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PARETO-OPTIMALITY, EFFICIENCY ANALYSIS AND EMPIRICAL

PRODUCTION FUNCTIONS

by

A. Charnes, W.W. Cooper, B. Golany, L. Seiford, J. Stutz

Abstract

-- The construction and analysis of Pareto-optimal frontier

production functions by a new Data Envelopment Analysis method is

developed in the context of new theoretical characterizations of the

inherent structure and capabilities of such empirical production functions.

Contrasts and connections with other developments, including solutions of

some remaining problems, are made re aspects such as informatics, economies

of scale, isotonicity and non-concavity, discretionary and non-

discretionary inputs, piecewise linearity, partial derivatives and

Cobb-Douglas properties of the functions. Non-Archimedean constructs are

required.
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INTRODUCTION

Classically, the economic theory of production is heavily based

on the conceptual use of the Pareto-efficiency (or Pareto-optimal) frontier

of production possibility sets to define "the" production function. The

work of R. Shephard [18], [19] under severe restrictions on the mathematical

structure of production possibility sets and cost relations, developed an

elegant "transform" theory between production aspects and cost aspects [10].

This was applied to various classes of explicitly given parametric functional

forms and problems of statistical estimation of parameters from data were

considered in classical statistical contexts especially by successors

such as R. Frisch, S. Afriat, D. Aigner, F. Forsund [1, 2, 16].

These efforts were almost exclusively for single output functions.

M.J. Farrell in [14], seeking to disentangle prices or costs from

"technical" aspects of production, as well as to provide a more meaningful

technical setting to statistical and empirical aspects of production,

defined (for the single output case) a measure of "technical efficiency"

of observed production units relative to the total units observed assuming

that the production process of inputs to output conversion was linear and of

constant returns to scale.

Building on the unit-by-unit evaluations of Farrell and the

engineering ratio idea of efficiency measure for a single input and output,

efficiency analysis in its managerial aspects and its constructible

extensions to multi-input, multi-output situations was initiated by Charnes,

Cooper and Rhodes in [8], [9]. Subsequent extensions and elaborations

by the former pair with other students and colleagues were made in [7 ],

[11], [12] . . with more attention to classical economic aspects and to
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the production function side of the mathematical duality structure and

Data Envelopment Analysis first discovered in the CCR work. The CCR ratio

measures and the variants of Farrell, Shephard, Fare, Banker, et al. require,

however, non-Archimedean constructs for rigorous theory and usage. Their

solution methods also do not easily provide important needed properties of

their associated empirical production functions.

Thus, in this paper we introduce as basic the idea of Pareto

optimality with respect to an empirically defined production possibility set.

We characterize the mathematical structures permitted under our minimal

assumptions and contrast these with others' work. Properties such as

isotonicity, non-concavity, economies of scale, piece-wise linearity, Cobb-

Douglas forms, discretionary and non-discretionary inputs are treated through

a new Data Envelopment Analysis method and informatics which permits a

constructive development of an empirical production function and its partial

derivatives without loss of efficiency analysis or use of non-Archimedean

field extensions.
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EMPIRICAL FUNCTION SETTING AND GENERATION

By an "empirical" function we shall mean a vector function whose

values are known at a finite number of points and whose values at other

points in its domain are given by linear (usually convex) combinations

of values at known points. The points in the domain are "inputs," the

component values of the vector function "outputs." We shall assume that

inputs are so chosen that convex combinations of input values for each

input are meaningful input values. We assume this for output values as well.

In efficiency analysis, observations are generated by a finite

number of "DMU"s, or "productive," or "response" units, all of which have

the same inputs and outputs. A relative efficiency rating is to be

obtained for each unit. Typically, observations over time will be made

of each unit and the results of efficiency analyses will be employed to

assist in managing each of the units. We assume n units, s outputs and

m inputs. The values are to be non-negative (sometimes positive) numbers.

'p
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A HYPOGRAPH EMPIRICAL PRODUCTION POSSIBILITY SET

Given the (empirical) points (X.,Y.), j=l,...,n with (mxl) "input"

vectors X. > 0 and (sxl) "output" vectors Y. > 0, we define the "empirical

production set" PE to be the convex hull of these points i.e.

n n

(2.1) PE A {(x,y) x j Xjj , y = Yj.1j , Vpj > 0
j= j=1 3

We extend it to our "empirical production possibility set" QE by adding to

PE all points with inputs in PE and outputs not greater than some output

in PE i.e.

(2.2) QEA {(x,y) : x = x , y < y for some (xy) e PE }

Note that QE is contained in (e.g. is smaller than) every production

possibility set heretofore employed, i.e. those studied by Farrell [14],

Shephard [19], Banker, Charnes and Cooper [3], Fare, et al. [13], etc. The

Farrell, Shephard, Fire sets are (truncated) cones; the BCC set (when not

also a cone) adds to QE the set

{(x,y) : x > , y = y for some (x y) c QE} .

These relations may be visualized in the schematic plot of

Figure 1: /
/
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where = U A , the BBC set is QE U B, and the Farrell, Shephard, Fire

set is QEU B U C.

Let P!E Q denote the sets corresponding to PE and QE when only the

output yr is the ordinate. Evidently a frontier function fr,(x) is determined

by

(2.3) fr(x) = max yr for (x,yr) r

Then,

Theorem 0: is the hypograph of f,(x) over {x (xy) c QE}

Proof: The hypograph Hr of f (x) is the set

Hr" {(XYr) : Yr It < fr ( x ) ' (x,y) c QE}

Let D denote Tx : (x,y) £ QE} . It is the domain (the input set)

of our empirical frontier functions.

Theorem 1: fr(x) is a concave, piecewise linear function on DE"

Proof: A necessary and sufficient condition for fr(x) to be concave is

that its hypograph is a convex set (cf. Rockefellar [17], or Fenchel [15]).

The piecewise linearity also follows from the construction of QE by all convex

combinations of the empirical points (X.,Yj), j=1,...,n.

We observe explicitly further that no use whatever has been made of

non-negativity of input and output values in the sets, functions or proof

of Theorems 0 and 1. Therefore, they hold without this restriction--a

fact we shall employ elsewhere.

Also, no assumptions have been made about the properties of any

underlying function, or function hypograph, from which the (Xj,Y.) of our

empirical construct may be considered samples. Theorem I shows, therefore,

that any empirical (maximum) frontier function is the "concave cap" function

of its graph.
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THE EMPIRICAL PARETO-OPTIMAL PRODUCTION FUNCTION

A Pareto-optimum for a finite set of functions g1(x).... ,gK(x) is

a point x such that there is no other point x in the domain of these

functions such that

(3.1) gk(x) < gk(x*) , k=l,...,K

with at least one strict inequality. Charnes and Cooper in [5 ], Chapter IX,

showed that x* is Pareto-optimal iff x* is an optimal solution to the

mathematical (goal) program

K

(3.2) min gk(x) subject to gk(x) gk(x*) , k=l,...,K

k=1

This was employed by Ben-Israel, Ben-Tal and Charnes in [4 ] to develop

the currently strongest necessary and sufficient conditions for a Pareto-

optimum in convex programing.

Utilizing (3.2) we can now define and construct, im(or ex-)plicitly

the Pareto-optimal (or "Pareto-efficient") empirical (frontier) production

function. Other usages of (3.2) to generalizations such as the "functional

efficiency" of Charnes and Cooper [5 ] will not be developed here.

First, by (3.2), the Pareto-optimal points (inputs!) among our n

empirical points can be determined. The empirical Pareto-optimal function

is then defined on the convex hull of these points by convex combinations

of the "output" values. Note that the convex hull of the Pareto-optimal

points might not include all of VE since only the doubled line portion of

the frontier is Pareto-optimal.

Since for efficient production we wish to maximize on outputs while

minimizing on inputs, our relevant gk(x) include both outputs and inputs, e.g.
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lYk 1 < k <s
(3.3) -gk ( x )  xi  ,k = s+i , i=l, .. .,m

Lfor (x,y) Q E

For the optimization in (3.2) we clearly need only consider (x,y) E PE

rather than QE* Thus the constraint inequalities in (3.2) are for a test

point (x*,y*):

(3.4) y > y* , x x*

and we have

Theorem 2: The envelopment constraints of Data Envelopment Analysis in

production analysis are the Charnes-Cooper constraints for testing Pareto-

optimality of an empirical production point.

In no way, as others, e.g. Fare [13] have mistakenly asserted, is

Data Envelopment Analysis restricted to linear constant returns to scale

functions or to truncated cone domains. Evidently via (3.2), Data

Envelopment Analysis applies to much more general functions, function domains

and other situations than the current empirical production function one.

To test an empirical "input-output" point (Xo , Y ) for Pareto-

optimality, the C2 (Charnes and Cooper) test of (3.2) becomes

T T
min -e ~y + eTx

subject to Y s = Y0

(3.5) -Xx -s- = -X
eTA =1I

A, s +  -

where X [XI,..,Xn] ,Y , IY]n n
Since -eT(YA-Yo) + eT(xX-Xo) is an equivalent functional (it differs from

Sin0

the above one only by a constant), we can rewrite the problem for convenience
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in later comparisons as:

min -eTs+ eTs-
+

subject to YX - s = Y0

(3.6) -XX -s = -X

eTX =1

with X, s s- > 0

This is the new DEA form for the production possibility set QE via PE" As we

shall see later, other variations of QE can be accomodated easily by

simple modifications of or additions to the constraints on X. Its informatic.

and software involve only minor modification from that of the Charnes,

Cooper, Seiford and Stutz paper [11] as developed by I. Ali and J. Stutz

for the Center for Cybernetic Studies of The University of Texas at Austin.
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EFFICIENCY ANALYSIS

As mentioned, managerial and program comparison aspects of

efficiency analysis were initiated by Charnes, Cooper and Rhodes in [6],

[8], and [9], through a generalization of the single input, single output

absolute efficiency determination of classical engineering and science to

multi-input, multi-output relative efficiencies of a finite number of

decision-making units "DMU's" (sometimes called "productive" units or "response"

units). The multi-input, multi-output situations were reduced to the "virtual" single

input single output ones through use of virtual multipliers and sums.

Explicitly, the CCR ratio measure of efficiency of the DMU designated "o"

is given by the non-linear, non-convex, non-Archimedean fractional program

(see [ 7]).

Max To
Txo

subject to 2a y < I j I .... n
Ti

Tx.
3

TT

(4.1) TX T

T . T

- T T

where the entries of the X. and Y. are assumed positive, c is a non-

Archimedean infinitesimal, eT is a row vector of ones and, by abuse of

notation, has s entries for n m entries for (X ,Y o) is one of the

n input-output pairs.
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Employing the Charnes-Cooper transformation of fractional programming

T T T/ TX TA T T T(4.2) - 0 0, X0 =1

we obtain the dual non-Archimedean linear programs

max mine -eTs -e s

subject to VTx = 1 YX -s = Y
0

(4.3) TY x  < 0 eX - XX -s- = 0

< se X, S+, S 0

T eT

where X 4 [XI... ,Xn] ,Y [YI,...,Yn].

Although, clearly, no assumptions have been made concerning the

type of functional relations for the input-output pairs (Xj,Yj), the dual

program may be recognized as having the Data Envelopment Analysis constraints

for an empirical production possibility set of Farrell, Shephard, etc. cone

type QE U B U C, and, since

(4.4) 0 - e[eTYX - eTxX]

is an equivalent form for the functional, as being a Charnes-Cooper Pareto-

optimality test for (OX ,Y ) over the cone on the (Xj,Y.), j=l,...,n, with

pre-emption on the intensity 0 of input Xo. As shown, for example, in [7 ],

DMU is efficient iff a = 1, s = 0,s = 0.

Re informatics, which are particularly important since all n

efficiency evaluations must be made (i.e., n linear programs must be solved),

the dual problem can be computed exactly (in the base field) as shown in [ 5],
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e.g., with the code NONARC of Dr. I. Ali (Center I. r Cybernetic Studies, The

University of Texas at Austin), or approximately by using a sufficiently

small numerical value for E. A typical efficient point is designated by

(xy) in Figure 1.

If a DMU is inefficient, the optimal X. > 0 in its DEA problem

(=Charnes-Cooper test) designate efficient DMU's. Thus, a "proper" subset of

the efficient DMU's determines the efficiency value of an inefficient

DMU. The convex combinations of this subset are also efficient. Thereby

to each inefficient DMU a "facet" of efficient DMU's is associated. The

transformation

(4.5) X e X o  s Y o +
0 0 0 0

where the asterisk designates optimality, projects DMU0 , i.e., (X ,Y ), onto

its efficiency facet.

This projection was employed by Charnes, Cooper and Rhodes [ 9] to correct

for differences in managerial ability in their analysis of programs Follow-

Through and non-Follow-Through. It also shows quantitatively what improvements

in inputs and outputs will (ceteris paribus) bring a DMU to efficient operation.

Thus, although the relative efficiency measure of an inefficient DMU will

involve the infinitesimal e, non-infinitesimal changes for improvement are

suggested.

Both Farrell and Shepard knew that ratio measures required adjustments

to correctly exhibit inefficiency of the second DMU in examples like the

following 2 in-t, 1 output, 2 DMU case:

DMU xl x2  y

1 1 2 1

2 1 4 1



12

Farrell added geometric points at infinity; Shephard simply excluded such

cases without giving a method for their exclusion. The non-Archimedean

extension in the CCR formulation is necessary to have an algebraically

closed system of linear programming type. Linear programming theory holds

for non-Archimedean as well as Archimedean entries in the vector and matrix

problem data.

Our new Pareto-optimal DEA method like C2S2 [11] associates facets with

non-optimal (=non-Pareto-efficient) DMU's. Clearly, by the C2 test, DMUo

is Pareto-efficient (Pareto-optimal) iff -eTs *+ - e s = 0, i.e., iff the

Z -distance from (X ,Y ) to the farthest "northwesterly" (Xj,Y.) point is zero.1~ ~ 03

The CCR efficient DMU's are also among the new Pareto-optimal DMU's. Projection

of a non-optimal DMU onto its Pareto-efficient facet is rendered by

(4.6) X -* Xo -S , Y Y + s

To achieve a convenient efficiency measure, we modify the functional by

multiplying it by a 6 > 0 and consider

(4.7) -Se s - s

where the asterisk denotes optimality, as the logarithm of the efficiency

measure. When the data in X and Y are scaled to lie between 0 and 100, a

6 = 1/10(m+s) will yield a logarithm between 0 and -10. This measure might

then be called the "efficiency pH" by analogy with the pH of chemistry.

Our new measure relates to the units invariant multiplicative measure

of Charnes, Cooper, Seiford and Stutz [12], which as shown there is necessary

and sufficient that the DEA envelopments be piecewise Cobb-Douglas, by con-

sidering the entries in the Xj., Y to be logarithms of the entries in Xj., Y

which we employ in the multiplicative formulation.
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INFORMATICS AND FUNCTION PROPERTIES

(A) Partial Derivatives:

The guidance provided by the CCR, BCC, C2S2 formulations does not

include convenient access to the rates of change of the outputs with change

in the inputs. The optimal dual variables in the DEA side linear programming

problems give rates of change of the efficiency measure with changes in inputs

or outputs. The non-Archimedean formulations further may give infinitesimal

rates, which are not easily employed. And, for most of the efficient points

one has non-differentiability because they are extreme points rather than

(relative) interior points. Nevertheless, because of the informatics, e.g.,

computational tactics, we employ in testing via C' for Pareto-optimality,

the following constructive method can be employed.

On reaching a non-Pareto optimal point, our software discovers all

the optimal points in its facet, hence, implicitly, all the convex combina-

tions which form the facet. Since the Pareto-optimal facet is a linear

surface it is not only differentiable everywhere in its relative interior

but all its partial derivatives are constant throughout the facet. Thus,

we need only obtain these for any relative interior point of the facet to

have them for the whole facet. Such a point is the average of the Pareto-

optimal points of the facet.

Let

(5.1) F(xI9..,Xm9 y1,...,ys) = 0

be the linear equation of the facet. Since we have sufficient differentia-

bility in the neighborhood of the average point (xy), we know
i Yr ) = )/(IF

(5.2) ax4 -_I 3_

w x ,y
iI where the right side partial derivatives are also evaluated at (R))
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Suppose we run the C2 test with (x,y) as the point being tested. Then

the optimal dual variables corresponding to input xi and j are respectively

( -Txi)j and (- . Thus, the rate of change of output y with
-- -

x,y x,y

respect to input x. is simply the negative of the ratio of the optimal dual
1

xi constraint variable to the optimal dual yA constraint variable!

More specifically, all Pareto-optimal (Xj,Y) of the facet for the

barycenter (x,y) satisfy

(5.4) *Ty _ v*Tx -p* = 0

where (I*T, v*T, q) are the dual evaluators at an optimal basic solution,

since they do not depend on the C2-test right hand sides. Thereby our

T vTx(5.5) F(x,y) = p.*y - . = 0

Clearly, ii* = 3F/3y4 , -v' =aF/x as already stated.
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(B) Isotonicity and Economies of Scale:

Theorem 1 shows that every component of the empirical frontier

production function is a concave function.

Suppose xI and x2 are the inputs of two Pareto-optimal DMU's in

the same facet and xI > x. Since x = X*(x ) and x XX (x2 ) we must have

eTx\*(x 1) o e Tx*(x2). But for Pareto-optimality, eTYX (xi) = eTX *(xi), i=1,2

so that eTYx* () e). Then, letting fP(x) denote the empirical

Pareto-optimal (vector) function we have

(5.3) eTfP(xl) , eTfP(x2)

Further, if x ixI + (1-U)x 2, 0 <i P 1, fP(x p ) p fP(x1 ) +

(1-P)fP(x2) by construction of the empirical frontier function and we have

e TfP(x 1 e T fP(M p >, eT fP(x 2.

For the single output case of Farrell, etc., then

Theorem 3: If there is only a single output, the empirical Pareto-optimal

production function is isotonic in every facet (regardless of what underlying

production function we have sampled from).

Proof: A function f(x) is "isotonic" iff xa > xb implies f(xa) ) f(xb).

Also eTfP(x) = fP(x) with a single output.

Possibly because of ignorance of standard mathematical terminology,

the isotonic property has been called "strong disposability" in the economics

literature. The name "weak disposability" has also been used for the

weaker property f(px) ; f(x) whenever p>1. A better name might be "ray

isotonic."
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Our arguments preceding Theorem 3 establish a "sum isotonic" property

on facets for the empirical Pareto-optimal function with multiple output

components (regardless of the underlying production function set we have

sampled from), namely,

Theorem 4: eTfp(xa) > e fp(xb) whenever eTxa ) elxb with xa, xb in the same

facet.

Classically in economics, production functions studied have usually

been assumed to be homogeneous and defined on the non-negative orthant.

Thereby, whether or not a function for which f(px) = p f(x), with p > 0,

had economies of scale would be decided by the value of the exponent a.

More generally, increasing or decreasing "return to scale" would be present

respectively, at i if f(pi) > pf(x) or f(pi) < pf(i) for p >1 at points px

in a small neighborhood of x. The BCC paper [3 ] gives a criterion for

deciding this (with production possibility set QE U B U C or QE U B) but does

not give us the rates of change.

Because of our preceding theorems, however, we know that empirical

Pareto-optimal functions are sum-isotonic on facets and concave in each

component function regardless of the nature of the underlying production

possibility set. Thereby, we automatically anticipate lower and lower

returns to scale in going from facet to facet with increasing eTx. And

our partial derivatives can give us explicitly the rates of change in each

observed facet.

Practically, our choices of inputs are generally made with the

expectation that the underlying Pareto-optimal function is isotonic, i.e.,

we choose the form of the inputs so that an increase in an input should

not decrease the outputs. But even here we need still more to determine

the non-concave portions of an isotonic function. For example, in Figure 2

an isotonic function is plotted together with the resulting concave cap
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(large dashed lines) obtained as the empirical function:

y

00

I QEI'
II

*x i

Figure 2

As suggested in our original (1981) paper, non-concavity can be

explored by applying (output) component by component strictly concave

transformations g. to obtain g,,(y,) instead of y,, so that g,,(y,(x)) would

be concave and our plot would look like

y Y 4r. -e- --.

10 0
0 I

x

Figure 3

1Ii
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Informatically, we are doing this by applying transformations of

1
form gr (Y)=jr + (Yr'Yr) with a z 20 to obtain possible new facets in

the gr(Y,).

Problems do arise, of course, on whether one gets spurious

empirical frontier portions in this manner for empirical points which

should "really" be inefficient. Evidently such non-concave portions are

portions of increasing returns to scale if they are truly on the frontier.
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(C) Discretionary and Non-Discretionary Inputs:

In a number of practical applications,certain relevant inputs, e.g.,

unemployment rate, population, median income, are not subject to "discre-

tionary" change by the decision-makers of decision-making units. These are

called "non-discretionary" inputs. They are important in influencing the

outputs and in furnishing the reference background in terms of which units'

efficiency is rated. Not infrequently the facet associated with an

inefficient unit has the same values for the non-discretionary inputs, in

which case there is no problem with the rating assigned. If not, however,

to obtain more meaningful ratings we can add constraints on X to those in

(3.5) which require the non-discretionary inputs to be the same as that of the

unit being evaluated. Thereby, a more meaningful rating will be attained.
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CONCLUSIONS

We have shown how direct application of the Charnes-Cooper test

for Pareto optimality leads to a simpler and more robust method, efficiency

pH, encompassing all previous ones for ascertaining "efficiency." Further,

Pareto-optimal characterizations and constructions of empirical production

functions restrict us methodologically to exploration of such functions

by means of concave sum-isotonic caps. Economies of scale from these

thereby expectedly decrease with increase in the magnitude of the input

vectors. Use of transformations of outputs, as we suggest, can uncover

non-concave regions of the underlying production function where substantial

economies of scale may prevail. Our new informatics device and theory

of the use of the facet average (or barycenter) also constructively

furnishes quantitative estimates of the rates of change of outputs with

respect to inputs which have not been available previously. These new

devices, as with other usages of empirical functions, suggest important

new areas for development of statistical theory to distinguish between

true properties and sampling "accidents." The vital importance of further

development of the informatics of solution of systems of adaptively

developed linear programming problems for Pareto-optimal constructions

should also be clear.
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