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CHAPTER I

INTRODUCTION

Aeroelasticity is defined as the mutual interaction

of the aircraft structural and inertial forces with the

steady and unsteady aerodynamic forces induced by the

flexible vehicle. Aeroelastic phenomena are classified

as either "static" (not time varying), such as

divergence and control surface reversal or "dynamic"

(time varying), such as flutter, dynamic response and

buffeting. In general, the steady and unsteady

aerodynamic forces produce elastic displacements which

in turn cause the aerodynamic force to change. This

interaction results in one of three conditions following

a disturbance: (1) elastic displacements attaining

stable equilibrium, (2) elastic displacements reaching a

limit cycle condition (time varying problems only), or

(3) elastic displacements resulting in a structural

failure.

Static divergence occurs when the aerodynamic force

resulting from the wing deformation equals the

structural elastic restoring force, causing the wing to

continue to deform until failure. Flutter is an

i1
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unstable oscillation of the lifting surface at some

characteristic frequency (referred to as the flutter

frequency). At flight conditions below the flutter

speed of the aircraft, a disturbance to the wing results

in a decaying elastic displacement. At the flutter

speed, the negative aerodynamic damping overcomes the

wing structural damping and results in a sustained

harmonic oscillation. At a condition above the flutter

speed, the lifting surtace generally diverges in an

oscillatory sense until a catastrophic structural

failure of the wing occurs. In some cases where

structural or other nonlinearities are important, a

limit cycle oscillation may occur at speeds above the

flutter speed with the amplitude of the oscillation

dependent upon the speed.

In accordance with military specifications, it is a

requirement that an aircraft be designed such that

neither flutter nor divergence can occur at speeds lower

than 15 percent (margin of safety) above the maximum

aircraft flight velocity. When an aircraft carries wing

mounted external stores, it is quite possible that

aeroelastic instabilities will occur deep within the

flight envelope of the clean wing fighter.

Traditionally, speed placards (restrictions) are used to

obtain the necessary speed margins of safety. These

2



speed restrictions can severly degrade the flight

envelope of a high performance fighter.

Forward Swept Wings

To delay the severe drag effects of compressibility

at high subsonic Mach numbers, it is necessary in the

design of flight vehicles to decrease the thickness

ratio of the airfoil and to increase the sweep angle of

the wing. For an aft swept wing, bending deformation

tends to reduce the local angle of attack. This

unloading of the wing, referred to as wash-out,

virtually eliminates the problem of divergence for the

aft swept wing. When the wing is swept forward the

bending deformation tends to increase the local angle of

attack and the aerodynamic loading. This characteris-

tic, commonly referred to as wash-in results in the low

static divergence speed of a cantilever forward swept

wing.

The forward swept wing has been long recognized as

able to provide some improved performance benefits over

the aft swept wing, provided the weight needed to solve

the potential aeroelastic problems (divergence) can be

made minimal. In 1931, Knight and Noyes showed that a

forward swept wing encountered stall at higher angles of

attack than a similar aft swept wing. Thus, besides

reducing drag (sweep angle effect) forward swept wings

were found to produce higher lift coefficients than the

3



aft swept wing of comparable sweep angle. In 1941, an

investigation by Jones 2 showed that swept back wings at

high angles of attack could at times produce a rolling

or pitching instability because of the premature tip

stall. Since forward swept wings at high angles of

attack stall first at the wing root, they were found not

to be susceptible to these rolling or pitching

instabilities. A study conducted by Diederick and

3Budiansky in 1948 addressed the static divergence

problems of forward and aft swept metallic wings. The

study concluded that to obtain sufficiently high

divergence speeds at moderate forward sweep angles, the

increase in structural weight required by higher bending

stiffness became prohibitive. As a result, interest in

a practical application of the forward swept wing

reached a minimum.
4

In the mid 1970's Krone completed a study in which

laminated composite materials were used in such a manner

that the divergence speed of a cantilever forward swept

wing was improved to a desired airspeed with a minimum

weight penalty. Since composite fiber materials have

higher specific 6tiffness and strength characteristics

than conventional metals and have directional

properties, the orientation of the fibers in a

particular direction can change the deformation of the

wing under aerodynamic loading. Therefore, the

4



tailoring of advanced composite materials can reduce the

wash-in of the forward swept wing and increase the

divergence speed. This study spurred additional and

renewed interest in the development of forward swept

wing technology. Subsequently, the application of

composite materials to forward swept wings was evaluated

through detailed analytical studies and wind tunnel

tests.
7 - 9

In many of the forward swept wing studies performed

prior to 1980, the effect of motion of the entire

aircraft as a rigid body was assumed to be netltgible.

As a result the flutter speed of a cantilever forward

swept wing was calculated to be higher than the static

divergence speed and was not the most pressing problem.

When the rigid body pitch mode was included in the

analyses 0  , a dynamic instability was predicted to

occur at a velocity lower than the static divergence

speed of the cantilever wing. Wind tunnel tests 1 2

involving a forward swept wing free in rigid pitch also

encounterd the low speed dynamic instability. This

instability was termed pitch/bending flutter or body

freedom flutter.

This low velocity instability involves coupling of

the aircraft short period mode and a wing bending mode.

To further describe the phenomenon, Figure 1 illustrates

the coupling behavior of the critical modes of various

5{
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aircraft configurations. For a cantilever forward swept

wing, the bending mode frequency drops with increasing

speed until it becomes zero and static divergence

occurs. For a forward swept wing aircraft free in

pitch, the bending mode frequency still drops but the

presence of the short period mode at a lower frequency

causes a coalescence of the two modes resulting in a low

speed dynamic instability. This instability has been

found in rare instances on straight or slightly aft

swept wing aircraft in the past. 13,4 For an aft swept

wing aircraft classical coupling of the wing torsion

mode with a wing bending mode results in bending/torsion

flutter whether the model is cantilevered or free in

pitch. Although body freedom flutter is calculated to

be more critical than divergence of a cantilever forward

swept wing for selected aircraft configurations, one

should not generalize these findings. It is conceivable

that wing divergence may, for peculiar forward swept

wing aircraft configurations, be the most critical

aeroelastic instability. Therefore, divergence of a

cantilever wing should not he disregarded in the

development of any new and promising aeroelastic control

procedures.

Aeroelastic Control Technology

During the last decade, active control technology

has been shown to have promise as a technique of

7



preventing dynamic aeroelastic instabilities in lieu of

conventional flutter prevention procedures (adding

stiffness or ballast weights). The principles and

procedures of applying these concepts are well

documented as a result of the significant amount of

research performed in the 1970's to develop active

flutter suppression technology and in the early 1980's

to advance digital flight control and adaptive control

principles. Just recently, investigations concerning

the use of active co,,rols to delay the onset of

divergence 1 5 and body freedom flutter1 0 , 1 6 have been

completed.

15
Griffin and Eastep studied the suppression of

both static divergence and, separately, bending/torsion

flutter using different forward swept wing

configurations. For these investigations, a leading

edge surface commanded by vertical displacement was

found to be best for suppressing static divergence, and

a trailing edge surface commanded by acceleration was

best for controlling bending/torsion flutter for the

configurations studied.

Miller, Wykes and Brosnan1 0  were concerned

primarily with investigating the body freedom flutter

instabillty associated with the free to pitch and plunge

forward swept wing aircraft. They demonstrated by

analyses the capability of suppressing the rigid

8



body/wing bending flutter mode, improving flying and

ride qualities, and reducir, wing gust loads. An active

feedback control system with outboard aiherorioc and an

accelerometer located near the control surfacie was used.

16
Chipman, Zislin and Waters" concluded that a:tie

controls could prevent or delay the onset tat K:

divergence using onIy displacement feedoack. and that

body freedom flutter could be cdntrolled best tK using ei

feedback signal dominated by displacement. he control

surface used for the ,; studies was a trot ing edge

outboard flap.

Technology Needs

Future weapon requirements, restrited by

inflationary costs define the need for a miltimission

fighter. It is speculated that the forward swept wing

fighter will evolve in operational dec]oyment rnlar to

what had occurred in the past fur aft s -) t wing

fighters. That is, the forlard swept wing fig.ter will

be designed for an air superiort, primary mission but

will be used in oft-design mfLssic ,, r to air-to-ground

sorties. To obtain this Mu ttiroin capabi i ty, the

forward swept wing fighter will need tu carry external

stores conformally on the fuselage and under the wings.

However, the adverse mass and inertia distribution on

the wings caused by the ex ernal stores have

traditionelly re.sulted in severe hendinq/torsion tlutter



,,i-oblems restricting the aircraft to lower speeds and

smaller payloads. External stores carried by the

forward swept wing fighter will cause the higher

frequency bending/torsion flutter mode to drop within

the flight envelope of the vehicle or come in close

proximity to the aeroelastic instabilities more commonly

associated with the forward swept wing. Conventional

flutter prevention techniques of ballasting the wing, or

stiffening the wing are not suited for solving store

flutter problems. Albu, the use of speed placards to

avoid aeroelastic instabilities can cause severe speed

restrictions resulting in a degradation of aircraft

performance and survivability.

Active feedback control systems offer significant

promise of alleviating external store flutter problems

in the future. Therefore, the purpose of the present

research is to demonstrate by analysis the potential for

and feasibility of applying active feedback control

systems for preventing, simultaneously: (I) divergence

and a high frequency bending/torsion flutter mode (in

close proximity) of a cantilever forward swept wing; and

(2) the rigid body pitch/wing bending instability and

flutter (in close proximity) associated with the wing

free in pitch or free in pitch and plunge. The goal is

to increase the onset of the lowest instability speed 20

percent above the wing bending/torsion flutter speed of

10



I

each wing configuration.

The information reported herein describes the

forward swept wing model selected for the study, and the

analysis techniques and system design approach used.

After the design of a control law for each wlng

condit ion is obtained, analyses are conduct 1 at

off-design conditions to evaluate the performance arid

sensitivity of each system. The results of these K

analyses are also presented. Finally, concluding

remarks and some reco-,,ndations for further study are

provided.



CHAPTER 11

THEORETICAL DEVELOPMENT

The calculation of the response of an airplane in

flight caused by some disturbance is generally based on

the modal approach where the response is assumed to

consist of a superposition of a finite number of normal

modes of the unrestrained airplane including both rigid

body and elastic structural modes. In reality, there

are an infinite number of normal vibration modes of an

aircraft structure. it, y a limited number of the lower

frequency modes are used in the usual divergence and

flutter analyses. Also for studies to determine the

degree of interaction involving the active system and

the ;lircraft structure, only a few of the lower

frequency normal vibration modes are used. Active

system coupling with higher frequency modes (greater

than 30 Hz) is very remote because of the inherent

decrease in the system gain with frequency.

frequency Domain Flutter Equations

In this section the governing aircraft equations of

motion used for classical divergence and flutter

analyses are formulated and reviewed. These equations

are used during the present research when analytical

12
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I

flutter and divergence predictions are referenced as

k-method or P-k method results. These derivations are

followed by the development of the governing equations

required for applying the root locus techniques of

determining aircraft stability.

The aeroelastic equations of motion of a flexible

aircraft in the airstream are represented as

[M] (q) + [C] { } + [K] {q} : {F3,

where [MI , [C] an [K are the generalized mass,

damping, and stiffness matrices obtained using a set of

generalized coordinates jqI and several ,1atura!

vibration mode shapes (NMODES), and iF represents the

unsteady aerodynamic forces. For this study, the forces

are obtained from the subsonic doublet lattice unsteady

aerodynamic theory1 7. These forces are defined to be

1 2"%.
{F) = - pV s [Q(k)]fql (2)

The elements of the generalized aerodynamic force

coefficient matrix [Q] are computed from

iA j t-' i- dx dy, i and j = 1,NMODES 
(3)

2

The coefficient Q represents the force in the i th mode

due to pressure from the jth mode and is dependent on

the reduced frequency k where

-b (4)i V"

|1



For simple harmonic motion, the generalized

coordinates jqI take the form

{q} { 1 e (5)

where u is the frequency of oscillation. After

substituting Equations (2) and (5) into Equation (1),

the aeroelastic equations of motion become

[2 [M] + iw[C] + [K] + 1 pV2S[Q] { ) - 0. (6)

Replacing the viscou damping matrix [wCJ by an

equivalent diagonal structural damping expression [gKJ

the aeroelastic equations of motion become

[M] -1 2b2 Q]J{q' = [ ]{q} (7)

With this equivalent diagonal structural damping

representation, an element of the diagonal stiffness

matrix [K) becomes

K (1 + igsj) K

or

2+ ig ) 2 M.. (8)

where wis the natural frequency of the j th mode,M

th
is the j element of the diagonal mass matrix [M), and

represents the structural damping in each of the

modes.

14



Since conventional aerodynamic theories are valid

for only undamped oscillations, an unknown damping term,

g, is introduced into Equation (8) to force simple

harmonic motion. As a result, a stiffness element now

becomes

j (1 + ig + igs) K... (9)

For small damping values (gg5. < 1), the stiffness is

approximated by

j (1 + ig) . (10)

With the unknown damping term included, the

aeroelastic equations become

[Rb- [IMl I] 

2 k q

Equation (11) represents an eigenvalue problem with

eigenvalues, X a 1 + and eigenvectors, j.
' 2

One of the most common methods of solving

Equation (11) when the aerodynamics depend on reduced

frequency, is referred to as the k-method. For each

reduced frequency chosen, a set of aerodynamic force

coefficients (Q) are calculated and the eigenvalue

problem is solved. The damping calculated from the

eigenvslue represents the damping that must be added to

and taken away from the system to force simple harmonic

motion. When the damping is predicted to be zero, a

15



solution is obtained.

For the k-method, the trends of damping versus

velocity are not accurate away from a g of zero. If

subcritical or supercritical damping trends are

necessary in a design, other solution techniques must be

considered. One such method uses a transient

aerodynamic representation in which simple harmonic

motion need not be considered. Another technique which

provides more accurate damping trends is called the P-k

method.

The P-k method assumes that the generalized

coordinates are damped harmonic functions represented as

{q) (')e t where (12)

T + (Y V + i)= P.b (13)
Again, with the use of the equivalent diagonal

structural damping representation, the aeroelastic

equations of motion become

[ p [M] + [K] + pv s[Q0

The characteristic equation is obtained by setting the

determinent of the coefficient matrix of Equation (14)

equal to zero. For a specific velocity and reduced

trequency, the eigeiivalue, P, is obtained from the

characteristic equation using conventional techniques of

matrix polynomial factorization. From the eigenvalues,

16



the frequency, (') and damping coefficient (') are

determined.

For both the k-method and the P-k method, flutter

speed is determined when the damping of a mode becomes

zero. The static divergence speed is determined when

the frequency and damping of a mode become zero

simultaneously.

Laplace Domain Flutter Equations

It is quite often important to consider time domain

specifications such as damping ratio, overshoot,

settling time, etc., in the study of linear systems. By

deriving the differential equations of the system and

determining the time solutions, the designer can obtain

the system's performance characteristics. However, this

approach becomes extremely difficult for problems other

than simple systems. Also, if the solution of the

differential equation does not satisfy the design

specifications, it is not easy to determine what

variables in the equation need to be changed to obtain

the required performance. One of the more classical

approaches for evaluating the time related stability

characteristics of an aircraft involves the use of the

root locus criterion. The root locus criterion allows

the designer to predict the performance of a system

without actually solving the differential equation of

motion. This technique is a graphical method for

1i 17



determining the roots of the characteristic equation

(Laplace transform of the equations of motion).

To develop the problem into a form suitable for

analysis employing the root locus procedure, it is

necessary to start with the flexible aircraft equations

of motion as provided in Equation (1). For zero initial

conditions, the Laplace transform of Equation (1) takes

the form

M]S2 + [CIS + [K] + ! pV s [Q(S)] {q(S)} - 0. (15)

The characteristic equation is obtained by setting the

determinant of the coefficient matrix in Equation (15)

equal to zero. The roots of the resulting polynomial

may be plotted in the complex plane as the velocity

varies. Such a plot is referred to as a velocity root

locus plot. Determining the roots requires that CQ(S

be known.

Pade' Approximations to the Unsteady Forces

To obtain the unsteady aerodynamic forces in a

polynomial representation of the Laplace variable for

use with the root locus techniques, a Pade'

18
approximant of the aerodynamics is considered. A

19
Pade' approximant was proposed by Vepa as an

aerodynamic force coefficient fitting function. Vepa

recommended that the Pade' approximant for the



generalized forces should have a numerator polynomial of

order one higher than the denominator polynomial for

subsonic flow. In this study, a Pade' approximant with

a numerator polynomial of order 3 provides a good

approximation to the generalized forces for the low

subsonic speed range investigated.

To obtain the Pade' approximants, a least squares

fitting scheme is employed. This is accomplished by

minimizing a quadratic function 3 defined as

3 = (Z - Z) T (Z - Z) (16)
A

where Z is the calculated value of Q ij(k) and Z is the

estimated value of Z. For a specific generalized force

coefficient and for a set of reduced frequencies, an

aerodynamic force vector of 2L terms is formed as,

Real (Qij (Kl))

Real (Qij (K1))
z - (17)

IMAG {QIj (KI))

IMAG (Qij (K1 ))

The objective is to obtain the aerodynamic force

coefficients in the Pade' Polynomial form of

No + N1  S + N2 -2 N3 (1
Qij(S) (, 1 - 2 (18)

1 + D S + D S

where S =bS 19)

19



The curve fitting is completed along the imaginary

axis with respect to k, since here S = ki. The

transformation from k to S and finally to S is

accomplished later. The calculated value of Qi (k) for
1J

ththe n reduced frequency takes the form

Q(k . o + N, kni N2 k 2 N3 kn
3i (20)

(n I + D1  ki - D kn 2 i

in 2 n

Equation (20) is rearranged to appear as

Qij (kn) = [H n] {x , (21)

where the n n submatrix becomes

[Hni {1 0 -k n2 0 k IMAG (Qii (kn)) kR2REAL (Qij(kn)) (22)

[0 kn 0 -kn3 -k REAL (Q.i (k n)) kn2IMAG (Qij(kn))

and IxT L1N0 N1 N2 N3 D, D2 J (23)

Minimizing J by taking it's derivative with respect

to 141 the polynomial coefficients are found from

[TH] -  [H]T I (24)

The coefficients N i and D i are obtained in two

separate steps. Unique numerator and denominator

polynomials are obtained using a least square fitting

process for each of the aerodynamic force coefficient

elements over the reduced frequency range of interest.

To reduce the number of roots associated with the

20



aerodynamic fitting procedure, all the denominator

polynomials are averaged together to obtain one common

denominator. During the second step, the least square

process is repeated with the denominator polynomials

constrained to the averaged values obtained during the

previous step.

Using Equations (18) and (19), a typical

aerodynamic force coefficient is represented as

+ b bN2 )
2 
+N 3( )

3S3N O + N 1 k + N(. ) 2 + N ( S

Q(S) 0 + 2 - 2 2 (25)
I + Dj-V S + D 2(-) S /ij

in terms of the Laplace variable S. The generalized

force matrix becomes

C[C0]V3 + [C1]V2b S + [C2 ]Vb 2S2 + [C3 ]b 3S3  (26)

3 - 2 22V + D1 bV
2 S + D2Vb 2 S2

where (Co) , CC1] , CC2 3 and CC 3  are matrices with

elements Noij, Nlij, N 2ij and N3i j respectively.

Aeroelastic Equations with Active Controls

The aeroelastic equations of motion of a flexible

aircraft with control surfaces are described as

1 2' 1 ,2'

[M*I+ [C] J+ [K)j+ I V S [Q]h+ [Mc]Iqc$+ 1 V S [Q I lqc}V 0 (27)

where [Mc) and[Q are matrices of order NMODES x M (M

equals the number of control surfaces). For i

21
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control surfaces, 6]

tqCj 6 2 (2B)

The control displacements, 6i , are defined as

6 = Ti(S) LhiJ {q}. (29)

ri (S) represents the transfer functions in the Laplace

variable in each of the feedback loops (gain, sensor

dynamics, actuator dynamics, and the compensation), and

Lh] are defined as the modal participation coefficients

which relate the degiee each of the rigid body or

elastic modes participate in the wing motion at a

particular location on the structure. For these

analyses, sensor and actuator dynamics were neglected.

Although the control of divergence and the body freedom

flutter instability should be somewhat insensitive to

actuator and sensor dynamics because of the low

frequencies involved, the control of higher frequency

wing flutter will be influenced by the addition of these

components. However, previous studies that have

included the actuator and sensor characteristics in the

analysis have shown that adequate compensation can be

easily developed for significantly improving the flutter

speeds of advanced vehicles,

Substitution of Equation (29) into Equation (28)

and realizing that fi(S) is a ratio of two polynomials
i

in the Laplace variable 5, gives

22



TiN 0 rhl

-- ]- - (q). (30)

T2N LhJL o T2DJL2J

and {qc} = [Th](q}
T D

where T = (31)
d T2 TI

2NI

and TD - T1D T2D. (32)

By obtaining Pade' approximants for the control

surface aerodynamics with the same averaged denominator

coefficients as were obtained for the wing, the Laplace

transform of Equation (27) with zero initial conditions

becomes

(MIS 2 + [CIS + [K] + 1V 2  [Q] +

(McS 2 + 1 ,2'vu .[Qc)T [hj]]q} =0 (33)

r D
or TD [ [A4]S

4+[A3]S
3+[A2]S2+[A1]S+[A01]{ ql +

[(V2+D1bVS+n 2b2S2) S2 [MC] + rs (IC 0c]V4 + [CIc]V3bS

+ [C 20 2b2S 2 + [C3c]Vb
3S3)] [T]ih(]q} - 0 (34)

where [AI] , i = 0,4 are defined as

23



1 4

[AO] = V
2 [K] + 1 Psv [C0],

[A1] I V2[C] + D bV[K] + 1Ps V3b [CI],

[A 2  = v2 [M] + D1 bV[C] + D2  b
2 [K] + 1 V 2b2[C2], (35)

[A3] = D1 bV [MI + D2 b
2  [C] + ps Vb [C3],

and [A4] = D2 b2  [M].

With the feedback compensation and sensor types known,

Equation (34) can be represented as
]S n - 1 + .i

[Fn]Sn + [F n + + [FI]S + [FO] = 0. (36)

Solution u; Governing Equations

Equation (36) is a polynomial equation with

constant matrix coefficients. These coefficients

consist of not only the structural, aerodynamic and

planform properties of the aircraft, but also velocity

and the control system compensation (gain and phase).

For these studies, the velocity and gain can be varied

independently to determine velocity and gain root locus

plots. For all control system gains set to zero,

Equation (36) reduces to a fourth order polynomial with

the coefficient matrices defined in Equation (35). An

analysis for these conditions will result in the passive

(unaugmented) solution of the equations of motion. To

obtain the roots of Equation (36), the procedure is to

transform the equation into an eigenvalue problem. This

is accomplished by letting

24



lu

ql,1%0 ( 3 7 )
q 2 "ql .
q 3 q q2 q]

q 3 -.

and so on.

Multiplying Equation (36) by ;T and using Equations (37),

the governing equations described in state space form

become

q= q2

q 2 q 3 (38)

q3 =q

q Fe F1  F F q2  - F
qn "n - F I Fn " 1  2 Fn F2 3 . . . .. Fn Fn-Iqn

or {'q} [A] 04) (39)

where

0 I . 0

A- 0 I . 0o 0 0 . i

" n F 0 F n ' F 1  F n F 2  -F n ' F n -1

and I1] is the identity matrix. With q Sq, Equation

(39) becomes

s [1] (A) I!
or C[A) - s[ 1)tf ' 0 (40)
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which is recognized as the standard eigenvalue problem.

To be stable, each root of the characteristic

equation must lie in the left half of the complex plane.

Roots which lie on the imaginary axis of the complex i

plane are commonly referred to as being neutrally

stable. Since the zero airspeed structural damping is A

assumed to be zero for the elastic modes used in the

analysis, the roots associated with these modes

originate from the imaginary axis at their respective

natural frequencies.
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CHAPTER III

CONFIGURATION DEFINITION

The primary forward swept wing aeroelastic

characteristics required for this investigation include

a static divergence instability speed in close proximity

to the higher frequency bending/torsion flutter speed

typical to what will occur if a critical external store

configuration is carried. With these properties it

will be necessary to develop a system with the

capability of suppressing two aeroelastic instabilities

simultaneously to obtain a reasonable improvement in

airspeed. Also, the interactions of several feedback

loops operating independently to control the behavior of

various elastic modes is of interest. To acquire these

characteristics, the configuration and properties of a

wind tunnel model previously tested to investigate
7 12

divergence and body freedom flutter are selected as

the basis for this program. This approach also offers

the advantage of possibly testing the model in a

modified form at some future time to verify the findings

of this analytical investigation.

Since bending/torsion flutter speeds increase

significantly with forward sweep angles, a configuration

with low forward sweep will serve as a baseline for

27



obtaining the characteristics desired for this study.

As a result, the forward swept wing with the aluminum

substructure is selected. This model consists of an

aluminum plate that provides the load carrying capa-

bility of the wing and airfoil shaped polyurethane foam i

sleeve sections which surround the plate. The wing can

be swept forward at several incremental angles.

7
After divergence testing , the wind tunnel model

was modified by includitig a fuselage bar that was free

in rigid pitch. The wing could then be positioned at

different locations near the aft end of the fuselage bar

to investigate the effects of static margin. The pitch

axis of the fuselage bar was always at the system center

of gravity, and the wing was always mounted aft of this

point to provide weathercock stability.

For this study the reference axis is swept forward

-15 degrees; this angle represents a leading edge sweep

angle of about -9 degrees. Figure 2 presents a

schematic of the wind tunnel model showing key details,

dimensions and the relative sizes of the components.

Basic Model Calculations

A finite element 2 representation of the wind

tunnel model is developed to perform vibration and

21
conventional flutter analyses for correlation with

ground vibration 2 2 ard wiold tunnel tet data. 7,12

2
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Figure 2 Planform of Forward Swept Wing Model
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These analyses also assist in determining the

modifications needed to the wind tunnel model to obtain

the desired aeroelastic characteristics.

All sectional masses and stiffnesses used in the

analysis were experimentally determined 7 to minimize the

error in correlation with test data. For all cantilever

analyses, the fuselage bar is restrained in such a

manner that no motion is permitted along the bar or wing

root. When the rigid body pitch mode is included in the

analysis, the fuselage fid: is permitted to pitch about

the center of mass of the system. The modes of interest

for this study include the first two bending modes and

the first torsion mode. Higher frequency modes are

eliminated from the analysis because later flutter

analyses show that they have essentially no effect on

the instabilities of interest (see Table A-5 in Appendix

A).

A vibration analysis using beam elements and only

the plate massea and stiffnesses (no aerodynamic

sleeves) is initially conducted. The analysis is

performed with the plate cantilevered and with the

fuselage free to pitch. Frequencies and mode shapes

are also calculated with the sleeve masses and some

additional stiffness included in the analysis. Although

the sleeves are discrete sections separated by foam

rubber, stiffnes tests had shown a slight increase in

30



the model bending and torsional stiffnesses when the

sleeves were attached to the plate. The calculated

frequencies for both the plate and wing model are

provided in Table 1 along with experimental results2 2

for comparison. The calculated cantilever results

agree very well with the test data. The largest error

encountered is obtained in the prediction of the wing

2nd bending frequency which is found to be about one

percent lower. There are some larger differences

between the calculated and the test results when the

rigid body pitch degree of freedom is added. The

largest error occurs in the first mode where the

difference between the calculated and experimental

frequency is about six percent. Appendix A provides

additional details concerning the finite element

representation of the wind tunnel model and also

includes the mode shapes for the first three modes of

the wind tunnel model.

All flutter and divergence analyses are conducted

using classical k-methods 21 and a subsonic doublet
17

lattice unsteady aerodynamic theory 1 The P-k method

is considered during the study, but aerodynamic

interpolation problems attributed to the body freedom

flutter condition result in poor predictions. More

:t details on these problems are provided in Appendix B.

The aerodynamic paneling arrangement employed for the
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flutter analysis is shown in Figure 3. This paneling

consists of a fuselage with five interference panels

(not shown) and a slender body, and a wing with six

aerodynamic panels subdivided into 104 boxes. Two of

the outboard panels represent typical leading edge and

trailing edge control surfaces that are investigated for

use in the control system analyses. These surfaces are

positioned near the wing 3/4 span and have hinge lines

parallel to the respective wing edges.

Comparison of wind tunnel divergence and flutter

instability characteristics with the analytical

predictions are also found in Table 1. For the

cantilever model, the divergence speed is predicted to

occur at 119 ft/sec while the instability is estimated

from test data 7 to occur at 128 ft/sec, This shows the

analysis to be about 8 percent conservative. When the

model is free in pitch, the body freedom instability is

predicted to occur at 90 ft/sec at 1.4 Hz. This is

slightly higher than found during the wind tunnel test 1 2

(86 ft/sec) making the analysis about 4 percent

unconservative. For both boundary conditions the higher

frequency bending/torsion flutter mode is predicted to

be significantly higher than the low speed

instabilities.

To accomplish the objectives of this study, it is

desirable to obtain a bending/torsion flutter speed
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about thirty to forty percent above divergence. These

characteristics will more realistically allow an

investigation of the interaction of multiple systems

controlling several rigid and elastic modes. The

changes necessary to the wind tunnel model and the final

vibration and flutter analysis results are discussed

next.

Modified Model Calculations

To obtain the desired divergence and flutter

characteristics, one pound of weight is distributed

along the trailing edge of the wing in the outboard six

sections. Table 1 presents the calculated vibration

frequencies for the first three elastic modes, and the

predicted divergence and flutter results for the

modified wing configuration (cantilevered and model free

in pitch). Mode shapes for the first three elastic

modes of the modified model cantilevered, free in pitch

and free in pitch and plunge are presented in Figures 4,

5, and 6 respectively.

As expected, the weights have no effect on the

divergence speed of the cantilever wing. However, the

weights do have a significant effect on the body freedom

instability and on the higher frequency flutter mode.

The decrease in the body freedom instability speed is

primarily attributed to the drop in the Ist wing bending

frequency that results from the new wing mass
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distribution. The lower wing bending mode frequency

produces an earlier coalescence with the aircraft short

period mode resulting in the low speed instability.

Also, the additional trailing edge weights cause a

significant rise in the wing pitch inertia resulting in

the drop in the wing torsion frequency. By comparing

the natural frequencies of the various modes for the

basic and modified wings (Table I), the frequency

separation between the wing 2nd bending mode and the

torsion mode is much closer for the modified wing. This

causes the two higher frequency wing modes to coalesce

earlier (at a lower speed) resulting in the significant

drop in flutter frequency and speed. Mass coupling also

contributes to the lower flutter speeds for both modes

of instability. Figures A-6 and A-7 in Appendix A

provide velocity versus damping and velocity versus

frequency plote for the cantilever and free-to-pitch

conditions showing the differences in behavior between

the basic and modified models.

The modification in the mass of the model results

in a bending/torsion flutter speed that is 36 percent

above the divergence speed of the cantilever wing. The

*next section describes the procedures used to design an

active feedback system capable of obtaining an

instability-free flight envelope up to 20 percent above

the bending/torsion flutter speed of the modified model.



CHAPTER IV

ACTIVE SYSTEM DESIGN

The design approach used in the development of the

feedback compensation of the system is to obtain gain

loci for several sensor types and locations with

different control surface inputs at an airspeed 20

percent above the bending/torsion flutter speed. This

is accomplished for each of the model boundary

conditions (cantilevered, the model free in pitch, and

the model free in pitch and plunge). These data provide

information needed to determine which of the

sensor/control surface combinations result in the best

suppression capability for preventing the aeroelastic

instabilities of each wing configuration. The various

active system logics that provide model aeroelastic

stability at the design airspeed are then evaluated at

off-design conditions to assure stability over the

entire velocity range of interest.

The results of these studies indicate that a

leading edge surface commanded by displacement of the

wing resulting from only the elastic modes provides a

reasonable control system design for preventing

divergence of the cantilever wing or the body freedom

flutter instability associated with the free model.
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Displacement at the wing sensor resulting from rigid

model pitch and plunge are subtracted from the feedback

signal to obtain only a response due to the elastic

modes. The displacement sensor is positioned near the

intersection of the wing 2nd bending node line and the

wing ist torsion node line. This location provides the

best position for feeding back the bending motion of the

let elastic mode (critical mode for divergence or body

freedom flutter) with minimum inputs from the other

important elastic modes.

Displacement feedback is a difficult state to

measure directly; however, integration of an

acceleration signal can provide the needed response.

This technique of obtaining a displacement feedback

results in significant changes in gain (20db per

frequency decade per integration) and phase

characteristics (90 phase lag per integration). These

changes will undoubtedly need to be accounted for in the

final control law design if the double integration

technique is used. Integration also offers the

advantage of acting as a low pass filter and can be used

to eliminate high frequency non-flutter responses

(control system induced structural instabilities).

The gain loci analyses also indicate that a

trailing edge system commanded by angular acceleration
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of the wing tip perpendicular to the elastic axis

provides an acceptable input for controlling the

bending/torsion flutter mode. Based on mode shape data,

the bending modes relative to the elastic axis have very

little twist. Feeding back wing tip angular

acceleration assures maximum input from the torsion mode

(maximum twist at the tip) with minimum response from

the bending modes.

The sensors used for measuring rigid pitch (angle

of attack) and plunge (vertical translation) are located

at the model center of gravity on the Fuselage bar

(pitch axis). For the analyses performed, the best

overall suppression capability consists of the leading

edge and trailing edge control surfaces positioned in

the same streamwise location on the wing at about 75

percent span.

Cantilever Wing

The reduced frequency dependent unsteady

aerodynamic force coefficients are represented in the

Laplace domain using Pade' approximants. As described

earlier, these functions consist of a ratio of two

polynomials; the numerator is a 3rd order polynomial,

and the denominator, a 2nd order (two lag terms). This

combination is found to provide a good fit of the force

coefficients over the velocity and frequency ranges of

interest. Instead of presenting many tables to
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illustrate comparisons of the unsteady forces calculated

from the doublet lattice and those obtained after

fitting the doublet lattice aerodynamics with Pads'

polynomials, V-g and V- w plots are presented. This

provides an evaluation of the gross overall fit of the

aerodynamic forces. Figure 7 presents the V-g and

V- wplots for the cantilever wing found using the

doublet lattice areodynamics (k-flutter method), and

using the root locus procedures which employ the Pade'

pclynomials. Only the first three elastic modes are

presented. Correlation between the solid symbols

(k-method) and the solid lines (root locus) is very good

particularly relative to the frequency plot, The

differences in damping values in the 1st bending mode

are attributed to the static divergence characteristics

as observed on a root locus. Since correlation of the

damping and frequency data is satisfactory, it is

concluded that the Pade' polynomials provide an accurate

fit of the unsteady aerodynamic forces for the

cantilever wing over the reduced frequency range of

interest.

Figure 8 presents a velocity root locus plot for

the cantilever wing with all feedback gains set to zero

(passive solution). The passive divergence speed (VDP)

is predicted to occur at 115 ft/sec and the passive

bending/torsion flutter speed (Vf) is predicted to
fP
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occur at 156 ft/sec at a passive flutter frequency ((fp)

of 16.7 Hz using Pade' polynomial fits of the

aerodynamic force coefficients. Classical flutter

methods predict a divergence speed of 119 ft/sec and a

bending/torsion flutter speed of 155 ft/sec at 16.9 Hz

(see Table A-5 in Appendix A for the k-method results).

On a root locus plot, static divergence occurs when the

roots associated with an elastic mode move to the

negative real axis (frequency dropping to zero) with

increasing airspeed and divide into two real roots with

one of the roots passing through the origin. When the

root reaches the origin, the wing has statically

diverged. The Ist bending mode in Figure 8 illustrates

these characteristics. Flutter occurs when two modes

(normally a bending and a torsion mode) coalesce causing

a coupled neutrally stable oscillation. The let torsion

mode and the 2nd bending mode shown in Figure 8

illustrate these coalescing characteristics.

Figures 9 through 13 present wing displacement and

twist gain loci of the cantilever wing resulting from

either trailing edge or leading edge control surface

excitations at a design speed 20 percent above the

passive bending/torsion flutter speed (1.2 Vfp). The

poles of the system represent the location of the roots

of the elastic modes with the gains set to zero at the

design velocity. At this speed, two of the poles are
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unstable. The first bending mode appears as two roots

on the real axis, one of which is in the right half

plane (static divergence). The other unstable mode is

the 1st torsion mode which is shown as one of the roots

of a complex pair at about 13.9 Hz. The 2nd bending

mode located at about 11.9 Hz is stable at this

airspeed. Since the roots represent the passive

solution of the equations of motion at the design

airspeed, the location of the poles are identical for

Figures 9 through 13. Ihe solid circles on the charts

represent the zeros of the control law (location of the

root at infinite gain). The solid lines represent the

path taken by the roots when gain is increased from zero

to positive infinity. Dash lines represent the path

taken by the roots when the gain is decreased from zero

to negative infinity.

Figure 9 provides the root locus for the transfer

function h/6TE. The plot shows that positive gain will

cause both of the roots associated with the unstable

elastic modes to move to the left half plane becoming

stable at this airspeed. However, a velocity root locus

using several values of positive gain, equal to or

higher than that required to stabilize the two modes at

1.2 Vfp, shows low speed instabilities in both the 2nd

bending and 1st torsion modes. Negative gain, although

beneficial for controlling torsion, drives the unstable
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real root deeper into the right half plane. Therefore,

the trailing edge surface does not appear to be a

suitable surface for preventing divergence much less

both instabilities simultaneously. Figure 10 provides

the root locus for a transfer function that relates

displacement to leading edge excitation (h/6LE). This

plot shows that negative gain brings the unstable real

root back to the left side quite rapidly but high

negative gains are required to stabilize the Ist torsion

mode. It is found, however, that the high negative

gains tend to destabilize other modes at off-design

conditions similar to what was found for the transfer

function h/ aTE. For this case high gains destabilize

the 2nd bending mode at velocities lower than the design

velocity. For this control surface/sensor combination,

only negative gain requires further consideration as a

potential feedback signal for controlling divergence.

This is a result of having a real pole in the right half

plane causing the model to be unstable for all positive

gains.

Figures 11 and 12 present wing twist transfer

functions resulting from trailing edge and leading edge

excitations, respectively. With trailing edge

excitation, positive gain in a small range can stabilize

both aeroelastic instabilities of the model at the

design airspeed. With increasing positive gains the
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real roots meet in the left hand plane forming a stable

complex pair of roots. For higher gains, the complex

pair migrate back into the right half plane, becoming a

dynamic instability. For gains in this small positive

range, the model is again predicted to be unstable at

lower airspeeds in the 2nd bending mode. With leading

edge excitation (Figure 12) neither positive nor

negative gain can stabilize both of the unstable modes

at the design airspeed because of the pole/zero

combination on the real axis in the right half plane.

As a result of the data base established for active

flutter suppression, angular acceleration is considered

as a possible signal for controlling the bending/torsion

flutter mode. Figure 13 provides the gain locus of

angular acceleration versus trailing edge excitation.

These data show that negative feedback is best for

stabilizing the lt torsion mode (flutter mode) but does

little to stabilize the divergence mode on the real

axis.

After detailed evaluation of the previous

information and other combinations of sensors and

control surfaces, and taking into account the high gain

effects on other modes at lower velocities when a single

surface is used, it is concluded that a two-surface

system is required. The design logic is to use the

leading edge surface primarily for controlling
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divergence using the displacement feedback, and to use

the trailing edge surface with angular acceleration

feedback to control the higher frequency bending/torsion

flutter mode. The frequency separation of the two modes

of instability of this configuration add to this

conclusion since each control surface and associated

compensation can be designed for a different frequency

range.

Referring to Figure 10, negative gain on the

displacement signal to the leading edge surface is

selected such that the let bending mode is stable at 1.2

Vfp and has gain margins of at least :. 6db at V f. The

gain is found to be -5.2 deg/in. This gain value is

marked as the design gain on the loci of Figure 10.

With the leading edge loop closed, the second loop

using the trailing edge control surface and angular

acceleration feedback is designed to stabilize the

torsion mode of 1.2 Vfp with gain margins of at least

6db at V fp Figure 14 provides a gain root locus for

angular acceleration feedback and trailing edge

excitation with the leading edge loop cosed. This plot

shows that two of the poles of the system, the 1st

bending and 2nd bending, are stable at 1.2 Vfp as

expected since the leading edge loop is closed. The

torsion mode, however, still remains unstable for zero

gain on the trailing edge system. Only negative
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feedback in a small range is successful in stabilizing

the torsion mode. A trailing edge gain of -. 025

deg/deg/sec 2 is required to stabilize the torsion mode

at 1.2 V and to provide the desired gain margins atfp

Vf~

To obtain maximum phase margins, a phase lag

network of the form I - rS is included in the feedback 1,4
+ TS

compensation of the trailing edge system. This type of

network has been used extensively in operational analog

simulations to verify control system phase margins. It

is ideal for this use because large phase angles are

possible with no gain changes. Such an element can

easily be obtained in terms of operational amplifiers

and potentiometers when hardware is required. Other

techniques of including phase angle changes on the

feedback system have also been used quite successfully

in previous active flutter suppression analyses and

tests. For this control logic the phase lag function

I - .04223S provides the best phase characteristics for

1 + .04223S

the cantilever wing. This system provides 155 degrees

of phase lag at a reference frequency of 17 Hz.

Figure 15 shows the gain loci with the leading edge

loop closed and the phase lag network included in the

trailing edge loop compensation. The addition of the
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phase lag network results in a potentially unstable

zero. However, the gain needed to drive the system

unstable is found to be extremely high. The sign of the

gain is now positive as a result of the 155 degree

phase lag in the system at a frequency near the flutter

frequency (155 degree phase lag is equivalent to a

change in sign on the gain with 25 degrees lead). The

trailing edge design gain (.025 deg/deg/sec 2 ) is marked

on the loci of Figure 15 for reference. For the

two-surface control law the gain margins are calculated

to be -6.19 db and 18.74 db on the leading edge loop,

and minus infinity and 12.04db on the trailing edge.

The phase margins associated with the trailing edge loop

are found to be -70 degrees and 25 degrees. The

performance of this two-surface feedback system at

off-design conditions is discussed in detail in the next

chapter following the analysis of other model boundary

conditions.

Model Free in Pitch

To verify that the Pade' polynomials provide a good

fit of the unsteady aerodynamic force coefficients when

the model is free in pitch, V-g and V- w plots are again

presented. The V-g and Y-w plots shown in Figure 16

are determined using both a classical k-flutter

prediction method and the root locus procedures that

employ the Pads' polynomial representation of the
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generalized forces. Comparisons of damping and

frequency with airspeed between the two techniques is

excellent indicating that the polynomials accurately

represent the unsteady aerodynamics in the reduced

frequency range of interest.

Figure 17 presents the velocity root locus plot for

the model free in pitch with all systems off (passive

solution). The body freedom flutter instability is

predicted to occur at 52 ft/sec at 1.2 Hz using the

aerodynamics approximated by Pade' polynomials. The

mode of instability for this analysis is the rigid pitch

mode. This analysis also predicts the higher frequency

bending/torsion instability to occur at 151 ft/sec at

16.5 Hz. Classical flutter analysis techniques

predict a body freedom Instability at 53 ft/sec at 1.2

Hz. Bending/torsion flutter is determined to occur at

156 ft/sec at 16.0 Hz. Correlation of the passive

flutter data is quite good also giving an indication

that the aerodynamics are accurately represented by the

Pade polynomials.

Figures 18 through 22 present gain root loci with

the model free in pitch for displacement and wing twist

feedback signals. The five poles represent the rigid

pitch mode and the three elastic modes for the

unaugmented model at 1.2 V fp 2  The poles on the

negative real axis represent the let bending mode. The
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two unstable modes represent the rigid pitch mode at 2.5

Hz and the let torsion mode at 13.7 Hz. The stable 2nd

bending mode is located at 11.9 Hz. Calculations using

displacement feedback with either control surface (see

Figures 18 and 19) indicate the possibility of

preventing both instabilities simultaneously with a

single surface (positive feedback for h/6TE and negative

feedback for h/6LE). However, analyses at off-design

conditions, that is at velocities lower than 1.2 V
fp2'

predict instabilities in other elastic modes as a result

of the high gain conditions. When twist of the wing tip

(Figures 20 and 21) and angular acceleration (Figure 22)

are fed back, analysis finds that no single

sensor/control surface combination is capable of

preventing both instabilities at the design condition.

In fact, these sensor/control surface combinations

result in an unstable model for all positive and

negative gains. These signals have no ability for

suppressing body freedom flutter. This is attributed to

the low frequency zeros in the right half plane.

Previous calculations for the cantilever wing have

indicated that two active surfaces are required to

prevent the two instabilities simultaneously. As a

result negative gain on the leading edge surface with

displacement feedback provides the best input for

controlling the body freedom flutter instability. This
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system requires a gain of -122 deg/in to raise the body

freedominstability speed up to Vf 2 , and to provide gain

margins of at least . 6db at Vfp 2 *

To control bending/torsion flutter, the trailing

edge surface with angular acceleration feedback is used.

Figure 23 provides a root locus of the trailing edge

loop with the leading edge loop closed (KLE -122

deg/in). This figure indicates that negative feedback

will stabilize the 1st torsion mode. It also shows that

this negative feedback will destabilize the pitch mode

over a large range of gains. Figure 24 shows gain loci

with a phase lag network included in the trailing edge

system compensation. This network, defined to be

1 - .1531S, eliminates the instability in the pitch mode

1 + .1531S

and provides the best phase margins for this

configuration and this control logic. Since the phase

lag network provides 173 degrees at 17 Hz, the feedback

gain for a stable system is now positive as previously

described for the cantilever wing. The feedback gain n

the trailing edge loop is determined to be .026

2deg/deg/sec 2 . The combined two-surface control system

provides the required speed improvement of 1.2 Vfp 2 -

The gain margins on the leading edge system at Vfp2 are

found to be -6.00 db and positive infinity, and on the

trailing edge system, -12.74 db and 11.96 db. The phase
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margins on the trailing edge system are calculated to be

-13.0 degrees and 17.0 degrees. The design gains for

each loop are marked on the loci in Figure 19 (leading

edge loop) and Figure 24 (trailing edge loop).

Model Free in Pitch and Plunge

The V-g and V-w plots for the model free in pitch

and plunge are provided in Figure 25. The root locus '

plot with all gains set to zero (passie solution) is

presented in Figure 26. For this configuration,

coupling to produce the body freedom flutter mode

causes the let bending mode to become unstable instead

of the rigid pitch mode as is the case when the model

is free in pitch only. The body freedom instability

speed also increases somewhat with the addition of the

rigid plunge mode. This increase in instability speed

is at least partially attributed to the effect caused by

a free-free boundary condition on the elastic modes.

Bouy freedom flutter is predicted to occur at 75 ft/sec

at 1.9 Hz using a classical flutter analysis method

while the use of Pads' polynomial fits of the unsteady

aerodynamic force coefficients result in a prediction of

72 ft/sec at 1.9 Hz. For the higher bending/torsion

flutter instability, the classical flutter analysis

method predicts a flutter speed of 153 ft/sec at 16.5 Hz

and by using the Pade' polynomials, the instability is

found at 152 ft/sec at 16.4 Hz. This correlation of
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flutter characteristics and the comparisons on the V-g

and V-w plots of Figure 25 demonstrate the accuracy of

the Pads' fit of the unsteady aerodynamics.

Figures 27 through 30 present the design data used

in determining the two-surface control system gains when

the model is free in both pitch and plunge. The poles

shown in these figures represent the rigid pitch mode

and the three elastic modes. The plunge mode lies along

the real axis. For this configuration, the two unstable

modes have frequencies of 2.1 Hz and 13.9 Hz at 1.2

Vfp 2. The rigid pitch mode and the 2nd bending mode are

both stable at this airspeed and have frequencies of

1.6 Hz and 12.3 Hz, respectively.

Similar conclusions can be drawn regarding

displacement feedback, as for the case when the model is

free in only pitch. A system using only h/6TE (Figure

27) with positive feedback or a system using only h/6LE

(Figure 28) with negative feedback can suppress both

modes of instability simultaneously at the design

airspeed. When wing twist and the trailing edge surface

are analyzed (Figure 29), it is found that no gain,

negative or positive, can stabilize both modes

simultaneously. This is attributed to a real zero in

the right half plane. Negative wing twist feedback with

the leading edge control surface (Figure 30), however,

is found to be capable of suppressing both modes for
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moderate gain levels. Angular acceleration feedback to

a trailing edge control surface (Figure 31) is also

shown to be inadequate for controlling two unstable

aeroelestic modes simultaneously. Analyses at

off-design conditions again indicate, however, that no

system using only one surface can prevent both

instabilities simultaneously over the entire velocity

range of interest. Therefore, the two-surface approach

defined previously is used to control the model free in

pitch and plunge. gain of -25.2 deg/in on the leading

edge control surface with displacement feedback is

required to improve the body freedom instability up to

1.2 Vfp 2 with gain margins of at least t 6db at Vfp 2.

This design gain value is marked in the loci of Figure

28 for reference.

To determine a system for preventing the

bending/torsion flutter mode, the leading edge system

is closed and gain loci for the trailing edge system

are determined (Figure 32). A trailing edge system gain
2I

of -.0203 deg/deg/aec 2  is necessary to obtain the

required speed improvement and gain margins. To obtain

the best phase margins for this type of design, a phase

lag network of 1 - .2144S is used. This network

I + .2144S

provides a phase lag of 175 degrees at 17 Hz. The value

of the trailing edge design gain is marked on the loci
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of Figure 33 for reference. The gain margins on the

leading edge system are calculated to be -6.00 db and

9.36 db, while the gain margins on the trailing edge

system are found to be -10.59 db and 6.19 db. The phase

margins are determined to be -59 degrees and 10 degrees

on the trailing edge system.

For this study, the root loci associated with

various sensor and control surface combinations are

obtained as gain is varied from zero to positive and

negative infinity. These plots provide the guidance

needed in selecting the sensors, control surfaces and

compensation required to obtain satisfactory performance

from the system at a design airspeed. In the next

chapter, velocity root locus plots of each of these

control laws will be provided. Also, velocity versus

damping and velocity versus frequency plots will be

determined for system evaluation. This information is

important in assuring that the system does not

destabilize the aircraft at off-design conditions. If

the system is predicted to be unstable at off-design

conditions, additional analyses will be required for

redesign or some adaptive control scheme that changes

Lhe gain or phase lags with velocity, Mach number or

dynamic pressure will be needed.
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CHAPTER V

RESULTS

The control laws designed in the previous section

for each of the three wing boundary conditons are

designed at a point velocity. The schematic shown in

Figure 34 illustrates the logic of the feedback systems

although the information on this chart represents only

the case when the model is free in pitch. It is

important now to determine the performance of the

control system over the entire velocity range of

interest and to compare these data with the unaugmented

results (KLE and KTE set to zero).

Cantilever Wing

The velocity root locus for the cantilever wing

two-surface control law is presented in Figure 35. This

control system is shown to improve the velocity flight

envelope of the cantilever model 63 percent based on the

design criteria. The divergence mode is completely

eliminated by the leading edge system, and the

bending/torsion flutter mode is increased to the design

goal with the trailing edge system. With the system

operating, flutter occurs in the 2nd bending mode at a

speed of 188 ft/sec instead of in the torsion mode as

was the case when the system was off.
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Velocity versus damping and velocity versus

frequency trends for the nominal two-surface system on

and off are presented in Figure 36. This information

is obtained from the unaugmented and augmented velocity

root locus plots for the cantilever wing (Figures 8 and

35). These types of plots represent key information

used by the flutter engineer to determine the

aeroelastic stability of an aircraft. Typically,

flutter occurs when the Oamping associated with some

particular elastic mode becomes zero; static divergence

occurs when both the damping and the frequency become

zero.

Additional analyses are performed to determine the

sensitivity of the control law to changes in the

feedback gain of each loop or to changes in the phase

lag network. The next few figures present the effects

of changing one of the feedback parameters while holding

the other two constant a, nominal values.

A velocity root locus with leading edge gain (KLE)

variations (± 6db) from nominal is presented in Figure

37. Variations in the leading edge gain are shown to

have very little effect on the higher frequency

bending/torsion flutter mode. Increasing, KLE, however,

did cause a slight drop in the flutter frequency. This

effect along with the significant aerodynamic stiffening
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in the first bending mode ultimately results in a switch

in the mode of instability for high absolute values of

K LE* Figure 37 shows the tendency of the 1st bending

mode to swing back towards the right half plane for the

larger gain values (see Figure 40 for additional

insight).

The effect of trailing edge gain (KTE) variations

from nominal for the cantilever wing is presented in

Figure 38. Once again, the gain is varied * 6db from

nominal. Trailing edge gain is shown to significantly

affect both of the higher two elastic modes, but the 1st

bending mode is not at all affected for this range of

gain variation. This is attributed to the frequency

range of the ist bending mode and the angular

acceleration signal being used by the trailing edge

control law. This figure also very clearly illustrates

the effect of KTE on a mode of instability switching

that takes place between the 2nd bending and torsion

modes. As KTE is increased, the instability speed

resulting from the torsion mode increases while the

frequency decreases. This continues until a switch

occurs in the mode of instability from the torsion mode

to the 2nd bending mode. Higher KTE values cause the

aerodynamic stiffness in the torsion mode to increase.

This ultimately causes the torsion mode root locus to

bend back towards the right half plane on the upper aide
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of the torsion natural frequency and causes a control

induced instability (see Figure 41). The existence of

this control induced instability is somewhat

questionable since higher frequency elastic modes are

not included in the analysis.

A sensitivity analysis is also conducted to

evaluate the effect of changes to the phase lag network.

The results of this analysis are summarized in Figure

39. For this analysis the time constant in the phase

lag network is varied in an attempt to obtain ± 45

degrees changes from nominal at a reference frequency of

17 Hz. As shown in Figure 39, a -45 degree change from

nominal is achievable but a +45 degree change is not.

At phase lag angles slightly greater than 180 degrees,

the instability speed resulting from the torsion mode

drops very rapidly. In fact, the torsion root continues

to migrate towards the right half plane with further

increases in phase lag to a point where the root is

unstable at all velocities. This analysis also

indicates that trailing edge phase does not

significantly affect the 1st bending mode root.

Stability boundaries for the cantilever two-surface

control law are provided in Figures 40 through 42. The

stability boundaries are determined with respect to each

of the feedback parameters KLE, KTE, and "LE" The solid

circles on the boundaries represent data taken from the
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I

previous root locus plots, and the frequencies of the

instability are shown in parentheses. The vertical

dashed line represents the nominal control law. Once

again, as one of the three parameters is varied, the

other two are held constant at nominal values. Gain and

phase margins can be easily determined from these

figures. This is accomplished by projecting a

horizontal line through a reference velocity on the

figure and reading the gains or phase angles at the

instability boundaries that the line intersects. These

gains and phase angles are then compared to the nominal

control law to determine the margins. A gain margin of

-6db or less indicates that the feedback gain can be

divided by a factor of two or more and the active system

will continue to stabilize the model at the reference

velocity. A gain margin of +6db or more indicates

similar characteristics after multiplying the feedback

gain by two or more. The positive and negative phase

margins are similarly defined; that is, a phase margin

of ± 45 degrees indicates that an angle of ± 45 degrees

can be added to the system before neutral stability is

obtained. These margins are factors of safety that are

established for a control system design. These are

needed to account for the uncertainties, either

neglected or unknown, that are encountered in an

analysis.
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As KLE is varied from 0. to -40. deg/in (Figure

40), the stability boundary changes from static

divergence (mode #1) at low KLE, to a dynamic

instability involving the 2nd bending mode at moderate

KLE, and finally back to a dynamic instability involving

the lst bending mode at high KLE. The intersection of

the stability boundaries to the left of the nominal law

represents a switching of the origin of the mode of

instability and resembles a smooth transition from one

mode to the other. Recall 'rom Figure 37 that the 1st

bending mode shows a tendency to be driven unstable with

higher values of K The instability transition shownLE*

in Figure 40 demonstrates this change from mode #2 to

mode #1 as expected. The gain margins on KLE calculated

at Vfp (as indicated previously) are -6.19 db and 18.74

db. This means that the gain can be decreased 51

percent or increased 8.6 times nominal before neutral

stability is obtained.

Figure 41 presents a trend of the stability

boundary with K T. The intersection of the boundaries

to the left of the nominal control law shows a

transition from mode # 3 to mode # 2, while the

intersection of boundaries to the right shows an actual

switching of the mode of instability back to mode #3.

Figure 38 provided an indication that the torsion mode

can be driven unstable at high KLE. The gain margins on
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KI Eat Vfp are found to be negative infinity and 12.04

db. The gain margin of negative infinity on the

trailing edge surface is a result of selecting Vfp as a

reference speed (KIE = 0) to measure gain and phase

margins.

The stability boundary resulting from a variation

of 0 TE is shown in Figure 42. For this case the

intersection of stability boundaries is in the classical

manner. The instability speed involving mode # 3 drops

very rapidly with phase ingle changes slightly greater

than 180 degrees. The 155 degree phase lag at 17 Hz is

the minimum phase angle at which a velocity improvement

of 1.2 Vfp can be reached. Lower phase angles result in

lower speed increases but higher phase margins; higher

phase angles result in higher speed increases but lower

phase margins. This trend continues up to about 182

degrees phase angle at which time further increases

cause low speed instabilities. Phase margins of at

least ± 45 degrees can be obtained if the desired flight

envelope expansion is limited to 53 percent (13 percent

above Vfp). Although not investigated, notch filters

can be used to improve the gain and phase margins for

some cases.

Model Free in Pitch

The velocity root locus for the two-surface control

law developed for the model free in pitch is presented
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in Figure 43. This system decouples the 1st bending and

rigid pitch modes, and the Ist torsion and 2nd bending

modes through the addition of aerodynamic stiffness.

The increasing aerodynamic stiffness does, however,

cause the ist bending mode to become unstable at the

design airspeed thus becoming the critical mode of

interest. As a result of eliminating the body freedom

instability, the velocity flight envelope of the model

free in pitch is increased 252 percent using the active

system.

Figure 44 provides the velocity versus damping and

velocity versus frequency plots for the model free in

pitch with the system operating and off. This figure

illustrates a potential low speed hump mode instability

involving the rigid pitch mode between 40 and 80 ft/sec

when the system is operating. Hump modes in general are

sensitive to small perturbations in the aeroelastic

system and to changes in feedback parameters. The

degree of sensitivity of this mode to the feedback

parameters will be illustrated in later figures (see

Figures 45 and 48).

The effect of varying the leading edge gain ± 6db

from nominal is illustrated in Figure 45. Because of the

high gain associated with the leading edge control law,

the wing torsion mode is somewhat affected, although not

to the degree that the pitch mode and wing Ist bending
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mode are affected. The effect is minor and does not

cause higher frequency instabilities. This system

greatly affects both the rigid pitch mode and the 1st

bending mode since it was designed to control the

coupling of these modes.

Leading edge gains with absolute values less than

61 deg/in are not sufficient to prevent a hump mode

instability involving the rigid pitch mode. The

possibility of a hump mode occuring can be seen by

noting the shape of the rigiu pitch mode in the V-g plot

of Figure 44. The behavior of the rigid pitch root

(comparing Figures 17 and 43) for gains between 0 and

-61 deg/in (from passive to fully augmented) is to swing

back to the left hand plane creating the hump mode

appearance. The locus crosses the imaginary axis but is

still unstable at low to moderate speeds. At a gain

near -61 deg/in, the hump is completely in the left hand

side of the root locus as shown in Figure 45.

The effect of trailing edge gain variations with

K LE and STE held constant at nominal values for the

model free in pitch is illustrated in Figure 46. The

bending/torsion flutter characteristics are shown to be

fairly sensitive to variations of ± 6db on KTE. Also as

the gain approaches zero, the unstable 1st bending mode

gradually approaches V Fp2 . The switch in the mode of

instability from the 1st bending mode to the torsion
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mode is found to be gradual with decreasing KTE. This

transition of the mode of instability is better

illustrated in a later stability boundary plot (see

Figure 49).

Figure 47 illustrates the effect of varying the

trailing edge phase lag from nominal while keeping KLE

and KTE constant at nominal values. Phase lag angles

less than nominal cause the instability speed of the Ist

bending mode to drop, while phase lag angles higher than

nominal cause a control induced instability in the

torsion mode at a speed less than Vfp 2 .  This

interaction with two separate modes of instability

causes the phase margins to be quite low for this

configuration. Neither qTE nor KTE variations within

the range investigated affects the rigid pitch mode or

the 2nd bending mode. This lack of interaction is

understandable for the rigid pitch mode since the

trailing edge system uses only wing tip angular

acceleration feedback. For the 2nd bending mode, the

lack of interaction is probably attributed to the

feeding of the system energy into the Ist bending mode

which is very near the 2nd bending frequency in the

critical velocity range as a result of the closed

leading edge loop.

In terms of stability boundaries, the effects of

varying the three feedback parameters, separately, from
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the nominal two-surface control law are presented in

Figures 48 to 50. The vertical dashed line in each

figure, again, represents the nominal control law. Each

figure presents a perturbation of a particular feedback

parameter while the other two are held constant at

nominal values. These results are similar in terms of

the potential instability switching mechanisms possible

as is seen for the cantilever wing.

Three forms of mode switching are seen for the

model free in pitch. The first form of mode switching

is demonstrated in Figure 48. This figure shows the

appearance of the low speed hump mode instability

involving pitch that becomes stable when the absolute

value of KLE is greater than about 61 deg/in causing a

switch to a higher speed instability in the 1st elastic

mode (mode #2). This figure also shows the positive

infinity gain margin on KLE.

The second form involves switching in the origin of

the mode of instability and is experienced when KTE is

increased. This mechanism is shown in Figure 49. The

frequency and shape characteristics of mode #4 are

gradually altered to a condition where the instability

changes to the characteristics of mode # 2. The third

type of instability mode switching is encountered when

phase lag is varied. This mechanism involves the more

classical abrupt change in frequency as shown in Figure
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50. As for the cantilever wing, phase lags slightly

greater than 180 degrees cause a rapid drop in an

instability speed associated with the torsion mode. The

torsion mode is unstable at all speeds for phase lag

angles near 190 degrees. This near vertical drop in the

stability boundary limits the possible range of phase

margins for this configuration and system logic.

Model Free in Pitch and Plunge

Figure 51 presents the closed loop results of the

two-surface control law for the model free in pitch and

plunge over the velocity range of interest. This

control law performs well up to 1.2 V (182 ft/sec).
fp2

At this speed two simultaneous instabilities are

predicted to occur. The higher frequency instability is

the bending/torsion flutter mode; the second instability

is similar to the control induced instability that

occurs in the 1st bending mode when the model is free in

pitch only. For this case, however, the control induced

instability is found to be a hump mode and is sensitive

to changes in the feedback parameters. The flight

velocity envelope expansion for this configuration is

153 percent.

Velocity versus frequency and damping plots for the

model free in pitch and plunge are shown in Figure 52

for the system operating and off. This figure clearly

shows the hump mode present (Ist bending) when the
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system is operating. The lower figure involving

frequency also shows the significant modal interaction

at high speed. As for the other configurations, this

interaction is a clear indication that mode switching is

likely to occur with changes in the feedback parameters.

Figure 53 presents a velocity root locus plot for

the model free in pitch and plunge that demonstrates the

effects caused by changes in leading edge gain. The

gain variation shown in the figure represents ± 6db

variations from the nominal condition. The gain range

investigated is shown to interact significantly with all

three of the elastic modes but very little with the

rigid pitch mode. For gains with an absolute value

between zero and about 12.6 deg/in, the unstable lt

bending mode is brought back to the left hand side

(stable). Further increases in gain add aerodynamic

stiffness to the let bending mode causing an instability

to occur near 12 Hz. This instability as described

earlier, involves a hump mode and is later found to be

quite sensitive to changes in the control system

parameters. The effect that KLE has on the 3rd elastic

mode (torsion) is a little different in that the torsion

root changes drastically with increasing KLE but the

instability speed and frequency change only slightly.

The effects of trailing edge gain (KTE) variations

on the model free in pitch and plunge are shown in
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Figure 54. The trailing edge system not only affects

the torsion mode as designed, but also significantly

interacts with the lst bending mode which again is

characterized as a hump mode. The plot indicates that

there is very little movement of the loci associated

with the rigid pitch mode and the 2nd bending mode,

indicating an insignificant interaction of these modes

with the active system with variations in this feedback

gain.

Variations of the trailing edge phase angle from

nominal and the effects these have on the root loci of

the elastic modes are presented in Figure 55. For this

configuration, phase angle variations from the nominal

control law affect all three of the elastic modes. All

three elastic modes dan be driven unstable depending

upon the phase lag network used in the system. A high

phase angle causes the torsion mode to become unstable

at low speeds similar to the other two configurations.

A low phase angle causes instabilities in either the Ist

bending or 2nd bending modes depending upon the range of

the phase angle used.

The stability boundary plots for the three feedback

parameters (KLE, KTE, and OTE ) are found in Figures 56

through 58. Mode of instability switching is shown to

take place similar to that found for the other

configurations.

109



C 04

cmC D

V- I

CNN

02 4- -r

0 r_

4- 4

CdJ Cd-

-~~V KTOIi 0C

I aJ
I V- CV'zc

- -P-IC4

001



~1

11-0

N CD*

3 IE

CNUCC *

*6-)

- CR v r~00
ME 2Ic

3 LAJ U.I IJ-

- w- w

04-W

7 4- )
'4-w U-

Ln

U- U-

cmr- c

ac 0U~U



200

(1i5.3) i

180% 1.0leo iJ12 -0);

INSTABILITY
VELOCITY, 2.0) MODE #3
ft/sec 160 O

INSTABILITY BOUNDARY

140 IMODE #31

NOMINAL' (JFREQUENCY IN Hz

0 -20. -40. -60. -80.

KLE , deg/in

Figure 56 Stability Boundary with Variable KLEModel Free in Pitch and
Plunge

112



200

180 %

INSTABILITY (64
VELOCITY,INTBLY

ft, ec 60 (7.0BOUNDARY

'()FREQUENCY IN Hz

NOMINAL,

0 .01 .02 '.03 .04

KTE, deg/deg/sec

Figure 57 Stability Boundary with Variable K TE' Model Free in Pitch and
Plunge

113



200

s..MODE #5-

180 INSTABILITY BOUNDARY 15.41

INSTABILITY (13.0
VELOCITY,
ft/sec 160 (13.1)113.1)4 " 119.3

140
{ )FREQUENCY IN Hz

NOMINAL1

130 150 170 190

+TE, deg
Figure 58 Stability Boundary with Variable 4 TE' Model Free in Pitch

and Plunge

114



The nominal control law represented as the dashed

vertical line intersects the stability boundary of

Figure 56 at 182 ft/sec and in mode #5 (torsion). This

boundary is positioned at this airspeed by the trailing

edge control law (goal of 1.2 Vfp 2). An increase in

gain is shown to cause a classical change in the mode of

instability from the torsion mode to the Ist bending

mode (mode #3). A decrease in KLE causes body freedom

flutter to occur with the instability again occurring in

the 1st bending mode.

The determination of the nominal trailing edge gain

is quite difficult in that two of the elastic modes are

driven unstable near the same airspeed (Figure 57). The

highest speed obtainable for this control logic and for

this configuration is 182 ft/sec. The nominal control

law for this configuration passes through the

intersection of the two stability boundaries. The

positive gain margin on KTE appears to be infinity;

however, at gains near .05, a low speed instability

(hump mode) is enco,|ntered in the torsion mode.

Figure 58 presents the stability boundaries as a

function of the phase angle used in the system

(referenced to 17 Hz). This plot indicates, as for the

other configurations, that higher phase margins can be

obtained by sacrificing speed improvement. It also

shows the possibility of the mode of instability
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switching as 'OTE changes.
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CHAPTER VI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

An active feedback system was designed using

several sensors and two active surfaces to suppress the

aeroelastic instabilities associated with a forward

swept wing aircraft. Objectives of preventing two

aeroelastic modes of instability simultaneously using a

simple feedback system were accomplished. For a

cantilever wing, the static divergence and the wing

bending/torsion flutter speeds were increased 20 percent

above the latter. Thi5 resulted in a 63 percent

improvement in the usable velocity flight envelope.

Analysis with the active system operating predicted that

for a similar speed increase, body freedom flutter could

be increased 252 percent for the model free in pitch and

153 percent for the model free in both pitch and plunge.

Summary

A summary of the analyses are provided below.

1. The unsteady aerodynamic force coefficients

were approximated using low order Padel polynomials.

Passive calculations using the Pade' approximations of

the aerodynamic forces and a root locus analysis

procedure predicted flutter characteristics that agreed

very well with conventional flutter prediction
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techniques. It was concluded that low order Pade'

polynomials accurately fit the unsteady aerodynamic

force coefficients in the low subsonic speed range.

2. The active system for each wing boundary

condition consisted of two active surfaces located at

about the wing 3/4 span. A leading edge surface was

commanded by a displacement sensor positioned near the

intersection of the wing 2nd bending and the wing

torsion node lines. This ucation provided the best

position for minimizing inputs from these modes while

providing adequate response in the Ist bending mode.

When the model was free to pitch or pitch and plunge,

the translations at the displacement sensor due to rigid

aircraft rotation and plunge, were subtracted from the

signal. The second loop consisted of a trailing edge

control surface commanded by angular acceleration. This

sensor was positioned near the wing tip to maximize the

torsion input signal. Angle of twist was employed to

minimize feedback from the lower bending modes.

3. The leading edge system was specifically

designed to suppress the divergence tendencies of the

wing. This included static divergence of the cantilever

wing and body freedom flutter of the model when free in

pitch or free in both pitch and plunge. The trailing

edge system was designed to suppress the high frequency



bendng/torsion flutter mode encountered with all wing

boundary conditions.

4. Variations of the feedback parameters from the

nominal values caused changes in the mode of

instability. These changes in the mode of instability

were either classical mode switching (abrupt changes in

frequency) or a transition from one mode to another

(continuous frequency variation).

5. Gain margins of ± 6db were not difficult to

obtain for any of Li.. wing boundary conditions

investigated. Phase margins of t 45 degrees could not

be obtained without more complicated control laws.

Analyses indicated that phase margins could be increased

by trading speed improvement.

6. The divergence system (leading edge system) did

not significantly interact with the flutter instability.

Also, the flutter suppression system (trailing edge

system) did not affect the divergence instability. For

both cases, the lack of interaction was attributed to

the frequency separation of the two modes of instability

and the sensors being fed back. Both systems, however,

significantly affected the 2nd bending mode.

Conclusions

The studies reported herein have established the

feasibility of applying active feedback control systems

for preventing the aeroelastic instabilities associated
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with forward swept wings. The application of the

concept for aeroelastic control is an efficient,

adaptable, low weight approach compared to the classical

techniques of adding weight, stiffening the wings, or

imposing aircraft speed placards. The classical

approaches for flutter and divergence prevention have

historically resulted in a loss in aircraft performance

and survivability. With the advent of high-gain

digital/adaptive flight control systems, it is easily

conceivable that the flut Lr and divergence control

systems could become integral parts of the flight

control system using common components designed for

reliability and redundancy.

It is speculated that an active system for

aeroelastic control would be most beneficial when one

considers damaged composite wings resulting in a loss of

stiffness, or the external store carriage issue that

causes many flutter problems. It is expected that a

forward swept wing aircraft will evolve in terms of

operational deployment similar to what has occurred in

the past on such aft swept wing aircraft as the F-4, the

F-5, the A-7 and the F-111. The use of external stores

by these vehicles have, for practical purposes, grown

unbounded with time. Historically, fighter aircraft are

designed for a primary mission involving air-to-air

combat and are later used in off-design missions that
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involve a certain number of external stores for

air-to-ground combat. Later in the life of the

aircraft, air-to-ground becomes an important mission to

the operational commanders requiring even more store

A
configurations. Aeroelastic problems are found to be

critical as a result of the many new external stores

required for carriage. These new stores result in

thousands of possible take-off and downloadings, many of

which are flutter critical. An adaptive control system,

a logical extension oi Lhe concept studied, offers

significant promise for the external store flutter

issue.

It is expected that an active control system will

be initially used to obtain aeroelastic instability

margins of safety (15 percent above the aircraft maximum

speed as required by Military Specs). The system in

this case will be operating at speeds near the aircraft

maximum speed but the vehicle will never be operating at

a passively unstable flight condition. As more

confidence is developed for such a system, it will be

used to prevent aeroelastic problems that are occuring

deep within the flight envelope of the vehicle (external

store flutter problem). Large payoffs in terms of

aircraft performance and survivability are expected as a

result of this application.

This study defined the usefulness of active control
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systems for controlling aeroelastic instabilities

associated with forward swept wing aircraft. It is

important now that this work continue so that practical

systems can be developed, fabricated and tested in the

wind tunnel to verify these feasibility analyses. The

results of this study warrant continued research in this

technical discipline.

Recommendations

As a result of these and other active flutter

suppression and divergence didalyses on cantilever wings

and wings with rigid modes, the tools of design appear

to be available. However, there are several important

analytical and experimental aspects related to this

subject that require additional investigation. From an

analytical viewpoint, the effects of Mach number and

dynamic pressure should be evaluated to form sensitivity

trends. Furthermore, variables such as static margin

and forward sweep angle should be addressed. These

sensitivity trends may define the need for adaptive

control laws for variable flight conditions in addition

to the need of such a system for external store

applications. Regarding aerudynamirs, the effects of

nonlinearities in the transonic flow region nveu to be

evaluated. Also, alternate design procedures involving

the time domain need to be further developed to evaluate

these nonlinearities.
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There is currently a need and a desire to

demonstrate through wind tunnel tests, the suppression

of divergence on a cantilever wing using displacement

feedback. Evaluations of the effects of symmetric rigid

body modes such as rigid pitch and plunge on the

suppression of body freedom flutter should also be

seriously considered using wind tunnel models.

Analyses and wind tunnel tests also need to be

conducted to evaluate the antisymmetric rigid and

elastic modes of a forwar swept wing to determine if

other unexpected aeroelastic instabilities are not

hidden in the shadows of simplifying assumptions.

Finally, free-flying wind tunnel models incorporating

all six rigid body degrees of freedom need to be used to

investigate the feasibility and practicality of active

aeroelastic control systems.
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APPENDIX A

SELECTION OF A FORWARD SWEPT WING CONFIGURATION

A forward swept wing wind tunnel model previously

tested to investigate divergence and body freedom

flutter was selected as the basis of the configuration

and dynamic characteristics desired for use in this

study. The planform of the model with key dimensions of

the wing and fuselage bar assembly are provided in

Figure 2 of the main text.

Finite Element Representation

To obtain the calculated natural frequencies and

node lines for each of the important vibration modes of

the wind tunnel model, finite element techniques were

used. In the following, any reference to "plate"

concerns the aluminum load carrying member of the wing;

any reference to "model" concerns the entire wing

(plate, sleeve and fuselage). Also, the "basic wing"

represents the wind tunnel model, while "modified wing"

includes one pound of weight distributed along the

outboard six sections of the wind tunnel model near the

trailing edge of the wing.

The plate was represented by 18 finite beam

elements and the hollow steel fuselage bar was

represented with 6 elements. Figure A-I shows the
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Figure A-i Beam Finite Element Grid Points
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relative locations of the grid points for this

representation, and Table A-1 presents the global

coordinates of the grid points. The origin of the

global coordinate system used in the analyses was

located at grid point #1 with x positive aft along the

bar and y positive out the span of the wing (z + down).

A second coordinate system with the origin located at

grid point #1 but rotated 15 degrees forward such that

the y-direction was along the reference axis (elastic

axis) was also used in the analysis. This system

located the masses and inertias of the plate and sleeves

in a dumbbell sense about theelasticaxis of the model.

Again, the x-direction was positive aft. The dumbbell

moment arms were determined using the mass (m), the mass

moment of inertia (I,), and the static unbalance (e) of

each section and the equations,

d = -e e (1)

d - e2 - e (2)

Table A-2 providGs the value of the mass located at

each grid point used in the analysis and identifies the

masses as coming from the plate, the sleeves, the bar or

the flutter weights (if applicable). The masses on the

wing are offset from the reference axis at each grid

point by the dumbbell distances provided in Table A-3.
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Table A-1 Finite Element Grid Point Coordinates

COORDINATES (IN)
GRID PT X y

1 0. 0.

2 -.17 .65
3 -.43 1.60

4 -.76 2.R5
5 -1.45 5.40

6 -1.92 7.15
7 -2.48 9.25
8 -2.96 11.05

9 -3.52 13.15

10 -3.98 14.85

11 -4.58 17.10

12 -5.05 18.85

13 -5.63 21.00

14 -6.08 22.70

15 -6.66 24.85

16 -7.11 26.55

17 -7.58 28.30

18 -8.01 29-.90

19 -8.32 31.06

20 -32.50 0.
21 -12.50 0.
22 -9.46 0.
23 -8.50 0.
24 6.00 0.
25 7.50 0.
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Table A-2 Finite Element Grid Point Masses

U MASI LMI
FLUTTER

GRID PT PLATE SLEEVE BAR WGTS

1 .0230 1.2364

2 .0569 - -

3 .0776 - -

4 .1289 .2710 -
5 .1411 - -

6 .1200 .2403 -

7 .1166 - -

= .1106 .2077 .1667

9 .1031 - -

10 .1007 .1821 .1667

11 .0973 - -

12 .0894 .1557 .1657

13 .0832 - -

14 .0764 .1299 .1667

15 .0716 - -

16 .0594 .0931 .1667

17 .0538 - -

18 .0414 .0788 - .1667

19 .0167 - -

20 - - 1.7054 -

21 - - 1.9644 -

22 - - .3341 -

23 - - .9828

24 - .8153

25 - - .1279
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Table A-3 Moment Arms for Wing Inertia Using a Dumbbell Representation

R IS';ANC S2 {lll

FLUTTERBll91 PT' PLATE, SLEEVE 1  WGTS-

1 ±1.809 -

2 ±1.817 -

3 ±1.799 -

4 ±1.733 3.972, -2.512 -

5 -. b I - -

6 ±2.286 3.469, -2.739 -

7 ±1.528 -

8 ±1.450 3.226, -2.468 5.5
9 ±1.385 .

10 ±1.304 3.017, -2.173 5.0

11 ±1.243 -

12 ±1.163 2.752, -1.958 4.5

13 ±1.095 -

14 ±1.016 2.479, -1.681 4.0

15 t.953 -

16 t.882 2.221, .-1.495 3.0

17 ±.820 -

18 ±.765 1.592, -1.544 1.0

19 ±.737 -

Notes:

1. Half of the Mass at each location

2. Perpendicular to reference axis at grid point
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The calculated center of mass for the basic model was

only 1/4-inch off from the measured value for the

configuration selected.

Vibration Analysis

An analysis was conducted to obtain the frequencies

and node lines of the first three normal modes of

vibration (Ist bending, 2nd bending, and 1st torsion) of

the wind tunnel model. This analysis was necessary to

provide the confidence required to assure that the

finite element model accueately represented the wind

tunnel model. Good correlation with ground vibration

test data 2 2 provided that confidence. The analysis was

conducted for both the plate and the basic model

cantilevered and free in pitch. The frequencies of the

first three modes are summarized in Table 1 of the main

text. Analyses were also conducted for the basic model

free in pitch and plunge, although no test data were

available for correlation. Node lines and the

frequencies (calculated and test, where applicable) for

three modes for the three wing boundary conditions are

provided in Figures A-2 thru A-4.

Once good correlation was obtained with

experimental results, the basic model was modified by

adding mass along the trailing edge of the wing to lower

the bending/torsion flutter speed. A vibration analysis

was conducted in parallel with a flutter/divergence
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FREQUENCY, HZ

lB 3.2 (3.2)

2B 16.2 (16.0)

... 7IT 36.7 (36.7)

TEST DATA (XXXX)

Figure A-2 Calculated Frequencies and Node Lines of
Basic Cantilever Model
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FREQUENCY, HZ /
1B 3.1 (3.3)

-2B 15.7 116.3) /
• - IT 35.7 137.71)

TEST DATA (XXXXJ /

Figure A-3 Calculated Frequencies and Node Lines of
Basic Model Free in Pitch
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FREQUENCY, HZ

1B 3.3

2B 16.4 /

.. 1T 35.7

/

Figure A-4 Calculated Frequencies and Node Lines of
Basic Model Free in Pitch and Plunge
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analysis to accomplish this objective.

Table A-4 and Figures 4 through 6 of the main text

present the calculated frequencies and node lines of the

modified model for the three wing boundary conditions.

All natural frequencies are about 18 to 35 percent lower

than the respective frequencies calculated for the basic

model. Also the torsional node line has shifted

significantly aft as a result of the masses near the

trailing edge.

Flutter Analysis

The subsonic doublet .lattice theory was used to

calculate the unsteady aerodynamic force coefficients

for the flutter and divergence analyses. The k-method

was used for the cantilever aeroelastic analyses where

zero frequency divergence was of concern. This method

provided answers that correlated well with test data and

other static aeroelastic analysis results. When the

model was in a free-free state, both the k-method and

the P-k method were considered for flutter calculations.

The P-k method was subsequently eliminated when an

aerodynamic interpolation problem was encountered. This

problem is discussed in more detail in Appendix B.

Figure 3 of the main text shows the aerodynamic

paneling arrangement used in these studies. Two of the

outboard panels represent the leading edge and the

trailing edge control surfaces. The locations of these
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Table A-4 Modified Model Calculated Frequencies

ROOT CONDITION MODE ANALYSIS IHZ

2.4

CANTILEVER 2B 12.6
IT 23.6
3; 34.3

1B 2.3
FREE IN PITCH 2B 12.5

IT 23.1
3B 33.4

tB 2.6
FREE IN PITCH 2B 13.1
AND PLUNGE IT 23.1

3B 34.0
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two control surfaces relative to the model aerodynamic

sleeves are shown in Figure A-5.

Damping versus velocity and frequency versus

velocity plots for the basic and modified model for the

three wing boundary conditions are found in Figures A-6,

A-7 and A-8. These figures show only the first three

elastic modes. A modal elimination analysis indicated

that the fourth elastic mode (3rd bending mode) had

little or no effect on the prediction of the divergence

and flutter characteristics. Table A-5 summarizes the

flutter and divergence calculations for the basic and

modified models.
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A-REFERENCE AXIS ,,-

AERODYNAMI-
SLEEVE 

10

LEADING EDGE TRAILING EDGE

COORDINATES OF CONT SURF

T LE L TE
-9.16, 20.48 -3.00, 20.48

2 -8.00, 20.48 -0.44, 20.48
3 3.58. 24.6 -2.24, 24.6

-9.74, 24.6 -4.80, 24.6

Figure A-5 Leading and Trailing Edge Control Surface Locations
Relative to Model Aerodynamic Sleeves
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O03 400
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Figure A-8 Flutter Analysis Results for the Basic and Modified

Model, Model Free in Pitch and Plunge
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Table A-5 Flutter and Divergence Analysis Results

CONFIGURATION 4 MODES 3 MODES
BASIC MODEL Vo  119 119

CANTILEVER Vf 155 155

,Of 16.9 16.9

f 53 53

FREE IN PITCH C4)f 1.2 1.2

Vf2  156 156

CL)f 2  16.0 16.0

Vfl 75 75
FREE IN PITCH (011 1.9 1.9
AND PLUNGE Vf2  153 153

CO 2 16.5 16.5

MODIFIED MODEL VD  119 119

CANTILEVER Vf 236 236

(L)f 21.8 21.8

Vfl 90 90

FREE IN PITCH 1.4 1.4Vf 2  227 227

)12 20.8 20.8

VfI 105 105
FREE IN PITCH Q)f 17 1.7
AND PLUNGE I 1

Vf2  238 235
(Wf 20.9 21.0

V, FT/SEC ; (A), HZ
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APPENDIX B

VARIATION OF UNSTEADY AERODYNAMIC FORCES WITH REDUCED

FREQUENCY

One of the more surprising aspects of performing a

flutter analysis for the model free in rigid pitch

concerned the interpolation of the unsteady aerodynamic

forces. It was found that the prediction of the body

freedom flutter characteristics was very dependent on

the selection of the reduced frequencies used during the

calculation of the unsteady aerodynamic forces. Figure

B-1 illustrates a potenti-' concern (rapid variation of

the force coefficient in a small reduced frequency

range) that could be overlooked during a body freedom

flutter analysis. This figure presents a variation of

the aerodynamic force in the rigid pitch mode due to the

pressure caused by the rigid pitch mode as reduced

frequency was varied. The region of interest lies

between a reduced frequency of 0.1 to 0.2, the range in

which body freedom flutter occurred.

Initially, a P-k flutter analysis approach was used

to predict body freedom flutter. This technique

required the calculation of aerodynamic forces at

several reduced frequencies which covered the frequency

and velocity ranges of interest. An interpolation of
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aerodynamics based on these calculated forces was used

in the P-k analysis. For the model free in pitch, two

dynamic instabilities were in the speed range of

interest. The high frequency bending/torsion flutter

mode occurred near a reduced frequency of 0.7. As a

result, the P-k flutter analysis was conducted using

aerodynamic force coefficient data calculated at reduced

frequencies between .05 to 1.0. Since only six values

could be used in the flutLti analysis procedure for the

P-k technique, this range of reduced frequencies

selected appeared reasonable at the time. However, the

rapid variation of this force coefficient (determined at

a later time) could not be reproduced by aerodynamic

interpolation and erroneous flutter results were

obtained.

The P-k flutter analysis predicted a body freedom

flutter instability 30 percent below the test speed for

the basic wing discussed earlier. After undergoing a

detailed inspection of the analyses and calculating

aerodynamic force coefficients at additional values of

reduced frequency, Figures B-1 thru B-6 were developed.

Using a k-flutter prediction method and no aerodynamic

force interpolation, the flutter speed was predicted to

occur at 90 ft/sec which was only 4 ft/sec different

from test data. This analysis was conducted using
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aerodynamics calculated at every .005 reduced frequency

increment between 0.1 to 0.2. The prediction of the

higher frequency flutter mode did not involve rapidly

varying aerodynamics over a narrow k range which is

normal for most flutter modes and, therefore, was not a

problem for either technique.

The above experience implies that when performing

flutter analyses with rigid modes, care must be taken to

assure that the aerodynamic force coefficients due to

the rigid modes are properly represented over the

reduced frequency range of interest. This is

particularly true if any of the rigid modes are expected

to participate in the flutter mode such as body freedom

flutter. Without care, at best overly conservative

flutter speeds may be predicted as was the case reported

here. It is quite possible, however, that the

instability may not be predicted at all, resulting in

later potentially serious problems.
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