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Local Uniform Mesh Refinement (LUMR) is a powerful technique for solving hyperbolic partial

differential equations. However, many problems contain regions where numerical dispersion is

very large, such as steep fronts. In these regions, mesh refinement is not very efficient. A better

approach in these regions is to locally transform the coordinate system to move with the front. We-

showhow to combine these two approaches in a way which maintains the advantages of LUMR

and the effectiveness of moving grids. Experiments with 2-D scalar problems are presented.
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1. Introduction

Hyperbolic partial differential equations typically contain regions of greater activity such as

shocks or wave fronts, and these features are dynamic. This behavior, combined with the difficulty

of providing a global uniform grid fine enough to resolve the smallest important length scale, has

stimulated much work on adaptive grid techniques for hyperbolic problems. There are two major

approaches. The first is to use an irregular grid, where the choice of grid points depends on some

function of the solution. The grid may be continuous in time. The second is to use locally uniform

grids, and to replace these grids frequently. In this case the grids are not continuous in time.

This second method is called Local Uniform Mesh Refinement (LUMR) and is a powerful

technique for the solution of partial differential equations. It consists of adaptively refining a

uniform coarse grid by overlaying it with uniformly refined subgrids. The uniformity is important

in insuring that the overhead of managing the refinement is kept small, and that the refinement

does not defeat any vectorizability which may be present in the discretization. This method has

been shown to be efficient for a variety of one and two dimensional time dependent problems [1,

4, 7. We discuss how to combine LUMR and moving grids in a way which substantially improves

the performance of each of these algorithms at very little additional cost.

In Section 2, we motivate this extension. In Section 3, we give a detailed description of the

algorithm. In Section 4, we show computational experiments of this method, and compare it with

uniform grid and regular LUMR calculations.

2. Motivation

In a numerical approximation to a hyperbolic PDE, the truncation error typically has leading

form

T = C(t)k(h/'+kP) (2.1)

where C(t) is independent of h and k. The usual approach in reducing the local error is to reduce

h and k. However, since p is usually small (18) argues that p = 4 is optimal for ut = u.), this is

only moderately efficient. In particular, if the problem has n space dimensions, the work goes as

(assuming k/h = A is constant) h-(R+'). Thus, to reduce the global error by a factor of 2 by using

mesh refinement will require a decrease in h and k by 21/P and an increase in the work of 2('+ t)/P.

Thus, the small p common in the solution of hyperbolic problems makes mesh refinement relatively

inefficient at reducing the error in the computation.

What alternatives are there? It is also possible to reduce the local error by reducing C(t) in

(2.1). We may be able to do this by a change of variables to a moving coordinate system, as C(t)
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depends on the problem being solved. For example, consider the problem

ut + aus = 0, (2.2)

approximated with the leap-frog scheme. The principle truncation error is

T" --- (kust, + ah~u3 8 ) (2.3)

We can use (2.2) to eliminate ugg from (2.3) to get

= -au.(-a 05 + ha) (2.4)

so that C(1) - 0 as a -* 0. It is easy to pick a coordinate transformation (z, f) -- (i, t) which

takes (2.2) to

ui+0,u3 =0.

Moreover, leap-frog is exact for this problem.

The important thing to note in (2.4) is that reducing a by 2 reduces the truncation error by

(roughly) 2. Thus, a significant savings in the effort required to reach a given error tolerance can

be realized by finding an approximate transformation.

This is not a new approach; part of the success of the moving finite element method [9, 10]

can be traced to this, as can the method of Davis and Flaherty [5]. What is new here is a way

to reduce C(t) in some cases at little additional cost in a mesh refinement code. We will not try

to drive C(t) to zero (though that is possible in exceptional cases), rather, we will apply uniform

velocity transformations to each refined grid in an attempt to reduce C(t) at low cost.

We also argue below that this is an effective way of reducing numerical dispersion in discon-

tinuous or nearly discontinuous solutions. The best way to see this is to look at graphs of the

numerical dispersion of a sample scheme on a model problem. We consider the leap-frog method

applied to ut + au. = 0 for 0 < a _< 1. The model is ut + u. = 0 where a here is the result of

shifting to a moving coordinate system. We let k/h = 1. This gives the dispersion relation

A = 2sin-' ( jasin(h))

where the basic mode is exp(i(wt - fx)). However, this is not quite what we want to compare.

Because we are using a moving coordinate system, we actually have (in the original, stationary

frame)

wh-2sin-(asin(h,)) +(1 - a)hf

(2
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figure 1: Dispersion relation for model problem for various

values of a. Parasitic waves have been omitted. - _-

Graphs of this for various values of a are shown in Figure 1.

The importance of this is that even for a = 1, the numerical dispersion is significantly re-

duced. Thus, even an approximate moving transformation can be very beneficial. Also note that

this reduction in numerical dispersion extends right to the highest frequencies, so this applies to

discontinuous solutions as well.

S. Algorithm

In this section we discuss the algorithm for moving LUMR (MLUMR) in two space dimensions.

We first discuss the grid structure, then the regridding strategy, and finally the algorithm for

advancing the solution one time step. Our algorithm is more in the flavor of (71 than (1] in that

we don't allow the grids to be arbitrarily oriented.

The algorithm is fully recursive, so multiple levels of refinement are easily accommodated.

Li. Grid Structure

The mesh refinement algorithm produces a series of eve, of grids, G1. The initial, user

specified, level (corresponding to the spatial domain of the problem) is denoted Go. All levels are

made up of rectangular pieces, called grids, denoted Gi for the O, grid in level 1. Further, each of
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Figure 2: Sample grids. One level of refinement is present.

these pieces is lined up with the usual cartesian directions. Finally, grids must be strictly nested:

if a grid Gi lies in GI-Lj, then all of Gl lies in GC-,j and none of Gli lies in any other grid at

level I - 1. The grid GI-Ij is called the parent of Gli, and G1i a child of GI-j. A sample grid

structure is shown in Figure 11.

Note that the grids G11 and G12 are two separate grids rather than a single grid lying partly

in Go, and partly in GO2. This restriction significantly simplifies the data structures involved in

managing the grids without imposing a restriction on the kinds of refinement.

Each grid G1, contains a uniform mesh of points (z,,y,), i = I,...,n, j - 1,... ,m, and

Z -- o + (i - 1)ht, yi = Vo + (i - 1)h,, where (zo, Vo) give the coordinates of the lower left corner

of G1. The step sizes in space are hi and the step sizes in time are ki. If the boundaries of

two grids abut, each contains the mesh points along the common boundary. Thus, points along a

common boundary occur in two different places in memory; the algorithm will show how they are

maintained with a single value. To simplify the programming, grids may only abut along rows.

It is important to note that the grids of one level overlay the grids of the coaser levels, rather

than being patched into the coarser grids. This maintains the uniform nature of the grids, at a

small cost in additional grid points. As the same point in the domain may lie in several grids,

the algorithm must take steps to insure a single valued solution. Because the grids are regularly

oriented, this can be done in an efficient, vectorizable fashion.

Each grid is also assigned a velocity i7. The entire grid will be moved uniformly at this velocity,

with il changing as often as every time step. Because the grids move, they can run into each other

and escape from their parent.

In the first case, there are two possibilities: one grid is overtaking the other, or two grids

run into each other. In the case of one grid overtaking another, we allow the grids to overlap.

Nothing else need be done, as this will still provide a good local match to the solution velocity.

Alternately, we could forte the grids to abut, and reset their velocities so the area-average of their

respective velocities. In the ease where two grids collide, this means that there is no local velocity
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lguen & Colliding grids as in (a) are handled by changing

to a stationary grid, with additional levels of refinement as

necessary, as in (b).

transformation, and the error must be reduced by reducing the step sizes h and k. This can be

handled naturally by MLUMR by regridding and generating an additional level of refinement as

necessary (cf. Figure 3).

In the second case of grids escaping from their parent into another grid as in Figure 4, we

force the grid to stop at the parent boundary, and regrid to create a grid in the adjacent parent.

Because the grid can't move (relative to its parent), it may be necessary to refine it as well; again,

this is handled in a natural fashion.

Another approach to this problem is to sacrifice strict nesting by parent and go to the looser

level nesting discussed in [2]. This complicates the data structures. Because of the grid organi-

zation, only grids at the first level of refinement are likely to escape from their parent (a grid in

the coarsest grid). The coarsest level will normally have very few components--only one in many

cases. Grids at higher levels of refinement are likely to move with the same speed as their parent.

Thus grids will rarely escape from their parents, and the additional cost of regridding when that

happens is compensated for by the simplicity of handling the other grid-parent interactions.

3.2. Regriddlag

After some number of time steps on a level 1, it is necessary to check to see if the refined

grids at the finer levels need to be replaced with new refined grids. This is done in three steps.

First, points in the grids at level I are flagged if it is necessary to refine about that point. This

may be done by estimating the truncation error at that point or by some ad-hoe method based

on user knowledge of the behavior of the solution. Second, these flagged points are surrounded

by a buffer of marked points. This buffer is needed to isolate the interior of the refined grid from

the coarse grid, which is necessary given our strategy of overlaying the refined grids. Further, this

buffer allows us to take more steps between regriddings by giving a margin for the region of higher

error to move around in. Finally, the marked and flagged points are scanned to determine the new
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Figure 4: Grids leaving their parent as in (a) are handled

by using stationary grids in the original parent and the new

parent. Anr additional level of refinement, as in (b), may be

necessary.

• . . . . . . . - - -

FIgure 5: Regridding process. • denote mesh points, e denote

lagged points, x denote buffer points. The resulting refined

grids, G11 through G14 are outlined.

refined grids, and those grids are initialized with values from the previous refined grids (where they

overlapped) and the parent grid.

The process of adding the buffers can be done by bit-wise logical operations of left and right

shifts and or's. This helps keep the cost of the regridding down. The regridding process in shown

in Figure S.

3S. FInding gild velocltis

This is either the hardest or the easiest part, depending on what you plan to do. In the moving

inite element (MFE) approach, the nodes move at a velocity which is automatically calculated

to minimize a penalty function made up of the residual and some terms to keep the mesh well

behaved. In our approach, we ask the user to specify the velocity of a grid, given the values on the

grid and its location. For many problems this is quite reasonable; detecting near-discontinuities

and computing an appropriate approximate velocity is often quite simple. In fluids problems, the

appropriate velocity is often the fluid speed, and is immediately available. It should be emphasized
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Figure 6: Grids over which the velocity varies greatly as in

(a) are broken into several grids. In (b), the grid has been

broken into three overlapping parts, with the center part (in

thicker lines) remaining stationary.

that because we are not trying to get an exact value for the velocity, we can be much more cavalier

about choosing the velocity. For a completely automatic method, one similar to that in [9) could

be used.

3.4. Integrating a level

Each level consists of a number of possibly intersecting grids. Here we describe how a single

level is integrated; in the next section, we put everything together.

The boundaries between the a refined grid and its parent are determined by using linear

interpolation from the parent grid values. This has been shown to be stable [31 for stationary

grids.

If the grids abut, then the boundary between them is handled in a special way. The points

along the common boundary are duplicated in each grid. This is done to maintain the uniform

structure of the grids. When integrating the top grid, the common boundary is also integrated,

using data from both grids. Then the values computed on the common boundary are copied from

the tipper grid into the lower grid.

Overlapping grids require special cae. In the case where the refinement is 1 (no refinement),

overlapping grids can be handled efficiently by just injecting the values on the "refined' grids onto

the parent grid, and then using the usual boundary procedure for fine/coarse grid interfaces to

communicate the values back to the refined grids.

If the refinement is greater than 1, then the boundary values must be computed by interpo-

lating from the overlapping 'partner'.

As an example, we will describe how one time step is taken on a coarse grid, where there is

only one level of refinement and no regridding takes place during this time step. First, the coarse

grd is integrated from time t to t + ko. Next, the refined grids are integrated from time t to t + k1 ,

7



procedure step( lev )

1. Integrate level lev

2. Check for time to regrid the nezt level. If so regrid the next level

3. Update grid velocities if enough steps have passed. Must check this after the regridding check,

since we don't want to reset velocities and immediately regrid.

4. Integrate the finer levels, if any

do i-1. refinenent(lev)

call step( lev + )

5. Having integrated the finer level, we can update this level from the next finer level

Algorithm 1: Moving Mesh Refinement algorithm for ad-

vancing the solution one time step.

then from t+ki to t+2k,, and so on until they reach t+ k. The boundary values at the fine/coarse

grid interfaces are taken from interpolation of the coarse grid values at times t and t + k0 . Finally,

the values on the fine grid at time t + ko are injected into the coarse grid to update the solution

there.

3.5. Integration

Now that we have the structure of the grids and the regridding algorithm, we can describe

the algorithm for integrating a level one step in time. This algorithm is recursive.

The algorithm described in Algorithm 1 is fairly straightforward. Step 5 is the only one we

have not talked about. This step insures that the solution on all the grids is single-valued, and,

more importantly, that those areas of the coarse grid which are refined take their solution from

the refined grids. If this were not done at every step, there would be a danger that the inaccurate

solution on the coarse grid in this area could escape and contaminate the solution everywhere.

This contamination is prevented by a combination of finite domain of dependence of the differential

equation and the difference approximation, the buffers surrounding the areas of large error, and

the injection of the better solution computed on the fine grid into the coarser grids.

A more subtle point is the order of the steps in the algorithm. When the routine to regrid

is called, the parent level has been integrated one step beyond the step where the regridding is to

take place. This lets us place grids where they will be needed, rather than where they had been

needed. Also note that when the regridding routine is called, all grids at finer levels no longer have

a legitimate parent path (since they now point to non-existent parents). This is acceptable, since



those grids will also be regrided before they will be used to update any parent grid, and they will

not be integrated (their only use is to initialize the new grids)

Because handling overlapping grids is complicated and inefficient, particularly if every grid

had a different velocity, we may want to force adjacent grids which have nearly the same velocities

to have the same (area averaged) velocity. This can significantly improve the performance of the

algorithm. We used this approach in our program.

4. xpertments

These experiments are all in two space dimensions and for scalar problems. Each contain

discontinuities in either the solution or its derivatives. Each was run on a FPS-164 running SJE

and using the E Release of the FORTRAN compiler at optimization level 3. Each problem

computed using a uniform coarse and a uniform fine grid, and both LUMR and MLUMR. In eac

of the mesh refinement calculations, the level zero grid (the coarsest grid) was the same as t

coarse-only calculation. The width of the finest mesh in each calculation is denoted by hf. N'.

more than 1 level of refinement was used. Errors in the solutions were measured on the coarse

grid. Three different measures were used. The e2-error is defined as (n- 1 E=t e;)i /2 , the t1 -error

is defined as n- ' l eil, and the 4.-error is defined as max lei4. The 1z-error is the appropriate

measure for smooth problems. The t4-error is more appropriate for non-smooth problems, and

should be the primary basis for comparison in these tests. Since in these problems the largest error

occurs at discontinuities, the the t2-error, which preferentially measures the larger errors, will be

strongly affected by very small changes in Llie position of the discontinuities. The t-error, on the

other hand, weights all errors equally and is a better measure of the numerical dispersion away

from the discontinuities. The 4.,-error is easily contaminated by very small errors in positioning

discontinuities and is useful only for continuous solutions.

As a first sample problem we take a variant of the revolving cone problem used in [6] and [21.

The problem is:

at - Sue + Zul = 0,

with the initial condition

U(,7It) 1-16r, if r< ,

t0, otherwise,
where
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method h! t2 tL to Time (seconds)

error error error STEP USINTG BNDY

coarse 1/20 6.65E-2 2.19E-2 5.98E-1 3.73 3.32 0.33
fine 1/80 1.38E-2 3.74E-3 1.22E-1 209. 204. 4.0
MR 1/80 1.40F-2 4.20E-3 1.22E-1 46.3 35.0 7.55

Moving MR 1/80 5.65E-3 1.39E-3 7.30E-2 35.4 25.8 6.20

Table 1: Results for first test problem. Errors are computed

on the coarse grid. Times are for entire program (STEP),

user integrator (USINTG), and boundary handling (BNDY).

The boundary conditions at the inflow boundaries are zero. The solution to this variable coefficient

problem is given by rigid counter-clockwise rotation of the initial data about the origin with angular

frequency w = 1. This is a good test of both regular and moving mesh refinement because finite

difference approximations to this problem generate large, localized errors containing high frequency

terms (due to the base and tip of the cone). For moving mesh refinement, there is the additional

feature that the appropriate velocity varies substantially over the cone, so that a close match of

the velocity of the solution and the fine grids is not possible.

In our test, we use Lax-Wendroff as the difference approximation, with inflow boundaries

specified as u = 0 and outflow boundaries specified with first order extrapolation. A substantial

effort was made to identify hotspots in the code, and those parts of the codo were optimized. This

was done to insure that these tests were realistic comparisons. For example, the execution time

of the Lax-Wendroff scheme was improved by about 40%. The code is written to be efficient in

all modes of operation (no refinement, unmoving refinement, or moving refinement), and is fully

instrumented.

We can see from Table I that the MLUMR solution achieved significantly better results than

LUMR at about 3/4 the cost. Both LUMR and MLUMR were much faster than a uniform grid.

The graphs of the solutions in Figures 7-8 show that the error for both the uniform grid and

the LUMR calculation is due primarily to numerical dispersion (the high frequency waves lag

the solution, as is predicted by Figure 1), while the error in the MLUMR solution is due to a

combination of dispersive error (caused by the variation of velocity over the cone) and dissipation

in the scheme. We can see from Figure 2 that part of the efficiency advantage of MLUMR comes

from needing les refinement (a consequence of the smaller dispersive error).
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method i1  t t2 Time (seconds)
error error STEP USINTG BNDY

coarse 1/40 1.84E-2 4.78E-2 .94 .88 .04
fine 1/80 1.18E-2 4.56E-2 7.22 7.05 .14
MR 1/80 1.17E-2 4.47E2 5.00 3.61 .66

Moving MR 1/40 1.07E-2 3.99E-2 2.45 1.27 .49
Moving MR 1/80 6.88E-3 3.29E-2 4.76 2.97 .97

Table 2: Results for second test problem. Errors are com-

puted on the coarse grid. Times are for entire program

(STEP), user integrator (USINTG), and boundary handling

(BNDY).

The second test problem is

Ut + Uu + uuY = 0

on the unit square, with 0 :_ t _< 0.6. Note that under the rotation z' = (z + y)/v'2, y' -

(-z+ V)/V'i, the equation becomes ut + vf2/uuse = 0; the solutions of this equation are well known.

This is a very difficult problem for any mesh refinement scheme because so much of the domain

needs to be refined.

The initial data for our second test'problem is

if 0< z < and 0:< Y5

u(XY,t=0)= ifi <z51 and I< _5,
s-  otherwise.

The solution of this problem consists of six shocks, two moving with speed 3/8, two with speed

1/8, and two stationary. At two points (the problem is symmetric about z - y), three shocks with

different speeds come together. Further, since this is a nonlinear problem, even a perfect choice for

the speed of the local grids will not completely eliminate the error. This is because characteristics

converge on the shock, and thus there is no unique local velocity.

For this problem, the grid speeds are chosen nearly exactly; the speeds were set by the location

and extent of the grid. If the grid covered several shocks, it was broken up into several overlapping

pieces. Because the grid speeds were chosen nearly exactly, the errors in the computation come

from only two places: the errors in fitting the moving grids to regions where multiple shocks

interact, and the error in integrating a shock even in a co-moving reference frame. Thus, this

example is complementary to the first example, where the error is due to range of velocities over

the refined grid.
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We can see from Table 2 that even without refinement, MLUMR gives a much better solution

at a fraction of the cost of either LUMR or uniform grids. In this example, the I,-norm is the

most representative, as an error of one mesh point at a shc '. :an make the 14o-norm 0(1) and

have significant impact on the f2-norm. From Figures 9-10 we see that the majority of the error

in all computations is at the shocks, but that the ringing3 trailing the shocks is nearly absent in

the MLUMR calculation. The highest error in the MLUMR calculation comes at the intersections

of the shocks, where the MLUMR method can't take advantage of any local frame of reference.
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Coars. griad solution at T' 3.375 Fin* grid solution at Tz 3.375

LUWN soluto at T 3.375 MLIIE solution at T 3.M7

lgur 7: Solutions for revolving cone problem.
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Error in *wee. grid solution Err'or in fine gri£d solution

Error' (L.r S.97SI-0511 Error' IL., l.Z200-001i

Error to LLPIR solution Error in MLLM solution

Error' (L.. l.Z166-0O1) Error (L..;-'7.3011-0021

flgue Lo Errors in the solutions in Figure 7.
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C*4w.. grid solution atT 0.600 Fin* grid solution at T 0.600

LWM solution at 7 0.800 MUM~f solution at T OA

Vlgur. 9. Solution for the second test problem.
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Ge ids foe LLM in Problem I Grids for MNLR to Problem I
101.0

0.1.

-30 -4.5 . 0.0 1.0 -. 4.1 0.0 0.1 1.0

Grids for Lt*W in Problem 2 Grids for MLLMPR in Pr-oblem 2

1.0 1.0

0..4

0..2

0.0 0.0
00 02 04 04 0.8 t.0 01.0 0.2 0.4 0.6 0.9 1.0

1Fgur 11:* Grids for both test problems at the final time

(T -3.375 for problem 1, T - 0.6 for problem 2).
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