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CHAPTER I
INTRODUCTION

Aeroelasticity is defined as the mutual interaction
of the aircraft structural and inertial forces with the
steady and unsteady aerodynamic forces induced by the
flexible vehicle. Aeroelastic phenomena are classified
as either T"static” (not time varying), such &8s
divergence and control surface reversal or "dynamic"
(time varying), such as flutter, dynamic response and
buffeting. In general, the steady and unsteady
aerodynamic forces produce elastic displacements which
in turn cause the aerodynamic force to change. This
interaction results in one of three conditions following
a disturbance: (1) elastic displacements attaining
stable equilibrium, (2) elastic displacements reaching a
limit cycle condition (time varying problems only), or
(39 elastic displacements resulting in a structural
failure.

Static divergence occurs when the aerodynamic force
resulting from the wing deformation equals the
structural elastic restoring force, causing the wing to

continue to deform until failure. Flutter 1is an




unstable oscillation of the lifting surface at same
characteristic frequency (referred to as the flutter
frequency). At flight conditions below the flutter
speed of the aircraft, a disturbance to the wing results
in a decaying elastic displacement. At the flutter
speed, the negative aerodynamic damping overcomes the
wing structural damping and results in a sustained
harmonic oscillation. At a condition above the flutter
speed, the lifting surtace generally diverges in an
oscillatory sense wuntil a catastrophic structural
failure of the wing occurs. In some cases where
gstructural or other nonlinearities are important, a
limit cycle oscillation may occur at speeds above the
flutter speed with the amplitude of the ascillation
dependent upon the speed.

In accordance with military specifications, it is a
requirement that an aircraft be designed such that
neither flutter nor divergence can occur at speeds lower
than 15 percent {(margin of safety) above the maximum
aircraft flight velocity. When an aircraft carries wing
mounted external stores, 1t is quite possible that
seroelastic 1instabilities will occur deep within the
flight envelope of the clean wing fighter.
Traditionally, speed placards (restrictions) are used to

obtain the necessary speed margins of safety. These
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speed restrictions <can severly degrade the flight
envelope of a high performance fighter.

Forward Swept Wings

To delay the severe drag effects of compressibility
at high subsonic Mach numbers, it is necessary in the
design of flight vehicles to decrease the thickness
ratio of the airfoil and to increase the sweep angle of
the wing. For an aft swept wing, bending deformation
tends to reduce the local angle of attack. This
unloading of the wing, referred to as wash-out,
virtually eliminates the problem of divergence for the

aft swept wing. When the wing is swept forward the

bending deformation tends to increase the local angle of

attack and the aerodynamic loading. This characteris-

tic, commonly referred to as wash-in results in the low
static divergence speed of a cantilever forward swept
wing.

The forward swept wing has been long recognized as
able to provide some improved performance benefits over
the aft swept wing, provided the weight needed to solve
the potential aeroelastic problems (divergence) can be
made minimal. In 1931, Knight and Noyes1 showed that a
forward swept wing encountered stall at higher angles of
attack than a similar aft swept wing. Thus, besides
reducing drag (sweep angle effect) forward swept wings

were found to produce higher 1ift coefficients than the




aft swept wing of comparable sweep angle. In 1941, an
investigation by Jone32 showed that swept back wings at
high angles of attack could at times produce a rolling
or pitching instability because of the premature tip
stall. Since forward swept wings at high angles of
attack stall first at the wing root, they were found not
to be susceptible to these rolling or pitching
instabilities. A study conducted by Diederick and
Budiansky} in 1948 addressed the static divergence
problems of forward and aft swept metallic wings. The
study concluded that to obtain sufficiently high
divergence speeds at moderate forward sweep angles, the
increase in structural weight required by higher bending
sti1ffness became prohibitive. As a result, interest in
a practical application of the forward swept wing
reached a minimum.

In the mid 1970's Kronea completed a study in which
laminated composite materials were used in such a manner
that the divergence speed of a cantilever forward swept
wing was improved to a desired airspeed with a minimum
weight penalty. Since composite fiber materials have
higher specific stiffness and strength characteristics
than conventional metals and have directional
properties, the orientation of the fibers in a
particular direction can change the deformation of the

wing under aerodynamic loading. Therefore, the
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tailoring of advanced composite materials can reduce the
wash-in of the forward swept wing and increase the
diverqgence speed. This study spurred additional and
renewed interest in the development of forward swept
wing technology. Subsequently, the application of
composite materials to forward swept wings was evaluated
through detailed analytical studiess'6 and wind tunnel
tests. ™’

In many of the forward swept wing studies performed
prior to 1980, the effect of motion of the entire
aircraft as a rigid body was assumed to be negligible.
As a result the flutter speed of a cantilever forward
swept wing was calculated to be higher than the static
divergence speed and was not the most pressing problem.
When the rigid body pitch mode was included in the
analyseslo’ll, a dynamic instability was predicted to
occur at a velocity lower than the static divergence
speed of the cantilever wing. Wind tunnel testa12
involving a forward swept wing free in rigid pitch also
encounterd the low speed dynamic instability. This
instability was termed pitch/bending flutter or body
freedom flutter.

This low velocity instability involves coupling of
the aircraft short period mode and a wing bending mode.

To further describe the phenomenon, Fiqure 1 illustrates

the coupling behavior of the critical modes of various
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aircraft configurationa. Ffor a cantilever forward swept
wing, the bending mode frequency drops with increasing
speed wuntil it becomes zero and static divergence
occurs. For a forward swept wing aircraft free in
pitch, the bending mode frequency still drops but the
presence of the short period mode at a lower frequency
causes a coalescence of the two modes resulting in a low
speed dynamic instability. This instability has been
found in rare instances on straight or slightly aft

swept wing aircraft in the past.l}’M

For an aft swept
wing aircraft classical coupling of the wing torsion
mode with a wing bending mode results in bending/torsion
flutter whether the model is cantilevered or free in
pitch. Although body freedom flutter is calculated to
be more critical than divergence of a cantilever forward
swept wing for selected aircraft configurations, one
should not generalize these findings. It is conceivable
that wing divergence may, for peculiar forward swept
wing aircraft configurations, be the most critical
aeroelastic instability. Therefore, divergence of a
cantilever wing should not be disregarded in the
development of any new and promising aeroelastic control
procedures.

Aeroelastic Control Technology

During the last decade, active control technology

has been shown to have promise as a technique of




preventing dynamic aeroelastic instabilities in lieu of
conventional flutter prevention procedures (adding
stiffness or ballast weights). The principles and
procedures of applying these concepts are well
é documented as a result of the significant amount of
research performed in the 1970's to develop active
flutter suppression technology and in the early 1980's
to advance digital flight control and adaptive control
principles. Just recently, 1investigations concerning
the use of active con'rols to delay the onset of

10,16

divergence15 and body freedom flutter have been

completed.

15

Griffin and Eastep studied the suppression of

both static divergence and, separately, bending/torsion

flutter using different forward swept wing
configurations. For these investigations, a leading
edge surface commanded by vertical displacement was
found to be best for suppressing static divergence, and
a trailing edge surface commanded by acceleration was
best for controlling bending/torsion flutter for the
confiqurations studied.

Miller, Wykes and BrosnanlO were concerned
primarily with investigating the body freedom flutter
instsbility associated with the free to pitch and plunge
forward swept wing aircraft. They demonstrated by

analyses the capability of suppressing the rigid




—

body/wing bending flutter mode, 1improving flying and
ride qualities, and reduciny wing gust loads. An active

feedback control system with outboard ailerons and an

accelerometer located near the control surtace was used. 1

; . L 16
8 Chipman, Zislin and Waters concluded that act:ive j
E
controls could prevent or delay the onset ~° _tata: 4

divergence wusing only displacement feedback, ana that

oy

body freedom flutter could be cagntrolled best ty using «

feedback signal dominated by displacement. lhe control ]
surface used for the:: studies was a trailing edge

outboard flap.

Technology Needs

Future weapon requirements, restricted by

inflationary costs define the need for a multimissiaon
fighter. It is speculated that the forward swept wing
fighter will evolve in operational derloyment similar to
what had occurred in the past for aft swept wing
fighters. That is, the forward swept wing fignter will
be designed for an air superior:ty, primary mission but
will be wused in oft-design missicns for air-lo-ground
sorties. To obtain this multirale capability, the
forward swept wing fighter wiil need to carry external
stores conformally on the fuselage and under the wings.
However, the adverse mass and inertia distribution on
the wings caused by the external staores have '

traditionelly resulted in severe bending/torsion tlutter




~roblems restricting the aircraft to lower speeds and
smaller payloads. External stores carried by the
forward swept wing fighter will cause the higher
frequency bending/torsion flutter mode to drop within
the flight envelope of the vehicle or come in close
proximity to the aeroelastic instabilities more commonly
associated with the forward swept wing. Conventional
flutter prevention techniques of bsllasting the wing, or
stiffening the wing are not suited for solving store
flutter problems. Alsu, the use of speed placards to
avoid aeroelastic instabilities can cause severe speed
restrictions resulting in a degradation of aircraft
performance and survivability,

Active feedback cantrol systems offer significant
promise of alleviating externsl store flutter problems
in the future. Therefare, the purpose of the present
regearch is to demonstrate by analysis the potential for
and feasibility of applying active feedback control
systema for preventing, simultaneously: (1) divergence
and a high frequency bending/torsion flutter mode (in
close proximity) of a cantilever forward swept wing; and
(2) the rigid body pitch/wing bending instsbility and
flutter (in close proximity) aessociated with the wing
free in pitch or free in pitch and plunge. The goal is
to increase the onset of the lowest instability speed 20

percent above the wing bending/torsion flutter speed of

10
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each wing configuration.

The information reported herein describes the
forward swept wing model selected for the study, and the
analysis techniques and system design approach used.
After the design of a control 1law for each wing
condition is obtained, analyses are conducted at
off-design conditions to evaluate the performance and
sensitivity of each system. The results of these
analyses are also presented. Finally, concluding
remarks and some recoqiendations for further study are

provided.

11




CHAPTER 11

THEORETICAL DEVELOPMENT

The calculation of the response of an airplane in
flight caused by some disturbance is generally based on
the modal approach where the response is assumed to
consist of a superposition of a finite number of normal
modes of the unrestrained airplane including both rigid
body and elastic structural modes. In reality, there
are an infinite number of normal vibration modes of an
aircraft structure. Un.y a limited number of the lower
frequency modes are used 1in the wusual divergence and
flutter analyses. Also for studies to determine the
degree of interaction involving the active system and
the arrcraft structure, only a few of the lower
frequency normal vibration modes are used. Active
system coupling with higher frequency modes (greater
than 30 Hz) is very remote because of the inherent
decrease in the system gain with frequency.

frequency Domain Flutter Equations

In this section the governing aircraft equations of
motion wused for classical divergence and flutter
analyses are formulated and reviewed. These equations

are used during the present research when analytical

12
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flutter and divergence predictions are referenced as
k-method or P-k method results. These derivations are
followed by the development of the governing equations
required for applying the root locus techniques of
determining aircraft stability.

The aeroelastic equations of motion of a flexible
aircraft in the airstream are represented as

[M] {ab + [€] €4} + [K] {q} = {F}, )
where [M] , (€l and [Kl are the generalized mass,
damping, and stiffness matrices obtained using a set of
generalized coordinates {q} and several aatursl
vibration mode shapes (NMODES), and {F} represents the
unsteady aerodynamic forces. For this study, the forces
are obtained from the subsonic doublet lattice unsteady

aerodynamic theoryl7. These forces ars defined to be

(F} = - & V2% [Q(K) 1Hq} (2)

(g ]

The elements of the generalized aerodynamic force

coefficient matrix [Q] are computed from

AP, h,
Q, = [I*‘lz = dx dy, i and j = 1, NMODES (3)
13 ov™ s
2
The coefficient Qij represents the force in the ith mode
.th

due to pressure from the j mode and is dependent on

the reduced frequency k where

K = bw {4)

13




For simple harmonic motion, the generalized
coordinates {q} take the form

(a} = (g} et (5)
where w is the frequency of oscillation. After
substituting Equations (2) and (5) into Equation (1),

the aeroelastic equations of motion become

[—wz[M] + qwlC] + [K] + %-QVZE[Q]] () = 0. (6)

Replacing the viscous damping matrix [wC] by an
equivalent diagonal structural damping expression [gsﬂ ’

the aeroelastic equations of motion become

' W 2,2
[o°m1 - 3% 5t = R (7)
k

With this equivalent diagonsal structural damping
representation, an element of the diaganal stiffness

matrix [R] becomes

KJJ = (1 + igsj) KJJ

ar

Ryo= (1 # dgg ) WM, (8)

33 PRI
where wj is the natural frequency of the jth

is the jth element of the diagonal mass matrix [M], and

mod M. .
% Ui

o] represents the structural damping in each of the

8j
modes.

14
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Since conventional aerodynamic theories are valid
for only undamped oscillations, an unknown damping term,
g, is introduced into Equation (B) to force simple
harmonic motion. As a result, a stiffness element now

becomes
.= +ig + K. (9
?(JJ (1 + ig 1gsj) i )
For small damping values (gga‘j &« 1), the stiffness is
approximated by
., = + i i1 . 10
With the unknown damping term included, the

aeroelastic equations become
2n
R17 [ o] - 3 2% ra1] (@ = acad. (1)
k

Equation (l1) represents an eigenvalue problem with
eigenvalues, 2\ = lﬁ%jﬂ- and eigenvectors, {q}.

One of thew most commaon methods of solving
Equation (l11) when the aerodynamics depend on reduced
frequency, is referred to as the k-method. For each
reduced frequency chosen, a set of aerodynamic force
coefficients [Q) are calculated and the eigenvalue
problem is solved. The damping calculated from the
eigenvalue represents the damping that must be added to

and taken away from the system to force simple harmonic

motion. When the damping is predicted to be zero, a

15
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solution is obtained.

For the k-method, the trends of demping versus
velocity are not accurate away from a g of zero. If
subcritical or supercritical damping trends are
necessary in a design, other solution techniques must be
cansidered. One such method uses 8 transient
aerodynamic representation in which simple harmonic
motion need not be considered. Another technigque which
provides more accurate damping trends is called the P-k
method.

The P-k method assumes that the generalized

coordinates are damped harmonic functions represented as

(q) = (Yre 7t where (2)

P . Vk .V

o= T+1m-F(Y+1) -EP. (13)
Again, with the use of the equivalent diagonal

structural damping representation, the aeroelastic

equations of motion become

[("—t’))zp2 (M) + [K] + % v 2310] J (g = 0. (14)

The characteristic equation is obtained by setting the
determinent of the coefficient matrix of Equation (14)
equal to ¢ero. for a specific velocity and reduced
frequency, the eigenvalue, P, is obtained from the
characteristic equation using conventional techniques of

matrix polynomial factorization. From the eigenvalues,




the frequency, (w@w) and damping coefficient (v) are
determined.

For both the k-method and the P-k method, flutter
speed is determined when the damping of a mode becomes
zero. The static divergence speed is determined when
the frequency and damping of a mode become zero
simultaneously.

Laplace Domain Flutter Equations

It is quite often important to consider time domain
specifications such as damping ratio, overshoot,
gsettling time, etc., in the study of linear systems. By
deriving the differential equations of the system and
determining the time solutions, the designer can obtain
the system's performance characteristics. However, this
approach becomes extremely difficult for problems other
than simple systems. Also, if the solution of the
differential equation does not satisfy the design
gspecifications, it is not =easy to determine what
variables in the equation need te be changed to obtain
the required performance. One of the more classical
approaches for evaluating the time related stability
characteristics of an aircraft involves the use of the
root locus criterion. The root locus criterion allows
the designer to predict the performance of a system
without actuslly solving the differential equation of

motion,. This technique is a graphical method for

17
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determining the roots of the characteristic equation
(Laplace transform of the equations of motion).

To develop the problem into a form suitable for
analysis employing the root locus procedure, it is
necessary to start with the flexible aircraft equations
of motion as provided in Equation (1). For zero initial
conditions, the Laplace transform of Equation (1) takes

the form

(157 + [c1s + KT + J ov % [a()1] ta(s)y = o. (15)

The characteristic equation is obtained by setting the
determinant of the coefficient matrix in Equation (15)
equal to zero. The roots of the resulting polynomial
may be plotted in the complex plane as the velocity
varies. Such a plot is referred to as a velocity root
locus plot. Determining the roots requires that [Q(S)
be known.

Pade' Approximations to the Unsteady Forces

To obtain the unsteady aerodynamic forces in a
polynomial representation of the Laplace variable for

use with the root locus techniques, a Pade'

approximant18 of the aerodynamics is considered. A
Pade' approximant was proposed by Vepa19 as an
aerodynamic force coefficient fitting function. Vepa
recommended that the Pade' approximant for the

18




generalized forces should have a numerator polynomial of
order one higher than the denominator polynomial for
subsonic flow. In this study, a Pade' approximant with
a numerator polynomial of order 3 provides a goad
approximation to the generalized forces for the low
subsonic speed range investigated.

To obtain the Pade' approximants, a least squares
fitting scheme is employed. This is accomplished by
minimizing a quadratic function J defined as

J=z-0"(z-1) (16)
where Z is the calculated value of Qij(k) and 7 is the
estimated value of Z., For a specific generalized force
coefficient and for a set of « reduced frequencies, an

aerodynamic force vector of 2. terms is formed as,

Real (Q” (M))

Real (Q;; (K,))

A O I (17)
IMAG (Qy; (Ky))

IMAG (05 (K,))

The objective 1is to obtain the aerodynamic force
coefficients in the Pade' Polynomial form of

- =2 -3

. Ng + Ny S+ N, S+ NS

014(5) a _ 5 . (18)
14D, 540, 5 J

where S = %é . (19)

19




The curve fitting is completed along the imaginary

axis with respect to k, since here S = ki. The

transformation from k to S and finally to S is

accomplished later. The calculated value of Qij(k) for

the nth reduced frequency takes the form
. 2 3.
R No + Ny ki~ N k= - Nyk 7i
7 = Qij(kn) _( 0 1 ™n 2.'n > n ) (20)
1 + D] kni - 02 kn 1]

Equation (20) is rearranged to appear as
. = X 1
Gyjlkn) = [H D Ox}, (21)

n .
where the n[ submatrix becomes

10 -kn2 0 K IMAG (0, (K )) kanEAL (9 4(ky))

(H,1 = ; ) (22)
0 kn 0 -kn -knREAL (Qij(kn)) kn IMAG (Qij(kn))

and {X}T = [Ny Ny N, Ny DD, ] (23)

Minimizing J by taking it's derivative with respect
to {iﬁ the polynomial coefficients are found from

b= W)Y "zt (24)

The coefficients Ni and Di are obtained in two
sephrate steps. Unique numerator and denominator
polynomials are obtained using a least square fitting
process for each of the aerodynamic force coefficient
elements over the reduced frequency range of interest.

To reduce the number of roots associated with the

20




aerodynamic fitting procedure, all the denominator
polynomials are averaged together to obtain one common
denominator. During the second step, the least square
process is repeated with the denominater polynomials
constrained to the averaged values obtained during the
previous step.

Using Equations (18) and (19), a typical

aerodynamic force coefficient is represented as

N+ Ny 25+ n (2262 4 (By3s3
a(s). . (=2 1_vb 2V _ 3y (25)
1] 1+ Dy S + D,y(R)°s ij

in terms of the Laplace variable S. The generalized

force matrix becomes

[co]v3 + [C]]Vzb S + [cz]vnazs2 + [C3]b353
[o(s)] = s
vy o+ m by

(26)

S + DyVb%s’
where Eo], [Cﬂ , [Cz] and E3] are matrices with
0ij* Niij» Naij @nd Nsyy

Aeroelastic Equations with Active Controls

elements N respectively.

The aeroelastic equations of motion of a flexible

aircraft with control surfaces are described as

(0R+ CORt+ KT+ Jov7% [adbh+ D Ddach+ oVv°% [ocdjack= 0 (27)

where["c]and[Q@ are matrices of order NMODES x M (M

squals the number of control surfaces). For i

21
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centrol surfaces, 6]
8

The control displacements, 51, are defined as

8, = T.(S) thyd {Laql. (29)

ri(s) represents the transfer functions in the Laplace
variable in each of the feedback loops (gain, sensor
dynamics, actuator dynamics, and the compensation), and
pij are defined as the modal participation coefficients
g which relate the degree each of the rigid body or

elastic modes participate in the wing motion at a

particular location orn the structure. for these

analyses, sensor and actuator dynamics were neglected.

Although the control of divergence and the body freedom
flutter instability should be somewhat insensitive to
actuator and sensor dynamics because nf the low
frequencies involved, the control of higher frequency

wing flutter will be influenced by the addition of these

caomponents. However, previous studies that have
included the actustor and sensor characteristics in the
analyais have shown that adequate compensation can be
easily developed for significantly improving the flutter
speeds of advanced vehicles.

Substitution of Equation (29) into Equation (28)

and realizing that [i(S) is a ratio of two polynomials i

in the Laplace variable S, gives

22




T |
{qé.mw__t___- - --| {a}, (30)
l -
| i Ton || n
I 2
2D

D
TyuTon |
IN'2D { 0
where T =}j]—---- T----- (31}
0 1 Tl
)
and Ty = TypTon, (32)

By obtaining Pade' approximahts for the control
surface aerodynamics with the same averaged denominator
coefficients as were obtained for the wing, the Laplace
transform of Equation (27) with zero initial conditions

becomes
[(M1s7 + [cls + (K1 + Jov®%¥ [Q] +
(I 15” + 3ov°F Lo LTI feap =0 (33)
D
or T, [ [A4]S4+[A3]S3+[A2]Sz+[A1]S+[Ao]]{q} ‘.
[ (v2sDbuse0,625%) s2m.1 + Jo¥ ([ Iv* + ey Ivdbs
+ [Cpc W22S% + [0y Jub’s%) | [T20RICa) = 0 (34)

where [AIJ, { = 0,4 are defined as
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(g1 = v2KD + 3v* [c,l,

(A1 = vz[c] + 61 bv[K] + %p? v3b (c,1,
(A} = y°IM] + D, bvlc] + b, b[K] + 2% v2bPLC, ], (35)
(4,1 = Dy bV [M] + D, b2 [C] + ]?p? vl [c,1,

and [A,] = D, b° [M].

With the feedback compensation and sensor types known,
Equation (34) can be represented as
n n-1 . .
[F 1™ + [F 41577 + + [Fy1s + [Fo] = 0. (36)

Solution oi Governing Cquations

Equation (36) is a polynomial equation with
constant matrix coefficients, These coefficients
consist of not only the structurel, aerodynamic and
planform properties of the aircraft, but also velocity
and the control system compensation (gain and phase).
For these studies, the velocity and gein can be varied
independently to determine velocity and gain root locus
plots. For all control system gains set to zero,
Equation (36) reduces to a fourth order polynomial with
the coefficient matrices defined in Equation (35). An
analysis for these conditions will result in the passive
(unaugmented) solution of the equations of motion. To
obtain the roots of Equation (36), the procedure is to
transform the equation into an eigenvalue problem. This

is accomplished by letting
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e i 2

§ =g |
t T i
B! q !
"N ';o (37 i
Q * 4 . )
Yy =&y 4
3 2 1 Fg
and so on. 1
4
Multiplying Equation (36) by q and using Equations (37), . 2
the governing equations described in state space form i
become -
P
AN A ;
h %9 P
§ - % .
2 3 (38) 4
n a ]
93 7 9 |
j
. ‘i:
R .y . e S P H }
d, = -F, Fqdy - Fn Fydy - F Fplg-e o« «=F F L 44y
or {§) = [A] (® (39)
!
where
-
0 I 0 0 q‘ '
asf O 0 ! 0
0 0 0 I
R -1 -1 -1 |
L'Fn Fo Ffa By -Fa 'Fp o Faay ]
and [I] is the identity matrix. With é = S§, Equation

(39) becomes
s( {3} = [A) {a}
([A) - s[D{a} = 0

or

25
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which is recognized as the standard eigenvalue problem.
To be stable, each root of the characteristic
equation must lie in the left half of the camplex plane.

Roots which lie on the imaginary axis of the complex

1 plane are commonly referred to as being neutrally
stable. Since the zero airspeed structural damping is
assumed to be zero for the elastic modes used in the
analysis, the roots associated with these modes
originate from the imaginary axis at their respective

natural frequencies,
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CHAPTER III

CONFIGURATION DEFINITIGN

The primary forward swept wing aeroelastic
characteristics required for this investigation include
a static divergence instability speed in close proximity
to the higher frequency bending/torsion flutter speed
typical to what will occur if 8 critical external store
configuration is carried. With these properties it
will be necessary to develop a system with ¢the
capability of suppressing two aeroelastic instabilities
simultaneously to obtain a reasonable improvement in
airspeed. Also, the interactions of several feedback
loops operating independently to control the behavior of
various elastic modes is of interest. To acquire these
characteristics, the configuration and properties of a
wind tunnel model previously tested to investigate
divergence7 and body freedom flutter12 are selected as
the basis for this program. This approach also offers
the advantage of possibly testing the model in a
modified form at some future time to verify the findings
of this analytical investigation,

Since bending/torsion flutter speeds increase
significantly with forward sweep angles, a configuration

with low forward sweep will serve as a baseline for

27




obtaining the characteristics desired for this study.
As a result, the forward swept wing with the aluminum
substructure is selected. This model consists of an
aluminum plate that provides the 1load carrying capa-
bility of the wing and airfoil shaped polyurethane foam
sleeve sections which surround the plate. The wing can
be swept forward at several incremental angles.

After divergence testing7, the wind tunnel model
was modified by including a fuselage bar that was free
in rigid pitech, The wing could then be positioned at
different locations near the aft end of the fuselage bar
to investigate the effects of static margin. The pitch
axis of the fuselage bar was always at the system center
of gravity, and the wing was always mounted aft of this
point to provide weathercock stability.

For this study the reference axis is swept forward
-15 degrees; this angle represents a leading edge sweep
angle of about -9 degrees. figure 2 presents a
schematic of the wind tunnel model showing key details,
dimensions and the relative sizes of the components.

Basic Model Calculations

A finite elementza representation of the wind

tunnel model is developed ta perform vibration and

conventional flutter analyses21 for correlation with

ground vibration22 and wind tunnel test data.7’12.
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Figure 2 Planform of Forward Swept Wing Model
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These analyses also asgist in determining the
modifications needed to the wind tunnel model to obtain
the desired aeroelastic characteristics.

All sectional masses and stiffnesses used in the
analysis were experimentally determined7 to minimize the
error in correlation with test data. For all cantilever
analyses, the fuselage bar is restrained in such a
manner that no motion is permitted along the bar or wing
root. When the rigid body pitch mode is included in the
analysis, the fuselage liacr is permitted to pitch about
the center of mass of the system. The modes of interest
for this study include the first two bending modes and
the first torsion mode. Higher frequency modes are
eliminated from the analysis because later flutter
analyses show that they have essentially no effect on
the instabilities of interest (see Table A-5 in Appendix
A).

A vibration analysis using beam elements and only
the plate masses and stiffnesses (no aerodynamic
sleeves) is initially conducted. The analysis is
performed with the plate cantilevered and with the
fuselage free to pitch. Frequencies and mode shapes
are also calculated with the sleeve masses and some
additional stiffness 1included in the analysis. Although
the sleeves are Jdiscrete sections separated by foam

rubber, stiffnes: tests had shown & slight increase in
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the model bending and torsional stiffnesses when the
sleeves were attached to the plate. The calculated
frequencies for both the plate and wing model are
provided in Table 1 along with experimental resu1t322
for comparison. The calculated cantilever results
agree very well with the test data. The largest error
encountered is obtained in the prediction of the wing
2nd bending frequency which is found to be about one
percent lower. There are some larger differences
between the calculated and the test results when the
rigid body pitch degree of freedom is added. The
largest error occurs in the first mode where the
difference between the —calculated and experimental
frequency is about s8ix percent. Appendix A provides
additional details concerning the finite element
representation of the wind tunnel model and also
includes the mode shapes for the first three modes of
the wind tunnel model.

All flutter and divergence analyses are conducted

using classical k-methods21 and a subsonic doublet

lattice unsteady aerodynamic theoryl7. The P-k method
is considered during the study, but aerodynamic
interpolation problems attributed to the body freedom
flutter condition result in poor predictions. More

details on these problems are provided in Appendix B.

The aerodynamic paneling arrangement employed for the
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flutter analysis is shown in Figure 3, This paneling
consists of a fuselage with five interference panels
(not shown) and a slender body, and a wing with six
aerodynamic panels subdivided into 104 boxes. Two of
the outboard panels represent typical leading edge and
trailing edge control surfaces that are investigated for
use in the control system analyses. These surfaces are
positioned near the wing 3/4 span and have hinge lines
parallel to the respective wing edges.

Comparison of wind tunnel divergence and flutter
instability characteristics with the analytical
predictions are alsoc found 1in Table 1. For the
cantilever model, the divergence speed is predicted to
occur at 119 ft/sec while the instability is estimated
from test data7 to occur at 128 ft/sec., This shows the
analysis to be about B percent conservative. When the
model is free in pitch, the body freedom instability is
predicted to occur at 90 ft/sec at 1.4 Hz. This is
slightly higher than found during the wind tunnel testl2
(86 ft/sec) making the analysis about 4 percent
unconservative. Ffor both boundary conditions the higher
frequency bending/torsion flutter mode is predicted to
be significantly higher than the low speed
instabilities.

To accomplish the objectives of this study, it is

desirable to obtain a bending/torsion flutter speed
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about thirty to forty percent above divergence. These
characteristics will more realistically allow an
investigation of the interaction of multiple systems
controlling several rigid and elastic modes. The
changes necessary to the wind tunnel model and the final
vibration and flutter analysis results are discussed

next.

Modified Model Calculations

To obtain the desired divergence and flutter
characteristics, one pound of weight is distributed
along the trailing edge of the wing in the outboard six
sections. Table 1 presents the calculated vibration
frequencies for the first three elastic modes, and the
predicted divergence and flutter results for the
modified wing configuration (cantilevered and model free
in pitch). Mode shapes for the first three elastic
modes of the modified model cantilevered, free in pitch
and free in pitch and plunge are presented in Figures 4,
5, and 6 respectively.

As expected, the weights have no effect on the
divergence speed of the cantilever wing. However, the
weights do have a significant effect on the body freedom
instability and on the higher frequency flutter mode.
The decrease in the body freedom instability speed is
primarily attributed to the drop in the lst wing bending

frequency that results from the new wing mass
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distribution. The lower wing bending mode frequency
produces an earlier coalescence with the aircraft short
period mode resulting in the low speed instability.
Also, the additional trailing edge weights cause a
significant rise in the wing pitch inertia resulting in
the drop in the wing torsion frequency. By comparing
the natural frequencies of the various modes for the
basic and modified wings (Table 1), the frequency
separation between the wing 2nd bending mode and the
torsion mode is much closer for the modified wing. This
causes the two higher frequency wing modes to coalesce
earlier (at a lower speed) resulting in the significant
drop in flutter frequency and apeed. Mass coupling also
contributes to the lower flutter speeds for both modes
of instability. Figures A-6 and A-7 in Appendix A
provide velocity versus damping and velocity versus
frequency plots for the cantilever and free-to-pitch
conditions showing the differences in behavior between
the basic and modified models.

The modification in the mass of the model results
in a bending/torsion flutter speed that is 36 percent
above the divergence speed of the cantilever wing. The
next section describes the procedures used to design an
active feedback syatem capable of obtaining an
inatability-free flight envelaope up to 20 percent above

the bending/torsion flutter speed of the modified model.
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CHAPTER IV
ACTIVE SYSTEM DESIGN

The design approach used in the development of the
feedback compensation of the system is to obtain gain
loci for several sensor types and locations with
different control surface inputs at an airspeed 20
percent above the bending/torsion flutter speed. This
is accomplished for each of the model boundary
conditions (cantilevered, the model free in pitch, and
the model free in pitch and plunge). These data provide
information needed to determine which of the
sensor/control surface combinations result in the best
suppression capability for preventing the aeroelastic
instabilities of each wing configuration. The various
active system logics that provide model aeroelastic
stability at the design airspeed are then evaluated at
off-design conditions to assure stability over the
entire velocity range of interest.

The results of these atudies indicate that a
leading edge surface commanded by displacement of the
wing resulting from only the elastic modes provides a
reasonable control system design for preventing
divergence of the cantilever wing or the body freedom

flutter instebility associated with the free model.
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Displacement at the wing sensor resulting from rigid
model pitch and plunge are subtracted from the feedback
signal to obtain only a response due to the elastic
modes. The displacement sensor is positioned near the
intersection of the wing 2nd bending node line and the
wing lst torsion node line. This location provides the
best position for feeding back the bending motion of the
1st elastic mode (critical mode for divergence or body
freedom flutter) with minimum inputs from the other
important elastic modes.

Displacement feedback is a difficult state to
measure directly; however, integration of an
acceleration signal can provide the needed response.
This technique of obtaining a displacement feedback
results in significant changes in gain (20db per
frequency decade per integration) and phase
characteristics (90 phase lag per integration). These
changes will undoubtedly need to be accounted for in the
final control law design if the double integration
technique 1is used, Integration also offers the
advantage of acting as a low pass filter and can be used
to eliminate high frequency non-flutter responses
(control system induced structural instabilities).

The gain loci analyses also indicate that a

trailing edge system commanded by angular acceleration

e a —




of the wing tip perpendicular to the elastic axis
provides an acceptable input for controlling the
bending/torsion flutter mode. Based on mode shape data,
the bending modes relative to the elastic axis have very
little twist., Feeding back wing tip angular
acceleration assures maximum input from the torsion mode
{maximum twist at the tip) with minimum response from
the bending modes.

The sensors used for measuring rigid pitch (angle
of attack) and plunge (vertical translation) are located
at the model center of gravity on the fuselage bar
(pitch axis). For the analyses performed, the best
overall suppressian capability consists of the leading
edge and trailing edge control surfaces positioned in
the same streamwise location on the wing at about 75
percent span.

Cantilever Wing

The reduced frequency dependent unsteady
aerodynamic force coefficients are represented in the
Laplace domain using Pade' approximants. As described
earlier, these functions consist of a ratio of two
polynomials; the numerator is a 3rd order polynomial,
and the denominator, a 2nd order (two lag terms). This
combination is found to provide a good fit of the force
coefficients over the velocity and frequency ranges of

interest. Instead of presenting many tables to

| 1




illustrate comparisons of the unsteady forces calculated
from the doublet lattice and those obtained after
fitting the doublet lattice aerodynamics with Pade'
pclynomials, V-g and V- w plots are presented. This
provides an evaluation of the gross overall fit of the
aerodynamic forces. Figure 7 presents the V-g and

V-w plots for the caﬁtilever wing found using the
doublet lattice areodynamics (k-flutter method), and
using the root locus procedures which employ the Pade'
pclynomials. Only the first three elastirc modes are
presented. Correlation between the solid symbols
(k-method) and the solid lines (root locus) is very good
particularly relative to the frequency plot, The
differences in damping values in the 1lst bending mode
are attributed to the static divergence characteristics
as observed on a root locus. Since correlation of the
damping and frequency data is satisfactory, it is
concluded that the Pade' polynomials provide an accurate
fit of the wunsteady aerodynamic forces for the
cantilever wing over the reduced frequency range of
interest.

Figure 8 presents a velocity root locus plot for
the cantilever wing with all feedback gains set to zero
(passive solution). The passive divergence speed (VDP)
is predicted to occur at 115 ft/sec and the passive

bending/torsion flutter speed (pr) is predicted to
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occur at 156 ft/sec at a passive flutter frequency (wfp

of 16.7 Hz using Pade' polynomial fits of the

aerodynamic force coefficients. Classical flutter
methods predict a divergence speed of 119 ft/sec and a
bending/torsion flutter speed of 155 ft/sec at 16.9 Hz
(see Table A-5 in Appendix A for the k-method results).

On a root locus plot, static divergence occurs when the

roots associated with an elastic mode move to the
negative real axis (frequency dropping to zero) with
increasing airspeed and divide into two real roots with
one of the roots passing through the origin. When the

root reaches the origin, the wing has statically

diverged. The lst bending mode in Figure B illustrates

these characteristics. Flutter occurs when two modes
(normally a bending and a torsion mode) coalesce causing
a coupled neutrally stable oscillation. The 1lst torsion

mode and the 2nd bending mode shown in Figure 8

illustrate these coalescing characteristics.

Figures 9 through 13 present wing displacement and
twist gain loci of the cantilever wing resulting from
either trailing edge or leading edge control surface
excitations at a design speed 20 percent above the

passive bending/torsion flutter speed (1.2 V_ ). The

fp
poles of the system represent the location of the roots
of the elastic modes with the gains set to zero at the

design velocity. At this speed, two of the poles are
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unstable. The first bending mode appears as two roots
on the real axis, one of which is in the right half
plane (static divergence). The other unstable mode is
the lst torsion mode which is shown as one of the roots
of a complex pair at about 13.9 Hz. The 2nd bending
mode located at about 11.9 Hz 1is stable at this
airspeed. Since the roots represent the passive
solution of the equations aof motion at the design
airspeed, the location of the poles are identical for
figures 9 through 13, lhe solid circles on the charts
represent the zeros of the control law (location of the
root at infinite gain). The solid lines represent the
path taken by the roots when gain is increased from zero
to positive infinity. Dash 1lines represent the path
taken by the roots when the gain is decreased from zero
to negative infinity.

Figure 9 provides the root locus for the transfer
function h/6TE. The plot shows that positive gain will
cause both of the roots associated with the unstable
elastic modes to move to the left half plane becoming
stable at this airspeed. However, a velocity root locus
using several values of positive gain, equal to or
higher than that required to stabilize the two modes at
1.2 pr, shows low speed instabilities in both the 2nd
bending and lst torsion modes. Negative gain, although

beneficial for controlling torsion, drives the unstable
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real root deeper into the right half plane. Therefore,

the trailing edge surface does not appear to be a
suitable surface for preventing divergence much less
both instabilities asimultaneously. Figure 1D provides
the root locus for a transfer function that relates

digsplacement to leading edge excitation (h/%,6 _.). This

LE
plot shows that negative gain brings the unstable real
root back to the left side quite rapidly but high
negative gains are required to stabilize the 1lst torsion
mode. It is found, however, that the high negative
gains tend to destabilize other modes at off-design
conditions similar to what was found for the transfer
function h/&TE. For this case high gains destabilize
the 2nd bending mode at velocities lower than the design
velocity. For this control surface/sensor combination,
only negative gain requires further consideration as a
potential feedback signal for controlling divergence.
This is a result of having a real poie in the right half
plane causing the model to be unstable for all positive
gains,

Figures 11 and 12 present wing twist transfer
functions resulting from trailing edge and leading edge
excitations, respectively. With trailing edge
excitation, pusitive gain in a small range can stabilize
both aeroelastic instabilities of the model at the

design airspeed. With increasing positive gains the
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real roots meet in the left hand plane forming a stable

complex pair of roots. for higher gains, the complex

i
pair migrate back into the right half plane, becoming a 7
dynamic instability. For gains in this small positive j
range, the model is again predicted to be unstable at {
lower airspeeds in the 2nd bending mode. With leading ]
edge excitation (Figure 12) neither positive nor %53
negative gain can stabilize both of the unstable modes
at the design airspeed because of the pole/zero
combination on the real axis in the right half plane.

As a result of the data base established for active

flutter suppression, anqular acceleration is considered

as a possible signal for controlling the bending/torsion

flutter mode. Figure 13 provides the gain locus of
angular acceleration versus trailing edge excitation.
These data show that negative feedback is best for
stabilizing the lst torsion mode (flutter mode) but does

little to stabilize the divergence mode on the real

axis.

After detailed evaluation of the previous

information and other combinations of sensors and

control surfaces, and taking into account the high gain

effects on other modes at lower velocities when a single
surfece is used, it is concluded that a two-surface
system is required. The design logic is to use the

leading edge surface primarily for controlling
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divergence using the displacement feedback, and to use
the trailing edge surface with angular acceleration
feedback to control the higher frequency bending/torsion
flutter mode. The frequency separation of the two modes
of instability of this configuration add to this
conclusion s8since each control surface and associated
compensation can be designed for a different frequency
range.

Referring to Figure 10, negative gain on the
displacement signal to the leading edge surface 1is
selected such that the 1lst bending mode is stable at 1.2
. The

fp fp
gain is found to be -5.2 deg/in. This gain value is

v and has gain margins of at least & 6db at V
marked as the design gain on the loci of Figure 10.

With the leading edge loop closed, the second loop
using the trailing edge control surface and angular
acceleration feedback is designed to satabilize the

torsion mode of 1.2 V. with gain margins of at least

fp
+ 6db at pr. Figure 14 provides a gain root locus for
angular acceleration feedback and trailing edge
excitation with the leading edge loop c.osed. This plot
shows thet two of the poles of the system, the 1lst
bending and 2nd bending, are stable at 1.2 pr as
expected since the leading edge loop is closed. The

torsion mode, however, still remains unstable for zero

gain on the trailing edge system. Only negative
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feedback in a small range is successful in stabilizing
the torsion mode. A treailing edge gain of -.025
deg/deg/sec2 is required to stabilize the torsion mode
at 1.2 pr and to provide the desired gain margins at
pr.

To obtain maximum phase margins, a phase lag

network of the form 1 - 7S is included in the feedback
’ 1l + 7

compensation of the trailing edge system. This type of
network has been used extensively in operational analog
simulations to verify control system phase margins. It
is ideal for this use because large phase angles are
possible with no gain changes. Such an element can
easily be obtained in terms of operational amplifiers
and patentiometers when hardware is required. Other
techniques of including phase angle changes on the
feedback system have also been used quite successfully
in previous active flutter suppression analyses and
tests. For this control logic the phase lag function

1l - .04223S5 provides the best phase characteristics for

1 + .042235
the cantilever wing. This system provides 155 degrees
of phase lag at & reference frequency of 17 Hz.

Figure 15 shows the gain loci with the leading edge
loop closed and the phase lag network included in the

trailing edge loop compensation. The addition of the
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phase lag network results in a potentially unstable
zero. However, the gain needed to drive the system
unstable is found to be extremely high. The sign of the
gain is now positive as a result of the 155 degree
phase lag in the system at a frequency near the flutter
frequency (155 degree phase lag is equivalent to a
change in sign on the gain with 25 degrees lead). The
trailing edge design gain (.025 deg/deg/aecz) is marked
on the loci of Figure 15 for reference. For the
two=—surface control law the gain margins are calculated
to be -6.19 db and 18.74 db on the leading edge loop,
and minus infinity and 12.04db on the trailing edge.
The phase margins associated with the trailing edge loop
are found to be -70 degrees and 25 degrees. The
performance of this two-surface feedback system at
off-design conditions is discussed in detail in the next
chapter following the analysis of other model boundary
conditions,

Model Free in Pitch

To verify that the Pade' polynomials provide a good
fit of the unsteady aesrodynamic force coefficients when
the model is free in pitch, V-g and V- w plots are again
preassnted. The V-g and V-w plots shown in Figure 16
are determined wusing both a classical k-flutter
prediction method and the root locus procedures that

employ the Pade' polynomial representation of the
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generalized forces. Comparisons of damping and
frequency with airspeed between the two techniques is
excellent indicating that the polynomisls accurately
represent the unsteady aerodynamics in the reduced
frequency range of interest.

Figure 17 presents the velocity root locus plot for
the model free in pitch with all systems off (passive
solution). The body freedom flutter instability is
predicted to occur at 52 ft/sec at 1.2 Hz using the
aerodynamics approximated by Pade' polynomials. The
mode of instability for this analysis is the rigid pitch
mode. This analysis also predicts the higher frequency
bending/torsion instability to occur at 151 ft/sec at
16.5 Hz. Classical flutter analysis techniques
predict a body freedom instability at 53 ft/sec at 1.2
Hz. Bending/torsion flutter is determined to occur at
156 ft/sec at 16,0 Hz. Correlation of the passive
flutter data is quite good also giving an indication
that the aerodynamics are accurately represented by the
Pade' polynomials.

Figures 18 through 22 present gain root loci with
the model free in pitch for displacement and wing twist
feedback signals. The five poles represent the rigid
pitch mode 8nd the three elastic modes Ffor the
unsugmented model at 1.2 prz. The poles on the

negative real axis represent the 1lst bending mode. The
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two unstable modes represent the rigid pitch mode at 2.5
Hz and the lst torsion mode at 13.7 Hz. The stable 2nd
bending mode is located at 11.9 Hz. Calculations using
displacement feedback with either control surface (see
Figqures 18 and 19) indicate tée possibility of
preventing both instabilities simultaneously with a
single surface (positive feedback for h/§; - and negative
feedback for h/&LE). However, analyses at off-design
conditions, that is at velocities lower than 1.2 prz,
predict instabilities in other elastic modes as a result
of the high gain conditions. When twist of the wing tip
(Figures 20 and 21) and angular acceleration (Figure 22)
are fed back, analysis finds that no single
sensor/control surface combination is capable of
preventing both instabilities at the design condition.
In fact, these sensor/control surface combinations
result in an unstable model for all positive and
negative gains. These signals have no ability for
suppressing body freedom flutter. This is attributed to
the low frequency zeros in the right half plane.
Previous calculations for the cantilever wing have
indicated that two active surfaces are required to
prevent the two instabilities simultaneously. As a
result negative gain on the leading edge surface with
displacement feedback provides the best input for

controlling the body freedom flutter instability. This
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system requires a gain of -122 deg/in to raise the body
freedominstability speed up to prz, and td provide gain
margins of at least 4 6db at prz.

To control bending/torsion flutter, the trailing
edge surface with angular acceleration feedback is used.
Figure 23 provides a root locus of the trailing edge
loop with the leading edge loop closed (KLE = =122
deg/in). This figure indicates that negative feedback
will stabilize the 1lst torsion mode. It also shows that
this negative feedback will destabilize the pitch mode
over a large range of gains, Figure 24 shows gain loci
with a phase lag network included in the trailing edge
system compensation. This network, defined to be
l - .1531S, eliminates the instability in the pitch mode
1 + .1531S
and provides the best phase margins for this
configuration and this control logic. Since the phase
lag network provides 173 degrees at 17 Hz, the feedback
gain for a stable system is now positive as previously
described for the cantilever wing. The feedback gain n
the trailing edge loop is determined to be .026
deg/deg/secz. The combined two-surface control system
provideas the required speed improvement of 1.2 pr2'
The gain margins on the leading edge system at prz are
found to be -6.00 db and positive infinity, and on the

trailing edge system, -12.74 db and 11.96 db. The phase
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margins on the trailing edge system are calculated to be

-13.0 degrees and 17.0 degrees. The design gains for
each loop are marked on the loci in Figure 19 (leading
edge loop) and Figure 24 (trailing edge loop).

Model Free in Pitch and Plunge

The V-g and V-w plots for the model free in pitch
and plunge are provided in Figure 25. The root locus
plot with all gains set to zero (passive solution) is
presented in Figure 26. For this configuration,
coupling to produce the body freedom flutter mode
causes the lst bending mode to become unstable instead
of the rigid pitch mode as is the case when the model
is free in pitch only. The body freedom instability
speed also increases somewhat with the addition of the
rigid plunge mode. This increase in instability speed
is at least partially attributed to the effect caused by
a free-~free boundary condition on the elastic modes.
Bouy freedom flutter is predicted to occur at 75 ft/sec
at 1.9 Hz using a classical flutter analysis method
while the use of Pade' polynomial fits of the unsteady
aerodynamic force coefficients result in a prediction of
72 ft/sec at 1.9 Hz. For the higher bending/torsion
flutter instability, the <classical flutter analysis
method predicts a flutter speed of 153 ft/sec at 16.5 Hz
and by using the Pade' polynomials, the instability is

found at 152 ft/sec at 16.4 Hz. This correlation of
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flutter characteristics and the comparisons on the V-g
and V-w plots of Figure 25 demonstrate the accuracy of
the Pade' fit of the unsteady aerodynamics.

Figures 27 through 30 present the design data used
in determining the two-surface control system gains when
the model is free in both pitch and plunge. The poles
shown in these figures represent the rigid pitch mode
and the three elastic modes. The plunge mode lies along
the real axis. For this configuration, the two unstable
modes have frequencies of 2.1 Hz and 13.9 Hz at 1.2
prz. The rigid pitch mode and the 2nd bending mode are
both stable at this airspeed and have frequencies of
1.6 Hz and 12.3 Hz, respectively.

Similar conclusions can be drawn regarding
displacement feedback, as for the case when the model is
free in only pitch. A system using only h/6TE (Figure
27) with positive feedback or a system using only h/5LE
(Figure 28) with negative feedback can suppress both
modes of instability simultaneously at the design
airspeed. When wing twist and the trailing edge surface
are analyzed (Figure 29), it is found that no gain,
negative or positive, can gtabilize both modes
simultaneously. This is attributed to a real zero in
the right half plane. Negative wing twist feedback with
the leading edge control surface (Figure 30), however,

is found to be capable of suppressing both modes far
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moderate gain levels. Angular acceleration feedback to
a trailing edge control surface (Figure 31) is also
shown to be inadequate for controlling two unstable
aeroelastic modes simultaneausly. Analyses at
off-design conditions again indicate, however, that no
system using only one surface can prevent both
instabilities simultaneously over the entire velocity
range of interest. Therefore, the two-surface approach
defined previously is used to control the model free in
pitch and plunge. . gain of -25.2 deg/in on the leading
edge control surface with displacement feedback is
required to improve the body freedom instability up to
1.2 prz with gain margins of at least ¢ 6db at prz.
This design gain value is marked in the loci of Figure
28 for reference.

To determine a system for preventing the
bending/torsion flutter mode, the leading edge system
is closed and gain loci for the trailing edge system
are determined (figure 32). A trailing edge system gain
of =-.0203 deg/deg/aec2 is necessary to oabtain the
required speed improvement and gain margins. To obtain
the best phase margins for this type of design, a phase
lag network of 1 - .2144S is used. This network

1 + .21445
provides a phase lag of 175 degrees at 17 Hz., The value

of the trailing edge design gain is marked on the loci
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system are found to be -~10.59 db and 6.19 db.

margins are determined to be -59 degrees and 10 degrees

on the trailing edge system.

For this study, the root loci associated with
various sensor and control surface combinations are
obtained as gain is varied from zero to positive and

negative infinity. These plots provide the

needed in selecting the sensors,

compensation required to obtain satisfactaory performance
from the system at a design airspeed.

chapter, velocity root locus plots of each of these

control laws will be provided.

damping and velocity versus frequency plots will be

determined for system evaluation.

important in assuring that the
destabilize the aircraft at off-design conditions.

the system is predicted to be unstable at off-design

conditions, additional analyses

redesign or some adaptive control scheme that changes

the gain or phase lags with velocity,

dynamic pressure will be needed.
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CHAPTER V
RESULTS
The control laws designed in the previous section
for each of the three wing boundary condit‘ons are
designed at a point velocity. The schematic shown in
Figure 34 illustrates the logic of the feedback systems
although the information on this chart represents only
the case when the model is free in pitch. It is
important now to determine the performance of the
control system over the entire velocity range of
interest and to compare these data with the unaugmented
results (KLE and K, set to zero).

Cantilever Wing

The velocity root locus for the cantilever wing
two-surface control law is presented in Figure 35. This
control system is shown to improve the velocity flight
envelope of the cantilever model 63 percent based on the
design criteria. The divergence mode is completely
eliminated by the leading edge system, and the
bending/torsion flutter mode is increased to the design
goal with the trailing edge system. With the system
operating, flutter occurs in the 2nd bending mode at a
speed of 188 ft/sec instead of in the torsion mode as

wags the case when the system was off.
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Velocity versus damping and velocity versus
frequency trends for the nominal two-surface system on
and off are presented in Figure 36. This information
is obtained from the unaugmented and augmented velocity
root locus plots for the cantilever wing (Figures 8 and
35). These types of plots represent key information
used by the flutter engineer to determine the
aeroelastic stability of an aircraft. Typically,
flutter occurs when the damping associated with some
particular elastic mode becomes zero; static divergence
occurs when both the damping and the frequency become
zera.

Additional analyses are performed to determine the
sensitivity of the control 1lsw to <changes in the
feedback gain of each loop or to changes in the phase
lag network. The next few figures present the effects
of changing one of the feedback parameters while holding
the other two constant a¢ nominal values.

A velocity root locus with leading edge gain (KLE)
variations (+ 6db) from nominal is presented in Figure
37. Variations in the leading edge gain are shown to
have very little effect on the higher frequency
bending/torsion flutter mode. Increasing, KLE' however,
did cause a slight drop in the fiutter frequency. This

effect along with the significant aerodynamic stiffening
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in the first bending mode ultimately results in a switch
in the mode of instability for high absolute values of

K Figure 37 shows the tendency of the lst bending

LE®
mode to swing back towards the right half plane for the
larger gain values (see Ffigure 40 for additionsl
insight).

The effect of trailing edge gain (KTE) variations
from nominal for the cantilever wing is presented in
Figure 38, Once again, the gain is varied & 6db from
nominal. Trailing edge gain is shown to significantly
affect both of the higher two elastic modes, but the 1lst
bending mode is not at all affected for this range of
gain variation. This is attributed to the frequency
range of the 1st bending mode and the angulsr
acceleration signal being used by the trailing edge
contraol law. This figure also very clearly illustrates

the effect of K on 8 mode of instability switching

TE
that takes place between the 2nd bending and torsion
modes. As KTE is increased, the instability speed
resulting from the torsion mode increases while the
frequency decreases. This continues until a switch
occurs in the mode of instability from the torsion mode
to the 2nd bending mode. Higher KTE values cause the
aerodynamic stiffness in the torsion mode to increase.

Thie ultimately causes the torsion mode root locus to

bend back towards the.right half plane on the upper side
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of the torsion natural frequency and causes a control

induced instability (see Figure 41). The existence of
this control induced instability is somewhat
questionable since higher frequency elastic modes are
not included in the analysis.

A sensitivity analysis is also conducted to
evaluate the effect of changes to the phase lag network.
The results of this analysis are summarized in Figure
39. For this analysis the time constant in the phase
lag network is varied in an attempt to obtain ¢ 45
degrees changes from nominal at a reference frequency of
17 Hz. As shown in Figure 39, a -45 degree change from
nominal is achievable but a +45 degree change is not.
At phase lag angles slightly greater than 180 degrees,
the instability speed resulting from the torsion mode
drops very rapidly. In fact, the torsion root continues
to migrate towards the right half plane with further
increases in phase lag to a point where the root is
unstable at all velocities. This analysis also
indicates that trailing edge phase does not
significantly affect the 1lst bending mode root.

Stebility boundaries for the cantilever two-surface
coﬁtrol law are provided in Figures 40 through 42. The
stability boundaries are determined with respect to each
of the feedback parameters KLE’ KTE’ and ¢LE' The solid

circles on the boundaries represent data taken from the
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previous root locus plota, and the frequencies of the
instability are shown in parentheses. The vertical
dashed line represents the nominal control law. Once
again, as one of the three parameters is varied, the
other two are held constant at nominal values. Gain and
phase margins can be easily determined from these
figures. This is accomplished by projecting a
horizontal line through a reference velocity on the
figure and reading the gains or phase angles at the
instability boundaries that the line intersects. These
gains and phase angles are then compared to the nominal
control law to determine the margins., A gain margin of
-6db or less indicates that the feedback gain can be
divided by a factor of two or more and the active system
will continue to stabilize the model at the reference
velocity. A gain margin of +6db or more indicates
similar characteristics after multiplying the feedback
gain by two or more. The positive and negative phase
margins are similarly defined; that is, a phase margin
of + 45 degrees indicates that an angle of 4+ 45 degrees
can be added to the system before neutral stability is
obtained. These margins are factors of safety that are
established for a control system design. These are
needed to account for the uncertainties, either
neglected or unknown, that are encountered in an

analysis.
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As KLE is varied from 0., to -40. deg/in (Figure
40), the stability boundary changes from static
divergence (mode #1) at low KLE’ to a dynamic
instability involving the 2nd bending mode at moderate
KLE’ and finally back to a dynamic instability involving
the 1st bending mode at high KLE' The intersection of
the stability boundaries to the left of the nominal law
represents a switching of the origin of the mode of
instability and resembles a smooth transition from one
mode to the other. Recall /rom Figure 37 that the lst
bending mode shows a tendency to be driven unstable with
higher values of KLE' The instability transition shown
in Figure 40 demonstrates this change from mode #2 to

mode #1 as expected. The gain margins on K calculated

LE
at pr (as indicated previously) are -6.19 db and 18.74
db. This means that the gain can be decreased 51
percent or increased 8.6 times nominal before neutral
stability is obtained.

Figure 41 presents a trend of the stability
boundary with KIE' The intersection of the boundaries
to the 1left of the nominal control law shows a
transition from mode #3 to mode # 2, while the
intersection of boundaries to the right shows an actual
switching of the mode of instability back to mode #3.
Figure 38 provided an indication that the torsion mode

can be driven unstable at high K The gain margins on

LE”®
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at Vv are found to be negative infinity and 12.04

Kye

fp
db. The gain margin of negative infinity on the
trailing edge surface is a result of selecting pr as a
reference speed (KTE = 0) to measure gain and phase
margins.

The stability boundary resulting from a variation

of is shown in Figure 42. Foar this case the

®1E
intersection of stability boundaries is in the classical
manner. The instability speed involving mode # 3 drops
very rapidly with phase angle changes slightly greater
than 180 degrees. The 155 degree phase lag at 17 Hz is
the minimum phase angle at which a velocity improvement
of 1.2 pr can be reached. Lower phase angles résult in
lower speed increases but higher phase margins; higher
phase angles result in higher speed increases but lower
phase margins. This trend continues up to about 182
degrees phase angle at which time further increases
cause low speed instabilities. Phase margins of at
least + 45 degrees can be obtained if the desired flight
envelope expansion is limited to 53 percent (13 percent
above vfp)' Although not investigated, notch filters
can be used to improve the gain and phase margins for

some cases.

Model Free in Pitch

The velocity root locus for the two-surface control

law developed for the model free in pitch is presented
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in Figure 43. This system decouples the lst bending and

rigid pitch modes, and the 1st torsion and 2nd bending
modes through the addition of aerodynamic stiffness.
The 1increasing aerodynamic stiffness does, however,
cause the Ilst bending mode to become unstable at the
design airspeed thus becoming the critical mode of
interest, As a result of eliminating the body freedom
instability, the velocity flight envelope of the model
free in pitch is increased 252 percent using the active
system.

Figure 44 provides the velocity versus damping and
velocity versus frequency plotas for the model free in
pitch with the system operating and off,. This figure
illustrates a potential low speed hump mode instability
involving the rigid pitch mode between 40 and 80 ft/sec
when the system is operating. Hump modes in general are
sensitive to small perturbations in the aeroelastic
system and to changes in feedback parameters, The
degree of sensitivity of this mode to the feedback
parameters will be illustrated in later figures (see
Figures 45 and 48).

The effect of varying the leading edge gain % 6db
from nominal is illustrated in Figure 45. Because of the
high gain associated with the leading edge control law,
the wing torsion mode is somewhat affected, although not

to the degree that the pitch mode and wing 1lst bending
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mode are affected, The effect is minor and does nat
cause higher frequency instabilities. This system
greatly affects both the rigid pitch mode and the 1st
bending mode since it was designed to control the
coupling of these modes.

Leading edge gains with absolute values less than
61 deg/in are not sufficient to prevent a hump mode
instability involving the rigid pitch mode. The
possibility of a hump mode occuring can be seen by
noting the shape of the rigiu pitch mode in the V-g plot
of Figure 44. The behavior of the rigid pitch root
(comparing Figures 17 and 43) for gains between 0 and
-61 deg/in (from passive to fully augmented) is to swing
back to the left hand plane creating the hump mode
appearance. The locus crosses the imaginary axis but is
still unstable at low to moderate speeds. At a gain
near -61 deg/in, the hump is completely in the left hand
side of the root locus as shown in Figure 45.

‘The effect of trailing edge gain variations with

K held constant at nominal values for the

Le 8nd @qg
model free in pitch is illustrated in Figure 46. The
bending/torsion flutter characteristics are shown to be
fairly sensitive to variations of & 6db on Kyg- Also as
the gain approaches zero, the unstable 1lst bending mode

gradually approaches vpr' The switch in the mode of

instability from the 13t bending mode to the torsion
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mode is found to be gradual with decreasing KTE' This
transition of the mode of instability is Dbetter
illustrated in a later stability boundary plot (see
Figure 49).

Figure 47 illustrates the effect of varying the
trailing edge phase lag from nominal while keeping KLE
and KTE constant at nominal values. Phase lag angles
less than nominal cause the instability speed of the lIst
bending mode to drop, while phase lag angles higher than
nominal cause a control induced instability in the
torsion mode at a speed less than vpr' This
interaction with two s8eparate modes of instability
causes the phase margins to'be quite low for this
caonfiguration. Neither ¢ g nor KTE variations within
the range investigated affects the rigid pitch mode or
the 2nd bending mode. This lack of interaction is
understandable for the rigid pitch mode since the
trailing edge system wuses only wing tip angular
acceleration feedback. For the 2nd bending mode, the
lack of interaction is probably attributed to the
feeding of the system energy into the lst bending made
which is very near the 2nd bending frequency in the
critical velocity range as a result of the closed
leading edge looap.

In terms of stability boundaries, the effects of

varying the three feedback parameters, separately, from
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the nominal two-surface control law are presented in
Figures 48 to 50. The vertical dashed line in each
figure, again, represents the nominal control law. Each
figqure presents a perturbation of a particular feedback
parameter while the other two are held constant at
nominal values. These results are similar in terms of
the potential instability switching mechanisms possible
as is seen for the cantilever wing.

Three forms of mode switching are seen for the
model free in pitch. The first form of mode switching
is demonstrated in Figure 48. This figure shows the
appearance of the low speed hump mode instability
involving pitch that becomes stable when the absolute
value of KLE is greater than about 61 deg/in causing a
switch to a higher speed instability in the 1lst elastic
mode (mode #2). This figure also shows the positive
infinity gain margin on KLE'

The second form involves switching in the origin of
the mode of instability and is experienced when KTE is
increased. This mechanism is shown in Figure 49. The
frequency and shape characteristics of mode #4 are
gradually altered to a condition where the instability
changes to the characteristics of mode #2. The third
type of instability mode switching is encountered when
phase lag is varied. This mechanism involves the more

classical abrupt change in frequency as shown in Figure
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50. As for the cantilever wing, phase lags slightly

greater than 180 degrees cause a rapid drop in an

instability speed associated with the torsion mode. The
torsion mode is unstable at all speeds for phase lag
angles near 190 degrees. This near vertical drop in the

stability boundary limits the possible range of phase

margins for this configuration and system logqic.

Model free in Pitch and Plunge

Figure 51 presents the closed loop results of the
two-surface control law for the model free in pitch and
plunge over the velocity range of interest. This
control law performs well up to 1.2 pr2 (182 ft/sec).

At this speed two simultaneous instabilities are

predicted to occur. The higher frequency instability is
the bending/torsion flutter mode; the second instability
is similar to the control induced instability that
occurs in the 1lst bending mode when the model is free in
pitch only. For this case, however, the control induced
instability is found to be a hump mode and is sensitive
to changes in the feedback parameters. The flight

velocity envelope expansion for this configuration is

153 percent.

Velocity versus frequency and damping plots for the
model free in pitch and plunge are shown in Figure 52
for the system operating and off. This figure clearly

shows the hump mode present (lst bending) when the
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Figure 52 Comparison of V-g and V-u Plots, Two-Surface Control System
Operating and Off, Model Free in Pitch and Plunge
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system 1is operating. The lower figure involving
frequency also shows the significant modal interaction
at high speed. As for the other configurations, this
interaction is a clear indication that mode switching is
likely to occur with changes in the feedback parameters.
Figure 53 presents a velocity root locus plot for
the model free in pitch and plunge that demonstrates the
effects caused by changes in leading edge gain. The
gain variation shown in the figure represents ¢ 6db
variations from the nominal condition. The gain range
investigated is shown to interact significantly with all
three of the elastic modes but very little with the
rigid pitch mode. For gains with an absolute value
between zero and about 12.6 deg/in, the unstable lst
bending mode is brought back to the left hand side
(stable). Further increases in gain add aerodynamic
stiffness to the last bending mode causing an instability
to occur near 12 Hz. This instebility as described
earlier, involves 8 hump mode and is later found to be
quite sensitive to changes in the control system
parameters. The effect that KLE has on the 3rd elastic
mode (torsion) is a little different in that the torsion
root changes drastically with increasing KLE but the
iﬁstability speed and frequency change only slightly.
The effecta of trailing edge gain (KIE) variations

on the model free in pitch and plunge are shown in
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Figure 54. The trailing edge system not only affects
the torsion mode as designed, but also significantly
interacts with the lst bending mode which again is
characterized as a hump mode. The plot indicates that
there is very little movement of the loci associated ‘
with the rigid pitch mode and the 2nd bending mode,

indicating an insignificant interaction of these modes

with the active system with variations in this feedback ;_
gain.

Variations of the trailing edge phase angle from
nominal and the effects these have on the root loci of
the elastic modes are presented in figure 55. for this
configuration, phase angle variations from the nominal

control law affect all three of the elastic modes. All

three elastic modes Jdan be driven unstable depending
upon the phase lag network used in the system. A high
phase angle causes the torsion mode to become unstable
at low speeds similar to the other two configurations.
A low phase angle causes instabilities in either the lst
bending or 2nd bending modes depending upon the range of
the phase angle used.

The stability boundary plots for the three feedback
parameters (K, ., Kyps» and ¢g) are found in Figures 56
through 58. Mode of instability switching is shown to
take place similar to that found for the other

configurations.
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Figure 56 Stability Boundary with Variable KLE,Model Free in Pitch and
Plunge
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The nominal control law represented as the dashed
vertical 1line intersects the stability boundary of
Figure 56 at 182 ft/sec and in mode #5 (torsion). This
boundary is positioned at this airspeed by the trailing

edge control law (goal of 1.2 prz). An increase in

gain is shown to cause a classical change in the mode of
ingtability from the torsion mode to the 1lst bending
mode (made #3). A decrease in KLE causes body freedom
flutter to occur with the instability again occurring in
the lst bending mode.

The determination of the nominal trailing edge gain
is quite difficult in that two of the elastic modes are
driven unstable near the same airspeed (Figure 57). The
highest speed obtainable for this control logic and for
this configuration is 182 ft/sec. The nominal control
law for this configuration passes through the
intersection of the two stability boundaries. The
positive gain margin on KTE appears to be infinity;
however, at gains near .05, a low speed instability

i (hump mode) is encountered in the torsion mode.

Figure 58 presents the stability boundaries as a
function of the phase angle wused in the system
(referenced to 17 Hz). This plot indicates, as for the
other configurations, that higher phase margins can be
obtained by sacrificing speed improvement. It also

shows the possibility of the mode of instability
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switching as ®re changes.
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CHAPTER VI
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
An active feedback s8system was designed using
several sensors and two active surfaces to suppress the
aeroelastic instabilities associated with a forward
swept wing aircraft. Objectives of preventing two
aeroelastic modes of instability simultaneously using a
simple feedback s8system were accomplished. For a
cantilever wing, the static divergence and the wing
bending/torsion flutter speeds were increased 20 percent
above the latter. This resulted in a 63 percent
improvement in the usable velocity flight envelope.
Analysis with the active system operating predicted that
for @ similar speed increase, body freedom flutter could
be increased 252 percent for the model free in pitch and
153 percent for the model free in both pitch and plunge.
Summary
A summary of the analyses are provided below.

1. The unsteady aerodynamic force coefficients
were approximated using low order Pade' polynomials.
Passive calculations using the Pade' s8pproximations of
the aerodynamic forces and a root locus analysis
procedure predicted flutter characteristics that agreed

very well with conventional flutter prediction

17




techniques. It was concluded that low order Pade'
polynomials accurately fit the unsteady aerodynamic
force coefficients in the low subsonic speed range.

2. The active system for each wing boundary
condition consisted of two active surfaces located at
about the wing 3/4 span. A leading edge surface was
commanded by a displacement sensor positioned near the
intersection of the wing 2nd bending and the wing
torsion node lines. This .ucation provided the best
position for minimizing inputs from these modes while
providing adequate response in the 1lst bending mode.
When tﬁe model was free to pitch or pitch and plunge,
the translations at the displacement sensor due to rigid
aircraft rotation and plunge, were subtracted from the
signal. The second loop consisted of a trailing edge
control surface commanded by angular acceleration. This
sensor was positioned near the wing tip to maximize the
torsion inpult signal. Angle of twist was employed to
minimize feedback from the lower bending modes.

3. The 1leading edge svstem was specifically
designed to suppress the divergence tendencies of the
wing. This included static divergence of the cantilever
wing and body freedom flutter of the model when free in
pitch or free in both pitch and plunge. The trailing

edge system was designed to suppress the high frequency
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bend.ng/torsion flutter mode encountered with all wing
boundary conditions.

4. Variations of the feedback parameters from the
nominal values caused changes in the mode of
ingtability. These changes in the mode of instability
were either classical mode switching (abrupt changes in
frequency) or a transition from one mode to another
(continuous frequency variation).

5. Gain margins of + 6db were not difficult to
obtain for any of Lic wing boundary —conditions
investigated. Phase margins of % 45 degrees could not
be obtained without more complicated control laws.
Analyses indicated that phase margins could be increased
by trading speed improvement.

6. The divergence system (leading edge system) did
not significantly interact with the flutter instability.
Also, the flutter suppression system (trailing edge
system) did not affect the divergence instability. For
both cases, the lack of interaction was attributed to
the frequency separation of the two modes of instability
and the sensors being fed back. Both systems, however,
gignificantly affected the 2nd bending mode.

Conclusions

The studies reported herein have established the
feasibility of applying active feedback control systems

for preventing the aeroelastic instabilities associated
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with forward swept wings. The application of the
concept for aeroelastic control is an efficient,
adaptable, low weight approach compared to the classical
techniques of adding weight, stiffening the wings, or
imposing aircraft speed placards. The classical
approaches for flutter and divergence prevention have
historically resulted in a loss in aircraft performance
and survivability. With the advent of high-gain
digital/adaptive flight control systems, it 1is easily
conceivable that the flutuicr and divergence control
systems could become integral parts of the flight
control system using common components designed for
religbility and redundancy.

It is speculated that an active system for
aeroelastic control would be most beneficial when one
considers damaged composite wings resulting in a loss of
stiffness, or the external store carriage issue that
causes many flutter problems, It is expected that a
forward swept wing aircraft will evolve in terms of
operational deployment similar to what has occurred in
the past on such aft swept wing aircraft as the F-4, the
F-5, the A-7 and the F-111. The use of external stores
by these vehicles have, for practical purposes, grown
unbounded with time. Historically, fighter aircraft are
designed for e primary mission involving air-to-air

combat and sare later used in off-design missions that
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involve a certain number of external stores for
air-to-ground combat. Later in the 1life of the
aircraft, air-to-ground becomes an important mission to
the operational commanders requiring even more store
configurations. Aeroelastic problems are found to be
critical as a result of the many new external stores
required for carriage. These new stores result in
thousands of possible take-off and downloadings, many of
which are flutter critical. An adaptive control system,
a logical extension o1 the concept studied, offers
significant promise for the external store flutter
issue.

It is expected that an active control system will
be initially used to obtain aeroelastic instability
margins of safety (15 percent above the aircraft maximum
speed as required by Military Specs). The system 1in
this case will be operating at speeds near the aircraft
maximum speed but the vehicle will never be operating at
a passively unstable Fflight condition. As more
confidence is developed for such a system, it will be
used to prevent aeroelastic problems that are occuring
deep within the flight envelope of the vehicle (external
store flutter problem). Large payoffs in terms of
aircraft performance and sur%ivability are expected as a
result of this application.

This study defined the usefulness of active control
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systems for controlling aeroelastic instabilities
associated with forward swept wing aircraft. It is
important now that this work continue so that practical
systems can be developed, fabricated and tested in the
wind tunnel to verify these feasibility analyses. The
results of this study warrant continued research in this
technical discipline.

Recommendations

As a result of these and other active flutter
suppression and divergence d4ialyses on cantilever wings
and wings with rigid modes, the tools of design appear
to be available. However, there are several important
analytical and experimental aspects related to this
subject that require additional investigation. Ffrom an
analytical viewpoint, the effects of Mach number and
dynamic pressure should be evaluated to form sensitivity
trends. furthermore, variables such as static margin
and forward sweep angle should be addressed. These
sensitivity trends may define the need for adaptive
control laws for variable flight conditions in addition
to the need of such 8 system for external store
applications. Regarding serodynamics, the effects of
nonlinearities in the transonic flow region nceu to be
evaluated. Also, alternate design procedures i1nvolving
the time domain need to be further developed to evaluate

these nonlinearities.
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There 1is currently a need and a desire to
demonstrate through wind tunnel tests, the suppression

of divergence on a cantilever wing using displacement

feedback. Evaluations of the effects of symmetric rigid
body modes such as rigid pitch and plunge on the
suppression of body freedom flutter should also be
seriously considered using wind tunnel models.

Analyses and wind tunnel tests also need to be
conducted to evaluate the antisymmetric rigid and
elastic modes of a forwaru swept wing to determine if
other unexpected aercelastic instabilities are not
hidden in the shadows of simplifying assumptions,

Finally, free-flying wind tunnel models incorporating

all six rigid body degrees of freedom need to be used to
investigate the feasibility and practicality of active

aercelastic control systems.
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APPENDIX A

SELECTION OF A FORWARD SWEPT WING CONFIGURATION

A forward swept wing wind tunnel model previously
tested to investigate divergence and body freedom
flutter was selected as the basis of the configuration
and dynamic characteristics desired for use in this
study. The planform of the model with key dimensions of
the wing and fuselage bar assembly are provided in
Figure 2 of the main text.

Finite Element Representation

To obtain the calculated natural frequencies and
node lines for each of the important vibration modes of
the wind tunnel model, finite element techniques were
used. In the following, any reference to “plate”
concerns the aluminum load carrying member of the wing;
any reference to "model" concerns the entire wing
(plate, sleeve and fuselage). Also, the "basic wing"
represents the wind tunnel model, while "modified wing"
includes one pound of weight distributed along the
outboard six sections of the wind tunnel model near the
trailing edge of the wing.

The plste was represented by 18 finite beam
elements and the hoaollow =steel fuselage ber was

represented with 6 elements. figure A-1 shows the
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relative locations of the grid paints for this

representation, and Table A-1 presents the global ;/

'™ A

coordinates of the grid points. The origin of the
global coordinate system used in the anslyses was
located at grid point #1 with x positive aft along the

bar and y positive out the span of the wing (z + down). :i

A second coordinate system with the origin located at
grid point #1 but rotated 15 degrees forward such that ]
the y-direction was along the reference axis (elastic {
axis) was also used in the analysis. This system Wi
located the masses and inertias of the plate and sleeves
in a dumbbell sense about theelasticaxis of the model.
Again, the x-direction was positive aft. The dumbbell
moment arms were determined using the mass (m), the mass
moment of inertia (I,), and the static unbalance (e) of

each section and the equations,

_ I
d=Jﬁ°.-e2+e (1)

1
I
dz-JF‘*-ez-e (2)

Table A-2 provides the value of the mass located at
each grid point used in the analysis and identifies the

masses as coming from the plate, the sleeves, the bar or

the flutter weights (if applicable). The masses on the
wing are offset from the reference axis at each grid

point by the dumbbell distances provided in Table A-3.
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Table A-1 Finite Element Grid Point Coordinates

!
COORDINATES |[IN)
X Y

O B N o AW N -

10 -3.98 14.85

n -4.58 17.10

12 -5.05 18.85

13 -5.63 21.00

14 -6.08 22.70 ]
15 -6.66 24.85 '
16 M 26.55 |
17 -7.58 28.30 | |
18 -8.01 29.90 \
19 -8.32 31.06

20 -32.50 0. \
21 -12.50 0. |
22 -9.46 0. |
23 -8.50 0. ]
24 6.00 0.

25 7.50 0.
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Table A-2 Finite Element Grid Point Masses

et
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Table A-3 Moment Arms for Wing Inertia Using a Dumbbell Representation

e N

e e -
LN

s oo o ok

Notes:
1. Half of the Mass at each location
2. Perpendicular to reference axis at grid point
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The calculated center of mass for the basic model was

only l/4-<inch off from the measured value for the

configuration selected. !

Vibration Analysis

An analysis was conducted to obtain the frequencies

and node lines of the first three normal modes of
vibration (1lst bending, 2nd bending, and lst torsion) of
the wind tunnel model. This analysis was necessary to
provide the confidence required to assure that the
finite element model accurately represented the wind
tunnel model. Good correlation with ground vibration
test data22 provided that confidence. The analysis was
conducted for both the plate and the basic wmoadel
cantilevered and free in pitch. The frequencies of the
firat three modes are summarized in Table 1 of the main
text. Analyses were also conducted for the basic model
free in pitch and plunge, although no test data were
available for —correlation. Node lines and the

frequencies (calculated and test, where applicable) for

three modes for the three wing boundary conditions are

provided in Figures A-2 thru A-4.

Once good correlation was obtained with
experimental results, the basic model was modified by
adding mass along the trailing edge of the wing to lower
the bending/torsion flutter speed., A vibration analysis

was conducted in parallel with a flutter/divergence
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FREQUENCY, HZ
1B 3.2 (3.2)
----- 2B 16.2 (16.0]
—+— 1T 36.7 (36.7)
TEST DATA (XXXX)

Figure A-2 Calculated Frequencies and Node Lines of
Basic Cantilever Model
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| —

FREQUENCY, HZ
18 3.1 (3.3)
..... 28 15.7 (16.3)

—— T 357 (31.7)
TEST DATA (XXXX]

Figure A-3 Calculated Frequencies and Node Lines of
Basic Model Free in Pitch
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FREQUENCY, WZ

B 3.3
—----- 2B 164
—— T 35.7

Figure A-4 Calculated Frequencies and Node Lines of
Basic Model Free in Pitch and Plunge
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analysis to accomplish this objective.

Table A-4 and Figures 4 through 6 of the main text
present the calculated frequencies and node lines of the
modified model for the three wing boundary conditions.
All natural frequencies are about 18 to 35 percent lower
than the respective frequencies calculated for the basic
model. Also the torsional node 1line has shifted
gsignificantly aft as a result of the masses near the
trailing edge.

Flutter Analysis

The subsonic doublet lattice theory was used to
calculate the unsteady aerodynamic force coefficients
for the flutter and divergence analyses. The k-method
was used for the cantilever aeroelastic analyses where
zero frequency divergence was of concern. tThis method
provided answers that correlatedwell with test date and
other static aeroelastic analysis results. When the
model was in a free-free state, both the k-method and
the P-k method were considered for flutter calculations.
The P-k method was subsequently eliminated when an
aeraodynamic interpolation problem was encountered. This
problem is discuased in more detail in Appendix B.

Figure 3 of the main text shows the aerodynamic
paneling arrangement used in these studies. Two of the
cutbaard panels represent the leading edge and the

trailing edge control surfaces. The locations of these
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Table A-4 Modified Model Calculated Frequencies

ROOT CONDITION |MODE
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two control surfaces relative to the model aerodynamic

sleeves are shown in Figure A-5.

Damping versus velocity and frequency versus
velocity plots for the basic and modified model for the
three wing boundary conditions are found in fFigures A-6,
A-7 and A-8. These figures show only the first three
elastic modes. A modal elimination analysis indicated
that the fourth elastic mode (3rd bending mode) had
little or no effect on the prediction of the divergence
and flutter characteristics. Table A-~5 summarizes the
flutter 8snd divergence calculations for the basic and

modified models.
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Table A-5 Flutter and Divergence Analysis Results

CONFIGURATION 4 MODES 3 MODES
; "hih vn
CANTILEVER v

FREE IN PiTcH Wy,

FREE IN PITCH (uy,
AND PLUNGE vy,

HODIFIED MODEL v,
CANTILEVER

FREE IN PITCH

FREE IN PITCH ()
AND PLUNGE fy

V, FT/SEC,; W, HZ
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APPENDIX B
VARIATION OF UNSTEADY AERODYNAMIC FORCES WITH REDUCED
FREQUENCY

One of the more surprising aspects of performing a
flutter analysis for the model free in rigid pitch
concerned the interpolation of the unsteady aerodynamic
forces. It was found that the prediction of the body
freedom flutter characteristics was very dependent on
the selection of the reduced frequencies used during the
calculation of the unsteady aerodynamic forces. Figure
B-1 illustrates a potenti.i concern (rapid variation of
the force coefficient in a small reduced frequency
range) that could be overlooked during a body freedom
flutter analysis. This figure presents a variation of
the aerodynamic force in the rigid pitch mode due to the
pressure caused by the rigid pitch mode as reduced
frequency was varied. The region of interest lies
between a reduced frequency of 0.1 to 0.2, the range in
which body freedom flutter occurred.

Initially, a P-k flutter analysis approach was used
to predict body freedom flutter. This technique
required the calculation of aerodynamic forces at
several reduced frequencies which covered the frequency

and velocity ranges of interest. An interpolation of
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aerodynamics based on these calculated forces was used

in the P-k analysis. For the model free in pitch, two
dynamic instabilities were in the speed range of
interest. The high frequency bending/torsion flutter
mode occurred near a reduced frequency of 0.7. As a
result, the P-k flutter analysis was conducted using
aerodynamic force coefficient data calculated at reduced
frequencies between .05 to 1.0. Since only six values
could be used in the fluttcr analysis procedure for the
P-k technique, this range of reduced frequencies
selected appeared reasonable at the time. However, the
rapid variation of this force coefficient (determined at
a later time) could not be reproduced by aerodynamic
interpolation and erroneous flutter results were
obtained.

The P-k flutter analysis predicted a body freedom
flutter instability 30 percent below the test speed for
the basic wing discussed earlier. After undergoing a
detailed inspection of the analyses and calculating
aerodynamic force coefficients at additional values of
reduced frequency, Figures B-1 thru B-6 were developed.
Using a k-flutter prediction method and no aerodynamic
force interpolation, the flutter speed was predicted to
occur at 90 ft/sec which was only 4 ft/sec different

from test data. This analysis was conducted using

147




Kouanbau4 pasnpay yitm
JUBLDL4430) 32404 dlweukpoudy buipuag 3s{/udlLd Apog pLBLY JO uOLIRLIBA Z-§

(Clp) T3y

-
-~

(o) oYW~ =~ =~ — _
0l g




Kouanbaug paonpay
UILM JUBLOL3430) 3D404 SLweukpoasy yoiid Apog pLbLy/BuLpusg 3S| j0 uUOLIeLIRA £-g 34nbi4

(2p) vy

T
149

1207 sy

AR R gk g e




G rmemie e e m e .M TNTTW TN, Y MU SN Teo g T T s e | 0w e pes m e et ey ——
. d . S Y " e e e -

T mme—te——— o D e i e e IS A i, B o o i g -

Aouanbauy4 padnpay y3LM JUaLOL3430) 92404 Odjweulpoday buipuag 3S| JO uoiljeidep §-g aunbiy

(E2y) Tvay




Aouanbau 4 paonpay YiLM JUaLIL}480) 32404 diweukpoudy Guipuag puz J0 uorjerdep G-g auanbl4

‘|-

151
i




Adoud
nbad4 paonpay YILM JudLIL44307) 30404 Jtweulpoudy uUOLSAOl JO uoljeLaep g-g aunbLy

[ ¥¥p) v3y

o

0

- om —

(¥¥o) sym

"0

"o

152

S



asrodynamics calculated at every .005 reduced frequency
increment between 0.1 to 0.2. The prediction of the
higher frequency flutter mode did not involve rapidly
varying aerodynamics over a narrow k range which is
normal for most flutter modes and, therefore, was not a
problem for either technique.

The above experience implies that when performing
flutter analyses with rigid modes, care must be taken to
asgure that the aerodynamic force coefficients due to
the rigid modes are properly represented over the
reduced frequency range of interest. fhis is
particularly true if any of the rigid modes are expected
to participate in the flutter mode such as body freedom
flutter. Without care, at best overly conservative
flutter speeds may be predicted as was the case reported
here. It 1is quite possible, however, that the
instability may not be predicted at all, resulting in

later potentially serious problems.
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