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ABSTRACT

One-dimensional, steady flame propagation for a sequential, two-step

reaction of the form A + B + C is considered. An earlier investigation of

the problem by--"la and Ludford (Combustion and Flame 29, p. 167 (1977))

-determines that two separated flames generally exist and that their ordering

is fixed by the ordering of the (disparate) magnitudes of the activation

energies. The present work shows to the contrary that reversals of the flame

ordering are quite possible, but that this is a subtle effect requiring

attention to issues which are usually ignored in the theory of single flames.
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SIGNIFICANCE AND EXPLANATION

Asymptotic methods based on large activation energies have been

established over the last decade as an effective technique for analyzing

chemical processes in combusion which are described by Arrhenius kinetics.

However, efforts have been largely restricted to simple single-step reactions,

0 which are of limited practical interest. The need for a more thorough

treatment of multiple-step reactions has been recognized for some time and

motivates the present investigation as a step towards narrowing the gap

between the basic theory and the practical needs of engineering applications.

The contribution of this report to the analysis of multiple-step

combustion is two-fold. It provides a careful treatment of the title problem

and, more importantly, it demonstrates the sometimes subtle complexities

introduced by the presence of more than one reaction. The need for attention

to detail is exemplified as subtle differences in analysis are shown to lead

to remarkably different conclusions.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report..4I



TWO-STEP SEOUENTIAL REACTIONS FOR

LARGE ACTIVATION ENERGIES-REVISITED

H. V. McConnaughey and G. S. S. Ludford

INTRODUCTION

This discussion is concerned with steady, one-dimensional propagation of

the two laminar flames associated with the two-step sequential reaction

A + B + C. Of particular interest are the admissible flame configurations

and associated burning rates.

Kapila and Ludford [1] investigated this problem using an asymptotic

analysis based on the limit of large activation energies, EI and E2. It

was found that two separated flames generally exist, but that the flames can

also merge. The order in which the separated flames occur was shown to be

fixed by the relative sizes of the activation energies. In all cases, the

burning rate was determined explicitly.

This report presents a generalized version of (11 which also c-siders

the limits E1 + - and E2 + C. The generalization is subtle, however,
-I -

involving only terms which are O(E ) or O(E and is likely to appear
12

superfluous at first glance. Indeed, it reproduces the results found

previously for the case of separated flames and yields burning-rate formulas

for merged flames which are nearly identical to those in [I]. Nevertheless,

the restriction on the separated-flame ordering found by Kapila and Ludford is

eliminated.

The nature and significance of this generalization are best seen in the

context of the asymptotics, which are therefore included in this discussion to

the extent necessary. Treatment of separated flames is omitted since it does

This research was sponsored in part by the United States Army under Contract
No. DAAG29-80-C-0041 and Contract No. nAAG29-81-K-0127. This material is
based in part upon work supported by the National Science Foundation under

Grant No. MCS-7927062, Mod. 2.



not appreciably modify the conclusions derived by Rapila and Ludford from

their investigation of separated flames (see [2]). An analysis of merged

flames is needed, however, and hence is presented here along with pertinent

results for separated flames. The approach in [1] is followed, thus the

reader is referred to that work for any necessary clarification.

It should be emphasized that most of the present analysis follows that of

Kapila and Ludford, although extra terms may appear and the notation may

differ slightly. The significant deviations from their work are explicitly

stated.

The Mathematical Problem

Steady plane flame propagation for a sequential two-step reaction

A + B + C is considered. The governing dimensionless equations are

L(Y) - W, (1)

L(Z) - -W; + W, (2)

L(T) - -Q - Q2 W , (3)

where
2d2  d

L - I x e (,)
dx

2  dx

Dj- __(T - T
w; i Y exp[ T 1 ,

R2 (T - T2 )
-DZ exp[ "

2 K2 TT2

and where

Y - mass fraction of species A,

Z - mass fraction of species B,

T - dimensionless temperature,

-2-



subscript I - pertaining to reaction A + B,

subscript 2 - pertaining to reaction B + C,

D, exp(Ri/T i)*- Di = Damkbhler number,
ni

D £ i , where ni  unspecified constant,

Ei - dimensionless activation energy,

Ti - parameter characterizing magnitude of Di,

M = burning rate,

Qi dimensionless heat release, Q1 + 92 1.

(The reader is referred to [1] for additional details.) The boundary

conditions are

x + -: Y + Y_0, Z + Z_,, T + T ; (4)

x + +: Y + 0, Z + 0, T + T . (5)

Note that this system is invariant under translations, therefore the origin

may be fixed as desired. Also, one of equations (1)-(3) may be eliminated by

integrating the combination (1) + Q2(2) + (3) subject to (4) and (5). The

resulting identity:

Y(x) + Q2Z(x) + T(x) Y- + Q2Z.4 + TM w T (6)

holds.

The objective of Kapila and Ludford's investigation is to determine from

(l)-(6) the variation of M with DI and D2, the other parameters being

fixed. This is accomplished by an asymptotic analysis based on large

activation energies. In the limits E + - and E2 + a, the chemical

activity, represented by the nonlinear terms in (1)-(3), is localized in thin

zones (flames) where the temperature is close to T, or T2. Outside of

these zones, the linear reactionless form of equations (1)-(3) holds. The

resulting "outer" solutions are matched at the flames to the solutions of the

(nonlinear) equations valid inside the reaction zones.

d

-3-



Two types of flames are possible: 1) separated flames, corresponding to

cases where T, - T2 - 0(1), by which the combustion field is divided into

three reactionless regions, and 2) merged flames, which separate two

chemically inert regions and occur when T - T - O(E , E1  -1 2 ~ -min(EIE 2 ).

For convenience, we introduce the constants T and T2' where

Ti " lira Ti .

In this notation, separated flames exist when TI * T2 1 merged flames occur

if T, T2

Kapila and Ludford do not distinguish between Tk and T when k is
Tk k

the index associated with the reaction which exhausts all reactants (i.e.

beyond which Y - Z - 0). For that index, Tk T and in I], it is

effectively assumed that Tk is strictly equal to Tm It is this assumption

which leads to the aforementioned restriction on the ordering of separated

flames, as will be shown.

Results for Separated Flames (T1 * T 2

The reaction occurring at the lower temperature precedes (in location)

the other reaction. For T1 < T2" the flames then appear as shown in Figure

T2 equals T... The burning rate for this case obtained in [1]

satisfies

T42 2T_____2

M 22 exp(-E 2 /T) (7)
(Y.m + Z)E 2Q 2]

For T2 
< T,1  the flames in Figure I are reversed, T and M is

given by 42TD

2 2 exp(-E (8)

-4-
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Merged Flames CT 2

When the flames are merged, the combustion field is divided into only two

chemically inert regions, as represented in Figure 2a. The origin has been

located within the flame zone. The solution of the reactionless equations for

x * 0 subject to (4) and (5) is

x x x xx < 0: Y (1 - e )Y_. + Ve , Z - (1 -e)Z - vex, T - T - Y - 2 Z,

x > 0: Y 0, Z - 0, T = T
-1

where V is an unspecified quantity of order E 1 Continuity of Y and

Z to leading order across x - 0 has been imposed; the origin has been fixed

so that Y + Z is independent of 91 and E2. The leading-order flame

temperature T = T must equal T.

The validity of the above outer solution is contingent upon the existence

of a flame-zone solution or "structure" in the neighborhood of x = 0 which

effects the change in slope there. The structure analysis below is seen to

fix the burning rate M.

Equations (1) and (2) indicate that the A + B reaction and the B + C

reaction become active when T - Ti = OME['), i = 1,2. The small parameters

6 and 6 which gauge the thickness of the flames are thus chosen so that
1 2

O(Ei ). Although the two reactions occur at the same 0(1) location

(x - 0), they must be distinct in order to make the structure problem

analytically tractable. It is therefore assumed that the reaction zone

thicknesses 61 and 62 are of disparate orders, or equivalently, the

activation energies are of disparate orders.

Consider the case where E1 >> E2 1 so that 61 << 62. The associated

merged-flame configuration is illustrated in Figure 2b. On the scale of the

(broader) B + C reaction, the A + B reaction is located at x/6  - P0

where it appears as a discontinuity. All chemical activity of the A + B

-6-
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Figure 2a. Appearance of merged flames on the O(1) scale: A
single discontinuity at x = 0.
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Figure 2b. Merged-flame configuration for E1 >> E2 : A 4 B
reaction zone appears as a discontinuity at po
on the scale of the broader B + C reaction.
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reaction is localized and completed there; the reaction is frozen for

x/62 = P < P0  and is in equilibrium (reactant A is exhausted) for

P > P0. The B + C reaction, on the other hand, is active for p e (-m,.).

It iN only partially completed for p < p0  and is not significantly affected

at P0 by the A + B reaction there since the latter occurs in such a thin

zone. The amount of reactant B remaining at P = P0 ' and all B produced

at P0  are completely converted into C over the interval (p0 'w) of p.

Thick-Flame Structure

In the B + C reaction zone, the variables are written:

X = 6
2 p, p e (-a,-) ,

T =T. + 6 2 t(P) + 0(02)

Z = 82 z(P) + 0( 2),

f 6 2 Y(P) + 0(62) for P < P0
Y =

0 for p > P0

where 62 = T2 /E 2 , t(p) = -y(p) - Q2 z(p) for p < p0  and t(p) = -Q2 z(p)

for p > p0. The parameters T1  and T2 may similarly be expressed as

T 1 = T, + t + ( 2 62t 2 + 0(62)

(Kapila and Ludford assume t2 = 0.) To leading order, equations (1) and (2)

are reduced to

2 -2

P < P0 : 2 2m y(P)exp[t(p) - t 1]E1 /E 2  , (9)
0 dp2 2 112

2d d a + 6 2DgM 2 z(p~eptp

dp 2  p 2 2 2 ept)-t2

and

22 z 2 -2
P > P0 : Y 0, - 6 D'M-z(p)exp[t(p) t 2 ]2 22dp



Note that since E1/E 2 >> 1, t(P) - t must be negative for P < P0 in

order that equation (9) reflect a frozen A + B reaction. Impose then

t(P) < t for p < p0 , (10)

2and define the 0(1) constant D2 as D2 = 62D2

B + C structure equations then become

P < P0  _2: 0, dz M 2 z exp(-y-Q2z-t 2 ), and
dp dp

2

P >0 : Y = 0, 2 = D2 M-z exp(-Q 2z-t 2)
dp2

Matching with the outer solution provides the conditions

dz
P_ + 4-0 d-- -Z and

dz

dp

Also y, z, and d(y + z)/dp must be continuous at p0 " It follows that

00
Y(P) (P0 P)Y- for P < PO

z(p ) = z(p) = z(P , and

dz 0;) dz +dz (P-) = L*- (P0 ) + Y

The value of p0 is not yet known, however. It must be fixed at the

point where the A + B reaction becomes important, i.e. where
-1

T - T = O(E ). Thus, t(P ) - t must vanish. This fact guarantees (10)
1 0 1

since d 2t/dp 2 0 and dt/d0 is seen to be positive at p0 .  It also gives

0Q2 z(P0 ) =t -1 Since z is the leading-order term in Z, z(P 0 ) must be

positive, requiring t I to be negative, which is not surprising. A

-9-



negative t, requires that T, remain less than T through 0(82),
2

ensuring that the A + B reaction remain frozen throughout the region

preceding its zone, as is necessary.

The B + C structure problem may now be written:

d2z ; 2M - 2 z exp[lP - p0IY_. - Q2 z - t2] for p < p0

d 2 D2-2 z exp(-Q2z ) for p > P0

z + ZMP + -Y _P 0  as p +

(11)
z(p 0 ) -Q-1t i

dz(0 )  2z

dz - ) = " (d ) + Y-,
dip 0 dp 0

dz- + 0, z + 0 as p +*dO

If D2 exp(-t 2 ) is labeled D2 and tI is labeled -to, (11) takes on the

form of the B + C structure problem obtained and numerically solved in

(1]. Those numerical results give the equivalent of

M2 = D2exp(-t 2 )/F(-t I )

(12)

E-2 T4D exp(-E2/T )/F(-t)
2 -2 2 1

where F exhibits the asymptotic behavior

Q2 (Y -  +  as t + -

F - , (13)

{Q2Y_2/tl as t + 0

and is illustrated in the graph in Figure 3 for Q2 = .5 and Y_. .75

(Ref. M1] includes an extra factor of - in the behavior of F as t, + 0).
4

-10-



In the limit t + -. , T no longer equals TO but rather TI < T.,

which implies a separated-flame configuration with the A + B reaction

preceding the B + C reaction. Result (12) should therefore yield result (7)

in the limit tl + -M, which it does acnording to (13). Also, problem (11)

requires that z(p 0) + m as t I + .m, thus implying that P0 + -0 or

equivalently that the A + B reaction zone moves to the left of the B + C

flame.

LOGF

3-

2

°
-I

-2 -l
0 .25 .5 .75

Figure 3. Graph of F(-t i) for Q2 .5 and Y .75
as calculated by Kapila and Ludford [].

The limit t + 0, on the other hand, gives TI M T + o(6 ) and may
1 2

also represent separated flames if Tm - T2 becomes 0(1). (Separated flames

occurring for T2 < TI correspond to 0 < TO - T - 0(1) and

T, - Tm + 0(61).) It is therefore possible that the corresponding burning

1I1

.. . . . I II II I I . .. . . .. . I . . . . . -- I l ..-1 1 -. . . . .



rate (8) may be recovered from (12) and (13) if the proper distinguished

limits describing tI + 0 and t2 + - are considered. This requires a

careful asymptotic analysis, however, and is not pursued here. It may be

noted, though, that the limit tI + 0 gives z(p0 ) + 0 in (11), implying

completion of the B + C reaction, that is p0 4 . This indicates that

the A + B flame moves to the right of the B + C flame.

It now appears feasible that either of the two possible separated-flame

configurations may be recovered from the merged-flame configuration just

considered. It follows that it may be possible for separated flames to merge

and subsequently separate with their ordering reversed; i.e. the flames may

cross as TI and T2  are varied. This conclusion contradicts that of Kapila

and Ludford.

Although the result (12) has the identical form of the burning rate found

in [11, there is one crucial difference between the two results: the

nonnegative argument of F. In the present work, the argument of F is

-t = 621 (T - T1 )

and is naturally nonnegative. The argument of F in [1], on the other hand,

is

to (T2 - T)

so that the restriction t0 ) 0 leads to the conclusion that TI ( T when

E >> E2, admitting only one type of separated flames. Indeed, if T,

cannot exceed T2, the separated flame configuration represented by (8)

cannot exist, hence the flames cannot cross. It follows that the ordering of

separated flames is fixed by the ordering E1 >> E2. The source of this

restrictive conclusion is Kapila and Ludford's unspoken assumption that T2

exactly equals T., i.e. that t2 = 0.

-12-



The structure analysis for the thinner flame contributes only information

about higher-order terms in the outer solution. Treatment of the inner

structure problem is therefore omitted.

Analogous results and conclusions are obtained from the analysis of

merged flames with E2 >> E1. In [l], it is found that T2  cannot exceed

T, in that case, hence only separated flames represented by (8) are

possible. This follows from the assumption that TI is exactly T . If a

more general TI is allowed, i.e., TI  T +6 , say, the restriction on

admissible separated flames need no longer be true.

Conclusion

The present investigation, of which the analysis in [l] constitutes a

special case, assumes general forms for the characteristic temperatures T,

and T2 by distinguishing Ti (i - 1,2) from its limit at infinite

activation energies. The burning-rate results of Kapila and Ludford are found

to be true in general for separated flames, but must be modified for merged

flames. Consequently, some of their conclusions are not generally

applicable. In particular, their analysis of merged flames forces them to

conclude that the order in which separated flames occur is dictated by the

relative sizes of the activation energies. This restriction is a consequence

of their assumption that one of the characteristic temperatures is strictly

equal to its limit. By accounting for the eifference, this work removes that

restriction.

-13-
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