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1. Introduction

Let X,X2,- be independent, identically distributed random variables with a

continuous but unknown distribution function F. 4enote he empirical distribution

function for sample X 1,X 2,- ,X. by P(z) = of Xi _5 z, i -s JA In testing

goodness of fit, that is, we want to test F - for some specific choice of F0, the

commonly used test statistics are. ..

D. = sup(P.(z))- F(t))

D.= -Vinf(P(z) - F(z))

D,, = n .up IP(z) - F(z)l.

The purpose of this paper is to give a bound for the tail probability of D in the

following form. 4

Theorem 1. p{D; > e} 2V 00-cI .

A bound of the form p{D; > /in) :5 C e - " t', where C is some unspecified

constant, has been proven by Dvoretsky, Kiefer, and Wolfowits (1956). There are

several papers conjecturing that C can be taken as 1, cf. Birnbaum and McCarty

(1958) and Cs6rg6 and Horvith (1981). Each of them is substantiated by considerable

numerical computation, although no proof is available. Devroye and Wise (1979)

proved C < {2 +32/(6r)9 +8/31 + 2' 4 exp(!)} < 306, but this bound is too

large to be useful in any application. The best result known to the author (before

this paper was written) is c 5 29, due to G. Shorack (private communication), so the

result of this paper is a substantial improvement of all the results known so far and

partial support of the conjecture

2. Proof of the Main Result

First we introduce some notation and basic facts about exponential families. As-

sume the distribution function F of X, can be imbedded in an exponential fam-

ily, i.e. for all 9 in some neighborhood of 0 exp[O()] = I exp(fz) F(dz) is finite,

so xp[Oz - 0(f)] F(dz) defines a family of probability distributions indexed by 9.
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It is easy to show that the mean and variance of these distributions are given by

0'(0) and 0"(0) respectively. Hence i = 0'(0) is a one to one function of 0. It

will be convenient to regard this family of distributions as indexed by / and write

F,(dz) = exp[Oz - O(O)J F(dz). Let P. denote the probability according to which

X1,X2... are independent with P,.(Xi E dz) = Fp(dz) (i = 1,2,...). The den-

sity of S. = X, + .. + X under P. will be denoted by f.,.. If A is an event

belonging to the a -field generated by X1,. -. X., the following notation will be
used: PclM)(A) = P,(AIS,. - me). In this paper we consider only events of the

form A = { < k}, (k m ,2,. i), where r is a stopping time.

Siegmund (1982) derived the following fundamental identity

=,( <k) exp{-m[(02-Go)PO+P(0o)-*(02)) (1)

J/,)I .,,._,(mpo - S,) exp(-(01 - 02) S,/f., .(m&o)dP.,

The notation pi -/p(i,), i = 0, 1, 2 is used above, and 91, 02 satisfy 0'(91) = 0(02).

Let us bring our attention back to D;-. It is well known that the distribution

of D; is the same for all continuous distributions, so without loss of generality we

may take F to be the uniform distribution on (0, 1). The well known representation of

uniform order statistics in terms of sums of independent exponential random variables

shows that

P{D.->N/f) = P{sup(z-P.(x)>f)
0<8<1

= P{max(W-j) > nC- IW,+, -(n+l) = -I}

P e,'(-. < m,)

where W -Y + ..- -- Yj and Y1, Y2,." are independent standard exponential, m =
n+ 1, po = 1,r = inf{ : W - i > nr -1.

For reasons which will be indicated later, we divide the set {w < m} into two parts

(r R_ + 1) U { + 1 <r < m) and apply a time reversal argument to the later part,

i.e. = + ,(_ (n)
P (r < m) =
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where vo = , T = inf(i: Si > nr} and under the probability P Si has the same

distribution as i - Wi (i = 1,.-, n + 1). By (1) we have

ec,7 (, < j + 1) = exp{-m[(02- 00) Io+ 1(0)- -(02)1 (2)

J/,s+i) 1s,..,_,(m/o - S,) exp[-( 1 -02) S,/fpo,.(mpo) dP,.

and

f~~ T < n) exp-t[(-X2 -AO) P'O + O(A.) - O(A2)]} (3)

9MI. -7 52.) exp(-(A1 - A2) STJ/g-%, (MV.O) dP.,

where

0(e) = -0 - log(1 - 0),

O(A) = A- log(1 + A),
0

(A) = A

f, (z) =(I - O)'. _
(1 )(z + k)'xp(- + k)( - 8)],z > -k, -oo < 0 < 1,

~ = (k - 1)!

(I + A)'
g(y) = -). (k - y)'-'expl(1 + A)(y - k)], y< k, -1 < A < oo,

02 < 0 < 01 < 1 satisfy 0(02) =, 0(01), and -1 < A2 < 0 < Al satisfy O(A2) =

We work with (2) first. Under P,, the increment of the random walk Si has an

exponential right tail. The following Lemma is a direct consequence. The proof is

omitted.

Lemma 1. Under P,, R. = S, - (nC,- 1) is independent of r and has an exponential

distribution with parameter (I - 01).
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By Lemma I

451+0 f,,.,mr(mio - S,) exp[-(O -02) S,]dP,,/f,.,m(mjp)

=,, -, f0,,,,,._.(-n. - R.) expl-( 1 - o2).1]dP,,
* epl-(91 - 9)(n. 1)]/f, 0 ,,.(mpo)eP -( -02(n

j' fp,,m-(f - z) exp[-z(l - #2)]d/f,o,.(mp)

- expl-(91 - 02)nc] P,,(i = k) f,,_+,(-f - 1)lf,o,, 1(o,,).

Observe that f,,mk+I(Z) is maximized at - - and the maximized value

is
(1 - 8 2)(m - k)"- - 6 -(-k)

(m-k)

and

. o.,,,(mlo)- (M- 1)1(m- 1)1! "

Substituting these results into the expression above, we have an upper bound of the

form

It +11(m -A) - C-(-) M [M
(I -92) expl-(91 - ) k)- - e ) (- 1)(m - )!

,=1 (m - k)! mm e _ .

Using Stirling's formula with upper and lower bound (see e.g. Feller, Vol. I, page 54),

we find the expression above is bounded by

(1 -o0 2)epI-(o1 - o2)n-Je ( 1) .. (.= k)(M-l)
h=1

< (1 -92).exp[-(8j-0 e) (.

So P,.){, _ 5 f + 1)} 5 %5 exp(-n,(8 - 02) - 0(02)1).
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The process for bounding (3) is more or less the same, although we lose the

independence of Sr - nr and T.

g..-'r(-o - S) xp[-(AI - A,)STIdpV,/. .. (Vom)

_=5 g.,._-(l - Y) CXp(-(A, - A2)0,(T = k, Sr E dy)/g.o..(vom)

ntt
:5 expf-(Ai - A1d1 2 0v.s^-7(1 - V) P'.,(T = k, ST E dY)/g,*, 1 (vom).

From this step on the argument is the same as above. Substituting in the maximal t
value of g.,.-7 and using Stirling's formula carefully, we arrive at

S(T < :5 V2 exp{-t[(A1j - Xjc- OA)

To complete the proof it is sufficient to show

Lemma 2.
max 1(01 - 0,)f - 0(02)1 2

or equivalently

max ((A, - A2)f - #(A2)l 2 f'.

Proof of Lemma 2. Using the method of Lagrange's multiplier, it is easy to

show that (01 - 2)f - 0(f2) is maximized at 01 and 02 satisfying

#IR (4)(0,) = 0(02) (

Equation (4) involves a transcendental equation which is difficult to solve explic-

itly, but here is an easy way out. Dvoretsky, Kiefer, and Wolfowits (1956) proved

P(D.- > V/ C) < C, a'"'.

Siegmund (1982) showed

P{D; > Vn'} f C2(5)



where 01 and 02 satisfy(4) and C2(C) is a constant depending only on C. These two

results imply 1I-i.O C1 €-uI'/C2 ( ). -nI(A' - )f-(3)I > I.

Suppose (02 - 81)C - 0(0 2) < 2C2 for some C, then

1r C e- 2"'/C2 (,) .e-9 c-*)-  = 0.

This is a contradiction. Consequently Lemma 2 is true, and the proof of Theorem 1

is completed.

3. Concluding Remarks

(i) Theorem I is useful in determining confidence bounds, cf. Birnbaum and

McCarty (1958) and Cs~rg6 and Horvith (1981).

(ii) It is also possible to derive a bound of the form P{D. > %/ } " 0 e2n~'

by working on (2) only. This bound is strictly better than Theorem 1 of > i, but

the result is poor when C is small. This is the reason why we split the set (r < m}

into two parts and use a different argument on each part.

(iii) Birnbaum and Tingey (1951) gave the exact distribution of D.-, but their

formula is inconvenient for numerical calculation. This is one of the reasons that a

bound like Theorem 1 may be useful in application.

(iv) At first sight, the conjecture mentioned in section one seems unlikely to be

true, when compared with the asymptotic result n P{D- > C) = e- 2f', but

Smirnov's (1944) result P{D; > C) = expf-2C(C + (3n2)-')] + o(n-'s), which sug-
gests that D.- approach the asymptotic distribution from below, served as analytical

support of the conjecture.
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