֜֜֡֓֡֓֡֡֡֡֡֡֓֡֡֡֡֡֡	20	20.173		59-071	92.9	ô.
0.143	99	0		20.4.00	000 F		7	=:
0.166	99	88	9	20.611	198-1	00 · 00 · 00 · 00 · 00 · 00 · 00 · 00		~
0.192	99	20	9.80	29.777	1.388	58.266	9	-
0.216	8	.72	9.84	29.807	1.390	58.239	6.62	1
0.242	8	9	9.95	29.919	1.395	58.140	6.68	4
0.269	9	Ş	9.71	29.680	1.383	58.352	6.56	2
162-0	8	6	74.0	29.442	1.373	58.564	6.45	19
710.0	8	3	9.02	28.996	1.352	58.962	6.23	. 18
0.341	8	5	7.50	27.474	1.280	60.346	5.53	25
368	8	2	3.04	23.018	1.110	63.811	3.95	42
5000	8	9	9.74	19.725	0.919	67.917	2.46	-0
\$1.4.0 \$1.4.0 \$1.4.0	8	S.	6 • 17	16.159	0.753	71.675	1.39	.78
7***	8	=	66.0	10.01	0.931	67.661	2.55	9
001.0	6	6	6.19	26.168	1.220	61.561	4.04	.31
50.00	8	7	9.34	29.316	1.367	58.676	6.39	7
010.0	8	9	0.03	29.601	1.379	58.422	6.52	.15
7000	ŝ	8	9.51	29.479	1.373	58.531	6.47	.16
700-0	8	90	7.0	29.338	1.358	58.656	6.40	7
0.00.0	8	2	8.88	28.855	6	59.089	6.17	-19
010-0	8	3	8.90	28.877	1.345	59.069	6.18	.19
0000	Ş	ň	9.10	28.737	1.340	59.195	6.11	.19
/ 00° 0	8	8	8.92	28.892	1.347	59.056	6.18	•10
***	8;	9	8.78	28.753	1.340	59.181	6.12	<u>.</u> 19
91/-0	8	72	8.76	28.751	1.340	59.183	6.12	7
567.0	8	9	9.18	29.118	1.965	56.530	5.77	-57
0.795	7	56	9.15	29.107		58.689	6.01	.85
		3	6.93	28.899	10	59.003	6.11	7
•	֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֡֓֓֓֡֓֡֓֡֓֡֓֡֓֡֓֓֡֓֡֓֡֡֡֡֓֡֓֡֡֡֓֡֡֡֡֡	00	75.0	29.345	P)	58.716	6.51	•20
100	Ž	Š	70.0	28.911	1-133	59-151	6.38	9
2440	C C	Š	9:0	28.744	1.132	20.297	62.9	•
7101	20.	9	8.76	28.763	1.014	59.342	6.40	ů

Table 13.2 Circumferentially-averaged flow-field parameters.

STATION 1										
¥	Nam/Ke	HS NOW/KG	BETA Y	>W S\	M / S	* × ×	BETA R DEG.	Z <	N V R	J.
2484 00000	-0.5000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000		11.500 11.500 10.100 10	00000 00000 00000 00000	32.00 32.00 12.00 0047 0047	000000000000000000000000000000000000000	600 600 600 600 600 600 600 600 600 600	40000000000000000000000000000000000000		0000
STATION 2										
III	HT NOM/KG	HS NAM/KG	BETA Y Deg.	> X X \ X	××××××××××××××××××××××××××××××××××××××	K < 4	BETA R Deg.	K VR	VYR S/S	P.
75500 47500 60000 60000	466.945 477.537 465.037 459.121 413.978	1123 - 744 1121 - 744 1120 - 888 1101 - 888 198 - 888	21.301 20.713 20.551 21.467	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32.275 32.371 31.777 31.505 29.640	12.20 11.20 11.90 11.347 11.655	M4440 	440.608 47.181 47.184	24 284 341 341 34 34 34 36 36 36 36 36 36 36 36 36 36 36 36 36	00.000000000000000000000000000000000000
STATION 3										
HH	HT NOM/KG	HS NON/KG	BETA Y Deg.	H/S	× × × × × × × × × × × × × × × × × × ×	E V	BETA R Deg.	VR M/S	VYR	FC
90000 00000 00000	######################################	-75.529 -75.400 -75.372 -75.369	-2. -1. -0. -0.6.00 -0.00	31.848 32.222 31.757 31.307	31.807 32.212 31.756 31.306	100.0000 00.0000 00.0000 00.0000	500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50000000000000000000000000000000000000	2444 2444 2444 2444 2444 2444 2444 244	00000 00000 00000 00000
STATION 4										
AH A	HT NOM/KG	HS NOW X G	BETA Y Deg.	× ×	V2 H/S	×× ××	BETA R Deg.	N VR	× × × × × × × × × × × × × × × × × × ×	FC
70000 00000 00000	895.271 895.271 881.291 875.145	275.580 289.1880 300.329 309.481 318.488	23. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	34.8094 34.8094 33.6808 31.428	20.000 20.000 20.000 20.000 20.000	13.533 12.6834 11.6881 12.389	340.000 40.000 44.739 1.000 51.000	39.007 45.007 46.872 472	23.908 27.711 31.728 34.705	0.699 0.693 0.683 0.5627 0.572
STATION 5										
H	HT NOM/KG	HS NOW/KG	BETA Y DEG.	× × ×	×22 ×78	K < 4	BETA R Deg.	E VE	X \ X \ X \ X \ X \ X \ X \ X \ X \ X \	ñ
00000 0000 00000	8657-286 755-956 755-956 755-956	30000000000000000000000000000000000000	0.081 11.6881 0.559 2.621	29.994 31.731 31.238 26.200	2000 2000 2010 2010 2000 2000 2000 2000	00000000000000000000000000000000000000	51.197 52.461 54.3461 56.265 59.721	50000000000000000000000000000000000000	97.52 44.23 46.23 46.73 46.73 48.23 788	0.586 0.621 0.621 0.621 0.532

A DIBLO